
Chapter 1
Phase transitions in single neurons and neural
populations: Critical slowing, anesthesia, and
sleep cycles

D.A. Steyn-Ross, M.L. Steyn-Ross, M.T. Wilson, and J.W. Sleigh

1.1 Introduction

It is a matter of common experience that the brain can move between many different
major states of vigilance: wakefulness; sleep; trauma- and anesthetic-induced quiet
unconsciousness; disease- and drug-induced delirium; epileptic and electrically-
induced seizure. By monitoring cortical brain activity with EEG (electroencephalo-
gram) electrodes, it becomes possible to detect more subtle alterations within these
major states; for example, we find that natural sleep consists of periodic cyclings
between inactive, quiet slow-wave sleep (SWS) and a paradoxically active phase—
characterized by rapid eye movements and reduced muscle tone—named REM
(rapid-eye-movement) or paradoxical sleep.

The existence of these contrasting brain states motivates us to ask: How does the
brain move between states? Is the changing of states a smooth, graduated motion
along a trajectory of similar states? Or is the transition more like an abrupt switching
choice between two (or more) mutually-exclusive cortical destinations? If the state-
change can be thought of as a switching choice, then we might envision a hills-and-
valleys cortical landscape in which the crest of a hill represents a decision point, and
the two valleys falling away to either side are the alternative destination states. In
this picture, we could expect a cortex, delicately poised at a decision point, to exhibit
signature behaviors in the statistical properties of its fluctuations as it “ponders” its
choices. This notion—that decision points can be identified from critical changes in
fluctuation statistics—is a unifying theme that we will return to several times in this
chapter.
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2 Steyn-Ross, Steyn-Ross, Wilson, and Sleigh

The chapter is structured as follows. We examine first a simplified single-neuron
model due to Hugh R. Wilson [29, 30] that is able to produce either the arbitrarily
slow firing rates (so-called type-I behavior) observed in cortical neurons in the mam-
malian cortex, or, with a minor change in parameter values, exhibits the sudden-
onset firing rates (type-II behavior) that characterize both the squid giant-axon ex-
citable membrane, and the neurons in the mammalian auditory cortex. Our interest
here is not the above-threshold behaviors such as the shape and time-course of the
action potential, nor the functional form of spike-rate on stimulus current; instead,
we focus on the sensitivity of the non-firing, but near-threshold, resting membrane
to small noisy perturbations about its equilibrium resting state as the neuron makes
a stochastic exploration of its nearby state-space, exercising what Jirsa and Ghosh1

describe as its dynamic repertoire.
Gross changes in states of brain vigilence, such as from awake to asleep, and

from anethetized to aware, reflect alterations in the coordinated, emergent activity
of entire populations of neurons, rather than a simple “scaling up” of single-neuron
properties. In Sect. 1.3 we examine historical support for the notion that induction
of anesthesia can be viewed as a first-order “anesthetodynamic” neural phase transi-
tion, comparing biological response to an “obsolete” drug (ether) with a very com-
monly used modern drug (propofol). We describe EEG response predictions using a
noise-driven mean-field cortical model, and identify an explanation for the paradox-
ical observation that inhibitory agents (such as anesthetics) can have an excitatory
effect at low concentrations.

Section 1.4 investigates the SWS–REM sleep cycle, finding similarities in the
EEG sleep patterns of the human, the cat, and the fetal sheep. We suggest that the
species-independent surge in correlated low-frequency brain activity prior to transi-
tion into REM sleep can be explained in terms of a first-order jump from a hyper-
polarized quiescent state (SWS) to a depolarized active state (REM).

In Sect. 1.5 we examine the recently published Fulcher–Phillips–Robinson model
[18, 19] for the wake–sleep cycle, demonstrating a divergent increase in brain sen-
sitivity at the transition point: the occurrence of a peak in neural susceptibility may
provide a natural explanation for the so-called “hypnagogic jerk”—the falling or
jolting sensation frequently experienced at the point of falling asleep.

We summarize the common threads running through these neuron and neural
population models in Sect. 1.6.

1.2 Phase transitions in single neurons

In the absence of noise, a single neuron is bistable: it is either at rest or generating
an action potential. As noted by Freeman [6], the approach to firing threshold is
heralded by an increasing sensitivity to stimulus:

1 See Chap. 4 of this volume.
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1 Evidence for neural phase transitions 3

When a depolarizing current is applied in very small steps far from threshold, the neural
dynamics is linear; responses to current steps are additive and proportional to the input [. . . ]
As threshold is approached, a nonlinear domain is encountered in which local responses
occur that are greater than expected by proportionality.

The fact that a biological neuron is constantly buffeted to a background wash of
low-level noisy currents allows the neuron to explore its local state space. These
stochastic explorations can be tracked by monitoring the voltage fluctuations at the
soma. We will show that the statistics of these fluctuations change—in characteristic
ways—as the critical point for transition to firing is approached.

1.2.1 H.R. Wilson spiking neuron model

The H.R. Wilson equations [29,30] describe neuron spiking dynamics in terms of a
pair of first-order coupled differential equations,

C
dV
dt

= INa(t) + IK(t) + Idc + Inoise(t) , (1.1)

τ
dR
dt

= −R(t) + R∞(V ) + Rnoise(t) . (1.2)

The neuron is pictured as a “leaky” capacitance C whose interior voltage V is deter-
mined by sum of ionic (INa, IK) and injected (Idc) currents entering the lipid mem-
brane. Here we have supplemented the original Wilson form by adding white-noise
perturbations (Inoise, Rnoise) to the current (1.1) and recovery-variable (1.2) equa-
tions.

The sodium (Na) and potassium (K) ionic currents are determined by their re-
spective conductances (gNa, gK) and reversal potentials (ENa, EK),

INa(t) = −gNa(V )(V −ENa) , IK(t) = −gKR · (V −EK) , (1.3)

where R is the recovery variable that approximates the combined effects of potas-
sium activation and sodium inactivation that dominate the slower neuron dynamics
for the return to rest following the fast up-stroke of an action potential. Definitions
and constants for the H.R. Wilson model are listed in Table 1.1.

Comparing Eqs (1.1–1.3) against Hodgkin and Huxley’s (HH) classic four-
variable model for the excitable membrane of the squid giant-axon [11], we see the
significant simplifications Wilson has made to the complicated HH forms for the
time- and voltage-dependence of sodium and potassium conductances: the sodium
conductance gNa is now a quadratic function of membrane voltage; the potassium
conductance gK becomes a constant; and the steady-state for the combined potas-
sium activation/sodium inactivation is either a quadratic (for type-I spiking behav-
ior), or linear (type-II spiking), function of voltage. These simplifications reduce the
dimensionality of the neuron from four dynamic variables to two—while preserving
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4 Steyn-Ross, Steyn-Ross, Wilson, and Sleigh

Table 1.1 Definitions and constants for stochastic implementation of the H. R. Wilson [30] model
for type-I (mammalian) and type-II (squid) excitable membrane. Icrit

dc is the threshold input current
for spike generation.

Description Symbol Type-I Type-II Unit
(mammal) (squid)

Capacitance C 1.0 0.8 µF cm−2

Time-constant τ 5.6 1.9 ms
Reversal potentials ENa, EK +48, −95 +55, −92 mV
K+ conductance gK 26.0 26.0 mS cm−2

Noise-scale (current) σI 1.0 0.1 µA cm−2 (ms)1/2

Noise-scale (recovery) σR 1.0 0.1 (ms)1/2

Threshold current Icrit
dc ∼21.4752886 ∼7.77327142 µA cm−2

Na+ conductance, gNa(V ) = a2V 2 +a1V +a0

a2 33.80×10−4 32.63×10−4 mS cm−2 mV−2

a1 47.58×10−2 47.71×10−2 mS cm−2 mV−1

a0 17.81 17.81 mS cm−2

Recovery steady-state, R∞(V ) = b2V 2 +b1V +b0

b2 3.30 0 mV−2

b1 3.798 1.35 mV−1

b0 1.26652 1.03 –

some essential biophysics2—making the model much more amenable to mathemat-
ical analysis and insight.

The additive noises appearing on the right of Eqs (1.1) and (1.2) are two inde-
pendent time-series of white-noise perturbations that are supposed to represent the
continuous random buffeting of the soma and recovery processes within a living,
biological neuron. The noises are defined as,

Inoise(t) = σI ξI(t) , Rnoise(t) = σR ξR(t) , (1.4)

where σI , σR are the rms noise scale-factors for current and recovery respectively,
and ξI , ξR are zero-mean, Gaussian-distributed delta-correlated white-noise sources
with statistics,

〈ξ (t)〉 = 0 , 〈ξi(t)ξ j(t ′)〉 = δi j δ (t− t ′) . (1.5)

Here, δi j is the dimensionless Kronecker delta and δ (t) is the Dirac delta function
carrying dimensions of inverse time. The ξ (t) are approximated in simulation by
the construction

ξ (t) = N (0,1)/
√

∆ t , (1.6)

2 Notably: ionic reversal potentials, and the implicit Ohm’s-law dependence of ionic current on the
signed displacement of the membrane voltage from the reversal values.
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1 Evidence for neural phase transitions 5

where ∆ t is the size of the time-step, and N (0,1) denotes a normally-distributed
random-number sequence of mean zero, variance unity. In the numerical experi-
ments described below, the noise amplitudes are set at a sufficiently small value
to ensure that the neuron is allowed to explore its near steady-state subthreshold
(i.e., non-firing) state space; in this regime we will find that, as firing threshold is
approached from below, the subthreshold fluctuations become critically slowed, ex-
actly as predicted by small-noise linear stochastic theory.

1.2.2 Type-I and type-II subthreshold fluctuations

Excitable membranes are classified according to the nature of their spiking onset.
For the squid axon and for auditory nerve cells, action potential oscillations emerge
at a non-zero frequency when an injected dc stimulus current exceeds threshold;
such membranes are classified as being type-II or resonator [12]. In contrast, for
type-I or integrator membranes (e.g., human cortical neurons), spike oscillations
emerge at zero frequency as the current stimulus crosses threshold—that is, the fir-
ing frequency in a type-I neuron can be arbitrarily slow. By altering the voltage
dependence of R∞ (the steady-state value for the recovery variable in Eq. (1.2))
from linear to quadratic, the H.R. Wilson model neuron can be transformed from a
resonator into an integrator (see Table 1.1 for polynomial coefficients).

Figure 1.1 compares the near-threshold behavior of the Wilson resonator neuron
(Fig. 1.1(a)) with that of the integrator neuron (Fig. 1.1(b)) for white-noise perturba-
tions superimposed on five different levels of constant stimulus current Idc. For the
squid-axon type-II resonator, the voltage fluctuations show an increasing tendency
to “ring” at a characteristic frequency, with the ringing events becoming more pro-
longed and pronounced as the critical level of drive current Icrit

dc ≈ 7.7732 µA/cm2

is approached from below.
In contrast, the mammalian type-I integrator shows voltage fluctuations that be-

come simultaneously larger and slower as the drive current approaches the critical
value Icrit

dc ≈ 21.4752 µA/cm2. One is reminded of Carmichael’s eloquent descrip-
tion of a state change in quantum optics in which the process [1],

. . . amplifies the initial fluctuations up to the macroscopic scale, making it impossible to
disentangle a mean motion from the fluctuations.

Prior to spike onset, is the slowly varying trend a fluctuation about the mean, or the
mean motion itself? At the critical point leading to the birth of an action potential in
an integrator neuron, the mean motion is the fluctuation.

In order to better appreciate the underlying statistical trends in fluctuation vari-
ability as the critical stimulus current is approached, we repeat the 200-ms nu-
merical simulations of the stochastic Wilson equations (1.1)–(1.2) a total of 2000
times, each run using a different constant value of Idc. These Idc stimulus values,
in µA/cm2, are evenly distributed over the range −10 to +7.77 for the resonator
experiments (see Fig. 1.2(a)), and −10 to +21.475 for the integrator experiments
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Fig. 1.1 Stochastic simulations for the H.R. Wilson models for (a) squid axon (type-II) and (b)
human cortical (type-I) neuron. Framed insets show detail of the subthreshold voltage fluctuations
prior to spike onset. (a) Numbered from bottom to top, the five squid stimulation currents are
Idc = 0, 2, 4, 6, 7.7 µA/cm2. (To improve visibility, the squid traces have been displaced vertically
by (4m−20) mV where m = 1 . . .5 is the curve number.) (b) Cortical neuron stimulation currents
are (bottom to top) Idc = −100,−40, 0, +16, +21.4752 µA/cm2. Integration algorithm is semi-
implicit Euler-trapezium with timestep ∆ t = 0.005 ms. All runs within a given figure used the
same sequence of 40 000 Gaussian-distributed random-number pairs to generate the white-noise
perturbations. (Reproduced from [22].)

(Fig. 1.3(a)). Despite the fact that the variances (σ2
I ,σ2

R) of the white-noise per-
turbations remained unchanged throughout these series of experiments, it is very
clear that—for both classes of excitable membrane—the variance of the resulting
fluctuations increases strongly and nonlinearly as the critical value of dc control
current is approached, confirming Freeman’s earlier observation of growing non-
proportionality of response for a neuron near spiking theshold.
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Fig. 1.2 H.R. Wilson type-II (resonator) response to white-noise perturbation as a function of
subthreshold stimulus current Idc. (a) Each vertical gray stripe shows maximum voltage excursions
recorded in a 200-ms stochastic simulation of Eqs (1.1), (1.2) at each of 2000 settings for stimulus
current ranging from−10.0 to +7.77 µA/cm2. Solid black curves show theoretical±3σ limits for
voltage excursions away from equilibrium. (b) Theoretical spectral response to white-noise driving
for the squid-axon model. The double-sided spectrum develops a pronounced and increasingly
narrow resonance at ∼±360 Hz as the critical current is approached from below. (Reproduced
from [22].)
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(a) Human neuron model: Voltage fluctuations (b) Fluctuation spectrum
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Fig. 1.3 H.R. Wilson type-I (integrator) response to white-noise perturbation as a function of sub-
threshold stimulus current Idc. (a) Caption as for Fig. 1.2(a), but here stimulus current ranges from
−10.0 to +21.475 µA/cm2. Black curves are ±3σ predictions; gray background verticals indicate
fluctuation extrema recorded from 2000 independent numerical experiments. (b) Theoretical spec-
trum for subthreshold cortical neuron shows a strong resonance developing at zero frequency as
threshold current for spiking is approached from below. (Reproduced from [22].)

−50 −25 257.7733 50

−75

−70

−65

(a) Squid axon model: Steady states

V
o

lt
a

g
e

 [
m

V
]

Idc  [μA/cm2]

Idc

−50 −25 0 21.475 50

−80

−70

−60

−50

−40

−30

(b) Human neuron model: Steady states

Idc  [μA/cm2]

SN

H

unstable
stable

unstable
stable

crit
Idc

crit

Fig. 1.4 Distribution of steady-state membrane voltages as a function of dc stimulus current Idc
for (a) Wilson type-II resonator model; and (b) Wilson type-I integrator neuron. The critical cur-
rent Icrit

dc is determined by the point at which the (real part of the) dominant eigenvalue becomes
positive, heralding emergence of instability (generation of action potentials). Transition occurs (a)
via subcritical Hopf bifurcation at H for the resonantor [30]; and (b) via saddle–node annihilation
at SN for the integrator. (Modified from [22].)

1.2.3 Theoretical fluctuation statistics for approach to criticality

Provided the white-noise perturbations are kept sufficiently small, it is possible to
compute exact expressions for the variance, power spectrum, and correlation func-
tion of the voltage and recovery-variable fluctuations. By “sufficiently small”, we
mean that the neuron remains subthreshold (i.e., does not generate an action poten-
tial spike), so can be accurately described using linear Ornstein–Uhlenbeck (Brow-
nian motion) stochastic theory.
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8 Steyn-Ross, Steyn-Ross, Wilson, and Sleigh

The analysis was detailed in Ref. [22], but in outline, proceeds as follows. For a
given (subthreshold) value of stimulus current Idc, compute the steady-state coordi-
nate (V o,Ro). For the H.R. Wilson resonator, V o is a monotonic increasing function
of Idc (see Fig. 1.4(a)), whereas for the Wilson integrator the graph of V o vs Idc maps
out an S-shaped curve (Fig. 1.4(b)), so there can be up to three steady states for a
given value of stimulus current [30]—in which case, select the steady state with the
lowest voltage.

We rewrite the Wilson equations (1.1), (1.2) in their deterministic (noise-free)
form,

F1(V,R) ≡ (INa + IK + Idc)/C , (1.7)

F2(V,R) ≡ (−R(t) + R∞(V ))/τ , (1.8)

and linearize these by expressing the fluctuations (v,r) as small deviations away
from steady state (V o,Ro),

v(t) = V (t)−V o , r(t) = R(t)−Ro , (1.9)

Reinstating the additive noise terms, the linearized Wilson equations become cou-
pled Brownian motions of the form,

d
dt

[
v
r

]
= J

[
v
r

]
+
√

D
[

ξI

ξR

]
, (1.10)

with Jacobian and diffusion matrices defined respectively by,

J =

[
∂F1
∂V

∂F1
∂R

∂F2
∂V

∂F2
∂R

]∣∣∣∣∣
(V o,Ro)

, D =

[(
σI
C

)2 0

0
(

σR
τ

)2

]
, (1.11)

where J is evaluated at the selected equilibrium point.
In the vicinity of an equilibrium point, the deterministic behavior of the two-

variable Ornstein–Uhlenbeck system is completely defined by the two eigenvalues,
λ1 and λ2, belonging to the Jacobian matrix.

For the subthreshold Wilson resonator, the eigenvalues are complex, λ1,2 =
−α± iωo, with the damping α =−Re(λ ) being positive for a decaying impulse re-
sponse and a stable equilibrium. If the damping becomes negative (i.e., Re(λ ) > 0),
a minor disturbance will grow exponentially, signaling onset of nonlinear super-
threshold behavior (generation of a spike). But if the drive current matches the crit-
ical value Icrit

dc exactly, the damping will be precisely zero, thus a small disturbance
will provoke a resonant response at frequency ωo whose oscillations will neither
decay nor grow over time, but will persist “forever”.

For the Wilson integrator neuron, both eigenvalues are purely real, with λ2 <
λ1 < 0 for a stable equilibrium. Exponential growth leading to spike onset is pre-
dicted if the dominant eigenvalue λ1 becomes positive. At the critical current for the
integrator (lower-right turning point in Fig. 1.4(b) labeled SN), the unstable mid-
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1 Evidence for neural phase transitions 9

branch saddle equilibrium meets the stable lower-branch node at a saddle–node bi-
furcation. At this bifurcation point the dominant eigenvalue is precisely zero, lead-
ing to a delicate point of balance in which small perturbations are sustained indefi-
nitely, neither decaying back to steady state nor growing inexorably into nonlinear-
ity and thence to a spike. At this point, the neuron response will become critically
slowed.

1.2.3.1 Fluctuation variance

Following Gardiner’s analysis of the multivariate Ornstein–Uhlenbeck process [8],
we can write theoretical expressions of the white-noise evoked fluctuation variance
and spectrum, and deduce scaling laws for the divergences that manifest at the crit-
ical point.

The steady-state variances of the fluctuations developed in the Wilson excitable
membrane depend explicitly on the elements of the diffusion matrix and the Jaco-
bian matrix, and on the Jacobian eigenvalues. For the H.R. Wilson type-I integrator,
the variance of the voltage fluctuations reads [22],

var{v} =
(λ1λ2 + J2

22)D11 + J2
12D22

−2(λ1 +λ2)λ1λ2

λ1↑0−−→ ∼ 1
−λ1

∼ 1√
ε

. (1.12)

Here, λ1 is the dominant (i.e., least negative) eigenvalue, and both eigenvalues are
real. As the dc stimulus current approaches its critical value, λ1 approaches zero
from below. Thus, at the threshold for spiking, the integrator neuron becomes in-
finitely responsive to white-noise perturbation with the fluctuation power diverg-
ing to infinity. The scaling for this divergence follows an ε−1/2 power-law, where
ε = (Icrit

dc − Idc)/Icrit
dc is a dimensionless measure of distance from criticality. This is

the case because in the vicinity of the saddle–node bifurcation point, the dominant
eigenvalue scales as

√
ε in a locally parabolic relationship. Since the inverse of the

dominant eigenvalue defines the dominant time-scale T for system response, it fol-
lows that the characteristic times (correlation time, passage time) will obey the same
scaling law: T ∼ ε−1/2. We note that this inverse square-root scaling law is a very
general feature of systems that are close to a saddle–node bifurcation [26].

For the case of the Wilson type-II resonator, the eigenvalues form a complex
conjugate pair, λ1,2 = −α ± iωo, so the expression for voltage variance becomes
[22],

var{v} =
(α2 +ω2

o + J2
22)D11 + J2

12D22

4α (α2 +ω2
o )

α↓0+
−→ ∼ 1

α
∼ 1

ε
. (1.13)

As the critical point is approached, the damping α = −Re(λ ) goes to zero from
above, leading to a prediction of a divergent power increase that scales as ε−1 (for
the Wilson resonator close to threshold, α scales linearly with ε).

Equations (1.12) and (1.13) were used to compute the theoretical ±3σ voltage
fluctuation limits plotted in Figs 1.3(a) and 1.2(a) respectively; we note excellent
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10 Steyn-Ross, Steyn-Ross, Wilson, and Sleigh

agreement between simulation (gray stripes) and small-noise linear theory (black
curves).

1.2.3.2 Fluctuation spectrum

The stationary spectrum for the membrane-voltage fluctuations in the stochastic
H.R. Wilson neuron is given by the S11 entry of the 2×2 spectrum matrix of the
two-variable Ornstein–Uhlenbeck process [8,22]. For the Wilson integrator neuron,

S11(ω) =
1

2π

J2
22D11 + J2

12D22 +D11ω2

(λ1λ2−ω2)2 +(λ1 +λ2)2 ω2
λ1=0−→
ω→0

∼ 1
ω2 . (1.14)

The spectral character of the fluctuations changes as the Idc stimulus current in-
creases towards the critical value Icrit

dc , and the corresponding lower-branch steady
state moves closer to the saddle–node critical point (marked SN in Fig. 1.4(b)): the
dominant eigenvalue λ1 tends to zero from below, causing the power spectral den-
sity to diverge at zero frequency, obeying an asymptotic power-law ∼ 1/ω2. Thus,
at the critical saddle–node annihilation point, the Wilson integrator is predicted to
become “resonant at dc”. This spectral tuning of fluctuation energy towards zero
frequency is illustrated in the plots of Eq. (1.14) graphed in Fig. 1.3(b).

The noise-driven time-series for the squid-axon model illustrated in Fig. 1.1(a)
shows a strongly increasing tendency for the voltage trace to “ring” at a characteris-
tic frequency as the drive current is increased towards the threshold for spiking. This
ringing behavior is precisely consistent with the spectrum predicted from Ornstein–
Uhlenbeck theory for the Wilson resonator neuron [22],

S11(ω) =
1

2π

J2
22D11 + J2

12D22 +D11ω2

(α2 +ω2
o −ω2)2 +4α2ω2

α=0−→
ω→ω0

∼ 1
(ω−ωo)2 , (1.15)

implying perfect resonant behavior at frequency ω = ωo, with the approach to res-
onance following an asymptotic scaling-law ∼ 1/δ 2 where δ = (ω −ωo) is the
spectral distance from resonance. The resonator spectrum of Eq. (1.15) is plotted in
Fig. 1.2(b).

We now move from consideration of single neurons to the gross behaviors of
large populations of neurons. Just as a single neuron displays telltale nonlinear in-
creases in responsiveness as it approaches the transition point separating stochastic
quiescence from dynamic spiking, we find that the collective behaviors of cooper-
ating neuron populations also exhibit characteristic critical responses as the neural
population approaches a change of state. We consider three gross changes of cor-
tical state that are easily detected with a single pair of EEG electrodes: induction
of anesthesia; natural sleep cycling from slow-wave sleep into REM sleep; and the
nightly transition between wake and sleep.
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1.3 The anesthesia state

The ability to render a patient safely and reversibly unconscious via administration
of an anesthetic drug is an essential component of modern surgical medicine. Al-
though anesthetic agents have been in use for over 160 years, their mode of action
remains poorly understood, and is the focus of ongoing and intensive research.

The state of general anesthesia is a controlled and reversible unconsciousness
characterized by a lack of pain sensation (analgesia), lack of memory (amnesia),
muscle relaxation, and depressed reflex responses. In his classic 1937 textbook for
anesthetists [9], Arthur Guedel identified four distinct stages in the induction of
general anesthesia using the volatile agent diethyl ether:

1. Analgesia and amnesia Patient experiences pain relief and dreamy disorienta-
tion, but remains conscious.

2. Delirium Patient has lost consciousness, blood pressure rises, breathing can be-
come irregular, pupils dilate. Sometimes there is breath-holding, swallowing,
uncontrolled violent movement, vomiting, and uninhibited response to stimuli.

3. Surgical anesthesia Return of regular breathing, relaxation of skeletal muscles,
eye movements slow, then stop. This is the level at which surgery is safe.

4. Respiratory paralysis Anesthetic crisis—respiratory and other vital control cen-
tres cease to function, death from circulatory collapse will follow without as-
sisted ventilation and circulatory support.

One might anticipate a roughly linear dose–response in which increasing drug con-
centration leads to proportionate reductions in brain activity—unfortunately, this
simple intuition is immediately contradicted by the anomalous patient response re-
ported by Guedel at the stage-2 (delirium) level of anesthesia. A general anesthetic
is administered with the aim of quieting or inhibiting brain response to noxious stim-
uli, and yet, on route to the stage-3 fully-inhibited state, the patient transits through
a “wild” uncontrolled state of delirium and uninhibited response to stimuli. This is a
most interesting paradox: the end-state of inhibition is preceded by an intermediate
stage of excitation.

1.3.1 Effect of anesthetics on bioluminescence

In the 1970s, researchers reported that the volatile anesthetics ether, halothane, chlo-
roform, and cyclopropane all reversibly reduce the intensity of light emissions from
luminescent bacteria [10, 28]. This followed earlier work by Ueda [27] showing
that the light emission from the firefly lantern-extract luciferase was reversibly sup-
pressed by both ether and halothane. The anesthetic concentration required to de-
press bioluminescent intensity by 50% was found to be very similar to the con-
centrations required for clinical induction in humans. Because of this remarkable
scale-invariance (i.e., the light-emitting complex in photo-bacteria and in fireflies,
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12 Steyn-Ross, Steyn-Ross, Wilson, and Sleigh

Fig. 1.5 Dose–response curve
showing the effect of the
volatile anesthetic ether on the
luminous intensity of the bac-
teria Photobacterium phos-
phoreum. Note the anomalous
surge, and increased vari-
ability, in light output at low
ether concentration. (Graph
reconstructed from [10].)
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and the central nervous system in humans, are responsive to similar concentrations
of a given anesthetic), and because light intensity can be be easily and accurately
measured, bioluminescence provided a useful early means for quantifying and com-
paring anesthetic potency.

Figure 1.5 shows the bioluminescence dose–response for ether reported by
Halsey and Smith [10]. At partial pressure P = 0.026 atm, the luminous intensity has
reduced to 50% of its original value. This partial pressure is similar to the 0.032 atm
value quoted in the paper for the abolition of the righting instinct in 50% of mice
exposed to ether.3 Of particular interest is their observation that luminescence is
stimulated by low doses of ether (P ∼ 0.009 atm), confirming an earlier report by
White and Dundas [28]. Halsey and Smith [10] stated that stimulation also occurred
at low levels of chloroform, halothane, and nitrous oxide (though for the latter two
agents the increase was “not statistically significant”, presumably because the un-
certainty bars became very large during this transition phase).

Although neither research group offered an explanation for this paradoxical exci-
tation by an inhibitory agent, it seems rather likely that the dilute-ether boost in lumi-
nous intensity and variability seen in bacteria could be mapped directly to Guedel’s
delirium (stage-2) for ether-induced anesthesia in human patients—though it might
be difficult to test this idea quantitatively now, since diethyl-ether is no longer used
as an anesthetic agent in hospitals.

1.3.2 Effect of propofol anesthetic on EEG

Unlike diethyl-ether and the other volatile anesthetic agents (such as those tested in
the bioluminescence experiments) that are delivered to the patient by inhalational

3 Prior to the bioluminescence studies, small mammals had been used to calibrate anesthetic po-
tency.

Page:12 job:Ch01_SteynRoss_A macro:svmult.cls date/time:8-Jul-2009/4:55



1 Evidence for neural phase transitions 13

mask, propofol, a modern and commonly-used general anesthetic, is injected in-
travenously as a liquid emulsion, so is likely to have a different mode of action.
Despite this difference, the onset of propofol anesthesia is also heralded by a surge
in brain activity that is readily detected as a sudden increase in low-frequency EEG
power [14, 15]; this excitation subsides as the patient moves deeper into uncon-
sciousness. Thus propofol, like ether, is “biphasic”, being excitatory at low concen-
trations, then inhibitory at higher concentrations.

The measurements of Kuizenga et al. [15] shown in Fig. 1.6(a) show that a
second surge in activity occurs as the propofol concentration dissipates, allowing
the patient to re-emerge into consciousness. Thus there are two biphasic peaks per
induction–emergence cycle: the first at or near loss-of-consciousness (LOC), and the
second at recovery-of-consciousness (ROC). The onset of the first EEG surge lags
∼2 min behind the rise in propofol concentration; this delay arises because of the
unavoidable mismatch between the site of drug effect (the brain) and the site of drug
measurement (the blood)—it takes about 2 min for the drug to diffuse across the
blood–brain barrier. Even after compensating for this delay, there seems to remain
a hysteretic separation between that the LOC and ROC biphasic peaks, meaning
that the patient awakens at a lower drug concentration than that required to put the
patient to sleep.

At the individual neuron level, the major effect of propofol is to prolong the
duration of inhibitory postsynaptic potential (IPSP) events, thereby increasing the
inward flux of chloride ions and thus increasing the hyperpolarizing effectiveness of
inhibitory firings by GABAergic interneurons [4, 13].

We developed a model for propofol anesthesia by modifying a set of cortical
equations by Liley [16] to include a control parameter λ that lengthens the IPSP
decay-contant (by reducing the IPSP rate-constant γi) in proportion to drug con-
centration: γ

−1
i → λγ

−1
i ; see Refs [23–25] for full details. For a physiologically

plausible set of cortical parameters, we found that, for a given value of anesthetic
effect λ , the model cortex could support up to three homogeneous steady-states; see
Fig. 1.6(b). The upper (active) and lower (quiescent) stable nodes are separated by
a saddle-branch that is unstable to small perturbations, suggesting the possibility of
a propofol-mediated phase transition between the active (conscious) and quiescent
(unconscious) states. A transition from active branch A1-A2-A3 to quiescent branch
Q1-Q2-Q3 becomes increasingly likely as the node-saddle annihilation point A3 is
approached from the left. The abrupt downward transition represents induction of
anesthesia (i.e., LOC).

Once unconscious, reductions in λ allow the cortex to move to the left along
the bottom branch of Fig. 1.6(b), with the probability of an upward transition (i.e.,
ROC) rising as the quiescent node–saddle point Q1 is approached. Thus the model
provides a natural explanation for the observed LOC–ROC drug hysteresis.

Proximity to either of the node–saddle turning points can be detected by the
divergent sensitivity of the cortical model to small disturbances. This increasing
susceptibility or “irritability” can be quantified by driving the model with low-level
white noise, simulating the biological reality of a continuous background wash of
unstructured, nonspecific stimulus entering the cortex from the subcortex. Provided
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Fig. 1.6 Measured (a) and modeled (b–d) effect of propofol anesthetic agent on EEG activity
during induction of, and emergence from, general anesthesia. (a) Time-series showing biphasic
surges in 11–15-Hz EEG activity (black curve) in response to increasing and decreasing levels
of propofol blood concentration (gray curve) for a patient undergoing a full induction–emergence
cycle. [Data provided courtesy of K. Kuizenga.] (b) Trajectory of steady states predicted by a
cortical model that assumes propofol acts to prolong IPSP duration by factor λ . Approaches to the
saddle-node points A3 (for induction), and Q1 (for emergence), are predicted to show pronounced
EEG power surges displayed in (c) and (d) respectively. (Modifed from Figs. 3–5 of [23].)

the intensity of the white-noise stimulus is sufficiently small, we can compute ex-
act expressions for the stationary spectrum and correlation properties of the noise-
induced fluctuations by applying stochastic theory [8] to the distribution of eigenval-
ues obtained from linear stability analysis [23]. The predicted alterations in spectral
densities for EEG fluctuation power during anesthetic induction, and during emer-
gence from anesthesia, are plotted in Fig. 1.6(c) and (d) respectively. In both cases,
the fluctuation power at zero frequency surges as the node–saddle critical point is
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1 Evidence for neural phase transitions 15

approached, providing advance warning of an impending jump in membrane volt-
age.

According to this model, we can interpret Kuizenga’s observations—of hystereti-
cally separated biphasic surges in EEG activity—as biological evidence supporting
the notion that the cortical states of awareness and anesthesia are distinct “phases”
of the brain. One could argue that the drug-induced transition into unconsciousness
has similarities with physical phase transitions, such as water freezing to ice, with
the effect of increasing drug concentration in the brain being analogous to lowering
the temperature in the thermodynamic system [25].

1.4 SWS–REM sleep transition

Monitoring the EEG activity of the sleeping human shows natural sleep to consist of
two opposed phases: quiet slow-wave sleep (SWS) and active rapid-eye-movement
(REM) sleep. During quiet sleep, the EEG voltage fluctuations are larger, slower—
and more coherent across the scalp—than those observed during alert wakefulness.
In constrast, during active sleep, the EEG closely resembles wake with its high-
frequency, low-amplitude desynchronized patterns. A sleeping adult human cycles
between SWS and REM-sleep states at approximately 90-min intervals, for a total
of four to six SWS–REM alternations per night.

Figure 1.7 illustrates the cyclic nature of the adult sleep patterns we reported in
Ref. [21]. We see four slow surges in EEG power during the six-hour recording,
with each surge being terminated by an abrupt decline, signaling the transit from
SWS to REM sleep. The increase in fluctuation power is matched by an increase in
correlation time4 that peaks at the end of each SWS episode, with abruptly lower
values in REM sleep. This is consistent with the antiphased changes in low- and
high-frequency power fractions of Fig. 1.7(c): SWS is associated with increasing
low-frequency activity; REM sleep is associated with diminished low-frequency and
enhanced high-frequency EEG fluctuations.

The Fig. 1.8 analysis by Destexhe et al. [2] for the sleeping cat shows similar
patterns of SWS–REM alternation, albeit with a faster cycling time of ∼20 min.
As was the case for the human sleeper, Fig. 1.8 shows that the sleeping cat exhibits
a pronounced increase in low-frequency power prior to transition from SWS into
REM. The concomitant increase in “space constant” (correlation length for EEG
fluctuations) observed for the cat is consistent with an increase in correlation time
we reported for the human sleeper.

Very similar changes are seen in the ECoG (electrocorticogram) brain activity
for a mature fetal sheep. Figure 1.9 shows a 500-s voltage trace, recorded from
the cortex of a late-term fetal sheep, that captures the transition between the so-
called “high-voltage slow” (i.e., SWS) and “low-voltage fast” (REM sleep) states.
As is the case for the human and cat sleepers, the slow-wave state is characterized

4 Correlation time T is the time-lag required for the autocorrelation function for EEG voltage to
decay to 1/e of its zero-lag peak.
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Fig. 1.7 [Color plate] Analysis of an EEG trace recorded from a human sleeper resting overnight
in a sleep laboratory. (a) Fluctuation power; (b) correlation time; (c) low- and high-band power
fractions; (d) sleep staging as per rulebook of Rechtschaffen and Kale [20]. Key: +1 = REM; 0 =
wake; (−1,−2) = light sleep; (−3,−4) = deep sleep (SWS). (Graph reprinted from [21].)

low-frequency correlated fluctuations that increase in intensity and low-frequency
content as the point of transition to active sleep is approached.
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1 Evidence for neural phase transitions 17

Fig. 1.8 Cortical activity for a cat transitioning from wake to SWS to REM sleep as reported
by Destexhe et al. [2]. LFP = local field potential (on-cortex EEG); EOG = electrooculogram
(eye movement); EMG = electromyogram (muscle tone). REM is identified by reappearance of
eye movements (EOG activity) and lack of muscle tone (loss of EMG activity). (Graph reprinted
from [2] with permission.)

1.4.1 Modeling the SWS–REM sleep transition

In Ref. [21] we described the construction of a physiologically-based model for the
SWS–REM sleep transition that incorporated the two major neuromodulatory in-
fluences that are thought to be responsible for the cycles of natural sleep: (a) slow
changes in synaptic efficiency ρe and resting voltage V rest

e of the population of exci-
tatory neurons caused by the 90-min cycling in acetylcholine (ACh) concentration;
and (b) slower changes in resting voltage caused by the gradual elimination dur-
ing sleep of fatigue agents such as adenosine. The full set of cortical equations are
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Fig. 1.9 Cortical activity for a full-term fetal sheep (gestational age = 144 days) transitioning from
slow sleep (SWS) to active sleep (REM) about 230 s into the recording. (a) ECoG voltage signal
(arbitrary units) sampled at 250 s−1. Inserts show 3 s of ECoG signal for the intervals 50–53 s
(left), and 450–453 s (right). (b) ECoG power (arbitrary units) computed for 3-s epochs with 25%
overlap (gray trace), and smoothed with a Whittaker filter [3] (black trace). (c) ECoG correlation
time computed for 3-s epochs with 25% overlap (gray trace), and smoothed with a Whittaker filter
(black trace). Note the coincident surge in power and correlation-time prior to transition into REM.
(Data provided courtesy of J.J. Wright; analysis by Yanyang Xu.)

described in the chapters by Sleigh et al and Wilson et al.5 The model consists of
eight differential equations for macrocolumn-averaged soma potentials and synaptic
fluxes. Here, we simplify the equations considerably by taking the “slow soma” adi-
abatic limit in which, relative to the∼50-ms time-scale of the neuron soma, synaptic
input events are assumed to be fast and rapidly equilibrating. This simplification re-
duces the number of state variables from eight to two: Ve and Vi, the average soma
potential for the excitatory and inhibitory neural populations. The acetylcholine and
adenosine effects are modeled in terms of λ , a multiplicative factor applied to the ρe
excitatory synaptic efficiency, and ∆V rest

e , an additive adjustment that tends to de-
polarize (hyperpolarize) the excitatory membrane potential for positive (negative)
values of ∆V rest

e .

5 See chapters 9 and 10 respectively in the present volume.
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1 Evidence for neural phase transitions 19

The λ and ∆V rest
e parameters define a two-dimensional sleep domain for our

cortical model. We located the homogeneous equilibrium states (V o
e ,V o

i ) as a func-
tion of variations in λ and ∆V rest

e , paying particular attention to those regions of
the domain that support multiple (up to three) steady states. When plotted in 3-D,
the region of multiple steady states appears as a reentrant fold in the sleep-domain
manifold of Fig. 1.10. For our reduced adiabatic cortical model, the top and bottom
surfaces of the fold contain stable solutions, and only the middle surface (within the
overhang outlined in green) contains unstable solutions.6

Fig. 1.10 [Color plate] Man-
ifold of homogeneous equi-
librium states for SWS–REM
sleep-cycling model. Steady-
state soma voltage V o

e is
plotted as a function of sleep-
domain parameters ∆V rest

e and
synaptic efficiency λ . The im-
posed sleep cycle commences
in SWS at (+), encounters the
saddle–node critical point SN
(•), and jumps vertically into
REM sleep (◦). (Modified
from [21].)
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We impose a cyclic tour of the manifold that is proposed to represent a single
90-min SWS-to-REM-to-SWS sleep cycle. This tour, commencing in the quiescent
slow-wave sleep state (marked “+” in Fig. 1.10), proceeds clockwise until it en-
counters the saddle–node annihilation point SN at the lower overhang boundary,
whereupon the soma voltage spontaneously makes an upwards jump transition to
the activated upper state that we identify as REM sleep.

To visualize the dynamic repertoire available to the sleep-cycling cortex, we per-
form a numerical simulation of the reduced cortical equations. Voltage fluctuations
in soma potential are induced via small-amplitude white-noise stimulations enter-
ing the model via the subcortical terms (see [21] for details). The noise-stimulated
voltage fluctuations have an amplitude and spectral character that are strongly de-
pendent on the cortical steady-state coordinate. In Fig. 1.11 we have started the
numerical simulation very close to the saddle–node critical point SN on the bottom
branch of Fig. 1.10. Proximity to the critical point causes the fluctuations to be large
and slow; after about 2 s, the fluctuation carries the cortex beyond the basin of at-
traction of the bottom-branch equilibrium point, and the cortex is promptly drawn
to the upper state. Fig. 1.11 shows an abrupt loss of low-frequency activity once
the model cortex has transited from SWS into the REM (upper) state, similar to the

6 Analysis of the full nonadiabatic cortical model shows that, for particular choices of synaptic
parameters, the regions of instability can extend beyond the overhang, leading to Hopf and wave
instabilities. See chapters 9 (Sleigh et al) and 10 (Wilson et al) for details.
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Fig. 1.11 Stochastic simulation of the slow-soma cortical model for SWS–REM sleep cycling.
The cortical model is started close to the saddle–node critical point SN on the bottom branch of
Fig. 1.10. (a) Soma voltage Ve, and (b) noise-induced fluctuations δVe versus time. Fluctuations in
(b) are measured relative to the bottom (top) steady state for times t < 2.1 (t > 2.1) s. (Modified
from [21].)

spectral changes observed in the EEG for human, cat, and fetal-sheep sleep records
(Figs 1.7–1.9 respectively).

1.5 The hypnic jerk and the wake–sleep transition

The daily cycling of brain state between wake and sleep is a natural phase transi-
tion that is synchronized by the diurnal light cycle and regulated by waxing and
waning concentrations of neuromodulators such as acetylcholine (ACh) and adeno-
sine. Fulcher, Phillips, and Robinson (FPR) [7, 18] have developed a model for the
wake–sleep transition7 that we examine briefly here, focusing on the possibility that
critical slowing of noise-evoked fluctuations in the wake–sleep control center might
provide a natural explanation for the puzzling but common observation of a bodily
jerk at the onset of sleep.

The FPR wake–sleep model is expressed in terms of the mutual inhibition be-
tween two brainstem neural populations: the sleep-active ventrolateral preoptic area
(VLPO), and the wake-active monoaminergic group (MA). The mutual competi-
tion between these populations produces bistable flip-flop behavior that causes the
brain state to alternate between wake and sleep states. In the simplest form of the
model (Fig. 1.12), the external ACh drive promoting arousal of the MA (and of the

7 And see Chap. 8 of this volume.
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Fig. 1.12 Schematic for sim-
plified Fulcher–Phillips–
Robinson model of the sleep–
wake switch. Excitatory (+)
and inhibitory (–) interactions
are shown with solid and
outline arrowheads. Mutual
inhibition between VLPO
and MA neuron populations
results in flip-flop bistabil-
ity between wake and sleep
states.
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Arousal drive

Sleep drive
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cortex) is replaced by a constant excitation voltage Dm = A = const., and the ex-
ternal somnogenic and circadian sleep-promoting drives that activate the VLPO are
replaced by a slowly-varying control parameter Dv. For this reduced case, the re-
spective equations of motion for Vv and Vm, the VLPO and MA population voltages
(relative to resting voltage) become,

dVv

dt
=

1
τ

(−Vv +νvmQm +Dv) , (1.16)

dVm

dt
=

1
τ

(−Vm +νmvQv +A) , (1.17)

where τ is a time-constant, ν jk is the coupling strength from population k to j (with
j,k = v or m), and Qk is the sigmoidal mapping from soma voltage Vk to average
firing rate [5],

Qk = S(Vk) = Qmax/
[
1+ exp(−{Vk−θ}/σ

′)
]
, (1.18)

with Qmax being the maximum firing rate, θ the threshold voltage (relative to rest)
for firing, and σ ′ a measure of its spread. (Refer to Table 8.2 for parameter values.)

Setting the time-derivatives in Eqs (1.16–1.17) to zero and solving numerically
for the steady states as a function of sleep drive Dv reveals a three-branch locus
of equilibria (Fig. 1.13); linear stability analysis indicates that the middle branch is
unstable. The top branch has higher Vm values, so is identified with the wake state,
while the bottom branch, with lower Vm values, corresponds to sleep. Because the
top branch terminates in a saddle–node critical point (SN1), any noise present in
the VLPO–MA flip-flop will produce exaggeratedly enlarged and slowed voltage
fluctuations as the awake brain moves to the right along the top branch under the
influence of increasing sleep pressure Dv. If D0

v is the value of sleep pressure at
which the wake state loses stability (i.e., at SN1), then Eq. (1.12) predicts that the
variance of the voltage fluctuations will diverge according to the scaling law

var(Vm)∼ 1√
ε

, (1.19)

Page:21 job:Ch01_SteynRoss_A macro:svmult.cls date/time:8-Jul-2009/4:55



22 Steyn-Ross, Steyn-Ross, Wilson, and Sleigh

where ε = |Dv−D0
v | measures the distance to the saddle–node bifurcation point.

This theoretical prediction has been verified by numerical simulation—see Fig. 8.9(a)
in the chapter by Robinson et al (present volume).

Fig. 1.13 Locus of equilib-
rium states, saddle–nodes,
and ghosts for FPR sleep
model as a function of VLPO
sleep-drive Dv. White curve
shows distribution of sta-
ble (solid line) and unstable
(dashed line) steady states.
Saddle–node bifurcation
points SN1, SN2 are marked
with open circles (◦). Re-
gions of slow dynamics are
shaded from V̇ = 0 (black)
to V̇ > 0.05 mV/ms (white).
Saddle–node ghosts form
in the “shadow zone” that
projects beyond the turning
points. (Figure modeled on,
and modified from, Fulcher et
al [7].)
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It is likely that the brainstem VLPO–MA wake–sleep system projects to other
brain areas such as the cerebral cortex and motor cortex. At the point of falling
asleep, the VLPO–MA system is close to an instability point, so is highly sensitive
to stimulus, thus a sudden impulsive stimulus—either internal (e.g., a spontaneous
neural firing) or external (e.g., a sudden noise)—could produce an extravagantly
large response. If this disproportionate response were to be transmitted to higher
brain areas such as the motor cortex, then we might expect to observe a violent
whole-body twitch at or near the transition into sleep. This is a common point-of-
sleep experience for many individuals [17], and is known as the hypnagogic my-
oclonic twitch or hypnic jerk, but until now has lacked a satisfactory explanation.

The lower-branch turning point SN2 on Fig. 1.13 marks the position where the
sleep state loses stability during the awakening phase as the sleep drive Dv reduces in
intensity at the end of the diurnal sleep cycle. The fact that this second critical point
(for emergence from sleep) occurs at a lower value of sleep drive than that required
for transition into sleep provides a protective hysteresis that enhances the stability
of both states [7, 18]: once asleep, one will tend to remain asleep, and vice versa.
Further, if the flip-flop sleep bistability model is correct, we should expect a second
nonlinear increase in stimulus sensitivity as the sleep-emerging brain approaches
the lower-branch saddle–node critical point. Thus the model predicts that a minor
stimulus presented to an almost-awake brain could evoke a disproportionately large
response, causing the individual to be startled into wakefulness with a fright. This
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exaggerated startle response (hyperekplexia) can be a common experience at the end
of an overnight sleep.

Following Fulcher et al [7], we highlight the regions of slow dynamical evolu-
tion in the Fig. 1.13 Vm-vs-Dv graph by using a grayscale representation of V̇ , the
magnitude of the velocity field in Vv–Vm space,

V̇ =
[
(dVv/dt)2 +(dVm/dt)2]1/2

(1.20)

where dVv/dt and dVm/dt are defined respectively by the VLPO and MA equations
of motion Eqs (1.16, 1.17). The grayscale shading shows that the regions of slow
evolution form a penumbra that brackets the reverse-S locus of fixed points. The
low-V̇ penumbral region is particularly accentuated in the vicinity of the saddle–
node turning points, defining saddle–node remnants or ghosts [26]. The wake-ghost
(to the right of SN1) and the sleep-ghost (to the left of SN2) act as low-velocity
bottlenecks, so any trajectory entering a ghostly region will tend to linger there,
exhibiting low-frequency enhancement of noise-induced voltage fluctuations as it
traverses the bottleneck. This suggests that the region of sleep-onset hypersensitivity
to impulsive stimuli could persist beyond the immediate proximity of the wake-
branch critical point to include the shadow zone defined by the wake-ghost.

1.6 Discussion

In this chapter we have examined several mathematical models for state transitions
in single neurons and in neural populations. The change of state occurs when a
control parameter (such as stimulus current, anesthetic concentration, neuromodu-
lator concentration) crosses a critical threshold, causing the initial equilibrium state
to lose stability, typically via a saddle–node or a Hopf bifurcation. We can detect
proximity to criticality by adding a small white-noise perturbation to induce fluctu-
ations in the observed variable, such as the membrane voltage, allowing the system
to explore its nearby state-space. As the system approaches the instability point, the
fluctuations grow in amplitude and in spectral coloration with a power-law diver-
gence that depends on the nature of the instability.

For a Hopf bifurcation, the fluctuation power diverges as 1/ε (where ε is the
displacement of the control parameter from threshold), and the spectral content be-
comes “critically tuned” at a nonzero resonance frequency ωo with the power spec-
tral density scaling as 1/(ω −ωo)2. This is the behavior seen in the subthreshold
oscillations of the H.R. Wilson type-II resonator membrane.

For a saddle–node bifurcation, the fluctuation power scales as 1/
√

ε , and the
spectral power scales as 1/ω2, implying infinite power at zero frequency. The di-
vergence at dc is the source of the critical slowing seen in the noise-induced fluctua-
tions as a saddle–node annihilation point is approached. This behavior was demon-
strated in the type-I integrator neuron, and in the mean-field models for anesthetic
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induction, SWS-to-REM sleep cycling, and in the FPR model for the wake-to-sleep
transition.

We argue that the presence of a neural instability provides a natural demar-
cation point separating two distinct states, and that a transit across this bound-
ary can be viewed as a phase transition between states. Guedel’s observation [9]
of an ether-induced delirium phase—separating relaxed consciousness from anes-
thetic unconsciousness—provided the first historical hint that induction of anesthe-
sia is a brain phase transition. The suppression of bacterial luminescence by volatile
agents (ether, chloroform, halothane, nitrous oxide) at clinically relevant concentra-
tions [10,28] lead to the paradoxical finding of large fluctuations in light intensity at
low drug concentrations, consistent with a Guedel-like excited “delirium” phase in
bacterial activity. Recent measurements of patient response to the injectable agent
propofol show similar “biphasic” (surge followed by decay) brain EEG activity dur-
ing induction of anesthesia [14, 15], with a second biphasic surge occurring as the
patient recovers consciousness. The observation of a hysteresis separation between
the induction and emergence biphasic peaks (the recovery biphasic peak occurs at a
lower drug concentration) suggests that induction of anesthesia can be pictured as a
first-order phase transition.

Examination of EEG traces for sleeping mammals (human, cat, fetal sheep)
shows broad similarities in sleep patterns, with periodic alternations between a slow,
large-amplitude phase (SWS), and a desynchronized lower-amplitude phase (REM
sleep). The growth in low-frequency power prior to transition into REM sleep is
consistent with the SWS-to-REM sleep phase transition being first-order; the ab-
sence of a correlated power surge for REM-to-SWS suggests that this transition is
continuous.

The FPR phase transition model for the diurnal transition between wake and
sleep is based on mutual inhibition of the VLPO and MA brainstem nuclei, resulting
in hysteretic flip-flop bistability between wake and sleep states. Each state loses
stability via a saddle–node annihilation, so critically-slowed voltage fluctuations,
with attendant nonlinear increases in stimulus susceptibility, are predicted in the
vicinity of state change. This hypersensitivity to stimulus might provide a natural
explanation for the disconcerting hypnic jerk events that are commonly experienced
at the moment of sleep onset.
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