
Tag Insertion Complexity

Stuart Yeates, Ian H. Witten and David Bainbridge
Department of Computer Science,

University of Waikato, Hamilton, New Zealand
fs.yeates, i.witten, d.bainbridgeg@cs.waikato.ac.nz

1 Introduction

Lewis Carroll's poem Jabberwocky opens with these lines:

'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:
All mimsy were the borogoves,
And the mome raths outgrabe.

Despite the fact that of the words having four or more letters only two appear in the dictionary,
uent speakers of English ha veno diÆculty accepting the text as English or, given a little
preparation, reading it aloud. What is it about this text that makes it seem so natural while
containing so few English words? The outer structure helps, the line breaks, the capital letters
at the start of each, the rhyme at the end. But far more can be inferred:

The toveswere obviously gyring as well as gimbling; the raths, while engaged in
outgrabing (or perhaps outgribing), were in some way related to mome, or had the
quality of momeness, and so on. In fact, the markers enable you to place every
nonsense word but tw o in its proper syntactic category. [1]

These inferences exploit syntactic information that native speakers pick up unconsciously
from the original poem, based on lexical features such as the framework of function words and
w ord endings.This information can be encoded by marking up the text:

'Twas brillig, and the <a>slith y <n>toves</n>

Did <v>gyre</v> and <v>gimble</v> in the <n>w abe</n>:
All <a>mimsy w ere the<n>borogoves</n>,
And the mome <n>raths</n> <v>outgrabe</v>.

This paper is about inferring markup information, a generalization of part-of-speech-
tagging. We use compression models based on a marked-up training corpus and apply them to
fresh, unmarked, text. In e�ect, this technique builds �lters that extract information from text
in a w aythat is generalized because it depends on training text rather than preprogrammed
heuristics.

As illustrated above, we use SGML tags to represent the extracted information. How ever,
w ew orkin a more controlled textual environment: w euse bibliographic text rather than
plain English and mark up entities such as author, date, and titles rather than syntactic parts
of speech. Such en titiesare generically called \metadata"|data about data|and form an
important component of the information present in a bibliography.

The aim of our work is to automatically enhance bibliographies with metadata tags, based
on a training corpus of annotated bibliography entries. In previous work, w eha veapplied

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

similar techniques to the word segmentation problem [6], acronym detection [10] and generic
entity extraction [8] approaching the heuristics informally, with little or no regard for the size
of the search spaces involved. Some preliminary studies of the complexity of tag insertion were
reported at a workshop [11]; the present paper provides a deeper and more complete analysis.

The basic methodologyis to form compression models from the pre-tagged training text,
and to seek a tagging of the test text that allows it to be compressed into the smallest number
of bits using the models. Di�erent models are used for each tag type: thus there will be
separate author, date, and title models. We use the PPMD [9] character-based compression
method, that is, the well-known PPM technique in conjunction with How ard's escape method
D [4]. In order to insert tags in to unmarked text, w eemploy a Viterbi search. Tag insertion
is computationally expensive because the search inevitably involv es a large space.

The most important determiner of success is the size of the training corpus and ho w
representativ eof the test text. It is diÆcult to quantify these factors. At one end of the
spectrum, the bibliographic references that the system is tested on may have already been
present in the training corpus, in which case they will have been incorporated into the models.
At the other, it is possible (though unlikely) that the training corpus and the test set have no
w ords in common.Betw eenthese extremes lie many intermediate possibilities.

The in ten tof this paper is not to evaluate the overallsuccess of the markup operation.
Instead, w efocus on tec hniques for reducing the size of the searc hspace. Simple properties
of the SGML standard [3], such as nesting, can be used to reduce the search. In this paper
w edevelop a succession of provably correct and heuristic tec hniques that prune it further:
Viterbi Search, One-Tag-at-a-Time, Automatic Tok enization and Maximum Lookahead. The
improvement is signi�cant, reducing search space size from O(ttn) to O(tn) where t is the size
of the tagset and n is the length of the test text, in characters.

Some of the tec hniques w edescribe ha veno e�ect at all on the result of the markup
operation. F or ones that do, the price paid can be assessed in terms of the standard measures
of recall and precision, relative to a correct markup of the test text [11]. Recall is the proportion
of tags in the known correct markup that were also in the markup produced b y the system.
Precision is the proportion of the tags produced by the system that were also in the the known
correct markup.

The next section discusses the testbed for our techniques, a set of bibliographic data, and
indicates ho wit was generated. Next w eformalize the problem as one of tag insertion, and
present theoretical bounds on the search space when operating under various assumptions.
Section 5 gives experimental results that con�rm the theoretical analysis and evaluate the
e�ect of the heuristics we introduce. We conclude with a summary of our �ndings.

2 Marking up bibliographies

Figure 1a sho wsan extract from a bibliography, and Figure 1b shows the same section in
marked-up form. We have chosen to identify seven types of metadata: last names, �rst names,
titles, dates,y ears, pages and numbers. We have adopted the SGML convention for markup.
T agsare expressed in angle brackets. Each tagged item is terminated with a corresponding
closing tag, beginning with the \/" character. T agged items may be nested: for example, the
\year" markup is nested within \date".

Some arbitrary decisions must be made when tagging. For example, w eha vechosen to
include terminating punctuation|commas following a name, periods following an initial or
a title|within the tagged items. We have chosen to mark initials as �rst names, and to
mark a sequence of consecutive �rst names together. Dates are marked without the enclos-
ing parentheses. Our system is fairly impervious to suc hdecisions, provided they are made

2

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

(a) [10] Stein, J. Constraints in the association-object data model. TR 87-011nn
(Aug. 1987). nn
[11] Stenkiste, P. A., and Henessy, J. L. A simple interprocedural registernn
allocation algorithm and its e�ectiveness in LISP. ACM Trans. onnn
Programming Languages and Sys. (Jan. 1989).nn
[12] Stockmeyer, L. J. The polynomial-time hierarchy.Theoretical CS 3nn
(1977), 1. (Located in packet #1, UWisc CS-830, Eric Bach).nn

(b) [10] <last>Stein,</last> <�rst>J.</�rst> <title>Constraints in the association-object data
model.</title> TR 87-011nn
(<date>Aug. <year>1987</year></date>).nn
[11] <last>Stenkiste,</last> <�rst>P . A.,</�rst> and <last>Henessy,</last> <�rst>J. L.-
</�rst> <title>A simple interprocedural register nn
allocation algorithm and its e�ectiveness in LISP.</title> ACM Trans. onnn
Programming Languages and Sys. (<date>Jan. <year>1989</year></date>).nn
[12] <last>Stoc kmeyer,</last> <�rst>L. J.</�rst> <title>The polynomial-time hierarc hy.-
</title> Theoretical CS 3nn
(<date><year>1977</year></date>), <pages>1.</pages> (Located in pac ket#1,UWisc CS-
830, Eric Bach).nn

(c) [Pin, 1995] Pin, J.-E. (1995). A negative answer to ann
question of Wilke on varieties of !-languages. Informationnn
Processing Letters, 56(4):197{200.

Figure 1: Bibliographic markup. (a) A section of bibliography. (b) The same section marked-
up. (c) A bibliography entry that presents challenges.

consistently.
T o ensure consistency, and to generate a substantial volume of tagged text, Figure 1a and

b are both generated using a LaTeX/BibTeX system from a large body of references. We
wanted to simulate all features of real reference lists, including hyphenation, line breaks, and
page breaks|both the white space that they generate, and \noise" features such as pagination
and page numbers. Because of this, the process is more complex than would �rst seem to be
necessary.

In order to generate realistic bibliographic text, references were grouped into �les contain-
ing about 25 items eac h. These �les w ereLaTeX'd and P ostScriptw asgenerated, creating
page images of a corresponding typeset reference list. Then, text was extracted from the
P ostScript �le using a standard text extraction utility. This exactly simulated the e�ect of a
computer-generated list of references in a research paper. Eight di�erent bibliographic style
�les were used, and LaTeX was used to lay out pages of references for four di�erent kinds of
publication style|book, journal article, proceedings article and report. The result was that 32
di�erent styles were a vailable.Two hundred �les were processed using each of these di�erent
styles. With about 25 references per �le, this generated approximately 160,000 references.

F or Figure 1b, the LaTeX macros were modi�ed to insert tags during the process of laying
out the references. The result was then correlated with the information generated above for
untagged references, in order to ensure that line breaks occurred at \natural" places ev en
though the text w astagged. Thus lines end at the same place in Figure 1b as they do in
Figure 1a; to emphasize this they are marked explicitly.

Figure 1csho ws a single bibliographic entry before markup, such as might appear in test
text. This example presents a n umber of challenging problems. First, the bibliography key
that appears in square brackets, \[Pin, 1995]", contains the author surname and year, rather
than a plain n umeric label. Punctuation appears in an unusual place: within the title of
the document it occurs as a letter in the w ord \!-languages."Moreover, the document's title

3

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

contains the name of another author (\Wilke"), which means that this w ordmay compress
better using the author model than the title model.

3 Ta ginsertion and its search sp ace

Briey stated, the general tag insertion problem is this:

Given a sequence of characters C0 . . .Cn�1 and a set of tags T0 . . . Tt�1, how should
the tags be inserted into the sequence so that the tags reveal the metadata implicit
in it?

F our natural assumptions, built into the SGML standard, allow the tags to be interpreted as
de�ning particular kinds of data items in the sequence. They must be satis�ed for a tagging
to be syntactically correct.

1. Each tag in the tag set has a begin tag symbol Ti and an end tag symbol T=i.

2. In the text, tags must be balanced|there must be the same number of Ti as T=i tags.

3. In any pre�x of the tagged text, the number of end tags T=i cannot exceed the number
of begin tags Ti.

4. Within a tag pair any nested tagsm ust be balanced.

As explained above, w eev aluate a particular tagged version of the text b y calculating
its entropy with respect to a set of compression models. One compression model is formed
for every tag type, from pre-tagged training data. Each putative tagging of the sequence is
ev aluated b y calculating its entropy, where the contents of eac h tag are compressed b y the
appropriate model. A fundamental assumption is that, of all possible taggings, the one with
minimum entropy best rev ealsthe metadata implicit in the sequence, relative to the corpus
on which the compression models were trained. We use PPMD compression models.

Three further assumptions can bemade that greatly reduce the number of possible ways
to insert tags into the sequence.

5. Ti tags and T=i tags must alternate.

6. At least one character must occur betw een aTi and a T=i.

7. T ags have no attributes.

Assumption 5 forbids recursive tags: items cannot contain the same kind of item as a compo-
nent. How ev er,nested tagging is permitted. Assumption 6 forbids null tags. Assumption 7
restricts the scope of the problem bymaking eac htag atomic. These three assumptions are
easily encoded in an SGML Document Type De�nition.

4 The search sp ace

In the general tag insertion problem, there are

tX
r=0

t!

(t� r)!

w ays of selecting zero or more tags from a vocabulary of t tags. Suppose the source text
contains n characters and tags may be inserted betw eenan ytw ocharacters, before the �rst
and after the last character. Then there are approximately"

tX
r=0

t!

(t� r)!

#n
O(ttn) (1)

4

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

����������
����������
����������

����������
����������
����������

n-a

a+1

n+1
����������
����������
����������

����������
����������
����������

Search space for
full search

Search space for
Viterbi search

(a) (b) (c)

Figure 2: Viterbi searc hof a large searc hspace, with the active part of the searc hspace at
eac h section marked in black.

possible encodings of the sequence with a tag set of size t.
In terms of a search space, the problem is represented as a tree with a branching factor ofPt

r=0
t!

(t�r)! and a depth of n. This is a very large space, especially considering that real world

tag sets (HTML, XML etc.) commonly have t � 50 and that real world documents commonly
haven � 5; 000; 000. Indeed, searching spaces of this order is intractable.

We have not been able to calculate an exact equation for this and for our purposes an
exact equation is not necessary|we are only in terested in the relative magnitude of these
intractable searching spaces.

4.1 Viterbi Search

Viterbi searc h [7, 5] is a long-standing algorithm for the incremental processing of linear
data streams. It pro videsa non-heuristic entropy-minimizing search, which is illustrated in
Figure 2a{c. Only a small portion (coloured black) is searched initially (a). The low est entropy
leaf is found and the root node is pruned to leave only the branch connected to the low est
entropy leaf; then, all leaves on that branch are expanded. At each step the root of the active
searc hspace is pruned, leaving only the branch that is connected to the low esten tropy leaf,
and all unpruned leaves are expanded (b). The dashed lines indicate the portions of the search
space pruned b y this step. When the searc hreac hesthe end of the sequence, only a subset
(c) of the space has been searc hed.The application of Viterbi search to tag insertion means
rather than processing the complete sequence, incrementally processing sections of characters.

Pruning the search space is possible because of a proof outlined in [7], which gives bounds
on how muc h context need be taken into account when considering whether or not to insert a
tag. When inserting a tag with a maximum length of lmax using a model of maximum order
omax, the maximum lookahead is a = lmax + omax.

This reduces the search space from Equation 1 to:

(n� a)

"
tX

r=0

t!

(t� r)!

#a+1

O(tta) (2)

The reason for the factor n � a is shown graphically in Figure 2a|it is the n umber of in-
crements in which the incremental searc hspace is searched. This reduction makes the tag
insertion problem tractable, for suÆciently low order PPMD models (typically 1{5 charac-
ters), suÆciently short maximum tag lengths (typically in the range of 5{15) and suÆciently
small tag sets (typically 1{3).

4.2 One T a ga ta Time Search (OTT)

F urther reduction in the searc hspace can be achieved using heuristic assumptions. One
heuristic, which w ecall One Tag at a Time (OTT), is to perform the searc h in multiple
passes, once for each pair of tags Ti and T=i, rather than simultaneously inserting all the tags.

5

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

This further reduces the search space from Equation 2 to:

tX
i=1

(n� ai + c)3ai+1 O(t3max(a1;��� ;at)) (3)

b y reducing the searc hspace to a set of t ternary trees, one per tag, which are explored
sequentially using the Viterbi algorithm. c is the n umber of tags inserted by previous passes
and is bounded b y tn2 � c � 0, but can be expected to be tn � c � 0 for reasonable tag
sets and documents. ai is the maximum lookahead for tag i and is the sum of the maximum
length for that tag and the maximum order of the model.

This heuristic may introduce errors into the markup (low er recall and/or precision) where
two or more tags contain similar text, such as journal volume numbers, journal part numbers
and journal page numbers.

4.3 Adjacency of ta gs

A further simpli�cation in our implemented system was to assume that no T=i w as immediately
follo w ed by a Ti. While this goes beyond the SGML assumptions given above, if it holds true
in the markup, it reduces the search space from Equation 3 to:

tX
i=1

(n� ai + c)2ai+1 O(t2max(a1;��� ;at)) (4)

We intend to remove this assumption in further w orkbecause w efeel that this assumption
may not hold generally.

4.4 Best First Search

In the previous sections we assumed that the Viterbi search completely explored each sub-tree
to the lea vesbefore selecting the lowest entropy leaf and pruning based on it. If we perform
a depth-�rst search expanding the low est entropy nodes �rst, it is possible that some non-leaf
nodes cannot conceivably lead to the low est entropy leaf because we ha ve already seen a leaf
node with low er entropy. Such nodes do not need not be expanded, greatly reducing the search
space. This is e�ectively a best �rst search.

The reduction in search space is entirely dependent on how well-trained the PPMD model
is. Empirically it is found to be substantial. The e�ect is to reduce the search space from
Equation 4 to:

tX
i=1

(n� ai + c)2p(ai+1) O(t2max(a1 ;��� ;at)) (5)

where p is bounded by 1 � p � 0.

4.5 Automatic Tokenization

Automatic T ok enization(AT) is a heuristic based on the observation that tags often occur
in certain places. Names, titles and dates do not begin in the middle of words but on w ord
boundaries. By noticing during training that no tag occurs between a pair of lowercase letters
or between a pair of digits, as is the case for all the examples mentioned in this paper, the
searc hcan be pruned. Using Unicode de�ned categories [2], w eclassify characters as letter
(with the partial subsets uppercase-letter and low ercase-letter),digit, punctuation and white
space.

6

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

The searc h-spacereduction given b y A Tis diÆcult to model exactly. Assume that tags
are only inserted either side of non-alphanumeric characters, and that w ordsaverage �v e
characters with one white space character and one punctuation character betw een each word.
Then the depth of the search treeis reduced b y a factor of 3

7 , and the search space becomes:

tX
i=1

(n� ai + c)2
3

7
p(ai+1) O(t2max(a1 ;��� ;at)) (6)

AT has interesting implications for initials and names. F or example, thestring John McMahon

and Francis J. Smith has approximately the same sized search space as the string J. McMahon

and F. J. Smith, because while the extra characters could not have had tags inserted betw een
them, the added \." could ha vea tag inserted before it. More generally, on long terms A T
works as w ell asor better than abbreviations of those terms, since long terms are e�ectively
abbreviated by the tokenizer.

Because there are relatively few contexts in which to see a tag, the chances of encountering
all correct tag contexts, when training on enough data to build e�ective PPMD models, is
extremely high. While it is possible to construct arti�cial situations in which this heuristic
fails, naturally occurring examples are unlikely .

4.6 Maximum Lookahead

The heuristics developed so far are extremely sensitive to changes in a, which is closely related
to the observed maximum length of a tag, lmax. Because the data with which we are working
includes a few extremely long tags due to errors in the bibliographies, we found it bene�cial to
replace the calculation for lmax with one based on the average tag length l0max = average(l)+
3�, where � is the standard deviation. This reduces the search space from Equation 6 to:

tX
i=1

(n� a0i + c)2
3

7
p(a0

i
+1) O(tn) (7)

Here, a0i is the new value of ai based on a calculated l0max.

5 Experimental Search Space Sizes

The di�erent variants of the search algorithm described above have been evaluated on a dataset
of bibliographies. As described in Section 2, we had available as training and test data a corpus
of BibTeX databases that had been passed through a system that inserted SGML tags as well
as doing standard bibliographic processing and layout.

For training w eused 2000 bibliography �les, each containing approximately 25 en tries,
with a total of 49,000 references. They were marked up in the manner of Figure 1b, with tags
for titles (article or book titles), dates, years, �rst names (in general, these were initials), last
names, page ranges, and numbers (in general, numbers of technical reports). Separate models
w ere generated for each of these seven data types.

PPMD models were used throughout. We experimented with models of di�erent orders,
and found that second-order models w orked best, probably because the amount of training
data for some of the models was not large. T able 1 indicates the size of the training data that
w as used for each model.

The models were tested on 10 randomly selected �les that did not form part of the training
data, again containing about 25 bibliography entries each; the number of tags involved is given

7

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

1

6

7

2 3 4

5

1

4

16

64

256

1024

0 5 10 15 20 25

Fu
ll

se
ar

ch
 s

pa
ce

V
ite

rb
i s

ea
rc

h

V
ite

rb
i s

ea
rc

h
+

O
T

T
V

ite
rb

i s
ea

rc
h

+
O

TT
 +

 A
dj

ac
en

cy

Se
ar

ch
 s

pa
ce

 (
no

de
s

se
ar

ch
ed

 p
er

 c
ha

ra
ct

er
 m

ar
ke

d
up

)

Lookahead

Vite
rbi s

ear
ch

 (b
est

-fi
rst

) +
 O

TT + A
djac

en
cy

Viterbi search (best-fir
st) +

 OTT + Adjacency + Tokenization

Viterbi search (best-first) + OTT + Adjacency + Tokenization + Maximum lookahead

Figure 3: Search space size for each of the sev enequations. Equations 1-4, with solid lines,
are calculated values. Equations 5-7, with broken lines, are experimentally determined values.
The broken horizontal line at the top of the graph is the title tag from Equation 7.

in T able1. All our experiments are based on the identi�cation of single data types, one tag
at a time.

Figure 3 summarizes the gro wth in searc hspace size, as a function of the amount of
lookahead that is permitted, for the various di�erent improvements described in Section 3.

1. F ullsearch The full search space (Equation 1) is so large that it is hardly visible, at the
top left of the graph.

2. Viterbi search The Viterbi method (Equation 2), yields a greatimpro vement, although
it is right up against the left side of the graph.

3. One T agat a Time (OTT) The OTT procedure produces further improvement (Equa-
tion 3). A heuristic: it may introduce markup errors.

4. Adjacency of tags The adjacent tags assumption (Equation 4) produces a sligh tim-
pro vement, although not as signi�cant as either of the previous two. If the assumption
holds for a given type of markup, no errors are in troduced. If it does not, markup is
lik ely to fail, potentially catastrophically.

5. Best-�rst search The improvement generated b y the use of best-�rst searc hcannot be
ev aluated theoretically, but depends on the training data. Equation 5 gives an upper
bound. However, Figure 3 is obtained experimentally using the training and test data

8

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

T ag �rst name last name number title pages year date total
T raining # of tags 86,000 87,000 18,000 45,000 39,000 45,000 45,000 365,000

T ag length 4:0� 2:2 7:5� 2:5 1:3 � 1:0 63:3� 25:9 7:2� 1:9 4:0� 0:4 7:1� 3:4
of chars 345K 653K 23K 2.8M 283K 180K 319K 4.6M

Test # of tags 380 382 84 215 181 204 204 1650
Search a 13 17 7 143/35 15 8 19
space Size 9500 32000 5200 2100000 12000 5600 15000 2200000

T able 1:T raining and testdata, and calculations of search space size. The tw osearc hspace
sizes shown for title are before and after the lookahead pruning described in Section 4.6.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

R
ec

al
l/P

re
ci

si
on

Lookahead

Recall
Precision

Figure 4: Recall and precision of the title tag as a function of the amount of lookahead.

described above. As can be seen, di�erent tag types (Table 1) yield di�erent improve-
ments, although the general trends are very muc h the same. The di�erences are due to
di�erences in e�ectiveness of the respective PPM models.

6. Automatic tokenization Automatic tok enization(Equation 6) pro videsa further dra-
matic reduction in the size of the searc hspace as shown in Figure �g:searchspacesize.
The variation between di�erent tag types has increased, because the tok enizervaries
radically from one tag type to another. F orexample, �rst names contain only letters,
whitespace and simple punctuation (`.' and `.') while titles also contain digits, arithmetic
symbols and matched punctuation (`[' and `]' etc.).

7. Maximum lookahead Some tags, such as the title tag, are long, potentially unbounded,
constructs. The e�ect of introducing an arti�cial maximum length on the size of tags is
easy to visualize in Figure 3: beyond the chosen maximum lookahead length, the graph
is at.

The maximum lookahead heuristic needs to be evaluated in terms of its e�ect on the result
of the markup operation. F orthe title tag, which is b y far the longest one, Figure 4 sho ws
how recall and precision vary as the amount of lookahead is altered. As T able1 sho ws,the
average title length is 63.3 How ever, the longest title is in fact 3749 letters long. Thus a
lookahead of around 3750 characters would be necessary to guarantee correct treatment of all
titles. How ev er,the median length is much shorter, and as the Figure 4 shows, recall and
precision approach a virtually steady state with a lookahead of about 25 characters.

9

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

6 Conclusion

We have presented several properties of SGML and used them to �nd the number of possible
w ays to insert a set of tags in to a sequence of characters and th us the searc hspace when
searc hing for an optimal tagging of the characters with the tags. We have used Viterbi search,
OTT, adjacency of tags, best-�rst search, automatic tokenization and maximum lookahead to
progressively reduce this search space from O(ttn) to the tractable size of O(tn) for interesting
problems. F or example, the �le from which Figure 1 was taken contains 25 bibliography entries
and 3658 characters; marking it up with the seven tag types investigated in this paper reduces
the overall search space size from � 1011311 to approximately � 106.

We have also discussed which tec hniques introduce errors into the system and under what
circumstances. Finally we have presented experimental results for those techniques which are
diÆcult to model mathematically, using a bibliographic example. An implementation, written
in Java, of the ideas presented in the paper is available at
http://www.cs.waikato.ac.nz/~say1.

References

[1] Robert Claiborne. The Life and Times of the English L anguage|the history of our
marvellous native tongue. Bloomsbury, 1983.

[2] The Unicode Consortium. The Unicode Standard|Worldwide Character Encoding.
Addison-Wesley, 1992.

[3] Charles F. Goldfarb. The SGML Handbook. Oxford, 1990.

[4] P aulGlor How ard. The Design and Analysis of EÆcient L ossless Data Compression
Systems. PhD thesis, Department of Computer Science, Brown University, June 1993.

[5] M. S. Ryan and G. R. Nudd. The Viterbi algorithm. Warwick Research Report RR238,
Dept. Computer Science, University of Warwick, Coventry, England, February 12 1993.

[6] William J. T eahan,Yingying Wen, Roger McNab, and Ian H. Witten. A compression-
based algorithm for Chinese w ordsegmentation. Computational Linguistics, 26(3):375{
393, September 2000.

[7] Andrew J. Viterbi. Error bounds for convolutional codes and an asymptotically optimal
decoding algorithm. IEEE Transactions on Information Theory, 13:260{269, 1967.

[8] Ian H. Witten, Zane Bray, Malika Mahoui, and William J. Teahan. Using language
models for generic entity extraction. In Pr ocICML Workshop on Text Mining, 1999.

[9] Ian H. Witten, Alistair Mo�at, and Timothy C. Bell. Managing Gigabytes | Compressing
and Indexing Documents and Images. Morgan Kaufmann, 2nd edition, 1999.

[10] Stuart Y eates,David Bainbridge, and Ian H. Witten. Using compression to identify
acronyms in text. In James A. Storer and Martin Cohn, editors, Pr oceedings of the Data
Compression Conference (DCC), page 582, Snowbird, Utah, 28{30 March 2000 2000.
IEEE Computer Society, IEEE. F ull v ersion in Working Paper 00/01, Computer Science,
University of Waikato, Hamilton, NZ, January 2000.

[11] Stuart Yeates and Ian H. Witten. On tag insertion and its complexity. In Ah-Hwee Tan
and Philip Yu, editors, Pr oceedings of International Workshop on Text and Web Mining
PRICAI 2000, pages 52{63, Melbourne, Australia, August 28th 2000.

10

Proceedings of the Data Compression Conference (DCC�01)
1068-0314/01 $10.00 © 2001 IEEE

