Working Paper Series
ISSN 1170-487X

A Logic for the
Schema Calculus

by Martin C Henson
and Steve Reeves

Working Paper 98/5
March 1998

© 1998 Martin C Henson
and Steve Reeves
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

A Logic for the Schema Calculus

Martin C. Henson! and Steve Reeves?

'Department of Computer Science, University of Essex, U.K.; hensm@essex.ac.uk
*Department of Computer Science, University of Waikato, New Zealand;
stever@cs.waikato.ac.nz

Abstract. In this paper we introduce and investigate a logic for the
schema calculus of Z. The schema calculus is arguably the reason for
Z’s popularity but so far no true calculus (a sound system of rules for
reasoning about schema expressions) has been given. Presentations thus
far have either failed to provide a calculus (e.g. the draft standard [3])
or have fallen back on informal descriptions at a syntactic level (most
text books e.g. [7]). Once the calculus is established we introduce a de-
rived equational logic which enables us to formalise properly the informal
notions of schema expression equality to be found in the literature.

1 Introduction

1.1 Background

The specification language Z has been developed over the last decade or so
mainly in response to the needs of the practioners who have used it. This is the
source of its undoubted strength and popularity.

Z’s main technical innovation (which sets it apart from VDM , for example)
is the idea of a schema. Given this structuring device, a need naturally arose for
means to manipulate it: we wanted to combine schemas in various ways so as to
build larger and more complicated systems from smaller and simpler ones. That
is to say, we naturally wanted our specifications to follow the tried and tested
(and successful) techniques of separation of concerns and divide-and-conquer.

There emerged from this pragmatic pressure what has become known as the
schema calculus.

For example:

[DOIPOJ"\[Dl|P1]=[D0€5‘D1|P0/\P1]

expresses (where @—defined later—indicates a merging of the components
Dy and D) schema conjunction. In most text book accounts this amounts to
a definition, which simply makes the schema expressions into meta-notational
conventions for ordinary schemas. This is in conflict with the standard [3] in
which schema expressions appear in the object language, and in which these
text book definitions must be established as provable equalities. But, since the
standard does not provide a sufficiently complete logic for Z, this proof obliga-
tion cannot be discharged and the text book approach is the best that can be
achieved. It, at least, provides an opportunity to say something about complex

schema expressions (e.g. [7], pp. 194-195, of which more below in section 5), if
only informally.

The rules which exist in the draft standard (3], section F.6.6, pp. 207-208)
are incomplete, too restrictive, or incorrect. The lacunae are easy to spot. Less
easy is the observation that of the following rules (which are derivable from rules
(SchBindMem) and (SAnd)) the first is too limited and the conclusion of the
second and third are not in general even well-formed.

I'tbeS I'trbeT TI'kFbeSAT T'FbeSAT
'FbeSAT 'kbesS FrbelT

The problem (with rule (SchBindMem)) has been acknowledged by the com-
munity, but the suggested repair (adding a proviso to that rule) only ensures
that the derived elimination rules make sense. They remain, like the introduc-
tion rule, too restrictive and, most importantly, cannot be used to establish the
equation for conjunction with which we began. In this paper we seek to show
how this state-of-affairs can be remedied.

We do this by first introducing a ‘core’ version of Z. This language can be
extended by definition to Z; it will also be simple enough that its logic can be
straightforwardly and clearly given. We call this language Z¢. In this paper we
shall concentrate exclusively on the extension of Z- to the schema calculus.

In all that follows we shall rely on the reader’s informal knowledge of Z: we
do not have the space to provide details of several important meta-mathematical
properties (though [2] does include all of these).

2 The specification logic 7.

In this section we shall describe a simple specification logic which we call Zs. It
is based upon the notion of schema type which has been introduced in Z.

2.1 The language of 7.

We begin with type names:
T=:=N|PT | TxT | [D]
where
Dy = -l Tie--

Types of the form [Dr] are called schema types. Each type name denotes a
type carrier, i.e. a set. The proto-syntaz' of sets, in general, are given by:

Cu={z€C|P} |PC| CxC|N |---LeC-]]|S

! The categories of sets, propositions and terms, which we give in this section, over-
generate. The syntax of these is finally determined by the type assignment and
propositionhood system which we give in section 2.2.

where

B B oo & e

The carriers are picked out as T* by:
T* == N | T*xT* | PT* | [D*]
where

D* v= .- L eT}---

Sets of the form [D*] are called schema carriers. Declarations of the form
l € T are called prime declarations. The labels I are constants. We shall write
[Dor] < [Dy 7] when the set of prime declarations of Dy is a subset of that of
Dy . Other meta-operations we shall need over schema types: [Dor] \ [Dy 7] is
the schema type comprising all prime declarations of [Dor] which do not occur
in [Dyr]. When we are interested only in a single label we will write this as
[Dr]\ (I : T). The schema type [Dor] @ [Dy 7] is the schema type comprising the
union of the prime declarations in Dy and D; . It is not defined when this union
contains prime declarations [€ Ty and [€ T} for which Ty # T,. Finally, we
shall introduce meta-notational conventions which require substitution for labels.
For this we need the alphabet operator, defined as follows: af---; € T;--] =y
{---&i---} and then we shall write [a[D7]/t(a[D7])] to represent the family of
substitutions: [---][l;/t(I;)][---]. All of these operations can clearly be extended
to T" and D* too (remembering that : will change to € in the those cases). We
will also extend a to members of D in the obvious way.

The proto-syntax of formula is given by:

Pu= Llto=t|teC|-P|PyVP |3z CeoP

The logic of Z¢ is classical and so the remaining logical connectives and the
universal quantifier can be defined in terms of the above in the usual manner.
The proto-syntax of terms is as follows:

tu=a | n| C| tl| (k)| t1] 2] (4,8) | t][D*]

The last term formation operator will be unexpected, as it has had no history
in Z so far as we can tell. We pronounce the symbol | “filter” and its purpose is to
permit the restriction of bindings to a given schema type. We shall see later how
important these filtered terms are for constructing compositional interpretations
for schema expressions.

The subcategory of numerals is as expected:

n = 0| succ n

Finally, among the set comprehensions we shall isolate the schema as a special
case and introduce special meta-notation for them:

[D| P] =4 {2 € [D] | Pla[D]/z.o{D]]}

We then have schema ezpressions:
Su=[D|P]| SVS | S\(I€C) | =8 | 8[h « k]

Note that all such expressions are included as sets in Zo. We only use the
unusual notation for renaming in order to prevent confusion with substitution
in the meta-language. Schema hiding is, in standard approaches, equivalent to
schema existential quantification (e.g. [7] p. 181). Since components of schema
types are, in our approach, labels (constants) it does not make sense to write
hiding in terms of a quantifier. In view of the equivalence, however, we suffer no
loss of expressivity.

The reader will have detected a notational shift in our presentation: we use
a set membership relation and not a type assignment judgement in declarations.
This is a consequence of thinking through the implications of the types-as-sets
doctrine of Z. Since declarations in Z can utilise sets, and not just types, allowing
t: C would suggest that we are permitting sets to be types, which we are not:
such an approach would make typechecking undecidable. Writing t € T* on the
other hand suggests that we are permitting types to be sets which is precisely
what Z allows. The colon and type names only occur in judgements of the
type assignment and propositionhood system for Z¢, and consequently never
appear in the object language. Similarly, type carriers only appear in the ob ject
language (as sets). This is a formalisation of Spivey’s analysis ([5] p. 24) and, as
he also does, we will no longer need to burden the presentation by distinguishing
(with the *) type names from carriers, precisely because the context will always
determine which is intended.

Of course, the reader who is not convinced by this argument, or concerned
with the details, can always remain with the traditional syntax and not lose
anything of what follows.

2.2 Type assignment and propositionhood in Z

Sequents of the system have the form: I' o J where J is a judgement that a
proto-term has a type or that a proto-proposition is a proposition. I" is a type
assignment context. Such contexts are understood to be sets and so are extended
by taking a union, with the proviso that variables may occur at most once. For
clarity of presentation we shall omit the entailment symbol and all components
of contexts which are irrelevant to, or which remain unchanged by, any rule.

o: T #:T iz T ¢ -PT P prop
L prop (Cu) to =t prop (€-) t e C prop (Ce) = P prop (©)
Py prop Py prop C:PT z:Tv P prop
o,
Po V Py prop (ev) dze Ce P prop (G3) Z:TDI::T(C)

n-N S50:PTy S:PTy ST

o (G succn N (©%) SoV S :P(To ® Th) (Cvs) ~5:71 (C-s)
S:PTy C:PT . :PT
> L i Ty GART s
S\(leC):PTo\(I: TY) Sllo +] : Tllo/h] PC:PPT
C:PT z:Tov P prop () Co:PTy Cl:IPTl()
{(z€C|P}:PT L Cox Cr:P(Tox T1) '~
c:rpT ... bl T
N PN (W [--1€C-]:P[--1:T--] (o) i : T (€)
SO ~IT i t: Tox Th t: Tox Ty
Q- L=t Db Tiee) (C=) t.1: T (@) t.2: T (C2)
to:To t: T t: T < T
o : To 4 : T (Cp) 1 T_o I(C‘)

(to,t1) : To x Ty

We will occasionally write S*T when > S : P T (ete.) for convenience.

2.3 The logic of Z¢

The proto-judgements of the logic have the form I" ¢ P where a proto-context
I' has the form I""; I'". I'" is a type assignment context (a context for the
type system) and I'" is a set of formulze. These are well-formed according to the
following rules.

I > P prop I context
I'™ context I'~; P, I'" context

As before, we omit all data which remains unchanged by a rule.

I'Py, I'" > Py prop I' Py I'" v Py prop

+ +

TFRvP V) TFhve V%)
PoVP, PoFPs PiFPs _ P+ L I'" v P prop ¥
P, V) TF =P (=)

=P P =P . 4
2P 2R
I'- L I' > Poprop Plz/t] teC "
TFP L) F,ece.pr &N

I'F3JzeCePy I C:PT Dt T 4 I"+,Pg[z/y]}-P|

E @)
e s LT L=ty IS PEA ;’[z /‘:gz/ (oub)
FPJ: :qz;i} tpfb :i: S ri_qwz[ajoDi; (=)
rraAt=t 07 TrGaasy 00 I on

TE(tt')1=t¢

Plz/t] teC te{zeC|P} __ te{z€C|P}
te{ze C|P} () te C - ({}e) —*m‘— {1)
tgS tESS , o
te-s 5N Tgg 050

te s £ t € Sllo < k] (52)
tlo/h] € Sllo + 1] *F tlh/b]esS “°F

P"trTuESo ' 85:PTY P_Dt:TnEBTI S+
I'te S VS (5%,)

Fl‘ﬁ[T1€S1 I' o S:PTy I''vit: TP T (S+)
I'HFte Svs Vs

teSoVS t1ToeSok P tfTTMeESTFP t:ToP Ty -
. (57)

I'ze Colze Cy I'" pze Cy prop
I'-CyeP(

CoePC te Oy
te O

(P*)

(P7)

heCo hel , teCox Cr , _ teECoxC , _
o) et) tiec (%) t2ec (X0)

P[n/0] n:N;, Pt P[n/suce n]

neN
ow () S () TR

el suce n € N

(N7)

tieC; - tel--LeCi--1]
{---iat---Del--LeC--] @ t.L € C; 0

z2: TPy P, C:PT =
{zGGfP0}={zEC|P1} ({}

Prib=t D6t P [obhiTi]R2T _
PFGT ke T dh=+ (%)

I'te 8 C:PT| F"DiiTu
retlTo\(leh)es\(le Q)

(i)

r-teS\(leC) Ir'e C:PTy I''vt:To\(I:T)) I'FP B
TFP ()

In the last rule I =4y ',y : To; Ity e S,y To\(l€ T1) =t.
As usual, we can derive rules for A and = from the above and we will use

such rules as necessary in what follows. Many other rules are derivable too, for
example:

'Fte CIPT I“,z:T;F+,x€C,t=:ﬂ[TI—P(r
TFP &)
This follows by rules ({};) and (37).

The convention whereby schema are particular forms of set induces immedi-
ately the following rules:

Pla[D]/t.a[D]] t € [D]
te[D| P]

te[D| P y te[D|P] __
Pla[D]/t.a[D]] (55) te[D] (57)

(5%)

Note that sets are extensional as a consequence of ({}=). We also have the
following admissible rule

e b
: bid T+
r-tef ()
This is the formal counterpart to our intuitions that types (qua type carriers)
are sets, and so it is hardly surprising to see it.
There are many congruence rules for equality which are derivable in, or ad-
missible for, this system, e.g.

'S =35 F_DSQI]PT b I'E S5 =8 I''e S5:PT
TFSVSh=5vs tubv) TFSVei=%VS

(suby,)

That these are admissible rules follows by induction on the structure of
schema expressions, from the fact that equality is an equivlence relation and
by the rule ({}7).

Most importantly we have a syntactic consistency result for this system,
which we state without proof (see [2] for the details).

Proposition1. If I' ¢ P when I' context then I'™ ¢ P prop O

3 The schema calculus

All of the following rules, which allow equational reasoning on schemas, are
either derived rules or admissible rules of the logic for Zo. Complete derivations
of these rules from the logic for Z¢ can be found in [2].

3.1 Schema negation
I'" v [D*| P]: P[D* (==)
I' - =|{D*| P] =[D* | =P]

3.2 Schema disjunction
I'">[D5|P):PTy I'" o [Df|P]:PT, (v=)
I'=[Dg | Po]V [Dy | Py) =[D§ @ D} | PoV Py]
Providing, of course, that Ty @ T, is defined.

3.3 Schema hiding

In this case there is a minor notational variation because, in our framework,
labels are constants:

I~ o[D*|P]:PT, C:PTp -
TFD | PI\N(€C) =[D"\(ET)|3z€Ce Pl

3.4 Relating sets and types in schemas

We have an equation relating general declarations over sets to declarations over
types. This, by iteration, enables us to remove all non-type-carrier sets from the
declarations of Z¢ schema in the equational logic.

I''>[D;leC|P]:PTy I v C:PTy)
FI—[D;IEG]P]:[D;!ETQHGC/\P](

3.5 Schema conjunction
We would expect to define conjunction over schema by analogy with operations
like set intersection and logical conjunction:

So A Sy =df =(=S5 V —lSI)

Using rules (C-) and (Cy) we obtain the following derived rule for type
assignment:

FD‘S()Z]PTD FDS]_:]PTI
I'e S5 A8, :P(Tg [42] Tl)
The right-hand side can be shown to be equal to the following set:

(CA)

{yE TUEBTllerueaS/\yleGS;}

and, given this, the following rule follows by rules (A*) (derived) and ({}*):

Fl"trTrJESD Fl—frT1€-5'1 I''vt:Tod T,
I'te Sy NS

For the corresponding elimination rules we have the following rules, using
rule ({}7) and (derived) rules (A;) and (A]):

(S3)

I'HteSynS I''evt: Tod Ty

5~
'k [T €5 (Sy,)
F'FteSAS I'evt: Ty Ty (S7)
'HtlT el g

With these in place we can prove the expected relationship (see [7] p. 165-6):
F_D[DEIPU]:]PTQ F_D[D;[Pl]:IPTl (:)
I'k [Dg | Po] A[Df | PA] = [Dg @ Dy | Py A Pi]

Finally we have substitution rules:

FFS=8 I 68:PT TI'FS=8 I58:PT
F'FSAS=5AS5 'S AS=8AS8

Again, these follow easily from the corresponding rules for disjunction and
negation schema.

3.6 Schema implication

Following the pattern given above for conjunction, we have the definition:
So = 51 =af "So V S

Using the rules (C-) and (Cy) we obtain a derived rule for type assignment:

FDSuIPTQ FD‘SIIPTl
FD‘SUZ>SI:]P’(TQG§T1)

The right-hand side of the definition can be shown to be equal to the set
{(2zeTo® T |21 TogSoVz|Ti€S)
The introduction rule that follows most directly from this would be

't To &Sy rct/Thes$ I''vt:Tod T
I'FteS =5

however, we can show that the following more useful rule is derivable:

F,trTuESDJ—trT]ESI F_Dt!TD@Tl
Fl‘*fES{]#SI

(5%)

The obvious elimination rule follows directly from the definition:

I'te S=9 Ht]Tye S I'evt:Tod Ty g-
TFt[TL €S (53)

The expected relationship holds:

I~ > [Di|Po):PTy I'»[D}|P]:PT;
I'+ [Dg | Po] = [Df | P\] = [D§ & Dy | Py = Py

Finally we have the substitution rules:

F"SOZSI F_DSQ!IPT FF‘SUZS] F_DSQZ]PT
FFSQ#SQZS]#SQ F|—Sg=>Sn=32=}>S]

10

3.7 Schema inclusion
Schema inclusion can be defined in terms of schema conjunction.

[Dg; [Di | Pi]| Po] =as [Dg @ Df | Po] A[Dy | P1]

The rules are then easily calculated as special cases of those for schema
conjunction. First the typing rules:

FD[DE@D?IP@]P(TQG}TQ FD‘[D?'P[]ZPT[(:)
I'> [Dg; [Df | Pr] | Po] : P(To @ Ty) e

The introduction rule is:

I vt:To®Ty I'Hte[D3@®Di|Py) I'kt]Tiel[D}|P]
I't te[Dg; [Df|]| P

The elimination rules are:

I'vt:Th@® Ty FF‘tE[D&,[D;IPﬂng]
I'+te[D§ @ D} | P

I~st:To®T T'FtelD;[D|P]| P
F'—trTIG[DfIP]]

Finally, we have the expected equational law:

F_D[Dglpg]:PTg F_D[DI‘IPl]:]PTH
'+ [Dg; [Df | Pr] | Po] = [Dy @ Df | PoA Py

] (inc™)

3.8 Schema restriction

In view of our filtering operation on terms which we have extended to sets, we
can give a pleasant definition?:

So o1 SET =4 S I PTLA S

when T} < T, It is, then, easy to see that this collapses to our extension of
filtered terms to sets when the schema S is just a schema type.

The rules are then just a special case of those for conjunction. Using rules
(Ca) and (Cp) we obtain the type rule:

FDSOZJPTU FDS]Z]PT] leTg
I'e S [8:PT

This is deliberately weaker than the standard definition (see [5] p. 34) which permits
Ty to introduce new components. The interested reader will have no difficulty in
extending our definition to the standard, if that is considered necessary.

11

The introduction and elimination rules are then as follows:

F"tESQ FI—t[TleSl T1jTﬂ
't TyeS |8

This follows by rules (S}) and (€r), noting that Ty = Ty & Ty and Ty =
To® 1.

(/")

I'te S8 B I'Fte SIS .-
F'FteS [Ty o) I'kFtes ()

These follow directly from the rules (S¥) and (S,,) noting that t7 = ¢ | T'.
The substitution rules are:
I'ES=8 I & :PT I'ES=58 I>S:PT
FF—Sg[.ngS;[Sg F"SgrSQZSgrS]

3.9 Schema level hiding

Our basic hiding operation takes a single label as an argument and, as we ex-
plained earlier, does duty for what, in other accounts, is a simple form of schema
existential quantification. In those accounts one also finds quantification over
schema in the category of schema expressions, for example [5] p. 76. We should
provide, within our framework, a form of schema level hiding to correspond to
this.

The definition is quite simple. In view of earlier infrastructure we can define
this easily using schema conjunction and restriction:

SETO \ S{PT' =df (Sﬂ N Sl) []P(TO\ Tl)

Using rules (Ch), (Cp), together with the fact that T} < Tj, we obtain the
following type rule:
FD‘S@ZPT{) FDS]?]PTl Tl"_<Tn
Fng\S] :P(TO\TI)

The introduction rule is calculated using rules (SF’"), (S7) and the fact that
To\ Th <X To.

'Hte S 'rtIThe s T < T
et (To\Ti) € S\ S

The elimination rule is obtained using rule (€):

F"fﬁES{)\Sl P F_D't:Tn\Tl
r+p
where I =4 ',z : To; I'Y,z € Sp,z | T € S1,2[(To\ T1) = t There is a
useful equational rule for schema level hiding. This may be compared with the
syntactic characterisation of (a simpler form of) schema existential quantification

12

which is given in [7] (p. 178). Since it makes no sense to quantify over constants,
this equation requires an additional substitution.

Let Dy =---L, € T;-+- and ¢ = co<lij=-- [+ -z -] where the z; are fresh
variables.

I~ o[D;|P):PT I v[Dj|P]:PT
I [Dy | PI\[D; | P') = [D; \ D3 | 3Ds0 o (P A P')o]

The substitution rules are:

F"S(]:S] F_PSQI]PT Fl“SD:—Sl F—D-Sz;IFT
'k S\S=5\S5 TS\ S%=25\5

3.10 Some useful generalisations

It turns out then when it comes to wusing the schema calculus, rather more
general rules, which package-up common strategies for combining several of the
above rules, are needed. In this section we review a few that will be useful in
our extended example at the end of the paper.

The following two rules are used together for reasoning about general con-
junction schemas.

P}_[DO]Q[D]_] F_D[D[)lpg]!PTg F_D[D1|P1]:IPT1
I' = [Do | Po] A[Dy | Py] = [Do | Po] A[Do | Py]

(Ares)

This is easily proved using (sub), the rule (€=) for moving sets out of the
declaration in favour of types and the standard version of the conjunction rule
(A7)

In fact it is admissible rather than derivable in this general form since we
need to do an induction on the length of the declarations. All instances for fixed
length declarations are, however, derivable.

A more general form of the rule for conjunction is:

F_D[DQ;D|P{]]:]PTQ F_D‘[DI;DIPI]Z]PTl (=
I't [Do; D | Po)A[Dy; D | Pi] = [Do; Dy; D|PyAPy] =~ "

subject to the condition aDy NaD; = {}. The proof of this uses the rules (€=),
(sub) and (A7).
There is a version of this pair for disjunction too, proved in similar ways:

F]_[DQ]Q[DI] F—D[DQIPU]:PT(] F_P[Dllpl]!PTl
FF[DQIPU]V[DI|P1]‘—_—[DUIP0]V[DD|P1]

(veer)

13

F-D[Dg;D|Pg]:[PTU FﬂD[Dl;DrP‘l]IPTl
FF_[DQ, DIP{)]V[D;, .DlPl]:[Do, Dl; DJPQVP]]

(Vien

A final generalisation, for hiding, that we shall need for our example is:

I+[D;1eC|P]:PTy, C:PT,
I'H[D;leC|PI\(l€C)=[D|3z€ C e P[]z

(\:en)

which is proved using (sub), (€=) and (\ 7).

4 The language of 7

We do not have the space at our disposal in this paper to outline the interpre-
tation of Z into Z¢ in full generality. In this section we will simply develop just
enough extra infrastructure to enable us to demonstrate the value of our logic for
the schema calculus when we turn to the examination of a non-trivial example
in section 5.

First we consider the use in Z of A-schemas. These appear in the context
of operation schema to indicate initial and final states. We note that, in recent
years, schema have come to play a far more active role than their original struc-
turing one. This greater role presupposes that they represent specifications of
collections rather than of individuals. This perspective offers us the opportunity
to interpret the Z idiom AS by the declaration z, 2’ € S in our core logic Zc:.
This turns out to have a desirable technical side effect: we can represent the Z
idiom =S by the schema [z,z € § | z = 2']. As a result the type of the equality is
preserved naturally, without the complications which, in some accounts, accom-
pany discussion of the @ operator, in particular those concerning the equation
#S = 05" (in which S" does not denote the schema expression S’). Indeed this
approach can be employed whenever the # operation is normally required. It is
a natural corollary of adding schema as sets in Z that the # operation is not
required in the core logic Z¢ and that its use in Z can always be interpreted in
the manner illustrated.

The following schematic equations are sufficient for our requirements in this
paper.

[[«-AS:- | Pl=yf [---2,2' € §-+-| Po]

where the substitution is:
o =4f [aS/z.aS][arS'/z’.aS][9.5'/2:][93’/z’]

Then:
[+ ES s | Pl =g [--AS:--| PABS =08]

as expected.

14

5 Example

In order to show our schema calculus in use we consider a reasonably complex
example from the literature. This uses the technique of promotion (see [7] chapter
13). The example is taken from this chapter (ibid. pp. 194-195) and the earlier
chapter which introduces the schema operators (ibid. chapter 12, pp. 170-175)
and concerns the promotion of an operation over a local state to an operation
over a global state. This is Z at its very best: providing a general organising
strategy which structures a specification. First we present the example as it
stands in the book?.
First we have the Box Office itself:

BozOffice
[:
seatling € IP Seat
sold € Seat + Customer

dom sold C seating

Purchasing a ticket can succeed or fail. The prototype for a successful pur-
chase is given by:

Purchasey
’_/_’\Ba.r())ﬁ"ice
$? € Seat
¢? € Customer

s? € seating \ dom sold
sold" = sold U {s? ¢7}
seating = seating'

and success is specified to be:

Success
rr! € Response

r! = okay

If, on the other hand, the seat requested by the customer is not available, we
have:

__ NotAuwvailable
E BozOffice

s? & seating \ sold

and failure is captured by means of:

¢ Apart from our use of € instead of :, as explained in section two.

15

—_Failure
r! € Response

rl = sorry

The specification for purchasing a ticket is now composed from these indi-
vidual specifications:

Purchase = a5 (Purchasey A Success) V (NotAvailable A Failure)

The equational logic can now be deployed in order to investigate this new
composite specification:
By rule (AZ,,), we have Purchasey A Success =

PandS
[ABozOffice
s? € Seat
c? € Customer
r! € Response

s? € seating \ dom sold
sold' = sold U {s?7 +» ¢?}
seating' = seating

r! = okay

Similarly, using rule (AZ,,), we have NotAwvailable A Failure =

— NandF
Z BozOffice
s? € Seal

r! € Response

s?7 ¢ seating \ dom sold
r! = sorry

By rules (suby,) and (suby,) we now have:
Purchase = PandS VvV NandF
NandF is, by the definition of Xi-schemas, equivalently:

__ NandF
ABozOffice
s? € Seat

r! € Response

s?7 & seating \ dom sold
r! = sorry
0 BozOffice = @ BoxOffice’

16

Finally, we use the general rule for disjunction to obtain Purchase =

ABozOffice

5?7 € Seat

e¢? € Customer
r! € Response

(s? € seating \ dom sold A

sold" = sold U {s7 — ¢?} A

seating' = seating A

r! = okay)

A
(s7 & seating \ dom sold A r! = sorry A
0 BoxzOffice = 0 BozOffice")

We promote this local operation of purchasing a ticket to be a global one by
conjoining it with the promotion schema:

—_ Promote
AGlobalBoxOlffice
p? € Performance

p? € dom booking

0 BozOffice = booking p?

0 BozOffice' = booking p?

{p?} <4 booking = {p?} <4 booking
announced' = announced

where we have:

__ GlobalBozOffice
announced € P Performance
booking € Performance + BoxzOffice

dom booking C announced

We then hide the components of the local state (we use hiding rather than

the existential quantification used in the textbook, though these amount to the
same thing) to get:

GlobalPurchasey =45 (Purchase A Promote) \ (ABozOffice)

We then have, by rule (A,,,,) Purchase A Promote =

17

__PandP
AGlobalBozOffice
ABozOffice

s?7 € Seat

e? € Customer
p? € Performance
r! € Response

p? € dom booking
0BoxzOffice = booking p?
0 BoxOffice’ = booking' p?
{p?} < booking' = {p?7} < booking
announced' = announced
((s? € seating \ dom sold A
sold" = sold U {s? — ¢?7} A
seating' = seating A
r! = okay)
Y
(s? & seating \ dom sold A r! = sorry A
0 BozOffice = 6 BozOffice'))

Then we have: (Purchase A Promote) \ (ABoxzOffice) = (mle(sub\))
PandP \ (ABoxOffice) = ((\,,,))

G'lobal Purchase,
[AGlobalBozOffice
s?7 € Seat
c? € Customer
p? € Performance
r! € Response

3z, 2" € BoxOffice o

(p? € dom g.booking

z = booking p?

z' = booking' p?

{p?} < booking' = {p?} < booking

announced’ = announced

((s? € z.seating \ dom z.sold A
z'.sold = z.sold U {s? — ¢?} A
z'.seating = z.seating A

r! = okay)

V

(s? & z.seating \ dom sold A r! = sorry A
z=2")

Use of the one-point rule on both z and 2’ in the predicate part of this schema,
gives, by substitution:

18

— GlobalPurchase
AGlobalBozOffice
s? € Seal

c? € Customer
p? € Performance
r! € Response

p? € dom booking
{p?} < booking’ = {p?} < booking
announced’ = announced
((s? € booking p?.seating \ dom booking p?.sold A
booking' p?.sold = booking p?.sold U {s? — ¢?} A
booking' p?.seating = booking p?.seating A
r! = okay)
V
(s? ¢ booking p?.seating \ dom booking p?.sold A r! = sorry A
booking p? = booking' p?))

Note that this is not quite the same as the corresponding result on p.195 of [7]
since that version contains several errors, the worst of which makes that schema
refer to the label sold’ when no such label has been declared. But such errors are
only to be expected when only informal reasoning is available, and their detection
serves to remind us why a formal method requires precise formalisation. So, once
the errors are accounted for, we can see that, as expected and by design, we now
do have a schema calculus.

6 Future Work

We have been able to present the outlines of a powerful equational logic which
establish a schema calculus for Z. This was possible only because we have also
provided, for the first time, a logic for schema expressions. Now that this much
is in place, it is possible to contemplate the development of more complex modes
of reasoning which will permit reasoning at a usefully high level. The few rules
we introduce in section 3.10 begin this process. Additionally, we must cover, in
detail, those schema operations designed particularly to encourage the modular
design of operations, for example, schema composition and piping. These topics
will be explored in detail in the full version of this paper. Here we can simply
sketch the trajectory: If we restrict ourselves to composition along a single pair
of complementary labels (for expository purposes) we can follow the approach
of, for example, [1] and define:

Sn;(y‘”:'rsi =df (So“f o 'UI A Sy [i — 1‘)]) \ ('U wT)

In general the data indexing the operator, that is the set of complementary
pairs of labels and their types, can be calculated from the type of the component

19

schema. We can define a similar operation over types, as follows:
Toiry:r Ty =ap (To[l'/v] ® Th[l/v])) \ (v: T)
and then, for example, we can easily derive the following type assignment rule:

S{]:IPTD Sl JEDTI
Su;{:f,z);Tsl : IP(Tn;(t,tr):TTl)

and the corresponding introduction and elimination rules. Naturally, our sys-
tem lends itself to mechanisation and an implementation of Z¢ extended to
the schema calculus we have presented here is currently under construction in
Isabelle ([4], [6]).

We are also involved in a wider project which is looking at alternative foun-
dations for Z, specifically based on intensional set theory and constructive logic.
The purpose of this is to investigate alternative means for integrating program
development with specification. In the context of this project, the schema cal-
culus we have introduced here is of particular significance: associated with the
various rules are mechanisms for combining programs, and this allows the schema
calculus to play the dual role of organising specifications and, additionally, me-
thodically constructing implementations.

Acknowledgments

We would like to thank the University of Waikato, the Royal Society of Great
Britain and the EPSRC (grant number GR/L57913) for supporting the work
reported here.

References

1. A. Diller. Z: An introduction to formal methods (2" ed.). J. Wiley and Sons, 1994.

2. M. C. Henson and S. V. Reeves. Revising Z: semantics and logic. Formal Aspects
of Computing (submaitted), 0:000-000, 1998.

. J. Nicholls. Z Notation: Version 1.2. Z Standards Panel, 1995.

. L. Paulson. Isabelle: A generic theorem prover. Springer Verlag, LNCS Vol. 828,
1994.

. J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1992.

. N. Vélker. Private communication, 1998.

. J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof. Prentice
Hall, 1996.

= Lo

-] & o

20

