
Compositional Synthesis of Maximally

Permissive Supervisors using

Supervision Equivalence

Hugo Flordal∗

Department of Signals and Systems

Chalmers University of Technology

Göteborg, Sweden

Robi Malik

Department of Computer Science

University of Waikato

Hamilton, New Zealand

Martin Fabian

Department of Signals and Systems

Chalmers University of Technology

Göteborg, Sweden

Knut Åkesson

Department of Signals and Systems

Chalmers University of Technology

Göteborg, Sweden

November 1, 2007

Abstract

This paper presents a general framework for efficient synthesis of supervi-

sors for discrete event systems. The approach is based on compositional

minimisation, using concepts of process equivalence. In this context, a

large number of ways are suggested how a finite-state automaton can be

simplified such that the results of supervisor synthesis are preserved. The

proposed approach yields a compact representation of a least restrictive

supervisor that ensures controllability and nonblocking. The method is

demonstrated on a simple manufacturing example to significantly reduce

the number of states constructed for supervisor synthesis.

1 Introduction

This paper proposes a solution to the problem of supervisor synthesis in super-

visory control theory of discrete-event systems (Ramadge and Wonham, 1989),

∗Corresponding author: flordal@chalmers.se

1



focusing on very large synthesis problems. The standard (monolithic) way to
synthesise a controllable and nonblocking supervisor is to build the synchronous
composition of all components and search the state-space. This method is known
to suffer from the state-space explosion problem and therefore is only feasible
for small systems.

For larger systems, modular approaches to supervisor synthesis are of great
interest and have long been studied in supervisory control theory (Ramadge and
Wonham, 1989; Wong and Wonham, 1998). Most of the approaches studied so
far rely on structure to be provided by users (Song and Leduc, 2006) and hence
are hard to automate. Those that can be automated either do not consider
nonblocking, or are guaranteed to produce a least restrictive supervisor only
under certain constraints (Brandin, Malik and Malik, 2004; Åkesson, Flordal
and Fabian, 2002; Lin and Wonham, 1990; Queiroz and Cury, 2000).

An interesting approach to create equivalent simpler supervisors from a given
monolithic supervisor has been proposed in (Su and Wonham, 2004). While the
results are very impressive, the method relies on a monolithic supervisor to be
constructed first, and thus remains limited by its size.

An alternative approach is introduced in (Feng and Wonham, 2006; Hill
and Tilbury, 2006), where language projection is used to simplify finite-state
machines during synthesis and to construct modular supervisors. To ensure that
nonblocking and maximal permissiveness are preserved, the observer property

and output-control consistency are imposed as additional requirements on the
projection. Unfortunately, these conditions are quite strong and allow for only
little simplification.

Using ideas of process equivalence (De Nicola and Hennessy, 1984), this
present paper proposes a different framework for compositional synthesis of
least restrictive controllable and nonblocking supervisors, which can be fully
automated. The method efficiently handles supervisory control problems given
as a large set of small finite-state automata by compositionally calculating ab-
stractions. Automata are simplified while the supervisor is computed, avoiding
construction of an overall monolithic supervisor, and the limits of natural pro-
jection are overcome using nondeterministic automata to represent intermediate
results.

This paper is an extended version of (Flordal and Malik, 2006), with more
detailed proofs and an elaborate set of rewrite procedures for finite-state au-
tomata that leave the synthesis results unchanged. Section 2 demonstrates the
proposed method using a simple example. Section 3 provides the formal nota-
tion for automata and supervisory control, and section 4 explains the synthesis
framework in detail, with a formal proof of its soundness. Section 5 gives a
set of reduction rules for making abstractions, section 6 gives some preliminary
experimental results, and finally section 7 contains some concluding remarks.

2 Motivating Example

This section demonstrates the ideas of the new synthesis procedure using a
simple manufacturing example. The following text assumes familiarity with su-
pervisory control theory, (Ramadge and Wonham, 1989; Cassandras and Lafor-
tune, 1999).

Figure 1 shows an automata model of an industrial transfer line, originally

2



M1 I1

W1

s1 !f1

M2 I2

W2

s2 !f2

T IT

WT

l
!a
!r

B1
0 1 2s2 s2

!f1 !r !f1 !r

B2 E F

!f2

l

Figure 1: The transfer line example.

given in (Wonham, 2006). Automata M1, M2, and T constitute the plant model,
while B1 and B2 are specifications. The automata are assumed to interact in
lock-step synchronisation, (Hoare, 1985). Uncontrollable events are prefixed by
an exclamation mark (!), marked states are shaded.

This synthesis procedure presupposes the system model to be given as a
set of plant models only. Therefore, the buffer specifications B1 and B2 are
first transformed into plants B⊥

1 and B⊥
2 . This is straightforward: wherever an

uncontrollable event is disabled, a transition on that event to a dump state ⊥
is added. The result is shown in figure 2. As shown later in section 3.4, this
transformation produces an equivalent supervisory control problem if both con-
trollability and nonblocking are considered.

The compositional synthesis is performed as a series of small steps that in
the end result in a compact representation of the least restrictive supervisor.
The intermediate steps strive to avoid the state-space explosion by simplifying
parts of the system while preserving all information necessary for the synthesis.
In the terminology to follow, the simplified part must be supervision equivalent

to the original part.

For example, when composing the components M2 and B⊥
2 , the uncontrol-

lable event f2 becomes local to the subsystem M2 ‖ B⊥
2 . That is, transitions

associated with f2 can never be disabled in future compositions with other com-
ponents. Therefore, the identity of event f2 is no longer important, so all its
occurrences can be replaced by τu, an identity-less uncontrollable event. In

B⊥
1

0 1 2 ⊥1
s2s2

!f1 !r !f1 !r !f1 !r

B⊥
2

E F ⊥2

!f2!f2

l

Figure 2: The buffer specifications as plant models.

3



H ′
1

I2E

W2E

I2F

W2F

I2⊥2

s2s2
!τu !τu

l

l

H1 I2E

{I2F, W2E}

s2 l

Figure 3: The simplification of H ′
1 = (M2 ‖ B⊥

2 ) \!{f2} (to the left) results in
the automaton H1 (to the right).

a similar fashion, all local controllable events are replaced by the identity-less
controllable event τc. The resultant automaton, H ′

1 = (M2 ‖B⊥
2 ) \!{f2}, where

\! denotes this special kind of event hiding, is shown in figure 3. For later use in
supervision, the states of this automaton are labelled by pairs of states of the
automata that were composed originally. For example, I2F represents a state
where automaton M2 is in state I2, and B⊥

2 is in state F .

After hiding, the five-state automaton H ′
1 can be replaced by the supervision

equivalent two-state automaton H1, also shown in figure 3. To see that these
automata are supervision equivalent, consider a supervisor that is to enforce
controllability and nonblocking for the system. Clearly, all global states where
this subsystem is in state I2⊥2 must be avoided since these are blocking. Also
states involving W2F must be avoided, since there is an outgoing uncontrollable
transition leading to a blocking state that cannot be disabled by the rest of the
system. Thus, already at this point it is clear that the controllable transition
from I2F to W2F must be (and can be) prevented by a supervisor—states
I2⊥2 and W2F can be removed. Furthermore, states I2F and W2E can be
merged into a single state since a supervisor that allows the plant to reach W2E
cannot do anything but accept that the plant may uncontrollably transit to I2F .
The resulting state is labelled {I2F,W2E} to reflect the fact that it has been
constructed from these two state pairs.

Figures 4 and 5 show further simplification results, H2 derives from the
composition of M1 and B⊥

1 , and H3 derives from the composition of H1 and T .
State labels are propagated using the Cartesian product, to represent all possible
combinations of states. For example, {I2F,W2E} × {IT } = {I2FIT ,W2EIT }
represents two possible state combinations of the original automata M2, B⊥

2 ,
and T .

Figure 6 shows the end result H, a simplified version of (H2 ‖ H3) \!{s2, r}.

H2 I10 I11 I12

W10 W11

I1⊥1s2 s2

s2

τcτc !τu!τu

!r

!r

!r !r

Figure 4: The result of the simplification of (M1 ‖ B⊥
1 ) \!{f1, s1}.

4



H3

I2EIT

{I2F, W2E} × {IT}

I2EWT

{I2F, W2E} × {WT}

s2 s2τc

!τu

!τu

!r

!r

Figure 5: The result of the simplification of (H1 ‖ T ) \!{a, l}.

In the last step, there a no events left to be shared with other components,
so all events can be hidden. The final result can always be reduced to an
automaton with a single state if controllable and nonblocking supervision is
possible. Otherwise the result is the null automaton, an automaton with no
states.

In the process of producing the final result, the largest intermediate automa-
ton, H2‖H3, has 21 states and 45 transitions. These figures should be compared
to the corresponding values for the monolithic approach, which calculates the
supervisor directly from the composed system G = M1 ‖ B1 ‖ M2 ‖ B2 ‖ T , an
automaton with 48 states and 120 transitions.

The objective of supervision is to avoid “bad” states, i.e., states that are
blocking or uncontrollable either by themselves or as a consequence of other
states being “bad”. Given the final result H and the original automata M1, B1,
M2, B2, and T , it is possible to calculate the supervisor function that yields
the least restrictive behaviour that is controllable and nonblocking. The original
automata are used to observe the system and determine the current global state,
and H can be used to determine whether any states that can be reached from
the current state are “bad”, which calls for event disablement.

To make it possible to identify “bad” states, at each stage in the construction
of H, a clear correspondence between the states of the intermediate and the
original automata is maintained. This correspondence is propagated and stored
using labels in such a way that the single state of H has labels representing all
states that are reachable under a least restrictive supervisor.

For instance, assume the transfer line system is in the global state I12I2EIT .
An inspection of the modular model shows two possible transitions, associ-
ated with controllable events s1 and s2. Event s1 would lead the system to
state W12I2EIT , but since its label cannot be found in H (actually no label
starting with “W12” can be found there) the supervisor disables s1. Event s2,
on the other hand, leads to state I11W2EIT whose label can be found in H
(on the second line in figure 6 if the last expression is unfolded). Therefore, the

H
{I10I2EIT , I10I2EWT , I10 × {I2F, W2E} × IT ,

I11I2EIT , I11I2EWT , I11 × {I2F, W2E} × IT ,

W10I2EIT , W10I2EWT , W10 × {I2F, W2E} × IT ,

W11I2EIT , I12I2EIT , I10 × {I2F, W2E} × WT}.

Figure 6: The result of the simplification of (H2 ‖ H3) \!{s2, r}.

5



supervisor enables s2.
This may seem to imply an explosion in the amount of labels of the same

size as the dreaded state-space explosion, but the labels can be stored efficiently
without additional effort. Instead of propagating the labels explicitly through-
out the process, at each intermediate step, a map can be stored that relates the
labels of each component to those of its simplified version. For example, the
subterm {I2F,W2E}× {IT } that occurs three times in figure 6 can be replaced
by a reference to the corresponding state in the intermediate automaton H3 in
figure 5.

In this way, each state of a simplified automaton is labelled by a set of state
tuples of the intermediate results from which it was composed. These label
sets do not need to be larger than the corresponding automata. In this way,
a supervisor can be implemented using data structures that do not exceed the
size of the automata constructed during the synthesis process.

3 Notation and Preliminaries

This section presents the notation and mathematical framework used in this
paper. The notation in this paper is essentially standard supervisory control
theory notation (Wonham, 2006) that has been enriched by some notation bor-
rowed from process calculus (Milner, 1989).

3.1 Events and Strings

Event sequences and languages are a simple means to describe discrete system
behaviours. Their basic building blocks are events, which are taken from a
finite alphabet Σ. For the purpose of supervisory control, the event alphabet Σ is
partitioned into the set Σc of controllable events and the set Σu of uncontrollable

events. There are two special events, the silent controllable event τc and the
silent uncontrollable event τu. These do not belong to either of Σ, Σc, and Σu.
If they are to be included, the alphabets Στ = Σ ∪ {τc, τu}, Στ,c = Σc ∪ {τc}
and Στ,u = Σu ∪ {τu} are used instead.

Σ∗ denotes the set of all finite strings of the form σ1σ2 · · ·σk of events from Σ,
including the empty string ε. The catenation of two strings s, t ∈ Σ∗ is written
as st.

3.2 Nondeterministic Automata

System behaviours are represented using finite-state automata. Nondetermin-
ism is used to support hiding, which is essential for the proposed synthesis
approach.

Definition 1 A (nondeterministic) finite-state automaton is a 5-tuple G =
〈Q,Σ,→, Qi, Qm〉, where Σ is a finite alphabet of events, Q is a finite set of
states, → ⊆ Q × Στ × Q is the state transition relation, Qi ⊆ Q is the set of
initial states, and Qm ⊆ Q is the set of marked states. �

Note that the silent events τc and τu are allowed in → even though they are
never included in the alphabet of an automaton.

6



The transition relation is written in infix notation p
σ
→ q, and is extended

to strings in Σ∗
τ by letting

p
ε
→ p for all p ∈ Q ; (1)

p
sσ
→ q if p

s
→ r and r

σ
→ q for some r ∈ Q . (2)

For state sets Q1, Q2 ⊆ Q, Q1
s
→ Q2 denotes the existence of q1 ∈ Q1 and

q2 ∈ Q2 such that q1
s
→ q2. Similarly, p → q means that there exists a string

s ∈ Σ∗
τ such that p

s
→ q. Finally, p

s
→ denotes that there exists a state q such

that p
s
→ q, and for an automaton G, G

s
→ q means Qi s

→ q.
For P ⊆ Q, the notation P , pronounced → restricted to (the state set) P is

defined as
P = {〈p, σ, q〉 ∈ → | such that p, q ∈ P} . (3)

That is, P is the portion of → for which both the source and the target states
are in P .

A state q is called reachable in an automaton G if G → q; if this holds for all
q ∈ Q, then G is called reachable. If G is not reachable, it can easily be made
so by removing all states that are not reachable. Therefore, in the following, all
automata are assumed to be reachable.

Definition 2 An automaton G is said to be deterministic if Qi is a singleton,
p

σ
→ q1 and p

σ
→ q2 implies q1 = q2, and → contains no transitions labelled τc

or τu. �

Various operations can be used to modify or combine automata. For com-
positional synthesis, synchronous composition (Hoare, 1985) and event hiding
are the most important.

Definition 3 Let G1 = 〈Q1,Σ,→1, Q
i
1, Q

m
1 〉 and G2 = 〈Q2,Σ,→2, Q

i
2, Q

m
2 〉 be

two automata using the same alphabet. The synchronous product of G1 and G2

is
G1 ‖ G2 = 〈Q1 × Q2,Σ,→, Qi

1 × Qi
2, Q

m
1 × Qm

2 〉 (4)

where
(p, q)

σ
→ (p′, q′) if σ ∈ Σ, p

σ
→1 p′ and q

σ
→2 q′ ;

(p, q)
σ
→ (p′, q) if σ ∈ {τc, τu} and p

σ
→1 p′ ;

(p, q)
σ
→ (p, q′) if σ ∈ {τc, τu} and q

σ
→2 q′ . �

Note that no generality is lost when assuming the alphabets to be equal. If the
two automata to be combined do not use the same alphabet, they must first be
extended to their united alphabet. An automaton using alphabet Σ is extended
to Σ′ ⊇ Σ by adding selfloops q

σ
→ q for all states q ∈ Q and all events σ ∈ Σ′\Σ,

i.e., all new events not in Σ.

Definition 4 Let G = 〈Q,Σ,→, Qi, Qm〉 be an automaton, and let Υ ⊆ Σ.
The result of controllability preserving hiding , hiding henceforth, of Υ from G
is

G \!Υ = 〈Q,Σ \ Υ,→!, Q
i, Qm〉 (5)

where →! is obtained from → by replacing each transition p
σ
→ q such that

σ ∈ Υ by p
τc→ q if σ ∈ Σc or by p

τu→ q if σ ∈ Σu. �

7



Hiding removes the identity of the events in Υ and in general produces a
nondeterministic automaton.

By introducing concepts of subautomata and union of automata, the set of
automata can be considered as a lattice.

Definition 5 Let G1 = 〈Q1,Σ,→1, Q
i, Qm

1 〉 and G2 = 〈Q2,Σ,→2, Q
i, Qm

2 〉
be two automata with the same alphabet and set of initial states. G1 is a
subautomaton of G2, written G1 ⊆ G2, if Q1 ⊆ Q2, →1 ⊆ →2, and Qm

1 ⊆ Qm
2 .
�

Definition 6 Let Gj = 〈Qj ,Σ,→j , Q
i, Qm

j 〉, j ∈ J be a family of automata all
having the same alphabet and set of initial states. Define

⋃

j∈J

Gj = 〈
⋃

j∈J

Qj ,Σ,
⋃

j∈J

→j , Q
i,

⋃

j∈J

Qm
j 〉 . �

This definition only makes sense if all the different Gj are subautomata of
the same automaton G, which will also be the case when it is used later.

3.3 Supervision and Synthesis

Supervisors are used to restrict the behaviour of systems represented by au-
tomata. A supervisor observes the sequence of events occurring in the system
(the plant) and then enables or disables certain controllable events, but cannot
disable any uncontrollable events. Formally, this can be considered as a map S,
where S(s) represents the set of events enabled by the supervisor after observing
the system execute the string s.

Definition 7 Let G be an automaton with alphabet Σ. A supervisor for G is
a map S : Σ∗ → 2Σ, such that S(s) ⊇ Σu for all s ∈ Σ∗. �

Given a plant G, and a sub-automaton K of G representing a desired be-

haviour, it is of interest to construct a supervisor for G that produces exactly
the same behaviour as K. Supervisory control theory shows that K has to be
controllable for such a supervisor to exist (Ramadge and Wonham, 1989; Cas-
sandras and Lafortune, 1999). Below are two definitions of controllability used
for the nondeterministic setting of this paper.

Definition 8 Let G and K be two automata using the same alphabet Σ. K is
controllable with respect to G if, for every string s ∈ Σ∗, every state q of K, and
every uncontrollable event υ ∈ Σu such that K

s
→ q and G

sυ
→, it holds that q

υ
→

in K. �

Definition 9 Let G be an automaton, and let K ⊆ G be a subautomaton
of G. K is controllable in G if, for every string s ∈ Σ∗

τ , every uncontrollable

event υ ∈ Στ,u, and all states p, q ∈ Q such that K
s
→ p and G

s
→ p

υ
→ q, it

holds that K
s
→ p

υ
→ q. �

For deterministic systems, definition 8 corresponds to the original control-
lability definition from (Ramadge and Wonham, 1989). The two definitions
above coincide when K is a subautomaton of a deterministic automaton G.

8



In the nondeterministic case, definition 9 assumes that a supervisor can dis-
able each (controllable) transition individually unlike in traditional supervisory
control. For example, consider a controllable string s that can take G to two
different states p1 and p2 but can take only K to p1. That is, K has disabled
a nondeterministic choice somewhere. Then, assuming there is no other way to
reach p2, p2 does not matter for controllability according to the definition.

Here, definition 9 makes sense because nondeterministic automata always
derive from deterministic automata, and the supervisor is assumed to distinguish
different transitions using its knowledge about the global state. In the following,
be aware of the difference between controllable with respect to and controllable
in.

In addition to controllability, the behaviour of a supervised system is typ-
ically also required to be nonblocking (Ramadge and Wonham, 1989; Malik,
Streader and Reeves, 2006).

Definition 10 An automaton G is called nonblocking if, for every state q such
that G → q it holds that q → Qm. �

Similar to traditional supervisory control theory (Ramadge and Wonham,
1989; Fabian, 1995), it can be shown that the union of controllable and nonblock-
ing subautomata of a given automaton is again controllable and nonblocking.
This justifies the following definition.

Definition 11 Let G be an automaton. The supremal controllable and non-
blocking subautomaton of G is

supCN (G) =
⋃

{G′ ⊆ G | G′ is controllable in G and nonblocking } . �

The supremal controllable and nonblocking subautomaton can be calculated
by iteratively identifying uncontrollable and blocking states until a fixed point

is reached. Given an automaton G = 〈Q,Σ,→, Qi, Qm〉 and a state set P ⊆ Q,
each step in the iteration calculates a subset of P that has some uncontrol-
lable and blocking states removed. The function that does this will be denoted
ΘG(P ) = Θcont

G (P ) ∩ Θnonb
G (P ) where

Θcont
G (P ) = { q ∈ P | ∀σ ∈ Στ,u, q

σ
→ p implies p ∈ P } ; (6)

Θnonb
G (P ) = { q ∈ P | ∃p ∈ Qm, qPp } . (7)

The first of these functions considers controllability problems caused by sin-
gle uncontrollable transitions, and the second function considers states that
are blocking when the transition function is restricted to states in P . Since
the supervisor can distinguish transitions of nondeterministic automata based
on its knowledge of the deterministic model, these synthesis operators disable
individual transitions and not just events.

Given an automaton G, let P̂ be the fixed point of the iteration P 0 = Q,
P i+1 = ΘG(P i). Then the synthesis result supCN (G) for G is the portion of G
that remains when the transition function is restricted to P̂ (the non-reachable
parts can be removed), or the null automaton if some of the initial states have
been removed:

supCN (G) =

{

〈P̂ ,Σ, P̂ , Qi, Qm ∩ P̂ 〉 if Qi ⊆ P̂ ;
〈∅, ∅, ∅, ∅, ∅〉 otherwise .

(8)

9



Calculating supCN (G) for some G is called synthesis. Unlike traditional
synthesis (Ramadge and Wonham, 1989), supCN (G) merely describes a con-
trollable and nonblocking sub-behaviour of the given plant G. Specifications

are not considered here since, as will be shown shortly, they can easily be trans-
lated into plants if both controllability and nonblocking is considered in the
synthesis.

3.4 Translation of Specifications into Plants

The compositional procedure can be simplified considerably if it has only one
kind of automata to consider. Therefore, this section suggests a way how general
supervisory control problems can be expressed using plants only. The resultant
models always require synthesis for nonblocking in addition to controllability,
which may be more difficult than synthesis for controllability only. Therefore,
this method is of most interest for synthesis problems that involve nonblocking
from the start. Modular synthesis involving only controllability is discussed
in (Brandin et al., 2004; Åkesson et al., 2002).

A specification automaton can be transformed into a plant by adding, for
every uncontrollable event that is not enabled in a state, a transition to a new
blocking state ⊥. The result of synthesis remains the same after this transfor-
mation.

Definition 12 Let K = 〈Q,Σ,→, Qi, Qm〉 be a specification. The complete

plant automaton K⊥ for K is

K⊥ = 〈Q ∪ {⊥},Σ,→⊥, Qi, Qm〉 (9)

where ⊥ /∈ Q is a new state and

→⊥ = → ∪ { 〈q, υ,⊥〉 | q ∈ Q, υ ∈ Σu, q 6
υ
→} . �

Whenever the specification disallows an uncontrollable event, the corre-
sponding state in the complete plant automaton has an uncontrollable transition
to a blocking state. In a controllable model, these transitions are removed by
synchronous composition with the original plants; in an uncontrollable model,
they cause the synchronous product to be blocking. Thus, all controllability
problems are replaced by blocking problems.

Proposition 1 Let G, K, and K ′ be deterministic automata with the same
alphabet Σ. Then the following two statements are equivalent.

(i) K ′ ⊆ G ‖ K⊥ is nonblocking and controllable in G ‖ K⊥.

(ii) K ′ ⊆ G ‖ K is nonblocking and controllable with respect to G. 2

Proof. First, assume that (i) holds. Since, by the assumption, K ′ is nonblock-
ing, it holds that K ′ 6→ (q,⊥) for every state q in G. Thus, since K⊥ is the
complete plant automaton for K, K ′ ⊆ G ‖ K⊥ implies K ′ ⊆ G ‖ K.

It remains to show that K ′ is controllable with respect to G. Let s ∈ Σ∗

and υ ∈ Σu such that G
s
→ pG

υ
→ qG and K ′ s

→ (pG, pK). Since K ′ ⊆ G ‖ K⊥

it holds that K⊥ s
→ pK . Since υ ∈ Σu and since K⊥ is the complete plant

10



automaton for K, there exists a state q⊥ such that K⊥ s
→ pK

υ
→ q⊥. This

implies G ‖ K⊥ s
→ (pG, pK)

υ
→ (qG, q⊥). Since K ′ is controllable in G ‖ K⊥, it

holds that (pG, pK)
υ
→ in K ′.

Second, assume that (ii) holds. Clearly, since K ⊆ K⊥, it follows that
K ′ ⊆ G ‖ K ⊆ G ‖ K⊥. Also, K ′ is nonblocking by assumption. It remains to
show that K ′ is controllable in G ‖ K⊥. Let s ∈ Σ∗ and υ ∈ Σu be such that

K ′ s
→ p and G ‖ K⊥ s

→ p
υ
→ q. By the definition of ‖, it is clear that G

sυ
→.

Thus, since K ′ is controllable with respect to G, it follows that K ′ sυ
→. Since K ′

is deterministic, this implies K ′ s
→ p

υ
→ q. �

An immediate consequence of this result is that synthesis of the least restric-
tive nonblocking and controllable behaviour allowed by a specification K with
respect to a plant G—both deterministic—can be achieved by computing

supCN (G ‖ K⊥) . (10)

The result can be used to implement a supervisor, enabling precisely the events
enabled in supCN (G ‖ K⊥).

However, as a result of hiding and/or abstractions, supCN may be applied to
nondeterministic automata. Then it is not immediately clear which events the
supervisor should enable (and, indeed, in which states). To solve this problem,
state labels are introduced to convey the necessary information.

3.5 Kripke-Structures

The intermediate results in the construction of the supervisor need to carry
state labels to establish a correspondence to the global system states. To this
end, labelled automata or Kripke-structures are used.

Definition 13 An (extended) Kripke-structure is a 7-tuple

G = 〈Q,Σ,→, Qi, Qm,Λ, B〉 (11)

where 〈Q,Σ,→, Qi, Qm〉 is an automaton, Λ is a set of state labels, and B : Q →
2Λ is a map that associates each state with a set of labels. �

A Kripke-structure can be considered as an automaton, simply by ignoring
its labels. Conversely, an unlabelled automaton G = 〈Q,Σ,→, Qi, Qm〉 can be
extended to a Kripke-structure G′ by using the states themselves as their labels,

G′ = 〈Q,Σ,→, Qi, Qm,Λ, B〉 (12)

where Λ = Q and B(q) = {q}. Simplification may result in states with more
than one label associated to them. In the following, the letter G is used to rep-
resent both an automaton and its Kripke-structure. All concepts and notations
that can be applied to automata, such as transitions and controllability, are
extended to Kripke-structures in the straightforward way.

Synchronous composition produces state tuples as labels and is extended to
Kripke-structures using

ΛG1‖G2
= ΛG1

× ΛG2
; (13)

BG1‖G2

(

(p, q)
)

= BG1
(p) × BG2

(q) . (14)

11



Here, the resulting labels should not depend on the order in which automata
are composed; ‖ should be commutative. Therefore pairs (p, q) and (q, p), e.g.,
are considered as equivalent when occurring as labels. It is also assumed that
all states in all automata are unique.

Synthesis is also extended to Kripke-structures,

supCN (G) =

{

〈P̂ ,Σ, P̂ , Qi, Qm ∩ P̂ ,Λ, BP̂ 〉 if Qi ⊆ P̂ ,
〈∅, ∅, ∅, ∅, ∅, ∅, ∅〉 otherwise ;

(15)

where P̂ is the fixed point of the synthesis iteration P 0 = Q, P i+1 = ΘG(P i)
for the automaton G. BP̂ is the labelling function restricted to the state set P̂ .

Sometimes it is of interest to know the set of all reachable labels in a Kripke-
structure G, which is defined as

B(G) = { l ∈ Λ | ∃q ∈ Q : G → q, l ∈ B(q) } . (16)

4 Compositional Synthesis

A modular supervisory control problem consists of a plant G = G1 ‖· · ·‖Gn and
a specification K = K1 ‖ · · · ‖ Km, each composed of deterministic automata.
The task is to find the supremal controllable and nonblocking sub-behaviour of

G ‖ K = G1 ‖ · · · ‖ Gn ‖ K1 ‖ · · · ‖ Km , (17)

or, equivalently, the largest subautomaton of G ‖ K that is nonblocking and
controllable with respect to G.

Proposition 1 shows that this can be represented equivalently by a set of
plant automata. Therefore, in the following it is assumed without loss of general-
ity that the synthesis problem consists of finding a nonblocking and controllable
supervisor for a modular deterministic plant

G = G1 ‖ · · · ‖ Gn , (18)

represented as Kripke-structures using the states themselves as their labels. This
is the starting point for compositional synthesis.

4.1 Compositional Minimisation

The supervisor should result in the least restrictive nonblocking and controllable
sub-behaviour of the system G in (18). The simplest way to achieve this is a
monolithic supervisor that can be defined by

SG(s) = {σ ∈ Σ | supCN (G)
sσ
→} . (19)

To avoid monolithic synthesis and to be able to compute this supervisor compo-
sitionally, the system G of plant automata is transformed into a simpler system

H = H1 ‖ · · · ‖ Hm (20)

that should be related to the original system G in an appropriate way. The
simplified system H is assumed to use the same state labels as the original

12



system G, i.e., it is labelled by the states in G. Using these labels, the simplified
system can be used to define an alternative supervisor to S, the compositional

supervisor,

S′
H(s) = {σ ∈ Σ | G

sσ
→ q and q ∈ B(supCN (H)) } . (21)

To determine whether an event σ should be enabled after executing a string s,
the compositional supervisor first determines whether the original system G can
execute string sσ. If this is the case, it checks whether the state reached by G
is a reachable label of supCN (H). If this also is the case, then the event σ is
enabled, otherwise it is disabled.

To be useful, the supervisor constructed in this way should produce exactly
the same behaviour as a monolithic supervisor computed for the original system.
Clearly, this can only be guaranteed if the simplified system H stands in a certain
relationship to the original system G.

Three operations are proposed that can be applied to a system of plant
automata in such a way that the resultant supervisor yields the same behaviour.

Synchronous Composition. Any two plant automata can be replaced by their
synchronous product.

Hiding. If an event σ is used by only one automaton Gi, then Gi can be replaced
by Gi \!{σ}.

Simplification. A plant automaton can be replaced by a simplified automaton,
provided that the simplified automaton is supervision equivalent to the
original.

The simplification step clearly relies on an appropriate notion of equivalence
to guarantee that the resultant supervisor remains unchanged. The following
definition introduces a general equivalence that relates two automata with equiv-
alent synthesis results in combination with any other system. Synthesis results
for Kripke-structures can be considered as equivalent if they result in the same
sets of state labels.

Definition 14 Two Kripke-structures G and H are said to be supervision equiv-

alent , denoted G ≃sup H, if, for any automaton T ,

B(supCN (G ‖ T )) = B(supCN (H ‖ T )) . �

Given this, the three possible ways to rewrite systems of plant automata are
now defined formally, using the notation of term rewrite systems (Dershowitz
and Jouannaud, 1990). The set of automata on top of the horizontal line can
be replaced by the one below, provided that the conditions listed are satisfied.

Definition 15 The following rules can be used to rewrite sets of Kripke-struc-
tures G1, . . . , Gn.

{G1, . . . , Gn}
{G1 ‖ G2, G3, . . . , Gn}

{G1, . . . , Gn}
{G1 \!Υ, G2, . . . , Gn}

if events Υ ⊆ Σ are unused
in G2, . . . , Gn;

{G1, . . . , Gn}
{H1, G2, . . . , Gn}

if G1 ≃sup H1.

13



If {G1, . . . , Gn} can be rewritten into {H1, . . . ,Hm} using one of the above rules,
this is denoted by {G1, . . . , Gn} ≻ {H1, . . . ,Hm}. The reflexive and transitive
closure of the rewrite relation ≻ is denoted by ≻∗. �

4.2 Main Result

In order to construct the compositional supervisor, the system of plants (18) is
repeatedly rewritten and simplified using the rewrite rules given in definition 15.
This process naturally terminates when all automata have been composed and
all events have been hidden. As it turns out, the final result can always be
reduced to a one-state or zero-state automaton.

The following result shows that this method is sound. The sequence of
rewrite steps always leads to a supervisor that is equivalent to the monolithic
supervisor for the original system, and therefore yields the least restrictive be-
haviour that can be achieved by supervision.

Proposition 2 Let G = G1 ‖ · · · ‖ Gn be a system of deterministic plant au-
tomata, and let H = H1 ‖ · · · ‖ Hm be a system of Kripke-structures such that

{G1, . . . , Gn} ≻∗ {H1, . . . ,Hm} . (22)

Then their synthesised supervisors yield the same behaviour, that is, SG = S′
H .
2

Proof. The claim is proved by induction on the number of rewrite steps used
to transform G into H.

Base case. First assume that G = H, that is, no rewrite steps have been
used. It needs to be shown that the two supervisors obtained from G are equal,
i.e., that SG = S′

G. This is the case because, for arbitrary s ∈ Σ∗,

SG(s) = {σ ∈ Σ | supCN (G)
sσ
→}

= {σ ∈ Σ | G
sσ
→ q, q reachable in supCN (G) }

= {σ ∈ Σ | G
sσ
→ q, q ∈ B(supCN (G)) }

= S′
G(s) .

Inductive step. Assume that G is rewritten into H in k + 1 rewrite steps as
follows

G = G0 ≻ · · · ≻ Gk ≻ Gk+1 = H . (23)

By inductive assumption, the supervisor for Gk behaves like the monolithic
supervisor for G, i.e., SG = S′

Gk . It remains to be shown that

S′
Gk = S′

H , (24)

where H is obtained from Gk using one of the rewrite rules from definition 15.

Case 1. H is obtained by synchronous composition from Gk. Let Gk =
{G1, G2, . . . , Gn}, and let H = {G1 ‖ G2, G3, . . . , Gn}. By definition of syn-
chronous composition and synthesis, and using the assumption that state labels

14



are constructed in such a way that the order of composition does not matter, it
follows that

B(supCN (Gk)) = B(supCN (G1 ‖ G2 ‖ · · · ‖ Gn))

= B(supCN ((G1 ‖ G2) ‖ · · · ‖ Gn))

= B(supCN (H)) .

Case 2. H is obtained by hiding from Gk. Let Gk = {G1, G2, . . . , Gn} and
H = {G1 \!Υ, G2, . . . , Gn} where all events in Υ are unused in G2 ‖ · · · ‖ Gn.
Since synthesis treats the silent events τc and τu in the same way as ordinary
controllable and uncontrollable events, it follows that

B(supCN (Gk)) = B(supCN (G1 ‖ · · · ‖ Gn))

= B(supCN ((G1 ‖ · · · ‖ Gn) \!Υ))

= B(supCN ((G1 \!Υ) ‖ G2 ‖ · · · ‖ Gn))

= B(supCN (H)) .

Case 3. H is obtained by simplification from Gk. Let Gk = {G1, G2, . . . , Gn}
and H = {H1, G2, . . . , Gn} where G1 ≃sup H1. By letting T = G2 ‖ · · · ‖ Gn in
definition 14,

B(supCN (Gk)) = B(supCN (G1 ‖ G2 ‖ · · · ‖ Gn))

= B(supCN (H1 ‖ G2 ‖ · · · ‖ Gn))

= B(supCN (H)) .

Thus, the equation B(supCN (Gk)) = B(supCN (H)) holds in all three cases.
This implies, for arbitrary s ∈ Σ∗,

SG(s) = S′
Gk(s)

= {σ ∈ Σ | G
sσ
→ q, q ∈ B(supCN (Gk)) }

= {σ ∈ Σ | G
sσ
→ q, q ∈ B(supCN (H)) }

= S′
H(s) . �

5 Rewrite Operations

Simplification is the only step that reduces the size of intermediate automata,
and is therefore crucial for the performance of the method. Since the state-
space tends to grow exponentially with the number of components, even a small
reduction, particularly at an early stage, can greatly reduce effort later in the
process.

In this section a number of rules for how an automaton can be rewritten
to a simpler supervision equivalent version are presented. The rules presented
below are in general not sufficient to find a minimal supervision equivalent
representation of an automaton. However, the authors believe that they can be
used heuristically to provide significant reduction for many examples of practical
relevance.

15



5.1 Removal of τ-self loops

All selfloops associated with silent events can be removed. This is possible
because a selfloop never causes the automaton to change its state, and the states
of other automata are not affected by silent transitions. By itself, this is not a
very important reduction, yet it may be useful for fulfilling the prerequisites for
other reduction rules.

5.2 Kripke Bisimulation

Bisimulation (Milner, 1989), is a strong equivalence of nondeterministic au-
tomata that considers only states with the same future behaviour as equivalent.
Here, Kripke-structures are considered, and the bisimulation relation must also
take the state labels into account when comparing states for equivalence, see
figure 7.

G1 A B

C D

E

⊥
σ

αα

!β !β

!υ G2 A B

C, D

E

⊥
σ

α α

!β

!υ

Figure 7: Even though the states labelled C and D in G1 are bisimilar, they
cannot be collapsed as in G2. Consider as a test an automaton that allows
everything. In G1, the path to D will be removed in synthesis, so D is not an
approved label. However, in G2, the label D would still be reachable.

The following definition extends the standard notion of bisimulation (Milner,
1989) to Kripke-structures, by adding the requirement that bisimilar states must
have the same marking and label sets.

Definition 16 Let G1 = 〈Q1,Σ,→1, Q
i
1, Q

m
1 ,Λ1, B1〉 and G2 = 〈Q2,Σ,→2,

Qi
2, Q

m
2 ,Λ2, B2〉 be two Kripke-structures. A relation ∼ ∈ Q1 ×Q2 is said to be

a Kripke-bisimulation for G1 and G2 if p ∼ q implies that for any σ ∈ Στ

if p
σ
→1 p′ then ∃q′ such that q

σ
→2 q′ and p′ ∼ q′ ;

if q
σ
→2 q′ then ∃p′ such that p

σ
→1 p′ and p′ ∼ q′ ;

p ∈ Qm
1 if and only if q ∈ Qm

2 ;
B1(p) = B2(q) .

Two Kripke-structures G1 and G2 are Kripke-bisimilar if there exists a Kripke-
bisimulation ∼ such that for each initial state qi

1 ∈ Qi
1 there exists an initial

state qi
2 ∈ Qi

2 such that qi
1 ∼ qi

2, and vice versa. �

Proposition 3 If G1 and G2 are Kripke-bisimilar then G1 ≃sup G2. 2

16



Proof (Sketch). G1 and G2 clearly have the same reachable labels. In each
step of synthesis, if a state is removed, so are all states that are bisimilar to
that state. �

In the case of H2 in figure 4, the states I11 and W10 and also I12 and W11
are bisimilar but not Kripke bisimilar. However, the problem in figure 7 cannot
occur in this special case unless we disable τc transitions in state I10 or I11 for
which there is no reason. So, H2 can actually be reduced to just four states.
However, other reduction methods are needed, and no proof of this is given here.

5.3 Solitary Outgoing τu

When a state only has one outgoing transition and it is τu, a supervisor that
allows the system to reach that state must also allow the system to reach the
next state. Therefore, this transition can be abstracted away.

Proposition 4 Let G1 = 〈Q,Σ,→1, Q
i, Qm

1 ,Λ, B1〉. If there exists a state

x ∈ Q, x /∈ Qm such that x has only one outgoing transition and it is x
τu→1 y

for some y ∈ Q, y 6= x. Then G1 ≃sup G2 where G2 = 〈Q,Σ,→2, Q
i, Qm

2 ,Λ, B2〉
with

→2 = (→1 \ {〈x, τu, y〉}) ∪ {〈x, σ, z〉 | y
σ
→1 z} ;

Qm
2 =

{

Qm
1 ∪ {x} if y ∈ Qm

1

Qm
1 if y /∈ Qm

1 ;

B2(q) =

{

B1(q) if q 6= x
B1(x) ∪ B1(y) if q = x .

2

The proof can be found in appendix A. An example of the application of
this rule can be found in figure 8. This rule, as well as the following, is of most
use when y has no incoming transitions other than the required τu-transition.
In such cases y becomes unreachable and can be removed altogether.

G1 x

y

p1 p2

!τu

α !β

. . .

. . .
G2

y

x, y

p1 p2

α

α

!β

!β

. . .

. . .

Figure 8: Example of solitary τu-removal, in G1 the τu-transition from x to y
can be removed. All outgoing transitions and labels from y must be copied to
x. The dots represent incoming transitions to x and y that are left unchanged.

5.4 Bypass of τu

If a τu-transition is followed by another τu-transition, then the state in between
can be bypassed. The second τu-transition guarantees that the abstraction will
keep any blocking situations that the original automaton had.

17



Proposition 5 Let G1 = 〈Q,Σ,→1, Q
i, Qm

1 ,Λ, B1〉. If there exists a state

x ∈ Q such that there exists two transitions x
τu→1 y

τu→1 z for some y, z ∈ Q.
Then G1 ≃sup G2 where G2 = 〈Q,Σ,→2, Q

i, Qm
2 ,Λ, B2〉 with

→2 = (→1 \ {〈x, τu, y〉}) ∪ {〈x, σ, z〉 | y
σ
→1 z} ;

Qm
2 =

{

Qm
1 ∪ {x} if y ∈ Qm

1

Qm
1 if y /∈ Qm

1 ;

B2(q) =

{

B1(q) if q 6= x
B1(x) ∪ B1(y) if q = x .

2

Note the difference between the “solitary outgoing τu”-rule and the “bypass
of τu”-rule. In the former, x must have no other outgoing transitions and no
marking, in the latter, y must have an outgoing τu-transition.

The proof is similar to the proof for proposition 4 and is left out. An example
of the application of this rule can be found in figure 9.

G1

x

y

zp

q

!τu

!τuα

!β

. . .

. . .
G2

y

z

x, y

p

q

!τu

!τu

α

α

!β

. . .

. . .

Figure 9: Example of τu-bypass, in G1 the τu-transition from x to y can be
bypassed. All transitions outgoing from y are copied to x. The dots represent
incoming transitions to x and y that are left unchanged.

5.5 τu-saturation

Since τu can never become disabled, a supervisor must be designed to cope with
all situations that can be reached by τu-transitions. A transition that can be
executed after a τu transition might as well be considered for execution in the
current state. Adding transitions in this way is called τu-saturation.

Proposition 6 Let G1 = 〈Q,Σ,→1, Q
i, Qm,Λ, B〉. Whenever transitions ex-

ists such that x
τu→1 y

σ
→1 z for some x, y, z ∈ Q, σ ∈ Στ . Then G1 ≃sup G2

where G2 = 〈Q,Σ,→2, Q
i, Qm,Λ, B〉 with

→2 = →1 ∪ {〈x, σ, z〉} . 2

This rule can also be used for removal of transitions, of course, which may
be more useful. If a transition exists out of the current state and “the same”
transition exists in a state reachable by a τu-transition, the first transition can
be removed.

18



Proof (Sketch). This follows from the τu-bypass rule and the τ -selfloop rule.
Consider G1 and let y = z in proposition 5, i.e., there is a τu-selfloop in state y
(if there is none, add one). The result is that a number of transitions are added
(and the added selfloop can be removed). The exact same result, however, is
reached when starting from G2. Thus G1 ≃sup G2. �

Remark 1 It follows from the argument in the proof that also marking and
labels can be propagated backwards over τu-transitions. Applying proposition 5
will show that the results are supervision equivalent.

An example of τu-saturation can be found in figure 10.

G1
x y z

σ!τu

. . .
. . .

. . . G2
y z

σ
σ

!τu

. . .
. . .

. . .x, y

Figure 10: Example of τu-saturation, transitions on σ are added in G2. The
marking and the labels are propagated backwards. The dots represent incoming
transitions that are left unchanged.

5.6 Collapsing τu-loops

Let G be an automaton, and let P be a set of states such that for all states

p, p′ ∈ P it holds that p
τ∗

u→ p′. Then the states in P can be collapsed meaning
that all transitions to/from the set are redirected to/from a single state which
has the union of the labels and the marking.

This follows from the τu-saturation rule and the bisimulation rule.

5.7 Solitary Outgoing τc

A similar rule as the rule for solitary τu-transitions can be derived for τc-
transitions. However, the target state of the τc transition must not have any
outgoing uncontrollable transitions. The reason for this is that every state with
an outgoing uncontrollable transition may become a “bad” state in some envi-
ronment, therefore it needs to be distinguished from other states until the status
of its outgoing uncontrollable transitions is known.

Proposition 7 Let G1 = 〈Q,Σ,→1, Q
i, Qm

1 ,Λ, B1〉. Assume there exists a
state x ∈ Q, x /∈ Qm

1 such that x has only one outgoing transition and it

is x
τc→1 y for some y ∈ Q, y 6= x, and y

σ
→ implies that σ ∈ Στ,c. Then

G1 ≃sup G2 where G2 = 〈Q,Σ,→2, Q
i, Qm

2 ,Λ, B2〉 with

→2 = (→1 \ {〈x, τc, y〉}) ∪ {〈x, σ, z〉 | y
σ
→1 z} ;

Qm
2 =

{

Qm
1 ∪ {x} if y ∈ Qm

1

Qm
1 if y /∈ Qm

1 ;

B2(q) =

{

B1(q) if q 6= x
B1(x) ∪ B1(y) if q = x .

2

Note that state y must not have any outgoing uncontrollable transitions.
The proof is similar to the proof for proposition 4 and is left out.

19



5.8 τc-saturation

A weaker kind of saturation than the one for τu-transitions can be derived for
τc-transitions from the solitary τc rule.

It is not possible to derive something like a τc-bypass rule. Controllable
transitions have to be retained until it is absolutely certain that the supervisor
does not need to disable them, see figure 11.

G1
x y

z

τc

τcα

G2

z

x, y

τc

α

T t ⊥
α

Figure 11: Illustration of the problems involved with developing a “τc-bypass”
rule. Consider bypassing the state labelled y in G1. The result of this would be
G2 since the state with y would become unreachable. However, the automaton
T would distinguish G1 from G2. Synthesis on G2 ‖ T would allow the label
(y, t) which is really a blocking state. Note that everything is controllable.

5.9 Halfway Synthesis

A simple but powerful simplification method is called halfway synthesis. The
idea is to perform synthesis on a subsystem but, to guarantee that the end
result is least restrictive, the synthesis must take into account that all uncon-
trollable events except τu may actually become disabled by other plants in the
system. Thus, transitions associated with such events are not sure to cause
uncontrollability and must be retained to guarantee least restrictiveness.

The halfway synthesis result can be calculated using a fixed point algo-
rithm similar to standard synthesis. Let G = 〈Q,Σ,→, Qi, Qm,Λ, B〉, and let
Θτu

G (P ) = Θcont,τu

G (P ) ∩ Θnonb
G (P ) with

Θcont,τu

G (P ) = { q ∈ P | q
τu→ p implies p ∈ P } . (25)

Let P̂ be the fixed point of the iteration P 0 = Q, P i+1 = Θτu

G (P i). The halfway
synthesis result is the portion of G that remains when all controllable transitions
that leave P̂ and all transitions that leave states outside P̂ have been removed,

supCNh(G) = 〈Q,Σ,→h, Qi, Qm ∩ P̂ ,Λ, B〉 (26)

where

→h = { 〈p, σ, q〉 ∈ → | p ∈ P̂ and, if q /∈ P̂ then σ ∈ Στ,u } . (27)

Technically, this construction only deletes transitions from the automaton G,
while retaining all its states. This is necessary, because some states not in P̂
remain reachable by uncontrollable events; these states are made blocking in the
process so they are treated as “bad” states by subsequent synthesis steps. Of
course, all states that are unreachable after the completion of halfway synthesis
can be removed.

20



Proposition 8 Let G be a Kripke-structure and let Gh = supCNh(G). Then

G ≃sup Gh . 2

The proof can be found in appendix B. An example of halfway synthesis
can be found in figure 12.

G1 0

1

2

3

!τuα
α

α

!β

!γ

G2 0

1 3

α !β

!γ

Figure 12: Example of halfway synthesis, state 2 is bad since it can reach the
blocking state 3 on τu. That is, P̂ = {0, 1} and all controllable transitions
leading to 2 and 3 can be removed. 2 becomes unreachable and is removed.

6 Experimental results

As of yet, there is just a rudimentary implementation of the compositional su-
pervision equivalence algorithm, in the DES tool Supremica, (Supremica, 2007).
The only rule that has been implemented is halfway synthesis. Since halfway
synthesis never collapses states, only removes them, maximally permissiveness
implies that the end result in this case is actually nothing other than an automa-
ton with the same state-space as the traditional monolithic supervisor. However,
this end result can sometimes be reached without exploring more than just a
small fraction of the entire global state-space. In effect, the halfway synthesis
enables the synthesis process to take a “shortcut” straight to the monolithic end
result as it can sometimes cut off huge chunks of the state-space by identifying
and removing transitions to blocking and uncontrollable states at a very early
stage. That is, the blocking and uncontrollable parts of the global state-space
may never have to be examined explicitly if the problems can be identified before
the state-space explosion occurs.

Table 1 shows some statistics for three examples where this effect is particu-
larly prominent; that is, where the system being analysed has many blocking and

Table 1: Test case examples for compositional controllability and nonblocking
synthesis in Supremica. “Aut.” is the number of automata. The “States”,
“Trans.”, and “Time” columns present the number of states and transitions
explored and the time for monolithic and compositional synthesis, respectively.
The “Result” columns show the size of the monolithic supervisor.

Example Monolithic Compositional Result

Name Aut. States Trans. Time States Trans. Time States Trans.

IPC 12 11469 36660 1 s 11916 42708 1 s 9216 33592

3transfer 15 127764 426465 11 s 22916 125242 4 s 15352 81422

FMS 16 309024 683280 25 s 57003 259580 11 s 45505 200124

21



uncontrollable states. The models are “manufacturing system” models found in
the literature.

Intertwined Product Cycles—IPC. Two types of products are produced in
a system with two machines such that the products must move back and
forth between the two machines in opposite directions (Lin and Wonham,
1990). Only the plant models and the buffer specifications are considered
here.

Transfer Line—3transfer. Three serially connected transfer line cells. The
individual cells are the same as in figure 1 except that the first buffer has
a capacity of three.

Flexible Manufacturing System—FMS. A manufacturing system consisting
of a several machining devices, a robot, and a set of buffers and conveyors.
The system produces two kinds of products. The example is adapted
from (Queiroz, Cury and Wonham, 2005).

The monolithic synthesis algorithm used in the table also avoids exploring the
full state-space. It does not explore the successor states of confirmed “bad”
states. Nevertheless the compositional algorithm is significantly faster and con-
structs less states in all cases except for the small IPC example. Much better
results can be expected if more of the reduction rules presented in this paper
are implemented.

7 Conclusions

A general method for compositional synthesis of controllable and nonblocking
supervisors for discrete-event systems has been proposed. The monolithic rep-
resentation of the state-space is avoided by the use of simplified automata at the
intermediate stages of the algorithm, in this way the modularity is exploited.
The resulting supervisor is represented efficiently using a symbolic mapping of
state labels. A set of test cases are presented where a rudimentary implemen-
tation of the synthesis procedure is shown to be able to avoid building the full
synchronous composition.

The proposed framework can be extended and enhanced in different ways. In
the future, the authors would like to study and evaluate additional algorithms for
the minimisation of automata in a way that preserves supervision equivalence.
The order in which automata are to be composed needs to be studied in more
detail, since the performance of the method depends on it. Another problem
with the present approach is the need to consider state labels throughout the
synthesis process, which can make some desirable reductions impossible, and
which may be avoided when using a different approach. Furthermore, it is
interesting to consider coarser equivalences than supervision equivalence that
take some aspects of the rest of the system considered into account.

References

Brandin, B. A., Malik, R. and Malik, P.: 2004, Incremental verification and syn-
thesis of discrete-event systems guided by counter examples, Transactions

on Control System Technology 12(3), 387–401.

22



Cassandras, C. G. and Lafortune, S.: 1999, Introduction to Discrete Event Sys-

tems, Kluwer.

De Nicola, R. and Hennessy, M. C. B.: 1984, Testing equivalences for processes,
Theoretical Computer Science 34(1–2), 83–133.

Dershowitz, N. and Jouannaud, J.-P.: 1990, Rewrite systems, in J. van Leeuwen
(ed.), Handbook of Theoretical Computer Science, Vol. B, Elsevier, pp. 243–
320.

Fabian, M.: 1995, On Object Oriented Nondeterministic Supervisory Control,
PhD thesis, Control Engineering Laboratory, Chalmers University of Tech-
nology, Göteborg, Sweden.

Feng, L. and Wonham, W. M.: 2006, Computationally efficient supervisor de-
sign: Abstraction and modularity, Proceedings of the 8th International

Workshop on Discrete Event Systems, WODES ’06, Ann Arbor, MI, USA,
pp. 3–8.

Flordal, H. and Malik, R.: 2006, Supervision equivalence, Proceedings of the

8th International Workshop on Discrete Event Systems, WODES ’06, Ann
Arbor, MI, USA, pp. 155–160.

Hill, R. C. and Tilbury, D. M.: 2006, Modular supervisory control of discrete-
event systems with abstraction and incremental hierarchical construction,
Proceedings of the 8th International Workshop on Discrete Event Systems,

WODES ’06, Ann Arbor, MI, USA, pp. 399–406.

Hoare, C. A. R.: 1985, Communicating sequential processes, Series in Computer
Science, Prentice-Hall.

Lin, F. and Wonham, W. M.: 1990, Decentralized control and coordination
of discrete-event systems with partial observation, IEEE Transactions on

Automatic Control 35(12), 1330–1337.

Malik, R., Streader, D. and Reeves, S.: 2006, Conflicts and fair testing, Inter-

national Journal of Foundations of Computer Science 17(4), 797–813.

Milner, R.: 1989, Communication and concurrency, Series in Computer Science,
Prentice-Hall.

Queiroz, M. H. d. and Cury, J. E. R.: 2000, Modular supervisory control of large
scale discrete event systems, in R. Boel and G. Stremersch (eds), Discrete

Event Systems, Analysis and Control, Kluwer, pp. 103–110.

Queiroz, M. H. d., Cury, J. E. R. and Wonham, W. M.: 2005, Multitask-
ing supervisory control of discrete-event systems, Discrete Event Dynamic

Systems 15(4), 375–395.

Ramadge, P. J. and Wonham, W. M.: 1989, The control of discrete event sys-
tems, Proceedings of the IEEE 77(1), 81–98.

Song, R. and Leduc, R. J.: 2006, Symbolic synthesis and verification of hierarchi-
cal interface-based supervisory control, Proceedings of the 8th International

Workshop on Discrete Event Systems, WODES ’06, Ann Arbor, MI, USA,
pp. 419–426.

23



Su, R. and Wonham, W. M.: 2004, Supervisor reduction for discrete-event
systems, Discrete Event Dynamic Systems 14(1), 31–53.

Supremica: 2007, www.supremica.org. The official website for the Supremica
project.

Wong, K. C. and Wonham, W. M.: 1998, Modular control and coordination of
discrete-event systems, Discrete Event Dynamic Systems 8(3), 247–297.

Wonham, W. M.: 2006, Supervisory control of discrete event systems, Technical

report, Department of Electrical and Computer Engineering, University of
Toronto, Toronto, Canada.

Åkesson, K., Flordal, H. and Fabian, M.: 2002, Exploiting modularity for syn-
thesis and verification of supervisors, Proceedings of the 15th IFAC World

Congress, Barcelona, Spain.

A Proof of Proposition 4

To simplify the proof, the following lemma is used.

Lemma 1 Assume Kripke-structures G1 and G2 with states x and y as in
proposition 4. Furthermore, let T be an arbitrary automaton with a state
t ∈ QT , and let P̂2 be the fixed point of the synthesis calculation for G2 ‖ T .
Then (x, t) ∈ P̂2 implies (y, t) ∈ P̂2. 2

Proof. Let (x, t) ∈ P̂2 and assume that (y, t) /∈ P̂2. Note that this only makes
sense if x 6= y. Then (y, t) must have been removed during synthesis, i.e.,
∃k ∈ N such that (y, t) ∈ P k

2 but (y, t) /∈ P k+1
2 = ΘG2‖T (P k

2 ) = Θcont
G2‖T

(P k
2 ) ∩

Θnonb
G2‖T

(P k
2 ). That is, either (α) it holds that (y, t) /∈ Θcont

G2‖T
(P k

2 ) or (β) it holds

that (y, t) /∈ Θnonb
G2‖T

(P k
2 ).

(α) This implies that ∃υ ∈ Στ,u such that (y, t)
υ
→G2‖T q /∈ P k

2 . Then, by
construction of G2 and since the test clearly can execute υ, it holds that
(x, t)

υ
→G2‖T q. Thus (x, t) /∈ Θcont

G2‖T
(P k

2 ) ⊇ P̂2, in contradiction to the

assumption (x, t) ∈ P̂2.

(β) This implies that ∀q ∈ Q × QT it holds that (y, t)G2 ‖ TP k
2 q ⇒ q /∈

Qm
2 ×Qm

T . Now, consider a trace s such that (x, t)[s]G2 ‖ TP k
2 p. If s = ε,

then p = (x, t) and, since by construction (x, t) is marked only if (y, t) is
marked, p /∈ Qm

2 × Qm
T . Otherwise, by construction of G2 and since it is

known that (y, t) ∈ P k
2 it holds that (y, t)[s]G2 ‖ TP k

2 p. Thus p /∈ Qm
2 ×Qm

T

and since this holds for any trace s it is clear that (x, t) /∈ Θnonb
G2‖T

(P k
2 ) ⊇ P̂2,

which leads to a contradiction. �

Now, the proof of proposition 4 is quite straightforward, but lengthy.

Proof (of proposition 4). It needs to be shown that, for any automaton T ,
B(supCN (G1 ‖ T )) = B(supCN (G2 ‖ T )). To show this it is enough to show
that (i) the fixed points of the synthesis calculations of G1 ‖ T and G2 ‖ T , P̂1

and P̂2, are the same, and (ii) that the set of reachable labels are identical.

24



(i) This can be proven by induction. Let us show (A) that P̂2 ⊆ P j
1 and (B)

that P̂1 ⊆ P j
2 for all j ≥ 0.

(A) Base case, j = 0. By definition P̂2 ⊆ Q × QT = P 0
1 .

Inductive step. Assuming that the property holds for j it needs to
be shown that it also holds for j + 1. Let p ∈ P̂2. By the inductive
assumption it holds that p ∈ P j

1 . Assume that p /∈ P j+1
1 . That is,

p /∈ ΘG1‖T (P j
1 ) = Θcont

G1‖T
(P j

1 ) ∩ Θnonb
G1‖T

(P j
1 ). This implies that either

(α) it holds that p /∈ Θcont
G1‖T

(P j
1 ) or (β) it holds that p /∈ Θnonb

G1‖T
(P j

1 ).

(α) Then ∃υ ∈ Στ,u such that p
υ
→G1‖T q /∈ P j

1 . If this is not a

transition such that (x, t)
τu→G1‖T (y, t) for some t ∈ QT then

the same transition exists in G2 ‖ T . So p
υ
→G2‖T q /∈ P j

1 ⊇ P̂2.

But then p /∈ Θcont
G2‖T

(P̂2) = P̂2 which is a contradiction. Now, if

p
υ
→G1‖T q is a transition (x, t)

τu→G1‖T (y, t) then (y, t) /∈ P j
1 ⊇

P̂2. By lemma 1 this implies that p = (x, t) /∈ P̂2 which is a
contradiction.

(β) Then pG1 ‖ TP j
1 q implies q /∈ Qm

1 ×Qm
T for all states q ∈ Q×QT .

Now, consider a trace s such that p[s]G2 ‖ T P̂2r. Then a modified
trace s′ can be found that takes G1 ‖ T to the same state. The
modification concerns passing through (y, t) for some t ∈ QT if
the trace in G2 ‖ T uses any of the introduced transitions. The
trace moreover uses the exact same states as the trace in G2 ‖ T
except possibly for (y, t) in the mentioned case. However, every
time the trace needs to be redirected over (y, t) that means that
the trace has already passed through (x, t). Thus by lemma 1,
the redirection is possible without leaving P̂2. So, p[s′]G1 ‖ T P̂2r
and, since P̂2 ⊆ P j

1 , also p[s′]G1 ‖ TP j
1 r. This implies that r /∈

Qm
1 ×Qm

T but, since a state can be marked in G2 without being
marked in G1 it is not immediately clear that r /∈ Qm

2 × Qm
T .

It may be the case that (x, t) ∈ Qm
2 ×Qm

T although (x, t) /∈ Qm
1 ×

Qm
T . So, consider the case r = (x, t) ∈ Qm

2 ×Qm
T . Since r can be

reached without leaving P̂2 it holds that r = (x, t) ∈ P̂2, and by
lemma 1 this implies that (y, t) ∈ P̂2. Thus p[s′τu]G1 ‖ T P̂2(y, t)
and p[s′τu]G1 ‖ TP j

1 (y, t) by inductive assumption. This implies
(y, t) /∈ Qm

1 × Qm
T and, since t ∈ Qm

T , also y /∈ Qm
1 . Then by

construction Qm
1 = Qm

2 , i.e., r /∈ Qm
2 × Qm

T .
Since the trace s was chosen arbitrarily this means that p /∈
Θnonb

G2‖T
(P̂2) = P̂2. This contradicts the initial assumption.

(B) Base case, j = 0. By definition P̂1 ⊆ Q × QT = P 0
2 .

Inductive step. Assuming that the property holds for j it needs to
be shown that it also holds for j + 1. Let p ∈ P̂1. By the inductive
assumption it holds that p ∈ P j

2 . Assume that p /∈ P j+1
2 . That is,

p /∈ ΘG2‖T (P j
2 ) = Θcont

G2‖T
(P j

2 ) ∩ Θnonb
G2‖T

(P j
2 ). This implies that either

(α) it holds that p /∈ Θcont
G2‖T

(P j
2 ) or (β) it holds that p /∈ Θnonb

G2‖T
(P j

2 ).

(α) Then ∃υ ∈ Στ,u such that p
υ
→G2‖T q /∈ P j

2 . If this is none
of the introduced transitions, the same transition can be found

25



in G1 ‖ T which leads to a contradiction (like (i.A.α) above).
Otherwise, this must be a transition such that for some z ∈ Q
and some t, t′ ∈ QT it holds that p = (x, t)

υ
→G2‖T (z, t′) = q. By

construction it then holds that (y, t)
υ
→G1‖T q /∈ P j

2 ⊇ P̂1. Thus,

(y, t) /∈ Θcont
G1‖T

(P̂1) = P̂1, and since (x, t)
τu→G1‖T (y, t) /∈ P̂1,

it also holds that p = (x, t) /∈ Θcont
G1‖T

(P̂1) = P̂1, which is a
contradiction.

(β) Then pG2 ‖ TP j
2 q implies q /∈ Qm

2 × Qm
T for all states q ∈ Q ×

QT . Now, consider a trace s such that p[s]G1 ‖ T P̂1r. If the

last transition in this trace is not (x, t)
τu→G1‖T (y, t) for some

t ∈ QT , then there exists a slightly modified trace s′ in G2 ‖ T
such that p[s′]G2 ‖ T P̂1(y, t) = r. Since, by the inductive as-
sumption, P̂1 ⊆ P j

2 , it holds that p[s′]G2 ‖ TP j
2 r, which im-

plies r /∈ Qm
2 × Qm

T . Otherwise, for some t ∈ QT , it holds

that p[s′]G1 ‖ T P̂1(x, t)[τu]G1 ‖ T P̂1(y, t) = r. For (x, t) this is
the same situation as previously, so (x, t) /∈ Qm

2 × Qm
T . But,

by construction, (x, t) ∈ Qm
2 × Qm

T is marked if and only if
(y, t) ∈ Qm

2 × Qm
T . Thus (y, t) = r /∈ Qm

2 × Qm
T ⊇ Qm

1 × Qm
T .

Since s was chosen arbitrarily, it follows in both cases that p /∈
Θnonb

G1‖T
(P̂1) = P̂1, which is a contradiction.

(ii) It needs to be shown that B(supCN (G1 ‖ T )) = B(supCN (G2 ‖ T )).

⊆ Let l ∈ B(supCN (G1‖T )). This means that ∃q ∈ Q×QT and s ∈ Σ∗
τ

such that G1 ‖ T [s]G1 ‖ T P̂1q and l ∈ BG1‖T (q). If this path does not

end with the transition (x, t)
τu→G1‖T (y, t) for some t ∈ QT , then it

is possible to find a modified trace s′ such that G2 ‖ T [s′]G2 ‖ T P̂1q.
Since P̂1 = P̂2, this implies G2 ‖ T [s′]G2 ‖ T P̂2q. By construction it
holds that BG1‖T (q) ⊆ BG2‖T (q) for any q and so l ∈ BG2‖T (q) and

l ∈ B(supCN (G2‖T )). Otherwise, G1 ‖ T [s′]G1 ‖ T P̂1(x, t)[τu]G1 ‖ T P̂1(y, t) =
q. For (x, t) it is possible to find a modified trace s′′ such that
G2 ‖ T [s′′]G2 ‖ T P̂1(x, t) and G2 ‖ T [s′′]G2 ‖ T P̂2(x, t). Now, by con-
struction l ∈ BG1‖T (q) = BG1‖T ((y, t)) ⊆ BG2‖T ((x, t)), which im-
plies l ∈ B(supCN (G2 ‖ T )).

⊇ Let l ∈ B(supCN (G2 ‖ T )). Then there exist q ∈ Q × QT and
s ∈ Σ∗

τ such that G2 ‖ T [s]G2 ‖ T P̂2q and l ∈ BG2‖T (q). By con-

struction, there is a modified trace s′ such that G1 ‖ T [s′]G1 ‖ T P̂2q
and G1 ‖ T [s′]G1 ‖ T P̂1q. If l ∈ BG1‖T (q) then it is clear that l ∈
B(supCN (G1 ‖ T )), otherwise q = (x, t) for some t ∈ QT . Since
(x, t) = q ∈ P̂2 and by lemma 1 it is then clear that also (y, t) ∈ P̂2

and thus q = (x, t)[τu]G1 ‖ T P̂2(y, t). By construction l ∈ BG1‖T ((y, t)),

and since P̂1 = P̂2, it is clear that G1 ‖ T [s′τu]G1 ‖ T P̂1(y, t). Thus
l ∈ B(supCN (G1 ‖ T )). �

B Proof of Proposition 8

To simplify the proof, the following lemma is used.

26



Lemma 2 Consider two automata G and T , let P̂ be the fixed point of ΘG‖T (·)

applied to Q × QT , and let Ĥ be the fixed point of Θτu

G (·) applied to Q. Then

P̂ ⊆ Ĥ × QT . 2

Note that the fixed points P̂ and Ĥ are found for different state sets.

Proof. This is proved using induction on the fixed point iterations. It is enough
to show that ∀j ∈ N, P j ⊆ Hj × QT .

Base case. P 0 = Q × QT = H0 × QT .
Inductive step. Assuming that P j ⊆ Hj × QT , it needs to be shown that

P j+1 = ΘG‖T (P j) ⊆ Θτu

G (Hj) × QT = Hj+1 × QT . Let (x, t) ∈ P j+1 =

ΘG‖T (P j) = Θcont
G‖T

(P j) ∩ Θnonb
G‖T

(P j), then it must be shown that x ∈ Hj+1 =

Θτu

G (P j) = Θcont,τu

G (Hj)∩Θnonb
G (Hj). For this to be true it must hold (α) that

x ∈ Θcont,τu

G (Hj) and (β) that x ∈ Θnonb
G (Hj).

(α) Let x
τu→G y. Then, since τu is silent, also (x, t)

τu→G‖T (y, t). Since
(x, t) ∈ P j+1 this implies that (y, t) ∈ P j ⊆ Hj × QT . So, y ∈ Hj and
since this holds for all states y reachable by τu-transitions, it is clear that
x ∈ Θcont,τu

G (Hj).

(β) Since (x, t) ∈ Θnonb
G‖T

(P j), for some s ∈ Σ∗
τ it holds that (x, t)[s]G ‖ TP jQm×

Qm
T . Since, by the inductive assumption, P j ⊆ Hj × QT , it is clear that

G only uses states in Hj in this path. Then it must be possible to find
a trace s′, derived from s by possibly removing some silent events corre-
sponding to transitions in T , such that x[s′]GHjQm. Thus x ∈ Θnonb

G (Hj).
�

Proof (of proposition 8). Let Ĥ be the fixed point of Θτu

G (·) applied to Q,

recall that Gh is derived from G based on Ĥ in halfway synthesis. It needs to
be shown that, for any automaton T , B(supCN (G ‖ T )) = B(supCN (Gh ‖ T )).
It is assumed that the synthesis iterations for G ‖ T and Gh ‖ T , resulting in
fixed points P̂ and P̂h, start from the complete state set Q × QT , which may
contain unreachable states. To prove the claim, it is enough to show that (i)
P̂ = P̂h, and that (ii) the set of reachable labels are identical.

(i) This can be proven by induction. Let us show (A) that P̂h ⊆ P j and (B)
that P̂ ⊆ P j

h for all j ≥ 0.

(A) Base case, j = 0. By definition P̂h ⊆ Q × QT = P 0.

Inductive step. Assuming that the property holds for j it needs to
be shown that it also holds for j + 1. Let p ∈ P̂h. By the inductive
assumption it holds that p ∈ P j . Assume that p /∈ P j+1. That is,
p /∈ ΘG‖T (P j) = Θcont

G‖T
(P j) ∩ Θnonb

G‖T
(P j). This implies that either

(α) it holds that p /∈ Θcont
G‖T

(P j) or (β) it holds that p /∈ Θnonb
G‖T

(P j).

(α) Then p
υ
→G‖T q /∈ P j for some υ ∈ Στ,u. Let p = (ph, t) and

q = (qh, t′). Then, from (ph, t) = p ∈ P̂h a marked state can
be reached in Gh ‖ T . Thus, ph →Gh

Qm
Gh

. It follows that ph ∈

Ĥ, because states not in Ĥ are blocking after halfway-synthesis.

27



Therefore, the uncontrollable transition ph
υ
→G qh remains in Gh

by equation (27) in the definition of halfway-synthesis. Thus,

p
υ
→Gh‖T q /∈ P j ⊇ P̂h by inductive assumption. But then

p /∈ Θcont
Gh‖T

(P̂h) = P̂h, which is a contradiction.

(β) Then pG ‖ TP jq implies q /∈ Qm × Qm
T for all states q ∈ Q ×

QT . Now, consider a trace s such that p[s]Gh ‖ T P̂hr. Since, by
construction, Gh has a subset of the transitions in G, the same
trace can be found in G ‖ T , using the same states, p[s]G ‖ T P̂hr
and, since P̂h ⊆ P j by inductive assumption, also p[s]G ‖ TP jr.
This implies that r /∈ Qm × Qm

T . Since the trace s was chosen

arbitrarily this means that p /∈ Θnonb
Gh‖T

(P̂h) = P̂h which is a
contradiction.

(B) Base case, j = 0. By definition P̂ ⊆ Q × QT = P 0
h .

Inductive step. Assuming that the property holds for j it needs to
be shown that it also holds for j + 1. Let p ∈ P̂ . By the inductive
assumption it holds that p ∈ P j

h . Assume that p /∈ P j+1
h . That is,

p /∈ ΘGh‖T (P j
h) = Θcont

Gh‖T
(P j

h)∩Θnonb
Gh‖T

(P j
h). This implies that either

(α) it holds that p /∈ Θcont
Gh‖T

(P j
h) or (β) it holds that p /∈ Θnonb

Gh‖T
(P j

h).

(α) Then ∃υ ∈ Στ,u such that p
υ
→Gh‖T q /∈ P j

h . Every transition

in Gh is also in G so p
υ
→G‖T q /∈ P j

h ⊇ P̂ . But then p /∈

Θcont
G‖T

(P̂ ) = P̂ which is a contradiction.

(β) Then pGh ‖ TP j
hq implies q /∈ Qm

h ×Qm
T for all states q ∈ Q×QT .

Consider a trace s such that p[s]G ‖ T P̂ r = (x, t). Note that
this implies r ∈ P̂ . By lemma 2 it is clear that P̂ ⊆ Ĥ × QT

and so p[s]G ‖ TĤ × QT r. This implies that the path from p
to r only uses transitions that are also in Gh. So, p[s]Gh ‖ T P̂ r
and since by the inductive assumption P̂ ⊆ P j

h it also holds that

p[s]Gh ‖ TP j
hr. This implies (x, t) = r /∈ Qm

h ×Qm
T . Since (x, t) =

r ∈ P̂ ⊆ Ĥ×QT it is clear that x ∈ Ĥ. Hence, x /∈ Qm
h = Qm∩Ĥ

implies x /∈ Qm. So, it is clear that r = (x, t) /∈ Qm × Qm
T and

since s was chosen arbitrarily this means that p /∈ Θnonb
G‖T

(P̂ ) = P̂ ,
which is a contradiction.

(ii) It needs to be shown that B(supCN (G ‖T )) = B(supCN (Gh ‖T )). It has
been shown that the fixed points P̂ and P̂h are the same and it is clear
that the labels of all states in G and Gh are the same. To show that the
reachable labels are also the same it is enough to show that →G‖T|P̂ =
→Gh‖T|P̂h

. Clearly, →Gh‖T ⊆ →G‖T and if both are restricted to the same

state set P̂ = P̂h it must also hold that →Gh‖T|P̂h
⊆ →G‖T|P̂ . The inclu-

sion in the other direction remains. Assume that, for some σ ∈ Στ it holds
that (p, t)[σ]G ‖ T P̂ (p′, t′). It must be shown that (p, t)[σ]Gh ‖ T P̂h(p′, t′).
By lemma 2 it is clear that P̂ ⊆ Ĥ×QT and so (p, t)[σ]G ‖ TĤ × QT (p′, t′).

Then p
σ
→G |Ĥ p′ which, by construction of Gh, implies that p

σ
→Gh

p′.

Since T is the same (p, t)
σ
→Gh‖T (p′, t′) and, since both (p, t) and (p′, t′)

must be in P̂ = P̂h, it is clear that (p, t)[σ]Gh ‖ T P̂h(p′, t′). �

28


