

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Improving the Quality of Real Time

Media Applications through Sending

the Best Packet Next

A thesis

submitted in fulfilment

of the requirements for the Degree

of

Doctor of Philosophy

at

The University of Waikato

by

IAN MCDONALD

2013

Abstract

Real time media applications such as video conferencing are increasing in us-

age. These bandwidth intensive applications put high demands on a network

and often the quality experienced by the user is sub-optimal.

In a traditional network stack, data from an application is transmitted

in the order that it is received. This thesis proposes a scheme called “Send

the Best Packet Next (SBPN)” where the most important data is transmitted

first and data that will not reach the receiver before an expiry time is not

transmitted. In SBPN the packet priority and expiry time are added to a

packet and used in conjunction with the Round Trip Time (RTT) to determine

whether packets are sent, and in which order that they are sent. For example,

it has been shown that audio is more important to users than video in video

conferencing. SBPN could be considered to be Quality of Service (QoS) that

is within an application data stream. This is in comparison to network routers

that provide QoS to whole streams such as Voice over IP (VoIP), but do

not differentiate between data items within the stream or which data gets

transmitted by the end nodes. Implementation of SBPN can be done on the

server only, so that much of the benefit for one way transmission (e.g. live

television) can be gained without requiring existing clients to be changed.

SBPN was implemented in a Linux kernel on top of Datagram Congestion

Control Protocol (DCCP) and compared to existing solutions. This showed

real improvement in the measured quality of audio with a maximum improve-

ment of 15% in selected test scenarios.

Acknowledgements

I would like to thank Richard Nelson for his support and guidance as my

primary supervisor and for Matthew Luckie, Tony McGregor, Matt Jones and

Alan Holt who all acted as supervisors during different periods of my study.

Without the help of Arnaldo Carvalho de Melo, Shane Alcock, Patrick

McManus, Lule̊a University of Technology and others before them I could not

have had a working code base for DCCP.

Gerrit Renker gave me advice on both code and on my research. Thank

you Gerrit.

There were others also who reviewed papers and my thesis and gave many

helpful suggestions along the way - Sam Jansen, Eddie Kohler, Gorry Fairhurst,

Andreas Löf, Craig Box, Bill Rogers and Sally Jo Cunningham.

I would also like to thank all the members of the WAND research group at

the University of Waikato who supported me in many different ways.

I would like to thank Jayne my wife, for her support in so many ways -

without it I wouldn’t have been able to undertake this work and she convinced

me to keep going despite all the difficulties life throws out.

This research was funded by the WAND network research group and the

Computer Science department at the University of Waikato.

Contents

1 Introduction 1

1.1 The problem: Increasing media traffic and congestion control . 1

1.2 The proposed solution . 3

1.3 Overview of thesis . 4

1.4 Contribution of this work . 6

2 Background 8

2.1 Introduction . 8

2.2 Congestion . 9

2.2.1 Media applications and congestion 10

2.2.2 Approaches to Ensuring Service Quality 12

2.3 Protocols . 13

2.3.1 TCP . 13

2.3.2 UDP . 18

2.3.3 RTP . 19

2.3.4 SCTP . 20

2.3.5 DCCP . 21

2.4 Network protocol interaction with media applications 23

2.4.1 The use of audio and video layers with congestion . . . 25

2.4.2 Transmission buffers 28

2.5 Summary . 29

3 Proposed solution 32

3.1 Introduction . 32

3.2 Use of DCCP . 33

3.2.1 Rationale . 33

3.2.2 TFRC congestion control 34

3.3 Sending the Best Packet Next 35

3.3.1 Not all packets are created equal 37

3.3.2 Passing information to the operating system 38

3.3.3 Allow altered packet sending and discard order 38

3.4 SBPN1 algorithm . 39

vi

3.5 SBPN2 . 40

3.6 Summary . 41

4 Implementation 43

4.1 Introduction . 43

4.2 Implementation of DCCP . 44

4.2.1 History . 44

4.2.2 DCCP Tools . 46

4.2.3 Implementation challenges 46

4.3 Implementation of SBPN in Linux DCCP 48

4.4 Video conference model . 50

4.4.1 Data captured . 50

4.4.2 Ekiga results . 51

4.4.3 MSN Messenger results 52

4.4.4 Skype results . 53

4.4.5 Traffic model . 54

4.5 Building of test framework . 55

4.5.1 Netem . 55

4.5.2 Test applications . 56

4.6 Measuring audio quality . 58

4.6.1 On time arrival . 59

4.6.2 Mean Opinion Score 60

4.7 Summary . 62

5 Results from testing SBPN 64

5.1 Introduction . 64

5.2 Testing with loss . 65

5.2.1 SBPN1 . 65

5.2.2 Testing SBPN2 . 71

5.2.3 Analysing packets transmitted 72

5.3 Testing with congestion . 75

5.3.1 Testing SBPN2 with congestion 75

5.3.2 Testing differing queue lengths with SBPN2 77

5.3.3 Testing SBPN2 with varying RTTs 81

5.4 Summary . 85

6 Faster Restart and LIFO 87

6.1 Introduction . 87

6.2 TFRC Faster Restart . 87

6.2.1 Implementation of TFRC Faster Restart 88

6.2.2 Results from TFRC Faster Restart 88

vii

6.3 LIFO . 90

6.4 Summary . 94

7 Ring buffers 95

7.1 Introduction . 95

7.2 Ring buffers theory . 96

7.3 Results of Ring Buffer compared to SBPN2 97

7.4 Combining SBPN2 and Ring buffers 101

7.5 Comparing Ring Buffers to SBPN2 with Ring Buffers 106

7.6 Summary . 111

8 Conclusion 113

8.1 Introduction . 113

8.2 Practical work . 113

8.3 Best results . 114

8.4 Further work and future research 116

8.4.1 Changing bandwidth 116

8.4.2 Modifying applications 116

8.4.3 Sending all packets . 117

8.4.4 Testing with multiple layers 118

8.4.5 Subjective measurement 118

8.4.6 Other areas of research 118

8.5 Summary of Contributions . 119

Appendices 121

A Problem statement for DCCP 121

B Acronyms 143

List of Figures

2.1 Diagram from Ars Technica [51] showing WHDI protecting data

in higher priority layers . 28

3.1 The expiry algorithm for SBPN1 39

3.2 The expiry algorithm for SBPN2 41

4.1 sendmsg system call function prototype in Linux 48

4.2 msghdr structure for sendmsg system call 49

4.3 dccp prio structure passed in msg control field 50

4.4 Test network for SBPN testing - Netem installed on middle box 55

4.5 Diagram illustrating on-time arrival 59

5.1 Testing with loss - 80 ms RTT, unbounded queue 65

5.2 Testing with loss - 80 ms RTT, unbounded queue 67

5.3 Testing with loss - 80 ms RTT, queue length 5 69

5.4 Testing with loss - 80 ms RTT, queue length 5 69

5.5 Timing of audio and video packet transmission 70

5.6 Testing with loss - 80 ms RTT, queue length 5 71

5.7 Testing with loss - 80 ms RTT, queue length 5 72

5.8 Testing with loss - 80 ms RTT, queue length 5 73

5.9 Testing with loss - 80 ms RTT, queue length 5 73

5.10 Difference in on time arrival - 80 ms RTT, queue length 5 . . . 74

5.11 Unmodified DCCP vs SBPN2 with congestion - 80 ms RTT,

queue length 5 . 76

ix

5.12 Unmodified DCCP vs SBPN2 with congestion - 80 ms RTT,

queue length 5 . 76

5.13 Unmodified DCCP vs SBPN2 with congestion - 80 ms RTT,

queue length 32 . 77

5.14 Unmodified DCCP vs SBPN2 with congestion - 80 ms RTT,

queue length 32 . 78

5.15 Unmodified DCCP with congestion, 80 ms RTT, queue length

5 vs 32 . 79

5.16 Unmodified DCCP with congestion, 80 ms RTT, queue length

5 vs 32 . 79

5.17 SBPN2 with congestion, 80 ms RTT, queue length 5 vs 32 . . 80

5.18 SBPN2 with congestion, 80 ms RTT, queue length 5 vs 32 . . 80

5.19 Unmodified DCCP vs SBPN2 with congestion - 30 ms RTT,

queue length 32 . 81

5.20 Unmodified DCCP vs SBPN2 with congestion - 30 ms RTT,

queue length 32 . 82

5.21 Unmodified DCCP vs SBPN2 with congestion - 150 ms RTT,

queue length 32 . 82

5.22 Unmodified DCCP vs SBPN2 with congestion - 150 ms RTT,

queue length 32 . 83

6.1 Unmodified DCCP vs Faster Restart - 80 ms RTT, queue length 5 88

6.2 Unmodified DCCP vs Faster Restart - 80 ms RTT, queue length 5 89

6.3 SBPN2 vs LIFO priority queues - 80 ms RTT, queue length 5 91

6.4 SBPN2 vs LIFO priority queues - 80 ms RTT, queue length 5 91

6.5 SBPN2 vs LIFO queue - 80 ms RTT, queue length 5 92

6.6 SBPN2 vs LIFO queue - 80 ms RTT, queue length 5 92

6.7 LIFO priority queues vs LIFO queue - 80 ms RTT, queue length 5 93

7.1 Ring buffer pseudo code - insertion 97

7.2 SBPN2 vs Ring buffers - 80 ms RTT, queue length 5 98

x

7.3 SBPN2 vs Ring buffers - 80 ms RTT, queue length 5 98

7.4 SBPN2 vs Ring buffers - 80 ms RTT, queue length 32 100

7.5 SBPN2 vs Ring buffers - 80 ms RTT, queue length 32 100

7.6 Ring buffers - 80 ms RTT, queue length 5 vs 32 102

7.7 Ring buffers - 80 ms RTT, queue length 5 vs 32 102

7.8 SBPN2 vs SBPN2 with ring - 80 ms RTT, queue length 5 . . . 103

7.9 SBPN2 vs SBPN2 with ring - 80 ms RTT, queue length 5 . . . 104

7.10 SBPN2 vs SBPN2 with ring - 80 ms RTT, queue length 32 . . 105

7.11 SBPN2 vs SBPN2 with ring - 80 ms RTT, queue length 32 . . 106

7.12 Ring buffers vs SBPN2 with ring - 80 ms RTT, queue length 5 107

7.13 Ring buffers vs SBPN2 with ring - 80 ms RTT, queue length 5 107

7.14 Ring buffers vs SBPN2 with ring - 80 ms RTT, queue length 32 108

7.15 Ring buffers vs SBPN2 with ring - 80 ms RTT, queue length 32 108

7.16 Ring buffers vs SBPN2 with ring - 150 ms RTT, queue length 32109

7.17 Ring buffers vs SBPN2 with ring - 150 ms RTT, queue length 32109

7.18 Ring buffers vs SBPN2 with ring - 150 ms RTT, queue length 5 111

8.1 Unmodified DCCP vs SBPN2 with ring - 80 ms RTT, queue

lengths 5 and 32 . 114

8.2 Unmodified DCCP vs SBPN2 with ring - 80 ms RTT, queue

length 32 . 115

List of Tables

4.1 Skype traffic characteristics 53

4.2 MOS Score and Quality description 60

5.1 Loss and delay with unbounded queue length, 80 ms RTT . . 68

5.2 Loss and delay with queue length 32, 30 ms RTT 84

5.3 Loss and delay with queue length 32, 80 ms RTT 84

5.4 Loss and delay with queue length 32, 150 ms RTT 85

7.1 Loss and delay with queue length 5, 80 ms RTT 99

7.2 Loss and delay with queue length 32, 80 ms RTT 101

7.3 Loss and delay with queue length 5, 80 ms RTT 104

7.4 Loss and delay with queue length 32, 150 ms RTT 110

7.5 Loss and delay with queue length 32, 80 ms RTT 110

xii

Chapter 1

Introduction

1.1 The problem: Increasing media traffic and

congestion control

There is an increasing demand for the use of real time media on the Internet

and on private networks. Applications such Skype are being used widely on

the Internet [72] and these feature video as a component. Demand for these

applications will increase as the rate of broadband usage around the world

continues to rise [6].

The ongoing debate around net neutrality [83] [49] indicates that there

is congestion occurring on the Internet and that ISPs are carrying out traffic

shaping because of this. The congestion may be due to operational constraints

such as existing network segments running at full capacity, or due to financial

constraints such as cost of bandwidth purchased from third parties. Regardless

of the cause of the congestion the consumer suffers from a reduced quality

experience especially for real time media applications that are affected by

congestion more.

The current congestion control mechanisms for the Internet date back pri-

marily to the 1980’s and were designed to stop congestion collapse with the

TCP over IP (TCP/IP) traffic typical of that era. “Real time” media appli-

cations, in their current form, did not exist at that time and the congestion

2

control mechanisms in place do not apply congestion control consistently for

these types of applications as they use mostly User Datagram Protocol (UDP)

[94] traffic as outlined in Section 4.4. There is also a risk of congestion col-

lapse due to the increased UDP traffic used by real time media applications

and other applications that use UDP.

Quality of Service (QoS) is deployed on network routers and other network

equipment to give priority to network streams such as Voice over IP (VoIP).

From personal experience, and from discussions with network managers, it is

used mostly by medium to large businesses. This prioritisation applies to an

entire network stream from a device and not within a stream. However it has

been shown that users have a strong preference for audio over video [100] and

for having it in a timely manner [58]. It is common in media applications

for audio and video data to be interleaved in a single network stream. As

such there may be value in prioritising some data within a stream, as well as

between streams.

With real time media, if the transmission rate is below the rate that the

application requires, then the quality will drop. The lower quality will con-

tinue until the rate improves, or the application protocol changes to a lower

transmission rate, for example by increasing compression or changing codecs.

During this period of lower quality the user experience will suffer due to data

not arriving, or not arriving on time. The transmission scheme for real time

media should be able to adapt to these situations, and a scheme that did could

give significant improvements in quality for real time media. This is particu-

larly applicable when the amount of data being transmitted is being reduced

via higher compression, or is already at the codec with the lowest bandwidth

requirements. It is appropriate to consider if the traditional methods of data

transmission for these applications is still the best method possible.

3

1.2 The proposed solution

The hypothesis investigated in this thesis is:

Real time media applications will give measurably higher quality

audio when there is suitable feedback between the network stack and

the applications allowing prioritisation of data within a network.

In a typical application data will be prepared and transferred to the trans-

port layer where it is segmented into packets. A packet is queued and then

sent when it reaches the head of the queue, after all other data before it has

been transmitted. This however takes no account of time requirements on the

delivery of data, or the possibility of different priority for different packets. It

is proposed that, by having cross-layer communication around the type and

the time constraints for the data, that data can be re-ordered or dropped and

that more of the most important data can be transmitted.

This thesis discusses a scheme where the network transport layer, in coop-

eration with the application, determines which packets should be sent and in

what order. The motivation for this is two-fold. It seems reasonable for the

networks transport layer to prioritise the sending of the most useful data first,

and to discard packets which will no longer be useful for the receiver. In media

streams, for example it would also seem reasonable for audio packets to be sent

before video packets, as the audio is more important to a user’s experience in

a real time media application [100]. The application would need to add extra

information when the data is placed in the network transport layer queue, but

this would not be an odious requirement as this information is known to the

application already.

This contrasts with QoS using multiple streams where decisions on drop-

ping packets and which stream gets transmitted first is applied on system or

network wide policies, rather than an understanding of the data by the network

transport layer in the operating system.

It is proposed that, by using this cross-layer communication around the

type of data and the time constraints for the data that the data can be re-

4

ordered or dropped and that more of the most important data can be trans-

mitted. It is important to deliver the “right” data. With applications it is

not sufficient to just deliver data — it is also important to deliver the highest

priority data first.

This thesis uses the example of real-time video conferencing to examine this

proposal. With video conferencing often audio breaks up under low bandwidth

conditions and improvements could be made to this, by increasing the quality

of audio at the expense of the video quality.

1.3 Overview of thesis

This thesis investigates the hypothesis and tests the improvements that can

be made to real time media by making changes to the transmission of packets.

It introduces an algorithm called Send the Best Packet Next (SBPN). This

is implemented in the Linux kernel network stack as an extension on top of

the Datagram Congestion Control Protocol (DCCP). It is then tested with

a video conferencing model that was constructed by analysing existing clients

and comparing results to an unmodified transmission scheme.

This chapter states the thesis problem and outlines the contribution ex-

pected to advancing audio quality in real time media. In Chapter 2 the use

of congestion control and quality adaptation for real time media is discussed.

The chapter shows different mechanisms that have been proposed to improve

the quality of both stored and real time media, and how quality can be al-

tered by different encoding methods. Congestion control is also introduced

with a discussion of the motivation for it’s use. As part of this DCCP is in-

troduced. DCCP is the network transport protocol with congestion control

used for testing in this thesis. The literature discussing both the interaction of

media quality and congestion control is discussed in the last part of Chapter 2.

SBPN is introduced in Chapter 3. SBPN is proposed to improve the timeli-

ness of audio, and to a lesser degree video, that arrives, thus improving the user

5

experience. SBPN looks at which data to send next on a packet by packet ba-

sis considering the priority of the data and the expiry time of that data. With

real time media applications it is not sufficient to just deliver more data — it

is also important to deliver the highest priority data.

Chapter 4 covers the implementation of the necessary tools and software

to test the proposed improvements. The evaluation framework is approached

from a practical implementation and testing approach, rather than a theoreti-

cal and simulated solution. A model of video conference traffic was constructed

by capturing traffic from existing video conference applications. The steps

taken to create a test suite are described, and the way that quality improve-

ments are measured is detailed. The work undertaken in the Linux kernel to

enable the use of SBPN and the implementation of DCCP in the Linux kernel

is then described. DCCP [66] is a new Internet Engineering Task Force (IETF)

standards track protocol that has been designed around the needs of stream-

ing media. DCCP implements congestion control and sessions at the transport

layer, unlike UDP which does not have these and requires that they are im-

plemented at the application layer.

In Chapter 5 the results from automated tests of quality that were carried

out are presented and analysis of the results are given. The quality mea-

sures are defined by the International Telecommunication Union (ITU) and

are based on how users perceive quality. These tests are carried out with

varying network conditions, buffer sizes, Round Trip Time (RTT)s and queue

lengths to determine which factors affect the performance of the SBPN1 al-

gorithm when tested compared to unmodified DCCP. The impact of loss is

contrasted to the impact of congestion on the SBPN1 algorithm. From the

findings SBPN2, which is a refinement of the SBPN1 algorithm, is introduced.

SBPN2 is tested and is shown to give substantial improvement in audio quality

under constrained network conditions.

Chapter 6 compares the use of Faster Restart and Last In First Out (LIFO)

queues to see if these offer improvements to video quality. Faster Restart is a

6

Request for Comments (RFC) proposal to increase the rate at which DCCP

sends packets after loss occurs. LIFO queues are tested to compare to the

standard First In First Out (FIFO) queues. Chapter 7 takes ring buffers as

proposed by Kohler and Lai [69] and compares these to SBPN and also tests

the two combined together to see where further improvements can be made.

The conclusions are in Chapter 8 and ideas for future investigation are also

discussed.

1.4 Contribution of this work

The main methods of managing network communication quality at present

are QoS and rate changes from codecs. The contribution of this thesis is to

show that a significant improvement to quality can also be made by passing

information from a real time media application about the priority and expiry

time of data to the network transport layer in the operating system, which then

can use this information to reorder transmission and selectively drop data.

The work of this thesis depends on an underlying congestion control proto-

col to provide information on which packet re-ordering and dropping decisions

can be based. For practical work DCCP was used for this purpose. Therefore

as part of the practical work required for this thesis a substantial body of

work was also carried out to help get DCCP code into the Linux kernel and

then continuing to improve this in conjunction with researchers at WAND,

Lule̊a, RedHat and the University of Aberdeen. This work included resolving

issues with the existing CCID3 implementation and I implemented the draft

of Faster Restart algorithm. This practical work was given as feedback to the

IETF working group for DCCP to help define future direction.

The thesis hypothesis was investigated by developing, implementing and

installing into the Linux kernel a novel algorithm, SBPN, which uses informa-

tion from the application and the network congestion control protocol (DCCP)

to reorder packets and discards packets that are considered no longer useful.

7

As discussed in Section 1.2 audio is more important to users than video

in a video conference. When simulations of video conferences with the SBPN

transmission scheme were tested, significantly more audio arrived on time when

compared to FIFO transmission giving improved values of standard ITU per-

ceived quality measures. This contribution has significant potential for improv-

ing the quality of video conferences and live TV broadcasts over the Internet,

particularly when network conditions are variable. There is also potential to

extend into other application types such as online games where some data may

be more important than other data to be delivered in a timely manner.

Chapter 2

Background

2.1 Introduction

This chapter sets the background for the thesis and outlines related research.

The problem of congestion is introduced, and its effects on real time me-

dia applications are discussed. The chapter then outlines the two main ways

that this has been addressed in the past — through network protocols being

improved, and the interaction between media applications and the network

protocols. This background prepares the way for our research which combines

elements of both to propose a way to improve audio quality in real time media

applications.

Section 2.2 introduces congestion. It is discussed in relation to the In-

ternet, and how it is related to real time media requirements. Two differing

approaches to dealing with congestion are discussed — using Quality of Ser-

vice, and dealing with congestion using the end-to-end principle.

In Section 2.3 different network protocols are described, the characteristics

of each protocol and how these protocols deal with congestion. The two main

transport layer protocols that are used on the Internet are discussed: TCP

and UDP, and we also discuss a newer transport layer protocol SCTP, and

RTP which is commonly used by media applications. DCCP, the transport

layer protocol used in this thesis, is introduced and the rationale for this pro-

9

tocol being created is explained. The relevance of congestion control to media

applications is detailed and how congestion control helps media applications is

also discussed. Congestion control can also cause problems for real time media

applications as well and this is explained in this section.

Section 2.4 discusses how network protocols interact with media appli-

cations. In this section previous work aimed at improving the transmission

of video is examined. Differing strategies are examined such as queue man-

agement, experimental network protocols, modifications to applications and

changes to congestion control mechanisms.

With these themes of congestion, protocols and network protocol inter-

action the different components affecting real time media are shown. These

themes are not connected together and by discussing these it demonstrates the

background and paves the way for our research to combine them together to

improve real time media applications.

2.2 Congestion

The Internet is not one network but a collection of networks joined together —

the word Internet is derived from internetwork or interconnecting networks.

The Internet is based upon a layered principle, with layers for application,

transport, inter-network and link with data passed between the layers. The

operation of the Internet at the inter-network layer is based on data being

divided into packets that are transmitted and received using Internet Protocol

(IP) as the underlying protocol. An IP packet will traverse a path from the

source to destination on the Internet potentially travelling over a number of

networks and connections. IP is an unreliable protocol in that it does not

guarantee that traffic will be received at the destination. With IP the packets

may get discarded, corrupted or delayed and they may not arrive in the order

that they were transmitted.

Congestion occurs whenever there is any form of “bottleneck” on a network.

10

This bottleneck may be due to factors such as links not having enough capacity

to handle the network traffic being transmitted and routers not being able to

forward traffic at the rate it is arriving. Congestion will result in packets

that were transmitted being lost or delayed. With video being over half the

traffic on the Internet [8] packet loss and retransmission from video will have

a major effect to congestion on the Internet. Packets may also be lost because

of factors such as radio interference on wireless links, which may then generate

congestion if packets need to be transmitted again.

In practice it can be difficult to tell when congestion occurs unless tools

such as Explicit Congestion Notification (ECN) [96] are utilised. At present

ECN is not yet widely used [77] on the Internet.

The focus of this thesis is on how real time media applications can respond

to the effects of congestion.

2.2.1 Media applications and congestion

The quality of media applications depends on factors such as frame rates,

coder-decoder (codec) and picture resolution. The frame rate is how many

frames of video are transmitted per second. A codec is an algorithm that

converts audio and/or video to a digital representation and often compresses

the data. The picture resolution is the number of pixels in a frame of video.

These factors determine a bit rate which is the amount of data transmitted

per second.

Real time media applications, like other applications, will face congestion

where there is any form of bottleneck restricting traffic. This congestion will

result in lost or delayed traffic. With real time media, congestion may manifest

itself as no sound in an audio stream or distorted sounds occurring. In a video

stream with congestion there may be jerkiness (due to the video not being

updated), corrupted video or no video at all.

It is therefore our proposition that it is desirable for real time media applica-

tions to respond to congestion effectively, both to improve the user experience

11

and to improve the stability of networks.

From the application’s perspective the desired result is that the application

adapts to the congestion and improves the user experience. It may be that

timeliness is more important than having a perfect picture and sound from

the application user’s perspective. From a network perspective it is important

to reduce the transmission rate during periods of congestion to stop networks

becoming overloaded.

Once the application has been notified of congestion it would be desirable

that an application adjusts it behaviour, and this forms part of our proposed

solution. The application can adjust its behaviour by reducing the quality of

the transmission, dropping parts of the transmission or stopping the transmis-

sion.

In the history of the Internet the lack of application response to conges-

tion has not proved a major problem as most applications have not had a real

time requirement (where packets need to be delivered in a fixed timeframe).

For example e-mail is delivered on a queued basis using Simple Mail Transport

Protocol (SMTP) and normally arrives quickly but can take a number of hours

to arrive. Another example is web traffic which uses Hypertext Transfer Pro-

tocol (HTTP) - the emphasis is on all content being delivered rather than the

content being delivered in the absolute quickest time. Services such as email

and web pages may seem to be real time, but they are normally just delivered

very quickly.

Real time traffic needs to meet a deadline. Real time media applications

have a different set of requirements; the data must be delivered within a spec-

ified timeframe or the data is not worthwhile. This is particularly true for

live applications such as video conferencing or Voice over IP (VoIP). Real

time traffic will have requirements for minimum bandwidth available, where

non-realtime traffic will not.

Video services such as YouTube [14], Netflix [11] and Hulu [10] are also

commonly used on the Internet and their congestion control needs are simpler

12

as they are not real time. With these services all data arrives and if there is

congestion that drops the transmission rate below the rate required for viewing,

then the video can pause until more data arrives. This is not appropriate for

real time media such as a video call between people using technology such as

Skype [12] or watching a live sports event.

In summary real time media applications need to be able to respond effec-

tively to congestion to ensure the best quality experience.

2.2.2 Approaches to Ensuring Service Quality

With the Internet individual hosts are responsible for controlling congestion,

rather than congestion being centrally managed on the network as often occurs

on carrier or corporate networks. The individual end hosts being responsible

for network functions is known as the end-to-end (e2e) principle as described

by Saltzer [99]. As such the responsibility for congestion control lies within the

network transport layer software on the hosts. Different transport protocols

take different approaches, as described in Section 2.3.

This contrasts with the Quality of Service (QoS) approach where each and

every node that a packet goes through has the same set of rules to follow

and each node must uphold these rules. When the rules are updated each

node must also be updated which becomes very difficult on a public network

such as the Internet. Much of the earlier research on real time media focused

on building QoS that gives guaranteed quality and bandwidth for real time

media applications [25] [68] [87] [32]. More recently QoS measures such as

Differentiated Services (diffserv) [21] have been used, but only within a network

or a network provider.

Differentiated Services (diffserv) [21] sets a 6 bit value to classify the type of

packet and which indicate how the packets should be treated by the network.

These values can indicate, for example, whether traffic should be low loss, low

latency or best effort. This can be applied across a network controlled by

one organisation but there is no agreement on definitions between companies.

13

Diffserv also depends on all nodes along a network path implementing it.

As QoS depends on fundamental changes to the structure of the Internet we

have chosen to focus instead on ideas that can be implemented on individual

devices, using end-to-end principles, as discussed in the following sections.

2.3 Protocols

In Section 2.2.2 it was noted that e2e principles mean that congestion is han-

dled by the individual hosts. The response to congestion is implemented at

the transport layer, which is the layer above the network layer (IP). This

section discusses the approach taken by different transport layer protocols to

congestion.

2.3.1 TCP

Transmission Control Protocol (TCP) [54] is a connection based, reliable pro-

tocol that is widely used on networks and the Internet. TCP achieves reliability

by requiring that data is acknowledged as being received and can thus ensure

that all data is received. If data is not received then it is retransmitted.

2.3.1.1 TCP congestion control

During the 1980’s the Internet became unstable in large part due to congestion

caused by TCP traffic. Congestion was caused by packets being retransmitted

because of acknowledgements not being received. These acknowledgements

were often for packets that had already been received, or were still in the

process of being transmitted. As queues would build up, the Round Trip Time

(RTT) would increase and the retransmission rate would also rise which would

further exacerbate the issue and lead to a state that Nagle called “congestion

collapse”.

Nagle [81] and Van Jacobson [61] proposed a number of changes to TCP to

respond to congestion collapse. The changes have become commonly known

14

as congestion control.

Nagle proposed in 1984 that no new data be sent until an acknowledgement

is received for previous data, to prevent spurious retransmission. Nagle also

proposed improved use of Internet Control Message Protocol (ICMP) source

quench [95]. ICMP source quench packets are sent when a device is running low

on buffer space, to request that the sender lower its sending rate (thus reducing

the risk of the buffer space being exhausted). The use of ICMP source quench

was later deprecated as it was not effective at reducing congestion [44].

Van Jacobson in 1988 proposed that if “conservation of packets” was ob-

served then TCP flows would be generally stable. With conservation of packets

when the connection is running without congestion, a packet is only put on

the network after an old packet is taken off the network. Conservation of pack-

ets was implemented using a congestion window which would be dynamically

resized until the connection reached an initial state of stability, and adjusted

as conditions changed. The congestion window defined a maximum number

of unacknowledged packets that can be in flight at any point in time. Addi-

tional packets would not be added when the congestion window was full, until

another was removed after receiving an acknowledgement.

Van Jacobson proposed that the congestion window is initially set to one

packet and is then increased by one packet per acknowledgement, which has

the effect of almost doubling the window size per RTT. This continues until

either:

• the maximum window size is reached

• the slow start threshold is reached

• packet loss occurs.

The slow start threshold is an initial congestion window size that is decided

by the operating system implementation or based on known network charac-

teristics. If congestion occurs (detected through multiple duplicate acknowl-

edgements or timeout) then the congestion window and slow start threshold

15

are altered. A more detailed explanation is provided by Stevens [105] and RFC

5681 [16].

These changes by Nagle and Van Jacobson are credited with preventing

ongoing TCP collapse [41], [55] and has given stability on the Internet as it

has undergone rapid growth.

2.3.1.2 TCP and real time media traffic

With real time media applications, retransmission in the event of a loss or

corruption of a packet is usually not the desired outcome as the data is time

sensitive and this will add delays to the data. The way most TCP implementa-

tions adjust their congestion window is useful for other applications, however

for real time media applications it is less suitable due to the sudden change

in transmission rates that can occur. With TCP data being sent and received

in order a retransmission will cause the receiving operating system to wait

for the retransmitted packet before any further data is given to the receiving

application. This causes jitter which is a variation in the delay between the

sender and the receiver. The receiving application will either have to drop

the data with subsequent drop in quality, or have a larger playout buffer to

smooth over this jitter. A playout buffer is a buffer at the receiver which holds

data for a period of time before it is played, to allow the necessary packets to

arrive. Having a larger playout buffer will reduce jitter but will mean extra

delay in playing back what has been transmitted - an illustration of the effect

of extra delay can be witnessed when comparing the effects on conversation of

a local call versus a call to the opposite side of the world. Longer delay makes

conversation difficult, as an example, as people are not sure when the other

party has finished talking, or they talk over top of the other party.

Retransmitting data uses extra bandwidth with information being sent

again. If a packet was dropped due to congestion (as opposed to an error

in transmission) then the retransmitted data will probably take the place in

the queue of what would be more timely data. If the TCP buffers are large

16

enough and a queue builds up, potentially the time the data is held in the

queue could result in all packets arriving later than required for a real time

media application. The timing with real time media is discussed further in

Section 4.6.1 and illustrated in Figure 4.5.

The way most TCP implementations adjust their congestion window is

useful for other applications but tends to have a detrimental effect for many

real time applications. TCP uses an Additive increase/multiplicative decrease

(AIMD) [24] approach to changing its rate in that it increases slowly, but

decreases rapidly. In many cases TCP will halve the congestion window when

a packet is lost.

If the allowed transmission rate is reduced rapidly, it may be necessary

to change the quality of the video stream by increasing the compression rate,

dropping the resolution, dropping the frame rate or other measures. The

allowed transmission rate will then slowly increase, with quality able to increase

until network congestion occurs again and then the transmission rate has to be

reduced rapidly. This creates an oscillation type effect of alternating between

lower and higher quality streams constantly which does not lead to a good

user experience.

A datagram based protocol is where all data within a packet is self con-

tained and not reliant on other packets. The TCP protocol is not a datagram

based protocol and as such can combine packets and split packets. This can

also have a detrimental effect on real time media transmission. If a small

packet is queued for transmission then TCP implementations will often wait

for a period of time to see if another packet is going to be transmitted so they

can combine the later packet/packets so that only one packet is transmitted.

Combining the packets increases delay and jitter and this can become particu-

larly problematic with voice packets as these are typically small, and are more

time sensitive. In many operating systems this can be turned off on request by

setting the MSG OOB flag. In our testing, confirmed by reading the source

code of the Linux TCP stack, this request is not always honoured and packets

17

are sometimes delayed even if the MSG OOB flag is set. Splitting of packets

can also cause problems if the second or subsequent packet for a particular

piece of data is delayed.

2.3.1.3 Improvements to TCP

Development work continues on TCP and congestion control with variations

to the TCP protocol such as Vegas [23], Westwood [73] and Binary Increase

Congestion control (BIC) [111]. Further details of the advancements in TCP

congestion control, particularly in regards to Linux, are outlined in our earlier

work [75]. Most of these improvements are based on experimental data but

there are also efforts such as Paganini [85] who are approaching TCP conges-

tion control based on provable mathematical modelling.

RFC 4653 [20] proposes to improve TCP in its response to events that are

not congestion related, particularly packet reordering. The RFC proposes that

the test for congestion should change from three duplicate acknowledgements

to a larger number as this would allow more time for out of order packets to

arrive.

Floyd introduces quick start [36] that looks at setting up the maximum

rate needed through TCP options therefore bypassing the need for slow start,

provided that the network path supports the rate requested. For quick start to

be implemented, every router that the connection passes through must support

it. This is a high barrier for widespread adoption on the Internet.

Goel [18] reduces the TCP send buffer to reduce the latency of TCP pack-

ets sent. With a larger send buffer, larger queues can result which increases

latency. This is an effective approach but can have the negative effect of re-

ducing send rate, particularly with high RTTs. Goel explicitly targets their

work at lower RTT networks.

18

2.3.1.4 The importance of TCP

TCP is the default protocol for most traffic on the Internet — John and

Tafvelin [62] report that TCP traffic is over 90%. As such it is important

that any changes to protocols are friendly to TCP traffic flows.

Medina [77] discusses the adoption rate of TCP extensions on Internet, and

shows that it takes many years for changes to be adopted across a significant

proportion of hosts on the Internet. As changes to the Internet take a long

time to occur then the importance of being TCP friendly remains.

2.3.2 UDP

User Datagram Protocol (UDP) [94] is a connectionless, unreliable protocol

without congestion control. Originally UDP was used for services such as

Domain Name System (DNS) for which just one packet is transmitted and one

packet received. With these requirements extra features such as a connection

based protocol, congestion control or retry mechanism at the transport layer

are not needed.

Real time media applications may use UDP to overcome the limitations

of TCP described in the previous section. As UDP is datagram based this

overcomes some of the timing problems of TCP for real time media applica-

tions. Being datagram based means that, provided the network is able to,

data will be transmitted when requested rather than being combined or split.

The unreliable delivery of UDP means that it is not guaranteed that packets

will reach their destination and they will not be retransmitted if they are lost.

The advantage for real time traffic is that in most cases there will be more

recent data to transmit, rather than retransmitting stale data. The primary

advantage of UDP is therefore that the application developer can choose the

timing of packet transmission and how the application responds to network

conditions.

A common approach for UDP based media applications is to implement

their own form of congestion control. Applications implementing their own

19

congestion control results in a large amount of duplicated effort or congestion

control which is not efficient or unfair to other network traffic. These problems

could be overcome by the use of standardised libraries although these do not

appear to be in widespread use with media applications. In the worst case

scenario a real time media application may use no congestion control at all

allowing packets to be discarded and creating congestion in a network, unless

networks are provisioned to have a large amount of spare capacity to allow real

timed media applications to run at the transmission rate that they require.

Guo [45] has reported that most streaming multimedia traffic uses TCP in-

stead of UDP. Guo states that this is because the lack of a session causes UDP

difficulty in traversing many Network Address and Port Translation (NAPT)

[104] devices such as home routers or company firewalls. Some media appli-

cations are written to use either UDP and TCP and will revert to using TCP

if they are unable to use UDP. The use of TCP instead of UDP is becoming

a bigger problem as home users switch to broadband connections behind fire-

walls, utilise NAPT due to limited IPv4 addresses, and extensively use real

time media applications. Some applications such as Skype have largely over-

come the NAPT problem. Firewalls are also improving support for UDP, and

IPv6 with it’s larger address space, in the longer term, will remove the need

for NAPT. The IETF has provided guidelines for application developers for

usage of UDP [30].

2.3.3 RTP

Real-time Transport Protocol (RTP) [102] was designed as a protocol that sits

above the transport layer for transferring real time data. RTP is commonly

used for media applications on the Internet. It includes the use of a control

protocol, Real-time Transport Control Protocol (RTCP) that monitors a range

of measures such as jitter, loss and packet delivery. The information gathered

by RTCP can be used in real time media applications to understand the un-

derlying network conditions. RTP packets contain information such as the

20

codec used, timing information and supports the use of layers. RTP is usually

implemented on top of UDP but can be implemented on top of other trans-

port layer protocols also. Although RTP is not used in our research, it may be

practical to implement aspects of our findings in real time media applications

using RTP — especially given its common usage and that the protocol covers

both network conditions and the application data.

2.3.4 SCTP

Floyd and Fall [41] discussed in a 1999 paper that the main danger to the

stability of the Internet is lack of congestion control causing congestion collapse

due to flows that do not reduce their transmission rates when packet drops

occur. UDP in particular is discussed, with its lack of congestion control

as outlined in the previous section. A number of protocols, such as Stream

Control Transmission Protocol (SCTP) [106] and DCCP [66] (discussed in the

following section) have been proposed for newer applications such as real time

media which aim to overcome the lack of congestion control. Although the

Internet has not had widespread congestion collapse there are still risks and

Internet Service Provider (ISP)s often use “traffic shaping” to protect their

network from heavy traffic and maintain stability. Traffic shaping is where

the ISP will deliberately drop packets, either to reduce the amount of traffic

being transmitted generally or to reduce traffic of a particular type e.g. UDP

or BitTorrent.

SCTP is a protocol that is at Proposed Standard status with the IETF

and is a congestion controlled, message and stream based reliable transport.

The similarities that SCTP has with TCP is that it is session based, has

congestion control based on TCP congestion control and is a reliable protocol

so retransmits lost packets. The congestion control methods, and retrans-

mission means that SCTP will face the same issues as TCP as outlined in

Section 2.3.1.2 for real time media traffic.

SCTP shares the characteristic with UDP that it is message based. This

21

means that as soon as data can be sent, it will be sent, unlike TCP which

may wait to combine packets if needed. If a packet is too large then SCTP

will split the packet (like TCP, and unlike UDP) but will not combine the

data with other packets. SCTP also shares characteristics with UDP in that

it allows out of order delivery, removing the need to wait for a retransmission

before any further data can be received which is beneficial for real time media.

It is stream based, which means that audio and video can be separated into

different streams if desired.

2.3.5 DCCP

Datagram Congestion Control Protocol (DCCP) [65] is a transport protocol

that moved to Proposed Standard status with the IETF in 2006. DCCP is a

session based, unreliable protocol with congestion control. This means that

it is session based like TCP, but unreliable like UDP. The rationale behind

the new protocol is that existing protocols do not handle the requirements of

modern applications such as multimedia as well as desired. The use of UDP

does not provide congestion control at the transport level, and is not session

based so in the past had difficulty traversing some firewalls or NAPT devices.

More recently some applications have overcome these limitations. As discussed

earlier TCP does provide congestion control and is session based but is not as

suitable for real time media applications due to retransmission, and the use of

AIMD based congestion response (which alters the transmission rate rapidly

rather than smoothly). DCCP aims to provide a solution to these problems.

The DCCP protocol is defined in a modular method - there is a base proto-

col defined, and multiple congestion control mechanisms can be implemented.

The Congestion Control Identifier (CCID) specifies which mechanism is used.

This allows for DCCP to be extended in the future with additional congestion

control mechanisms. At the time of writing there are two CCIDs at Proposed

Standard status and one at Experimental status with the IETF:

• CCID2 [38] is TCP-like congestion control and implements a congestion

22

control mechanism based on TCP. It follows many of the TCP semantics

although it does not have retransmission.

• CCID3 [40] is based on TCP Friendly Rate Control (TFRC) [47]. TFRC

aims to provide a smoother response to congestion than TCP while

still using a “fair” share of bandwidth compared to other flows. TFRC

achieves this goal by estimating the sending rate available rather than

halving the window in response to congestion as TCP can do.

• CCID4 [39] is experimental and is based on CCID3. It is designed for

applications with small, frequent packets such as VoIP and enforces a

minimum period between packets of 10 milliseconds.

Phelan discusses the use of DCCP in his DCCP user guide [92]. The user

guide recommends the use of CCID3 [40] for multimedia applications although

Phelan recognises issues around slow-start and bandwidth decreasing after idle.

We use CCID3 for our experimental work in this thesis.

De Marco, Longo and Postiglione [29] build on DCCP with a protocol

they label Run-Time adjusted Window-based DCCP (RTW-DCCP) which

allows applications to transmit at a rate based on an average throughput. The

average throughput is adjusted based on observing changes in the RTT under

the assumption that RTT increases are largely a consequence of increasing

queues and congestion. RTW-DCCP allows a sending rate that adjusts more

slowly than the congestion control of TCP, which rapidly adjusts the number of

packets that may be sent. Having congestion control that maintains a sending

rate that does not change quickly works well with media applications that

transmit at a constant rate, or take time to adjust.

In Balan [31] VoIP quality is compared between UDP, TCP and DCCP.

UDP gave the best quality with high loss rates, followed by TCP and the lowest

quality was DCCP. TCP quality was worse than UDP because of the retrans-

missions required which lead to delays in receiving packets. They proposed

that DCCP quality was lower than the others because the congestion control

23

was more simplistic than TCP congestion control. This was tested by adding

measures such as quick start and faster restart to DCCP which increase initial

transmission speed and recovery from loss respectively. With these changes

DCCP quality increased significantly under lossy conditions.

Phelan discusses in an Internet Draft a CCID for DCCP called Media

Friendly Rate Control (MFRC) [91]. Phelan recognises that media applica-

tions can change their rate quickly, including between frames and will often

have periods of silence where network activity can drop to almost zero. CCID2

and CCID3 respond to congestion by using slow start and will also drop the

allowed transmission rates in idle periods. MFRC proposes that applications

can immediately start transmitting at their desired rate (provided it is within

a pre-defined limit) and that applications can quickly return to a proven trans-

mission rate provided congestion is not experienced.

DCCP was developed with one of the aims being to be a better congestion

control protocol for media applications. This thesis introduces a new extension,

Send the Best Packet Next (SBPN), with the aim to make it easy for media

applications to take advantage of the features of DCCP. As such we provide

an API to enable media applications to pass information to SBPN and SBPN

uses the features of DCCP based on this information.

2.4 Network protocol interaction with media

applications

The previous section discussed how network protocols have been adapted to

cater for media applications. In this section the interaction between the ap-

plications and network protocols is examined.

Adapting media applications to cope with the variability of the Internet has

been an ongoing problem and there have been different approaches to solving

these issues. Many of these have been through looking at the use of layers and

this is further examined in this section. Layers are different parts of a media

24

stream such as audio and different resolutions of video. These layers may have

differing level of importance to the user e.g. audio is more important than

video.

de Cuetos and Ross [28] present what they call a “unified optimisation

framework” where they combine scheduling, Forward Error Correction (FEC)

and error concealment to improve the performance of video transmission in

lossy environments. With FEC extra data is transmitted and if there is an

error it may be possible to reconstruct the missing data. Error concealment is

a technique where information is gathered from other sources such as preceding

frames to replace missing data, mitigating some of the effects of the lost or

corrupt data.

In Section 2.3.1.2 the major issue that is faced by video codecs when us-

ing standard AIMD based congestion control responses such as standard TCP

was discussed. This issue is that the bandwidth available to the application

may fluctuate substantially, where real time media applications need a more

constant rate. Dai and Loguinov [27] examine this issue and compare conges-

tion controls protocol based on Kelly’s proportional-fairness framework [63]

with standard TCP. They found that by using congestion control algorithms

that change the rate more smoothly than TCP that the quality of real time

media improved. This matches the findings of De Marco [29] as discussed in

Section 2.3.5 Our choice of congestion control mechanism for SBPN reflects

this.

Wang, Banerjee and Jamin [110] examine whether a protocol being TCP

friendly means that it is also media friendly. TFRC is used in their tests and

they conclude that it is not media friendly as less than the fair bandwidth is

used and large variations in rates occur even in steady state networks. By fair

bandwidth they mean that the same bandwidth is obtainable as with TCP.

Phelan [90] also discusses the limitations of TFRC and how real time media

applications can adapt to the limitations and variations that are proposed

for VoIP for TFRC. He suggests sending test packets to find the bandwidth

25

available and dynamically changing codecs used if the bandwidth available

changes over time.

Bolot and Turletti [22] put in place a feedback loop to measure the data

rate achievable over the Internet (or private network) without using QoS and

then adjust the output bit rate to the achievable rate calculated from this mea-

surement. They decreased the bit rate by decreasing the frame rate, changing

movement detection thresholds and decreasing frame quality through changes

to the quantizer. Movement detection reduces the amount of data transmitted

by using similarities between frames and quantization is the process of map-

ping a large range of values to a smaller range of values, for example reducing

the number of colours used in a frame. With these changes they were able to

improve the quality of video.

In summary, media applications try to understand what is happening in

the network and see how this can give improvements to the application layer.

This can be through protecting the data through the use of FEC to transmit

extra data to recover from errors and using error concealment to mask any data

that is lost. Media applications are better suited to using different congestion

control then AIMD schemes and TFRC has been shown to be better as the

response to congestion is more gradual. Applications can also measure the

network bandwidth available to them and then adapt what is transmitted to

adjust for link capacity and quality dynamically.

2.4.1 The use of audio and video layers with congestion

In this section we look at the use of layers for audio and video transmission,

and their interaction with congestion control. This makes up a core part of how

our solution works, particularly in prioritising which layers get transmitted.

Rejaie, Handley and Estrin [98] and Feamster [33] propose that video codecs

should add and remove video layers as network conditions permit. Rejaie,

Handley and Estrin [98] further the earlier work of Bolot and Turletti by

adjusting the bit rate through adding and removing layers of detail for video

26

and audio transmission. In their approach they smooth the transitions between

layers so that the buffers are not drained or overflow. As part of this they

average the bandwidth available and take a conservative approach to adding

extra layers to the transmission. This work is further developed in Rejaie and

Reibman [97] where the transport and the encoder become “aware” of each

other to enable decisions to be made in regards to changing the number of

layers transmitted, and adjusting for loss events.

In Gharavi [43] a similar scheme is proposed but the transmission rate is

calculated by measuring the number of hops between the source and destina-

tion and adjusting the number of frames per second with more hops resulting in

a lower transmission rate. If the number of hops increases or decreases during

the session then the transmission rate is decreased or increased respectively, as

their research showed that the number of hops changing during a session indi-

cated that the network was altering routes due to factors such as failure and

congestion. Their research showed that this reduced the loss rate of packets

when compared with making no change as the number of hops changed.

In a study of multimedia streaming Guo [45] looked at the time taken to

drop transmission speed to a lower bit-rate in response to a reduction in the

available bandwidth. Guo found that the median time for a codec to change

to a lower bit-rate stream was around 4 seconds. This length of time indicates

that there is scope to improve the user experience during the transition.

Feng [34] builds upon changing the selection of video layers and proposes

a priority queue for delivery of pre-recorded video streams. In this system the

minimum needed to create a low quality video stream at the desired frame rate

is sent first. Enhanced quality is only sent after the high priority video layer

has been sent, and if there is network capacity available. This ensures that the

frame rate is maintained and the picture quality improves as the network con-

ditions improve. Krasic [67] investigated storing streaming video in multiple

layers tailored to the type of client requesting the data. The streaming server,

which they call priority-progress, then decides the most appropriate layers for

27

the client and maps these to a priority order within each time segment. At

the end of each time segment, if the data has not been transmitted, then the

data is discarded by a “progress regulator”.

In Ahmed, Mehaoua, Boutaba and Iraqi [15], Moving Pictures Expert

Group (MPEG)-4 video transmission is adjusted for congestion based on pri-

oritising the objects that are sent. Highest priority is given to the audio part

of the stream and lowest to a logo on the screen. They encode the packets

with markings for diffserv and the routers drop packets as required.

Papadimitriou introduces Scalable Streaming Video Protocol (SSVP) [86]

and Video Transport Protocol (VTP) [19]. These are both built on top of

UDP. SSVP adjusts the send rate through altering the inter-packet gap, VTP

smooths the transmit rate and sends at a fixed rate. Both protocols adaptively

alter the layers of video being transmitted. Amer [17] introduce a partial order

transport service that allows reliable or unreliable partial order service. This

allows marking of importance and time values by the application. This is

used by the receiver to determine whether lost data is ignored or requested for

retransmission depending on their temporal value.

In Tsaoussidis [107] Multimedia Transmission Protocol (MTP) is intro-

duced. It is based on TCP Reno but without guaranteed reliability. Packet

priority information is sent as a 2 bit field which determines whether pack-

ets may be retransmitted or not. This enables MTP to not retransmit data

which is of lower priority, as compared to TCP which retransmits all missing

data. Time-lined TCP (TLCTCP) [80] introduces the concept of tracking ex-

piry time for data. TLCTCP marks data with an expiry time, and discards

data if the expiry time is reached before the packet is sent. TLCTCP does

not take the RTT into consideration but proposes that it is worthwhile to do

so. TLCTCP is a partially reliable protocol - if the data has not expired and

retransmission is requested by the receiver then the data is retransmitted. If

the data has expired, a more recent packet is sent instead as the expired packet

no longer has value.

28

Figure 2.1: Diagram from Ars Technica [51] showing WHDI protecting data

in higher priority layers

As a practical example of the importance of layers, Wireless Home Digital

Interface (WHDI) [3], which is used for linking home multimedia devices, pro-

tects the data in higher priority layers more than lower priority layers as shown

in Figure 2.1. In WHDI, control and audio data is completely protected and

video data is given varying degrees of protection depending on the importance.

The specification of WHDI has not been published, but it is likely that fully

protected data relies on retransmission of lost data and that varying degrees

of protection are achieved by differing degrees of FEC.

2.4.2 Transmission buffers

Packets are buffered before they are transmitted. These buffers are examined

in our research to see if they can be altered to improve real time media per-

formance. In a FIFO queue the data is transmitted in the order that it was

received. TCP and UDP implementations typically use FIFO queues as pack-

29

ets are transmitted in the order received from the application. A LIFO queue

works on the principle that the last packet received into a queue is the first

transmitted. FIFO and LIFO queues can be fixed or variable length.

In a ring buffer packets will get overwritten if they are not transmitted.

The term ring buffer is used as the start and the end of the buffer can move

and it can be considered to be circular in nature. If the buffer is full then

the next packet inserted overwrites the oldest packet in the buffer which is

discarded. This contrasts to FIFO and LIFO queues where the newest packet

is discarded if the queue is full.

Research by Lai and Kohler [69] investigated using late binding ring buffers

with DCCP for transmission. The ring buffers were writeable directly by the

application, where with most transmission schemes the buffers are controlled

by the operating system. The application could replace a packet in the buffer

with a more recent packet if it had not been transmitted. These buffers are

called late binding as the next packet to be sent can be changed up until the

time for transmission. The aim is for the most timely data to be sent and old

data to be discarded. They found that using late binding ring buffers meant

that more of the important video frames were received.

One of the aims of our solution is to allow the flexibility of ring buffers

to improve the real time media experience but not to burden the application

programmer with the need to work out which packets to drop next if the

network link is congested.

2.5 Summary

This chapter has discussed congestion in Section 2.2 and measures taken to stop

congestion collapse on the Internet. Congestion control has an effect on real

time media applications and there is scope for improving the user experience

on congested networks, particularly as network conditions change.

Different protocols such as UDP and TCP were discussed in Section 2.3

30

and their limitations in regards to real time media applications were discussed.

TCP has congestion control and this has continued to develop, but does not

take into account the characteristics required of real time media applications.

UDP is often used for real time media applications but is missing components

such as connections and built in congestion control. The use of RTP as a

layer above the transport protocol was explained and a stream based protocol,

SCTP, was also detailed. The background for DCCP was explained and the

different parts of the protocol detailed. DCCP is the protocol that is used as

the basis for our solution as it is an unreliable protocol that has sessions, and

the congestion control is suited for real time media applications.

In Section 2.4 Quality of Service (QoS) is explained and it is explained

that it is not used in our research as it needs implementing on all nodes that

encounter congestion and we are looking at solutions that can be deployed

on the Internet by implementation only at end points. The research into the

interaction between congestion control and layers within a video stream was

also detailed in this section. The section ended with different forms of trans-

mission queues being explained, including ring buffers which were designed for

use with real time media applications.

The previous work shows that improvements can be made in applications,

that improvements can be made in network protocols and improvements can

be made in congestion control but this past research has largely not covered

the interaction between these all areas. In particular if a media friendly net-

work transport protocol shares information with media applications we believe

potentially significant improvements in quality for real time media applications

are possible.

We plan to show that by taking account of the information available be-

tween all of these areas a significant improvement can be made to the quality of

the user experience. A media friendly network transport protocol could make

decisions at the time of transmission about which is the most appropriate data

to transmit, without requiring real time media applications to have extensive

31

modifications, which contrasts to existing layer based approaches which require

larger modifications.

In the following chapters we introduce how we propose to make improve-

ments in this area with SBPN and then test these ideas experimentally.

Chapter 3

Proposed solution

3.1 Introduction

This chapter proposes a method to improve the quality of audio in real time

media transmission: Send the Best Packet Next (SBPN). The background

decisions around the choice of transport protocol are given and details of the

first two versions of SBPN are given.

Section 3.2 details the reason for the choice of DCCP for SBPN and de-

scribes TFRC, which is used for congestion control in DCCP and the SBPN

implementation. In this section the reason that TFRC is more suitable for

media applications is outlined.

Section 3.3 outlines the concepts of SBPN. It describes how improvements

can be made to the quality of real time media by passing information between

applications and the operating system and how this can be used to improve

the transmission of packets for media applications.

SBPN1 — the first version of SBPN is discussed in Section 3.4 and the

algorithm is described. The algorithm is then explained in depth: detailing

which packets are sent, which are dropped and the order of transmission. A

development of the algorithm, SBPN2, is discussed in Section 3.5.

33

3.2 Use of DCCP

3.2.1 Rationale

Datagram Congestion Control Protocol (DCCP) was investigated and chosen

for the implementation of SBPN as it is a session-based unreliable transport

protocol for datagrams. The IETF required that all new protocols had to

have congestion control and the criteria for congestion control was outlined

in RFC 5033 by Floyd [35]. DCCP was created by the IETF as there was

recognition that the two main existing transport protocols, TCP and UDP,

did not meet the needs of newer applications being created. DCCP has been

designed to give sessions and congestion control for these applications, such

as multimedia streaming, VoIP and online gaming that may not always need

complete reliability.

At the time that research was commenced on this thesis DCCP was the

only standardised and implemented option. DCCP and its related CCIDs had

been through IETF working groups and RFC process, and they are now at

Proposed Standard status. Further background on DCCP and its usage for

multimedia applications is contained in the Problem Statement for DCCP, [37]

a copy of which is in Appendix A, and in Section 2.3.5.

UDP was not used because it does not track the RTT and does not have

congestion control in the base protocol, and to implement this at the applica-

tion level is extra work. UDP also has difficulty traversing some firewalls due

to its lack of session control and often applications fall back to TCP.

It was also decided not to use TCP as it is a reliable protocol and if data

is not received it is retransmitted when, for real time media applications, it

would be better to discard the data as the data is no longer relevant. TCP

also combines packets, even when the Nagle algorithm [81] is turned off and

this causes delay in packets being sent as TCP waits for further packets to be

ready for transmission. The delay causes quality to be lower as described in

Section 4.6.2.

34

DCCP has multiple algorithms for congestion control, each of which is

identified by a Congestion Control Identifier (CCID). CCID3 is used for SBPN

as the authors of it believed that it was the most suitable for multimedia

applications (as outlined in Section 2.3.5). CCID3 is based on TFRC which is

outlined in the following subsection.

The choice of DCCP to be the underlying transport protocol was based on

practical considerations as well. DCCP was an active research project in the

WAND network research group at the time practical work commenced. It was

also helpful that DCCP as a protocol measures the RTT and is a datagram

based protocol and these features have been used in SBPN.

3.2.2 TFRC congestion control

TCP Friendly Rate Control (TFRC) aims to achieve the same throughput

as TCP under the same network conditions while achieving less variation in

sending rate than TCP to cater for the needs of multimedia applications. The

way that this is achieved is to use the TCP throughput equation as the basis

for the sending rate allowed, but to respond to congestion in a different manner

than TCP.

The formula for maximum TCP throughput was derived by Padhye [84]

and is used in the TFRC specification [47]. This formula is shown in Equa-

tion 3.1 where X calc is the calculated transmit rate in bytes per second, s

is the packet size in bytes, R is the Round Trip Time (RTT) in seconds, p is

the loss event rate as a decimal fraction, t RTO is the TCP retransmission

time-out in seconds, b is the number of packets acknowledged by one TCP

acknowledgement.

X calc =
s

R
√

2bp
3

+ (t RTO(3
√

3bp
8
p(1 + 32p2)))

(3.1)

TFRC makes the assumption that t RTO = 4R and that b is 1. This

assumption simplifies the throughput equation to Equation 3.2. TFRC mea-

35

sures the loss rate, p, and the RTT, R, and uses the equation to determine a

maximum transmission rate.

X calc =
s

R(
√

2p
3

+ 12
√

3p
8
p(1 + 32p2))

(3.2)

With TFRC, packets are transmitted at the rate calculated in Equation 3.2

by scheduling time between packets and therefore the transmission rate is al-

tered depending on the network conditions. This scheduling of packets con-

trasts to TCP congestion control where many packets can be sent at once,

followed by a larger time period before the next transmission.

TFRC is designed to address networks which face congestion due to band-

width constraints which result in packets being delayed or dropped. TFRC is

not suitable for lossy networks such as mobile communication where IP pack-

ets are lost due to causes such as radio links that are subject to interference

and corruption, and the link layer is unreliable. In a lossy network, techniques

such as FEC and not decreasing transmit rate upon loss are employed instead

to cater for the changes in the network that occur. As SBPN uses TFRC the

same constraints apply to the suitability of the algorithm to different network

conditions. It is assumed that loss is due to congestion in this thesis.

3.3 Sending the Best Packet Next

In conventional network applications all packets are transmitted by the net-

work transport layer in the operating system in the order that they are received

from the application. Packets are discarded if buffers are full, or transmission

of data falls further and further behind depending on the transport protocol

used.

Send the Best Packet Next (SBPN) is implemented on the end nodes,

rather than in the network core or network switches. The primary reason

for implementing congestion control on the end nodes, rather than across the

network is the ability to implement SBPN without requiring a change on every

36

hop of a network connection. This is in line with the e2e principle as discussed

in Section 2.2.2.

The use of e2e principles also means that QoS measures within the network

such as diffserv [21] are not used in SBPN. It would however still be possible

to use SBPN in conjunction with QoS measures such as diffserv. The use of

diffserv in conjunction with SBPN is a possible area of future research.

Part of the motivation for the writing of SBPN was to allow application

writers to have a congestion control mechanism for real time media applications

without needing to write their own congestion control as is required when using

UDP. With SBPN being based on DCCP, congestion control is provided by

DCCP at the transport layer, and then SBPN allows the most relevant traffic to

be transmitted first. Other approaches such as ring buffers have been used for

media applications as discussed in Section 2.4.2. These allow applications to

provide information to the transport layer. With a ring buffer the application

decides which is the most relevant packet to be transmitted, where SBPN

removes this requirement from the application writer.

SBPN is also completely sender based as it alters the transmission policy

only. SBPN does not require the transmitter to send any new data that is

not already transmitted, as the RTT and allowed transmit rate are already

calculated by DCCP. As such, the algorithm can be implemented on a sender

without requiring changes to the receiver. This also has the benefit that im-

provements to the algorithm could be made on the sending device without

changes being required on all receiving devices.

SBPN is based around three main principles to improve performance for

real time media applications:

• All packets are not created equal

• Allow applications to pass information to the network transport layer

without much overhead on the application

• Allow the network transport layer to alter packet send order and discard

37

policy

These principles are expanded in the following sub-sections.

3.3.1 Not all packets are created equal

As discussed in Section 2.4.1 multimedia traffic is encoded in layers that con-

sist of control data, audio and video. The control data, that maintains the

connection, is typically transmitted using a reliable protocol such as TCP to

ensure that no data is lost.

Video is typically comprised of Intra-coded Picture (I), Predicted Picture

(P) and Bi-predictive Picture (B) frames. I frames are video frames that can

be displayed independently of data from other video frames. P frames use

data from previous frames and B frames can use data from both previous and

future frames. I frames are sent less often then P or B frames as they contain

all the data needed to display a frame, and as such contain more data and

therefore use more bandwidth.

If a frame is not received then there will be visual artefacts that will get

progressively worse until the next I frame is received. The effect will be even

more noticeable if an I frame is not received as the P and B frames will have

differential data against a frame that does not exist at the receiver. I frames

should therefore be given higher priority than P and B frames to avoid these

visual artefacts.

For the purposes of simplicity the experiments in this thesis look at two

layers only — audio packets and video packets. Audio packets are considered

to be the most important to the user experience, with video packets being

lower priority. Control packets are ignored, due to their low volume, and that

they are also typically transmitted using TCP to guarantee delivery. Multiple

video layers are also not investigated as the core question in this thesis is about

improving the audio experience for the user. The research could be extended

to multiple video layers in future with I frames being more important for

example. In our implementation, as described in Chapter 4, the structure used

38

in Figure 4.3 accommodates the use of multiple layers as does the underlying

code implementation and this can be an avenue for future research.

3.3.2 Passing information to the operating system

If the transport layer is to make decisions on which packets to send next there

needs to be a mechanism to pass this information between the application and

the transport layer in the operating system using an Application Programming

Interface (API). SBPN uses two pieces of information that an application

attaches to the packet data — the packet expiry time, and the priority level

of the data that corresponds to which layer (e.g. audio or video) the data is

from. The packet expiry time is described further in Section 4.6.1.

These two attributes, packet expiry time and priority level, are added to

the packet transmission API for SBPN. This potentially allows any real time

media application to be altered to allow it to use SBPN and to benefit from

improvements in audio quality.

3.3.3 Allow altered packet sending and discard order

If the transport layer has information such as the priority and packet expiry

time then the application does not have to actively manage the network trans-

mit queues as is proposed in other research such as Lai and Kohler [69].

Transport layers traditionally transmit packets in the order that they are

received. There is scope here for the transport layer to alter the transmission

order of packets as not all data is of equal importance for media applications,

and more important data can be transmitted first.

As the transport layer in the operating system is aware of the packet expiry

time under SBPN the transport layer can autonomously decide whether to

discard a packet or not based on a set of rules. This gives the benefit of

limited network capacity not being used by packets that will be discarded by

the receiver as no longer useful. It is better for the sender to not send the

packet and more relevant data to be sent instead.

39

receive_time = current_time + (RTT / 2)

if receive_time < expiry_time then

transmit packet

else

discard packet

Figure 3.1: The expiry algorithm for SBPN1

3.4 SBPN1 algorithm

To test the premise that SBPN will improve audio quality for real-time media

applications the SBPN1 algorithm was created to enable experiments to be

carried out.

The SBPN1 algorithm sorts the transmit queue in the transport layer as a

priority queue. Audio packets are marked as higher priority than video packets

when the application puts them into the transmit queue. As such audio packets

will be put into the queue in front of any video packets and present at that

time and therefore audio packets will be sent before current video packets.

The packets in the transmit queue are also marked with an expiry time by

the application. When a packet is due to be sent by the transport layer, the

expiry time is checked against the sum of the estimated time taken to reach

the receiver and the current time. If the expiry time is less than this value the

packet is discarded rather than being sent.

The time taken to reach the receiver from the time of transmission is taken

to be half of the RTT based on the assumption that the link is symmetrical.

If the link were asymmetrical, and that could be measured, a more precise

measurement could be used to calculate if the packet would expire while in

transit.

The pseudo-code for packet discard is shown in Figure 3.1.

Just two priorities are used in SBPN1 - audio and video. This is done

for the purposes of simplicity, but the algorithm could be used for multiple

priority levels within video e.g. a higher priority for I frames than for B and

P frames.

40

3.5 SBPN2

The results from testing SBPN1 are discussed in Chapter 5 and based on these

results it can be seen that further improvements are needed to SBPN1.

One aspect of CCID3 is that it reduces the allowed transmit rate after short

idle periods. The formula for allowed sending rate, X, is shown in Equation 3.3

where X calc is the theoretical TCP throughput equation calculated using

Equation 3.1 from Padhye [84], X recv is the receive rate from the previous

feedback (at least once per RTT), s is the average packet size and t mbi is 64

seconds based on the maximum time between packet transmissions where there

is no feedback. In most circumstances the calculation becomes Equation 3.4 as

s/t mbi is approximately 8 bytes per second. This means that if the sending

rate is reduced below the level allowed, the receive rate will be reduced shortly

afterwards, which may mean that the next period sending rate may be further

reduced. This issue has been raised at IETF 68 [4] when discussing DCCP

implementation experiences. There is also an Internet draft for TFRC Faster

Restart [64] that is discussed further in Chapter 6.

X = max(min(X calc, 2 ∗X recv), s/t mbi) (3.3)

X = min(X calc, 2 ∗X recv) (3.4)

With our transmission scheme in SBPN1 discarding packets when they are

expired this exact scenario of the allowed sending rate reducing can, and does,

occur. In effect the SBPN1 algorithm is being penalised for sending less than

the allowable limit. To address the issue of reduced transmit rate the SBPN1

algorithm was modified to send an expired packet if it is the only packet in

the queue to reduce the likelihood of the transmit rate being reduced. This is

called SBPN2.

The algorithm for inserting a packet into the queue for transmission with

SBPN2 remains the same as that of SBPN1 as described in the previous sec-

41

receive_time = current_time + (RTT / 2)

if receive_time < expiry_time then

transmit packet

else

if queue_length = 1 then

transmit packet

else

discard packet

Figure 3.2: The expiry algorithm for SBPN2

tion. SBPN1 checks each packet at the time of transmission to see if the packet

has expired, and discards the packet if it has expired. SBPN1 can therefore dis-

card all packets in the transmission queue. The algorithm for SBPN2 changes

this so that if there is only one packet left in the transmission queue it is sent

regardless of the expiry status.

The pseudo-code for this is shown in Figure 3.2.

3.6 Summary

In this chapter SBPN was introduced, and it is proposed that by media ap-

plications providing information to the transport layer that improvements can

be made to audio quality. With SBPN the traditional method of all packets

being transmitted in order by the transport layer is changed so that intelligent

decisions are made based on the content of the data. It would seem logical that

there is no point transmitting data that will not be used by the receiver, and

to transmit audio before video. These two assumptions form the basis for the

SBPN algorithm. The first version of the algorithm, SBPN1, was explained in

this chapter. A second version of the algorithm, SBPN2, was also introduced

to improve on SBPN1.

DCCP was chosen as an underlying transport protocol for use in SBPN as

it provides session based unreliable transport that is suited to media applica-

tions. TFRC was used as the congestion control mechanism as it provides a

throughput that is fair to TCP but changes transmission rate more smoothly

42

than TCP. TFRC transmits packets on a time based schedule derived from

the allowable transmission rate, as compared to TCP which sends packets in

groups, and alters the packet sending rate rapidly. This makes TFRC a better

choice for media applications that need a transmission rate with less variability.

SBPN is a unique contribution, combining a priority queue, with expiry

times for packets that take RTT into account. In the following chapters SBPN

will be tested by running experiments and examining the results to determine

if improvements are made through the use of the algorithm.

Chapter 4

Implementation

4.1 Introduction

In this chapter the implementation of DCCP and SBPN is discussed; a video

conference model is built; a description of the test framework is given and a

method to analyse the results that are obtained from testing is proposed.

The implementation of DCCP in the Linux kernel is detailed in Section 4.2

and the history of the DCCP source code is outlined. Technical difficulties

encountered, and how those challenges were overcome are described. There is

also a description of tools that were used to assist with the DCCP implemen-

tation

Section 4.3 describes how SBPN is implemented on top of DCCP in the

Linux kernel. An API is described for user programs to interact with the

SBPN implementation.

In Section 4.4 three applications — Skype [12], Ekiga [9] and MSN Mes-

senger [5] — are tested to understand the traffic patterns that they use for real

time video conferencing. From this a model is produced to use in our tests.

The test framework that is used is described in Section 4.5. The use of

Netem [50] is outlined in Section 4.5.1 and the test applications that were

created are detailed in Section 4.5.2.

In Section 4.6 the two methods that will be used to measure whether SBPN

44

makes an improvement are described. A measure “On time arrival” is created

and the use of Mean Opinion Score (MOS) is described in detail.

4.2 Implementation of DCCP

It was decided to use DCCP in a Linux kernel, rather than as a simulation in a

tool such as ns2 [1]. The primary reason that implementation was chosen to be

done in the Linux kernel, was that it was desired to test with real application

data. The tools for Linux were available and it was believed that it would

be relatively easy to modify the existing DCCP implementation for Linux to

meet the requirements needed to carry out testing. In the end, substantial

work was required to get a working implementation of DCCP.

4.2.1 History

For the Linux 2.4.x kernel there were two main early releases of DCCP. There

was an implementation by ICSI Center for Internet Research (ICIR) [53] to

test the difficulty of implementing the specification, and an implementation

by Patrick McManus [76] which implemented the base protocol and CCID2.

The University of Waikato WAND Network Research Group took the imple-

mentation from Patrick McManus and incorporated CCID3 code from Lule̊a

University of Technology [71] which was originally built on top of FreeBSD.

The Lule̊a code was re-licensed under the GPL to ensure that it could be

merged into the Linux kernel. This code was tidied for release by WAND and

is available for the Linux 2.4.27 kernel [109].

I migrated the WAND implementation to the Linux 2.6.11.4 kernel and

at around the same time Arnaldo Carvalho de Melo (a founder of Connectiva

Linux) independently started implementing a version of DCCP for the Linux

2.6.12 kernel. Arnaldo’s code initially consisted of the base protocol without

any implementation of CCIDs. I worked with Arnaldo to merge these two

— the main part of the University of Waikato code that was merged was for

45

CCID3, as well as extensive help in fixing general DCCP bugs, adding code to

ensure RFC compliance and testing. This combined code base was accepted

into the official Linux kernel tree by Linus Torvalds and was released in Linux

2.6.14 kernel. Improvements and additions to the code continue to be made in

the official Linux kernel tree after this initial acceptance.

DCCP was implemented for both IPv4 and IPv6. The code for DCCP was

implemented in a modular way to enable the code to be extended in future.

The directory structure for the DCCP code in the Linux kernel is:

net/dccp base protocol

net/dccp/ccids CCID specific

net/dccp/ccids/lib CCID libraries

Further details on the implementation of DCCP can be found in Melo [79].

The version of Linux kernel used for most of the research in this thesis was

Linux 2.6.20 kernel with a series of patches [74] to ensure that the performance

of CCID3 matched the TFRC [47] throughput equation. Later on, Linux 2.6.23

kernel was used as described in Chapter 6 for TFRC Faster Restart [64] as this

was the version on which it was implemented.

When Melo started on his implementation of DCCP he realised that there

were many similarities between the current TCP code and what would be

required for DCCP. The code was restructured so that much of it could be

used for both TCP and DCCP, thus avoiding duplication. In particular TCP

sockets and code using these sockets were examined to see if they could be used

in multiple protocols rather than just TCP. These changes are a continuation

of Melo’s earlier work [78]. In the future there is the potential to rework

existing protocols such as SCTP to use the restructured code, to extend the

code shared between TCP and DCCP, and also to implement other protocols

such as XCP. A similar process has also been commenced by Melo for DCCP

over IPv6 as well.

As both TCP and DCCP codebases in Linux use modular congestion con-

trol mechanisms there is also scope to consider whether the code can be shared

46

down to the individual congestion control mechanisms for both protocols. This

would be particularly applicable for CCID2 which uses TCP congestion con-

trol. A shared codebase could also be used to compare real time media per-

formance between TCP and DCCP if the TFRC code were implemented as a

shared congestion control mechanism for TCP and DCCP.

4.2.2 DCCP Tools

As part of the Linux implementation of DCCP work was done on a number of

supporting tools to help resolve bugs in the implementation.

DCCP support was added to tcpdump [7] in conjunction with work done

by Melo. Tcpdump is software used to analyse traffic flows on a per packet

basis.

The programs ttcp and iperf [56] were modified to enable use of DCCP

and selection of TCP congestion control at run time. These two programs

are used to generate traffic and were used to measure throughput speed over

varying loss and congestion on a connection to ensure that they matched the

specification of DCCP and CCIDs.

A Linux kernel module, DCCP Probe, was also written which allowed the

internal state in the DCCP Linux kernel module to be exposed for debugging

purposes. DCCP Probe was based on the source code of TCP Probe [2] written

by Stephen Hemminger.

4.2.3 Implementation challenges

One of the challenges of implementing the Lule̊a CCID3 code in Linux 2.6.x

was implementing the mathematical calculation of the transmission rate. The

challenge was two fold — the lack of 64 bit integer operations on 32 bit archi-

tecture and the inability to use floating point instructions in the kernel. This

was resolved by converting the Lule̊a floating point lookup tables to integer

based lookup tables with some reasonably complex manipulations. As part

of this a large amount of testing was carried out which showed that previ-

47

ous DCCP implementations based on the the Lule̊a code had implemented

the CCID3 rate calculation incorrectly. Another challenge in implementation

was with implementation of locking around packets and this consumed a large

amount of time in implementation.

Tests have been conducted between Brazil and New Zealand by Arnaldo

Carvalho de Melo and the author using the public Internet which consisted of

a route using 18 hops. The tests were done with netcat and ttcp which had

been modified to use DCCP. Tests were carried out by others with success also

which demonstrates that ISPs are allowing DCCP to traverse their networks.

That is probably due to it being built on top of IP, and most IP traffic being

allowed.

Initially the tests failed with checksum failure on the header. This was

proven to be due to Network Address and Port Translation (NAPT) as the

DCCP checksum covers the source and destination IP addresses amongst other

fields, and NAPT changes the source IP and port address. With checksum

tests temporarily removed the tests proceeded successfully. It is extremely

encouraging to see that DCCP was able to traverse the public Internet suc-

cessfully. After these tests were completed the Linux firewall code was modified

to rewrite the DCCP checksum during NAPT, in the same manner as is done

for TCP and UDP. As future Linux based firewalls use newer code this will

improve the suitability of DCCP for use on the Internet. During the course of

this research I was also contacted by people from a range of firms such as Sony,

multimedia startups and military subcontractors which indicates that there is

some interest in DCCP being implemented. DCCP can also be encapsulated

over UDP and this is an RFC [93] at Proposed Standard status. TCP will still

be used by applications where reliability is needed, such as control information

and this is seen also for applications that use UDP.

An interesting effect was observed when testing with the SBPN algorithm

that sorts the transmit in priority order and discards all expired packets. The

first packet was transmitted with an RTT of 0 milliseconds and after that

48

ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);

Figure 4.1: sendmsg system call function prototype in Linux

the RTT was 500 milliseconds [40] until the RTT was observed from return

packets. The actual RTT on the public Internet test was 130 milliseconds.

This meant that packets were discarded by the SBPN algorithm as unable to

reach the destination in time until the real RTT was obtained. DCCP was

modified to fix this by following a suggestion from RFC3448 erratum to get

the RTT from the initial handshake establishing the session.

The initial implementation of DCCP had no limit to the size of the transmit

queue. The result of this was that if the transmit rate of the application

exceeded the transmit rate of the network, packets would get more and more

delayed. This is clearly not desirable, and could also lead to out of memory

crashes. Transmission queue size limits were implemented as a limit on the

number of packets waiting to be transmitted, and an error is returned to

the application if the queue is full and a further packet is requested to be

transmitted.

4.3 Implementation of SBPN in Linux DCCP

SBPN was implemented by making a number of changes to the standard Linux

DCCP implementation. These patches [74] implemented SBPN in the Linux

kernel and created an API to allow applications to pass information to SBPN.

The SBPN API uses the sendmsg system call shown in Figure 4.1 to allow

the application to send data to the SBPN implementation in the Linux kernel.

The sendmsg function in Linux allows control data to be passed to the kernel

alongside the data itself in the msghdr structure as shown in Figure 4.2.

For SBPN we provide the dccp prio structure shown in Figure 4.3. This

is passed into the msg control field as the control data which is set aside for

applications to pass data to the operating system. In this structure the expiry

49

struct msghdr {

void *msg_name;

socklen_t msg_namelen;

struct iovec *msg_iov;

size_t msg_iovlen;

void *msg_control;

size_t msg_controllen;

int msg_flags;

};

Figure 4.2: msghdr structure for sendmsg system call

field contains the time after which the data will be of no use to the receiver,

the priority field which specifies whether the data contains audio or video,

and the method field is used to select which SBPN algorithm will be used in

testing. These fields are used for all the testing of algorithm variants except

when unmodified DCCP is being tested.

The data to be transmitted and the control data are both received by

the dccp sendmsg function from the sendmsg function. The dccp sendmsg

function uses the priority information to store the packet in the correct location

in the transmit queue. The transmit queue is a single queue but was changed

from a FIFO queue to a queue sorted first by priority, and secondly by expiry

time. This was implemented as one queue for reasons of code simplicity, but

for future research it could also be implemented as a set of queues.

The dccp write xmit function carries out transmission of packets for DCCP

in Linux and this is where the transmit part of the SBPN algorithm is imple-

mented as described in Section 3.3. This function starts transmission from the

beginning of the priority queue. The function checks the expiry time just be-

fore a packet is transmitted and decides whether or not to discard or transmit

it as per the SBPN algorithm.

50

struct dccp_prio {

struct timeval expiry;

u16 priority;

u16 method;

};

Figure 4.3: dccp prio structure passed in msg control field

4.4 Video conference model

To gain an understanding of real time media applications network usage, cur-

rent application audio and video traffic was captured and analysed. Once the

data was analysed a model combining the findings was created. This model

allows us to perform simulations based on existing programs, and thus see how

SBPN would potentially improve user experience.

4.4.1 Data captured

Data was captured from three applications — Skype, MSN Messenger and

Ekiga. Skype and MSN Messenger were running on Microsoft Windows and

Ekiga was running on Linux. Skype and MSN Messenger were chosen as these

were in common use in mid 2006 when the analysis was carried out. Ekiga

was chosen as a commonly used program on Linux in mid 2006 and to allow

further analysis to be carried out if needed by using Linux tools, and to allow

access to any documentation or source code if needed as Ekiga is an open

source program.

The traces were captured on a 100 Megabit per second network link with

both sender and receiver connected to the same network switch to ensure that

there was enough bandwidth for any codec and virtually no latency. The

reason for this was so that the data would be captured on an uncongested

link as we wanted to see the underlying traffic model, rather than how the

programs responded to congestion. The traces were run for twenty seconds

and consisted of ten seconds of talking and motion, followed by five seconds

of silence and no motion, followed by five seconds of talking and motion. The

51

video component was a person sitting in front of a webcam, and the motion

was arms being waved in the air and the periods of no motion were the person

sitting as still as possible.

The packets in the traces were then analysed to see their protocol, timing

between packets, packet size, and to try and determine whether each packet

contained audio or video. When analysing the traces it could be seen that

UDP was used by all the applications to transmit the audio and video packets.

A minimal amount of TCP was used in the connection setup and, presumably,

for control purposes due to a requirement for reliability. The TCP traffic

was excluded from our analysis and model generation as the TCP packets

constituted less than 0.1% of the total network packets.

4.4.2 Ekiga results

The Ekiga voice packets had a very regular pattern when not carrying out

silence suppression. All packets are 214 bytes with a pattern of six packets

spread over 120 milliseconds with the sequence of intervals between packets be-

ing 39, 9, 15, 24, 24, 9 milliseconds with little variation to this pattern. Ekiga’s

audio is transmitted using the H.323 standard according to their documenta-

tion. The audio was transmitted on UDP port 5004. In periods of silence

suppression no audio packets were sent at all. The packet spacing being not

at exactly the same intervals may be their method of congestion control and

designed to avoid synchronisation issues if many streams were all sending at

the same regular time intervals.

The video component sends a number of packets which appear to consti-

tute a video frame together every 100 milliseconds on UDP port 5006. The

maximum size of the frame is 6677 bytes and the minimum size is 155 bytes.

The frame size appears to be totally differential (transmitting the difference

between frames) as there is no discernible pattern of large frames at repeated

intervals and the trend for frame sizes matches the amount of motion. For

Ekiga with high motion the average is 4451 bytes per video frame with a stan-

52

dard deviation of 1014 bytes, while for low motion the average is 1072 bytes

with a standard deviation of 482 bytes. The maximum size of a packet within

a frame is 1078 bytes. For packets that are not at the end of a frame the

average is 1026 bytes with a standard deviation of 44 bytes. The last packet

in a frame is of variable size to complete the transmission of a frame. In 20

seconds of video there were a total of 799 packets for 200 frames.

Tests were also carried out on how Ekiga responded to congestion. Initial

tests showed that traffic for voice is not prioritised over that for data. In testing

Ekiga was restricted to a bandwidth allocation that was less than the sum of

the bandwidth required for video and audio, but higher than that required for

either component by itself. The result of this was that the audio came through

at a different pitch and less intelligible indicating that not all audio packets

were being received. This shows the potential for real time media applications

such as Ekiga to improve the quality of user experience through methods such

as SBPN.

4.4.3 MSN Messenger results

For MSN Messenger audio the average time between packets is 20 milliseconds

which equates to 50 packets per second. The packets arrive in sequences of five

generally with a pattern of four packets at larger intervals (23.6 milliseconds)

followed by a packet with a shorter interval (average 3.5 milliseconds). The

percentage of packets with less than 5 milliseconds between packets is 18.5%

and the percentage of packets with larger than 9 milliseconds between packets

is 81.5%. There were no packets with a gap between packets in the range of 5

milliseconds and 9 milliseconds. These figures are all for audio when no silence

suppression was occurring.

MSN Messenger did use silence suppression for audio during the quiet pe-

riods. When silence suppression occurred 78 byte packets are sent and time

between packets is longer than other audio packets. The time between packets

can extend to multiple seconds. At other times the audio packets range be-

53

Table 4.1: Skype traffic characteristics

Packet size Packet size Packet size Time interval Time interval
Range Average Std deviation Average Std deviation
(bytes) (bytes) (bytes) (msecs) (msecs)

100-339 235 57 30.1 2.5
459-799 644 80 27.9 12.1
890-1294 1061 74 16.7 7.6

tween 124 and 160 bytes with a large number of packets with 125 bytes. The

average packet size is 123 bytes with silence suppression or 133 bytes without

silence suppression. There is a noticeable trend after periods of 78 byte packets

that the packets become larger and are closer to 160 bytes in size.

For video MSN Messenger sent frames on average every 40 milliseconds

with a frame size during high motion of 1400 bytes with a standard deviation

of 275 bytes, and for periods of low motion of 650 bytes with a standard

deviation of 135 bytes. A frame was either sent as one packet or broken into

smaller packets with the first packet being either 896 or 1066 bytes. There was

a gap in transmission time between packets in a frame indicating that MSN

Messenger was employing some form of pacing control or congestion control

over top of UDP.

4.4.4 Skype results

With Skype it was harder to carry out analysis and determine which were audio

packets, and which were video packets as all packets were sent over the same

UDP port. The packet distribution shows what appears to be patterns for

different sizes of packets and this is shown in Table 4.1 with very few packets

outside these ranges.

Assuming that the smaller packets were voice then Skype voice packets

ranged from 108 bytes to 335 bytes with an average of 252 bytes and a stan-

dard deviation of 42 bytes, after removing one outlying packet from the data.

These packets were sent every 30 milliseconds which would also validate the

suggestion that these are audio packets as audio packets need to be sent at

54

a higher frequency than video packets. Packets were still sent during periods

of silence, so it would appear that Skype did not carry out silence suppres-

sion. It is interesting to break packets down into periods of active interaction

and silence and these show that during active periods the average packet size

is 258 bytes with standard deviation 45 bytes, and during silence the aver-

age packet size is 234 bytes with standard deviation 18 bytes. These smaller

packets sizes during silent periods may however not be statistically significant.

Further investigation was not carried out.

Skype has some form of timing control for video as packets are not sent

immediately after each other, but always had a gap between each packet even

in times of high motion video when a video frame would be larger than a single

packet. It is a possibility that the packets in the largest size range were mostly

for frames, and that medium size packets were used to complete frames, and

that the variance in small packet sizes is when video data is combined with

audio data. This would also match the fact that all data is transmitted on the

same port.

4.4.5 Traffic model

A model of the traffic was then built based mostly on how Ekiga transmits

packets, although the applications were reasonably similar in their character-

istics. Fixed rate audio was used with a payload size of 214 bytes every 20

milliseconds and silence suppression was not used. Video frames in the model

were created with an average and a standard deviation for their type that

matched the traffic Ekiga generated as detailed in Section 4.4.2. During peri-

ods of high activity the average packet size is 4451 with a standard deviation

of 1014. During periods of low activity the average packet size is 1072 with a

standard deviation of 482.

With this model audio equates to 86 Kbps and video equates to 289 Kbps

which gives a total of 374 Kbps. These rates are inclusive of all packet over-

heads.

55

Client ServerNetem
Box

Figure 4.4: Test network for SBPN testing - Netem installed on middle box

It was decided not to incorporate silence suppression into the model. The

reason for this is that SBPN is trying to demonstrate improvements in the first

instance for audio performance.

4.5 Building of test framework

4.5.1 Netem

To generate loss on a link a tool was needed and Netem was chosen.

Netem is an open source traffic shaping tool developed by Stephen Hem-

minger and included in the Linux kernel from version 2.6.7 onwards. Netem

can be used to drop packets, inject delay, duplicate packets and reorder pack-

ets. The distribution on the loss, duplication and delay can be uniform or user

defined. Netem draws ideas from Dummynet which is part of FreeBSD and

some code from NIST Net [82].

Netem only works on outbound queues, and not inbound queues, so to

achieve symmetric loss on a link it is necessary to enable it on a PC running

as a router with at least two Ethernet cards. The setup used for DCCP testing

in this thesis with Netem is shown in Figure 4.4. This setup is also useful to

minimise interaction with other Linux network code, as in early testing it was

found to produce unexpected results if run on the same box as the client and

server software.

The use of Netem was validated by using it to vary loss and delay to see if

the throughput matched the rate predicted in DCCP CCID3 with the TFRC

equation. This actually highlighted bugs in the CCID3 code that were fixed

56

before further testing was carried out.

4.5.2 Test applications

A suite of test applications were created to carry out testing of SBPN with

the model created.

The tests were run with all unnecessary services such as X [13] and NFS

[103] shut down, which reduced the baseline CPU usage to nearly zero and all

tests were run from a text console. This enabled the testing programs to have

full access to the CPU without interference from other programs.

The kernel on the test machines were also built with a ’HZ’ setting of 1000.

This setting means that the CPU scheduler is run 1000 times per second -

i.e. at 1 millisecond intervals. The 1 millisecond resolution means that tasks

are scheduled with reduced variability compared to that with 10 millisecond

scheduling which was the Linux kernel default at the time of the tests. With

tests being carried out with expiry times of between 15 and 75 milliseconds

this reduces the variability due to scheduling of timeslices for the userspace

components of the test suite.

From the model generated in the previous section a Comma Separated Val-

ues (CSV) formatted text file was generated which contained a list of packets

to be sent, their content, size and timing. An application was written to then

replay this stream between two PCs with a Linux PC in the middle using the

Netem software to add delay, and to rate limit the traffic or create loss. All

of the packets in an audio frame or video frame were sent immediately, one

after the other by the test application so the actual time to send was deter-

mined solely by the DCCP CCID3 congestion control in the Linux operating

system. This differs from applications which use UDP, as some of these deter-

mined the send time themselves as UDP does not have congestion control at

the transport level as detailed in Section 4.4 and they added their own packet

timing as a form of congestion control. If audio and video frames were both

due to be transmitted at the same time the application randomly chose which

57

to send first to avoid bias as typically audio and video are handled by separate

threads in a program and either could take priority. The result was a data

stream that in effect shifted any timing decisions from the application to the

network transport layer, so that it could be seen if improvements could be

made there.

There was a separate application written to track the difference in time

setting between the two PCs so that arrival time could be tracked at the

receiver relative to the sender. The receiver recorded how long each packet

took to arrive and whether it arrived at all. On the receiver the identity

and timing of the packets received were written to a CSV format file so that

further analysis could be carried out. To check whether packets had arrived

on time initially it was thought that using Network Time Protocol (NTP) on

the sender and receiver would enable both machines to synchronise their time.

When analysing initial test data it was established that this assumption was

incorrect as NTP did not synchronise time to lower than 1 millisecond and

was often over 50 milliseconds. The reason for the inaccuracy that occurred is

that NTP requires accurate clocks and uncongested networks to keep time to

within 1 millisecond. The clocks used were not accurate on the PCs and would

drift as much as 2500 milliseconds in a series of runs and the network links

had delay as part of the testing on them so NTP would not have synchronised

them even if it had the capability to do it continuously at high frequency and

accuracy. A program was written to establish the time difference between two

machines that are connected via a network. The program did this by sending

a packet from one machine to the other with the time in it, and the other

machine sending back it’s time. The RTT could then be calculated, and the

time compared between the two nodes with half the RTT deducted (as this is

the one way delay). This program was then used when calculating results to

ensure that the time taken to send and receive packets could be calculated to

within 1 millisecond.

The length of the audio and video test in Section 4.4.1 was 20 seconds. Ini-

58

tial testing with the 20 second runs however showed a high rate of variability

due to the initial connection setup and the random nature of loss and con-

gestion. At low loss rates in particular this altered the timing of sending rate

alterations in proportion to the length of a run. The test was then increased

to 60 second runs with the data being repeated three times in each run. The

first 3 seconds of data was discarded and the remaining data had significantly

reduced variation due to the connection speed stabilising over the longer run.

In all of the results in this thesis data was generated from 30 runs of 60 seconds

to ensure that the results were statistically significant. An average was calcu-

lated with 95% confidence intervals from a T-test as recommended in Law [70]

and the confidence intervals are shown on all the graphs in this thesis.

Huffaker [52] has measurements on RTTs and our times of 30, 80 and

150 milliseconds correspond with their ranges of: on the same coast of the

USA; between coasts of the USA; and intercontinental from the USA. These

measurements were used to run tests with symmetric one way delays of 15,

40, 75 milliseconds producing minimum RTTs of 30, 80, 150 milliseconds. For

the purpose of simplicity symmetric links were used. It is recognised that not

all links are symmetric [89]. The algorithm could easily be adapted if the one

way delay could be measured for a link.

4.6 Measuring audio quality

To determine whether SBPN is making a difference to audio quality it is impor-

tant to quantitatively measure the audio quality. In this thesis two measures

are used — on time arrival (Section 4.6.1) and MOS (Section 4.6.2). These

are described below. On time arrival measures whether a packet arrives within

a certain time period, and MOS measures the quality of audio as would be

perceived by a human listener.

59

Figure 4.5: Diagram illustrating on-time arrival

4.6.1 On time arrival

The ITU recommend that delivery time for audio be less than 150 milliseconds,

and that any delivery time between 150 milliseconds and 400 milliseconds has

lower quality [58] than with the recommended delivery time. The reason for

this recommendation is that the longer the delay, the harder it is to have a

conversation as there are delays in answering the other person and people can

both talk at the same time and take longer to realise that this is occurring.

With SBPN, packets get marked with an expiry time which is 200 milliseconds

from the time that they are created. The expiry time includes both time in the

queue and time in transit. The choice of 200 milliseconds is arbitrary and it is

envisaged that an application could allow the end user to adjust this setting

to meet their quality requirements.

In this thesis when a packet arrives within the expiry time of 200 mil-

liseconds the packet is said to have arrived on time for the experiments. The

desired result is that more audio packets arrive on time. This is measured

through the percentage of packets that arrive on time.

Figure 4.5 shows the timing graphically where P is processing time (both

server and client) and includes tasks such as frame encoding and decoding, Q

is the time spent in the queue before transmission time and N is the time taken

to traverse the network. The top box shows a packet arriving on time as all

steps occur in less than 200 milliseconds, and the bottom box shows a packet

60

Table 4.2: MOS Score and Quality description

MOS Score Quality

4.34-4.50 Best
4.03-4.34 High
3.60-4.03 Medium
3.10-3.60 Low
2.58-3.10 Poor

that does not arrive on time as the total time of all steps is greater than 200

milliseconds.

4.6.2 Mean Opinion Score

ITU recommendation G.107 [59] introduces the E-model - “A computational

model for use in transmission planning” which has a quality measure R which

is transformed into Mean Opinion Score (MOS). MOS gives a measure that

correlates to how people rate the audio quality. MOS is used for measuring

the quality of telephone conversations. The MOS score and the corresponding

quality rating are shown in Table 4.2, and the equations to calculate these as

per the ITU recommendations are detailed below:

The value of MOS is calculated in Equation 4.1 that takes the value of R

calculated in Equation 4.3 as the input. If R is less than 0 then it is clamped to

a minimum of 1, and if it is greater than 100 then it is clamped to a maximum

of 4.5.

if R < 0, MOS = 1

if R > 100, MOS = 4.5

else MOS = 1 + 0.035R + 7 × 10−6R× (R− 60) × (100 −R)

(4.1)

The starting point for R is calculated in Equation 4.2 where Is is a measure

related to signal-to-noise, Id is a measure related to ear-to-mouth delay, Ief

is an equipment impairment factor measure and A is an Expectation Factor.

The Expectation Factor is a measure to adjust for people changing their expec-

61

tations depending on what they know about the call e.g. people may expect

international or cellphone calls to be of lower quality.

R = 100 − Is − Id − Ief − A (4.2)

Cole [26] takes Equation 4.2 and considers it for the case of VoIP and the

resulting equation is shown in Equation 4.3 where Ie is the impact of loss

and Id is impact of delay. The calculation for Ie is shown in Equation 4.4.

λ1, λ2, λ3 are dependent on the codec used and e is the loss rate. In the case of

the G.711 [57] codec the values from Balan [31] are λ1 = 0, λ2 = 30, λ3 = 15.

Id is calculated in Equation 4.5 where d is the delay in milliseconds. The more

delay that occurs the higher the impact, and this increases at a faster rate

after 177.3 milliseconds.

R = 94.2 − Ie − Id (4.3)

Ie = λ1 + λ2ln(1 + λ3e) (4.4)

if d < 177.3, Id = 0.024d

else Id = 0.024d+ 0.11(d− 177.3)

(4.5)

G.711 was chosen as the codec because the bandwidth for the model in

Section 4.4 most closely matched the bandwidth of the model developed in

Balan [31]. The parameters that vary between codecs are λ1, λ2 and λ3. As

discussed above Equation 4.3 shows that R score is dependent on delay and

loss. In Equation 4.5 there are no codec dependent values, and Equation 4.4

is comprised of constants for a codec and the loss rate. As such the choice of

G.711 as the codec will not alter whether the SBPN algorithm will make an

improvement or not, but will only alter the size of the improvement that is

62

made when compared to another codec.

4.7 Summary

In this chapter the tools needed to create and test SBPN, and how these were

constructed were outlined. These are important steps to take the SBPN from

an idea to an actual platform that can be tested and measured, and to see

whether SBPN actually makes an improvement.

The steps needed to get DCCP on Linux into a state able to be used were

described in Section 4.2 as prior to this research there was not an effective

DCCP implementation available on Linux.

Section 4.3 describes the API for SBPN and how this was implemented

on the Linux kernel. For SBPN to be used in actual programs there needs to

be a mechanism for programs to use it and the interface that was created is

outlined here.

Section 4.4 described the development of a video conferencing model, that

was made by reverse engineering three different application’s traffic flow. These

traffic flows were then analysed and used to create a model. This allowed

testing to be carried out on traffic based on actual user applications.

Section 4.5 describes the tools that were created and used for testing SBPN.

Netem is used to vary network conditions such as speed and loss. Tools were

written to enable measurements to be made, and the steps needed to create

an effective testing environment were detailed. This was important to allow

tests to be controlled and repeatable.

It is important to be able to measure any improvements made objectively

so that it can be determined if SBPN makes a difference to real time media

applications. Section 4.6 proposes how to evaluate the quality improvements

being made by SBPN by measuring on time arrival and Mean Opinion Score

(MOS). On time arrival describes how many packets arrive within a certain

time period (200 milliseconds), as delayed audio causes worse experience for

63

the person listening and MOS quantifies how a person would rate the quality

of audio on a scale.

The work to implement SBPN on top of DCCP for Linux, the video con-

ferencing model, and quality measures that will be used to determine whether

SBPN has made an improvement have been described. The following chapter

begins to outline test results.

Chapter 5

Results from testing SBPN

5.1 Introduction

In the previous chapters the need to improve real time media application audio

performance was discussed, solutions were proposed and their implementation

described along with ways to measure audio quality.

In this chapter results are presented from testing SBPN. Results are shown

graphically with on-time arrival and the quality measured by Mean Opinion

Score (MOS) across a range of scenarios. Explanations are given for the results

and different tests are carried out to see if improvements can be made.

In Section 5.2 testing is carried out with loss on the network. SBPN1 is

tested in Section 5.2.1 firstly with an unbounded length queue and then with

a fixed length queue. SBPN2 is tested in Section 5.2.2 to see if it can improve

on SBPN1 and in Section 5.2.3 analysis is carried out on packets transmitted

to understand the behaviour of SBPN under lossy conditions.

Testing with congestion is detailed in Section 5.3. Section 5.3.1 gives re-

sults for testing SBPN2 with congestion and further testing is described in

Section 5.3.2 for varying queue lengths and Section 5.3.3 for varying RTTs.

65

unmodified DCCP audio
unmodified DCCP video

SBPN1 audio
SBPN1 video

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

P
ac

k
et

s
re

ce
iv

ed
 o

n
 t

im
e

(i
n

 p
er

ce
n

t)

Loss rate on link (in percent)

Figure 5.1: Testing with loss - 80 ms RTT, unbounded queue

5.2 Testing with loss

The first testing that was done with SBPN was with loss created on the net-

work. This section outlines the testing and the results. It was decided to test

with loss, as often loss is an indicator of congestion on a network, although it

can also indicate factors such as packet corruption.

5.2.1 SBPN1

5.2.1.1 Testing SBPN1 with an unbounded queue

In the first tests carried out unmodified DCCP packet transmission is com-

pared to DCCP with the SBPN1 algorithm implemented. An unlimited length

transmission queue is used (for both unmodified DCCP and SBPN1) as this

was the only option in the Linux implementation at the time of initial testing.

Unmodified DCCP and SBPN1 were tested on a network using Netem to cre-

ate delay and to create loss by discarding packets as described in Section 4.5.

Netem was configured to drop random packets without any correlation between

packets dropped.

The tests were carried out with an 80 millisecond RTT on the network

66

(40 milliseconds of delay was created by Netem) and the results are shown

in Figure 5.1. Tests were run for 60 seconds and repeated 30 times as de-

tailed in Section 4.5.2. With the SBPN1 algorithm, when compared to normal

transmission, a higher proportion of audio packets arrive on time with a cor-

responding reduction of video packets arriving on time. The vertical line at

each data point shows the range for a 95% confidence interval from a T-test.

The audio data for this shows that at 10% loss on the link, using unmodified

DCCP results in 198 millisecond average delay with 10.0% packet loss and

using SBPN1 results in 85.4 millisecond average delay with 21.5% of packets

lost or discarded for SBPN1. The much higher rate of packet loss results in a

drop of quality that outweighs the reduction in average delay. For video pack-

ets there were 45.5% of packets lost with SBPN1 and 99.2 millisecond average

delay.

The rate of audio packets arriving on time rose from 65.0% with unmodified

DCCP to 78.5% with SBPN1. Although fewer packets were transmitted with

SBPN1 all of the packets that arrived for audio were on time. There is also

a corresponding drop in the number of video packets arriving on time as this

falls from 63.4% with unmodified DCCP, to 54.5% with SBPN1.

The rate of packets not received ontime with SBPN1 is not equal to the

loss rate as the loss rate increases. This is because audio packets are not

transmitted as they will expire in transit. The proportion of video packets

transmitted is lower than the proportion of audio packets transmitted, and

becomes lower as the loss rate increases. Some video packets are still trans-

mitted though, even at higher loss rates, as the last audio packet in the queue

may be discarded and when the next packet transmission is allowed no further

audio packets have been queued.

Figure 5.2 shows the results from a quality point of view. MOS is calculated

using the average figures from the testing runs. MOS is calculated as described

in Section 4.6.2 and is based heavily on the impact of loss and delay on packets.

In this figure the unmodified DCCP shows higher quality results than SBPN1

67

unmodified DCCP audio
SBPN1 audio

poor
low

medium
high
best

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10

M
O

S
 Q

u
al

it
y

 s
co

re

Loss rate on link (in percent)

Figure 5.2: Testing with loss - 80 ms RTT, unbounded queue

which is not the desired result. Audio quality is expected to be improved with

SBPN.

Table 5.1 show the underlying data used to calculate the quality metrics in

Figures 5.2. Rate is the constrained link rate in Kbps, loss is the percentage of

packets that did not arrive at the receiver. Ie is the impact of loss as defined

in Equation 4.4, Id is the impact of delay as defined in Equation 4.5, and MOS

is the Mean Opinion Score as defined in Equation 4.1.

Looking at the data in the table it can be seen that the lower quality is

due mostly to the variance in the impact of loss (Ie), which is derived from

the loss rate. For example at 10% loss on the link the loss rate increases with

SBPN1 from 9.9% to 21.5% over unmodified DCCP. At 10% loss the average

delay drops from 198 milliseconds to 43.3 milliseconds but the decrease in Id

(impact of delay) is more than offset by the increase in Ie (impact of loss).

5.2.1.2 Testing SBPN1 with a fixed length queue

When this test was carried out the Linux implementation of DCCP had an

unlimited transmit queue, and it was wondered if this was part of the reason

for SBPN1 being worse than unmodified DCCP. Having an unlimited transmit

68

Table 5.1: Loss and delay with unbounded queue length, 80 ms RTT

Unmodified DCCP SBPN1
Link Packet Packet
Loss Loss Delay Ie Id MOS Loss Delay Ie Id MOS
0.0% 0.0% 40 0.0 0.9 4.4 0.0% 40 0.0 1.0 4.4
0.5% 0.5% 40 2.1 1.0 4.4 0.5% 40 2.1 1.0 4.4
1.0% 1.1% 40 4.5 1.0 4.3 1.0% 40 4.2 1.0 4.3
1.5% 1.5% 41 6.2 1.0 4.3 1.5% 40 6.1 1.0 4.3
2.0% 2.2% 43 8.4 1.0 4.2 2.0% 42 8.0 1.0 4.2
2.5% 2.4% 45 9.3 1.1 4.2 2.5% 42 9.6 1.0 4.2
3.0% 3.0% 47 11.0 1.1 4.1 3.1% 44 11.3 1.1 4.1
3.5% 3.6% 49 12.9 1.2 4.0 3.8% 45 13.3 1.1 4.0
4.0% 4.0% 54 14.2 1.3 4.0 4.3% 47 14.9 1.1 4.0
4.5% 4.5% 56 15.5 1.4 3.9 4.9% 49 16.6 1.2 3.9
5.0% 5.0% 61 16.8 1.5 3.9 5.6% 51 18.2 1.2 3.8
5.5% 5.4% 63 17.9 1.5 3.8 6.9% 56 21.4 1.3 3.7
6.0% 6.2% 71 19.7 1.7 3.7 7.3% 58 22.1 1.4 3.6
6.5% 6.4% 78 20.2 1.9 3.7 8.9% 62 25.4 1.5 3.5
7.0% 7.0% 89 21.5 2.1 3.6 9.9% 65 27.3 1.6 3.4
7.5% 7.4% 98 22.4 2.4 3.6 12.2% 69 31.2 1.6 3.2
8.0% 7.8% 107 23.2 2.6 3.5 12.9% 72 32.3 1.7 3.1
8.5% 8.6% 138 24.8 3.3 3.4 15.4% 77 35.9 1.9 2.9
9.0% 8.9% 167 25.5 4.0 3.3 17.1% 80 38.2 1.9 2.8
9.5% 9.5% 198 26.6 7.1 3.1 18.4% 81 39.8 1.9 2.7
10.0% 9.9% 198 27.4 7.0 3.1 21.5% 85 43.3 2.0 2.5

queue is not a realistic scenario as other protocols have maximum buffer or

queue sizes. This reflected the status of implementation of DCCP in the Linux

kernel at the time. An unbounded queue can potentially grow to a point

where it causes issues with the operating system due to memory consumption.

An unbounded queue may also have a growing delay to transmission. If the

transmit rate is lower than the queueing rate, the queue will continue to grow

in length and packets that are transmitted will progressively have a longer

delay between queuing and transmission.

A limited transmission queue was implemented in the Linux kernel and

the test for SBPN1 was carried out again, but with a maximum queue length

of five packets. A length of five packets was chosen as this was observed to

be the average maximum UDP queue length when existing applications were

analysed in Section 4.4.

When run under these conditions the SBPN1 algorithm performed worse

than unmodified DCCP as shown in Figure 5.3 and Figure 5.4. Audio and

video packet on time arrivals both decreased for SBPN1 compared to unmodi-

69

unmodified DCCP audio
unmodified DCCP video

SBPN1 audio
SBPN1 video

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

P
ac

k
et

s
re

ce
iv

ed
 o

n
 t

im
e

(i
n

 p
er

ce
n

t)

Loss rate on link (in percent)

Figure 5.3: Testing with loss - 80 ms RTT, queue length 5

unmodified DCCP audio
SBPN1 audio

poor
low

medium
high
best

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10

M
O

S
 Q

u
al

it
y

 s
co

re

Loss rate on link (in percent)

Figure 5.4: Testing with loss - 80 ms RTT, queue length 5

70

Figure 5.5: Timing of audio and video packet transmission

fied DCCP and quality measures were also worse. The data for this shows that

at 10% loss on the link, using unmodified DCCP resulted in 91 millisecond av-

erage delay with 44.0% packet loss and using SBPN1 results in 72 millisecond

average delay with 52.3% packet loss for SBPN1. The higher rate of packet

loss again results in a drop of quality that outweighs the reduction in average

delay. It can however be seen that the reduction in quality is less than with

unlimited transmit queue as shown in Figure 5.2.

In Figure 5.3 it can be seen that more audio packets arrive on time than

video packets with unmodified DCCP, which differs from Figure 5.1 where

they are approximately the same. The reason for this is that all packets for a

single video frame get queued for transmission at the same time which means

there is a higher probability that a video packet is discarded when the buffer

is full. This is based on the application discarding the data if the queue is

full. The results might differ if a “blocking” architecture was used for packet

queuing where the operating system waits for a queue entry to become free

before returning control to the application. Figure 5.5 shows an example of

this packet transmission timing for video conferencing graphically.

71

SBPN1 audio
SBPN1 video
SBPN2 audio
SBPN2 video

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

P
ac

k
et

s
re

ce
iv

ed
 o

n
 t

im
e

(i
n

 p
er

ce
n

t)

Loss rate on constrained link (in percent)

Figure 5.6: Testing with loss - 80 ms RTT, queue length 5

The results for SBPN1 were worse than was expected when the algorithm

was designed. With SBPN1 a packet is always discarded if the packet will

reach the receiver after its deadline – the packet has expired. This problem

was discussed further in Section 3.5 and is due to the fact that TFRC reduces

the sending rate allowed, based on the previous sending rate. So instead

of a virtuous circle being created based on SBPN1 discarding useless data, a

vicious circle is created where allowed sending rate is decreased because SBPN1

reduces its transmission rate.

5.2.2 Testing SBPN2

The SBPN2 algorithm was introduced in Section 3.5 to improve on the issues

found through practical experiments in the previous section. With SBPN2

expired packets are only discarded if the transmit buffer has other packets in

it. As discussed in Section 3.5, TFRC reduces the allowable transmit rate

if packets are not being transmitted. SBPN2 aims to reduce this effect by

discarding fewer packets than SBPN1.

Testing was carried out with the SBPN2 to compare it to SBPN1. The

results with queue length of 5 packets and 80 milliseconds RTT can be seen in

72

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10

M
O

S
 Q

u
al

it
y

 s
co

re

Loss rate on constrained link (in percent)

SBPN1 audio
SBPN2 audio

poor
low

medium
high
best

Figure 5.7: Testing with loss - 80 ms RTT, queue length 5

Figure 5.6 and Figure 5.7 which show packets received on time and the MOS

quality score respectively. These graphs show that packets received on time

and quality both improved slightly.

The underlying data used to calculate the MOS quality score shows that,

for example, at 10% loss on the link, using SBPN1 results in 72 millisecond

average delay with 52.3% packet loss and using SBPN2 results in 72 millisecond

average delay with 48.4% packet loss. This shows that with SBPN2 the rate

of packets lost did decrease without any change in the average delay and this

resulted in the increased quality.

In Figure 5.8 and Figure 5.9 unmodified DCCP is compared to SBPN2.

This improved results compared to the SBPN1 algorithm but did not achieve

results that were better than unmodified DCCP. This shows that sending more

packets did improve the on-time arrival and quality so further analysis was

carried out.

5.2.3 Analysing packets transmitted

Figure 5.10 shows the difference in percentage between the data received, and

the data received on time. In the graph SBPN1 has almost no difference be-

73

unmodified DCCP audio
unmodified DCCP video

SBPN2 audio
SBPN2 video

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

P
ac

k
et

s
re

ce
iv

ed
 o

n
 t

im
e

(i
n

 p
er

ce
n

t)

Loss rate on constrained link (in percent)

Figure 5.8: Testing with loss - 80 ms RTT, queue length 5

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10

M
O

S
 Q

u
al

it
y

 s
co

re

Loss rate on constrained link (in percent)

unmodified DCCP audio
SBPN2 audio

poor
low

medium
high
best

Figure 5.9: Testing with loss - 80 ms RTT, queue length 5

74

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

D
if

fe
re

n
ce

 (
in

 p
er

ce
n

t)

Loss rate on constrained link (in percent)

unmodified DCCP audio
unmodified DCCP video

SBPN1 audio
SBPN1 video
SBPN2 audio
SBPN2 video

Figure 5.10: Difference in on time arrival - 80 ms RTT, queue length 5

tween the packets received and the packets received on time as it only trans-

mits when the packet will reach the other end without expiring. SBPN2 has

slightly more packets received than packets received on time as it sometimes

sends data to keep the connection from going idle. Unmodified DCCP has even

more packets received as it always tries to send. This indicates the improve-

ment is not occurring because of running at a fixed rate of loss, and if fewer

packets are being sent then a lesser number of relevant packets will be received

due to the smaller number of packets being transmitted. It is interesting to

note on this graph that all the packets used to keep alive the connection for

the SBPN2 algorithm are video packets - this shows that the audio packets

are being transmitted and being received on-time successfully. This can be

seen from the graph as the difference between received and on-time packets

for SBPN2 audio is zero, as also occurs for audio on SBPN1.

This effect can also be seen in congestion control on mobile networks where

loss is not an indication of congestion but an indication of packet corruption.

Congestion control algorithms such as Vegas [23] and Veno [42] attempt to

determine if packet loss is due to congestion by examining the latency and

whether congestion is expected. The congestion control for DCCP CCID3

75

that is used as the underlying congestion control model is based on TCP

Reno, which does not try to determine the source of loss. It would be a

useful avenue for further research to implement differing TCP based congestion

control algorithms to see whether SBPN would adapt to loss better.

5.3 Testing with congestion

5.3.1 Testing SBPN2 with congestion

As tests with fixed loss (designed to mimic the effects of congestion) did not

generate results for SBPN that were an improvement, tests were carried out

with congestion generated directly. This was done by running tests with two

competing TCP flows, produced using iperf [56] modified to allow it to run

continuously. Within the video conferencing flow there are a range of larger

packets for video and smaller packets for audio as described in Chapter 4,

resulting in an average packet size of 519 bytes. A fixed packet size of 519

bytes was used with iperf as DCCP CCID3 works on a rate of packets per

second as shown in Section 3.2.2. The link was constrained to a fixed speed

by Netem for each test run, and because there are competing flows from iperf

that are not at a fixed rate, congestion will occur.

The Linux kernel allows the congestion control variant for TCP to be cho-

sen at runtime. Reno was chosen for the TCP congestion control as DCCP

CCID3 uses the TCP throughput equation [84] modelled on Reno performance

as discussed in the previous section. It would be interesting in future research

to compare DCCP with a throughput matching the more modern TCP imple-

mentations such as BIC and Cubic in Linux, but this was not done as these

had not been implemented for DCCP congestion control in Linux.

When the tests were run with competing TCP flows the results obtained are

shown in Figure 5.11 and Figure 5.12. In Figure 5.11 there is a clear increase

in audio packets arriving on-time with SBPN2 when compared to unmodified

DCCP. At lower bit-rates more video packets arrive on-time with SBPN2 due

76

unmodified DCCP audio
SBPN2 audio

unmodified DCCP video
SBPN2 video

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 5.11: Unmodified DCCP vs SBPN2 with congestion - 80 ms RTT,

queue length 5

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

unmodified DCCP audio
SBPN2 audio

poor
low

medium
high
best

Figure 5.12: Unmodified DCCP vs SBPN2 with congestion - 80 ms RTT,

queue length 5

77

unmodified DCCP audio
SBPN2 audio

unmodified DCCP video
SBPN2 video

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 5.13: Unmodified DCCP vs SBPN2 with congestion - 80 ms RTT,

queue length 32

to packet delays being long with unmodified DCCP, but as bit-rates increase

fewer video packets arrive on-time with SBPN2 due to these being dropped in

preference to audio packets. This result shows that more audio packets can be

transmitted when there is congestion than under unmodified DCCP.

Figure 5.12 shows that quality improved for some bit-rates, especially at

700-800 Kbps. It did not improve at other bit-rates as much. The data used to

produce the MOS quality score shows that this is due to higher loss rate with

SBPN2, than unmodified DCCP. This again shows that the effect of discarding

packets, even if they will not arrive “on time” before they reach the receiver,

is detrimental to the MOS quality score.

5.3.2 Testing differing queue lengths with SBPN2

It was decided to run tests with a longer queue length to see how the SBPN2

algorithm behaved. The default TCP transmit buffer was 16 Kilobytes at the

time of implementation and a queue length of 32 was therefore chosen based

on an average packet size of 519 bytes from the video model constructed in

Chapter 4. Figure 5.13 shows the results using a queue length of 32. These

78

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

unmodified DCCP audio
SBPN2 audio

poor
low

medium
high
best

Figure 5.14: Unmodified DCCP vs SBPN2 with congestion - 80 ms RTT,

queue length 32

results show a larger improvement in audio and a smaller reduction in the

number of video packets dropped when compared to the results in Figure 5.11

where a queue length of 5 is used. In Figure 5.14 an increase in quality can

be seen across the range with the largest improvements between 600 and 1100

Kbps. For example the MOS score improves at 800 Kbps from 2.73 to 3.15

and this lifts the quality level from poor to low.

Having a larger transmit queue means that when a packet is dropped there

is less chance of there being an empty buffer, which would lead to a decreased

send rate as described in Section 3.5. This is demonstrated in the results.

Figure 5.15 and Figure 5.16 show the difference when queue length is in-

creased from 5 to 32 with unmodified DCCP. By comparison Figure 5.17 and

Figure 5.18 show the difference for SBPN2 when the queue length is increased.

It is interesting to note that with unmodified DCCP that there was very little

difference in on-time arrival for audio when the queue length changed, where

there was a difference on SBPN2. It can also be seen that the quality im-

proves more on SBPN2 with the increase in queue length than unmodified

DCCP. From Figure 5.16 and Figure 5.18 it can be seen that making queue

79

unmodified DCCP audio (5)
unmodified DCCP audio (32)

unmodified DCCP video (5)
unmodified video (32)

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 5.15: Unmodified DCCP with congestion, 80 ms RTT, queue length 5

vs 32

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

unmodified DCCP audio (5)
unmodified DCCP audio (32)

poor
low

medium
high
best

Figure 5.16: Unmodified DCCP with congestion, 80 ms RTT, queue length 5

vs 32

80

SBPN2 audio (5)
SBPN2 audio (32)

SBPN2 video (5)
SBPN2 video (32)

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 5.17: SBPN2 with congestion, 80 ms RTT, queue length 5 vs 32

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

SBPN2 audio (5)
SBPN2 audio (32)

poor
low

medium
high
best

Figure 5.18: SBPN2 with congestion, 80 ms RTT, queue length 5 vs 32

81

Unmodified DCCP audio
SBPN2 audio

Unmodified DCCP video
SBPN2 video

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 5.19: Unmodified DCCP vs SBPN2 with congestion - 30 ms RTT,

queue length 32

lengths longer makes a substantial quality difference in all cases. Looking

at the underlying data this is because fewer packets are discarded and this

outweighs any increase in queueing time.

5.3.3 Testing SBPN2 with varying RTTs

To test if the algorithm is RTT dependent, the tests were also run with 30

millisecond and 150 millisecond RTT. The graphs for on-time delivery and

quality for 30 millisecond RTT are shown in Figures 5.19 and 5.20. The graphs

for 150 millisecond RTT are shown in 5.21 and 5.22. These can be compared

to the 80 millisecond RTT results shown in Figure 5.13 and 5.14 earlier in this

chapter. These represent scenarios such as within a continent (30 milliseconds),

and between continents (150 milliseconds). These results showed that SBPN2

improved the performance of audio over a range of RTTs.

It can be seen from the graphs that the improvement does vary by the

length of the RTT — quality improvement is higher for 30 milliseconds RTT

than 150 milliseconds RTT. Tables 5.2, 5.3 and 5.4 show the underlying data

used to calculate the quality metrics in Figures 5.19, 5.13 and 5.21. Rate is the

82

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

Unmodified DCCP audio
SBPN2 audio

poor
low

medium
high
best

Figure 5.20: Unmodified DCCP vs SBPN2 with congestion - 30 ms RTT,

queue length 32

Unmodified DCCP audio
SBPN2 audio

Unmodified DCCP video
SBPN2 video

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 5.21: Unmodified DCCP vs SBPN2 with congestion - 150 ms RTT,

queue length 32

83

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

Unmodified DCCP audio
SBPN2 audio

poor
low

medium
high
best

Figure 5.22: Unmodified DCCP vs SBPN2 with congestion - 150 ms RTT,

queue length 32

constrained link rate in Kbits/sec, loss is the percentage of packets that did

not arrive at the receiver. Ie is the impact of loss as defined in Equation 4.4,

Id is the impact of delayed packets as defined in Equation 4.5, and MOS is the

Mean Opinion Score as defined in Equation 4.1.

With the rate of the constrained link between 800 and 1000 Kbps it can be

seen from Tables 5.2, 5.3 and 5.4 that the improvement in quality is higher for

a low RTT than for a higher RTT. This is due mostly to the variance in the

impact of loss (Ie) which is derived from the loss rate. For example at 900 Kbps

Table 5.2 shows the loss rate dropping from 4.19% to 2.66% for 30 millisecond

RTT with unmodified DCCP compared to SBPN2, Table 5.3 shows the loss

rate dropping from 2.86% to 2.28% for 80 millisecond RTT and Table 5.4 shows

the loss rate increasing from 3.58% to 4.74% for 150 millisecond RTT.

The packet expiry time consists of the time to process a packet, queueing

time and time in transit on the network as shown in Figure 4.5. The reason

that SBPN2 performs better at lower RTTs is because the algorithm is less

likely to discard packets as there is less probability that a packet will be likely

to expire in transit due to the shorter RTT.

84

Table 5.2: Loss and delay with queue length 32, 30 ms RTT

Unmodified DCCP SBPN2
Rate Loss Delay Ie Id MOS Loss Delay Ie Id MOS
100 88.44% 4476 79.74 580.32 1.00 98.28% 2045 82.69 254.54 1.00
200 76.30% 2164 75.64 270.43 1.00 95.54% 967 81.90 110.13 1.00
300 61.52% 1283 69.75 152.43 1.00 90.07% 637 80.25 65.89 1.00
400 46.78% 863 62.45 96.12 1.00 73.78% 480 74.71 44.75 1.00
500 30.06% 597 51.20 60.52 1.00 51.48% 372 64.98 30.34 1.00
600 17.02% 438 38.04 39.15 1.17 22.81% 309 44.60 21.88 1.52
700 9.01% 341 25.66 26.22 2.18 10.49% 269 28.36 16.54 2.54
800 6.20% 283 19.73 18.38 2.90 6.77% 241 21.03 12.85 3.12
900 4.19% 242 14.64 12.97 3.43 2.66% 213 10.08 9.08 3.82
1000 3.35% 217 12.22 9.64 3.70 1.68% 192 6.76 6.18 4.07
1100 2.44% 194 9.35 6.44 3.96 1.04% 173 4.35 4.15 4.22
1200 1.04% 164 4.34 3.94 4.23 0.48% 158 2.09 3.79 4.30
1300 0.47% 143 2.05 3.43 4.31 0.31% 136 1.38 3.26 4.33
1400 0.31% 129 1.35 3.09 4.33 0.36% 129 1.56 3.09 4.33
1500 0.50% 121 2.15 2.90 4.32 0.36% 121 1.58 2.90 4.33
1600 0.72% 114 3.06 2.74 4.30 0.50% 114 2.15 2.74 4.32
1700 0.65% 107 2.79 2.57 4.31 0.48% 108 2.10 2.59 4.33
1800 0.55% 101 2.36 2.42 4.32 0.41% 101 1.80 2.42 4.34
1900 0.52% 95 2.26 2.29 4.33 0.40% 95 1.73 2.27 4.34
2000 0.51% 92 2.23 2.22 4.33 0.38% 90 1.68 2.16 4.35

Table 5.3: Loss and delay with queue length 32, 80 ms RTT

Unmodified DCCP SBPN2
Rate Loss Delay Ie Id MOS Loss Delay Ie Id MOS
100 87.70% 4467 79.50 579.08 1.00 97.91% 2000 82.58 248.56 1.00
200 71.59% 1928 73.89 238.79 1.00 93.37% 945 81.25 107.17 1.00
300 58.69% 1279 68.48 151.84 1.00 75.43% 622 75.32 63.81 1.00
400 45.59% 854 61.77 94.91 1.00 67.14% 467 72.13 43.14 1.00
500 32.56% 605 53.17 61.60 1.00 51.73% 372 65.10 30.28 1.00
600 18.90% 450 40.33 40.80 1.08 31.84% 304 52.61 21.19 1.26
700 13.24% 362 32.82 29.03 1.71 17.11% 265 38.15 15.98 2.07
800 7.16% 290 21.87 19.35 2.73 7.02% 232 21.59 11.61 3.15
900 2.86% 230 10.70 11.30 3.70 2.28% 204 8.83 7.86 3.93
1000 2.69% 204 10.16 7.80 3.87 1.37% 183 5.61 5.07 4.15
1100 1.66% 181 6.66 4.72 4.13 0.88% 166 3.71 3.98 4.24
1200 1.40% 166 5.71 3.97 4.18 0.75% 153 3.20 3.68 4.27
1300 1.10% 151 4.57 3.63 4.23 0.64% 142 2.77 3.41 4.29
1400 0.53% 132 2.31 3.17 4.31 0.34% 128 1.50 3.08 4.33
1500 0.32% 118 1.41 2.84 4.34 0.21% 117 0.94 2.81 4.35
1600 0.44% 110 1.91 2.65 4.33 0.40% 109 1.76 2.62 4.33
1700 0.42% 102 1.84 2.46 4.34 0.29% 102 1.27 2.44 4.35
1800 0.30% 94 1.33 2.26 4.35 0.27% 94 1.19 2.26 4.36
1900 0.31% 89 1.37 2.14 4.36 0.32% 89 1.41 2.13 4.35
2000 0.33% 84 1.46 2.00 4.36 0.29% 84 1.30 2.00 4.36

85

Table 5.4: Loss and delay with queue length 32, 150 ms RTT

Unmodified DCCP SBPN2
Rate Loss Delay Ie Id MOS Loss Delay Ie Id MOS
100 87.33% 4363 79.38 565.13 1.00 97.47% 1930 82.46 239.12 1.00
200 73.63% 2045 74.66 254.46 1.00 91.27% 940 80.62 106.51 1.00
300 56.51% 1228 67.46 145.07 1.00 83.98% 625 78.30 64.23 1.00
400 45.90% 868 61.95 96.78 1.00 62.19% 459 70.05 42.01 1.00
500 33.45% 632 53.84 65.24 1.00 51.93% 367 65.21 29.67 1.00
600 19.13% 452 40.59 41.06 1.07 40.95% 297 58.98 20.27 1.12
700 12.24% 361 31.28 28.80 1.79 21.17% 256 42.88 14.75 1.90
800 5.75% 282 18.65 18.30 2.96 9.77% 225 27.08 10.70 2.91
900 3.58% 239 12.90 12.57 3.54 4.74% 200 16.12 7.32 3.63
1000 1.73% 199 6.92 7.15 4.03 1.52% 178 6.14 4.38 4.16
1100 1.16% 172 4.80 4.13 4.21 1.02% 159 4.28 3.83 4.23
1200 0.78% 153 3.32 3.68 4.26 0.63% 145 2.73 3.48 4.29
1300 0.62% 141 2.68 3.38 4.29 0.41% 133 1.80 3.20 4.32
1400 0.72% 133 3.06 3.18 4.29 0.43% 125 1.88 3.01 4.32
1500 0.55% 124 2.38 2.98 4.31 0.62% 117 2.66 2.80 4.31
1600 0.54% 117 2.33 2.80 4.32 0.28% 112 1.25 2.69 4.35
1700 0.54% 107 2.33 2.58 4.32 0.22% 107 0.98 2.57 4.35
1800 0.24% 99 1.04 2.38 4.36 0.21% 98 0.93 2.36 4.36
1900 0.17% 94 0.74 2.27 4.37 0.19% 94 0.85 2.24 4.37
2000 0.27% 91 1.21 2.19 4.36 0.17% 90 0.75 2.16 4.37

5.4 Summary

This chapter started to evaluate SBPN through the use of experimental results

by measuring on-time arrival and quality through MOS.

Section 5.2 covers testing SBPN with loss and the first algorithm SBPN1 is

tested in Section 5.2.1. When tested with an unbounded queue on-time arrival

improved, but MOS scores were lower due to fewer packets being transmitted.

When maximum queue lengths were introduced SBPN1 proved to be worse

than unmodified DCCP on both on-time arrival and MOS scores.

The SBPN algorithm was modified and SBPN2 was tested in Section 5.2.2

against both SBPN1 and unmodified DCCP. SBPN2 showed improved results

compared to SBPN1, but was still giving worse results than unmodified DCCP

due to fewer packets being transmitted, which reduced the allowed sending

rate in future. It was decided at this point to focus on testing with congestion,

instead of random loss at a fixed rate.

In Section 5.3 SBPN2 was tested with two competing TCP flows to create

congestion. The testing was carried out with a range of transmission queue

86

sizes and RTTs and demonstrated that improvements occur across a range of

conditions. As an example a a substantial improvement of 0.42 in the MOS

score occurs with SBPN2 compared to unmodified DCCP at 800 Kbps with

an 80 millisecond RTT in Figure 5.14.

Better results were obtained in Section 5.3.2 from using higher queue

lengths. This occurred in both unmodified DCCP and SBPN2. As an example

the MOS score was lifted from 2.76 to 3.93 by going from a queue length of

5 to 32 using SBPN2 on a 900 Kbps link with two competing TCP flows and

an 80 millisecond RTT. This is lifting the quality from partway between poor

and low, to nearly high.

Section 5.3.3 showed that SBPN2 works better on short RTT. This is be-

cause there is less probability of a packet needing to be discarded as expired.

The improvements from SBPN1 to SBPN2, increasing queue lengths and

shorter RTT all demonstrate the effect loss has on the MOS quality measure.

Packets being dropped by SBPN reduce the allowed sending rate and thus

increase the number of packets that don’t arrive on-time or at all.

The results from this chapter also show that reducing transmit rate due to

network congestion or loss may not be the best method for real time media

applications and this is discussed further in Chapter 8.

In the following chapters further variants in algorithms are tested to see if

further improvements in audio quality can be made.

Chapter 6

Faster Restart and LIFO

6.1 Introduction

In the previous chapter SBPN was tested and improvements to quality were

seen from the SBPN algorithm when testing was done with congestion. In this

chapter two different ways to potentially further improve quality are described

and tested. These are TFRC Faster Restart and the use of LIFO queues.

In Section 6.2 TFRC Faster Restart is introduced and tested. Faster

Restart looks to increase the speed of recovery to the allowable speed after

loss has been incurred on networks.

LIFO queues are introduced in Section 6.3 and tested to compare them to

SBPN2. The use of priority queues with LIFO is examined also in this section

and compared to queues without priority.

6.2 TFRC Faster Restart

It was shown in Section 5.2.3 that fewer packets being transmitted was re-

sulting in lower quality due to DCCP reducing the allowed sending rate when

the SBPN algorithm did not send expired packets. TFRC Faster Restart [64]

seeks to improve the performance of TFRC by recovering faster from data

limited transmission rates and idle periods by increasing the allowed sending

rate quicker than standard TFRC. As such it was decided to test TFRC Faster

88

unmodified DCCP audio
faster restart audio

unmodified DCCP video
faster restart video

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 6.1: Unmodified DCCP vs Faster Restart - 80 ms RTT, queue length 5

Restart and see if it made a noticeable improvement in the video conference

model.

6.2.1 Implementation of TFRC Faster Restart

Draft 3 of TFRC Faster Restart was implemented to see if this would coun-

teract the effect of reduced transmit rates and tests were carried out. The

implementation was done on Linux 2.6.23 so this graph cannot be compared

directly to the other graphs in this thesis. It was implemented on this version

of the Linux kernel because Faster Restart is based on a later version of DCCP

CCID3 which was merged into the Linux kernel subsequent to the work done

in Linux 2.6.20 which is used for all other tests.

6.2.2 Results from TFRC Faster Restart

The runs for Linux 2.6.23 showed much higher variance between runs than on

other tests with Linux 2.6.20. Tests were carried out and this was found to a

problem with the DCCP CCID3 code whereby it was not controlling the rate

of transmission. This was due to a fault introduced when improvements were

being made in another area of the CCID3 code.

89

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

unmodified DCCP audio
faster restart audio

poor
low

medium
high
best

Figure 6.2: Unmodified DCCP vs Faster Restart - 80 ms RTT, queue length 5

The results for TFRC Faster Restart compared to unmodified DCCP (both

on Linux 2.6.23) are shown in Figure 6.1 and Figure 6.2. The tests were

conducted with fixed latency, and two competing TCP flows as described in

Section 5.3.1. Figure 6.1 shows that TFRC Faster Restart did not produce

significantly different results to unmodified DCCP when measuring packets

received on time. The results from Figure 6.2 do show difference in results at

800, 900, 1000 and 1300 Kbps. These results however are not consistent with

each other and are probably due to the high variability in transmission rate.

Analysing both the results and the protocol it is shown that TFRC Faster

Restart does not offer improvements in the scenario where there is both loss

occurring and the application sending rate is limited by DCCP. The limiting

factor with DCCP is the allowed sending rate being lowered due to loss, rather

than being able to recover from idle periods more quickly.

This lack of improvement in TFRC Faster Restart under the test scenario

was also discussed with Arjuna Sathianseelan from the University of Aberdeen

who was also examining TFRC Faster Restart and he also saw that Faster

Restart did not give expected improvements. These results were later pub-

lished in Sathianseelan and Fairhurst [101]. They saw that the allowed sending

90

rate from TFRC dropped quickly after small idle periods, and that this was

the greatest reason for poor performance. Faster restart did not give much of

an improvement as allowed sending rates had dropped so quickly — in many

cases right back to the minimum initial transmit rate. Sathianseelan said that

application developers responded by sending “padding” packets as we do with

SBPN2. A newer version of TFRC [48] gave improvement in their research

and we mention this in possibilities for future work in Chapter 8.4.

In consequence of these results, no attempt was made to back port the

changes to Linux 2.6.20, or to have transmission rate stability in Linux 2.6.23

fixed, as TFRC Faster Restart did not show any potential for major improve-

ments.

6.3 LIFO

It was decided to investigate the use of Last In First Out (LIFO) queues

to see if this would provide any benefit from having the most recent packet

transmitted first. LIFO queues are also known as stack,s With LIFO queues

the last packet to be added is the first to be transmitted. Two variations using

LIFO were implemented — LIFO priority queues and LIFO queues without

priority. In LIFO priority queues audio packets are placed in the queue before

video packets. In both queue types packets are still discarded if the packet

will expire before it reaches the destination, as with SBPN.

Results from these algorithms are shown in Figure 6.3 and Figure 6.4 for

LIFO priority queues compared to SBPN2, Figure 6.5 and Figure 6.6 for LIFO

queues compared to SBPN2. The tests were conducted with fixed latency, and

two competing TCP flows as described in Section 5.3.1. The two algorithms

show only small differences when compared to SBPN2. It appears overall that

LIFO priority queues give around the same performance as SBPN2, and LIFO

queues without prority perform slightly worse although it should be noted that

the difference is not significant across the whole range.

91

SBPN2 audio
SBPN2 video

LIFO priority queue audio
LIFO prirority queue video

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 6.3: SBPN2 vs LIFO priority queues - 80 ms RTT, queue length 5

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

SBPN2 audio
LIFO priority queue audio

poor
low

medium
high
best

Figure 6.4: SBPN2 vs LIFO priority queues - 80 ms RTT, queue length 5

92

SBPN2 audio
SBPN2 video

LIFO audio
LIFO video

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 6.5: SBPN2 vs LIFO queue - 80 ms RTT, queue length 5

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

SBPN2 audio
LIFO audio

poor
low

medium
high
best

Figure 6.6: SBPN2 vs LIFO queue - 80 ms RTT, queue length 5

93

LIFO priority audio
LIFO priority video

LIFO audio
LIFO video

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 6.7: LIFO priority queues vs LIFO queue - 80 ms RTT, queue length 5

Figure 6.7 compares LIFO priority queues to a single LIFO queue. This

shows that for on-time arrival for audio that LIFO prority queues perform

slightly better than a non-prioritised queue. This shows that sending audio

packets before video packets makes a difference in on-time arrival, which con-

firms what would be expected when looking at the idea. These findings also

back the use of priority queues in SBPN2.

It should also be noted that if a LIFO queue is used then longer playback

buffers would be needed due to packets being sent in reverse order and thus

making additional delays likely. If there are additional delays this would re-

duce the quality of the audio and this may negate any benefits obtained from

using a LIFO queue. Given that LIFO queues did not perform better than

SBPN2 without quantifying these delays no attempt was made to estimate

these effects. With there not being an improvement in performance the use of

LIFO queues was not investigated further.

94

6.4 Summary

In this chapter two different techniques: Faster Restart and LIFO queues, were

used to see if either could make an improvement to DCCP performance for

audio quality. Neither of the two methods showed significant improvement and

further testing was not carried out.

Faster Restart was designed to recover from loss quickly but showed no

discernible improvement under test, mirroring other researcher’s tests. LIFO

queues transmitted the last packet first and although the tests did not show

improvement they did however show the benefit of using priority queues which

are a fundamental part of SBPN2.

In the following chapter another method of altering transmission will be

investigated — ring buffers.

Chapter 7

Ring buffers

7.1 Introduction

In Chapter 5 and Chapter 6 SBPN, and variants on it, are tested and the

results are analysed. This chapter continues testing variants on SBPN and

contrasting different algorithms. A transmission scheme called ring buffers

proposed by Kohler and Lai is discussed in Section 7.2 and a variant of this is

implemented. Ring buffers alter the sending policy at time of queueing, where

SBPN alters the sending policy at the time of transmission.

Section 7.3 compares SBPN2 to ring buffers with differing queue sizes and

RTTs. The results obtained are discussed and contrasted to results obtained

in previous chapters.

SBPN2 and ring buffer algorithms are combined in Section 7.4 to see what

further improvements can be made by using both algorithms together. Data is

presented from these tests and analysed to understand possible explanations

for the results obtained.

Further tests are carried out in Section 7.5 to compare ring buffers with

combined SBPN2 and ring buffers. It is examined what effect the RTT has on

results and explanations for those results.

96

7.2 Ring buffers theory

A ring buffer is a data structure commonly used for implementing finite queues.

Head and tail pointers into an array of storage locations track current queue

contents. Ring buffers have a natural way of dealing with overflow. When the

buffer is full it is easy to have a new entry overwrite the old head — discarding

the oldest entry in the queue.

Kohler and Lai’s [69] detail an algorithm that uses ring buffers, as described

in Section 2.4.2. Their video test application generates one packet every 10,

20, 25 or 30 milliseconds which are marked as expired after three packets are

queued. Their network was constrained to 50 Kilobits per second. They then

also implemented preferential packet dropping; that is, if the buffer of three

packets is full then their algorithm drops B and P frames before I frames so

that as many I frames as possible are sent - they experimented with 10, 20,

and 25 milliseconds but keeping at a size of three packets buffer.

Kohler and Lai said that using ring buffers would mean that stale packets

were discarded before being transmitted and thus more recent packets would

be transmitted. Their idea was implemented in this project to see if further

improvements to audio quality could be made. Their exact algorithm was

not implemented, but the underlying concept of removing stale packets at

time of insertion into the queue by the application was implemented. The

implementation of the algorithm is still called ring buffers for simplicity in this

thesis.

In our implementation of ring buffers a variable length buffer was used,

compared with a length of three that Kohler and Lai use. If the buffer is full

at the time of queueing the packet for transmission and there are video packets

in the queue, the oldest video packet is dropped, otherwise the oldest audio

packet is dropped. The data is stored in a priority queue with audio packets

queued before video packets. The algorithm is represented in the pseudo code

shown in Figure 7.1. The logic at time of transmission is simple — send the

first packet in the priority queue.

97

if buffer is not full:

if packet is audio:

insert at end of audio packets in priority queue

else packet is video:

insert at end of priority queue

else buffer is full:

if packet is audio:

if video packets in queue:

discard oldest video packet

else discard oldest audio packet

insert at end of audio packets in priority queue

else packet is video:

if video packets in queue:

discard oldest video picket

insert at end of priority queue

else throw away new video packet

Figure 7.1: Ring buffer pseudo code - insertion

SBPN2 determines whether to discard a packet at time of transmission.

Kohler and Lai’s ring buffers ask the application to determine whether to

discard a packet at time of queuing for transmission. Our implementation was

also done with the decision made on which packet to drop being made at the

time of insertion into the transmit queue. But the drop decision is made by

the DCCP stack, rather than the application. This can be done as the priority

and expiry time is passed to the DCCP stack, enabling the same decisions to

be made as would have been made by an application. In contrast to SBPN

only the priority is used for ring buffers, and not the expiry time.

7.3 Results of Ring Buffer compared to SBPN2

Figures 7.2 and 7.3 compare the results for SBPN2 with the results for ring

buffers when using a queue length of 5. The tests were conducted with fixed

latency, and two competing TCP flows as described in Section 5.3.1. When

looking at on time packet arrival in Figure 7.2 ring buffers performed slightly

better than SBPN2. When looking at audio quality as shown in Figure 7.3

ring buffers gave substantially better MOS quality scores than SBPN2.

98

SBPN2 audio
Ring audio

SBPN2 video
Ring video

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 7.2: SBPN2 vs Ring buffers - 80 ms RTT, queue length 5

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

SBPN2 audio
Ring audio

poor
low

medium
high
best

Figure 7.3: SBPN2 vs Ring buffers - 80 ms RTT, queue length 5

99

Table 7.1: Loss and delay with queue length 5, 80 ms RTT

SBPN2 Ring buffers
Rate Loss Delay Ie Id MOS Loss Delay Ie Id MOS
100 97.69% 2016 82.52 250.70 1.00 97.96% 1993 82.60 247.49 1.00
200 93.78% 943 81.37 106.88 1.00 92.80% 954 81.08 108.38 1.00
300 72.24% 619 74.14 63.45 1.00 77.29% 623 75.99 63.96 1.00
400 63.45% 468 70.59 43.26 1.00 66.99% 469 72.07 43.39 1.00
500 48.46% 373 63.38 30.41 1.00 48.32% 374 63.30 30.67 1.00
600 44.09% 308 60.90 21.73 1.06 32.54% 306 53.15 21.56 1.24
700 26.28% 266 47.94 16.19 1.61 19.26% 266 40.75 16.18 1.93
800 17.18% 234 38.24 11.82 2.27 11.55% 234 30.15 11.90 2.69
900 13.22% 205 32.79 7.93 2.76 6.06% 205 19.40 7.98 3.44
1000 8.43% 184 24.52 5.09 3.33 5.05% 183 16.91 5.07 3.70
1100 7.77% 167 23.19 4.00 3.45 3.85% 166 13.69 3.99 3.89
1200 6.12% 152 19.53 3.66 3.64 4.39% 153 15.18 3.68 3.84
1300 4.70% 142 16.00 3.41 3.81 2.96% 142 11.02 3.41 4.02
1400 1.12% 129 4.66 3.10 4.24 0.95% 129 3.99 3.10 4.26
1500 0.68% 117 2.90 2.81 4.30 0.60% 117 2.57 2.82 4.31
1600 0.67% 110 2.88 2.65 4.31 0.53% 111 2.30 2.65 4.32
1700 0.61% 102 2.64 2.45 4.32 0.37% 102 1.62 2.45 4.34
1800 0.81% 95 3.45 2.29 4.30 0.40% 95 1.74 2.29 4.34
1900 0.42% 89 1.85 2.14 4.34 0.35% 90 1.55 2.16 4.35
2000 0.42% 84 1.81 2.02 4.35 0.34% 84 1.50 2.02 4.36

The data that is used to calculate the audio quality is presented in Ta-

ble 7.1. The explanations of Ie, Id and MOS are given in Section 5.2.1.1.

This table shows that the packet loss rate for SBPN2 is higher than the

packet loss rate for ring buffers, while the packet delay is around the same for

both algorithms. The packet loss rate being higher for SBPN was a problem

that was observed in Section 5.2.3 and is due to DCCP CCID3 slowing down

the allowable transmission rate if no packets are being transmitted.

When the comparison was done with a queue length of 32 as shown in

Figure 7.4 and Figure 7.5 there was no significant difference in behaviour

between SBPN2 and ring buffers — both when measured by on time arrival

and by quality. When looking at the measures used in the MOS quality score

as shown in Table 7.2 it can be seen that, unlike with queue length 5, the loss

rate is almost the same across both algorithms. This is because with larger

buffers the probability of buffers running out of packets to transmit are much

lower, and thus the transmission rate is not reduced and therefore reducing

the loss rate.

The tests were also repeated with RTTs of 30 milliseconds and 150 mil-

100

SBPN2 audio
Ring audio

SBPN2 video
Ring video

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 7.4: SBPN2 vs Ring buffers - 80 ms RTT, queue length 32

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

SBPN2 audio
Ring audio

poor
low

medium
high
best

Figure 7.5: SBPN2 vs Ring buffers - 80 ms RTT, queue length 32

101

Table 7.2: Loss and delay with queue length 32, 80 ms RTT

SBPN2 Ring buffers
Rate Loss Delay Ie Id MOS Loss Delay Ie Id MOS
100 97.91% 2000 82.58 248.56 1.00 97.38% 1971 82.43 244.62 1.00
200 93.37% 945 81.25 107.17 1.00 93.18% 925 81.19 104.45 1.00
300 75.43% 622 75.32 63.81 1.00 76.60% 631 75.75 65.09 1.00
400 67.14% 467 72.13 43.14 1.00 58.44% 469 68.37 43.32 1.00
500 51.73% 372 65.10 30.28 1.00 50.71% 376 64.58 30.84 1.00
600 31.84% 304 52.61 21.19 1.26 33.90% 305 54.18 21.42 1.21
700 17.11% 265 38.15 15.98 2.07 17.14% 266 38.19 16.10 2.06
800 7.02% 232 21.59 11.61 3.15 7.33% 235 22.25 11.93 3.10
900 2.28% 204 8.83 7.86 3.93 2.53% 205 9.64 7.95 3.89
1000 1.37% 183 5.61 5.07 4.15 1.42% 185 5.79 5.24 4.14
1100 0.88% 166 3.71 3.98 4.24 0.79% 167 3.37 4.00 4.25
1200 0.75% 153 3.20 3.68 4.27 0.76% 148 3.24 3.55 4.27
1300 0.64% 142 2.77 3.41 4.29 0.56% 142 2.44 3.40 4.30
1400 0.34% 128 1.50 3.08 4.33 0.42% 129 1.82 3.10 4.32
1500 0.21% 117 0.94 2.81 4.35 0.21% 118 0.94 2.82 4.35
1600 0.40% 109 1.76 2.62 4.33 0.33% 110 1.43 2.65 4.34
1700 0.29% 102 1.27 2.44 4.35 0.39% 102 1.72 2.45 4.34
1800 0.27% 94 1.19 2.26 4.36 0.30% 96 1.31 2.29 4.35
1900 0.32% 89 1.41 2.13 4.35 0.31% 90 1.38 2.16 4.35
2000 0.29% 84 1.30 2.00 4.36 0.27% 85 1.20 2.04 4.36

liseconds and a queue length of 32. With these tests there was no significant

difference in the quality results between SBPN2 and ring buffers.

In Figure 7.6 and Figure 7.7 the results of varying the ring buffer queue

between length of 5 and 32 are directly compared. This shows that increasing

the size of the queue length does improve the quality with ring buffers. This

compares with Figure 5.18 where SBPN2 shows a bigger increase in quality

with the queue length increasing from 5 to 32. The reason for ring buffer doing

better with shorter queues is that the ring buffer algorithm does not discard

packets if the packet is old and the loss rate is lower, and thus the transmission

rate is not decreased.

7.4 Combining SBPN2 and Ring buffers

SBPN2 determines whether to discard a packet at time of transmission. Ring

buffers determine whether to discard a packet at time of queueing for trans-

mission. It was decided to combine the two approaches in one algorithm for

comparison to see if the combination further improves the number of packets

102

Ring audio − 5
Ring audio − 32

Ring video − 5
Ring video − 32

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 7.6: Ring buffers - 80 ms RTT, queue length 5 vs 32

Ring audio − 5
Ring audio − 32

poor
low

medium
high
best

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

Figure 7.7: Ring buffers - 80 ms RTT, queue length 5 vs 32

103

SBPN2−audio
SBPN2 with ring−audio

SBPN2−video
SBPN2 with ring−video

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 7.8: SBPN2 vs SBPN2 with ring - 80 ms RTT, queue length 5

received on time.

The algorithm for SBPN2 with ring buffers is the same as ring buffers

for packet insertion as described in Figure 7.1. At the time of packets being

queued if the queue is full and there are video packets, the oldest video packet

is discarded, otherwise the oldest audio packet is discarded. At the time of

transmission the algorithm for SBPN2 is followed. This means that packets

aren’t always transmitted if packets are expired, unlike ring buffers which

transmits a packet even if the packet has expired.

Figure 7.8 and Figure 7.9 shows that SBPN2 with ring buffer improves

quality when compared to SBPN2 – both using a queue length of 5. There is

a large improvement across most of the range of bit rates on the constrained

link. Table 7.3 shows the breakdown of the impact of loss and delay. This

table shows that the delay results for both versions are very similar but the

loss rate is much lower for SBPN2 with ring buffers and that this gives the

improvement in quality. SBPN2 with ring buffers still discards packets if they

have expired at time of transmission unlike ring buffers without SBPN.

For this improvement in loss rate to occur it means that the packets in

the queue must be more recent if they are not being discarded. Ring buffers

104

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

SBPN2−audio
SBPN2 with ring−audio

poor
low

medium
high
best

Figure 7.9: SBPN2 vs SBPN2 with ring - 80 ms RTT, queue length 5

Table 7.3: Loss and delay with queue length 5, 80 ms RTT

SBPN2 SBPN2 with ring
Rate Loss Delay Ie Id MOS Loss Delay Ie Id MOS
100 97.69% 2016 82.52 250.70 1.00 97.89% 2000 82.58 248.51 1.00
200 93.78% 943 81.37 106.88 1.00 92.50% 964 80.99 109.72 1.00
300 72.24% 619 74.14 63.45 1.00 76.35% 622 75.66 63.83 1.00
400 63.45% 468 70.59 43.26 1.00 67.53% 472 72.29 43.74 1.00
500 48.46% 373 63.38 30.41 1.00 48.67% 376 63.49 30.91 1.00
600 44.09% 308 60.90 21.73 1.06 30.20% 304 51.30 21.21 1.30
700 26.28% 266 47.94 16.19 1.61 19.17% 267 40.64 16.32 1.93
800 17.18% 234 38.24 11.82 2.27 11.95% 234 30.81 11.82 2.66
900 13.22% 205 32.79 7.93 2.76 5.24% 204 17.41 7.89 3.55
1000 8.43% 184 24.52 5.09 3.33 5.23% 183 17.37 5.01 3.68
1100 7.77% 167 23.19 4.00 3.45 3.51% 166 12.68 3.99 3.93
1200 6.12% 152 19.53 3.66 3.64 3.56% 154 12.84 3.68 3.93
1300 4.70% 142 16.00 3.41 3.81 2.62% 142 9.94 3.41 4.06
1400 1.12% 129 4.66 3.10 4.24 0.82% 129 3.47 3.10 4.28
1500 0.68% 117 2.90 2.81 4.30 0.53% 117 2.28 2.82 4.32
1600 0.67% 110 2.88 2.65 4.31 0.38% 110 1.68 2.64 4.34
1700 0.61% 102 2.64 2.45 4.32 0.47% 102 2.05 2.46 4.33
1800 0.81% 95 3.45 2.29 4.30 0.46% 95 2.01 2.29 4.34
1900 0.42% 89 1.85 2.14 4.34 0.40% 89 1.77 2.15 4.35
2000 0.42% 84 1.81 2.02 4.35 0.36% 84 1.57 2.02 4.35

105

SBPN2−audio
SBPN2 with ring−audio

SBPN2−video
SBPN2 with ring−video

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 7.10: SBPN2 vs SBPN2 with ring - 80 ms RTT, queue length 32

always adds a new packet to a queue at the time of queueing, rather than dis-

carding the packet if the queue is full. This behaviour gives the improvements

demonstrated and meets the needs of real time media applications which need

timely data.

Figure 7.10 and Figure 7.11 shows the equivalent results when a queue

length of 32 is used. SBPN2 has slightly higher on-time arrival, but there is

not a clear difference for quality.

The difference for on-time arrival may be due to SBPN2 with ring buffers

discarding video packets at time of insertion in preference to audio. These

video packets could be more recent than the audio packets in the queue. This

would lead to audio packets being discarded due to expiry, which would oth-

erwise not have occurred and thus reducing the send rate.

Tests were also carried out for 30 milliseconds RTT and 150 milliseconds

RTT with a queue length of 5 and a queue length of 32. These showed similar

results to the tests conducted with 80 milliseconds RTT.

106

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

SBPN2−audio
SBPN2 with ring−audio

poor
low

medium
high
best

Figure 7.11: SBPN2 vs SBPN2 with ring - 80 ms RTT, queue length 32

7.5 Comparing Ring Buffers to SBPN2 with

Ring Buffers

In the previous section (7.4) SBPN2 was compared to SBPN2 with ring buffers.

Figure 7.12 and Figure 7.13 show ring buffers compared to SBPN2 with ring

buffers for a queue length of 5. These graphs show similar results for the two

algorithms and show the benefit of the ring buffer inserting recent data into

the queue so that the transmit rate is not reduced.

Figure 7.14 and Figure 7.15 compare the two algorithms with a queue

length of 32. These results show the same trend as occurred with a queue

length of 5.

The tests were then run with an RTT of 30 milliseconds and 150 mil-

liseconds. The tests with an RTT of 30 milliseconds showed no discernible

difference between the algorithms. Figure 7.16 and Figure 7.17 show the re-

sults for 150 millisecond RTT and show that there is a small improvement for

SBPN2 with ring buffers when compared to ring buffers.

The results shown in Figure 7.17 that for longer RTTs the advantage is in-

creased for SBPN2 with ring buffers as the algorithm will discard more packets

107

Ring audio
Ring with SBPN2 audio

Ring video
Ring with SBPN2 video

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 7.12: Ring buffers vs SBPN2 with ring - 80 ms RTT, queue length 5

Ring audio
Ring with SBPN2 audio

poor
low

medium
high
best

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

Figure 7.13: Ring buffers vs SBPN2 with ring - 80 ms RTT, queue length 5

108

Ring audio
Ring with SBPN2 audio

Ring video
Ring with SBPN2 video

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 7.14: Ring buffers vs SBPN2 with ring - 80 ms RTT, queue length 32

Ring audio
Ring with SBPN2 audio

poor
low

medium
high
best

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

Figure 7.15: Ring buffers vs SBPN2 with ring - 80 ms RTT, queue length 32

109

Ring audio
Ring with SBPN2 audio

Ring video
Ring with SBPN2 video

 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 7.16: Ring buffers vs SBPN2 with ring - 150 ms RTT, queue length 32

Ring audio
Ring with SBPN2 audio

poor
low

medium
high
best

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

Figure 7.17: Ring buffers vs SBPN2 with ring - 150 ms RTT, queue length 32

110

Table 7.4: Loss and delay with queue length 32, 150 ms RTT

Ring buffers SBPN2 with ring
Rate Loss Delay Ie Id MOS Loss Delay Ie Id MOS
100 97.18% 1955 82.38 242.47 1.00 97.00% 1948 82.32 241.55 1.00
200 92.68% 933 81.05 105.52 1.00 92.32% 926 80.94 104.61 1.00
300 82.84% 610 77.92 62.24 1.00 82.64% 620 77.85 63.54 1.00
400 62.33% 459 70.11 41.96 1.00 64.82% 458 71.17 41.83 1.00
500 49.32% 366 63.84 29.54 1.00 48.01% 369 63.13 29.90 0.99
600 39.79% 296 58.24 20.22 1.14 38.95% 301 57.69 20.84 1.14
700 19.32% 254 40.81 14.53 2.01 18.63% 256 40.01 14.74 2.04
800 11.16% 225 29.51 10.61 2.79 8.85% 223 25.34 10.38 3.02
900 4.44% 200 15.30 7.27 3.67 4.64% 200 15.86 7.36 3.64
1000 2.01% 178 7.91 4.31 4.10 1.61% 175 6.48 4.20 4.15
1100 0.77% 160 3.26 3.85 4.26 0.54% 156 2.36 3.75 4.29
1200 0.74% 145 3.16 3.48 4.27 0.57% 144 2.47 3.47 4.29
1300 0.38% 133 1.66 3.18 4.32 0.31% 134 1.37 3.21 4.33
1400 0.38% 124 1.65 2.98 4.33 0.59% 126 2.53 3.02 4.30
1500 0.47% 117 2.03 2.80 4.32 0.45% 116 1.94 2.79 4.33
1600 0.27% 110 1.19 2.64 4.35 0.34% 111 1.48 2.68 4.34
1700 0.27% 104 1.21 2.49 4.35 0.28% 105 1.24 2.52 4.35
1800 0.37% 101 1.60 2.42 4.34 0.22% 98 0.99 2.36 4.36
1900 0.20% 93 0.90 2.24 4.36 0.38% 95 1.66 2.27 4.35
2000 0.24% 90 1.07 2.16 4.36 0.23% 91 1.03 2.17 4.36

Table 7.5: Loss and delay with queue length 32, 80 ms RTT

Ring buffers SBPN2 with ring
Rate Loss Delay Ie Id MOS Loss Delay Ie Id MOS
100 97.38% 1971 82.43 244.62 1.00 97.91% 1997 82.58 248.12 1.00
200 93.18% 925 81.19 104.45 1.00 92.56% 965 81.01 109.91 1.00
300 76.60% 631 75.75 65.09 1.00 77.09% 618 75.92 63.25 1.00
400 58.44% 469 68.37 43.32 1.00 61.28% 457 69.65 41.68 1.00
500 50.71% 376 64.58 30.84 1.00 51.00% 369 64.72 29.93 1.00
600 33.90% 305 54.18 21.42 1.21 29.50% 304 50.73 21.24 1.32
700 17.14% 266 38.19 16.10 2.06 16.10% 266 36.85 16.16 2.12
800 7.33% 235 22.25 11.93 3.10 8.32% 236 24.30 12.06 2.99
900 2.53% 205 9.64 7.95 3.89 2.09% 206 8.17 8.16 3.94
1000 1.42% 185 5.79 5.24 4.14 1.80% 185 7.18 5.30 4.09
1100 0.79% 167 3.37 4.00 4.25 0.88% 167 3.73 4.01 4.24
1200 0.76% 148 3.24 3.55 4.27 0.64% 153 2.76 3.67 4.28
1300 0.56% 142 2.44 3.40 4.30 0.59% 142 2.53 3.41 4.29
1400 0.42% 129 1.82 3.10 4.32 0.33% 128 1.43 3.07 4.33
1500 0.21% 118 0.94 2.82 4.35 0.28% 118 1.22 2.83 4.34
1600 0.34% 110 1.43 2.65 4.34 0.41% 111 1.79 2.66 4.33
1700 0.39% 102 1.72 2.45 4.34 0.29% 102 1.27 2.45 4.35
1800 0.30% 96 1.31 2.29 4.35 0.30% 95 1.33 2.29 4.35
1900 0.31% 90 1.38 2.16 4.35 0.33% 89 1.44 2.14 4.35
2000 0.27% 85 1.20 2.04 4.36 0.32% 84 1.39 2.01 4.36

111

Ring audio
Ring with SBPN2 audio

poor
low

medium
high
best

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

Figure 7.18: Ring buffers vs SBPN2 with ring - 150 ms RTT, queue length 5

that are due to expire at longer RTTs, where the pure ring buffer implemen-

tation does not consider packet expiry time. This can be seen in Table 7.4

where the data shows that in the range of 800-1100 Kbps overall quality score

is higher and loss rate is lower with delay around the same. This is in con-

trast to Table 7.5 where the quality and loss are similar for both algorithms

as packet expiry is less of an issue with a lower RTT.

The tests were repeated with a queue length of 5 and the quality results

are shown in Figure 7.18 which also shows improvements being made with a

longer RTT.

The results obtained in this section correspond with the results in the

previous section that SBPN2 with ring buffers can have lower loss than ring

buffers under the right network conditions.

7.6 Summary

In this chapter elements of Kohler and Lai’s research examining the use of ring

buffers were combined with the underlying implementation for SBPN. Kohler

and Lai worked on a queue length of 3 packets and this was extended to longer

112

queue lengths and used the same two priorities (audio and video) as our earlier

research.

It was shown that adapting the use of ring buffers gave substantially better

results than SBPN2 for queue sizes of 5, but not for queue sizes of 32. This

is illustrated in Figure 7.3 compared to Figure 7.5. The reason for this is

that ring buffers replace the oldest packet when a queue is full, as opposed to

discarding the new packet. With SBPN2 discarding expired packets CCID3

slows down the allowable transmit rate, due to lower actual transmit rate.

In Section 7.4 SBPN2 and ring buffers are combined. This gives improve-

ments for the queue size of 5, even though the algorithm still discards packets

at the time of transmission. This shows that the improvements made by ex-

amining packets at the time of queueing outweigh SBPN2 discarding packets

and the rate being reduced. The results for queue length 32 do not differ sig-

nificantly between the algorithms as the increased queue length allows SBPN2

to work effectively without being affected by transmit rate reduction.

When SBPN2 with ring buffers was compared to ring buffers on their own

it gave better results for long RTTs as shown in Figure 7.17 and Figure 7.18.

This is because the ring buffer algorithm does not consider how useful the

packet will be to the receiver, apart from audio being more important than

video. With a long RTT SBPN2 will discard more packets that would not

make it to the receiver in time to be used and can thus send more relevant

data instead.

It can be seen from this chapter that ring buffers builds upon SBPN2

significantly for smaller queue sizes and SBPN2 works well with larger queue

sizes and has advantages for longer RTTs.

In the following chapter the overall contribution of SBPN is summarised

and avenues for future work are explored.

Chapter 8

Conclusion

8.1 Introduction

This chapter reviews the overall potential of the Send the Best Packet Next

(SBPN) algorithm and also gives future possible direction and outlines the

benefits given through SBPN.

The practical work carried out in implementing and testing SBPN are

summarised in Section 8.2.

The best results obtained from SBPN are given and demonstrated to be

substantially better than unmodified DCCP. These results are shown in Sec-

tion 8.3.

In Section 8.4 a number of ideas for possible further work and future re-

search are outlined.

Section 8.5 summarises the contribution that SBPN makes and how it

improves the performance of real time media.

8.2 Practical work

The results from testing SBPN were based on using machines on a network,

rather than via a simulator. As part of this DCCP was implemented in the

official Linux kernel and released, in conjunction with other implementers, so

that it now forms part of the source code for the standard Linux kernel. This

114

unmodified DCCP−audio (5)
unmodified DCCP−audio (32)

SBPN2 with ring−audio (5)
SBPN2 with ring−audio (32)
unmodified DCCP−video (5)

unmodified DCPP−video (32)
SBPN2 with ring−video (5)

SBPN2 with ring−video (32)
 0

 20

 40

 60

 80

 100

 400 600 800 1000 1200 1400 1600

P
k

ts
 r

ec
ei

v
ed

 o
n

 t
im

e
(i

n
 p

er
ce

n
t)

Bit rate on constrained link (in Kbps)

Figure 8.1: Unmodified DCCP vs SBPN2 with ring - 80 ms RTT, queue lengths

5 and 32

implementation was tested on both local networks and the open Internet.

SBPN was then produced as an extension to CCID3 in the Linux kernel.

A media model, based on applications in use, was created to allow traffic

to be generated that was similar to actual use of real time media applications.

A test setup was created that allowed network conditions to vary including

delay, loss and congestion and modifications to open source tools in this area

were given back to the community and incorporated in upstream releases.

Measurement tools were created to analyse the results and to measure time

differences between machines to higher resolution than Network Time Protocol

(NTP).

Feedback from implementing DCCP and CCID3 was given to the IETF

and used to help improve the specifications for these standards.

8.3 Best results

The overall improvement made by SBPN is shown in Figure 8.1 and Figure 8.2

which are a combination of the best results from earlier chapters. With un-

modified DCCP queue length 5 does worse than queue length 32 on quality.

115

Unmodified DCCP−audio (5)
Unmodified DCCP−audio (32)

SBPN2 with ring−audio (5)
SBPN2 with ring−audio (32)

poor
low

medium
high
best

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 400 600 800 1000 1200 1400 1600

M
O

S
 Q

u
al

it
y

 s
co

re

Bit rate on constrained link (in Kbps)

Figure 8.2: Unmodified DCCP vs SBPN2 with ring - 80 ms RTT, queue length

32

This was discussed in Section 5.3.2 which showed that DCCP slowed down

the allowable transmit rate with shorter queues. It is interesting to note that

ontime arrival does not differ between queue lengths of 5 and 32, but quality

does alter significantly.

The quality is improved significantly by SBPN2 with ring buffers. The

biggest improvement occurs with queue length 5, while the best overall qual-

ity occurs with queue length 32 and SBPN2 with ring buffers. Smaller queue

lengths are affected by TFRC slowing down the transmission rate based on

there being empty buffers at times as packets have been discarded as expired,

and this is discussed further in the following section as an area of future re-

search.

The combination of SBPN2 and ring buffers works well as both algorithms

improve quality but via different methods. SBPN2 makes decisions on which

packet to send at the time of transmission and to see whether they will expire

in transit, and ring buffers look at which packets should be in the queue when

the application passes them to the network protocol. To put it another way

ring buffers makes decisions on packets as they go into the queue, and SBPN2

116

makes decisions on packets as they leave the queue.

8.4 Further work and future research

There are a number of areas that can be investigated to see how SBPN can

be improved or works under different conditions and these are detailed in this

section. From a theoretical approach the most improvement could be made by

looking to sending all packets as described in Section 8.4.3. From a practical

approach the most gains could be made by modifying applications as described

in Section 8.4.2.

8.4.1 Changing bandwidth

The work in this thesis was based upon fixed network bandwidth. Further

work could be carried out with variable network bandwidth with some example

scenarios being:

• slow deterioration or improvement of available bandwidth

• sudden deterioration or improvement of available bandwidth with two

scenarios — brief and permanent

• random fluctuation in available bandwidth

Carrying out work in this area would show whether SBPN can help in

changeable network situations. In many cases codecs will change the bit rate

used, and SBPN may be able to help before the codec is able to change the

bit rate.

8.4.2 Modifying applications

The next area of future research suggested is converting an application from

using UDP and/or TCP with conventional congestion control methods to using

DCCP with SBPN communicating network conditions to the application.

117

Part of this further research would also look at how the protocol stack

would notify rate changes through the API to the application and how the

codecs would then adapt to this change. This would also involve how the

application would react to varying network bandwidth rates e.g. should the

application drop resolution, drop frame rate, decrease frame quality or stop

altogether if the desired rates cannot be obtained.

A key part of this would be defining an API that works in a similar manner

to existing APIs for TCP and UDP, or for higher level protocols such as RTP

for ease of implementation for application developers. Such an API would

be two way — communicating changes both to and from the network stack

and the media application. The application would specify parameters such

as minimum and maximum bandwidth, loss, jitter and any changes to these

through the API. The network stack would provide to the application data

such as available bandwidth, RTT, loss events and loss rates.

In effect the application, transport and network layers would be coupled

together much more tightly to see how much further improvement could be

made.

The work in this thesis has been carried out with DCCP and since the

research was started, DCCP has not become prevalent on the Internet. This

is probably due to the lack of DCCP support in commercial operating systems

and the difficulty of DCCP to pass through firewalls. DCCP over UDP [93]

offers a possible solution to this and will enable the use of DCCP by encapsu-

lating the packets and transmitting them over UDP. SBPN could just as easily

use DCCP over UDP instead of DCCP.

8.4.3 Sending all packets

A consistent finding through this thesis was that the allowable transmit rate

drops if SBPN discards expired packets, with a subsequent impact on quality.

It would be worth creating a variant of SBPN which never discards packets,

and also a variant which sends “keep alive” packets. In Sathiaseelan [101]

118

the authors find that a newer version of TFRC specified in RFC 5348 [48]

resolved the need to send keep alive packets for their media flows, so it would

be worthwhile to use this version in our tests also.

It would also be worthwhile to look at implementing newer versions of TCP

congestion control such as BIC [111] or Cubic [46] as CCIDs for DCCP and

testing whether this would improve the performance of SBPN by alleviating

the issue of allowable transmit rate being reduced.

8.4.4 Testing with multiple layers

The testing in this thesis was carried out with two layers — audio and video.

The implementation of SBPN allowed further layers but this was not tested.

Codecs often separate video into multiple layers and SBPN could be tested

with this.

A form of weighting could also be considered for multiple layer queues.

This could calculate a score based on packet type, expiry time and any other

variables which would then be used as a basis for sorting the transmit queue.

8.4.5 Subjective measurement

This thesis used objective measures by using measures such as MOS and R-

score. It would be worth validating these measures by also testing subjectively

with people rating the quality. This could be done by modifying an open source

application, such as Ekiga, to use SBPN and then testing this with participants

rating with and without SBPN in double blind tests to eliminate bias.

8.4.6 Other areas of research

Testing could be carried out with other modern codecs such as G.729 [60] and

Celt [108] to see if SBPN gives similar improvements with these codecs also.

In theory SBPN is codec independent as shown in Section 4.6.2, but it would

be useful to test this assumption.

119

It would also be useful to see if DCCP and SBPN could differentiate be-

tween loss occurring as a result of congestion, and loss occurring due to cor-

ruption (such as on a wireless link). For TCP there has been variants such

as Vegas [23], Westwood [73], Veno [42] and Santa Cruz [88] which aim to

improve the situation for lossy links such as wireless. These algorithms could

potentially be added to DCCP as CCIDs and then tested to see how they

interact with SBPN.

SBPN could be tested in conjunction with QoS measures such as diffserv

to see if combining the two approaches gives further possible gains in quality.

8.5 Summary of Contributions

A new class of algorithms have been introduced that determines packet trans-

mission on a “send the best packet next” principle, rather than on a First In

First Out (FIFO) basis that is normally used for network transmission. These

algorithms apply information supplied by applications within the network sys-

tem.

Our unique contribution is that we combine priority queues with tracking

of expiry times which take into account the Round Trip Time (RTT). This

allows selective protection to part of a media stream, audio, and is done in a

manner that does not greatly impact the application developer. This is tested

and implemented using the DCCP transport protocol [66] which is congestion

controlled but unreliable. Ideas are taken from the ring buffer implementations

of Kohler and Lai [69] and used to further improve the algorithms, particularly

for smaller queue lengths.

A number of other ideas were also tested such as TFRC Faster Restart

and LIFO queues. These did not give a significant improvement and were not

investigated further.

The tests that were carried out were based on practical work implemented

using the Linux kernel and a number of other open source projects and given

120

back to the open source projects. A model of media applications was built and

also a testing framework.

This thesis shows that it is possible to gain a substantial improvement

to real time media applications when congestion is experienced by using the

SBPN algorithm. This is demonstrated by showing improvement in the num-

ber of audio packets “received on time” when tested with competing TCP

flows, which will give a higher quality real time media experience. These re-

sults have been shown across a range of RTTs and with differing queue lengths.

Using the best algorithm (SBPN2 combined with ring buffers) shows “audio on

time” improves by over 10% across most of the range while video on time does

not decrease or decreases by a much smaller amount as shown in Figure 8.1.

Audio quality as measured by R score has improved substantially as shown in

Figure 8.2 — as an example at 1000 Kbps and a queue length of 5 quality was

improved from medium to high.

As real improvement has been demonstrated the recommendation of this

thesis is to replace UDP as transport in media applications with DCCP and

SBPN as shown in Section 5.3. As the algorithms proposed in this thesis

are made at the sender end only, servers can implement these algorithms and

give a significant benefit to clients without a change being required by the

clients. As the changes are server side only the SBPN algorithm can be widely

deployed over a range of services such as real time IP Television (IPTV) and

video conferencing.

Alternatively SBPN could also be applied over more widely accepted pro-

tocols such as UDP if effective congestion control and RTT tracking were used

with UDP, and the same benefits would potentially be obtained.

This thesis has shown that by the application supplying information to the

transport layer, significantly improvements can be made to audio quality and

thus overall user experience.

Appendix A

Problem statement for DCCP

Network Working Group S. Floyd

Request for Comments: 4336 ICIR

Category: Informational M. Handley

UCL

E. Kohler

UCLA

March 2006

Problem Statement for the

Datagram Congestion Control Protocol (DCCP)

Status of This Memo

This memo provides information for the Internet community. It does

not specify an Internet standard of any kind. Distribution of this

memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2006).

Abstract

This document describes for the historical record the motivation

behind the Datagram Congestion Control Protocol (DCCP), an unreliable

transport protocol incorporating end-to-end congestion control. DCCP

implements a congestion-controlled, unreliable flow of datagrams for

use by applications such as streaming media or on-line games.

Floyd, et al. Informational [Page 1]

122

RFC 4336 Problem Statement for DCCP March 2006

Table of Contents

1. Introduction ..2

2. Problem Space ...3

2.1. Congestion Control for Unreliable Transfer4

2.2. Overhead ...6

2.3. Firewall Traversal ...6

2.4. Parameter Negotiation7

3. Solution Space for Congestion Control of Unreliable Flows7

3.1. Providing Congestion Control Above UDP8

3.1.1. The Burden on the Application Designer8

3.1.2. Difficulties with ECN8

3.1.3. The Evasion of Congestion Control10

3.2. Providing Congestion Control Below UDP10

3.2.1. Case 1: Congestion Feedback at the Application11

3.2.2. Case 2: Congestion Feedback at a Layer Below UDP ...11

3.3. Providing Congestion Control at the Transport Layer12

3.3.1. Modifying TCP?12

3.3.2. Unreliable Variants of SCTP?13

3.3.3. Modifying RTP?14

3.3.4. Designing a New Transport Protocol14

4. Selling Congestion Control to Reluctant Applications15

5. Additional Design Considerations15

6. Transport Requirements of Request/Response Applications16

7. Summary of Recommendations17

8. Security Considerations ..18

9. Acknowledgements ...18

Informative References ..19

1. Introduction

Historically, the great majority of Internet unicast traffic has used

congestion-controlled TCP, with UDP making up most of the remainder.

UDP has mainly been used for short, request-response transfers, like

DNS and SNMP, that wish to avoid TCP’s three-way handshake,

retransmission, and/or stateful connections. UDP also avoids TCP’s

built-in end-to-end congestion control, and UDP applications tended

not to implement their own congestion control. However, since UDP

traffic volume was small relative to congestion-controlled TCP flows,

the network didn’t collapse.

Recent years have seen the growth of applications that use UDP in a

different way. These applications, including streaming audio,

Internet telephony, and multiplayer and massively multiplayer on-line

games, share a preference for timeliness over reliability. TCP can

introduce arbitrary delay because of its reliability and in-order

delivery requirements; thus, the applications use UDP instead. This

growth of long-lived non-congestion-controlled traffic, relative to

Floyd, et al. Informational [Page 2]

123

RFC 4336 Problem Statement for DCCP March 2006

congestion-controlled traffic, poses a real threat to the overall

health of the Internet [RFC2914, RFC3714].

Applications could implement their own congestion control mechanisms

on a case-by-case basis, with encouragement from the IETF. Some

already do this. However, experience shows that congestion control

is difficult to get right, and many application writers would like to

avoid reinventing this particular wheel. We believe that a new

protocol is needed, one that combines unreliable datagram delivery

with built-in congestion control. This protocol will act as an

enabling technology: existing and new applications could easily use

it to transfer timely data without destabilizing the Internet.

This document provides a problem statement for such a protocol. We

list the properties the protocol should have, then explain why those

properties are necessary. We describe why a new protocol is the best

solution for the more general problem of bringing congestion control

to unreliable flows of unicast datagrams, and discuss briefly

subsidiary requirements for mobility, defense against Denial of

Service (DoS) attacks and spoofing, interoperation with RTP, and

interactions with Network Address Translators (NATs) and firewalls.

One of the design preferences that we bring to this question is a

preference for a clean, understandable, low-overhead, and minimal

protocol. As described later in this document, this results in the

design decision to leave functionality such as reliability or Forward

Error Correction (FEC) to be layered on top, rather than provided in

the transport protocol itself.

This document began in 2002 as a formalization of the goals of DCCP,

the Datagram Congestion Control Protocol [RFC4340]. We intended DCCP

to satisfy this problem statement, and thus the original reasoning

behind many of DCCP’s design choices can be found here. However, we

believed, and continue to believe, that the problem should be solved

whether or not DCCP is the chosen solution.

2. Problem Space

We perceive a number of problems related to the use of unreliable

data flows in the Internet. The major issues are the following:

o The potential for non-congestion-controlled datagram flows to

cause congestion collapse of the network. (See Section 5 of

[RFC2914] and Section 2 of [RFC3714].)

Floyd, et al. Informational [Page 3]

124

RFC 4336 Problem Statement for DCCP March 2006

o The difficulty of correctly implementing effective congestion

control mechanisms for unreliable datagram flows.

o The lack of a standard solution for reliably transmitting

congestion feedback for an unreliable data flow.

o The lack of a standard solution for negotiating Explicit

Congestion Notification (ECN) [RFC3168] usage for unreliable

flows.

o The lack of a choice of TCP-friendly congestion control

mechanisms.

We assume that most application writers would use congestion control

for long-lived unreliable flows if it were available in a standard,

easy-to-use form.

More minor issues include the following:

o The difficulty of deploying applications using UDP-based flows in

the presence of firewalls.

o The desire to have a single way to negotiate congestion control

parameters for unreliable flows, independently of the signalling

protocol used to set up the flow.

o The desire for low per-packet byte overhead.

The subsections below discuss these problems of providing congestion

control, traversing firewalls, and negotiating parameters in more

detail. A separate subsection also discusses the problem of

minimizing the overhead of packet headers.

2.1. Congestion Control for Unreliable Transfer

We aim to bring easy-to-use congestion control mechanisms to

applications that generate large or long-lived flows of unreliable

datagrams, such as RealAudio, Internet telephony, and multiplayer

games. Our motivation is to avoid congestion collapse. (The short

flows generated by request-response applications, such as DNS and

SNMP, don’t cause congestion in practice, and any congestion control

mechanism would take effect between flows, not within a single end-

to-end transfer of information.) However, before designing a

congestion control mechanism for these applications, we must

understand why they use unreliable datagrams in the first place, lest

we destroy the very properties they require.

Floyd, et al. Informational [Page 4]

125

RFC 4336 Problem Statement for DCCP March 2006

There are several reasons why protocols currently use UDP instead of

TCP, among them:

o Startup Delay: they wish to avoid the delay of a three-way

handshake before initiating data transfer.

o Statelessness: they wish to avoid holding connection state, and

the potential state-holding attacks that come with this.

o Trading of Reliability against Timing: the data being sent is

timely in the sense that if it is not delivered by some deadline

(typically a small number of RTTs), then the data will not be

useful at the receiver.

Of these issues, applications that generate large or long-lived flows

of datagrams, such as media transfer and games, mostly care about

controlling the trade-off between timing and reliability. Such

applications use UDP because when they send a datagram, they wish to

send the most appropriate data in that datagram. If the datagram is

lost, they may or may not resend the same data, depending on whether

the data will still be useful at the receiver. Data may no longer be

useful for many reasons:

o In a telephony or streaming video session, data in a packet

comprises a timeslice of a continuous stream. Once a timeslice

has been played out, the next timeslice is required immediately.

If the data comprising that timeslice arrives at some later time,

then it is no longer useful. Such applications can cope with

masking the effects of missing packets to some extent, so when the

sender transmits its next packet, it is important for it to only

send data that has a good chance of arriving in time for its

playout.

o In an interactive game or virtual-reality session, position

information is transient. If a datagram containing position

information is lost, resending the old position does not usually

make sense -- rather, every position information datagram should

contain the latest position information.

In a congestion-controlled flow, the allowed packet sending rate

depends on measured network congestion. Thus, some control is given

up to the congestion control mechanism, which determines precisely

when packets can be sent. However, applications could still decide,

at transmission time, which information to put in a packet. TCP

doesn’t allow control over this; these applications demand it.

Often, these applications (especially games and telephony

applications) work on very short playout timescales. Whilst they are

Floyd, et al. Informational [Page 5]

126

RFC 4336 Problem Statement for DCCP March 2006

usually able to adjust their transmission rate based on congestion

feedback, they do have constraints on how this adaptation can be

performed so that it has minimal impact on the quality of the

session. Thus, they tend to need some control over the short-term

dynamics of the congestion control algorithm, whilst being fair to

other traffic on medium timescales. This control includes, but is

not limited to, some influence on which congestion control algorithm

should be used -- for example, TCP-Friendly Rate Control (TFRC)

[RFC3448] rather than strict TCP-like congestion control. (TFRC has

been standardized in the IETF as a congestion control mechanism that

adjusts its sending rate more smoothly than TCP does, while

maintaining long-term fair bandwidth sharing with TCP [RFC3448].)

2.2. Overhead

The applications we are concerned with often send compressed data, or

send frequent small packets. For example, when Internet telephony or

streaming media are used over low-bandwidth modem links, highly

compressing the payload data is essential. For Internet telephony

applications and for games, the requirement is for low delay, and

hence small packets are sent frequently.

For example, a telephony application sending a 5.6 Kbps data stream

but wanting moderately low delay may send a packet every 20 ms,

sending only 14 data bytes in each packet. In addition, 20 bytes is

taken up by the IP header, with additional bytes for transport and/or

application headers. Clearly, it is desirable for such an

application to have a low-overhead transport protocol header.

In some cases, the correct solution would be to use link-based packet

header compression to compress the packet headers, although we cannot

guarantee the availability of such compression schemes on any

particular link.

The delay of data until after the completion of a handshake also

represents potentially unnecessary overhead. A new protocol might

therefore allow senders to include some data on their initial

datagrams.

2.3. Firewall Traversal

Applications requiring a flow of unreliable datagrams currently tend

to use signalling protocols such as the Real Time Streaming Protocol

(RTSP) [RFC2326], SIP [RFC3261], and H.323 in conjunction with UDP

for the data flow. The initial setup request uses a signalling

protocol to locate the correct remote end-system for the data flow,

sometimes after being redirected or relayed to other machines.

Floyd, et al. Informational [Page 6]

127

RFC 4336 Problem Statement for DCCP March 2006

As UDP flows contain no explicit setup and teardown, it is hard for

firewalls to handle them correctly. Typically, the firewall needs to

parse RTSP, SIP, and H.323 to obtain the information necessary to

open a hole in the firewall. Although, for bi-directional flows, the

firewall can open a bi-directional hole if it receives a UDP packet

from inside the firewall, in this case the firewall can’t easily know

when to close the hole again.

While we do not consider these to be major problems, they are

nonetheless issues that application designers face. Currently,

streaming media players attempt UDP first, and then switch to TCP if

UDP is not successful. Streaming media over TCP is undesirable and

can result in the receiver needing to temporarily halt playout while

it "rebuffers" data. Telephony applications don’t even have this

option.

2.4. Parameter Negotiation

Different applications have different requirements for congestion

control, which may map into different congestion feedback. Examples

include ECN capability and desired congestion control dynamics (the

choice of congestion control algorithm and, therefore, the form of

feedback information required). Such parameters need to be reliably

negotiated before congestion control can function correctly.

While this negotiation could be performed using signalling protocols

such as SIP, RTSP, and H.323, it would be desirable to have a single

standard way of negotiating these transport parameters. This is of

particular importance with ECN, where sending ECN-marked packets to a

non-ECN-capable receiver can cause significant congestion problems to

other flows. We discuss the ECN issue in more detail below.

3. Solution Space for Congestion Control of Unreliable Flows

We thus want to provide congestion control for unreliable flows,

providing both ECN and the choice of different forms of congestion

control, and providing moderate overhead in terms of packet size,

state, and CPU processing. There are a number of options for

providing end-to-end congestion control for the unicast traffic that

currently uses UDP, in terms of the layer that provides the

congestion control mechanism:

o Congestion control above UDP.

o Congestion control below UDP.

o Congestion control at the transport layer in an alternative to

UDP.

Floyd, et al. Informational [Page 7]

128

RFC 4336 Problem Statement for DCCP March 2006

We explore these alternatives in the sections below. The concerns

from the discussions below have convinced us that the best way to

provide congestion control for unreliable flows is to provide

congestion control at the transport layer, as an alternative to the

use of UDP and TCP.

3.1. Providing Congestion Control Above UDP

One possibility would be to provide congestion control at the

application layer, or at some other layer above UDP. This would

allow the congestion control mechanism to be closely integrated with

the application itself.

3.1.1. The Burden on the Application Designer

A key disadvantage of providing congestion control above UDP is that

it places an unnecessary burden on the application-level designer,

who might be just as happy to use the congestion control provided by

a lower layer. If the application can rely on a lower layer that

gives a choice between TCP-like or TFRC-like congestion control, and

that offers ECN, then this might be highly satisfactory to many

application designers.

The long history of debugging TCP implementations [RFC2525, PF01]

makes the difficulties in implementing end-to-end congestion control

abundantly clear. It is clearly more robust for congestion control

to be provided for the application by a lower layer. In rare cases,

there might be compelling reasons for the congestion control

mechanism to be implemented in the application itself, but we do not

expect this to be the general case. For example, applications that

use RTP over UDP might be just as happy if RTP itself implemented

end-to-end congestion control. (See Section 3.3.3 for more

discussion of RTP.)

In addition to congestion control issues, we also note the problems

with firewall traversal and parameter negotiation discussed in

Sections 2.3 and 2.4. Implementing on top of UDP requires that the

application designer also address these issues.

3.1.2. Difficulties with ECN

There is a second problem with providing congestion control above

UDP: it would require either giving up the use of ECN or giving the

application direct control over setting and reading the ECN field in

the IP header. Giving up the use of ECN would be problematic, since

ECN can be particularly useful for unreliable flows, where a dropped

packet will not be retransmitted by the data sender.

Floyd, et al. Informational [Page 8]

129

RFC 4336 Problem Statement for DCCP March 2006

With the development of the ECN nonce, ECN can be useful even in the

absence of network support. The data sender can use the ECN nonce,

along with feedback from the data receiver, to verify that the data

receiver is correctly reporting all lost packets. This use of ECN

can be particularly useful for an application using unreliable

delivery, where the receiver might otherwise have little incentive to

report lost packets.

In order to allow the use of ECN by a layer above UDP, the UDP socket

would have to allow the application to control the ECN field in the

IP header. In particular, the UDP socket would have to allow the

application to specify whether or not the ECN-Capable Transport (ECT)

codepoints should be set in the ECN field of the IP header.

The ECN contract is that senders who set the ECT codepoint must

respond to Congestion Experienced (CE) codepoints by reducing their

sending rates. Therefore, the ECT codepoint can only safely be set

in the packet header of a UDP packet if the following is guaranteed:

o if the CE codepoint is set by a router, the receiving IP layer

will pass the CE status to the UDP layer, which will pass it to

the receiving application at the data receiver; and

o upon receiving a packet that had the CE codepoint set, the

receiving application will take the appropriate congestion control

action, such as informing the data sender.

However, the UDP implementation at the data sender has no way of

knowing if the UDP implementation at the data receiver has been

upgraded to pass a CE status up to the receiving application, let

alone whether or not the application will use the conformant end-to-

end congestion control that goes along with use of ECN.

In the absence of the widespread deployment of mechanisms in routers

to detect flows that are not using conformant congestion control,

allowing applications arbitrary control of the ECT codepoints for UDP

packets would seem like an unnecessary opportunity for applications

to use ECN while evading the use of end-to-end congestion control.

Thus, there is an inherent "chicken-and-egg" problem of whether first

to deploy policing mechanisms in routers, or first to enable the use

of ECN by UDP flows. Without the policing mechanisms in routers, we

would not advise adding ECN-capability to UDP sockets at this time.

In the absence of more fine-grained mechanisms for dealing with a

period of sustained congestion, one possibility would be for routers

to discontinue using ECN with UDP packets during the congested

period, and to use ECN only with TCP or DCCP packets. This would be

a reasonable response, for example, if TCP or DCCP flows were found

Floyd, et al. Informational [Page 9]

130

RFC 4336 Problem Statement for DCCP March 2006

to be more likely to be using conformant end-to-end congestion

control than were UDP flows. If routers were to adopt such a policy,

then DCCP flows could be more likely to receive the benefits of ECN

in times of congestion than would UDP flows.

3.1.3. The Evasion of Congestion Control

A third problem of providing congestion control above UDP is that

relying on congestion control at the application level makes it

somewhat easier for some users to evade end-to-end congestion

control. We do not claim that a transport protocol such as DCCP

would always be implemented in the kernel, and do not attempt to

evaluate the relative difficulty of modifying code inside the kernel

vs. outside the kernel in any case. However, we believe that putting

the congestion control at the transport level rather than at the

application level makes it just slightly less likely that users will

go to the trouble of modifying the code in order to avoid using end-

to-end congestion control.

3.2. Providing Congestion Control Below UDP

Instead of providing congestion control above UDP, a second

possibility would be to provide congestion control for unreliable

applications at a layer below UDP, with applications using UDP as

their transport protocol. Given that UDP does not itself provide

sequence numbers or congestion feedback, there are two possible forms

for this congestion feedback:

1) Feedback at the application: The application above UDP could

provide sequence numbers and feedback to the sender, which would

then communicate loss information to the congestion control

mechanism. This is the approach currently standardized by the

Congestion Manager (CM) [RFC3124].

2) Feedback at the layer below UDP: The application could use UDP,

and a protocol could be implemented using a shim header between IP

and UDP to provide sequence number information for data packets

and return feedback to the data sender. The original proposal for

the Congestion Manager [BRS99] suggested providing this layer for

applications that did not have their own feedback about dropped

packets.

We discuss these two cases separately below.

Floyd, et al. Informational [Page 10]

131

RFC 4336 Problem Statement for DCCP March 2006

3.2.1. Case 1: Congestion Feedback at the Application

In this case, the application provides sequence numbers and

congestion feedback above UDP, but communicates that feedback to a

congestion manager below UDP, which regulates when packets can be

sent. This approach suffers from most of the problems described in

Section 3.1, namely, forcing the application designer to reinvent the

wheel each time for packet formats and parameter negotiation, and

problems with ECN usage, firewalls, and evasion.

It would avoid the application writer needing to implement the

control part of the congestion control mechanism, but it is unclear

how easily multiple congestion control algorithms (such as receiver-

based TFRC) can be supported, given that the form of congestion

feedback usually needs to be closely coupled to the congestion

control algorithm being used. Thus, this design limits the choice of

congestion control mechanisms available to applications while

simultaneously burdening the applications with implementations of

congestion feedback.

3.2.2. Case 2: Congestion Feedback at a Layer Below UDP

Providing feedback at a layer below UDP would require an additional

packet header below UDP to carry sequence numbers in addition to the

8-byte header for UDP itself. Unless this header were an IP option

(which is likely to cause problems for many IPv4 routers), its

presence would need to be indicated using a different IP protocol

value from UDP. Thus, the packets would no longer look like UDP on

the wire, and the modified protocol would face deployment challenges

similar to those of an entirely new protocol.

To use congestion feedback at a layer below UDP most effectively, the

semantics of the UDP socket Application Programming Interface (API)

would also need changing, both to support a late decision on what to

send and to provide access to sequence numbers (so that the

application wouldn’t need to duplicate them for its own purposes).

Thus, the socket API would no longer look like UDP to end hosts.

This would effectively be a new transport protocol.

Given these complications, it seems cleaner to actually design a new

transport protocol, which also allows us to address the issues of

firewall traversal, flow setup, and parameter negotiation. We note

that any new transport protocol could also use a Congestion Manager

approach to share congestion state between flows using the same

congestion control algorithm, if this were deemed to be desirable.

Floyd, et al. Informational [Page 11]

132

RFC 4336 Problem Statement for DCCP March 2006

3.3. Providing Congestion Control at the Transport Layer

The concerns from the discussions above have convinced us that the

best way to provide congestion control to applications that currently

use UDP is to provide congestion control at the transport layer, in a

transport protocol used as an alternative to UDP. One advantage of

providing end-to-end congestion control in an unreliable transport

protocol is that it could be used easily by a wide range of the

applications that currently use UDP, with minimal changes to the

application itself. The application itself would not have to provide

the congestion control mechanism, or even the feedback from the data

receiver to the data sender about lost or marked packets.

The question then arises of whether to adapt TCP for use by

unreliable applications, to use an unreliable variant of the Stream

Control Transmission Protocol (SCTP) or a version of RTP with built-

in congestion control, or to design a new transport protocol.

As we argue below, the desire for minimal overhead results in the

design decision to use a transport protocol containing only the

minimal necessary functionality, and to leave other functionality

such as reliability, semi-reliability, or Forward Error Correction

(FEC) to be layered on top.

3.3.1. Modifying TCP?

One alternative might be to create an unreliable variant of TCP, with

reliability layered on top for applications desiring reliable

delivery. However, our requirement is not simply for TCP minus in-

order reliable delivery, but also for the application to be able to

choose congestion control algorithms. TCP’s feedback mechanism works

well for TCP-like congestion control, but is inappropriate (or at the

very least, inefficient) for TFRC. In addition, TCP sequence numbers

are in bytes, not datagrams. This would complicate both congestion

feedback and any attempt to allow the application to decide, at

transmission time, what information should go into a packet.

Finally, there is the issue of whether a modified TCP would require a

new IP protocol number as well; a significantly modified TCP using

the same IP protocol number could have unwanted interactions with

some of the middleboxes already deployed in the network.

It seems best simply to leave TCP as it is, and to create a new

congestion control protocol for unreliable transfer. This is

especially true since any change to TCP, no matter how small, takes

an inordinate amount of time to standardize and deploy, given TCP’s

importance in the current Internet and the historical difficulty of

getting TCP implementations right.

Floyd, et al. Informational [Page 12]

133

RFC 4336 Problem Statement for DCCP March 2006

3.3.2. Unreliable Variants of SCTP?

SCTP, the Stream Control Transmission Protocol [RFC2960], was in part

designed to accommodate multiple streams within a single end-to-end

connection, modifying TCP’s semantics of reliable, in-order delivery

to allow out-of-order delivery. However, explicit support for

multiple streams over a single flow at the transport layer is not

necessary for an unreliable transport protocol such as DCCP, which of

necessity allows out-of-order delivery. Because an unreliable

transport does not need streams support, applications should not have

to pay the penalties in terms of increased header size that accompany

the use of streams in SCTP.

The basic underlying structure of the SCTP packet, of a common SCTP

header followed by chunks for data, SACK information, and so on, is

motivated by SCTP’s goal of accommodating multiple streams. However,

this use of chunks comes at the cost of an increased header size for

packets, as each chunk must be aligned on 32-bit boundaries, and

therefore requires a fixed-size 4-byte chunk header. For example,

for a connection using ECN, SCTP includes separate control chunks for

the Explicit Congestion Notification Echo (ECNE) and Congestion

Window Reduced (CWR) functions, with the ECNE and CWR chunks each

requiring 8 bytes. As another example, the common header includes a

4-byte verification tag to validate the sender.

As a second concern, SCTP as currently specified uses TCP-like

congestion control, and does not provide support for alternative

congestion control algorithms such as TFRC that would be more

attractive to some of the applications currently using UDP flows.

Thus, the current version of SCTP would not meet the requirements for

a choice between forms of end-to-end congestion control.

Finally, the SCTP Partial Reliability extension [RFC3758] allows a

sender to selectively abandon outstanding messages, which ceases

retransmissions and allows the receiver to deliver any queued

messages on the affected streams. This service model, although

well-suited for some applications, differs from, and provides the

application somewhat less flexibility than, UDP’s fully unreliable

service.

One could suggest adding support for alternative congestion control

mechanisms as an option to SCTP, and adding a fully-unreliable

variant that does not include the mechanisms for multiple streams.

We would argue against this. SCTP is well-suited for applications

that desire limited retransmission with multistream or multihoming

support. Adding support for fully-unreliable variants, multiple

congestion control profiles, and reduced single-stream headers would

risk introducing unforeseen interactions and make further

Floyd, et al. Informational [Page 13]

134

RFC 4336 Problem Statement for DCCP March 2006

modifications ever more difficult. We have chosen instead to

implement a minimal protocol, designed for fully-unreliable datagram

service, that provides only end-to-end congestion control and any

other mechanisms that cannot be provided in a higher layer.

3.3.3. Modifying RTP?

Several of our target applications currently use RTP layered above

UDP to transfer their data. Why not modify RTP to provide end-to-end

congestion control?

When RTP lives above UDP, modifying it to support congestion control

might create some of the problems described in Section 3.1. In

particular, user-level RTP implementations would want access to ECN

bits in UDP datagrams. It might be difficult or undesirable to allow

that access for RTP, but not for other user-level programs.

Kernel implementations of RTP would not suffer from this problem. In

the end, the argument against modifying RTP is the same as that

against modifying SCTP: Some applications, such as the export of flow

information from routers, need congestion control but don’t need much

of RTP’s functionality. From these applications’ point of view, RTP

would induce unnecessary overhead. Again, we would argue for a clean

and minimal protocol focused on end-to-end congestion control.

RTP would commonly be used as a layer above any new transport

protocol, however. The design of that new transport protocol should

take this into account, either by avoiding undue duplication of

information available in the RTP header, or by suggesting

modifications to RTP, such as a reduced RTP header that removes any

fields redundant with the new protocol’s headers.

3.3.4. Designing a New Transport Protocol

In the first half of this document, we have argued for providing

congestion control at the transport layer as an alternative to UDP,

instead of relying on congestion control supplied only above or below

UDP. In this section, we have examined the possibilities of

modifying SCTP, modifying TCP, and designing a new transport

protocol. In large part because of the requirement for unreliable

transport, and for accommodating TFRC as well as TCP-like congestion

control, we have concluded that modifications of SCTP or TCP are not

the best answer and that a new transport protocol is needed. Thus,

we have argued for the need for a new transport protocol that offers

unreliable delivery, accommodates TFRC as well as TCP-like congestion

control, accommodates the use of ECN, and requires minimal overhead

in packet size and in the state and CPU processing required at the

data receiver.

Floyd, et al. Informational [Page 14]

135

RFC 4336 Problem Statement for DCCP March 2006

4. Selling Congestion Control to Reluctant Applications

The goal of this work is to provide general congestion control

mechanisms that will actually be used by many of the applications

that currently use UDP. This may include applications that are

perfectly happy without end-to-end congestion control. Several of

our design requirements follow from a desire to design and deploy a

congestion-controlled protocol that is actually attractive to these

"reluctant" applications. These design requirements include a choice

between different forms of congestion control, moderate overhead in

the size of the packet header, and the use of Explicit Congestion

Notification (ECN) and the ECN nonce [RFC3540], which provide

positive benefit to the application itself.

There will always be a few flows that are resistant to the use of

end-to-end congestion control, preferring an environment where end-

to-end congestion control is used by everyone else, but not by

themselves. There has been substantial agreement [RFC2309, FF99]

that in order to maintain the continued use of end-to-end congestion

control, router mechanisms are needed to detect and penalize

uncontrolled high-bandwidth flows in times of high congestion; these

router mechanisms are colloquially known as "penalty boxes".

However, before undertaking a concerted effort toward the deployment

of penalty boxes in the Internet, it seems reasonable, and more

effective, to first make a concerted effort to make end-to-end

congestion control easily available to applications currently using

UDP.

5. Additional Design Considerations

This section mentions some additional design considerations that

should be considered in designing a new transport protocol.

o Mobility: Mechanisms for multihoming and mobility are one area of

additional functionality that cannot necessarily be layered

cleanly and effectively on top of a transport protocol. Thus, one

outstanding design decision with any new transport protocol

concerns whether to incorporate mechanisms for multihoming and

mobility into the protocol itself. The current version of DCCP

[RFC4340] includes no multihoming or mobility support.

o Defense against DoS attacks and spoofing: A reliable handshake for

connection setup and teardown offers protection against DoS and

spoofing attacks. Mechanisms allowing a server to avoid holding

any state for unacknowledged connection attempts or already-

finished connections offer additional protection against DoS

attacks. Thus, in designing a new transport protocol, even one

designed to provide minimal functionality, the requirements for

Floyd, et al. Informational [Page 15]

136

RFC 4336 Problem Statement for DCCP March 2006

providing defense against DoS attacks and spoofing need to be

considered.

o Interoperation with RTP: As Section 3.3.3 describes, attention

should be paid to any necessary or desirable changes in RTP when

it is used over the new protocol, such as reduced RTP headers.

o API: Some functionality required by the protocol, or useful for

applications using the protocol, may require the definition of new

API mechanisms. Examples include allowing applications to decide

what information to put in a packet at transmission time, and

providing applications with some information about packet sequence

numbers.

o Interactions with NATs and firewalls: NATs and firewalls don’t

interact well with UDP, with its lack of explicit flow setup and

teardown and, in practice, the lack of well-known ports for many

UDP applications. Some of these issues are application specific;

others should be addressed by the transport protocol itself.

o Consider general experiences with unicast transport: A

Requirements for Unicast Transport/Sessions (RUTS) BOF was held at

the IETF meeting in December 1998, with the goal of understanding

the requirements of applications whose needs were not met by TCP

[RUTS]. Not all of those unmet needs are relevant to or

appropriate for a unicast, congestion-controlled, unreliable flow

of datagrams designed for long-lived transfers. Some are,

however, and any new protocol should address those needs and other

requirements derived from the community’s experience. We believe

that this document addresses the requirements relevant to our

problem area that were brought up at the RUTS BOF.

6. Transport Requirements of Request/Response Applications

Up until now, this document has discussed the transport and

congestion control requirements of applications that generate long-

lived, large flows of unreliable datagrams. This section discusses

briefly the transport needs of another class of applications, those

of request/response transfers where the response might be a small

number of packets, with preferences that include both reliable

delivery and a minimum of state maintained at the ends. The reliable

delivery could be accomplished, for example, by having the receiver

re-query when one or more of the packets in the response is lost.

This is a class of applications whose needs are not well-met by

either UDP or by TCP.

Floyd, et al. Informational [Page 16]

137

RFC 4336 Problem Statement for DCCP March 2006

Although there is a legitimate need for a transport protocol for such

short-lived reliable flows of such request/response applications, we

believe that the overlap with the requirements of DCCP is almost

non-existent and that DCCP should not be designed to meet the needs

of these request/response applications. Areas of non-compatible

requirements include the following:

o Reliability: DCCP applications don’t need reliability (and long-

lived applications that do require reliability are well-suited to

TCP or SCTP). In contrast, these short-lived request/response

applications do require reliability (possibly client-driven

reliability in the form of requesting missing segments of a

response).

o Connection setup and teardown: Because DCCP is aimed at flows

whose duration is often unknown in advance, it addresses

interactions with NATs and firewalls by having explicit handshakes

for setup and teardown. In contrast, the short-lived

request/response applications know the transfer length in advance,

but cannot tolerate the additional delay of a handshake for flow

setup. Thus, mechanisms for interacting with NATs and firewalls

are likely to be completely different for the two sets of

applications.

o Congestion control mechanisms: The styles of congestion control

mechanisms and negotiations of congestion control features are

heavily dependent on the flow duration. In addition, the

preference of the request/response applications for a stateless

server strongly impacts the congestion control choices. Thus,

DCCP and the short-lived request/response applications have rather

different requirements both for congestion control mechanisms and

for negotiation procedures.

7. Summary of Recommendations

Our problem statement has discussed the need for implementing

congestion control for unreliable flows. Additional problems concern

the need for low overhead, the problems of firewall traversal, and

the need for reliable parameter negotiation. Our consideration of

the problem statement has resulted in the following general

recommendations:

o A unicast transport protocol for unreliable datagrams should be

developed, including mandatory, built-in congestion control,

explicit connection setup and teardown, reliable feature

negotiation, and reliable congestion feedback.

Floyd, et al. Informational [Page 17]

138

RFC 4336 Problem Statement for DCCP March 2006

o The protocol must provide a set of congestion control mechanisms

from which the application may choose. These mechanisms should

include, at minimum, TCP-like congestion control and a more

slowly-responding congestion control such as TFRC.

o Important features of the connection, such as the congestion

control mechanism in use, should be reliably negotiated by both

endpoints.

o Support for ECN should be included. (Applications could still

make the decision not to use ECN for a particular session.)

o The overhead must be low, in terms of both packet size and

protocol complexity.

o Some DoS protection for servers must be included. In particular,

servers can make themselves resistant to spoofed connection

attacks ("SYN floods").

o Connection setup and teardown must use explicit handshakes,

facilitating transmission through stateful firewalls.

In 2002, there was judged to be a consensus about the need for a new

unicast transport protocol for unreliable datagrams, and the next

step was then the consideration of more detailed architectural

issues.

8. Security Considerations

There are no security considerations for this document. It does

discuss a number of security issues in the course of problem

analysis, such as DoS resistance and firewall traversal. The

security considerations for DCCP are discussed separately in

[RFC4340].

9. Acknowledgements

We would like to thank Spencer Dawkins, Jiten Goel, Jeff Hammond,

Lars-Erik Jonsson, John Loughney, Michael Mealling, and Rik Wade for

feedback on earlier versions of this document. We would also like to

thank members of the Transport Area Working Group and of the DCCP

Working Group for discussions of these issues.

Floyd, et al. Informational [Page 18]

139

RFC 4336 Problem Statement for DCCP March 2006

Informative References

[BRS99] Balakrishnan, H., Rahul, H., and S. Seshan, "An

Integrated Congestion Management Architecture for

Internet Hosts", SIGCOMM, Sept. 1999.

[FF99] Floyd, S. and K. Fall, "Promoting the Use of End-to-

End Congestion Control in the Internet", IEEE/ACM

Transactions on Networking, August 1999.

[PF01] Padhye, J. and S. Floyd, "Identifying the TCP Behavior

of Web Servers", SIGCOMM 2001.

[RFC2309] Braden, B., Clark, D., Crowcroft, J., Davie, B.,

Deering, S., Estrin, D., Floyd, S., Jacobson, V.,

Minshall, G., Partridge, C., Peterson, L.,

Ramakrishnan, K., Shenker, S., Wroclawski, J., and L.

Zhang, "Recommendations on Queue Management and

Congestion Avoidance in the Internet", RFC 2309, April

1998.

[RFC2326] Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time

Streaming Protocol (RTSP)", RFC 2326, April 1998.

[RFC2525] Paxson, V., Allman, M., Dawson, S., Fenner, W.,

Griner, J., Heavens, I., Lahey, K., Semke, J., and B.

Volz, "Known TCP Implementation Problems", RFC 2525,

March 1999.

[RFC2914] Floyd, S., "Congestion Control Principles", BCP 41,

RFC 2914, September 2000.

[RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,

Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,

Zhang, L., and V. Paxson, "Stream Control Transmission

Protocol", RFC 2960, October 2000.

[RFC3124] Balakrishnan, H. and S. Seshan, "The Congestion

Manager", RFC 3124, June 2001.

[RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The

Addition of Explicit Congestion Notification (ECN) to

IP", RFC 3168, September 2001.

[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G.,

Johnston, A., Peterson, J., Sparks, R., Handley, M.,

and E. Schooler, "SIP: Session Initiation Protocol",

RFC 3261, June 2002.

Floyd, et al. Informational [Page 19]

140

RFC 4336 Problem Statement for DCCP March 2006

[RFC3448] Handley, M., Floyd, S., Padhye, J., and J. Widmer,

"TCP Friendly Rate Control (TFRC): Protocol

Specification", RFC 3448, January 2003.

[RFC3540] Spring, N., Wetherall, D., and D. Ely, "Robust

Explicit Congestion Notification (ECN) Signaling with

Nonces", RFC 3540, June 2003.

[RFC3714] Floyd, S. and J. Kempf, "IAB Concerns Regarding

Congestion Control for Voice Traffic in the Internet",

RFC 3714, March 2004.

[RFC3758] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.

Conrad, "Stream Control Transmission Protocol (SCTP)

Partial Reliability Extension", RFC 3758, May 2004.

[RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram

Congestion Control Protocol (DCCP)", RFC 4340, March

2006.

[RUTS] Requirements for Unicast Transport/Sessions (RUTS)

BOF, Dec. 7, 1998. URL

"http://www.ietf.org/proceedings/98dec/43rd-ietf-

98dec-142.html".

Floyd, et al. Informational [Page 20]

141

RFC 4336 Problem Statement for DCCP March 2006

Authors’ Addresses

Sally Floyd

ICSI Center for Internet Research (ICIR),

International Computer Science Institute,

1947 Center Street, Suite 600

Berkeley, CA 94704

USA

EMail: floyd@icir.org

Mark Handley

Department of Computer Science

University College London

Gower Street

London WC1E 6BT

UK

EMail: M.Handley@cs.ucl.ac.uk

Eddie Kohler

4531C Boelter Hall

UCLA Computer Science Department

Los Angeles, CA 90095

USA

EMail: kohler@cs.ucla.edu

Floyd, et al. Informational [Page 21]

142

RFC 4336 Problem Statement for DCCP March 2006

Full Copyright Statement

Copyright (C) The Internet Society (2006).

This document is subject to the rights, licenses and restrictions

contained in BCP 78, and except as set forth therein, the authors

retain all their rights.

This document and the information contained herein are provided on an

"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any

Intellectual Property Rights or other rights that might be claimed to

pertain to the implementation or use of the technology described in

this document or the extent to which any license under such rights

might or might not be available; nor does it represent that it has

made any independent effort to identify any such rights. Information

on the procedures with respect to rights in RFC documents can be

found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any

assurances of licenses to be made available, or the result of an

attempt made to obtain a general license or permission for the use of

such proprietary rights by implementers or users of this

specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any

copyrights, patents or patent applications, or other proprietary

rights that may cover technology that may be required to implement

this standard. Please address the information to the IETF at ietf-

ipr@ietf.org.

Acknowledgement

Funding for the RFC Editor function is provided by the IETF

Administrative Support Activity (IASA).

Floyd, et al. Informational [Page 22]

Appendix B

Acronyms

AIMD Additive increase/multiplicative decrease . 16

API Application Programming Interface . 38

B Bi-predictive Picture. .37

BIC Binary Increase Congestion control . 17

CCID Congestion Control Identifier . 21

codec coder-decoder . 10

CSV Comma Separated Values . 56

DCCP Datagram Congestion Control Protocol. .4

diffserv Differentiated Services . 12

144

DNS Domain Name System . 18

e2e end-to-end . 12

ECN Explicit Congestion Notification . 10

FEC Forward Error Correction . 24

FIFO First In First Out . 6

HTTP Hypertext Transfer Protocol . 11

I Intra-coded Picture . 37

ICIR ICSI Center for Internet Research. .44

ICMP Internet Control Message Protocol .14

IETF Internet Engineering Task Force . 5

IP Internet Protocol . 9

IPTV IP Television . 120

ISP Internet Service Provider . 20

145

ITU International Telecommunication Union . 5

LIFO Last In First Out . 5

MFRC Media Friendly Rate Control . 23

MOS Mean Opinion Score . 44

MPEG Moving Pictures Expert Group . 27

MTP Multimedia Transmission Protocol .27

NAPT Network Address and Port Translation . 19

NTP Network Time Protocol . 57

P Predicted Picture . 37

QoS Quality of Service . 2

RTCP Real-time Transport Control Protocol . 19

RFC Request for Comments . 6

RTP Real-time Transport Protocol . 19

146

RTT Round Trip Time . 5

RTW-DCCP Run-Time adjusted Window-based DCCP 22

SBPN Send the Best Packet Next . 4

SCTP Stream Control Transmission Protocol . 20

SMTP Simple Mail Transport Protocol . 11

SSVP Scalable Streaming Video Protocol . 27

TCP Transmission Control Protocol . 13

TCP/IP TCP over IP . 1

TFRC TCP Friendly Rate Control . 22

TLCTCP Time-lined TCP . 27

UDP User Datagram Protocol . 2

VoIP Voice over IP . 2

VTP Video Transport Protocol . 27

147

WHDI Wireless Home Digital Interface. .28

References

[1] Network Simulator. http://www.isi.edu/nsnam/ns.

[2] TCP Probe. http://www.linuxfoundation.org/.

[3] Wireless Home Digital Interface. http://www.whdi.org.

[4] IETF 68 Proceedings. http://www.ietf.org/proceedings/68/, 2007.

[5] MSN Messenger. http://msn.messenger.com, Accessed 2009.

[6] Internet World Stats. http://www.internetworldstats.com/stats.htm,

Accessed 2011.

[7] tcpdump. http://www.tcpdump.org, Accessed 2012.

[8] Cisco Visual Networking Index: Forecast and Methodology, 2011-2016

Internet World Stats. http://www.cisco.com, Accessed 2013.

[9] Ekiga. http://ekiga.org, Accessed 2013.

[10] Hulu. http://www.hulu.com, Accessed 2013.

[11] Netflix. http://www.netflix.com, Accessed 2013.

[12] Skype. http://www.skype.com, Accessed 2013.

[13] X Window System. http://www.x.org, Accessed 2013.

[14] Youtube. http://www.youtube.com, Accessed 2013.

[15] Toufik Ahmed, Ahmed Mehaoua, Raouf Boutaba, and Youssef Iraqi. IP

Video Streaming With Fine-Grained TCP-Friendly Rate Adaptation. In

Proceeding of the IFIP/IEEE International Conference on Management

of Multimedia Networks and Services (MMNS), Belfast, Northern Ire-

land, 2003.

[16] R. Allman, V. Paxson, and E. Blanton. RFC5681: TCP Congestion

Control, 2009.

149

[17] Paul D. Amer, Christophe Chassot, Thomas J. Connolly, Michel Diaz,

and Phillip Conrad. Partial-order Transport Service for Multimedia and

Other Applications. IEEE/ACM Transactions on Networking, 2(5):440–

456, 1994.

[18] Goel Ashvin, Krasic Charles, Li Kang, and Walpole Jonathan. Support-

ing Low Latency TCP-Based Media Streams. In Proceedings of IWQoS,

Miami Beach, Florida, USA, 2002.

[19] Alex Balk, Dario Maggiorini, Mario Gerla, and M. Y. Sanadidi. Adaptive

MPEG-4 Video Streaming with Bandwidth Estimation. In Quality of

Service in Multiservice IP Networks: Second International Workshop,

QoS-IP 2003, pages 525–538, Milano, Italy, 2003.

[20] S. Bhandarkar, A. L. N. Reddy, and M. Allman. RFC4653: Improving

the Robustness of TCP to Non-Congestion Events, August 2006.

[21] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss.

RFC2475: An Architecture for Differentiated Services, 1998.

[22] Jean-Chrysostome Bolot and Thierry Turletti. A Rate Control Mecha-

nism for Packet Video in the Internet. In INFOCOM (3), pages 1216–

1223, 1994.

[23] Lawrence S. Brakmo and Larry L. Peterson. TCP Vegas: End to End

Congestion Avoidance on a Global Internet. IEEE Journal on Selected

Areas in Communications, 13(8):1465–1480, 1995.

[24] Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease

algorithms for congestion avoidance in computer networks. Computer

Networks and ISDN systems, 17(1):1–14, 1989.

[25] David D. Clark, Scott Shenker, and Lixia Zhang. Supporting Real-Time

Applications in an Integrated Services Packet Network: Architecture and

Mechanism. In SIGCOMM, pages 14–26, 1992.

[26] R.J. Cole and J. Rosenbluth. Voice over IP Performance Monitoring.

ACM Computer Communication Review (CCR), vol 31(no 2):pages 9–

24, 2001.

[27] Min Dai and Dmitri Loguinov. Analysis of rate-distortion functions and

congestion control in scalable internet video streaming. In NOSSDAV

’03: Proceedings of the 13th international workshop on Network and

operating systems support for digital audio and video, pages 60–69, New

York, NY, USA, 2003. ACM Press.

150

[28] Philippe de Cuetos and Keith W Ross. Unified Framework for Optimal

Video Streaming. In INFOCOM 2004. Twenty-third Annual Joint Con-

ference of the IEEE Computer and Communications Societies, volume 3,

pages 1479–1489, Hong Kong, 2004. IEEE.

[29] Giuseppe D. De Marco, Maurizio Longo, and Fabio Postiglione. Run-

time Adjusted Congestion Control for Multimedia: Experimental Re-

sults. In AINA ’04: Proceedings of the 18th International Conference on

Advanced Information Networking and Applications Volume 2, Washing-

ton, DC, USA, March 2004. IEEE Computer Society.

[30] L. Eggert and G. Fairhurst. RFC5405: Unicast UDP Usage Guidelines

for Application Designers, November 2008.

[31] Lars Eggert, Horia V. Balan, Saverio Niccolini, and Marcus Brunner. An

Experimental Evaluation of Voice Quality over the Datagram Congestion

Control Protocol. In Infocomm 2007, 2007.

[32] Chip Elliot. High-quality multimedia conferencing through a long-haul

packet network. In MULTIMEDIA ’93: Proceedings of the first ACM

international conference on Multimedia, pages 91–98, New York, NY,

USA, 1993. ACM Press.

[33] N. Feamster, D. Bansal, and H. Balakrishnan. On the Interactions Be-

tween Layered Quality Adaptation and Congestion Control for Stream-

ing Video. 11th International Packet Video Workshop (PV2001), Ky-

ongiu, Korea, April 2001.

[34] W. Feng, M. Liu, B. Krishnaswami, and A. Prabhudev. A Priority-

Based technique for the Best-Effort Delivery of Stored Video. Proc. of

Multimedia Computing and Networking, pages 286–300, 1999.

[35] S. Floyd and M. Allman. RFC5033: Specifying New Congestion Control

Algorithms, August 2007.

[36] S. Floyd, M. Allman, I. Jain, and P. Sarolahti. RFC4782: Quick-Start

for TCP and IP, January 2007.

[37] S. Floyd, M. Handley, and E. Kohler. RFC4336: Problem Statement for

the Datagram Congestion Control Protocol (DCCP), March 2006.

[38] S. Floyd and E. Kohler. RFC4341: Profile for DCCP Congestion Control

ID 2: TCP-like Congestion Control, March 2006.

151

[39] S. Floyd and E. Kohler. RFC5622: Profile for DCCP Congestion Control

ID 4: TCP-Friendly Rate Control for Small Packets (TFRC-SP), August

2009.

[40] S. Floyd, E. Kohler, and J. Padhye. RFC4342: Profile for DCCP Con-

gestion Control ID 3: TFRC Congestion Control, March 2006.

[41] Sally Floyd and Kevin Fall. Promoting the use of end-to-end conges-

tion control in the Internet. IEEE ACM Transactions on Networking,

7(4):458–472, 1999.

[42] Cheng P. Fu and Soung C. Liew. TCP Veno: TCP Enhancement for

Transmission Over Wireless Access Networks. IEEE Communications,

21(2):216–228, 2003.

[43] H. Gharavi and K. Ban. Rate adaptive video transmission over ad-hoc

networks. Electronics Letters, 40(19):1177–1178, September 2004.

[44] F. Gont. RFC6633: Deprecation of ICMP Source Quench Messages,

May 2012.

[45] Lei Guo, Enhua Tan, Songqing Chen, Zhen Xiao, Oliver Spatscheck,

and Xiaodong Zhang. Delving into Internet Streaming Media Delivery:

A Quality and Resource Utilization Perspective. In IMC ’06: Proceedings

of the 6th ACM SIGCOMM on Internet measurement, pages 217–230,

New York, NY, USA, 2006. ACM Press.

[46] S. Ha, I. Rhee, and L. Xu. CUBIC: A new TCP-friendly high-speed TCP

variant. ACM SIGOPS Operating Systems Review, 42(5):64–74, 2008.

[47] M. Handley, S. Floyd, J. Padhye, and J. Widmer. RFC3448: TCP

Friendly Rate Control (TFRC): Protocol Specification, January 2003.

[48] M. Handley, S. Floyd, J. Padhye, and J. Widmer. RFC5348: TCP

Friendly Rate Control (TFRC): Protocol Specification, September 2008.

[49] Jeffrey A. Hart. The Net Neutrality Debate in the United States. Journal

of Information Technology and Politics, 8(4):418–443, 2011.

[50] S. Hemminger. Netem - Emulating Real Networks in the Lab. Proc.

Linux Conference Australia, 2005.

[51] J Hruska. Industry group working on yet another wireless HD stan-

dard. http://arstechnica.com/hardware/news/2008/07/industry-group-

working-on-yet-another-wireless-hd-standard.ars, Accessed 2008.

152

[52] B. Huffaker, M. Fomenkov, D. Moore, and K. Claffy. Macroscopic analy-

ses of the infrastructure: Measurement and visualization of Internet con-

nectivity and performance. In Passive and Active Network Measurement

Workshop (PAM), Amsterdam, Netherlands, April 2001. RIPE NCC.

[53] ICIR DCCP Implementation. http://www.icir.org/kohler/dcp/linux-

2.4.20-dccp-modifications.tgz, Accessed 2005.

[54] Information Sciences Institute. RFC793: Transmission Control Protocol,

1981.

[55] Information Sciences Institute. RFC2309: Recommendations on Queue

Management and Congestion Avoidance in the Internet, 1998.

[56] NLANR/DAST : Iperf - The TCP/UDP Bandwidth Measurement Tool.

http://dast.nlanr.net/Projects/Iperf/, Accessed 2007.

[57] ITU-T. Pulse code modulation (PCM) of voice frequencies. Technical

report, ITU-T Recommendation G.711, November 1988.

[58] ITU-T. One-way transmission time. Technical report, ITU-T Recom-

mendation G.114, May 2003.

[59] ITU-T. The E-Model, a computational model for use in transmission

planning. Technical report, ITU-T Recommendation G.107, March 2005.

[60] ITU-T. Coding of speech at 8 kbit/s using conjugate-structure algebraic-

code-excited linear prediction (CS-ACELP). Technical report, ITU-T

Recommendation G.729, December 2006.

[61] Van Jacobson. Congestion avoidance and control. In ACM SIGCOMM

’88, pages 314–329, Stanford, CA, August 1988.

[62] W. John and S. Tafvelin. Analysis of internet backbone traffic and header

anomalies observed. In Proceedings of the 7th ACM SIGCOMM confer-

ence on Internet measurement, pages 111–116. ACM, 2007.

[63] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication net-

works: shadow prices, proportional fairness and stability. In Journal of

the Operational Research Society, volume 49, 1998.

[64] E. Kohler, S. Floyd, and A. Sathiaseelan. Faster Restart

for TCP Friendly Rate Control (TFRC), draft 03. Work in

progress. http://www.ietf.org/internet-drafts/draft-ietf-dccp-tfrc-faster-

restart-03.txt, 2007.

153

[65] E. Kohler, M. Handley, and S. Floyd. Designing DCCP: Congestion Con-

trol Without Reliability. In ACM SIGCOMM Computer Communication

Review, volume 36, pages 27–38. ACM, 2006.

[66] E. Kohler, M. Handley, and S. Floyd. RFC4340: Datagram Congestion

Control Protocol (DCCP), March 2006.

[67] Charles Krasic, Jonathan Walpole, and Wu-Chi Feng. Quality-adaptive

Media Streaming by Priority Drop. In NOSSDAV ’03: Proceedings of the

13th international workshop on Network and operating systems support

for digital audio and video, pages 112–121, New York, NY, USA, 2003.

ACM Press.

[68] Jim Kurose. Open Issues and Challenges in Providing Quality of Service

Guarantees in High-Speed Networks. ACM Computer Communication

Review, 23(1):6–15, 1993.

[69] J. Lai and E. Kohler. Efficiency and late data choice in a user-

kernel interface for congestion-controlled datagrams. In S. Chandra

and N. Venkatasubramanian, editors, Society of Photo-Optical Instru-

mentation Engineers (SPIE) Conference Series, volume 5680 of Society

of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,

pages 136–142, December 2004.

[70] Averill M. Law. Practical Statistical Analysis of Simulation Output

Data: The State of the Art. In R. G. Ingalls, M. D. Rossetti, J. S. Smith,

and B. A. Peters, editors, Winter Simulation Conference, pages 67–72,

Washington, DC, USA, December 2007. Winter Simulation Conference.

[71] Lulea. DCCP Projects. http://www.dccp.org/, Accessed 2005.

[72] G. Maier, A. Feldmann, V. Paxson, and M. Allman. On dominant char-

acteristics of residential broadband internet traffic. In IMC ’09, volume 9,

pages 4–6, New York, USA, 2009.

[73] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and Ren

Wang. TCP Westwood: Bandwidth estimation for enhanced transport

over wireless links. In MobiCom ’01: Proceedings of the 7th annual inter-

national conference on Mobile computing and networking, pages 287–297,

New York, NY, USA, 2001. ACM Press.

[74] I. McDonald. DCCP Patches to Linux Kernel 2.6.20.

http://wand.net.nz/˜iam4/dccp/patches20/, 2007.

154

[75] I. McDonald and R. Nelson. Congestion control advancements in Linux.

Proc. Linux Conference Australia, 2006.

[76] Patrick McManus. DCCP Implementation by Patrick McManus.

http://www.ducksong.com:81/dccp/, Accessed 2006.

[77] Alberto Medina, Mark Allman, and Sally Floyd. Measuring the evolution

of transport protocols in the internet. SIGCOMM Comput. Commun.

Rev., 35(2):37–52, April 2005.

[78] Arnaldo C. Melo. TCPfying the Poor Cousins. In Ottawa Linux Sym-

posium, July 2004.

[79] Arnaldo C. Melo. DCCP on Linux. In Ottawa Linux Symposium, pages

305–311, 2005.

[80] B. Mukherjee and T. Brecht. Time-lined TCP for the TCP-friendly De-

livery of Streaming Media. International Conference on Network Proto-

cols (ICNP), Osaka Japan, pages 165–176, 2000.

[81] John Nagle. Congestion Control in IP/TCP Internetworks. SIGCOMM

Comput. Commun. Rev., 14(4):11–17, October 1984.

[82] NIST Net Home Page. http://snad.ncsl.nist.gov/itg/nistnet/, Accessed

2005.

[83] Paul Njoroge, Asuman Ozdaglar, Nicols E. Stier-moses, and Gabriel Y.

Weintraub. Investment in Two Sided Markets and the Net Neutrality

Debate. Columbia Business School DRO (Decision, Risk and Operations)

Working Paper, (2010-05), 2010.

[84] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Mod-

eling TCP Throughput: A Simple Model and its Empirical Validation.

In SIGCOMM ’98: Proceedings of the ACM SIGCOMM ’98 conference

on Applications, technologies, architectures, and protocols for computer

communication, pages 303–314, New York, NY, USA, 1998. ACM Press.

[85] Fernando Paganini, Zhikui Wang, John C. Doyle, and Steven H. Low.

Congestion control for high performance, stability, and fairness in general

networks. IEEE/ACM Trans. Netw., 13(1):43–56, February 2005.

[86] Panagiotis Papadimitriou and Vassilis Tsaoussidis. SSVP: A conges-

tion control scheme for real-time video streaming. Computer Networks,

51(15):4377–4395, October 2007.

155

[87] Abhay K. Parekh and Robert G. Gallager. A generalized processor shar-

ing approach to flow control in integrated services networks: the single-

node case. IEEE/ACM Trans. Netw., 1(3):344–357, June 1993.

[88] C. Parsa and JJ Garcia-Luna-Aceves. Differentiating congestion vs. ran-

dom loss: a method for improving TCP performance over wireless links.

In Wireless Communications and Networking Conference, 2000. WCNC.

2000 IEEE, volume 1, pages 90–93. IEEE, 2000.

[89] Vern Paxson. End-to-end Internet packet dynamics. IEEE ACM Trans-

actions on Networking, 7(3):277–292, 1999.

[90] T. Phelan. Strategies for Streaming Media Applications Using TCP-

Friendly Rate Control. http://tools.ietf.org/id/draft-ietf-dccp-tfrc-

media-00.txt.

[91] T. Phelan. Media Friendly Rate Control (MFRC). http://www.phelan-

4.com/dccp/draft-phelan-mfrc-00.txt, July 2004.

[92] T. Phelan. Datagram Congestion Control Protocol (DCCP) User Guide.

Work in progress. http://tools.ietf.org/id/draft-ietf-dccp-user-guide-

03.txt, 2005.

[93] T. Phelan, G. Fairhurst, and C. Perkins. DCCP-UDP: A Datagram

Congestion Control Protocol UDP Encapsulation for NAT Traversal,

November 2012.

[94] J. Postel. RFC768: User Datagram Protocol, 1980.

[95] J. Postel. RFC792: Internet Control Message Protocol, September 1981.

[96] K. Ramakrishnan and S. Floyd. RFC2481: A Proposal to Add Explicit

Congestion Notification (ECN) to IP, 1999.

[97] R. Rejaie and A. Reibman. Design Issues for Layered Quality-

Adaptive Internet Video Playback. Lecture Notes in Computer Science,

2170:433+, 2001.

[98] Reza Rejaie, Mark Handley, and Deborah Estrin. Quality Adaptation for

Congestion Controlled Video Playback Over the Internet. In SIGCOMM

’99: Proceedings of the conference on Applications, technologies, archi-

tectures, and protocols for computer communication, volume 29, pages

189–200, New York, NY, USA, October 1999. ACM Press.

156

[99] J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-End Arguments in

System Design. In Proceedings of the Second International Conference

on Distributed Computing Systems, pages 509–512, 1981.

[100] Angela Sasse, Ulf Bilting, Claus D. Schulz, and Thierry Turletti. Re-

mote Seminars through Multimedia Conferencing: Experiences from the

MICE Project. In Proc. INET’94/JENC5, pages 251/1–251/8, Prague,

June 1994.

[101] A. Sathiaseelan and G. Fairhurst. TCP Friendly Rate Control (TFRC)

for Bursty Media Flows. Computer Communications, 2011.

[102] Henning Schulzrinne, Steven Casner, R Frederick, and Van Jacobson.

RFC3550: RTP: A Transport Protocol for Real-Time Applications. 2003.

[103] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler,

and D. Noveck. RFC3530: Network File System (NFS) version 4 Proto-

col, April 2003.

[104] P . Srisuresh and K. Egevang. RFC3022: Traditional IP Network Ad-

dress Translator (Traditional NAT), March 2001.

[105] Richard W. Stevens. The Protocols (TCP/IP Illustrated, Volume 1).

Addison-Wesley Professional, December 1993.

[106] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,

T. Rytina, M. Kalla, L. Zhang, and V. Paxson. RFC2960: Stream

Control Transmission Protocol.

[107] Vassilios Tsaoussidis and Songbin Wei. Reliability / Throughput / Jitter

Tradeoffs for Real-time Transport Protocols. Technical report, IEEE,

1999.

[108] J. M. Valin, T. B. Terriberry, C. Montgomery, and G. Maxwell. A High-

Quality Speech and Audio Codec With Less Than 10-ms Delay. Trans.

Audio, Speech and Lang. Proc., 18(1):58–67, January 2010.

[109] WAND. WAND implementation of DCCP.

http://research.wand.net.nz/software/dccp.php, Accessed 2006.

[110] Zhiheng Wang, Sujata Banerjee, and Sugih Jamin. Media-friendliness

of a slowly-responsive congestion control protocol. In NOSSDAV ’04:

Proceedings of the 14th international workshop on Network and operating

systems support for digital audio and video, pages 82–87, New York, NY,

USA, 2004. ACM Press.

157

[111] Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary Increase Conges-

tion Control (BIC) for Fast Long-Distance Networks. In IEEE Infocom

2004, 2004.

