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Abstract 

Introduction: The middle ear of mammals is an air-chamber required for sound 

transmission. It is lined by an epithelium which is variable but which resembles 

that of the lungs. Lung function depends upon surfactant which is a family of 

surfactant proteins which have an important role in breathing as well as infection 

control. Given that both the middle ear and the lungs can suffer collapse as well 

as infection, it is worth exploring whether surfactant protein is expressed 

throughout the middle ear in any manner analogous to that in the lung. 

Materials and methods: Our study has used simple histological stains to study 

cell and tissue morphology of the rodent middle ear. We used 

immunohistochemistry and protein electrophoresis to identify surfactant A 

protein as well as four cytokeratins expressed in lung cells. 

Results: We have demonstrated that surfactant protein A is indeed expressed in 

the middle ear and that there are cells which have a protein cytokeratin 

expression consistent with surfactant production and other cells whose 

cytokeratin expression reflects a likely role in gas exchange. Our research has 

also confirmed the presence of surfactant in the bone marrow spaces adjacent to 

the middle ear as well as other tissues reflecting its diverse roles. This also 

suggests a role in local and innate immunity. A novel finding was the presence of 

communications between the marrow spaces and the mouse middle ear cavity. 

Conclusion: These results suggest that there is a need for further work to assess 

the anatomical and topographical distribution of surfactant A protein throughout 

the variety of cell types within the middle ear. This will help to understand better 

the interaction of the various cell types in regard to the local and innate 

immunity of the middle ear as well as its gas exchange function.  
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1 Chapter 1 

Literature Review 

1.1 Introduction 

The mammalian middle ear is an air-containing chamber which is a frequent site 

of infectious disease in children and adults. Both the middle ear and the lungs 

are air-containing systems which are subject to infection and to collapse. 

Infection and collapse can occur in the lung as it is a network of pliable air 

chambers. Collapse in the middle ear is limited to its outer wall - the eardrum - 

which can collapse when pressure drops within the middle ear.  

 

Some important proteins found in the lung which help prevent lung collapse are 

the family of surfactant proteins. They are called SP-A, SP-B, SP-C and SP-D. In 

the lung, the cells which line the lung’s air sacs (alveoli) are called alveolocytes. 

Some of these cells make surfactant proteins and are called type II alveolocytes. 

Most of the cells lining lung alveoli are air-exchanging cells called type I 

alveolocytes. Surfactant proteins also coat bacteria by opsonisation allowing 

phagocytosis by macrophages. These proteins are also important for the innate 

immunity of the lung (Sano, 2005). Surfactant proteins are also present in the 

middle ear, although it is not known exactly which cells in the middle ear make 

them. 

 

My hypothesis is that the lining of the middle ear should possess cells similar to 

the alveolocytes of the lung including those which make surfactant proteins as 

well as those which exchange air. The aim of this study was to determine the 

distribution and expression of the most abundant surfactant protein (SP-A) 

within middle ear cells. This can give an insight as to whether SP-A in the middle 

ear has a role similar to that in the lung i.e., preventing infection and preventing 

collapse. The distribution of cells producing SP-A may also help to understand 

how these cells can be damaged during middle ear infection and how this 

influences treatment and recovery. 



 

20 

The next section will introduce the importance of middle ear infection with a 

particular focus on the New Zealand population, followed by the anatomy of the 

mammalian ear and lung, general data about surfactant proteins as the 

functional proteins of respiratory epithelium and their usefulness in 

distinguishing respiratory cells as well as the need for other markers such as 

cytokeratins (CKs). 

 

1.2 Middle ear infection in New Zealand 

Otitis media (OM) is one of the most common childhood diseases and is 

responsible for the majority of doctor’s visits, antibiotic treatment, and related 

procedures for children in developed countries (Mills et al., 2014). Evidence of 

serous or mucoid fluid in the middle ear, without acute symptoms, is 

characteristic of otitis media with effusion (New Zealand District Health Board 

2004; Barnett, 2007). The incidence of acute otitis media in New Zealand 

children under five years of age in the primary care setting (n=19,146) was 

estimated to be 27% (Gribben et al., 2012). Of interest, fluid from human middle 

ear infections has been aspirated from 20 ears in 18 children  between ages 4-8 

years old (Grace, 1987). Phospho-lipids, the major components of pulmonary 

surfactant, were identified in appreciable quantities using two-dimensional thin-

layer chromatography.  

 

Studies on middle ear infection often focus on the bacteria and viruses 

responsible. One consequence of middle ear infection is persistence of a sticky 

fluid within the middle ear, a condition termed otitis media with effusion, 

commonly called “glue ear”. The fluid from glue ear can be apparently sterile 

using routine culture methods although molecular techniques such as PCR or 

DNA sequencing yield a great diversity of bacteria. The stickiness of the fluid is 

due to the interaction of biofilms with the middle ear epithelium through various 

stages of inflammation as well as neutrophil extracellular traps (Thornton, 2013).  
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Like all epithelia, lung alveolocytes have features to resist infection. Type II 

alveolocytes have an important role in replacing the epithelium which adds to 

the cellular debris which accumulates during and after lung infection. It is 

important to identify whether there are cells like alveolocytes, both type I and 

type II cells within the middle ear. 

 

1.3 The anatomy of the mammalian middle ear 

Figure 1.1 shows the anatomy of mammalian ear which consists of three 

auditory systems: outer, middle and inner ear. The outer ear includes the ear 

canal which leads to the eardrum (tympanic membrane). 

Figure 1.1. Anatomy of the mammalian auditory system. Source: Poster Cecire, 
Cursons, Barnett, Epithelial turnover in the Middle Ear, Frontiers in 
Otolaryngology Conference 2014, Garnett-Passe and Rodney Williams 
Foundation, Melbourne. 
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Beyond the eardrum is a complex air chamber called the middle ear which 

receives air from the back of the nose (nasopharynx) via the Eustachian tube 

passage. Strictly speaking, the middle ear comprises Eustachian tube, middle ear 

space (tympanic cavity) and the mastoid air cell system in humans and larger 

mammals. The inner ear is the hearing organ and includes the cochlea and 

balance channels.  

 

1.4 The lung and respiratory tracts: glossary and terminology 

The respiratory system of mammals is comprised of two anatomical parts: the 

upper, conducting zone that transports the air to the lungs and the lower, 

respiratory zone responsible for gas exchange. Figure 1.2 highlights the main 

features of the respiratory tract.  

 

                            

Figure 1.2. Anatomy of the human lung. Adapted from Wheater’s Functional Histology 
(Young, 2014). 
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Briefly, the upper tract includes the large airways including the nasal cavities, the 

larynx (voice-box) and trachea (windpipe). The upper respiratory tract merges 

with the lower tract just beyond the major branches of the trachea (bronchi). 

The lower tract consists of the distal conducting airways which include the 

branches of the bronchi (bronchioles), broncho-alveolar duct junctions and 

alveoli. In some texts, the term “upper airway” includes the paranasal sinuses, 

Eustachian tube and middle ear simply because they contain air and are located 

anatomically above the larynx and trachea.  

 

1.5 Micro-anatomy of the lung 

The epithelium of the respiratory tract in the lung changes from proximal to 

distal i.e., from the upper airway trachea and bronchi to the peripheral alveoli. 

This transition is similar in human and rodent. Despite the variations in the 

height of cells lining the airway, the epithelium of the respiratory tract remains a 

simple epithelium all the way from the tallest cells of the upper trachea to the 

flattest, thinnest cells of the peripheral alveoli. Figure 1.3 illustrates some airway 

cells.  

Figure 1.3. Diagram showing variation in height of cells composing the simple 
epithelium of the respiratory tract (Source: Kotton, 2008). The dark blue cell is 
a type 2 alveolocyte and it is adjacent to the very large, flat, pale blue type I 
alveolocytes. The red cells are Clara cells which also secrete SP-A; green cells 
are basal cells; grey cells are neuro-endocrine cells; tall pale blue cells are 
typical ciliated cells. Some Clara cells at the bronchiolo-alveolar junction are 
thought to have regenerative potential (variant-Clara cells, yellow). These have 
been found to give rise to standard tall ciliated cells and secretory Clara cells. 
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Amongst the cells lining the airways, the tallest ciliated cells are termed 

pseudostratified. These appear stratified because their nuclei are at different 

levels and, on histological cross-sections, they appear stratified.  

 

Within the alveoli, the majority of cells (type I alveolocytes) are flat cells which 

exchange the gases O2 and CO2. The cuboidal cells which make surfactant protein 

are a minority (type II alveolocytes). Hence, within alveoli, Type II alveolocytes 

are surrounded by Type I alveolocytes (see Figure 1.4). Type II alveolocytes are 

well established as precursors to type I alveolocytes from studies on lung injury 

(McElroy, 2004).  

 

These two types of alveolocytes can be distinguished even on H&E staining partly 

because alveoli are polygonal spaces lined mainly by flat type I cells. The type II 

alveolocytes are cuboidal cells which tend to be found in the corners of the 

polygonal alveoli, “aggregated…where the walls of several adjacent alveoli meet” 

(Marin, 1991). Outside of this polygonal space, type II cells would be more 

difficult to distinguish from type one cells by H&E staining alone. 

 

 

Figure 1.4. Section of lung alveoli showing type I alveolocyte (pale cells, purple nuclei) 
and type II alveolocytes (green cytoplasm). Note macrophages (blue cells with ruffled 
cell membranes. Adapted from www.antranik.org, Articles and Tutorials, Science 
Index, Human Anatomy series, The Respiratory System © 2010. 
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1.6 The lung and middle ear: similarities 

The lung and the middle ear share similarities especially at the cellular and 

histological level. The windpipe (trachea) carries air from the nose to the lungs. 

In the same way the Eustachian tube feeds air from the nose to the middle ear. If 

one examines the chambers of the middle ear, one finds that the entire system is 

lined by different types of simple epithelium similar to the variety of cells from 

trachea to the peripheral lung sacs (alveoli). Similarly the Eustachian tube can be 

likened to a terminal bronchiole and the middle ear cavity resembles a large 

alveolus. The epithelium of the Eustachian tube is largely similar to the spectrum 

of taller and ciliated cells seen in the upper airway; the epithelium of the middle 

ear is largely similar to the lower airway (flatter and less ciliated).  

 

The middle ear also needs to maintain gas exchange for its air spaces. Hence, it is 

also important to determine whether there are cells analogous to the gas 

exchanging lung cells (type I alveolocytes) in the middle ear. This would 

complement the identification of SP-A producing cells (type II alveolocytes). 

Table 1.1 summarises the cell types found in the lung of mouse (Mus musculus) 

and human (Homo sapiens). This indicates that mouse can be used for 

comparative study of upper and lower airway cells. 

 

Table 1.1. Comparison of mouse lung and human lung (Kotton, 2008). 

 Human Mouse 

Trachea Pseudostratified ciliated; 
non-ciliated secretory 
cells (Clara), basal cells, 
and submucosal 
glandular epithelium 

Pseudostratified ciliated; 
non-ciliated secretory 
cells (Clara) 

Distal conducting 
airways 

Ciliated and secretory 
Clara cells. 

Ciliated and secretory 
Clara cells. 

Broncho-alveolar duct 
junction 

Bronchiolo-alveolar 
Clara cells (progenitor 
stem cells; Chang, 2008) 

Broncho-alveolar stem 
cells confirmed in 
mouse (Reynolds, 2000) 

Alveoli Alveolocytes type I, II Alveolocytes type I, II 
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Although the gross structure of mouse lung is very similar to human, the relative 

size of peripheral, distal airway lumens is larger. This larger airway calibre is 

proposed to decrease the airway resistance that would otherwise occur in mice 

due to their rapid respiration rates of 250-350 breaths per minute. As a 

consequence, mice lack terminal respiratory bronchioles and the larger airways 

open directly into clusters of alveolar sacs.  

 

The human middle ear has been divided histologically and functionally into an 

anterior-inferior compartment and a posterior-superior compartment 

(Figure 1.5). The epithelium of the antero-inferior compartment which leads to 

the Eustachian tube has been found to possess ciliated and secretory epithelium 

whereas the postero-superior has thin, flat epithelium considered important for 

gas exchange (Ars, 1997). This is generally true although some earlier work on 

rodent middle ear reveal some tracts of ciliated respiratory epithelium in the 

superior compartment (Albiin, 1986). This has been confirmed in a more recent 

study where ciliated cells have been noted in the dorsal i.e., postero-superior, 

compartment (Luo, 2017). 

 

In rodents, flat cells have no cilia and ciliated cells are cuboidal, columnar or 

pseudo-stratified. In human middle ear, even flat cells can possess cilia and non-

ciliated cells possess microvilli, no matter what their height (Lim, 1974). Most of 

these features can be seen on H&E sections in both human and rodent tissues, 

although microvilli are best appreciated with electron-microscopy which 

confirms the similarity of middle ear epithelium to respiratory epithelium. Data 

from Bremond 1972 shows mainly two types of epithelium: ciliated, low cuboidal 

and squamous i.e., non-ciliated with microvilli. It emphasised the poorly 

differentiated, flat epithelium of the mastoid but also referred to its capacity for 

differentiation under inflammatory conditions to increase the number of 

secretory cells as well as its capacity to undergo metaplasia to squamous 

epithelium. Data from Lim 1974 applying electron microscopy to guinea pig 

middle ear showed similar findings. This study gives an idea of the dimensions of 

the non-ciliated squamous cell which are 20-25 µm diameter. In the human lung 
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these have been reported as up to 50 µm although this may reflect type I cells 

captured in the expansion phase of breathing. 

 

The human lung and middle ear are also subject to similar types of viral and 

bacterial infection and inflammation. In humans, bacteria such as Streptococcus 

pneumoniae and non-typable Haemophilus influenzae can infect both ear and 

lung. Vaccination against S. pneumoniae which has up to 21 serotypes has some 

correlation in reduced incidence of otitis media due to the same organism 

(Taylor, 2012). 

Figure 1.5. Schematic of middle ear with oblique line dividing two functional 
compartments of the middle ear into postero-superior gas exchange and 
antero-inferior ciliated and mucus-secreting cells. 
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The difference between the antero-superior and postero-inferior compartments 

is not just in their cell types. More recent data from transgenic mice indicates 

that these compartments are also a reflection of their embryological and genetic 

origin (Tucker 2013). In the embryo, the middle ear develops as a cavity filled 

with mesenchymal cells before it becomes lined with epithelium. Originally, the 

cavity was thought to be lined by epithelium entirely derived from the endoderm 

of the pharyngeal pouch. This study has confirmed that only the epithelium of 

the antero-inferior compartment is embryologically derived from the endoderm 

of a pharyngeal pouch. The postero-superior compartment which includes the 

roof (attic) of the middle ear is derived from neural crest epithelium and extends 

to surround the epithelium over the footplate of the stapes. The main conclusion 

from the study is that the mesenchyme which initially fills the middle ear cavity 

does not contribute to the definitive layer of lining epithelium. Histologically, the 

two compartments possess the same variety of cell types although in different 

proportion and distribution. They differ significantly in their complement of 

ciliated epithelium.  

 

1.7 Surfactant proteins: history, biochemical structure, functions 

and genetics 

Surfactants are amphiphilic fluids i.e., they mix in polar and non-polar 

environments and operate at interfaces. They form monolayers at air-water 

interfaces e.g., lungs and oil-water interfaces (emulsions) and can form 

aggregates at the solid-water interface e.g., articular joint surfaces. Pulmonary 

surfactant proteins are a small but important proportion of surfactant fluid. 

Pulmonary surfactant is like a biological detergent and lubricant. Its ability to 

keep surfaces clean includes its ability to bind to microbes. The lubricant function 

is best seen when lung expands and contracts without collapsing but it is also 

seen in sliding joint surfaces. Human lung surfactant and its constituent proteins 

were discovered during the 20th century (Creuwels, 1997). Apart from SP-A, SP-B, 

SP-C and SP-D, two more have been identified recently in human lung called SP-G 

and SP-H (Vieira, 2017). In the following subsections, the biochemical structure, 
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physiological and immunological functions and comparative genetics will be 

reviewed.  

 

1.7.1 Surfactant protein biochemistry 

Surfactant proteins are apoproteins of the collectin family. The two hydrophilic 

proteins - SP-A and SP-D - belong to the collectin family of calcium-dependent 

carbohydrate binding proteins, which also includes mannose-binding lectin (MBL) 

and conglutinin (Floros et al., 1998; Crouch et al., 2001). Collectins are related to 

collagens, the structural connective tissue proteins of the extracellular matrix. A 

collagenous or collagen-like domain is found in surfactant proteins A and D (see 

Figure 1.6). Lectins are saccharide-binding glycoproteins. These are characterised 

by N-terminal collagen-like domains and C-terminal carbohydrate recognition 

domains (CRD) which allow them to bind to various types of macromolecules, 

including carbohydrates, phospholipids and proteins (Shepherd, 2002), hence 

their role in binding to microbial walls and membranes. The term apoprotein 

refers to the functional form of the surfactant protein wherein the protein is a 

small component of a large lipid and/or carbohydrate component. This is 

explained in more detail in section 1.6.2 and summarised in review papers 

(Crouch, 2001; Sano, 2005).  

 

SP-A and SP-D are hydrophilic proteins whereas SP-B and SP-C are hydrophobic. 

SP-B and SP-C are bound to phospholipids within lamellar bodies of type II 

alveolocytes and are secreted in the bound form. Surfactant proteins A and D are 

secreted separately but have non-polar components which allow them to mix 

with the secreted phospholipid film of surfactant. About 5% of the weight of 

isolated surfactant is attributable to SP-A (van Rozendaal, 2001). SP-A and SP-D 

also have a hydrophilic head which is polar (anionic or cationic) and is capable of 

binding with the charged LPS component of bacterial cell walls. SP-A recognises 

the lipid component of lipopolysaccharide (dipalmitoylphosphatidylcholine, DPPC) 

whereas SP-D binds to the core oligosaccharides and recognises the minor 

component of surfactant A (phosphatidylinositol; Head, 2003). We have chosen 

Surfactant protein A as it is the most abundant of the four main surfactant 
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proteins (Hawgood, 1990).  For a review of the structure and function of 

pulmonary surfactant proteins, see Perez-Gil, 2008. The general structure of 

these two hydrophilic proteins is shown in Figure 1.6. The tertiary structure is 

seen in the 3 polypeptides joining as a trimer by non-covalent bonds and van der 

Waal forces. The quaternary arises from non-polar bonding of N-terminal ends. 

 

Figure 1.6. Quaternary structure of SP-A and SP-D. Both are hydrophilic proteins with 
an N-terminal collagen-like domain and carbohydrate recognition domain (Sano and 
Kuroki, 2005). 

 

The C-type (Ca-binding) lectins have a CRD which recognises pathogens in the 

presence of calcium. This is important in the design of antibodies to complement 

this segment of the protein. In the case of the mouse SP-A, the antibody 

combines with a terminal 15 amino acid sequence of the carbohydrate 

recognition domain (see Table 1.2 below). 
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Table 1.2. Summary of amino acid sequence of SP-A peptide showing sequence carbohydrate 
recognition domain which complements the antibody (data from Abcam ab115791). 

N-terminal Collagenous domain Neck CRD 

7 amino acids (AA) 73 AA 34 AA 123 AA 

Hydrophobic 
gly x-y repeats  
(gly-proline-hydroxyproline) 

Rigid  
α-helical 
folds 

Hydrophilic 
Ca++ binding sites 

 
 

AA sequence of peptide target (immunogen) SP-A WNDKGCLQYRLAICEF 

AA length of peptide target (immunogen) SP-A 233-248 

References 
1. https://www.abcam.com/surfactant-protein-apsap-antibody-ab115791.html 
2. Sano and Kuroki, 2005 

 

In the lung, surfactant proteins are not confined to the type II alveolocyte. They 

are also found proximal to the alveoli within the larger airways of human lung in 

Clara - or club - cells (Reynolds, 2010). Surfactant proteins have been identified in 

many other body tissues in both humans (Bourbon, 2001; Hills, 1983) and 

mammals (Akiyama, 2001). Pulmonary surfactant has been identified in various 

tissues and organs including the pleura, peritoneum and joints (Akiyama, 2002).  

 

The molecular structure of SP-A consists of a trimer replicated six times as 18 

primary proteins united to make an octodecamer. The total molecular weight of 

the octodecamer SP-A is 630 kDa although its peptide subunit is 35 kDa and its 

trimer is 105 kDa (Vieira, 2017). These molecular weights are relevant to the 

finding of dimers of 66 kDa in electrophoresis bands which represent partially 

reduced molecules – otherwise they would yield a 70 kDa band.  

 

Antibodies to the various surfactant proteins have long been available for 

signalling in immunohistochemistry. They are designed to match amino acid 

sequences of the carbohydrate binding segment. This is further described in 

Chapters 2 and 3. 
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1.7.2 Surfactant proteins: functional roles 

Surfactant proteins have two broad roles: the mechanical role of allowing 

epithelial surfaces to slide upon each other and various immunomodulatory 

functions. The sliding function on surface epithelium involves binding and 

aggregation of phospholipids and is seen in: 

 

1. Alveolar expansion and contraction without collapse i.e., reduction of 

surface tension at the air-liquid interface of the lung in the alveoli. 

2. Articular joint surfaces sliding together. 

3. Pleura, peritoneum and pericardium surfaces sliding as well as similar 

functions in other organ systems.  

 

The immunomodulatory functions include: 

 

1. Non-immune recognition of bacteria, virus and fungal organisms (LeVine, 

2000). 

2. Binding to the flagella of opportunistic bacteria such as Pseudomonas 

species (Ketko, 2013). 

 

Surfactant protein is active when it is bound to a lipid and/or carbohydrate 

component. For example, it is active when it is bound to the carbohydrate of the 

cell wall of a bacteria or when it is bound to phoshpholipids in the fluid film lining 

the alveoli of the lung. In these situations it is called an apoprotein to distinguish 

it from its pure protein form in isolation as a tetramer or separated into its 

fundamental peptide of 35 kDa size.  

 

1.7.3 Surfactant proteins: history and genetics 

Alterations in the structure and function of SP-A and SP-D have been implicated 

in inflammatory lung disorders, both acute and chronic, such as pulmonary 

interstitial fibrosis. Only one genetic disease, cystic fibrosis – an autosomal 

recessive disease - is clearly associated with impaired SP-A and SP-D protein 

function (Lin, 2018).  
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The molecular weight of SP-A is generally described as a range 29-35 kDa 

because of its complex quaternary structure. Its principal isoform is 30 kDa (King, 

1989). It is an octodecamer made up of 6 trimers (McCormack, 1998). This 

results in, for example, an electrophoresis study of rat lung showing bands of 26, 

32 and 38 kDa as well as dimer forms of 66 kDa (Bourbon, 2001). SP-A and SP-D 

are present in mouse and have been analysed in gene-knockout models bearing 

in mind that human SP-A exists in 2 forms (SP-A1 and SP-A2 which have different 

coding to mice which is a single SP-A form (Crouch, 2000). SP-A deficiency (SP-A -

/-) seems to have more subtle effects such as reduced uptake of microbes by 

alveolar macrophages whereas SP-D deficiency (SP-D-/-) seems to result in 

abnormal lung structure and function such as increased alveolar proteinosis and 

emphysematous change (Sano, 2005; McGuire, 2002; Lin 2018). Also, deficient 

uptake of bacteria by alveolar macrophages has been observed in both SP-A and 

SP-D deficient mice (LeVine, 2000). 

 

1.8 Surfactant protein within the middle ear 

One of the first references to surfactant within the middle ear describes 

“lamellar substances similar to phospholipids in the secreta of the tube and 

middle ear mucosa of the guinea pig” (Lim, 1974). Lim referred to an “auditory 

surface active agent”. In this electron microscopic study of the middle ear, 

lamellar granules similar to those found in lung cells were identified. Using a 

flocculation method for phospholipids, protein and mucopolysaccharides (the 

three constituents of surfactant), a reaction was noted in both the Eustachian 

tube and middle ear mucosa.  

 

Surfactant protein has been found in the in the Eustachian tube (which is a part 

of the middle ear) rather than in the main bony middle ear cavity. Prior to SP-A 

being identified in mucosa, it was assayed as free protein from middle ear fluid 

of patients (Grace, 1987). More specific identification of SP-A protein has been 

achieved by mRNA expression in the middle ear and paranasal sinuses of rabbits 

(Dutton, 1999). This study did not attempt to localise SP-A topographically within 

the middle ear nor was it seeking to distinguish type I and type II cells. SP-A has 
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been identified within the Eustachian tube mucosa of pigs (Panaanen, 2001). 

Even an extensive review paper referring to surfactant in the middle ear localised 

it only to cells in the epithelium of the Eustachian tube rather than to the middle 

ear without stipulating what type of cell produced it (McGuire, 2002). Mouse 

middle ear epithelium has been studied in vivo using cell culture models and 

electron microscopy to study cell morphology and immunofluorescence to 

identify several proteins including surfactant D, the other hydrophilic protein 

related to SP-A (Mulay, 2016).  

 

Pulmonary surfactant has been identified in various tissues and organs including 

the pleura, peritoneum and joints (Akiyama, 2002). Commenting upon the 

presence of surfactant within gut epithelium, Hills postulated that there might 

exist the equivalent of a type II alveolocyte in the gut i.e., outside the lung (Hills, 

1983). The suggestion that the middle ear might also have such cells is a 

reasonable proposition. 

 

The various surfactant proteins have been identified in the middle ear and 

Eustachian tube by immunohistochemistry (IHC) as well as by electron 

microscopy (McGuire, 2002). The best known are SP-A, SP-B, SP-C and SP-D all of 

which are to be found in lung. The current understanding of their physiological 

and immunological roles as well as their interactions with each other are well 

summarised in Nunn’s textbook of respiratory physiology (Nunn, 2017). We have 

chosen Surfactant protein A (SP-A) for this study as it is the most abundant of the 

four types.  

 

1.9 Surfactant protein A antibody: a tool to identify the type II 

alveolocyte 

Antibodies specific to the 15 AA sequence of the carbohydrate recognition 

domain of SP-A can be applied to middle ear epithelium to test whether SP-A is 

produced by middle ear epithelium by a cell analogous to a type II alveolocyte. 

Studies on lung injury have revealed that type II alveolocytes can divide into a 

type I cell and another type II cell thereby acting as precursors to both cell types 
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(Xiao, 2012). In the middle ear such a cell would replenish type I analogues 

important for gas exchange. 

 

In the lung, all surfactant proteins (SP-A, SP-B, SP-C, SP-D) are either in stored, 

intracellular form or secreted, extracellular form when examined at the alveolar 

level (Ochs, 2002). SP-A can also be derived from cultured lung cells from mice 

(Gobran, 2003). The type II cell and the Clara cell both make SP-A and both are 

non-ciliated cells. They differ in their anatomical location and hence their role 

within their own local cell populations. It is interesting that both cell types (type 

II and Clara) which make SP-A are have a progenitor potential. Even though IHC 

methods can accurately label SP-A in lung alveolocytes, one must not mistake 

this signal for SP-A scavenged within alveolar macrophages which help to recycle 

SP-A.  

 

1.10 Cytokeratins: tools to distinguish type I and type II alveolocytes 

Cytokeratins (CK) are keratin-containing intermediate filaments belonging to a 

family of structural proteins within cell bodies (cytoplasm) which help to give 

shape and structural stability to the cell. Several CKs have been identified in the 

middle ear in both human and other mammals. Although antibodies to SP-A can 

label a type II cell unequivocally in lung, it does not mean that cells which are not 

positive for SP-A must be type I cells. Fortunately, lung research has succeeded in 

distinguishing the type I cell and the type II cell by revealing a distinct pattern of 

CK protein expression.  

 

The panel of cytokeratin protein markers proposed for this study (CK7, CK8, CK18, 

CK19) were originally applied to rat lung (Kasper, 1993). This panel of CKs was 

used to differentiate alveolar cells as type I and type II alveolocytes. All four CKs 

were identified within the alveoli, CK7 and CK19 only in type I alveolocytes and 

CK8 and CK18 only within type II alveolocytes. The majority of antibodies 

directed against CK8, CK18 and CK19, CK7 reacted against the upper airway 

epithelium as well. CK7 was also positive in the bronchial cells of the upper 

airway but was absent from the terminal bronchioles.  

https://en.wikipedia.org/wiki/Keratin
https://en.wikipedia.org/wiki/Intermediate_filament
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1.11 Data from research using cytokeratins in human middle ear 

Several CKs have been identified in human middle ear epithelium including CK4, 

CK5, CK7, CK14, CK18 and CK19 (Broekaert, 1988; Table 1.3, Figure 2.1). A later 

study confirmed more specific localisation of CK7, CK8, CK14, CK18 and CK19 in 

epithelium on the medial side of the tympanic membrane and in the middle ear 

(Broekaert, 1993).  

 

Table 1.3. Cytokeratins expressed in human outer ear canal, tympanic membrane (lateral 
and medial surfaces) and middle ear cavity (data from Broekaert, 1988).  

  
Cartilaginous 
canal 

Bony canal 
Lateral 
tympanic 
membrane 

Medial 
tympanic 
membrane 

Middle ear 
mucosa 

CK 4 - - - +a + 

CK 5 + + + - - 

CK 7 - - - + + 

CK 8 - - - + + 

CK 10 + + + - - 

CK 13 - - - +a - 

CK 14 + + + + + 

CK 16 - + + - - 

CK 18 - - - + + 

CK 19 - + + + + 

a: focally expressed (in stratified epithelium) from Broekaert 1988. 

The topographical location of various cytokeratins within the human middle ear 

is summarised in Figure 1.7 below. In the human embryo and infant, there is 

consistent expression of various cytokeratins within the epithelium of the middle 

ear (Liang, 2003). CK19 is expressed in simple epithelium and in pseudo-stratified 

columnar epithelium from gestational week 6 to 8 months post-partum. CK18 is 
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expressed in both simple and pseudo-stratified cells from gestational week 26 to 

8 months post-partum. 

Figure 1.7. Diagram of outer and middle ear showing distribution of cytokeratins 
(based on Broekaert, 1988). 

 

CK14 is present on lateral tympanic membrane as well as meatal epidermis. The 

lateral tympanic membrane has a modified squamous epithelium which does not 

stratify fully until it reaches the lateral bony canal because it is migrating laterally 

and does not have the opportunity to stratify until it reaches the cartilaginous 

canal. Hence it makes sense that CK14 is expressed in this part of the outer ear 

as it is expressed in suprabasal cells i.e., in stratified epithelium. 

 

In the adult, CK8, CK18 and CK 19 are homogeneously expressed whereas CK7 

and CK4 are heterogeneously expressed. CK14 is present in all basal cells. All of 

this indicates that CKs can give reliable signal in the middle ear where the 

epithelium is simple in type.  
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1.12 Data from research using cytokeratins in rat middle ear 

In a developmental study of rat Eustachian tube, several cytokeratins have been 

used including CK7, CK8, CK18 and CK19 as markers of simple epithelium (Mulder, 

1998). It was noted that all four CKs were present also in the middle ear and that 

there are ciliated tracts within the rat middle ear. The target of the study was the 

tall and ciliated epithelium of the Eustachian tube rather than an attempt to 

identify cells analogous to the type I or type II lung cells in the middle ear. The 

study does highlight the usefulness of these CKs as markers of simple epithelium. 

It also shows that this specific set of four CK markers originally used in rat lung 

were labelled positive in rat middle ear. 

 

1.13 Data from research using cytokeratins in mouse middle ear 

Cytokeratins have been used in mouse middle ear but these did not aim to 

identify potential analogues of type I and type II alveolocytes. One study used 

CK5 which is a marker for non-ciliated cells including goblet cells and the basal 

epithelium of ciliated regions (Luo, 2017). By definition basal cells are not ciliated. 

To distinguish basal cells from goblet cells, this study also used CK14 which labels 

basal cells but does not label goblet cells. 

 

On this basis, it is reasonable to propose that CKs 18, 8, 19 and 7 should help to 

distinguish type I and type II alveolocyte analogues in the middle ear although 

CKs alone will not be enough to establish such a distinction. The pattern of 

cytokeratin expression for the two cell types is summarised below in Table 1.4.  

 

Table 1.4. Cytokeratin Profile in Type 1 and Type II cells.  

  CK8, CK18 CK7, CK19 

Type II + - 

Type I - + 
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1.14 Strategy for using SP-A and cytokeratins together in the middle 

ear 

In the alveoli, markers for type I cells such as CK7 and CK19 are evident in simple 

flat epithelial cells situated side-by-side forming the walls which outline the 

alveolus. In fact, the lack of continuity of CK 19 signal is usually due to the 

presence of intervening type II cells (Kasper, 1995). In the absence of the alveolar 

space within the middle ear, an extra marker is required to distinguish type I and 

type II alveolocytes in the middle ear. As type II alveolocytes express SP-A, it is 

expected that SP-A will be expressed in cells expressing CK8 and CK18 (analogous 

to type II alveolocytes). Cells expressing CK7 and CK19 would not express SP-A 

and therefore correspond to type I alveolocytes. This pattern shown in Table 1.5 

below. Cytokeratin studies have been done in both middle ear and lung but no 

studies have been attempted to correlate the location of surfactant protein and 

CKs in middle ear or lung. This type of co-location is necessary because the 

middle ear lacks the orientation provided by the small alveolar units of lung 

which also help to identify type II cells. 

 

Table 1.5. Cytokeratin and SP-A Profile in Type I and Type II cells.  

 CK8, CK18 CK7, CK19 SP-A 

Type II + - + 
Type I - + - 
 

1.15 Surfactant and type II alveolocytes 

In all mammals, the type II alveolocyte of the lung secretes all four types of 

surfactant protein (SP-A, SP-B, SP-C, SP-D). The most abundant is SP-A of which 

humans have two forms, SP-A1 and SP-A2. Because it is a secreted protein, 

immunohistochemistry (IHC) can locate it outside cells at low power 

magnification and, using high magnification with oil immersion, one can confirm 

its intracellular location. Previous work on lung sections using SP-A antibodies 

has shown signal simultaneously within type II cells and within the intra-alveolar 

space in lung sections (Helms, 2008) implying that the target sequence of amino 

acids is the same inside the cell and outside in the secreted form. SP-A does 
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undergo post-translational modification by glycosylation as well as removal of its 

signal peptide which both occur prior to secretion (Johansson, 1997). If 

glycosylation involved the 15 AA sequence of the CRD, it would involve only the 

single hydroxylysine within this short sequence. 

 

Apart from the type II cells of the alveoli, there are other non-ciliated cells of the 

upper airway which produce surfactant proteins. These include the Clara cell, a 

club-shaped cell. In the lung, three cells – type I and type II alveolocytes and 

Clara cells - can be distinguished within the lung by H&E staining because of their 

characteristic shapes which are seen in the lung alveoli and bronchioles. They 

may be cuboidal or columnar and are found in increasing frequency from the 

distal trachea to the respiratory bronchioles. This is useful as a positive control 

marker in lung when examining alveoli for positive signal by IHC. It enables one 

to confirm a continuous signal in sheets of cells in the upper airways at low 

power magnification before proceeding to the more challenging examination of 

alveoli at higher magnification. Surfactant protein A (SP-A) is situated in apical 

micro-villi of these non-ciliated cells. 

 

The term “simple” refers to single layer epithelium and includes mucociliary 

epithelium which are tall ciliated cells which can give a pseudostratified 

appearance. These ciliated cells are easy to distinguish from non-ciliated cells by 

H&E staining. To distinguish potential type I and type II cells in the middle ear by 

H&E is even more difficult because in the middle ear there is not the background 

of alveolar polygons found in lung. Even in lung, IHC can label free alveolar 

macrophages laden with SP-A which can be mistaken for type II alveolocytes 

even though macrophages are generally larger. This is important because free 

macrophages are present in the middle ear and may contain engulfed SP-A. 

 

Beyond the main cavity of the middle ear there also exist non-ciliated columnar 

cells in the Eustachian tube including its opening in the nasopharynx. Our study 

may identify such cells and determine whether or not they are positive for 

surfactant protein and perhaps analogous to Clara (club) cells. 
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1.16 Beyond lung and middle ear: Surfactant protein A in body 

tissues 

Although originally described as an important functional component of lungs, 

surfactant proteins are found in several body tissues. They are important in 

places where epithelial surfaces need to slide upon each other e.g., lung pleura, 

abdominal peritoneum, articular cartilage joint surfaces (Akiyama, 2002; Vieira, 

2017). Surfactant protein is also found in bone marrow where it is thought to 

originate in mesenchymal stem cells (Huang, 2015; Kotton, 2008; Popov, 2008). 

 

1.17 Aim and objectives of the thesis 

The aim of this thesis was to investigate the protein localisation of SP-A in the 

rodent middle ear and compare to that in the rodent lung. The objectives of the 

thesis were: 

 

1. To demonstrate that there are cells within the epithelium of the middle 

ear which makes SP-A, making these cells the equivalent of a type II 

alveolocyte. This involves using IHC methods with immunofluorescent 

antibodies that are specific to SP-A. 

2. To demonstrate that there are cells within the middle ear with IHC 

features similar to type I alveolocytes. Type I alveolocytes are SP-A 

negative but would need to be distinguished further by using IHC 

methods with immunofluorescent antibodies to cytokeratins. SP-A 

positive cells would label positive for CK8 and CK18 whereas SP-A 

negative cells should label positive for CK7 and CK19.  

 

 

 

 



 

42 

2 Chapter 2 

Materials and Methods 

2.1 Materials 

Unless otherwise stated, all processes were carried out within the C.2.03 

Molecular Genetics Laboratory at the University of Waikato, Hamilton, New 

Zealand. All solutions were made up using autoclaved 15-18 megOhm-cm double 

distilled deionised water (mQH2O) using a Barnstead double 

distilled/deionisation system unless otherwise stated. All chemicals and solvents 

were obtained from Sigma-Aldrich® Co unless otherwise stated. All experiments 

were carried out aseptically on bench tops cleaned with 70% ethanol (ETOH). 

Various steps involving toxic solvents were carried out in a laminar flow cabinet. 

All glassware was washed in the dishwasher and then autoclaved before use. All 

solutions and buffer recipes can be found in Appendix One. A considerable 

number of experimental conditions were tested and the final approach is 

summarised below. 

 

2.2 Animal ethics 

All tissue sections were of fresh deceased rodent species, either Mus musculus 

(mouse) or Rattus rattus (rat) that were kindly donated from Agresearch Ruakura, 

Hamilton, New Zealand (NZ) and the Animal Facility at the University of Waikato, 

NZ using approved safety operating procedures. Mice included strains BALBc and 

C57/B6 whereas the rat strain was Sprague-Dawley (SD). Under the NZ Animal 

Welfare Act 1999, ethics approval was given by University of Waikato Animal 

Ethics Committee (protocol number 932, 2014) for a preliminary project to 

develop a mouse model of middle ear infection (see Discussion Chapter 5). No 

animal ethics approval was required for the main study since no live animals 

were used for the purposes of this study.  
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2.3 Histology 

For the purpose of providing histological tissue whether temporal bone or lung, 

both rodent models used in this study offer a range of advantages and 

disadvantages over each other. After some trial and error, tissues were derived 

from both species and the differences between rodent are summarised in 

Table 2.1. 

 

Table 2.1. Summary of the advantages and disadvantages using two different rodent 
models for histological purposes. 

Advantages Mouse Rat 

Temporal  
bone 

Easier to fit a cross-section of 
both middle ears onto one 
microscope slide. 

Easier to identify and dissect 
middle ear mucosa from 
temporal bone bulla than 
mouse. 

Can fit two temporal bones 
onto one microscope slide 
(Fig 2.1). 

Dissected tissue suitable for 
whole mount IHC. 

Lung 
Can fit one entire lung onto a 
microscope slide (Fig 2.2). 

Can expand lung with fixative 
solutions and maintain 
expansion (Fig.2.3).  

Disadvantages Mouse Rat 

Lung 
Lung can rupture more easily 
during attempts to expand 
with fixative. 

 

 

For the purposes of this study, Haematoxylin and eosin (H&E) staining was 

selected as it allows appreciation of the histological structure of the middle ear in 

three planes, of which the coronal plane is the most useful for showing the 

continuity between Eustachian tube and middle ear cavity. The axial plane 

provides a better cross-section for the cochlea. These two plus the sagittal plane 

provide the three planes necessary for the three semicircular canals of balance 

which can serve as landmarks for orientation.  
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Figure 2.1. Microscope slide showing two H&E stained sections derived from one 
paraffin-embedded block containing a decalcified mouse head. The processed paraffin 
block is shown underneath the slide.  

 

Immediately after removal from the euthanised animal, both lung and temporal 

bones were immersed in fresh 4% paraformaldehyde (PFA) for at least 2 hours in 

order that the middle ear epithelium is fixed and less cellular autolysis occurs. 

Longer than 2 hours can promote cross-linking of disulphide bonds and alter 

antigenicity. In order to facilitate permeation of fixative fluid into the middle ear 

chamber, the bony wall of the bulla was perforated with a 25G needle and 

syringe filled with PFA. 

 

Because mouse middle ear was to be used in this study, mouse lung was used to 

study lung airway epithelium and ultimately test antibodies against this 

epithelium in order to compare this with middle ear epithelium.  
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Figure 2.2. Mouse thorax and ribs viewed from behind with lungs showing in front. 

 

 

 

Figure 2.3. Inflation of a rat lung in vitro using a 5ml syringe and 18G blunt needle. 
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2.3.1 Fixation, decalcification and embedding of rodent temporal bones  

Lung tissue does not require decalcification. However, decalcification of 

temporal bone requires immersion in a chelating agent (EDTA) which removes 

calcium assisted by heating. Although use of the microwave is the fastest heating 

method, it was avoided as it can cause damage to antigens. Thus, a slower 

modified method for dental decalcification (Cho, 2010) was used. Mouse heads 

were placed into 10% PFA for 2 hours. Next, the specimens were transferred to 

10% EDTA solution for 48 hours and then transferred into fresh 10% EDTA for a 

further 48 hours. Pressure on the temporal bone calvarium with a metal probe 

revealed softening effect as early as 24 hours. Subsequently temporal bones 

were dehydrated through an alcohol series of increasing concentration followed 

by NeoClear (Stoddart, cat 8052-41-3) a xylene substitute. Following fixation, the 

tissue was dehydrated, cleared and then infiltrated with paraffin as outlined in 

Table 2.2. Finally, the tissue was embedded into a labelled cassette using the 

Thermofisher Paraffin Embedding Station and then stored in a sealed plastic bag 

at room temperature (RT). 

 

2.3.2 Sectioning 

Sectioning of the mouse middle ear was carried out on a microtome (Leica 2025) 

using a disposable blade (ThermoScientific, MX35 Ultra) to generate 5µM 

sections. The slides containing the 5µM sections were stored in a slide box at 4°C. 
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Table 2.2. Dehydration, clearing and infiltration of tissue. 

Chemical Time (min) 
Temperature 

(°C) 
Location 

1x PBS 60 4 Cold room 

0.85% NaCl 60 4 Cold room 

50%ETOH: 
0.425% NaCl 

30 RT Fume hood 

70% ETOH (X2) 30 RT Fume hood 

85% ETOH 60 RT Fume hood 

95% ETOH 60 RT Fume hood 

100% ETOH (X2) 60 RT Fume hood 

Neoclear (X3) 30 RT Fume hood 

1:1 Neoclear/ 
paraffin 

45 60 
Histology room 

Incubator 

Paraffin (X3) 20 60 
Histology room 

Incubator 

 

2.3.3 Haematoxylin and eosin (H&E) staining 

Haematoxylin (H) is a basic dye that dyes basophilic structures purple-blue in the 

cytoplasm or nucleus such as nucleic acids, ribosomes, chromatin-rich cell 

nucleus, and cytoplasmic regions rich in RNA (Merchant & Nadol, 2010). In 

comparison, Eosin (E) is acid counter-staining dye that stains basic materials red-

pink. Eosin staining will allow the non-nuclear tissue components to be clearly 

differentiated from each other, e.g., muscle from collagen. 

 

The microscope slides and the microtome sections were brought to RT and 

transferred to a slide rack (5-well plastic container, 12-well plastic, or 24-well 

metal). The slides were incubated 2X in Neoclear – a xylene analogue - for 10 min 

at RT to remove the paraffin; then, dehydrated at RT with two washes in 100% 

Ethanol for 5 min, followed by 95% Ethanol for 2 min, 70% Ethanol for 2 min, and 

35% Ethanol for 1 min. The slides were washed in double distilled (dd) H2O for 5 

min at RT and then incubated in H stain for 5 min, followed by rinsing with 

ddH2O to wash excess dye away. Then, the tissue was rinsed in Scott's tap water 



 

48 

substitute for 2 min. After that, the slides were counter-stained in E stain for 5 

min and washed three times for 1 min intervals with ddH2O to remove excess 

dye. The slides were then transferred to the fume hood for dehydration by 

successively immersing in 70% Ethanol for 1 min, 90% Ethanol for 30 sec, 100% 

Ethanol for 30 sec and finally, Xylene for 30 sec. Then, the slides were mounted 

with xylene-based mounting media, carefully covered with a cover slip, and 

sealed using transparent nail polish. Next, the slides were air-dried at RT, labelled 

and photographed using a Leica DMRE fluorescence microscope with 

Photometrics Coolsnap CCD FX camera and transferred into a slide box for long-

term storage at RT.  

 

Type I and type II alveolocytes can be distinguished in expanded lung by H&E 

staining. This is because the expansion of the alveoli flattens the type I cells so 

that they contrast with the more cuboidal type II cells which are located in the 

corners of polyhedral alveoli. As the middle ear lacks such polyhedral spaces, this 

distinction is more difficult and demands immunohistochemical methods. 

Furthermore, alveoli have capillaries which have their own individual endothelial 

cells which, being flat with flat nuclei, can be difficult to distinguish from type I 

alveolocytes. 

 

We found that the recommended time of 5 min for haematoxylin immersion was 

adequate to colour the nuclei blue. However, the recommended time of 10 min 

for eosin resulted in a very intense, dominant red. Hence, we reduced the time 

of eosin immersion to 5 min which gave a strong pink. H&E staining allows one to 

distinguish the three general cell types found in middle ear mucosa (squamous, 

cuboidal and columnar) as well as identifying cilia which may or may not be 

present. H&E staining is not adequate for distinguishing type I and type II 

alveolocytes in lung even though they can be seen labelled as such in histology 

texts. Usually the type I cell is a flat, squamous cell with a corresponding long 

nucleus. The type II cell is cuboidal with a round nucleus.  
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2.4 Immunohistochemistry 

Immunohistochemistry (IHC) involved the detection of antigen expression 

through the use of fluorescent antibodies using tissue sections on gelatine-

coated microscope slides. Initially, we tested the antibodies on rat lung because 

it is easier to inflate than mouse lung. This makes the alveolar spaces larger and 

the surrounding epithelium more distinct. Antibodies target different cell types 

with differing cell shapes based on expression of their specific epitope of the 

protein of interest. 

 

Apart from expressing signals in individual cells of lung tissue, IHC can reveal 

patterns in epithelia lining the various compartments of the lower airway. For 

example, the antibodies which label type II cells - CK18, CK8 and surfactant 

protein A (SP-A) - will label the Clara cells of terminal bronchioles in continuity 

while providing a more sporadic signal in alveoli. Conversely, the antibodies 

which label type I cells (CK7, CK19) produce a continual signal in alveoli where 

type II cells are side by side. In fact, points of discontinuity in alveoli have been 

attributed to the presence of type II cells (Kasper, 1995). These comments are 

derived from observations in rat lung and it is our hope to replicate this in mouse 

lung before applying the same approach to mouse middle ear.  

 

Before applying these antibodies to mouse tissues, an isotype control staining 

was applied to rat lung using a pre-immune rabbit IgG antibody (Rb 086199, Life 

Technologies) at 0.5 μg/mL to check for cross reactivity. Thereafter, the main 

control used was replacement of the primary antibody with 5% goat serum to 

demonstrate that both that the protocol is working and the ratio of signalling to 

noise was appropriate.  

 

Antibodies were generally polyclonal or monoclonal. SP-A antibody is anti-rabbit 

polyclonal. The CKs were monoclonal (derived from rabbit except for one CK7 

which was derived from mouse). Details of the antibodies are set out in Table 2.3 

below with dilutions according to manufacturer’s recommendations.   
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Table 2.3. List of antibodies used. WB = western blot, IHC = immunohistochemistry, ab = Abcam, 
GTX = GeneTex.  

Antibody 
Name 

Antibody Host Clonality Conc Method Catalog n# 
Expected 

size 
(kDa) 

Cytokeratin 7 
(CK7) ** 

Primary Mouse Monoclonal 1:500 
WB 
IHC 

ab9021 51 

Cytokeratin 7 
(CK7)* 

Primary Rabbit Monoclonal 1:1000 
WB 
IHC 

ab181598 51 

Cytokeratin 8 
(CK8) 

Primary Rabbit Monoclonal 
1:10,000 
1:1000 

WB 
IHC 

ab32579 55 

Cytokeratin 18 
(CK18) 

Primary Rabbit Monoclonal 
1:2000 
1:800 

WB 
IHC 

ab181597 47 

Cytokeratin 19 
(CK19) 

Primary Rabbit Monoclonal 
1:10,000 
1:200 

WB 
IHC 

ab52625 44 

Surfactant A 
(SP-A) 

Primary Rabbit Polyclonal 
1:500 
1:200 

WB 
IHC 

ab115791 29-35 

β-actin Primary Rabbit Polyclonal 1:5000 WB 
GTX 
110564 

42 

GAPDH Primary Mouse monoclonal 1:500 WB 
GTX 
627408 

36 

Anti-rabbit 
FITC 

Secondary Goat Polyclonal 1:1000 IHC ab6785 NA 

Anti-rabbit 
HRP 

Secondary Goat Polyclonal 1:2000 WB ab97051 NA 

**this CK7 antibody reacts with human target tissue, not mouse.  
*  this CK 7 reacts with mouse target tissue. 

 

For antigen retrieval, heating is essential to remove sticky protein(s) that cover 

the antigenic target. We found that microwave methods, although very fast at 3-

8 minutes, tended to cause tissues to lift off glass slides during the boiling phase. 

Another method involved placing glass slides into a programmable thermal 

controller unit (PTC-100, MJ Research Inc., Biolab Scientific Ltd.) using Gene 

Frame cassettes (AB Gene AB-0577) but this was just as aggressive to the tissues 

as the microwave. We eventually found that prolonged gentle heating at 60OC 

for 12 hours overnight in a water bath within an oven improved the quality of 

tissue.  

 

Images were taken using the Leica DMRE incident fluorescence microscope with 

mercury bulb coupled to a Photometrics Coolsnap CCD FX camera. The images 

were merged and reconstituted using Image-J software. 
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2.5  Western blotting 

A western blot was carried out to ensure that the antibodies used in the IHC 

experiments recognised their specific epitope according to the molecular weight 

of the intended target. To determine if epithelium contains surfactant protein by 

western blotting, it is necessary to use mouse lung as a positive control. The 

tissue load provided from a single mouse middle ear is significantly less and 

several pairs of middle ears need to be pooled to provide enough protein 

concentration. To carry out a western blot, protein lysates were prepared from 

euthanised mouse tissues, the resulting protein was measured and estimated 

using the Bradford Assay and the quality examined using PAGE and Coomassie 

blue staining. The SP-A and cytokeratins CK8, CK18, and CK9 antibodies were 

compared to reference controls of β-actin or GAPDH enzyme.  

 

In general, commercial pre-cast gels were used in the interest of time. The 

percentage of acrylamide gels varied in the commercial pre-cast gels due to 

availability but they were suitable to observe the expected protein band. For pre-

cast gels, the ratio of Acrylamide to Bis-acrylamide was 37.5:1. Some hand-cast 

gels were prepared using a method previously used in our lab (Forrester-

Gauntlett, B.K.E., 2013).  

 

For the purposes of protein extraction and analysis, four lung pairs (Samples 1-4) 

were removed but two (Samples 3 and 4) were too big and thus, were split into 

two tubes (i.e. Samples 3 and 3A; 4 and 4A). 

 

In preparing middle ear tissue derived from temporal bones, prevention of 

cellular autolysis is important. For this purpose temporal bones containing 

middle ear and cochleae were dissected and immediately placed into protease 

and phosphatase inhibitor solution (RIPA buffer with Phos STOP tablets) to 

reduce autolysis of cells (see Appendix 1). Some temporal bones were then 

immersed in trypsin. Then, the protein was loaded and run on a PAGE gel, 

transferred to a membrane (either PVDF or nitrocellulose), blocked, incubated 

with appropriate antibodies (Table 2.3), washed, and then developed.  
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2.5.1 Preliminary Bradford assay of lung tissue 

To estimate the protein concentration of samples of mouse lung tissues, the Bio-

Rad Protein Assay Dye Concentrate (Bio-Rad, NZ) was diluted one part of dye to 

four parts of MQ water and filtered through a Whatman® #1 filter to remove 

particulates. The filtered diluted dye (100μL) was added to the required number 

of wells of a Jet BIOFIL® non-surface treated, flat-bottomed 96-well plate. 

Standards of bovine serum albumin (BSA) were diluted from 10mg/mL stock BSA 

(Sigma-Aldrich, NZ) with 1x PBS giving a total of 10 different protein standard 

concentrations ranging from 0-10 mg/mL. A 1μL volume of each of these 

standards was then added to 10 different wells containing 100μL of the diluted 

Bio-Rad dye and mixed well by pipetting up and down. The protein samples of 

unknown concentration (i.e. four lung samples) were added to separate wells 

also containing 100μL of dye. Triplicate wells were loaded for all standards and 

unknown samples (Figure 2.5). Samples were incubated at RT for 5 min and then 

the absorbance measured at 595nm using the Thermo 56 Fisher Scientific 

MultiskanTM GO Microplate Spectrophotometer. The software produced a 

standard curve from the absorbance readings plotted against standard BSA 

protein concentrations, an R value, and estimation of the protein concentration 

in the unknown lung samples. The Bradford standard can be found in Appendix 3.  

 

Protein lysates from four lungs from four individual mice (C57/B6, Agresearch 

Ruakura) as well as a separate control of spleen were used. These provided a 

preliminary visual estimate of protein concentration.  

 

2.5.2 Coomassie blue staining of electrophoresed protein lysates on 

PAGE gel 

Protein samples for gel electrophoresis analysis were prepared by using a final 

protein mass of up to 40μg diluted in 1X PBS and containing 1X Laemmli dye in a 

boil-proof 2mL microcentrifuge tubes (VWR, NZ). Laemmli buffer contains 2-

mercaptoethanol which reduces the intra and inter-molecular disulphide bonds; 

SDS detergent which denatures the proteins and subunits and gives each an 

overall negative charge so that each will separate based on size; bromophenol 
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blue serving as a dye front that runs ahead of the proteins so the sample is seen 

during loading and glycerol which increases the density of the sample so that it 

forms a layer in the sample well. The prepared samples were then placed into a 

thermomixer at 95 ̊C for 5 min to aid in denaturing the proteins to enable them 

to be run on SDS- PAGE gels. Then, 10μL of each sample was loaded onto a 12% 

PAGE gel (Genscript Express Plus cat. no. M01215) with MOPS buffer as the 

running buffer (Genscript cat. no. M00138). At times an alternative 

concentration e.g., 8-16% or 4-20% was used depending on availability of 12% 

gel.  

 

The six lung samples (Lung 1, 2, 3, 3A, 4, 4A) were then duplicated so that a total 

of 15 wells were used including 5μL of PAGE Master Protein Standard Plus 

(Genscript cat. no. MM1397-500) ladder. Electrophoresis was conducted at 135-

140V and 35-40mA. Following this, the gel was used directly for Coomassie blue 

staining or western blot.  

 

In addition to lung, it was necessary to identify protein in the middle ear as well 

other tissues including brain, heart, liver, kidney and spleen to further validate 

the specificity of the antibodies being investigated. Four pairs of mouse middle 

ears were acquired (C57/B6, 4 month old males, Agresearch Ruakura). Each pair 

was transferred to a 3mL vial and sonicated with glass beads by centrifugation at 

300g. The supernatant was collected and transferred to a new tube and stored at 

-80°C.  

 

Samples for electrophoresis were prepared as stated above and were loaded 

onto an 8-16% gel of 12 wells (Genscript, # MG 816W12). Using a MOPS buffer, 

the gel was then run at 130 V with 35-40 mA. The gel was then transferred to a 

PVDF nitrocellulose membrane using the Genscript eBlot protein transfer system 

(cat. No. L3010). This involves activating the white membrane in 100% Methanol 

for about 10 sec. The membrane is then immersed into eBlot equilibrium buffer 

(Genscript cat.no M01078). The protein transfer was carried out for 7-8 min. A 

Coomassie blue stain was applied to confirm that protein transfer had occurred. 

Then, the membrane was placed in 5% blocking buffer at 4°C overnight.  
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2.5.3 Western blotting analysis 

Protein samples were loaded in serially increasing concentrations onto a 12% 

PAGE gel using 1, 5, 10, 15, 20μL loads. A further dilution series was carried out 

using protein extracts from lung 1 and lung 4. Using volumes of 2, 10, 20, 30 and 

40μL, an 8μL sample from tube 1b and tube 4b was included in each series. 

Initially concentrations of SP-A 1:1000 were used with little signal and then this 

was increased to 1:500. 

 

For western blot analysis, a 5μL volume of WB-MASTER protein standard 

(Genscript cat. no.M00521) was loaded onto the gel to serve as a positive control 

for developing reaction and molecular weight determination. Following gel 

electrophoresis, the gel was rinsed with distilled water before being transferred 

to the eBlot® protein transfer system, which was set up according to 

manufacturer’s instructions (Genscript, USA). The eBlot® machine was then run 

for 7 min, to transfer across all protein to the PVDF membrane (Amersham 

Hybond-P membrane 0.45μm, RPN2020F) that had been previously activated in 

methanol for 20 sec and equilibrated for 5 min in transfer buffer. An alternative 

membrane used was a nitrocellulose type (Genscript WestClearTM Nitrocellulose 

LO 0224A60). 

 

Once the protein was transferred to the membrane (evident by the two bands in 

the PAGE ladder or Ponceau staining, Appendix 1), the membrane was carefully 

transferred to a container and washed three times at RT with TBS-T for 15 min 

per wash, then once for 15 min with TBS before being blocked with 5% blocking 

buffer containing skim milk. The membrane was incubated for 1 hour to prevent 

the nonspecific binding of the antibodies before being washed three times with 

TBS-T for 15 min per wash, then once for 15 min. The primary antibody 

(Table 2.3) was then applied to the membrane in a sealed plastic envelope and 

incubated on a rotating wheel for 2 hours at RT then overnight at 4°C. The 

membrane was then washed 3 times in TBST (5, 10, 15 min) before application of 

secondary conjugated goat anti-rabbit IgG polyclonal antibody for 1 hr at RT 

(Table 2.3). Finally, chemiluminescent developer was applied using either 

ThermoScientificTM SupersignalTM Western Substrate (cat. No. 34577) or Western 
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Bright before being photographed and analysed on the iBright analyser (FL1000, 

Invitrogen). Alternatively we used the Aplegen analyser. 
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3 Chapter 3 

Bioinformatics 

A number of gene aliases have been described for SP-A. These include SPA, PSAP, 

PSPA, SP-A, SPA1, PSP-A, SFTP1, SP-A1, COLEC4 and SFTPA1B 

(https://www.ncbi.nlm.nih.gov/gene/729238). 

 

The official gene symbol recognised by the human nomenclature committee is 

SFTPA and two alternative isoforms exist: A1 and A2. To date, six alternative 

transcripts have been described for SFTPA1 in human but only one transcript in 

mouse, pig and rabbit. Interestingly, three alternative transcripts have been 

identified for rat.  

 

Table 3.1 shows that surfactant A1 varies considerably at the molecular level 

between the mammalian species in its chromosomal location and number of 

mRNA transcripts although the resultant proteins are similar in size in human, 

mouse, pig, rabbit and rat (24-26 kDa). Figure 3.1 shows the genomic structure of 

the six SFTPA1 transcripts on human chromosome 10q22.3. With alternative 

splicing, the first and last two exons are the same between the depicted 

transcripts. A high homology was observed with the coding exons when 

compared against 30 mammals including mouse, particularly transcript 1.  

 

  

https://www.ncbi.nlm.nih.gov/gene/729238
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Table 3.1. Comparison of the mammalian surfactant A1 at the molecular Level. Source: gene cards 
and NCBI. GenBank accession numbers are provided for the mRNA and protein sequences. 

Organism 
Gene 

Symbol 
Locus 

mRNA Length 
(nt, Accession n#) 

Protein Size 
(AA, Accession n#) 

Predicted 
Molecular 

Weight 
(kDa) 

Human SFTPA1 

transcript 1 

transcript 2 

transcript 3 

transcript 4 

transcript 5 

transcript 6 

10q22.3  

2230, NM_005411.4 

2216, NM_001093770.3 

2186, NM_001164644.2 

2159, NM_001164647.1 

2072, NM_001164645.2 

2080, NM_001164646.2 

 

248, NP_005402.3 

263, NP_001087239.2 

248, NP_001158116.1 

248, NP_001158119.1 

214, NP_001158117.1 

199, NP_001158118.1 

 

24.17 

24.17 

24.17 

24.17 

19.61 

19.61 

Mouse Sftpa1 14 2775, NM_023134.5 248, NP_075623.2 24.1 

Pig SFTPA1 14 1895, NM_001348959.1 248, NP_001335888.1 24.3 

Rabbit 

 

SFTPA1 Un 

defined 

2978, NM_001082229.1 247, NP_001075698.1 24.6 

Rat  Sftpa1  

transcript 1 

transcript 2 

transcript 3 

16p14  

1635, NM_001270645.1 

1632, NM_017329.2 

1,846 NM_001270647.1 

 

258, NP_001257574  

257, NP_059025.2 

248, NP_001257576   

 

24.53 

24.53 

24.19 

 

 

 

Table 3.2. Official name of the protein isoforms generated by alternative 
mRNA splicing of SFTPA1. The six SFTPA1 mRNA transcripts results in four 
different isoforms of the surfactant A1 protein.  

Genbank 
Accession n# 

Official Protein Name 

NP_005402.3 Pulmonary surfactant-associated protein A1 isoform 1 precursor  

NP_001087239.2 Pulmonary surfactant-associated protein A1 isoform 2 precursor  

NP_001158116.1 Pulmonary surfactant-associated protein A1 isoform 1 precursor  

NP_001158119.1 Pulmonary surfactant-associated protein A1 isoform 1 precursor  

NP_001158117.1 Pulmonary surfactant-associated protein A1 isoform 3 precursor  

NP_001158118.1 Pulmonary surfactant-associated protein A1 isoform 4 precursor  
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Figure 3.1. Comparative genomics of human alternative transcripts of STFPA1. Shown are the six reported human STFPA1 transcripts in the sense direction on 
chromosome 10 (Table 3.1). The number and size of exons (blue rectangle) differs between the mRNA transcripts. The green peaks show high homology with the 
coding exons when compared against 30 mammals including mouse. In addition, high nucleotide identity between mouse and human STFPA1 (bottom bar - black 
vertical lines) (UCSC Genome Browser, 2019). 
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Next, the six SFTPA1 transcripts were translated into amino acid sequences 

which were then aligned using the online tool, Clustal Omega 

(https://www.ebi.ac.uk). Figure 3.2 shows the highest level of amino acid 

identity is at the C-terminal end of the protein with most variability being 

observed at the N-terminal (positions 1-15 and 31-56). Also, three mRNA 

transcripts (NP_005402.3, NP_001158119.1and NP_001158116.1) are predicted 

to translate into the same protein, isoform 1, with a molecular weight of 

24.17 kDa (Table 3.1). 

 

 

Figure 3.2. CLUSTAL alignment of the six human SFTPA1 protein isoform sequences. 
Listed on the left are the Protein GenBank Accession numbers (Table 3.1). * = amino 
acid identity; : = conservative substitutions; . = semiconservative substitutions. 

 

When the mouse SP-A protein is aligned against the human isoforms 1-4, it has 

the highest homology against SFTPA1 isoform 1 (Figure 3.3).  
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Figure 3.3. CLUSTAL alignment of the six human SFTPA1 protein isoform sequences 
and mouse Sfta1. Listed on the left are the Protein GenBank Accession numbers. 
* = amino acid identity; : = conservative substitutions; . = semiconservative 
substitutions. NP_075623.2 = mouse. Human Isoform 1 = NP_005402.3, 
NP_001158116.1 and NP_001158119.1. 

 

Figure 3.4 shows the CLUSTAL alignment of Human SFTPA1 Protein Isoform 1 

(generated from mRNA transcripts 1, 3 and 4) against mouse Sfta1.  

 

 

  



 

61 

 

 

Figure 3.4. CLUSTAL alignment of human SFTPA1 protein isoform 1 (generated from 
mRNA transcript 1) and mouse Sfta1. Listed on the left are the Protein Genbank 
Accession numbers. * = amino acid identity; : = conservative 
substitutions; . = semiconservative substitutions; blue line = ab115791 peptide 
sequence: WNDKGCLQYRLAICEF. Mouse = NP_075623.2; Human Isoform 1 = 
NP_005402.3, NP_001158116.1 and NP_001158119.1. 

 

Then, the Human SFTPA1 Protein Isoform (generated from mRNA transcript 6, 

Query: NP_005402.3) and Mouse Sfta1 (Subject: NP_075623.2) were aligned 

using BLASTp, This alignment provided an E-value of 2e-119 with 71.37% identity 

and 80% similarity at the amino acid level (Figure 3.5).  
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Figure 3.5. Summary of BLASTp alignment of human SFTPA1 protein isoform 
(generated from mRNA transcript 6, Query) and mouse Sfta1 (Subject = Sbjct). 

 

The SFTPA1 gene is conserved in human, chimpanzee, Rhesus monkey, dog, cow, 

rat and chicken (NCBI Gene online database, 2019). The online human protein 

atlas databased reports a high protein expression score for SFTPA1 in the lung 

but no detection in the remaining 60 tissues (e.g. kidney, colon) or cells (e.g. T-

cells) examined (Human Protein Atlas, 2019; Uhlén 2015). 

 

Surfactant proteins have also been identified in many body tissues in both 

humans (Bourbon, 2001; Hills, 1983) and mammals (Akiyama, 2001). In humans, 

the peptide for SP-A is in a trimer arrangement (Table 1.2). The trimer requires 

two SP-A1 gene products and one SP-A2 gene product (Vieira, 2017) whereas the 

mouse only has one gene product. 

 

CLUSTAL Alignment of the Sftpa1 mouse protein against the three rat isoforms 

shows high conservation at the amino acid level with rat isoform 3 with the 

highest homology. The antibody used for the purposes of this research was a 

commercial antibody, Anti-Surfactant Protein A antibody (ab115791) and targets 

a sequence at the C-terminal (AA 233-248) of mouse surfactant protein A AA 

233-248 (C terminal). It is noted that this peptide does not have 100% identity 

with the three rat isoform proteins and differs by two amino acids. Thus, the 

antibody is suitable for detecting mouse and rat surfactant A protein.   
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Figure 3.6. CLUSTAL alignment of the mouse and rat Sftpa1 protein sequences. Listed 
on the left are the Protein GenBank Accession numbers (Table 3.1). * = amino acid 
identity; : = conservative substitutions; . = semiconservative substitutions; blue line = 
ab115791 peptide sequence: WNDKGCLQYRLAICEF. Mouse = NP_075623.2; Rat 
Isoform 1 = NP_001257574, Rat Isoform 2 = NP_059025.2 and Rat isoform 3 = 
NP_001257576.  

 

Next, it was considered if Anti-Surfactant Protein A antibody (ab115791) could 

cross react with other mouse Surfactant proteins (B-D). Figure 3.7 shows the 

CLUSTAL alignment of the four surfactant mouse proteins, with surfactant D 

having the highest homology to SP-A. Next, we directly compared the SP-A 

peptide sequence against the SP-A and SP-D amino acid sequences. The CLUSTAL 

alignment depicted in Figure 3.8 shows that there is not 100% identify of the 

peptide against SP-D. Further analysis using SmartBLAST of the SP-A peptide 

sequence, demonstrated amino identity of 69% and similarity of 75% (Figure 3.9) 

(NCBI SMARTBLAST online database, 2019).  
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Figure 3.7. CLUSTAL alignment of the mouse surfactant protein sequences. Listed on 
the left are the Protein GenBank Accession numbers. * = identities; : = conservative 
substitutions; . = semiconservative substitutions; blue line = ab115791 peptide 
sequence: WNDKGCLQYRLAICEF. NP_075623.2 = pulmonary surfactant-associated 
protein A precursor; AAB34846.2 = surfactant protein B; AAA40010.1 = pulmonary 
surfactant protein SP-C; AAA92021.1 = surfactant protein D. 
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Figure 3.8. CLUSTAL alignment of the ab115791 peptide sequence against mouse 
surfactant A and B protein sequences. Listed on the left are the Protein GenBank 
Accession numbers. * = amino acid identity; : = amino acid similarity; SP-A = 
NP_075623.2 = pulmonary surfactant-associated protein A precursor; SP-D = 
AAA92021.1 = surfactant protein D. 

  



 

66 

 

Figure 3.9. SmartBLAST of the ab115791 peptide sequence.  
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4 Chapter 4 

Results 

4.1 Histology, IHC and western blotting 

This section sees a progression from basic histology to IHC to western blotting. 

Basic histology by H&E staining was used initially to clarify structural and 

morphological aspects of the various simple epithelia of rat and mouse lung 

before moving onto rodent middle ear. Immunohistochemistry enabled 

identification of SP-A protein and CKs within cells and tissues pointing towards a 

more functional characterisation of the epithelia. Western blotting enabled 

validation of the antibodies applied to various tissues. 

 

4.1.1 Histology of rat lung 

Lungs from Sprague-Dawley rats were easily expanded using fresh 5% PFA 

solution. They were then dehydrated through the range of alcohols until 

paraffinised. Initial staining with H&E was sub-optimal in that there is less 

contrast between the weak blue for haematoxylin and stronger red for eosin but 

adequate to outline alveolar spaces, epithelial cells, capillaries and larger vessels 

as shown in below in Fig 4.1. 
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Figure 4.1. Initial results for H&E of rat lung. Shown are expanded 
alveoli (a), adjacent blood vessels (b) and engorged capillaries (ca). 

 

4.1.2 Histology of mouse lung 

Mouse lung is more delicate and far easier to rupture when expanded with liquid 

fixatives. Nevertheless, the experience gained from rat lung helped to refine 

methods for mouse specimens. H&E staining shows the general morphological 

differences between cells of simple epithelium such as cell height and whether or 

not these are ciliated. 

 

The transition from terminal bronchioles directly to alveolar ducts is easily seen 

in low power magnification (Fig 4.2A). The terminal airways are lined by 

secretory Clara cells (Fig 4.2B). At highest power X100 one can confirm that these 

lack cilia (Fig. 4.2C). They are columnar but not pseudo-stratified. It is a particular 

characteristic of mice that terminal bronchioles are lined entirely by Clara cells 

(Fig. 4.2D; Irwin, 2003). Clara cells are interesting also because they are capable 

of secreting surfactant protein.  

  

a 
a 

ca 

b 



 

69 

A

 

B

 

C

 

D

 

Figure 4.2. H&E stained sections showing distribution of Clara cells with their 
strong pink cytoplasm and their histological features. Fig 4.2A shows alveolar 
ducts leading to alveoli. Fig 4.1 A is X20, Fig 4.2 B, and Fig 4.2D are X40 and 
Fig 4.2C is X100 magnification. 

 

Using H&E staining with higher power X100 magnification, various cell types can 

be distinguished within the expanded alveoli which assume an almost polygonal 

shape (Fig. 4.3). The presence of cells with rounded nuclei at the “corners” of 

alveoli is interpreted as type II alveolocytes. Flat cells with flat nuclei lining the 

side walls of the alveoli are interpreted as type I cells although some of these 

could also represent the endothelial cells of adjacent capillaries which abound in 

alveoli. Pulmonary macrophages are present in the luminal surface of alveoli. 

These engulf cellular debris, microbes and used proteins including surfactant.  

  



 

70 

 

A

 

B

 

Figure 4.3. Oil immersion image X100 showing alveoli containing very thin, flat 
type I cells (1), cuboidal type II cells (2) and large foamy macrophages (m). 
Capillaries are evident by their enucleate red blood cells. 

 

4.1.3 Histology of mouse middle ear epithelium 

The middle ear begins in the nasopharynx, the common cavity at the back of the 

nose from which a right and left Eustachian tube ascend to their respective 

middle ear cavities (see Figures 4.4 A and 4.4B below). The lower ends of the 

Eustachian tubes are supported by muscles related to the palate, pharynx and 

larynx. The upper ends of the Eustachian tubes in mice are supported by 

cartilage whereas the human Eustachian tube has a cartilaginous lower end and 

a bony upper end. Also visible in the nasopharynx is free mucus and cellular 

debris some of which comes from the nose and paranasal sinuses and some of 

which comes from the middle ear cavity. This is because the epithelium of the 

Eustachian tube is lined by ciliated pseudostratified epithelium which beats 

mucus and debris down towards the common airway (nasopharynx) in the same 

way as the epithelium of the trachea beats mucus up to the common larynx and 

pharynx. Several paraffin sections were taken from both BALBc and C57/B6 mice 

from which a series of H&E slides were made corresponding to the various 

segments of the middle ear seen in the coronal (vertical) plane. 

 

m 

1 

2 
2 

m 

1 
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B

 

C

 

D

 

Figure 4.4. Coronal cross-sections of nasopharynx and Eustachian tubes in 
BALBc mice using H&E staining. A. Panoramic view of nasopharynx (n) and a 
complete Eustachian tube orifice on the right side (r). The right tube extends 
into the middle ear cavity (tympanum) via a narrowing (cartilaginous isthmus). 
Both Eustachian tubes show adjacent mucous glands. Magnification X2.5. B. 
Closer view showing pharyngeal openings of Eustachian tube with mucus and 
some cellular debris in the nasopharynx. Magnification X5. C. View of the roof 
of the nasopharynx showing epithelium which is pseudostratified, simple, 
columnar. Supporting connective tissue contains lymphoid tissue and mucous 
gland elements. D. Opening of pharyngeal end of right Eustachian tube with 
some mucus and cellular debris. 

 

The Eustachian tube is mostly cartilaginous at its upper end. The lower end near 

the medial or proximal opening is lined by ciliated columnar cells, often pseudo-

stratified. More laterally, the tube has a narrow isthmus which is lined by flat 

cells which are usually simple but can appear stratified on oblique sections. The 

lateral or tympanic opening of the Eustachian tube into the middle ear is lined by 

ciliated epithelium and goblet cells.  

n 
r  
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C 

 

D 

 

Figure 4.5. Coronal cross-sections of BALBc mice upper Eustachian tube adjacent to 
middle ear using H&E staining. Image A and B are X10 magnification; image C is X20, D 
is X40. A. Junction of right Eustachian tube with middle ear cavity (cartilaginous 
isthmus) showing simple epithelium with slight stratification sometimes referred to as 
transitional epithelium. B. Middle ear (tympanic) opening of right Eustachian tube 
showing change from transitional stratified epithelium to simple ciliated, low cuboidal 
epithelium. C. Lateral right Eustachian tube lumen showing mainly pseudostratified, 
low columnar, ciliated epithelium. D. Tympanic opening of Eustachian tube: 
Cartilaginous isthmus of lateral right Eustachian tube lumen showing mainly low 
cuboidal ciliated epithelium with Goblet cells.  
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The next series of images (Figure 4.6 to Figure 4.9) begins at the roof of the 

middle ear cavity just beyond the tympanic opening of the Eustachian tube and 

moves further laterally to reach the upper tympanic membrane then down to  

the floor of the middle ear before returning to the Eustachian tube opening. 

There is a transition from ciliated cuboidal to flat squamous epithelium in the 

roof of the middle ear which is seen below (Figure 4.6).  

A

 

B

 

C 

 

D 

 

Figure 4.6. Coronal cross-sections of BALBc mice middle ear at the supero-medial level 
using H&E staining. Images A, B and C are X10 and D is X 40 magnification. A. Roof of 
right middle ear cavity showing the transition from cuboidal, ciliated epithelium on 
cartilage (ci) to flatter epithelium over the tensor tympani muscle (m). B. Roof of right 
middle ear cavity showing flatter epithelium overlying tensor tympani muscle. C. Roof 
of right middle ear cavity showing flatter epithelium overlying tensor tympani muscle 
undergoing transition to ciliated cuboidal epithelium (ci). D. Closer view of roof of 
right middle ear cavity showing flatter epithelium overlying tensor tympani muscle 
undergoing transition with cuboidal epithelium some of which is ciliated.  

 

ci 

m 

ci 
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In the literature, the roof of the middle ear is considered mainly a region of flat 

epithelium suited to gas exchange but there are regions of ciliated epithelium 

suited to clearing any mucus or cellular debris.  

A 

 

B 

 

Figure 4.7. Coronal cross-sections of BALBc mice middle ear using 
H&E staining. A. Roof of right middle ear cavity showing flatter 
epithelium with areas of cuboidal, ciliated epithelium. B. Closer 
view of roof of right middle ear cavity showing mostly cuboidal 
ciliated epithelium.  
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The middle ear space has irregular boundaries due to the presence of adjacent 

structures including the hearing bones (ossicles), facial nerve as well as the 

stapedial artery which passes through the arch of the stapes bone. This artery is 

common to all mature rodents and is also present in the developing human 

foetus although it obliterates during later embryonic growth. There are also bone 

marrow spaces above the middle ear. 

 

A

 

B 

C

 

D

 

Figure 4.8. Coronal cross-sections of BALBc mouse middle ear. A. Panoramic view of 
middle ear ossicles: malleus (m); incus (i); stapes(s); also seen is stapedial artery (sa); 
facial nerve (fn); bone marrow (bm) and tympanic membrane in two layers (tm). 
B. Closer view of stapes bone with its incomplete arch and stapedial artery (sa). 
C. Junction of stapes footplate (s) and oval window of cochlea (c) with intervening 
stapedial ligament (arrow). Note very thin flattened epithelium lining bony structures. 
D. Closer view of roof of right tympanic membrane showing a bilayered structure of 
modified outer squamous epithelium (oe) separated from flat middle ear epithelium 
(me).  
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The flat epithelium is fairly continuous from the roof of the middle ear, over the 

medial surface of the tympanic membrane and onto the floor of the middle ear. 

The epithelium of the floor of the medial middle ear becomes ciliated in the 

antero-inferior part of the middle ear as it approaches the Eustachian tube 

opening. The following series of images are taken from the floor of the middle 

ear (Figure 4.9). The images begin with the lower eardrum (Fig 4.9A) and move 

medially to reach the mouth of the Eustachian tube (Fig 4.9D). 

A

 

B

 

C

 

D

 

Figure 4.9. Coronal cross-sections of BALBc mice floor of middle ear using H&E staining. 
A. View of inferior tympanic membrane (tm) attached to connective tissue annulus (a) 
adjacent to the floor of the middle ear (me); the bilayered structure of the tm is still 
evident by the two layers of nuclei. B. Closer view of thin flattened epithelium lining 
bony floor of middle ear still within the postero-superior zone of the middle ear. 
C. Transition (arrow) from thin flattened epithelium lining bony floor of middle ear to 
the ciliated cuboidal epithelium. D. Closer view of ciliated epithelium of the middle ear 
(me) as it ascends to reach the mouth of the tympanic end of the Eustachian tube (et) 
which is supported by a cartilaginous framework.  
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4.1.4 An unexpected finding in mouse middle ear: communications with 

bone marrow 

Surrounding the mouse middle ear cavity are bone marrow nests situated within 

the bony wall. A number of mouse middle ears were sectioned in the axial plane 

including some C57/B6 mice which had been used in the initial inflammation 

experiments. In two of these animals it was noted that there were short 

passages in the bony walls of the middle ear passing from the bone marrow 

nests to reach the connective tissue stroma underlying the middle ear epithelium. 

We examined two BALBc mice by axial sectioning and found similar perforations. 

The communications are not an artefact of sectioning because they are lined by 

cells and the bony margins are generally smooth. The first image below (Figure 

4.10) shows a low power panoramic view of the middle ear without any 

communications. 

 

 

Figure 4.10. Axial cross-section of C57/B6 (17.2.17) mouse middle ear magnification 
X2.5. Note malleus bone (m), the incus (i), facial nerve (f), stapedius muscle (s), 
cochlea (c) and bone marrow nests (*). There are no communicating passages in this 
image. 
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The next image below (Figure 4.11) shows a low power panoramic view of the 

middle ear with a communication passing from bone marrow to middle ear. 

 

 

Figure 4.11. Axial cross-section of BALBc mouse middle ear (magnification X2.5). Note 
malleus bone (m), the cochlea (c) anterior to the middle ear space and a bone marrow 
nest. Communicating passage shown by arrow. 
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Below in Figure 4.12 is a closer view of the same communication between bone 

marrow space and the middle ear epithelium. 

 

 

Figure 4.12. Axial cross-section of BALBc mouse middle ear magnification X10. Note 
malleus bone (m), the cochlea (c) anterior to the middle ear space and a bone marrow 
nest (bm). Communicating passage with smooth margins shown by arrow. 

 

The bone marrow nests surround the middle ear space and, on axial cross-

sections, can be seen within the membranous temporal bone forming the walls 

of the middle ear. This bone has stronger redness on than the paler otocyst-

derived bone of the cochlea. The bone marrow nests can be found anterior, 

medial and posterior to the middle ear space. 
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Figure 4.13. Axial cross-section of second BALBc mouse middle ear (me) magnification 
X10. Note malleus bone (m) medial to external auditory meatus (eam), the cochlea (c) 
and an adjacent semi-circular canal (scc) opposite a bone marrow nest (bm). 
Communicating passage shown by arrow. 
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The same image at higher power the communication is reveals a capillary blood 

vessel within it. Red blood cells are present within the passage. 

 

 

Figure 4.14. Axial cross-section of second BALBc mouse middle ear (me) at 
magnification X40. Note red blood cells (rbc) within a capillary within the bone 
communication. Flat endothelial cells line the capillary. 
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These bone communications were confirmed also in two mice of the C57/B6 

strain shown below in figures 4.15 and 4.16.  

 

 

Figure 4.15. Axial cross-section of C57/B6 mouse bone communication (arrow) 
magnification X2.5. There are cells filling the communication between middle ear 
space (me) and the bone marrow nest.  

 

The communications may be questioned as either artefacts or genetic defects. 

Below in Figure 4.16 is an example of a bone communication and a separate 

artefact defect in bone possibly resulting from sectioning. At higher 

magnification, a blood vessel within the communication between the bone 

marrow nest and middle ear epithelium is shown (Figure 4.17).  

me 
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Figure 4.16. Axial cross-section of C57/B6 mouse bone communication (box). 
By comparison a breach in bone (thin arrow) with no intervening cells 
represents a sectioning artefact. There are cells filling the communication 
between middle ear space (me) and the bone marrow nest (bm). Note free 
cellular debris (cd). Magnification X2.5. 

 

 

Figure 4.17. Higher magnification of Figure 4.16 showing a capillary (c) with 
red blood cells (rbc). There are cells filling the communication between 
middle ear space (me) and the bone marrow nest (bm). Magnification X40.  

  

bm 

me 

cd 

rbc 

 
c 

me 

 

 bm 



 

84 

Closer examination reveals that the communication leads to ciliated epithelium 

in the middle ear (Figure 4.18). 

 

 

 

Figure 4.18. Axial cross-section of C57/B6 mouse bone communication. 
A. There are cells filling the communication (box) between middle ear 
space (me) and the bone marrow (bm) nest. Note location adjacent to 
cochlea (c). Magnification X2.5. B. At X40 magnification, there are cells 
filling the communication between me and bm. Note ciliated middle ear 
epithelium (arrows). 
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On one occasion a communicating passage was found to be lined by cells (see 

Figure 4.20). These cells may be derived from bone marrow cells i.e., 

mesenchymal cells. Being near an epithelial lining they may be dendritic cells. 

They require further characterisation by using a selection of dendritic cell 

antibody markers recommended by Schraml & Sousa (2015) or alternatively a 

commercial mesenchymal cell marker panel available from Abcam.  

 

 

Figure 4.19. Axial cross-section of C57/B6 mouse communication at magnification 
X40. Closer view shows presence of a double layer of cells (yellow arrows) lining the 
wall of the communication between middle ear space and the bone marrow nest 
(bm). There is also a capillary present close to the communication containing red 
blood cells (rbc). Amongst cellular debris in the middle ear are some large cells with 
eccentric nuclei (blue arrow) which probably represent macrophages analogous to 
the “free” pulmonary macrophages seen in lung spaces. 

 

A communication between bone marrow and middle ear epithelium is a short 

perforation and may be called a foramen (plural foramina). Foramina are found 

in bone elsewhere in the body to transmit nerves and blood vessels. This will be 

further discussed in Chapter 5. 
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4.2 Immunohistochemistry 

Prior to IHC testing using mouse tissue (lung and middle ear), rat lung tissue was 

examined first since the expression of the antibodies to be tested was originally 

confirmed in type I and type II alveolocytes (Kasper, 1997; Helms, 2008). Five 

antibodies were tested against SP-A and cytokeratins CK7, CK8, CK18 and CK19. 

In general, antibodies to rat SP-A are cross-reactive with mouse SP-A. In each IHC 

experiment four images were taken and depicted: (A) the primary antibody 

signal; (B) DAPI nuclear stain of tissue; (C) the merged composite image of the 

primary antibody and DAPI stain and (D) control images by omission of the 

respective primary antibody. An isotype control staining was applied to rat lung 

as a negative control using a pre-immune rabbit antibody (Rb 086199, Life 

Technologies) and confirmed negative with no signal evident above background 

(data not shown).  

 

4.2.1 Rat lung antibody to SP-A 

At very low magnification (10X), SP-A is best seen in continuity in the walls of 

large airways and sporadically in the corners of alveolar walls. The continuous 

signal in the larger airways corresponds to SP-A present in the Clara (club) cells of 

bronchioles (Figure 4.20). These are columnar, secretory cells which are non-

ciliated (see H&E Fig 4.2). Within alveoli, type II alveolocytes are isolated 

between sheets of type I cells, often in the corners of the alveolar sacs. Clara 

cells occur in continuous sheets in the upper or proximal airways. As a 

consequence, the type II cell gives an infrequent or sporadic signal in the alveolar 

spaces of lung tissue.  
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Figure 4.20. IHC of Rat lung with SP-A 1:500 signal visible at 10X magnification. 
A. Shows apple-green 1:500 A SP-A signal above background. B is nuclear DAPI stain. 
C. Composite image shows discoloration of primary antibody signal. D. Control image 
from non-contiguous section of same paraffin block showing no fluorescence signal. 

Scale bar = 200 M. 

 

In rat lung, higher power is required to appreciate the intracellular signal of SP-A. 

A merged image of SP-A signal and nuclear DAPI stain can reveal a perinuclear 

location of SP-A as in the image below (Fig 4.21C). 
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At times, merging images can obscure the antibody signal i.e., the blue DAPI 

signal can obscure green fluorescence. Below, the SP-A signal can be seen in 

alveolar walls in a perinuclear location (Fig. 4.21A, C). However, the merged 

image causes a discoloration effect possibly due to a layering effect within the 

programme. 
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Figure 4.21. IHC of Rat lung with SP-A 1:500. A. signal clearly visible at 20X 
magnification (arrow) located at corner or margin of lung alveolus. B is nuclear DAPI 
stain. C. Composite merged image still shows significant discoloration of primary 
antibody signal (arrow). D is control image from non-contiguous section of same 

paraffin block showing background signal only. Scale bar = 100 M. 



 

89 

4.2.2 Rat lung antibody to CK18 

CK18 is generally positive in cells which secrete SP-A such as type II cells and 

Clara cells. Thus, it gives a more sporadic signal within alveoli than CK19 because 

type II cells are fewer. In the image below (Figure 4.22), the lower magnification 

also shows the continuous signal in the large airways occurs in secretory, non-

ciliated columnar cells (Clara cells or club cells).  
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Figure 4.22. Rat lung with CK18 antibody at 10X magnification. This shows signal in 
primary (A) and, to lesser extent, in the composite images (C). A. the signal is much 
more continuous in the larger airways (asterisk) where it corresponds to Clara cells 
than in the alveolar walls (arrows) where it corresponds to type II alveolocytes. B. 
DAPI nuclear stain. D. control from a non-contiguous slide omitting primary antibody. 

Scale bar = 200 M. 

* 
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At slightly higher power (40X), the signal for CK18 is less continuous in the 

alveolar walls than CK19 (Fig. 4.23). In the primary image below (Fig. 4.23A), the 

signal is seen in the alveolar walls as a round rather than a flat signal due to the 

perinuclear location. This is more in keeping with signal from a type 2 alveolocyte.  
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Figure 4.23. IHC of Rat lung alveoli with CK18 antibody at X40 magnification. This 
shows signal in primary (A) and composite merged images (C). B. DAPI nuclear stain. D. 

control omitting primary antibody. Scale bar = 50 M. 
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4.2.3 Rat lung antibody to CK19 

CK19 is a marker for the more abundant type I, gas-exchange cell. The 

characteristic of flat cells, side by side, forming alveolar walls can be appreciated 

in the following image (Figure 4.24) even at 10X magnification. The 

concentration of antibody for CK19 was 1:500. As type I cells are more abundant 

than type II, the signal for CK19 almost traces the outline of an alveolus. 
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Figure 4.24. IHC Rat lung with CK19 antibody (1:500). A. positive signal in CK19 primary 
with magnification 10X revealing signal in continuity along alveolar walls. C. a 
composite image in which the signal is less evident and requires further magnification. 
D. negative control from a non-contiguous section from the same paraffin block. Scale 

bar = 200 M. 
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At slightly higher power (20X), Figure 4.25 shows the CK19 signal expected in flat, 

gas-exchange cells situated side-by-side can be appreciated although this is less 

evident in merged images. This corresponds to the appearance of type I cells 

forming alveolar walls. The signal does not give the appearance of cuboidal cells 

(typical of type II cells). 

 

A 

 

B

 

C

 

D

 

Figure 4.25. IHC of rat lung with CK19 antibody (1:500) showing signal in primary (A) 
and (C) composite images. B. DAPI nuclear stain. The associated nuclei are relatively 
flat compared to nuclei of type II cells. Magnification 20X. D. negative control from a 

non-contiguous section from the same paraffin block. Scale bar = 100 M. 
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4.2.4 Rat lung antibody to CK7 and CK8 

CK7 and CK8 did not produce signal and therefore no images for these are 

included. The antibody used for CK7 proved to be anti-human but not anti-

rodent. Although the species source of the CK 8 antibody was correct (anti-rabbit, 

anti-goat), the quality of the antibody may not have been satisfactory.  

 

4.2.5 Rat middle ear: SP-A and cytokeratins  

After confirming positive SP-A protein and CK18 and CK19 in rat lung, an attempt 

was made to identify our proteins of interest in rat middle ear epithelium before 

proceeding to mouse middle ear. Whereas the epithelium of mouse middle ear is 

extremely thin and very difficult to dissect from its bony cavity, rat middle ear 

epithelium is thicker and easier to remove using a dissecting microscope. These 

strips of epithelium were also examined as wholemounts. The disadvantage of 

removing epithelium from its bony support is the loss of orientation with respect 

to the anatomical contours of the middle ear cavity. Rat skulls and temporal 

bones are larger than mouse and require more time for processing than mouse. 

 

Because our temporal bone preparation and decalcification method had not 

been optimised for rat, the rat middle ear epithelium was examined by 

wholemount and also by frozen section. Control tissue was not used for frozen 

section thus the results for this stage are not shown but some features are 

described below because they bear some implication for future work.  

 

Signal was obtained in whole-mount sections of rat middle ear for SP-A, CK18 

and CK19 which included controls (data not shown). However, whole-mount 

does not delineate cell membrane boundaries clearly even on H&E staining. Thus, 

the signal from the wholemount “bird’s eye view” does not localise IHC signal to 

individual cells or distinguish whether it is intracellular or extracellular even 

when it is next to DAPI-stained nuclei. 

 

Some frozen sections also showed positive signal for CK18 and CK19 and even 

showed a slight difference in distribution in that CK19 signal appeared more 
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continuous - as in lung alveoli - than CK18 which might reflect the lung 

distribution of the type I cell and the type II cell if such a pattern is present in 

middle ear epithelium. Surprisingly, antibody markers for both SP-A protein and 

pan-cytokeratin were negative. The nuclear DAPI stain was positive in all 

wholemount sections. 

 

4.2.6 Mouse lung 

In general, the alveoli of mouse lung are less well expanded than rat (compare 

Figure 4.1 above to Figure 4.26 below) due to the more delicate tissue of mouse, 

the easier rupture of air sacs and consequent lung collapse. Below we see H&E 

images of mouse lung illustrating the compressed appearance (Figure 4.27A). 

Despite the compressed appearance, some expanded alveoli can be found which 

illustrate the various cell types seen in alveoli (Figure 4.27B). This results in a 

diffuse, uniform background signal. 

A

 

B

 

Figure 4.26. H&E stain of a Mouse lung A. Shown is relatively collapsed alveolar sacs. 
Magnification 10X; Scale bar = 200 µm. B. Adjacent H&E image at 40X shows well 

expanded alveoli with various cell types as seen in Figure 4.3. Scale bar = 20 M. 
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4.2.7 SP-A in mouse lung 

At low magnification (Fig 4.27A), SP-A signal is evident within alveoli although 

any visible signal is likely to represent extracellular clumps of SP-A rather than 

intracellular signal. This lack of intracellular signal is in agreement with 

Schwingshackl, 2017.  
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Figure 4.27. IHC Mouse lung with labelled SP-A with secondary at 1:2000. A. SP-A 
antibody (1:500) B. DAPI stain. C. Merged composite. D. Control image from non-
contiguous section omitting primary antibody and using secondary at 1:4000. 
Magnification 10X; scale bar = 200 µm. 

 

Even at higher power and higher concentration (1:500) and with the contrast 

provided by DAPI stain (Fig 4.28C), the SP-A signal is most likely to be 

extracellular. 
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Figure 4.28. IHC of Mouse lung. A. SP-A primary Ab (1:500) and secondary Ab applied 
at 1:4000. B. DAPI nuclear stain. C. Merged. D. shows a non-contiguous control section 

with omitted primary antibody. Magnification X20. Scale bar = 100 M. 

 

Furthermore, the rounded appearance of the extracellular signal probably 

reflects the presence of SP-A within secreted tubular myelin which may revert to 

a rolled up sheet during processing whereas in life it spreads out with the 

surfactant complex over the inside walls of expanding alveoli. 

 

At this stage of investigation, examination at higher power (100X magnification) 

with oil immersion failed to confirm the presence of intracellular SP-A signal in 

mouse lung. The spots seen on Figure 4.29A and C are extracellular. 
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Figure 4.29. IHC of Mouse lung with SP-A. 
A. positive signal for SP-A at 1:500 with 
mainly extracellular distribution. B. DAPI 
stain. C. Merged composite. No control 
section was available. Magnification 100X, 
scale bar omitted. 

 

Apart from lack of intracellular signal in mouse lung alveoli, it is also interesting 

to note that there is no convincing signal within Clara cells of the upper airways 

despite clear extracellular signal in all positive sections at lower power.  
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4.2.8 SP-A in mouse middle ear 

Figure 4.30 shows epithelium lining the bony cavity of the mouse middle ear. 

Within the bony wall, a nest of bone marrow cells is visible. SP-A fluorescence is 

evident as speckled signal within the epithelium in contrast to a more diffuse, 

robust signal within the cytoplasm of bone marrow cells. DAPI stain shows nuclei 

of connective tissue cells within the stromal layer deep to basement membrane. 
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Figure 4.30. IHC of Mouse Ear. (A) This figure shows the epithelium of the 
superomedial middle ear with SP-A antibody (1:50) at the highest concentration visible 
at 20X magnification. (C) Control images with primary antibody omitted showing no 

signal in primary or (D) composite image (20X magnification). Scale bar = 100 M. 

 

At higher 100X magnification with oil immersion (Figure 4.31), the intracellular 

signal can be confirmed by merging the primary image with the nuclear DAPI 

stain which reveals the signal as perinuclear. When the signal accumulates on the 

surface of the cell, it is difficult to say whether the secreted SP-A is simply 

adjacent to the cell or located within the sol or gel phase of mucoid secretion.  
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Figure 4.31. IHC of Mouse Ear. This figure shows epithelium of the inferomedial middle 
ear where there are some ciliated, low cuboidal cells with SP-A antibody (A) at the 
lower concentration 1:500 visible at 100X magnification with (B) DAPI stain, (C) 
composite image and (D) adjacent H&E section. The H&E shows that, in the middle ear, 
even flat cells may be ciliated. Some of the SP-A signal is accumulated on the cell 
surface (large arrow) and a tiny amount is seen in a perinuclear, intracellular location 

(small arrow). No control image available. Scale bar = 20 M. 

 

However, one does get an impression of cilia at higher magnification (100X) 

when cell nuclei are observed superficial to the cytoplasmic layer as in the image 

below (Fig 4.32). These nuclei could be free macrophages or, perhaps more likely, 

extruded nuclei of epithelial apoptosis. Such an apoptotic nucleus can be seen in 

the H&E stain below (Fig 4.32D).          
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Figure 4.32. IHC of Mouse Ear. This figure shows ciliated, low cuboidal epithelium of 
the medial wall of middle ear with SP-A antibody (A) at the lower concentration 1:500. 
The SP-A signal is visible at 100X magnification with (B) DAPI stain in the composite 
image (C) although the signal is mainly situated in the ciliary layer of epithelium rather 
than intracellular. D. Adjacent H&E section shows typical ciliated, low cuboidal 

epithelium of middle ear adjacent to Eustachian tube. Scale bar = 20 M. 

 

4.2.9 SP-A in bone marrow nests above mouse middle ear 

The most convincing signal for SP-A within the cytoplasm of any cells of the 

middle ear is to be found within the surrounding bone marrow nests. For 

orientation purposes, the control images below in Figure 4.33 shows bone 

marrow cells in nests adjacent to the middle ear space. Cells in bone marrow are 

variable in size and morphology.  

  



 

101 

A

 

B 

 

C 

 

D

 

Figure 4.33. IHC of Mouse Ear. Figure A shows bone marrow cells labelled with SP-A in 
a bone marrow nest above the roof of the middle ear. It shows apple-green SP-A signal 
above background, B. is a DAPI stain and C. is a merged image which results in 
significant discoloration of primary antibody signal. The merging program gives an 
enhanced intensity to background fluorescence. D. shows control bone marrow cells 
without primary antibody giving diffuse background signal in cell cytoplasm. Scale bar 
= 100µm.  

 

SP-A signal is generally clearer in bone marrow cells than in middle ear 

epithelium. This makes bone marrow cells a useful positive control adjacent to 

middle ear epithelium even though it is not clear what type of bone marrow cell 

– myeloid or lymphoid - contains SP-A protein. Below is Spa 1:500 signal in the 

bone marrow adjacent to middle ear (Figure 3.34).  

 

The signal in bone marrow in this image shows some signal adjacent to nuclei. 

There is a faint, stippled signal within the bone marrow which is also in the 

epithelium of the middle ear as well as in the bone communication channel. 

  



 

102 

A 

 

B 

 

C 

 

D 

 

Figure 4.34. IHC of Mouse Ear. This figure shows bone marrow cells labelled with SP-A 
in a bone marrow collection above the roof of the middle ear. A. apple-green signal 
above background, B. DAPI stain and C. is a merged image which results in significant 
discoloration of primary antibody signal. D. control bone marrow from non-contiguous 

section of same specimen showing no signal. Scale bar = 100 M. 

 

4.2.10 SP-A signal in the mouse Eustachian tube 

Figure 4.36 shows a coronal H&E section of the middle ear space. Note that the 

Eustachian tube is supported by cartilage and is superomedial to the main 

middle ear chamber. This results shows the relationship of the nasopharyngeal 

end of the Eustachian tube which lies above and medial to the middle ear cavity. 

A higher magnification of this region is shown in Figure 4.35 using IHC. 
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Figure 4.35. Panoramic view of middle ear space and adjacent Eustachian tube 
cartilage (et), bone marrow niche (bm) and middle ear space (me). Magnification 2.5X. 
Scale bar =2 mm. 

 
Closer examination of the Eustachian tube epithelium confirms that there are 

mainly tall ciliated cells with some flat squamous cells as reported in previous 

studies (Lim, 1974). At high concentration (1:50), SP-A protein is expressed in the 

epithelium of the Eustachian tube within the intracellular compartment (see 

Figure 4.36).  
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Figure 4.36. IHC of mouse coronal section of left Eustachian tube (nasopharyngeal end) 
adjacent to its supporting cartilage. A. Primary SP-A at 1:50 showing signal in apical 
areas of epithelium as well as some chondrocytes of the Eustachian tube. B. DAPI stain. 

C. Merged. D. Control image. Magnification 40X. Scale bar = 100 M. E. H&E of similar 
segment of Eustachian tube at 20X showing surrounding cartilage. F. H&E showing 
variation in epithelium from tall ciliated to flat squamous. Magnification 40X, scale bar 
omitted. 
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A more convincing result of epithelial debris containing SP-A is seen in Figure 

4.37A at the “exit” to the middle ear, that is, the medial opening of the 

Eustachian tube. The DAPI stain reveals nuclear debris as well as intact nuclei 

with positive SP-A signal in the cytoplasm which probably represent free 

macrophages engulfing “used” SP-A or, alternatively, apoptosed cells containing 

SP-A (Figure 4.37C.) 
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Figure 4.37. IHC of Rat Coronal section of left Eustachian tube (tympanic end) adjacent 
to its supporting cartilage. A. Primary SP-A at 1:500 showing speckled signal in free 
cellular debris within middle ear space. There is also some intracellular perinuclear 
speckling within ciliated epithelium (arrow). B. DAPI stain. C. Merged. D. control image 

- omitting primary antibody. Magnification 40X. Scale bar = 100 M. 
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4.2.11 Cytokeratins in mouse middle ear 

In general there was little if any convincing signal for cytokeratins in the mouse 

middle ear. CK18 was positive in some cells both ciliated and non-ciliated. 

Controls were done only in the CK18 specimens. CK7 showed only faint signal in 

some middle ear cells. CK19 was negative. 

 

In summary, results depicted in this chapter demonstrate the following key 

points:  

1. That SP-A protein can be demonstrated in rat lung alveolar spaces both 

intracellularly and extracellularly. 

2. The most convincing signal for SP-A protein in rat lung tissue can be 

observed in the Clara cells of the airways making Clara cells an excellent 

positive control partly because of their large size and contiguity with each 

other. 

3. The same cannot be said for mouse lung i.e., SP-A signal is only present in 

the extracellular location and seems conspicuous by its absence from 

Clara cells. 

4. That SP-A protein is present within the air spaces of both the mouse lung 

and the mouse middle ear, although the cell of origin in the middle ear 

remains unclear.  

5. That the strongest intracellular signal for SP-A protein is within some cells 

of the bone marrow nests adjacent to the middle ear. 

6. That there are communications in the mouse temporal bones between 

bone marrow spaces and the adjacent middle ear cavity. 

7. That cytokeratins are useful in distinguishing cell types within rat lung 

(type I versus type II alveolocytes). The role of cytokeratins for identifying 

specific cell types lining the middle ear cavity remains to be determined. 
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4.3 Western blotting 

4.3.1 Protein concentrations using the Bradford assay 

A Bradford assay was carried out on four adult mouse lungs (C57/B6 strain) in 

order to provide an estimate of the total protein concentration. The Bradford 

assay was performed using four mouse lungs to provide six lung samples (L1, L2, 

L3, L3A, L4, L4A). From these six samples, lungs 1, 2, 3 measured average 

readings of 2 mg/mL, 7 mg/mL and 4 mg/mL, respectively. The remaining lungs 

(3A, 4, 4A) were too concentrated to give measurements within the standard 

curve range. 

 

4.3.2 Protein yield and quality using a Coomassie blue stained 

polyacrylamide gel 

A 12% commercial polyacrylamide gel was used to determine the quality and 

yield using Coomassie blue staining. Following gel electrophoresis, the greatest 

concentration of protein was found in two lung samples (L3A and L4A), ranging 

from 120 to 15 kDa as seen in Figure 4.38. All samples showed protein in bands 

at just above 60 kDa and another band at 10-15 kDa. 

 

In regard to the protein of interest, the band above 60kDa is a region where one 

might encounter dimers of SP-A which typically weigh 66 kDa. The band at 10-

15 kDa may represent degenerate protein debris present within both lung and 

middle ear. 
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Figure 4.38. Coomassie blue stained 12% pre-cast polyacrylamide gel of mouse lung protein 
lysates. Lane 1: PAGE ladder (P). Lanes 2-7: Four partial mouse lungs from animal 1, animal 2, 
animal 3 (3, 3A), and animal 4 (4, 4A). Lane 8: BSA (1 mg/mL). Lanes 9-14: replicate loading 
samples as reported in Lanes 2-7.  

 

Next, two lungs with lysates that represent the lowest and highest estimated 

protein concentration (lung 1 and lung 3A) were serially diluted, electrophoresed 

and stained with Coomassie blue. Figure 4.39 shows the increasing intensity of 

the six serially diluted six samples (a-f) on a 12% polyacrylamide gel. It was noted 

that not all of the serially diluted samples resulted in observable protein bands. 

Thus, it was decided to test all of these diluted samples for western blot analysis 

and then make a recommendation on what concentration(s) are suitable to use 

to ensure optimal signal strength and equal loading between samples 

(Figure 4.41).  
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Figure 4.39. Coomassie blue stained 12% pre-cast 
polyacrylamide gel of gradient mouse lung protein lysates 
(a-f) from animals 1 and 3A. Lane 1: PAGE ladder. Lanes 2-7: 
increasing concentration of mouse lung lysate from animal 
3A (a-f). Lanes 8-14: increasing concentration of mouse lung 
lysate from animal 1. Lanes 7 and 14 represent the 
maximum protein concentration (f) available to add to the 
4X Laemmli dye.  

 

We then assessed lysate samples of processed mouse middle ears in comparison 

to other tissues including lung, brain, kidney, liver, spleen. Because middle ear 

tissue is smaller in mass and volume than most other organs, four paired middle 

ears (8 middle ears) were used to provide an adequate tissue load. The resulting 

gel below (Figure 4.40) showed robust concentrations for middle ear comparable 

to other tissues. The intensity of the staining is more intense than Figures 4.39 

and 4.38 as an electric stain blotter was used. The molecular size range of the 

protein lysates from the six mouse organs is from 120 to 20 kDa. 
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Figure 4.40. Coomassie blue stained 16% pre-cast polyacrylamide gel of 
mouse protein lysates from six mouse organs. Lane 1: PAGE ladder (P). Lane 2: 
brain 1, Lane 3: brain 2, Lane 4: kidney, Lane 5: liver, Lane 6: lung (1f and 4f), 
Lane 7: spleen, Lane 8: paired middle ears 1, 2, 3, 4. 

 

4.3.3 Western blot for lung  

Having established adequate equal loading protein lysates in both middle ear 

and lung, we moved onto western blotting to validate the antibodies used for 

IHC and demonstrate their specificity with antigen recognition with respect to 

the known protein molecular weight. We selected two lung samples with serial 

dilution (1 and 4) and ran these on a gel (12% in MOPS buffer) and performed a 

western blot with SP-A protein with an antibody concentration of 1:1000. No 

bands of the expected size were observed (data not shown). The experiment was 

repeated using antibody to SP-A at a concentration of 1:500 and a very faint 

band was seen in Figure 4.41 in two lung samples (Lanes 6, 7, 14 and 15). The 

band is just below the 30 kDa western ladder band. The membrane was stripped 

but failed to recognise any reprobing with another antibody such as GAPDH. 

Thus, we repeated the experiment.  
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Figure 4.41. Western blot of 12% polyacrylamide gel of gradient 
mouse lung protein lysates from Animals 1 and 4 using SP-A 
antibody at 1:500 concentration. Lane 1: PAGE ladder. Lanes 2-7: 
increasing concentration of mouse lung lysate from animal 1. Lane 8: 
Western Ladder. Lanes 9-14: increasing concentration of mouse 
lung lysate from animal 4. Faint bands are visible at increased 
concentrations better seen in animal 1 (arrow). SP-A 
antibody = 1:500. 

 
Figure 4.42 shows the western blot results of mouse lysate from two lung 

samples tested with three antibodies. With the issues encountered in western 

blot optimisation, the first antibody probed was GADPH (1:2000) as it serves as a 

good positive control. A band of the expected size was observed, 35k Da. Next, 

we stripped the membrane and applied CK19 antibody and a band of the 

expected size was observed, 44 kDa. Then, the membrane was stripped and 

reprobed with 1:200 SP-A antibody. A band of the expected size was observed, 

35 kDa. Finally, the membrane was stripped and reprobed with 1:2000 CK18 

antibody. A band of the expected size was observed, 47 kDa 
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Figure 4.42. Western blot of 12% polyacrylamide gel of gradient mouse lung protein 
lysates from animals 1 and 4 using three antibodies. Lane 1: PAGE ladder. Lanes 2-7: 
increasing concentration of mouse lung lysate from animal 2 (BALBc). GAPDH at 36 
kDa; CK19 at 44 kDa; surfactant A (SP-A) at 35 kDa and CK18 at 47 kDa.  

 

No signal was detected from mouse middle ear (data not shown). In order to 

increase the protein load from mouse middle ear to improve western antigen 

detection, we acquired 20 pairs of mouse middle ears (16 male BALBc, 4 female 

C57/ B6; source Agresearch Ruakura) in an attempt to pool enough tissue sample 

of middle ear. Initially, 4 pairs of mouse ears were dissected by separating 

middle ear bullae and cochleae from the temporal bones using a dissecting 

microscope Nikon SMZ800. The temporal bones were perforated with a 25 gauge 

needle to allow penetration of phosphatase inhibitor solution (PhosSTOP, Roche, 

04906837001) and RIPA lysis buffer (cshprotocols.cshlp.org/RIPA lysis buffer). 

Middle ear epithelium was separated by enzyme dissection using trypsin (Gibco 

Life Technologies, EDTA-Trypsin 0.25% dissociation reagent). 

 

Having acquired new antibodies to five proteins (SP-A, CK7, CK8, CK18, CK19), we 

began a new series of experiments to validate the new batch. The aim was to use 

more concentrated amounts of primary tissue from pooled middle ears so that 
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there would be enough tissue load to allow adequate comparison with lung. 

However, difficulties were encountered in the transfer of protein on the gel to 

the PVDF membrane. In a further attempt to identify why there has been lack of 

transfer from gel to membrane by repeating the study using equipment and 

resources kindly provided by MS3 Solutions Ltd. A new series of lung, middle ear 

and kidney protein lysates were also prepared. 

 

Figure 4.43, shows the Coomassie stain of a electrophoresed 12% Bis-Tris 

Criterion TM Precast Gel where 12 samples had be transferred to a PVDF 

membrane including the ladder. Protein transfer was successful for mouse 

middle ear (25-200 kDa), lung (14-200 kDa) and kidney lysates (14-200 kDa).  

 

 

 

Figure 4.43. Coomassie blue stained 12% gel showing retention of mouse protein from 
middle ear (Lanes 2, 12), lung (Lanes 6, 7, 14, 15) and kidney (Lanes 7, 8, 16, 17). L = 
Ladder. This 

 

Next, the PVDF membrane underwent blocking in 3% salmon albumin in TBST 

and was then divided into two pieces to allow two different antibody 

concentrations. These were incubated overnight in primary SP-A antibody 

diluted to 1:1000 and 1:5000 respectively in 5 mL TBST with 0.1% bovine serum 

albumin. A secondary fluorescent antibody was applied (CY3 Goat anti-rabbit, 

532nm) and the membrane developed on BioRad ChemiDoc TM MP Imaging 

System. The resulting image is seen in Figure 4.44 below.  
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Figure 4.44. PVDF membrane showing SP-A signal in mouse kidney and corresponding 
faint bands in mouse middle ear and lung. SP-A 1:1000; Middle ear (Lane 2), lung (Lane 
6, 7) and kidney (Lanes 7, 8). SP-A 1:5000; Middle ear (Lane 12), lung (Lanes 14, 15) and 
kidney (Lanes 16, 17). 

 

These results are in agreement with Figure 4.41 where a faint band was observed 

for SP-A in mouse lung when 1:500 primary antibody concentration is used. 

However, there is evidence of a ≈29kDa band in mouse middle ear and ≈35 kDa 

band in kidney. There is also a higher band of ≈45kDa, possibly a dimer. However, 

the literature refers to dimers in the 50-66 kDa (Bourbon & Chailley-Heu, 2001; 

Vieira, 2017). Of interest, a band is observed at 1:5000 SP-A antibody 

concentration in the kidney but not the lung or ear but the protein lysates have 

not been optimised for equal loading. The kidney sample is very concentrated 

and was thus diluted for subsequent studies.  
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4.3.4 Signals for middle ear 

Pooled, concentrated, middle ear tissues generated positive signal on western 

blotting for SP-A and CK18. The signal for the middle ear is approximately at 

35 kDa. It is noted that this band is higher than the previous western (Figure 4.44) 

but a higher protein lysate concentration was loaded. The signal for SP-A in lung 

1 shows a broad signal in the range 29-35 KDa and lung 2 shows a signal in 

keeping with the 29 KDa end of the range for SP-A. CK18 shows a strong signal in 

lung at 45 kDa and a broad signal in the middle ear also at 45 kDa. 

 

 

Figure 4.45. Western blot showing bands at approximately 35 kDa 
consistent with SP-A protein. Lung 1 is a fresh lung sample, Lung 2 is stored 
sample. Kidney is negative possibly due to deterioration in storage. Middle 
ear 1 is 5 μL load and Middle ear 2 is 20 μL. SP-A = 1:1000. 

 

Antibody to CK 7 did generate bands in the middle ear and lung but we were 

unable to verify the exact level of the bands due to poor contrast with the dark 

background of the membrane image.  

 

Two house-keeping antibodies – GAPDH and α-tubulin - were applied to the 

membrane. GAPDH did not give a signal. A further stripping of the membrane 

was followed by application of α-tubulin which also failed to give a signal. 
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5 Chapter 5 

Discussion 

5.1 Introduction 

The project began with an attempt to develop an animal model of middle ear 

infection whose purpose was to assess the cellular debris which accumulates in 

the middle ear during infection. Using intraperitoneal injections of 

lipopolysaccharide (LPS), mice readily develop lung inflammation. We anticipated 

a similar natural inflammatory response in the middle ear, it being a part of the 

upper respiratory tract. LPS was administered to 6 mice (C57/B6) resulting in a 

clinically obvious response of shivering at 6 hours post-injection reflecting fever. 

One animal died within 4 hours of LPS injection. The temporal bones were 

harvested and processed for histological evaluation but failed to show any 

significant inflammatory response in the middle ear on H&E staining (data not 

shown). Because of this apparent lack of response, this model was abandoned. 

The direction of this investigation turned towards the location and distribution of 

respiratory cell types in untreated rodents using antibodies to SP-A and CKs in 

the middle ear.  

 

During the course of this study, many challenges were encountered with 

embedding, sectioning, and high background. Therefore, the quality of sections 

sometimes meant that a matching control slide immediately adjacent to the test 

slide was not available. Efforts were undertaken to reduce high background by 

optimising the fixation time, blocking time, use of different blocking buffers, 

Sudan Black B and antigen revival time and buffer pH (data not shown). The 

preparation of mouse heads involved fine-tuning of the decalcification process as 

well as accurate orientation of the sections to allow permeation of the paraffin 

into air spaces of the middle ear. Both coronal and axial sections of middle ear 

proved to have their advantages. Coronal sectioning provided a good cross-

section of the Eustachian tube as well as the epitympanum (attic), the location of 

early middle ear inflammation.  
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Examination of isolated lining of the middle ear was somewhat difficult in the 

mouse because the lining epithelium is too thin to be accurately dissected from 

bone. Identification of cells containing surfactant proved difficult initially due to 

poor decalcification resulting in disorganised sections. We then tried rat middle 

ear because the rat middle ear cavity is larger than mouse, the supporting 

stroma is thicker and harvesting the rat mucosa is thus easier. Initially we laid the 

mucosa on glass slides for wholemount labelling which gave some idea of the 

pattern of the arrangement of capillary vessels but was not useful for SP-A 

labelling because cell margins are not distinct on wholemount (data not shown). 

We then attempted frozen sections which succeeded in labelling of one 

cytokeratin (data not shown). The disadvantage of removing mucosa from the 

bony cavity is that it separated the epithelium of interest from its specific 

anatomical location within the rat middle ear. Overall, this study successfully 

developed a decalcification, fixation, embedding, H&E and IHC protocol for adult 

mouse temporal bones. 

 

5.2 Extrapolating data from lung to middle ear 

This study has demonstrated that SP-A is present within the temporal bones of 

two strains of mice. It is present within some cells which make up the adjacent 

nests of bone marrow and also as free protein within the air spaces of the middle 

ear and Eustachian tube. What has not been established is whether any of the 

epithelial cells lining the middle ear cavity produces SP-A. At this stage, it has not 

been possible to confirm the existence of cells in the murine middle ear cavity 

proper which are analogous to type II alveolocytes of lung.  

 

5.2.1 H&E staining 

Basic histology by H&E staining confirmed various structural and morphological 

aspects of rat and mouse lung before moving onto mouse middle ear. H&E 

staining confirmed the general observation that middle ear epithelium is 

generally ciliated on the floor of the middle ear and is flatter and non-ciliated on 

the roof of the middle ear. Although the middle ear is a bone-encased structure, 

an interesting feature is the presence of flatter epithelium covering its superior 
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surface. In general, the “ceiling” of all mammalian middle ear is considered for 

gas exchange which is partly reflected in its proximity to capillaries due to the 

thinner connective tissue stroma compared to taller cells. Flat cells are also 

found overlying mobile areas such as the tympanic membrane, ossicles and 

middle ear muscles. Tissue movement beneath any epithelium facilitates its 

natural apoptosis and this may be an area for future investigation as it relates to 

the apoptosed epithelial debris present within the normal middle ear. 

 

5.2.2 H&E reveals communications from the middle ear cavity to the 

bone marrow  

An unexpected finding in two strains of mice (BALBc and C57/B6) was the 

presence of communications within the bone encasing the middle ear passing 

from the middle ear space to the surrounding nests of bone marrow. These 

communications were observed in axial rather than coronal sections. It is likely 

that this is present in other strains of mice. These communications could be 

called “micro-foramina” (plural of “foramen”). They differ from much longer 

lymphatic channels found in long bones called canaliculi (Clarke, 2008) and also 

from the large foramina within the skull base for the passage of cranial nerves 

e.g., foramen ovale, jugular foramen. 

 

Such communications have not been reported in standard textbooks or papers 

on human temporal bone (Anson, 1984; Wang et al., 2006); nor in papers on 

human temporal bone marrow pathology (Li et al., 1994); nor through methods 

such as CT scanning of temporal bones (Ahmad, 2014). Some studies identified 

marrow even within the tiny ossicles of the middle ear but did not identify 

communications (Whyte-Orozco, 2007). Embryologically the middle ear chamber 

develops by pneumatisation of the mastoid. Initially the foetal middle ear space 

is filled with mesenchyme whose cells gradually disperse as the middle ear space 

pneumatises (Anson & Donaldson, 1981). The mesenchymal cells differentiate 

into mature connective tissue forming tenuous adhesions which suspend the 

middle ear ossicles. Literature referring to the bone marrow surrounding the air 

spaces does not refer to communications between the two (Koc et al., 2004). 
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There are reports of communications between the bone marrow of human 

temporal bones and middle ear mesenchyme which occurs in the foetal stage 

and continues into early infancy (Linthicum, 1994; Whyte-Orozco, 2007). 

However, these communications are continuations of connective tissue rather 

than patent passages with a definite bony margin. Both authors used CD15 

antibodies to mark cells simultaneously in bone marrow and in the middle ear 

mesenchyme. These structures probably atrophy and perhaps give rise to the 

very thin, tenuous adhesions present in the attic spaces of the middle ear. Other 

studies examining the cochleae of small animals did not seem to encounter such 

structures (Hardie, 2004). Studies on developmental endochondral ossification 

make no mention of such communications in the temporal bone (Long, 2013; 

Mansour et al., 2013). 

 

In summary, these communications deserve more investigation because they can 

be considered a part of the murine middle ear. In mice they can be assessed 

using axial sections and this approach could be applied to rat and other species 

including human. It would also be possible to study their development using 

rodent embryos. At least in mice, one can say that the middle ear includes its 

own supply of immune cells from its connected – not just adjacent – bone 

marrow. 

 

5.3 Immunohistochemistry 

IHC revealed the strongest presence of SP-A protein within cells of the most 

remote part of the middle ear – the adjacent bone marrow spaces. The next 

strongest signal is seen amidst cellular debris at the entrance to the middle ear 

and the Eustachian tube opening. Some SP-A has been identified in relation to 

middle ear epithelium, more on the luminal surface of flat or cuboidal cells but 

occasionally seen within the apical surface of cuboidal or tall cells. These 

observations suggest that SP-A is produced in bone marrow and distributed to 

the middle ear either as a secretion or within cells which make their way from 

the bone marrow to the middle ear chamber.  
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IHC also helped to identify SP-A protein within cellular debris adjacent to the 

Eustachian tube at its nasopharyngeal opening. Since some SP-A signal was also 

noted on the surface of middle ear epithelium, it is likely that some of the debris 

in the nasopharynx has its origin in the middle ear and is not just from the 

nasopharynx. Whether this SP-A protein originates in middle ear epithelium or 

bone marrow remains unclear but there is material for a project to investigate 

the circulation of surfactant within the middle ear.  

 

Poor signal to antigen staining may have been due to protein cross-linkage 

secondary to PFA fixation although fixation was restricted to 2 hours immersion. 

This may explain why so little signal to SP-A antigen and to some of the CKs was 

found. 

 

Also, one limitation of the study was the lack of enough sequential sections to 

search conclusively for positive SP-A protein signal. This was partly due to 

technical issues with the microtome and some inconsistent sectioning.  

 

For the purpose of providing negative controls for IHC of mouse tissues, the 

primary antibody was omitted as well as application of 5% goat serum to reduce 

background fluorescence. A better method for achieving a more conclusive 

negative control involves application of a pre-immune serum usually from the 

same species in which the secondary antibody was raised to the control slide 

(Ivell et al., 2014; Hewitt et al, 2014).  

 

Exactly how SP-A protein and surfactant are dispersed throughout the middle ear 

remains unclear. One possibility is that SP-A-containing cells are matured in bone 

marrow, pass along micro-foramina, insinuate themselves into the lining 

epithelium of the middle ear and secrete surfactant and SP-A. The adjacent bone 

marrow may also provide the macrophages normally present within the middle 

ear. These may have a role similar to free pulmonary macrophages – collection of 

cell debris and recycling of surfactant including its component SP-A. Alternatively, 

the middle ear may receive its supply of SP-A-containing cells from mesenchymal 

stem cells of bone marrow via the blood stream. 
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IHC also gave some interesting results in regard to cytokeratin distribution in that 

CK18 and CK19 showed positive signal in various regions of the middle earbut did 

not seem to localise themselves to any particular cell type. Ideally IHC would 

have enabled co-localisation of SP-A protein and CK8 and CK18 within lung 

initially and then in middle ear pointing towards a more functional 

characterisation of middle ear epithelium.  

 

A final aspect of SP-A protein labelling was the observation that SP-A is common 

to middle ear bone marrow, Eustachian tube openings, type II alveolocytes and 

Clara cells of the bronchial tree. Clara cells and type II cells have an important 

feature in common: both are a non-ciliated, progenitor cell for many of the other 

cell types adjacent to them although the Clara cell can produce also ciliated cells 

in the lung whereas the type II cell can only divide into a type I cell and another 

type II cell. Rather than search for a type II alveolocyte equivalent within the 

middle ear, perhaps the mouse middle ear has a Clara cell equivalent which acts 

as progenitor for all other cell types. In any case, SP-A within a cell in the upper 

or lower respiratory tract implies progenitor potential for that cell. 

 

5.4 Antibody validation 

Western blotting is essential for validation of antibodies used in IHC studies. 

Commercial pre-cast gels have advantages of consistency in their composition 

although it is difficult to ascertain whether they are made up of stacking and 

resolving components or are simply the resolving type alone. The concentration 

of the gel must be appropriate to the molecular weight of the protein. Home-

made gels are cheaper but are time consuming to prepare and have less 

refrigeration life-span.  

 

Western blotting enabled validation of the SP-A as well as CK18 and CK19 from 

lung and middle ear. Bands of expected antigen size were observed. This method 

only localises proteins to tissues but does not localise the SP-A to cell types or to 

specific locations within the temporal bone. Additional antibody cell markers at 
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different wavelengths are required for co-localisation studies with access to 

higher magnification such as the confocal microscope. In addition, mass 

spectrophotometry could also be used to further identify proteins in the lysate. 

This would involve separating proteins through gel electrophoresis and with 

further fractionation into component peptides to be analysed finally by 

spectrometry (Wang and Wilson, 2013). Future studies, could also use RNA 

transcriptome analysis at the cell level and as more technologies become 

cheaper, dual fluorescence detection of protein and RNA.  

 

5.5 Future directions 

The micro-foramina found in the mouse middle ears provide a direct access from 

the bone marrow nests to the middle ear cavity. Free SP-A is present at the other 

extreme i.e., the Eustachian tube opening. A much more detailed study would be 

required to demonstrate any direct movement of such cells from bone marrow 

to middle ear. There is also some data from IHC staining to confirm SP-A signal 

within the cells lining at least one communicating foramen (see Figure 4.34 

above). 

 

It is worthwhile doing further histological and IHC study of the epithelium of the 

middle ear using rodent models to further identify and characterise micro-

foramina. Rat offers relatively abundant middle ear epithelium which is easier to 

remove and keep intact by dissection. Mouse offers easier identification of cells 

in relation to their anatomical location because at least two sections of mouse 

head can be fitted onto one glass slide, facilitating comparison of a test section, a 

control section and an H&E slide for orientation. 

 

Another aspect of SP-A protein is to examine whether surfactant and surfactant 

protein production may be more concentrated in the more crowded spaces of 

the middle ear such as the attic (epitympanum) where there are delicate 

mucosal folds which suspend the malleus and incus. These areas are subject to 

collapse in humans as they are adjacent to the “slack” pars flaccida of the 

tympanic membrane. SP-A and surfactant may have a role in preventing collapse 
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of this particular region of the middle ear. This also raises the question of 

whether there may be pressure-receptor cells in this region. 

 

One other aspect for future investigation is the pattern of cellular turnover in the 

middle ear. In general, simple epithelium such as middle ear mucosa sheds by 

apoptosis. In the lateral tympanic membrane, replacement of epithelium occurs 

in part due to cell migration. This may also occur in the epithelium on the middle 

ear surface of the tympanic membrane and possibly in the middle ear itself. This 

can be investigated using proliferation markers such as bromodeoxyuridine and 

apoptosis markers such as TUNEL-labelling. This could be of relevance to the 

upper middle ear – the epitympanum - where inflammatory disease has its most 

severe effects in narrow compartments partly due to accumulation of cellular 

debris. 

 

A final area for investigation is the identification and characterisation of gas-

exchange cells within the middle ear. Several genetic markers for type I 

alveolocytes have already been found such as Aquaporin AQP5 (Chen et al., 

2004). An interesting protein target present in type I cells but not type II cells is 

caveolin I (Campbell et al., 1999). 

 

In conclusion, there is much more to be learnt about the relevance of surfactant 

proteins to the mammalian middle ear. As part of the upper respiratory tract, the 

Eustachian tube leading to the middle ear is a first port of call for viral and 

bacterial assault on the upper airway and surfactant proteins are an important 

part of the innate immune system. The SP-A positive bone marrow “buds” 

connected to the mouse middle ear may also be present in other rodents and 

possibly other mammals including humans. Further work on this may lead to a 

better understanding of middle ear infection and methods of both treatment and 

prevention.  
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Buchwalow, I. B. & Böcker, W. (2010) Immunohistochemistry: Basics and 
Methods. New York: Springer Verlag.  

 
Campbell, L., Hollins, A.J., Al-Eid, A., Newman, G.R., von Ruhland, C., Gumbleton, 

M. (1999). Caveolin1 expression and caveolae biogenesis during cell 
transdifferentiation in lung alveolar epithelial primary cultures. Biochem 
Biophys Res Commun. 262, 744-751. 

 
Chen, Z., Jin, N.,Nasaraju, T., Chen, J., McFarland, L.R., Scott, M., Liu, L. 

Identification of novel markers for alveolar type I and type II cells. (2004). 
Biochem Biophys Res Commun. 319 (3), 774-780. 

 
Cho, A., Suzuki, S., Hatakeyama, J., Haruyama, N., Kulkarni, A.B. (2010). A method 

for rapid demineralization of teeth and bones. Open Dentistry J 4:223–
229. 

 
Clarke, B. (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3: 

S131-S139. 
 
Creuwels, L.A.J.M., van Golde, L.M.G., Haagsman, H.P (1997). The pulmonary 

surfactant system: biochemical and clinical aspects. Lung. 171: 1-39. 
 
Crouch, E., Hartshorn, K., Ofek, I. (2000). Collectins and pulmonary innate 

immunity. Immunology Reviews. 173: 52-65. 
 
Dutton, J. M., Goss, K., Khubchandani, K. R., Shah, C. D., Smith, R. J., Snyder, J. M. 

(1999). Surfactant protein A in rabbit sinus and middle ear mucosa. Ann 
Otol Rhinol Laryngol. 108 (10): 915-924.  

 
Floros, J., & Hoover, R. R. (1998). Genetics of the hydrophilic surfactant proteins 

A and D. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 
1408(2-3), 312-322.  

 
Forrester-Gauntlett, B.K.E. (2013). Developmental gene expression profile of 

Vmo1 in the mouse auditory system (MScR dissertation, University of 
Waikato). 

 
GeneCards (2019). The human gene database. Retrieved on 2.10.2019 from URL 

https://www.genecards.org/cgi-
bin/carddisp.pl?gene=SFTPA1&keywords=surfactant,a. 
 

Glasser, S.W., Burhans, M.S., Korfhagen, T. R., Na,C.L., Sly, P. D., Ross, G. F., 
Ikegami, M., Whitsett, J. A (2001). Altered stability of pulmonary 
surfactant in Sp-C-deficient mice. Proceedings of the National Academy of 
Sciences. (98):11: 6366-6371. 

 
Gobran L.I., Rooney, S.A. (2004). Pulmonary surfactant secretion in briefly 

cultured mouse type II cells. American Journal of Physiology of Lung, 
Cellular Molecular Physiology. 286: L331–L336. 



 

126 

Grace, A., Kwok, P., Hawke, M. (2007). Surfactant in middle ear effusions. 
Otolaryngology Head and Neck Surgery. 96:336-340. 

 
Gribben B, et al. (2012). The incidence of acute otitis media in New Zealand 

children under five years of age in the primary care setting. J Prim Health 
Care. 4(3):205-12.  

 
Haczku A. (2008).Protective role of the lung collectins surfactant protein A and 

surfactant protein D in airway inflammation. J Allergy Clin Immunol. 
122(5):861-79. 

 
Hardie N.A., MacDonald, G., Rubel, E.W. (2004). A new method for imaging and 

3D reconstruction of mammalian cochlea by fluorescent confocal 
microscopy. Brain Res.  1000: 200–1. 

 
Hawgood, S. & Clement, J.A. (1990). Pulmonary surfactant and its apoproteins. J 

Clin Invest. Jul; 86(1): 1–6. 
 
Head, J.F., Mealy, T.R., McCormack, F.X., Seaton, B.A. (2003). Crystal structure of 

trimeric carbohydrate region and neck domains of surfactant protein A. 
The Journal of Biological Chemistry, 278(44): 43254-43260. 

 
Helms, M.N., Jain, L., Self, J.L., Eaton, D.C. (2008). Redox regulation of epithelial 

sodium channels examined in alveolar type 1 and 2 cells patch-clamped in 
lung slice tissue. The Journal of Biological Chemistry 283:22875-22883. 

 
Hewitt, S. M., Baskin, D. G., Frevert, C. W., Stahl, W. L., & Rosa-Molinar, E. (2014). 

Controls for immunohistochemistry: the Histochemical Society's 
standards of practice for validation of immunohistochemical assays. The 
journal of histochemistry and cytochemistry: official journal of the 
Histochemistry Society, 62(10), 693–697.  

 
Hills, B.A., Bryan-Brown, C.W. (1983). Role of surfactant in the lung and other 

organs. Critical Care Medicine, 11(12): 951-956. 
 
Hirano S. (1996). Migratory responses of PMN after intraperitoneal and 

intratracheal administration of lipopolysaccharide. Am J Physiol Lung Cell 
Mol Physiol. 270:L836-L845. 

 
Huang, K., Kang, X.O., Wang, X., Wu, S., Xiao, J., Li, Z., Wu, X., Zhang, W. (2015). 

Conversion of bone marrow mesenchymal stem cells into type II alveolar 
epithelial cells reduces pulmonary fibrosis by decreasing oxidative stress 
in rats. Molecular Medicine Reports, 11: 1685-1692. 

 
Human Protein Atlas (2019). Retrieved on 13/12/2019 from URL 

https://www.proteinatlas.org/ENSG00000122852-SFTPA/tissue.  
 
Irvin, C. G., & Bates, J. H. (2003). Measuring the lung function in the mouse: the 

challenge of size. Respiratory research, 4(1), 4. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Haczku%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19000577
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC296681/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC296681/


 

127 

Ivell, R., Teerds, K., & Hoffman, G. E. (2014). Proper application of antibodies for 
immunohistochemical detection: antibody crimes and how to prevent 
them. Endocrinology, 155(3), 676–687. 

 
Jang, C.H., Cho, Y.B., Oh, S.E., Choi, J.U., Park, H., Choi, C.H. (2010). Effect of 

Nebulised Bovine Surfactant for Experimental Otitis Media with effusion. 
Clinical and Experimental Otorhinolaryngology, 3 (1): 13-17.  

 
Johansson, J., Curstedt, T. (1997). Molecular structures and interactions of 

pulmonary surfactant components Eur. J. Biochem. 244, 675-693. 
 
Kasper, M. & Singh, G. (1995). Epithelial lung cell marker: current tools for cell 

typing. Histology and Histopathology  (10): 155-169. 
 
Kasper M. (1993). Heterogeneity in the immunolocalization of cytokeratin-

specific monoclonal antibodies in the rat lung: evaluation of three 
different alveolar epithelial cell types. Histochemistry. 100 (1): 65-71. 

 
Ketko, A.K., Lin, C., Moore, B.B., LeVine, A.M. (2013) Surfactant protein A binds 

flagellin enhancing phagocytosis and IL-1β. PLoS One 8(12): e82680. 
 
Kim S. J., Jung, H. H. (2005) Expression of Clara cell secretory protein in 

experimental otitis media in the rat, Acta Oto-Laryngologica, 125:1, 43-47. 
 
King, R.J., Simon, D., Horowitz, P.M. (1989). Aspects of secondary and quaternary 

structure of surfactant A protein from canine lung. Biochimica et 
Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1001 (3): 294-301. 

 
Kobayashi K., Kataura, A., Ohtani, S., Saito, T., Akino, T. (1992). Presence of an 80 

kilodalton protein, cross-reacted with monoclonal antibodies to 
pulmonary surfactant A, in the human middle ear. Ann Otol Rhinol 
Laryngol 101(6): 491-495. 

 
Koc, A., Karaaslan, O., Koc, T. (2004). Mastoid air cell system, Otoscope, 4:144-

154. 
 
Kolble, K., Mole, S.E., Kaluz, S., Reid, K.B.M. (1993) Assignment of the human 

pulmonary Surfactant D protein gene (SFTP4) to 10q22-q23 close to the 
surfactant protein A gene cluster. Genomics, 17: 294-298. 

 
Kotton, D.N. & Fine, A. (2008). Lung stem cells. Cell Tissue Res 331: 145-156. 
 
LeVine, A.M., Whitsett, J.A., Gwozdz, J.A. (2000). Distinct effects of Surfactant 

protein A or D deficiency during bacterial infection of the lung. The 
Journal of Immunology, 165(7): 3934-3940. 

 
Li, L., Guo, X., Olszewski, E., Fan, Z., Ai, Y., Han, Y., Xu, L., Li, J., Wang, H. (2015). 

Expression of surfactant protein–A during LPS-induced otitis media with 
effusion in mice. Otolaryngology–Head and Neck Surgery. 153(3) 433–439. 



 

128 

 
Li, W., Schachern, P.A., Morizono, T., Paparella, M. (1994). The temporal bone in 

multiple myeloma. Laryngoscope. 104 (6, part 1): 675-680. 
 
Liang, J., Michaels, L., & Wright, A. (2003). Immunohistochemical 

Characterization of the epidermoid formation in the middle ear. 
Laryngoscope, 113(6), 1007-1014. 

 
Lim, D.J. (1974). Functional morphology of the lining membrane of the middle 

ear and Eustachian tube: an overview. Ann Otol Rhinol Laryngol. Mar-Apr, 
83: Suppl 11: 5-26. 

 
Lim, D.J., Bluestone, C.D., Casselbrandt, M. (2003). Recent Advances in Otitis 

Media. Proceedings of the Eighth International Symposium, © B.C. Decker 
Inc., ISBN 1-55009-279-0.  

 
Linthicum, F.H., Tian, Q., Slattery, W. (1997). Marrow-mesenchyme connections 

in the fetal and newborn tympanum. Annals of Otology, Rhinology and 
Laryngology 106 (6): 466-470. 

 
Long, F. & Ornitz, D.M. (2013). Development of the Endochondral Skeleton in 

Perspectives in Biology. Editors: Patrick P.L. Tam, W. James Nelson, and 
Janet Rossant. © Cold Spring Harbor Laboratory Press. 

 
Luo, W., Yi, H., Taylor J., Li J., Chi, F., Todd N.W., Lin, X., Ren, D., Chen, P. (2017). 

Cilia distribution and polarity in the epithelial lining of the mouse middle 
ear cavity. Nature Scientific Reports. 7, Article number: 45870  

 
MacArthur, C.J., Trune, D.R., Mouse models of otitis media. (2006). Current 

Opinion In Otolaryngology & Head And Neck Surgery. 14 (5): 341-6. 
 
Marin, L. (1991) Chapter 2, “The Type II Pneumocyte” in Pulmonary Surfactant: 

Biochemical, Functional, Regulatory and Clinical Concepts. J. Bourbon 
Editor, © CRC Press Inc., ISBN 0-8493-6924-X. 

 
Mansour, S., Magnan, J., Haidar, H., Nicolas, K., Louryan, S. (2013). In Chapter 1 

The Temporal Bone in Comprehensive and Clinical Anatomy of the Middle 
Ear. © Springer publications, pp 1-5. 

 
McCormack, F.X. (1998). Structure, processing and properties of surfactant 

protein A. Biochim Biophys Acta. 1408(2-3):109-31. 
 
McElroy M.C., Kasper, M. (2004). The use of alveolar epithelial type I cell 

selective markers to investigate lung injury and repair. Eur Res J.  24: 664-
673. 

 
McGuire, J.F. (2002). Surfactant in the middle ear and eustachian tube: a review. 

Int J Pediatr Otorhinolaryngol; 66:1-15. 
 



 

129 

Merchant SN, Nadol JB Jr (eds): (2010). Schuknecht's Pathology of the Ear, 3rd 
edition. Shelton, People's Medical Publishing House, vol 942, pp 142-147. 

 
Mills, N., Best E.J., Murdoch, D., Souter, M., Anderson, T., Salkeld, L., Ahmad, Z., 

Mahadevan, M., Barber, C., Brown, C., Walker, C., Walls, T. (2015). What 
is behind the ear drum? The microbiology of otitis media and the 
nasopharyngeal flora in children in the era of pneumococcal vaccination. 
Journal of Pediatrics and Child Health 51 (3), 300-306. 

 
Mulay, A., Akram, K. M., Williams, D., Armes, H., Russell, C., Hood, D., Bingle, C. D. 

(2016). An in vitro model of murine middle ear epithelium. Disease 
Models & Mechanisms, 9(11), 1405–1417. 

 
Mulder, J.J.S., Kuijpers, W., Peters, T.A., Tonnaer, E.L.G.M., Ramaekers F.C.S. 

(1998). Development of the tubotympanum in the rat, The Laryngoscope, 
108:1846-1852. 

 
Nayak, A., Dodagatta-Marri, E., Tsolaki, A.G., Kishore, U. (2012). An insight into 

the diverse roles of surfactant proteins SP-A and SP-D in innate and 
adaptive immunity. Frontiers in Immunology. (3): 131: 1-21. 

 
NCBI Gene online database (2019). ). Retrieved on 13.12.2019 from   

https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Ter
m=407213.  

 
NCBI SMARTBLAST online database (2019). Retrieved on 12.12.2019 from   

https://blast.ncbi.nlm.nih.gov/smartblast.  
 
NCBI (2019). National Center for Biotechnology Information. Retrieved on 

2.10.2019 from https://www.ncbi.nlm.nih.gov. 
 
Nunn’s Applied Respiratory Physiology (2017) Elsevier. Editor Lumb, A.B. Eighth 

Edition, ISBN 9780702062940. 
 
New Zealand District Health Board (2004). Otitis media in children: referral 

guidelines for primary care management.  
 
Ochs, M., Johnen, G., Müller, K-M., Wahlers, T., Hawgood, S., J. Richter, J. and 

Brasch, F. (2002). Intracellular and intraalveolar localization of surfactant 
protein A (SP-A) in the parenchymal region of the human lung. American 
Journal of Respiratory Cellular and Molecular Biology. Vol 26, pp 91-98.  

 
Panaanen, R., Sormunen, R., Glumoff, V., van Eijk, M., Hallman, M. (2001). 

Surfactant proteins A and D in Eustachian tube epithelium. American 
Journal of Physiology – Lung Cellular and Molecular Physiology, 281 (3): 
L660-L667. 

 

https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=407213
https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=407213


 

130 

Passali, D., Zavattini, G. (1987). Multicenter study on the treatment of secretory 
otitis media with Ambroxol. Importance of a surface-tension lowering 
substance. Respiration. 51: 52-59. 

 
Perez-Gil, J. (2008). Structure of pulmonary surfactant membranes and films: The 

role of proteins and lipid-protein interactions. Biochimica et Biophysica 
Acta. 1778 (7-8): 1676-1695.  

 
Popov, B.V., Serikov, V.B., Petrov, N.S., Isuzova, T.I., Gupta, N., Matthay, M.A. 

(2007). Lung epithelial cells induce endodermal differentiation in mouse 
mesenchyme bone marrow stem cells by paracrine mechanisms. Tissue 
Engineering. 13 (10): 2441-2450. 

 
Rannels,D.,& Rannels, S.R. (1989). Influence of the extracellular matrix on type 2 

cell differentiation. Chest. (96)165-173.  
 
Reynolds, S. D., Giangreco, A., Power, J. H., & Stripp, B. R. (2000). Neuroepithelial 

bodies of pulmonary airways serve as a reservoir of progenitor cells 
capable of epithelial regeneration. The American journal of 
pathology, 156(1), 269–278. 

 
Reynolds, S.D., Malkinson, A.M. Clara cell: (2010). Progenitor for the bronchiolar 

epithelium. International Journal Biochemistry Cell Biology. 42(1): 1-4.  
 
Sano, H., Kuroki, Y. (2005). The lung collectins, SP-A and SP-D, modulate 

pulmonary innate immunity. Molecular Immunology 42: 279-287. 
 
Schraml, B. U., & Sousa, C. R. E. (2015).  Defining dendritic cells. Current Opinion 

in Immunology, 32, 13–20.  
 
Shepherd, V. L. (2002). Pulmonary surfactant protein D: a novel link between 

innate and adaptive immunity. American Journal of Physiology-Lung 
Cellular and Molecular Physiology, 282(3), L516-517.  

 
Taylor, S., Marchisio, P., Vergison, A., Harriague, J., Hausdorff, W. P., & Haggard, 

M. (2012). Impact of pneumococcal conjugate vaccination on otitis media: 
a systematic review. Clinical infectious diseases: an official publication of 
the Infectious Diseases Society of America, 54(12), 1765–1773.  

 
Tesfaigzi, Y. (2006). Roles of apoptosis in airway epithelia. American Journal of 

Respiratory Cell and Molecular Biology. 34(5): 537-547. 
 
Thompson, A., & Tucker, A.S. (2013). Dual origin of the epithelium of the 

mammalian middle ear. Science. 339: 1453-1456. 
 
  



 

131 

Thornton, R.B., Wiertsema, S.P, Kirkham, L-A.S., Rigby, P.J., Vijayasekaran, S., 
Coates, H.L. (2013) Neutrophil extracellular traps and bacterial biofilms in 
middle ear effusion of children with recurrent acute otitis media. – a 
potential treatment target. PLoS ONE 8(2): e53837. 

 
UCSC Genome Browser:.Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., 

Pringle, T.H., Zahler, A.M., Haussler, D. The human genome browser at 
UCSC. Retrieved on 7.10.19 from https://genome.ucsc.edu/.  

 
Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog, C., Oksvold, P., Mardinoglu, 

A., Sivertsson, Å., Kampf, C., Sjöstedt, E., Asplund, A., Olsson, I., Edlund, 
K., Lundberg, E., Navani, S., Szigyarto, C.A., Odeberg, J., Djureinovic, D., 
Takanen, J.O., Hober, S., Alm, T., Edqvist, P.H., Berling, H., Tegel, H., 
Mulder, J., Rockberg, J., Nilsson, P., Schwenk, J.M., Hamsten, M., von 
Feilitzen, K., Forsberg, M., Persson, L., Johansson, F., Zwahlen, M., von 
Heijne, G., Nielsen, J., Pontén, F. (2015). Tissue-based map of the human 
proteome. Science. 347(6220):1260419. 

 
Van Rozendaal, B.A.W.M., van Golde, L.M.G., Haagsman, H.P. (2001). Localization 

and functions of SP-A and SP-D at mucosal surfaces. Pediatric Pathology 
and Molecular Medicine. 20: 319-339. 

 
Verdaguer, J. M., Trinidad, A., González-García, J. Á., García-Berrocal, J. 

R., Ramírez-Camacho, R. (2006) Spontaneous otitis media in Wistar rats: 
an overlooked pathology in otological research. Lab Animal 35:10, 40-44.  

 
Vieira,F., Kung, J.W., Bhatti, F. (2017). Structure, genetics and function of the 

pulmonary associated proteins A and D: the extra-pulmonary role of 
these type C lectins. Ann Anat. 211:184-201. 

 
Wang, H., Northrop, C., Burgess, B., Liberman, M. C., & Merchant, S. N. (2006). 

Three-dimensional virtual model of the human temporal bone: a stand-
alone, downloadable teaching tool. Otology & neurotology, 27(4), 452–
457. 

 
Wang, P., & Wilson, S. R. (2013). Mass spectrometry-based protein identification 

by integrating de novo sequencing with database searching. BMC 
bioinformatics, 14 Suppl 2(Suppl 2), S24. 

 
Ware, L. B. Modeling human lung disease in animals. (2008). Am J Physiol Lung 

Cell Mol Physiol 294: L149–L150.  
 
Whyte-Orozco, J.R., Cisneros Gimeno, A.I.,  Pérez Sanz, R., Yus Gotor, C., Gañet 

Solé, J. F., Sarrat Torres, M. A. (2007). Connections between bone marrow 
and mesenchyme of the middle ear. Acta Otorrinolaringologica (English 
Edition), 58(1): 4-6. 

 

https://genome.ucsc.edu/


 

132 

Wong, C.J., Akiyama, J., Allen, L., and Hawgood. S. (1996). . Localisation and 
developmental expression of surfactant proteins D and A in the 
respiratory tract of the mouse. Pediatric Research 39, 930–93. 

 
Xiao, H., Li., D.X., Liu, M. (2012). Knowledge translation: airway epithelial 

migration and respiratory diseases. Cell.Mol.Life Sci. 69: 4149-4162. 
 
Yang S., Milla C., Panoskaltsis-Mortari, A., Hawgood, S., Blazar, B.R., Haddad, I.Y. 

(2002). Surfactant protein A decreases lung injury and mortality after 
murine marrow transplantation. Am J Respir Cell Mol Biol.(3):297-305. 

 
Young, B., Woodford, P., O’Dowd, G. (2014). Wheater’s Functional Histology, A 

Text and Colour Atlas, 6th Edition, © Elsevier, Churchill-Livingstone. 
 
 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Yang%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12204891
https://www.ncbi.nlm.nih.gov/pubmed/?term=Milla%20C%5BAuthor%5D&cauthor=true&cauthor_uid=12204891
https://www.ncbi.nlm.nih.gov/pubmed/?term=Panoskaltsis-Mortari%20A%5BAuthor%5D&cauthor=true&cauthor_uid=12204891
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hawgood%20S%5BAuthor%5D&cauthor=true&cauthor_uid=12204891
https://www.ncbi.nlm.nih.gov/pubmed/?term=Blazar%20BR%5BAuthor%5D&cauthor=true&cauthor_uid=12204891
https://www.ncbi.nlm.nih.gov/pubmed/?term=Haddad%20IY%5BAuthor%5D&cauthor=true&cauthor_uid=12204891
https://www.ncbi.nlm.nih.gov/pubmed


 

133 

Appendices 

 

APPENDIX 1 
 

Solutions and Buffers 
 
6X Agarose gel loading buffer  

Ingredients Quantity 

Glycerol 3 mL  

Bromophenol Blue 25 mg  

Xylene Cyanol 20 μL 

Make up to 500mL with sterile mQH2O  
 
Antigen revival buffer – Sodium citrate buffer  

Ingredients Quantity 

Tri-sodium citrate 
(dehydrate) 

1.47g 

Tween 20 250μl 

  

Make up to 500mL with sterile mQH2O and autoclave 
 
Blocking solution for Immunohistochemistry  

Ingredients Quantity 

  

Goat serum 200μL  

1X PBS 1mL  

 
Blocking solution for western blot 

Ingredients Quantity 

Dye reagent concentrate 1 part 

mQH2O 1 part 

 
Bradford reagent 

Ingredients Quantity 

Dye reagent concentrate 1 part 

mQH2O 1 part 

  

Filter through Whatman #1 filter paper to remove particulates. 

0.5M EDTA pH 8.0 

Ingredients Quantity 

EDTA 93.05 g 

Make up to 500mL with sterile mQH2O and autoclave. 
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4 X Laemmli dye 

Ingredients Quantity 

10% SDS 4 mL/0.8g  

Glycerol 100% 4 mL 

1 M Tris pH 6.8 2.4 mL 

Bromophenol blue 0.01% 200μL final conc. 0.02% 

H2O 2.6 mL 

Just before use, take 475μL of 2X dye and add 25μL ß-mercapto-ethanol. 
 
1 X MOPS running buffer 

Ingredients Quantity 

Tris base 6.06 g 

MOPS 10.46 g 

SDS 1 g 

EDTA 0.4 g 

Make up to 1 L with de-ionised water. 
 
4% Paraformaldehyde (PFA) 

Ingredients Quantity 

PFA 4.0 g (use 10 g for 10%) 

Make up to 100mL with sterile mQH2O and autoclave. 
 
1X PBS – phosphate buffered saline pH 7-7.4  

Ingredients Quantity 

NaCl 8g  

KCl 0.25g  

KH2PO4 0.2g  

Na2HPO4 1.15g  

Make up to 1L with mQH2O.  
 
1X PBS-T – phosphate buffered saline + Tween 20, pH 7-7.4  

Ingredients Quantity 

NaCl 8g  

KCl 0.25g  

KH2PO4 0.2g  

Na2HPO4 1.15g  

Tween 20 0.5 mL 

Make up to 1L with mQH2O.  
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Ponceau S Stain 

Ingredients Quantity 

mQH2O 10mL 

glacial acetic acid 0.3mL 

Ponceau S 0.033 g 

Make up to 30 mL with mQH2O. 
 

1. After electrophoresis, immerse the blotted membrane in a sufficient amount of 
Ponceau S Staining Solution and stain for 5 minutes.  

2. After staining, immerse the membrane in an aqueous solution containing 5% 
acetic acid (v/v) for 5 minutes, change the aqueous solution, and immerse the 
membrane for another 5 minutes. 

3. Transfer the membrane into water for two washes of 5 minutes each. 

10 X Complete Protease inhibitor Cocktail (PIC) 

Ingredients Quantity 

1 X PBS 1 mL 

PIC tablet 1 tablet 

 
RIPA Buffer 

Ingredients Quantity 

1M NaCl 1.5 mL 

1% Nonidet P-40 0.1 mL 

0.5% Sodium deoxycholate 0.05 mL 

1% SDS 0.01 mL 

50 mM Tris  5 mL 

Make up to 10 mL with mQH2O. Aliquot and store at −20°C. 
 
1 X TBS  

Ingredients Quantity 

Tris 1 M 50 mL 

NaCl 5 M 30 mL 

Make up to 1 L with sterile mQH2O and autoclave. 
 
1 X TBS-T  

Ingredients Quantity 

TSB solution 999 mL 

Tween-20 1 mL 

Make up to 1 L with sterile mQH2O and autoclave. 
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APPENDIX 2 
 

Chemicals and Consumables 
 

Product Supplier Catalogue number 

Consumables   

Blades for microtome Thermo Fisher Scientific MX35 Ultra 

Coverslips Thermo Fisher Scientific  FSHMNJ-500-010G 

Falcon tubes sterile 15 mL Thermo Fisher Scientific LBSCN8CT15 

Falcon tubes sterile 50 mL Thermo Fisher Scientific LBSCN8CT50 

membrane nitrocellulose Genscript WestClearTM LO 0224A60 

membrane PVDF 0.45 μm Amersham Hybond-P RPN2020F 

Paper Filter  Thermo Fisher Scientific LBS0001.070 

Pipette bulbs Thermo Fisher Scientific C-P24820-60 

Pipette tips 1 mL Interlab, NZ LC1057-965 

Pipette tips 500 µL Interlab, NZ LC1059-965 

pipettes sterile disposable  Ray Lab, NZ RL200CS01 

plate 96 well round Thermo Fisher Scientific NUN145397 

   

Chemicals   

   

Ethanol ETOH Sigma-Aldrich NZ E 7023 

Isopropanol  Sigma- Aldrich NZ 563935 

Methanol MeOH Sigma- Aldrich NZ M1770 

Neoclear (xylene 
analogue) 

Stoddart 8052-41-3 

Paraformaldehyde Sigma- Aldrich NZ 158127 

Sucrose C12H22O11  Biolab AJA530-5KG 

 

Electrophoresis Equipment and Enzymes 
 

Equipment Supplier Specifications 

100 base pair ladder Genscript M 102 R 500 µL 

PAGE Master Protein 
Standard Plus 

Genscript MM1397-500 

Spectrophotometer Thermo 56 Fisher 
Scientific MultiskanTM 
GO 

 

i-Bright analyser Invitrogen FL1000 
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APPENDIX 3 
 
Example of Bradford Assay Results 
 

Protein Sample 
    Average 
(mg/mL) 

Standard 
Deviation 

Lung 1 3.8841 3.0612 

Lung 2 4.5126 1.3058 

Lung 3 6.9743 0.8973 

Lung 3A       NaN                 NaN 

Lung 4 8.1005 0.7257 

Lung 4A 4.5650 3.3351 

 
NaN = underdetermined as reading is above the BSA standards used.  

 


