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Energy dynamics in linear MHD with ion
parallel viscosity
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Analytic results for the time dependences of the kinetic and magnetic energies of
an incompressible magnetofluid threaded by a strong uniform magnetic field B0

are obtained. The governing equations are the linearised magnetohydrodynamic
(MHD) ones, but with the conventional Laplacian dissipation replaced by ion par-
allel viscous effects. The behaviour is shown to depend on the relative sizes of the
Alfvén frequency and the viscous and resistive dissipation rates. For many cases
equipartition of the kinetic and magnetic energy holds at the (Fourier) modal level.
An important exception to this behaviour occurs for two-dimensional fluctuations,
that is when the wavevectors are perpendicular to B0.

1. Introduction
In a recent paper (Oughton 1996, hereinafter referred to as Paper I) we consid-
ered linear and nonlinear solutions of the magnetohydrodynamic (MHD) equations,
where the usual Laplacian viscous term was modified to reflect the dominance of ion
parallel viscous effects given a strong uniform background magnetic field B0 = B0ẑ.
Here we extend the analysis of the linearized equations to obtain analytic solutions
for the temporal dependence of the kinetic and magnetic energies.

The motivation for and derivation of the modified incompressible equations have
been discussed elsewhere (Montgomery 1992; Oughton 1996; see also Montgomery
1983). The appropriate dimensionless linearized equations are,

∂v
∂t

= −∇p∗ + B0 ·∇b + νion
(
−∂xz,−∂yz, 2∂zz

)
vz, (1.1)

∂b
∂t

= B0 ·∇v + η∇2b, (1.2)

where v and b are the solenoidal velocity and magnetic field fluctuations, p∗ is
the pressure, η the resistivity, νion the (kinematic) ion parallel viscosity, and ∂xz =
∂2/∂x∂z, etc. The derivation requires, amongst other restrictions (Montgomery
1992; Oughton 1996), that B0� v̄, b̄, where an overbar denotes the rms value. Note
that, in contrast to the standard dissipative (linear) case, the pressure gradient is
not zero, as can be seen by taking the divergence of (1.1).

2. Results and discussion
In this section we first introduce the polarization decompositions of v and b, and
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then present results on the time dependence of the kinetic and magnetic energy
components in this framework.

For linear fluctuations the two linearly independent polarizations of v are uncou-
pled. It is convenient to use such a polarization basis in what follows. Consider the
Fourier transform of v(x), denoted by v(k). The solenoidal nature of the velocity
field allows v(k) to be decomposed using a k-dependent coordinate system:

v(k) = e1ψ1 + e2ψ2, (2.1)

with e1 = k× ẑ/|k× ẑ| and e2 = k× e1/|k|. Similarly, b(k) = e1a1 + e2a2. We refer to
these components as the e1 and e2 polarizations. When k is parallel to ẑ ≡ B̂0, the
associated physical symmetry means that the polarizations are equivalent, and we
use e1 = x̂ and e2 = ŷ in this case. As noted above, the e1 and e2 components are
only coupled if nonlinear terms are present. Moreover, in the linear limit only the e2

component is affected by ion parallel viscous effects (Montgomery 1992; Oughton
1996).

In Paper 1 the dispersion relation for the linear system (1.1), (1.2) was obtained
(see also Montgomery 1992). It was shown that the damping associated with νion

can be strongly anisotropic, with propagating solutions only persisting for k either
almost parallel or almost perpendicular to B0. Progress can also be made in solving
for the time dependence of Ev1 (k) = 1

2 |ψ1(k)|2, Eb1(k) = 1
2 |a1(k)|2, etc., with the

general solution being an appropriate superposition. For example, substituting (2.1)
into the Fourier transforms of (1.1) and (1.2), and taking dot products with e2ψ2

and e2a2, shows that the e2 polarization components of the energy are governed by

dEv2
dt

= −2ωAH2 − 2γEv2 , (2.2)

dEb2
dt

= 2ωAH2 − 2µEb2 , (2.3)

dH2

dt
= ωA(Ev2 − Eb2)− (µ + γ)H2, (2.4)

where µ = ηk2, γ = 3νionk
2
zk

2
⊥/k

2 andH2 = 1
2 Im{ψ∗2a2}, and ωA = k·B0 is the Alfvén

frequency. The system governing the e1 energy components is obtained from (2.2)–
(2.4) by replacing ‘2’ subscripts with ‘1’ ones, and setting γ = 0; consequently
solutions to the e1 system can be obtained from the e2 solutions by using the same
operations. Note that Ev1 , etc. are functions of the vector k, as are ωA and γ, so
that anisotropic effects are to be expected (Montgomery 1992; Oughton 1996).

The quantity H = Im{ψ∗α(k)aα(k)} has been referred to as the (spectrum of
the) ‘helicity of the electric field’, because it stands in the same relationship to
the electric field as the magnetic helicity does to the magnetic energy (Zhou and
Matthaeus 1990; Oughton et al. 1997). Unfortunately its physical nature is currently
not well understood, but if the analogy can be legitimately pursued then the electric
field helicity is a measure of the knotting and twisting of the electric field (lines).
As will be seen below, H acts as a sort of ‘courier’ connecting the kinetic and
magnetic energy reservoirs, thereby enabling the dynamic maintenance of energy
equipartition.

The equations are linear constant-coefficient ODEs, and are amenable to stan-
dard methods of solution (Birkhoff and Rota 1989). Specifically, the system can be
written in the vector form du/dt = Au, where A is the matrix of coupling coeffi-
cients, and solved by finding the eigenvalues and vectors of A. It can be shown that



Energy dynamics in linear MHD with ion parallel viscosity 573

the eigenvalues are

λ = −(µ + γ), −(µ + γ)± i[4ω2
A − (µ− γ)2]1/2. (2.5)

The nature of the solutions clearly depends on the relative sizes of µ, γ and ωA,
with four cases of particular interest. In all cases initial conditions appropriate
for linear fluctuations are imposed, for example, for the e2 components at t = 0,
Ev2 = Eb2 = W2, H2 = Ḣ2 = 0 and Ḧ2 = 2(µ − γ)ωAW2, and similarly for the e1

polarization. We now examine the cases in detail.

(a) Oscillations: Ω2 = 4ω2
A − (µ + γ)2 > 0

This situation leads to one real and two complex-conjugate eigenvalues, so that the
solutions can involve damped oscillations. The results for the e2 polarization are

E
v/b
2 (t) = W2[1 +N 2(1− cos Ωt)±N sin Ωt]e−(µ+γ)t, (2.6)

H2(t) =
2ωAW2

Ω
N (1− cos Ωt) e−(µ+γ)t, (2.7)

with N = (µ− γ)/Ω. In (2.6) and (2.8) the upper sign in the ‘±’ terms is associated
with Ev2 and the lower with Eb2 . As expected, energy is conserved for µ = γ = 0.
The point to note is that H2 mediates a coupling between the kinetic and magnetic
components, thereby inducing decay ofEb2 , even in the absence of resistivity. Similarly
in the e1 equivalent of (2.2)–(2.4), where γ → 0, the coupling through H1 causes
Ev1 and Eb1 to decay with the same envelope, but with fluctuations about it that
are in antiphase. Consequently, equipartition of the kinetic and magnetic energy is
maintained, on average.

Note that when µ = γ the oscillations inEv2 andEb2 are absent andN = 0 = H2(t),
so that Ev2 (t) and Eb2(t) remain precisely equal for all t > 0.

(b) Equal eigenvalues: 4ω2
A = (µ− γ)2

The degeneracy leads to solutions whose temporal dependence is the product of a
quadratic in time and exponential decay:

E
v/b
2 (t) = W2[1± (µ− γ)t + 1

2 (µ− γ)2t2]e−(µ+γ)t, (2.8)

H2(t) = ωAW2 (µ− γ) t2e−(µ+γ)t. (2.9)

Clearly, the modal Alfvén ratio Ev2 /E
b
2 approaches unity as t becomes large com-

pared with |µ − γ|−1. Note that if µ = γ then ωA = 0 and there is no coupling be-
tween the kinetic and magnetic components. Moreover, as in case (c), if the Alfvén
frequency is zero then so is γ (kz ≡ 0). In other words, we have repeated zero
eigenvalues corresponding to undamped fluctuations.

(c) Two-dimensional fluctuations: ωA = k · B0 = 0; µ� 0

Since kz = 0 for this case, we also have γ = 0, and the kinetic energy is undamped.
From (2.5), the eigenvalues are real and distinct, with one being zero. Physically,
the associated fluctuations are two-dimensional in nature, the wavevectors being
perpendicular to B0. Examination of (2.2)–(2.4) for such fluctuations shows that the
equations are uncoupled and may be solved directly. Using the initial conditions
described above, we obtain

Ev2 = W2, Eb2 = W2e
−2µt, H2 = 0. (2.10)



574 S. Oughton

Clearly, equipartition is not maintained for two-dimensional fluctuations. Although
γ ∼ νion vanishes for strictly two-dimensional fluctuations, the higher-order viscos-
ity coefficients (Braginskii 1965; Book 1987; Balescu 1988) are non-zero and lead
to weak viscous decay.

(d) Real, distinct, negative eigenvalues: 0 < 4ω2
A < (µ− γ)2

This is a more complicated version of case (c), with γ non-zero. The general solution
for each element of the system is a sum of three (distinct) exponentially decaying
terms:

Ev2 (t)
W2

= u0e
−αt + u+e

−α+t + u−e
−α−t, (2.11)

Eb2(t)
W2

= u0e
−αt + u−e

−α+t + u+e
−α−t, (2.12)

where H2(t) is analogous to Ev2 (t) with ui 7→ hi. The other quantities are,

α = µ + γ, α± = α(1± δ), δ2 = 1− 4ω2
A

(µ− γ)2 ,

u0 = 1− (γ − µ)2

(αδ)2 , u± =
(γ − µ)(γ − µ± αδ)

2α2δ2 ,

h± = −h0

2
=
ωA(µ− γ)

(αδ)2 .

Note that 0 < δ < 1.
As with case (c), equipartition is not maintained. Defining the modal normal-

ized energy difference for the e2 components as σD2(k, t) = (Ev2 − Eb2)/(Ev2 + Eb2),
and similarly for σD1, it can be shown that these ratios asymptotically approach
constants, for example,

σD2 =
(u2 − u1) sinh(αδt)

u0 + (u2 + u1) cosh(αδt)
(2.13)

→ δ
µ + γ

µ− γ , (2.14)

for t� (αδ)−1. Note that equipartition does not occur for t� 0, since setting the
exact result (2.13) equal to zero implies γ = −µ, but both quantities are strictly
positive. Thus, for a given wavevector mode, either the kinetic or the magnetic
energy will predominate, depending on which dissipation rate is bigger. If µ >
γ ⇒ η/νion > 3(k⊥kz/k2)2 then an excess of kinetic energy prevails. Furthermore,
because the e1 polarization solutions have γ → 0, they are always associated with
excess kinetic energy. This completes consideration of the four cases.

As noted above, the solutions for the e1 energy components can be obtained by
setting γ ∼ νion = 0 in the appropriate e2 solution and changing all ‘2’ subscripts
to ‘1’. In cases (a)–(c) this produces no essential change in the solutions, since the
results are qualitatively the same when γ = 0.

It follows that superposition of all e1 and e2 fluctuations of types (a) and (b)
will yield a total fluctuation energy that is essentially equipartitioned between the
kinetic and magnetic components. On the other hand, if such fluctuations are absent
or much less common than those of types (c) and (d), the total energy is unlikely
to be equipartitioned, except in special cases. Whether the kinetic or the magnetic
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energy dominates depends on both the dissipation coefficients and on the initial
spectral distribution of the energy. For example, if the initial fluctuations are quasi-
2D, meaning that all excited modes have wavevectors approximately perpendicular
to B0, then the kinetic energy will dominate at (almost) all scales after a time of
order (ηk2

min)−1.
How many modes of each type are there? Consider a cubic spatial domain and

Fourier-decompose the fields using N modes in each Cartesian direction, giving
O(N 3) modes in all. Type (c) fluctuations require kz = 0, which occurs once for
every kx, ky pair. Thus O(1/N ) of the modes are strictly two-dimensional.

For type (d) fluctuations 4ω2
A < (µ− γ)2, which implies

k2

|kz|
>∼

2B0

η
, (2.15)

unless ηk2/νion is O(1) or less. By assumption, B0 is large and η small, so that the
right-hand side is much greater than unity. Clearly, as N increases, the number
of modes that satisfy the inequality also increases. With N = 128, 256 and 512,
the fraction of modes satisfying (2.15) is 2%, 4% and 8.6%, so that for these N
the bulk of the modes are of type (a). For large enough N , however, most modes
will be of type (d). In any case, the type (c) two-dimensional modes will always
be a minority. Nonetheless, the two-dimensional modes can still be dynamically
important or even dominant.

Figure 5(b) of Paper 1 displays the time evolution of the polarization compo-
nents Evi and Ebi for a three-dimensional linear simulation (N = 32), in which all
possible wavevector modes are initially isotropically populated. The run parame-
ters were B0 = 10, νion = 10 and η = 10−2, with an initial fluctuation energy of
unity. Clearly the original equipartition of energy is immediately broken, with the
Alfvén ratio increasing monotonically (Ev/Eb ≈ 1.25 at t = 4). While this is just
one example, it suggests that the linear fluctuations are becoming progressively
more two-dimensional, relative to the direction of B0, as the other fluctuations are
preferentially damped. Note that nonlinear theory, closures and simulations also
indicate that fluctuations evolve towards (quasi) two-dimensionality in the pres-
ence of a uniform magnetic field (Montgomery and Turner 1981; Shebalin et al.
1983; Carbone and Veltri 1990; Oughton et al. 1994; Matthaeus et al. 1996; Oughton
1996).

3. Summary
We have shown that the linearized MHD equations, appropriately modified to in-
corporate ion parallel viscous effects, can be solved to give the time dependence of
the polarization components of the kinetic and magnetic energy, Evi and Ebi , where
i = 1, 2 represents the polarization component. There are four cases of particular
interest, identified by the relative sizes of the Alfvén frequency and the viscous and
resistive decay rates. These cases are discussed in detail in Sec. 2. Three main types
of (coupled) solutions are found: oscillations with exponentially decaying envelopes,
exponential decay, and exponential decay multiplied by quadratic time dependence.

In general, Evi and Ebi are coupled through the ‘helicity of the electric field’, Hi

(Zhou and Matthaeus 1990; Oughton et al. 1997). This coupling tends to induce ap-
proximate equipartition of the kinetic and magnetic energy components. However,
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for two-dimensional fluctuations (ωA = k ·B0 = 0), Hi remains zero for all t, so that
the energies are decoupled and the kinetic energy is undamped.
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