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Abstract

We review the practice of experimental design in the environmental economics
literature concerned with choice experiments. We then contrast this with advances in
the field of experimental design and present a comparison of statistical efficiency
across four different experimental designs evaluated by Monte Carlo experiments.
Two different situations are envisaged. First, a correct a priori knowledge of the
multinomial logit specification used to derive the design and then an incorrect one.
The data generating process is based on estimates from data of a real choice
experiment with which preference for rural landscape attributes were studied. Results
indicate the D-optimal designs are promising, especially those based on Bayesian
algorithms with informative prior. However, if good a priori information is lacking,
and if there is strong uncertainty about the real data generating process - conditions
which are quite common in environmental valuation - then practitioners might be
better off with conventional fractional designs from linear models. Under mis-

specification, a design of this type produces less biased estimates than its competitors.
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1 Introduction 1

1 Introduction

This paper reports research results on the performanceiofigaexperimental designs (hence-
forth abbreviated in EDs) for logit models estimated on deden choice-experiments (hence-
forth abbreviated in CEs). The context of study is that oflifeeature on non-market valuation
of environmental goods.

In the last decade the use of discrete CEs for the purposemsiaoket valuation of envi-
ronmental goods has encountered the favour of many appliecbemental economists.

CEs are used when policy alternatives may be describednrstef attributes and the objec-
tive is to infer the value attached to the respective atteitevels. Attributes could be relevant
policy traits and include policy cost. Choice alternativestead could be different policy op-
tions and are called profiles. A CE consist of selected saludetll possible profiles. Typically,
respondents are asked to select the best alternative fretnod alternatives (the “choice set”),
and are asked to repeat this choice for several sets.

Using the set of observed discrete choices researcherstarate separate marginal values
for each attribute used in describing the policy alterreegtjwather than a unique value for the
entire policy scenario. The latter is seen as a limitatiooaftingent valuation, which unlike
CEs cannot trace out the underlying willingness to pay faheatribute. Willingness to pay
estimates are typically derived from random utility asstions and their efficiency reflect the
informativeness of the study. On the other hand, in thisiratiitibute context the efficiency of
the estimates depends crucially on the choice of experaheéesigns i.e. how attributes and
attribute levels are combined to create synthetic alteres{or profiles) and eventually choice
sets to provide maximum information on the model parameters

Yet, little work has been done to systematically evaluagesffect of the experimental design
(ED) on the efficiency of estimatésnith few exceptions, in most published papers employing
CE for the purpose of valuation one finds scant informatiothenmethodology employed to
derive the ED, or its statistical properties. The most comrset of arguments seems to be

something vaguely like:

! This motivates the proposed term of “attribute-based dtateference” methodBf).
2 Although some work on the effect of choice set creation armdesproposed measure of choice complexity has been

published 21, 19].
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“The total number of combinations implied by the full fag&drcould not be em-
ployed, so a main effects orthogonal fraction of such faateras employed. Choice

sets were then formed by blocking the resulting set of p®filéon blocks.”

Fractional factorial design is frequently used in markgtiasearch with conjoint analysis
which draws on general linear-in-the-parameters modetgre@as CEs data are analysed by
means of models highly non-linear-in-the-parametersalisof the multinomial logit type.

When estimating preference parameters from CE data thertngHinearity of the multi-
nomial logit (MNL) specification affects the efficiency peagies of the maximum likelihood
estimator. Hence, efficient EB$or MNL specifications are likely to differ in most practical
circumstances from those that are efficient in linear maittate specifications. In particular, in
a MNL context the efficiency properties of the ED will dependtbe unknown values of the
parameters, as well as the unknown model specification.

Although it may be good to raise the awareness around the thsiti EDs for linear multi-
variate models are only “surrogates” for proper EDs suédibt the MNL context of analysis,
one must consider why this is a dominant stance in the priofes®ne reason might be that the
cost of implementing MNL-specific algorithms to derive “opal” or “efficient’* EDs is too
high when compared with the practical rewards it brings eahalysis. More empirical inves-
tigations of the type conducted by Carlsson and Martins$8hifi a health economics context
are necessary to evaluate the rewards of efficient desigmofelinear-in-the-parameter mod-
els. In as much as possible these investigations shouldilbesthto the state of practice in
environmental valuation, which is quite different from tihahealth economic3.This is what
we set out to achieve with this paper. In doing so we also elxtie& investigation to Bayesian

designs which allow the researcher to account for unceytaimout thea-priori knowledge on

3 The concept ofD-optimality (and sometimesi-optimality) has dominated the design literature for ceaéxperiments.
However, when the objective is choice prediction, rath@ntinference, then other optimality criteria, suchGasand V-

optimality, are more usefuBBp).
4 Kuhfeld et al. [42] Blemier et al. [7] suggest that it is often more appropriate to disclissfficient designs, rather than

D-optimal ones, although the prevailing terminology in tleddiseems to be abo-optimality.
® For example, health economists are basically concernddanitivate good: health status, while environmental ecastsm

are concerned with public goods. A review of the studies mtheeconomics reveals that choice sets are often offenihg o
two alternatives to respondents, while in environmentahemics it is more frequent the format including two expenntally

designed alternatives plus the status-quo (zero-option).
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the parameter values.

After reviewing recent advances in ED for logit models, #&rsis to reason that the current
approach of the profession towards ED is “improvable”. Heosvethe gains affordable from
such improvement need further investigation. This paptemnitls to contribute to the existing
literature by exploring the empirical performance of a nemtf recently proposed approaches
to construct designs for discrete choice experiments. fvestigation is conducted by means
of Monte Carlo experiments designed to focus on the finitepdasize properties of frequently
employed estimators for value derivation in environmewddliation.

In section2 we provide a summary of the evolution of the knowledge ongtesbnstruc-
tion for CE. In sectior3 we quickly revise the use of design construction technignebke
environmental economics literature of CEs for the purpdseatuation. The methodology of
our empirical investigation is explained in sectignwhile in sectiorb we present and discuss

the results. We draw our conclusions in section

2 What do we know about design construction for MNL?

A number of significant theoretical and empirical developtadnave taken place in the field of
ED in recent years, and in this paper we draw heavily on thegebB, 62, 63, 64, 37, 14, 55,
40, 38, 15].

Before describing our contribution we briefly sketch sonmeeng significant research devel-
opments in this area.

The notion of describing a good on the basis of its attribuas faorn out of the theoretical
approach of Lancasted 8] and [44]. It was then readily employed in marketing by Green and
Rao R6] who proposeconjoint analysis as a tool to model consumer’s preference.

ED techniques were first introduced in multi-attribute etigbreference method for market-
ing by Louviere and Woodworthdp] and Louviere and HenshedT], who used the conven-
tional factorial design developed mostly for the statedtenalysis of treatment effects in agri-
cultural and biological experiments, to derive and prediatices or market shares. Through
this approach they identify a set of “profiles” with well-kmp statistical properties for general

linear models. These profiles are basically synthetic gdedsribed on the basis of selected at-
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tributes whose levels are arranged in an orthogonal fashithren profiles are too numerous for
evaluation in a single choice context they are divided intmanageable” series of choice sets
using different blocking techniques. This procedure gui@es that the attributes of the design
are statistically independent (i.e., uncorrelated). Qgtmnality between the design attributes
represented the foremost criteria in the generation psookfsactional factorial designs.

Later, some modifications to this basic approach were broalgbut by the necessity of
making profiles to be “realistic” and “congruent” so thathmgjonality was no longer seen as
a necessary property [see als on the effects of lack of orthogonality on ED efficiency, and
how this can easily come about even when orthogonal desigresaployed], and hence a good
ED may be non-orthogonal in the attribute levels and reghieenvestigation of mixed effects
and selected attribute interactions (therefore in mansteacases main-effects only may not
be deemed adequate, as showrdig]).

Non-orthogonal designs can be optimized for linear muliata models and guarantee to
maximize the amount of information obtained from a desighis-ts to say that they ar®-
optimal®—but why have these EDs (in which the response variable isreoous) been used in
designing CEs (where the response is discrete and a highNimear specification is assumed
to generate response probabilities)? The answer is givehéogssumption that “an efficient
design for linear models is also a good design for MNL for dige choice response?2].
Corroborating evidence of this is provided by Lazari and énsdn 5] and Kuhfeldet al. [42].
More recently Lusk and Norwoodt§] studied the small-sample performance of commonly
employedD-efficient EDs for linear-in-the-parameters models in tbatext of logit models
for choice-modelling. By appealing to these empirical lssone may conveniently ignore the
necessity of deriving design for non-linear model whereiagsions on the unknown parameter
vector (3) is necessary.

The effects of assigning the experimentally designedradtares to individual choice-sets

® Such linearly optimal designs can be obtained by specifitvené such as SPSS, MINITAB Design Ease. The most
comprehensive algorithms for choice design we know of aosdhn the free macro MktEx (pronounced “Mark Tex” and
requiring base SAS, SAS/STAT, SAS/IML, an SAS/Q@Y,[41], while CBC also provides choice designs, but only guided

towards balancedness.
" Typically, in non-linear model the information matrix (aheénce the statistical efficiency of experimental desigrg is

function of the (unknown) vector of the true models parameteequivalently, the true choice probabilities.
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were investigated by Buncdt al. [13] who—although restrictively assuming = 0, thereby
reducing again thé&-optimality problem (efficiency maximization) to a lineaioplem R7]—
did approach the issue of choice sets construction by pnogdise object-based andattribute-
based strategies, which we employ later for one of our designs uodeparison in SectioA.
Because of thg = 0 assumption such designs take the namBg@bptimal or “utility-neutral”.
They satisfy the properties ofthogonality, minimum overlapping, andbalanced levels. Such
properties, along with that dfalanced utility are described in34] who consider these to be
essential features in the derivation of efficient EDs.

Later on, Huber and Zwerin84] broke away from thgs = 0 assumption, and championed
the D,-optimality criterion, wherg stands for a-priori” information ong. They demonstrated
how restrictive it can be to assumke= 0 in terms of efficiency loss, and demonstrated that
including pre-test results into the development of effitiE® may improve efficiency up to
fifty percent.

Their strategy to obtain &,-optimal ED is to start from &)-optimal design as described
in [13] and expanded upon by Burgess and Str&4f and then improve its efficiency by means
of heuristic algorithms. Not only is the resulting ED mor&aént under the corre@-priori
information, but it is also robust to some mis-specificatidhis worth noting that this is a local
optimum because it is based on a given vector of parameteesal

In some later work 3] it is observed that there exists uncertainty aboutatpeiori infor-
mation on parameter valugsand hence such uncertainty should be accounted for in the ED
construction. They propose a hierarchical Bayesian apprbased on the estimatesfrom
some pilot study, used to derive a fidaJ-optimal design using Bayes’ principle. Such Bayesian
ED approaches are described in Atkinson and Dodgwafnd in Chaloner and VerdinellD]
and they were also used by Sandor and Weslglfor MNL specifications by using and mod-
ifying the empirical algorithms proposed by Huber and ZwarB4]. This design violates the
property of balanced utility but it produces more efficieasidns. However, all these Bayesian
designs are najlobally optimal because they are derived from a search that imprgyv@s an
initial fractional design, rather than a search on a fultdaal.

Recent work by Burgess and Street have tackled the issuensfroation of more general
designs, such a$¥], [14], [63] and [15] but they are limited to the case 6f= 0.
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An approach to derive efficient EDs unconstrained bythe 0 hypothesis is illustrated in
[38], in which the approach by Zweriret al. [67] is extended and &®,-optimal ED is obtained
by using a weakly-informatifg(uniform) prior distribution of3.

A short summary of the evolution of ED research is reportehiniel. Notice that although
in recent years the theoretical research work on efficientcBstruction for non-linear logit
models has intensified [see al&d, 25, for more theoretical results], it still remains mostly
anchored to the basic MNL model, whereas much of the cuttigg empirical research is based
on mixed logit models of some kind. For logit models with gonbus mixing of parameters
we found only two applied study concerning ED: by Sandor areti®V 8 and by Blemier
et al. [8]. We found no study addressing the issue in the context defmixing (latent class
models).

On the other hand, there are still few empirical evaluatimfrtbe different ways of deriving
efficient EDs for multinomial logit models in the various tislof applications in economics,
with the exception of18] in health economics an®¥§] in transportation.

In particular, Carlsson and Martinssdl] use a set of Monte Carlo experiments to inves-
tigate the empirical performance of four EDs (orthogosaifted, D,-optimal andD,-optimal)
for pair-wise CE—the dominant form in health economics. yrassume that the investigator
correctly specifies the data generating processa{tréori 3 and the estimation process. Under
these conditions—contrary to the results found by Lusk aodvdod @8 —they find that the
orthogonal ED produces strongly biased estimates. An apfgrworrying result considering
that this is the dominant approach in environmental econsmihey also find that thehifted
(also sometimes termexycled) [13] ED performs better than th®,-optimal for generic at-
tributes, but in general the most efficient design isfheoptimal. However, their experimental
conditions are quite restrictive, do not extend to Bayesdiesign construction and are tailored
to replicate features that are common in health economids;-according to our review—not
SO common in environmental economics.

In transportation modelling, instead, Roateal. [55 emphasized how the much sought-

after property of orthogonality may well be lost in the finatalset due to the cumulative effects

8 We prefer the term “weakly-informative to the more commory&san term “uninformative” because of the reasons spelled

out in [22] where it is noted that a uniform prior is not uninformativethis context.
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of sample non-response. Furthermore, while the trangpunthterature of experiment design
for choice modelling is often dominated by labelled expemts (one label per transportation
mode, with relative label-specific attributes), the typisiguation in environmental valuation
seem to be that of generic (unlabelled) experiments.

Finally, on the issue of sequential design Kannin8w fllustrates how one can choose
numerical attributes such as price to sequentially enswerertaximization of the information
matrix of binary and multinomial model from CE data. On thieesthand Raghavarao and Wi-
ley [51] show that with sequential design and computer aided irgerit is possible to include
interaction effects and define Pareto-optimal choice &i¢h papers are particularly interest-
ing for future applications with computer aided interviednanistration of CEs. Sequential

designs, however, are beyond the scope of this paper.

3 Areview of the state of practice in environmental economic S

The introduction of CE in environmental economics took plat the early 90’s, when the
state of research on ED was still at an embryonal stage. Hawervironmental economists
concerned with discrete choice contingent valuation wéemady aware of the importance of
ED [2, 36, 1] on efficiency of welfare estimates.

But such concern does not seem to have carried over to CEHgqwaatere the dominant
approach, as visible from Takiferemains that based on fractional factorial for main effedth
orthogonality. This is typically derived for algorithmsitable for multivariate linear models,
which is—as explained earlier—only a surrogate upon whicicimpotential improvement can
be brought by more tailored designs. But under what contsto

The prevailing scheme in environmental economics appdicatseems to be the following:
1. determination of choice attributes and their levels;

2. ex-ante determination of the number of alternatives éckioi ce set;

3. alternative profiles built on linear ED approaches;

4. assignment of the profiles so derived to choice set wiflerdit combinatorial devices.
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Generally, attributes and levels are selected on the b&asistb the objective of the study
and the information fronfiocus group. The number othoice sets each respondent is asked to
evaluate ranges from 4 to 16 and the number of alternativeadh choice set from 2to 7. The
most frequenthoice set composition (see Tabl®) is that of two alternatives and tiseatus-quo
(2+sq), where typically thesq is added to ED alternatives, rather than being built intatrerall
design efficiency.

The allocation of alternatives in the singthoice set is either randomized or follows the
method in [L3].

Only in few environmental economics studid$[52] is the criterion of maximizing the
information matrix of the MNL the guiding principle for theedvation of the ED.

On the basis of these observations we can make a few consitsra

1. The observed delay with which factorial designs tend teuiastituted withD-optimal
designs might be due to a lack of persuasion on the efficieagysglerivable from the
latter. Hence it is of interest to evaluate empirically, itypical environmental valuation

context, to how much such gains amount and how robust they are

2. Amongst the variou®-optimal designs algorithms the only ones that have beeogtegb
so far are those for MNL specifications. This is probably duhe fact that for these EDs
predefined macro are available in SAS and are well documddtdd These macros
require as input the number of attributes (and their respetdvels), of alternatives, of
choice sets, the specification for indirect utility, and aeggi of thea-priori parameter

estimatess.

On the other hand, for Bayesian EDs no pre-packaged softwacedures seem to be
available and the researcher needs to code the algoritheaébr context of study, which
requires a considerable effort and time commitment. It édfore important to empiri-
cally investigate the gains in efficiency achievable witksthmore elaborate designs to be

able to assess when it is worth employing them in the praofieavironmental valuation.

3. The dominance in the environmental valuation literatifrthe 2+sq choice task format,

which as demonstrated elsewhere in the literatdB 29, e.g.] is prone to give rise to
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status-quo bias, introduces a specific issue of interesiioadmental economists. When
such bias is present it is often inadequately addressed agsrd a simple inclusion of an
alternative-specific-constant in the MNL specificati@@|[ and it requires either nested

logit cite cases or more flexible specifications.

4. Finally, an empirical investigation should also explmtech ED approach is most robust

with regards to a wrong or po@rpriori assumption about the model valuessof

4 Methods

In our empirical investigatiohwe compare four different ways of deriving an ED for discrete
CEs for the MNL specification. We report them here in orderroflgng complexity of deriva-

tion.

4.1 The shifted design

We chose to employ a shifted design rather than the most confiractional factorial orthog-
onal design (FFOD). We felt this has already been thorougb$essed by Lusk and Norwood
[48]. Furthermore, based on the results B8]| the shifted design seem to produce a better per-
formance than the FFOD, and to be just as simple to derive shititeed design was originally
proposed by13] and it is based on the implicit assumption that &griori values ofj3, = 0.
Given this assumption they consider designs for genertimodels and propose a procedure
to assign alternatives to choice sets. The work by Burged<sStneet shows how to shift so as
to obtain optimal designs.

The basic ED is derived from a FFOD. Alternatives so derivedadlocated to choice-sets
usingattribute-based strategies. Within this category we use a variant of thdislgitechnique
whereby the alternatives produced by the FFOD are used ds $&eeach choice set. This
strategy gives the possibility to use module arithmeticahishifts” the original columns of
the FFOD in such a way that all attributes take differentlefrem those in the original design.

We refer to this ED as the “shifted” design. For example, in@ase from an initial FFOD (the

° Allis necessary to replicate this study (Gauss codes, @rpetal designs, etc.) are available from the authors.
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seed) all attribute levels were shifted by one unit. Those oradjynat the highest level were set
to the lowest.

4.2 D,-optimal design

A design potentially more efficient than tkleifted one is obtainable by making useafriori
information ons and deriving a,,-optimal design through the maximization of the informatio

matrix for the design under the MNL model assumptions, wisdiven by:

oo ) ZMZX; (Ps — pspy) X, (1)

s=1

1(X, §) = (_82111L(ﬂ)) <

wheres denotes choice-situationX, = [z1s,...,2,s]' denotes the choice attribute matrix,
pPs = [p1s,---,pss) denotes the vector of the choice probabilities for fHealternative and
P, = diagps, . . . , pss] with zero off diagonal elements ampd, = e#Vi (327 erVi)=110

A widely accepted42, 57] scalar measure of efficiency in the context of EDs for models

non-linear-in-the-parameter is tti&criterion, which is defined as:

D-criterion= {det (I(3)"") }l/k , 2)

wherek is the number of attributes. We employed the modified Fedalgorithm proposed by
[67] to find the arrangement of the levels in the various attebum X such that theD-criterion
is minimized when3 = /,. Such algorithm is available in the macr&Choi cEf f 7, in SAS
v. 9 [seed0, for details].

4.3 D,-optimal designs

While the D,-optimal design does not incorporate the uncertainty winighriably surrounds

the values of3, the D,-optimal design allows the researcher to do so.

10 As commonly done in these estimations the scale parameters normalized to 1 for identification.
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On the other hand the derivation of Bayesian designs is ctatipoally more demanding,
and perhaps explains why previous studies have negleated tHowever, they are appealing
because they show robustness to other design criteria fichwviiey are not optimizedp).

For Bayesian designs the criterion to minimize is thg which is the expected value of the

D-criterion with respect to its assumed distribution over 7 (53) :

Dy-criterion= Ej [{det 1(5)—1}1/’“} - /% {det 1(8)~}* x (8)ds. 3)

In practice this is achieved by approximating via simulatioe value ofD,: one drawsk sets
of valuesi” from thea-priori 7(3) and computes the average of the simuldfedriterion over

the R draws:

R
Dy = %Z {detI(ﬁ’")‘l}l/k. (4)

r=1
Bayesian approaches always allow one to incorporate tlennation from thea-priori distri-
bution, and in this application we compared tWg-optimal designs, one with a relatively poor
information on the prior implemented by a uniform distribat [38], and the second with a
more informative prior implemented by means of a multiv&i@ormal centered on the param-

eter estimates from the pilot study, and with variance damae matrix as estimated from the
pilot [57].

4.3.1 D,-optimal design with weakly-informative prior

The distributional assumption about the prior in this caseniform=(3) = U[—a, a]* where
—a anda are the extreme values of the levels of the choice attribidésrefer to this design

throughout the paper d3}-optimal.

4.3.2 Dy-optimal design with informative prior

We refer to this design aB;-optimal. Following 7] we assume the prior to be distributed
7(8) = N(3,9Q). While [57] derive the$ and(2 estimates on the basis of managers’ expecta-
tions, we instead derive the values from data obtained fr@itoastudy, as these are typically

available in environmental valuation studies. The pildiadaere in turn obtained on the basis
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of a fractional factorial orthogonal main effects desigmeTsearch for efficiency oveX was
implemented by using the RCS algorithm developed by Saaddi\Wedel $7, 58].

4.3.3 Criteria for comparing designs

Some synthetic criteria are available for design comparisbthese depend on the coding of
choice and on the values of tivevector. We choose to report ttie-criterion in equatior? and

the A-criterion:

1/k

A-criterion= {trace (1(3)"")} (5)

Given some choice of parameter values and of coding, therltdwsevalues the more informa-
tive the design matrix, and hence the more efficient the desig
Finally, as a measure of balancedness and choice complegitgport a common measure

of entropy for the design, computed as:

g(X,ﬁ) = pjs(Xvﬁ) ln(ij(X,ﬁ)) (6)

wherej denotes alternatives andienotes choice-situations in the design. The higher thigya
the higher the complexity of the choice set. These valuesep@ted in Tabl& and show that
when evaluated with dummy coding (the most frequent codmgnvironmental economics
for qualitative attributes) and at the parameter valuet©i@eMINL model in Table4, the most
efficient design (a-priori) is th&,-optimal and the least efficient is the;-optimal, which is

also the one associated with largest entropy.

4.4 Design of Monte Carlo experiment

To assess the difference between the alternative desighsiawe drawn inspiration from a
study about willingness to pay (WTP) for four rural landseapmponents for a government
programme designed to improve rural landscape. The foupoaents were mountain land
(ML), stonewalls (SW), farmyard tidiness (FT) and culturatitage features (CHPP). In this

CE study all the attributes where potentially improved g/ pinoposed policy with two degrees

of intensity which we succinctly describe as “some actiamd & lot of action”. In the original
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study respondents were obviously given photographic sgmtations of how such levels of
improvement would differ from each other and the status-qine interested reader is referred
to an extensive report available for this stu@g|[

Inspired by this study, our Monte Carlo experiment is desihto investigate the relative
performance of four designs under the assumption of an égédNL specification. Such
expectation is the most frequent in this context of analysis

However, after the data collection, the data may displagieawie corroborating other more
flexible specifications. In particular, we examine the cds® ftexible error component model
with alternative specific constant, which produces a cati@h structure across utilities analog
to the nested logit. This specification is motivated and erachin some detail ing0] and it
accounts for status-quo effects in a more flexible fashiam tine more commonly employed
nested logit specification.

In our CE the error component approach takes the followirsichatility form?!?:
Uler) = B%ey + ey = BXey + ¢y + Uey,s
Ulcz) = BXey + ey, = Xy + €y + Ues, (7)
U(sq) = Asc+ Xgq + Usqs

where, in our case;,., = ¢., ~ N(0,0?) are additional error components to the conventional

Gumbel-distributed.., andu.,, thereby leading to the following error covariance struetu

Cov(liey, Uey) = 02, Var(le,, lie,) = o + 726, (8)

Cov(tie,, Usq) =0, Var(ie,,ts) =7°/6, j=1,2; (9)

whereu,., = ¢, + u.;. Note that this is an analog of the nested logit model in tmseehat

it allows for correlation of utilities across alternatiieghe same nest, but different correlation
for those across nests. However, there is no IIA restricaoil theAsc captures any remaining
systematic effect on they alternative. Witho? = 0 the MNL model is obtained.

Conditional on the presence of the error comporernhe choice probability is logit, and

1 n fact, as expanded upon byd], [65], [32], more general forms than this may be empirically appealing
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the assumption above leads to the following expressiondoin enarginal choice probability:

P(i) = /ﬂ(i|6)f(5|9)d6 and, hence, substituting in:
) +oo eﬁxi-i-ai (10)

P(i) = WWOJQ)CZ& J = c1,¢2,5q,

whereg(-) is the normal density, and = 0 whenj = sq. Estimation of3 and4? is obtained
by maximum simulated likelihoodp.

The effects of the alternative designs considered are ss$&y Monte Carlo experiments.

The evaluation of the performance of the four designs in #se ©f an incorrectly assumed
data generating process (DGP) gives us the chance of exantire robustness of their perfor-
mance to the MNL specification assumagbriori, which is the one for which standard non-
linear designs are commercially available.

Short of the differences in the form of the DGP and the altitracED, the steps of the
experiment are the same. We createl, 2, 3,--- , R = 550 samples of 100, 250 and 500 ob-
servations under two different DGP: the MNL and the error porrents model with alternative

specific constant (abbreviated henceforth with KL-Asc).

1. At each replicatiom individual counterfactual responsgs are produced by identifying
the alternativej associated with the largest utility valdg g, ¢, z;), where thes values
are the true one and are reported in tahlehile the errorg are drawn from the adequate
distributions (Gumbel for MNL; Gumbe&ind Normal for the KL-Asc).

2. The counterfactua};. produced for the whole sample are used to get maximum likeli-
hood or maximum simulated likelihood estimates@pfof (. Then a series of indicators
of estimation performance are computed. For the sake of aosgns across models—
and given their relevance in non-market valuation—we foenghe marginal rates of

substitutions with the money coefficient:

~

MRS, —7 = - (11)
Vr

And then we report some additional indicators.
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(a) First, we report the average values of their distributioross replications:

MRS =

==

R
ZTT,T:L'“,55O (12)
1

and the associated standard deviations.

(b) Secondly we report the mean squared error:

MSE =

==

R
d (m=7)? r=1--,550 (13)
1

wherer is the true value and, is ther*" estimated in the experiment. Everything

else equal the design with lowektS F is the one with the smallest empirical bias.

(c) The third measure considered is the average of the dbselative error:
R
RAE=1> | (7 -1)/7|. (14)

This gives a relative measure of the error, which can beyeaspped into percent

of error of the “true” marginaWTP for the attribute.

(d) Finally, as a measure of efficiency we count the perceMRE values falling within

a 5% interval of the true value:
R
Toos =5 _I(7 €747 x0.05). (15)

where/(-) is an indicator function. This gives an idea of the empirgfitiency of

each design.

5 Monte Carlo Results

A large amount of information is produced by the experimemd here we focus only on the
estimation of the coefficient for the attribute that showeghbst implicit value in the original
study*? [see Table n.4 and 59). This attribute was expressed at two levels of policy actio

“some” (ML_some) and “a lot of” (MLalot) and concerned the visual aspect of mountainous

12 Qualitatively similar results were obtained for the otheefficients.
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rural land (ML). Table$ and6 display the results from the empirical distributions of MBS

and illustrate the sensitivity of these to the four diffdrdasigns.

5.1 Correct specification and correct design information

Table5 present the results for “the best of the worlds” in which tHeR)thea-priori distribu-
tions of parameters and the specification used in the estimate all the “correct” ones.

Observing the values for the efficiency indicatdys;; and A/SE one can detect how the
D;-optimal design is the most efficient at all sample sizes. ¥meeted, efficiency increases
with sample size. Similar conclusions can be derived froentilues ofRAE. However, the
liner shifted design at small sample sizé&= 100 gives a similar performance, and certainly
superior to that of théF-optimal design.

A graphical illustration of what happens at large samples@® = 500) is reported in Fig-
ure1l where we show the kernel-smoothé&{ dlistributions of M RSy, for all four designs.
Notice that while theD;-optimal design is centered on the true value, it shows agé&ovari-
ability than the other designs. THe,-optimal and theD;-optimal respectively underestimate
and overestimate by very little, while tishifted design produces significant overestimates at
this sample size.

Analog conclusions can be drawn from an inspection of Figlyrevhere we report the
absolute relative errotHAE),1,,,). Suppose a decision rule was to be incorrectly taken if the
relative absolute error is larger than 20 or 30%. From theé ipléigure 2 it is apparent that
the umber of cases in which this would occur is highest fowstiited design (continuous line).
In conclusion, in this case—in which the DGP is coherent whiha-priori expectations and
estimates are derived under the correct specification—wihéést performing designs are those
built by assuming the least uncertainty around the truerpaters, that is thé,-optimal and
the D;-optimal.

Given the difficulty inherent in the computation of the latteowever, one would expect
the former (that can be obtained with the mac¥&hoi cef f ”in SAS) to be more frequently

employed, as our review has shown.
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5.2 Incorrect specification, but correct design informatio n

As a way to investigate the sensitivity of these results eodhality ofa-priori assumptions—
where fora-priori here we refer to the information available in the pre-desigd estimation
phase—we now turn our attention to the case in which the astim makes use of a mis-
specified model, but the D-efficient experimental desigescarrectly informed. The Monte
Carlo statistics for such a case are reported in Tablghere for the mis-specified model we
employ the flexible error component model with Asc for the 8Q-Asc) while the true model
is a MNL. The values show that in this case too at medilwn=£250) and large Y =500)
sample sizes the best performance is obtained bytheptimal design. The one witheakly-
informed prior (Df-optimal) is the second best performer, while the non BayeBINL design
(D,-optimal) is dominated by the one optimized for linear speations ghifted design) at
sample sizes smaller than 500.

The fact that the Bayesian (informedd weakly-informed) designs are the most robust in
the context of correct DGP prediction come across best iaroby) the kernel plots of absolute
relative error distributions in Figur®& which again refers to the large sample size scenatrio.

There is therefore evidence that as long asatmeiori design information is “good” the
Bayesian designs are robust to mis-specifications in theasbn phase; under all criteria the
shifted design is preferable to the,-optimal at small sample sizes; and that even at large

sample sizes the latter produces large errors more frelguban the shifted design (FiguB.

5.3 Correct specification, but incorrect design informatio n

What happens when—instead—t#@riori information incorporated in th®-efficient design
is “poor” and the model specification is right? Of course,emthis category falls a very large
number of cases, but as a way of exploring this instance weatefd the experiment with the
real DGP formulated as a KL-Asc and correct estimation agsioms, but with incorrect prior
(MNL) for the experimental design.

The choice of a the error component model KL-Asc is motivditgdhe fact that it allows
for a greater variance and correlation in the errors assatiaith the utilities of experimen-

tally designed alternatives than in those associated Wwéhstatus-quo alternative. This is an
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often-encountered situation in environmental valuatiwhich results in nested logit models
providing a better fit than conditional logit mode®&0]. The KL-asc provides a similar covari-
ance structure to the nested logit model with a degeneratdaorethe status-quo alternative. It
is also more flexible and has an objective function globadlyaave in the parameter space, itis
hence deemed appropriate for a Monte Carlo simulation.

For the sake of brevity we do not report the results in a taldolan,*® but the findings are
illustrated in Figured: in this instance the most robust design is the one not inddrat all, i.e.
theshifted design. The more information is built into the design indtehe higher the degree of
bias produced, even under correct specification. Of coursegeasy to anticipate these results
rationally, however, this investigation provides groundg$ome less obvious considerations.

First of all, it seems that the efficiency gains made avadéldbdm more advanced non-
linear and Bayesian-informed designs is only availableases in which the-priori design
information is goodand this outcome is robust to substantial model mis-specitioati

In the absence of good qualigypriori design information to be built into the design, re-
searchers are perhaps better off using more rudimentargrndgsven when these are only
optimized for linear models, which is exactly what the pssien has been doing, perhaps in-

advertently.

6 Conclusions

Data from discrete choice experiments for the purpose af@mnental valuation are predom-
inantly analyzed by means of highly non-linear specifigaiof the multinomial logit family.
Yet, a review of the published literature in environmentaluation discloses a prevailing use
of experimental designs produced for linear-in-the-patans, rather than for non-linear-in-
the-parameters models, without any builtaipriori information on the parameter values. We
reviewed various notions dp-efficiency in the experimental design literature focugsin de-
sign for multinomial logit assumptions, and on how these lsammproved by using-priori
information.

Then, by means of Monte Carlo experiments—and inspired bydhults and structure of

13 These are available from the authors.
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a real-world application—we explored the relative perfanoe of four alternative approaches
to derive experimental designs. The simplest design tovelésithe éhifted), and it is based
on a modification of a conventional fractional factorial maiffect orthogonal design. The
other three were specifically optimized for the highly norear multinomial logit model, and
contained various form of a-priori information on the underlying parameter values. The
D,-optimal design did not allow for uncertainty on parametaliues, while the two Bayesian
designs did, with more uncertainty for tfh&-optimal, and with the amount of information that
typically becomes available from a standard pilot study-thie form of parameter estimates
and their variance-covariance matrix—>built into th¢-optimal design.

The features of the Monte Carlo experiments (sample siz& danerating processes,
choice-set construction, etc.) were chosen so as to reflecetlity commonly faced by prac-
titioners in environmental valuation as derived from a eewof published studies.

The results from the experiment showed that efficiency gaiasavailable from the use of
BayesianD-efficient designs for non-linear-in-the-parameters n@dehese gains are substan-
tial for parameter estimates of important attributes (taolS action in our empirical study), but
much less so for parameters of less relevant attributesn@saction).

For important attributes and with go@dpriori information on the values of the unknown
parameters gains can be available at all sample sizes, &s ghthe results for thé;-optimal
design in Table$ and6.

Even by building into the design relatively poor informati@D}-optimal design) on the
parameter values, efficiency gains become attractive amhedium to large sample size¥ (>

250) but they are more significant when both:
e thea-priori information on the parameters provided by the pilot is ofdjqaality;

e and the data generating process is consistent with the spemficechosen in the estima-

tion.

However, when these conditions fail, the best performasabiained with the most “rudi-
mentary” of the designs we employed (tefted design), which is derived from the common
fractional factorial orthogonal design dominating theestaf practice. This design ignores any

information on the parameters of the true DGP.
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This result suggests that—in as mucheggiori information on parameter values has been
ignored at the stage of design construction—environmesgahomists might well not have
missed out too much in terms of efficiency gains, and evenas,las a consequence of the lag
with which they have been adopting recent advances in expetal design construction.

On the other hand, this points to an area of potentially @sééng and valuable research on
methods of design construction that do incorpoeaggiori information progressively and cu-
mulatively at different stages of the survey. This could bgasticular interest as new computer-
assisted technology becomes increasingly used in chajperenent surveys and especially
given the encouraging results that bid design updatingymed in the field of contingent valu-
ation 49, 54.

Constructing designs using adaptive techniques can be umhlal strategy in choice-
experiment surveysfl]. For example, one can systematically incorporate therimé&tion be-
coming available as the sampling progresses to derive gligduore tailored designs. The type
of information needed are the parameter estimates and/#érgnce-covariance into successive
designs. A similar suggestion was put forward by Kannirg8) for the cost attribute. On the
basis of our results we speculate that this updating shadsiply involve more attributes, such
as those that appear to become dominant, or even all of there d&l in this application. More
research on the most effective strategy to gradually irmate such information during survey
administration is needed.

Another area of potential interest may be that of derivingesimental designs based on
efficiency criteria that most directly recognize the ulttsm@urpose of attribute based valua-
tion studies. The focus on efficient estimation of monetaiyes, typically a non-linear func-
tion of parameter estimates, should be explicitly addikgs¢he measure of efficiency. This
could translate—for example—in the maximization of themfation matrix for the vector of
marginal value estimate, rather than that for the parametehe indirect utility function.

While statistical efficiency remains an important goal, enc¥search is necessary to eval-
uate whether this additional efficiency comes at too highst soterms of increased choice
complexity to respondents. This issue requires field tegtan only be partially addressed by
means of simulation tools.

Finally, given the importance that discriminating betwéehaviorally plausible and hence
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likely specifications in logit models has on estimate efficig future research should also focus
on the construction of designs able to discriminate betveeempeting specifications. Seminal
research of this kind in the context of multivariate lineavduls is already availabl&]. Future
work in this direction can allow researchers to addressshas of uncertainty about logit model

specifications from the onset into the experimental designs
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7 Tables

Authors Criterion Definition a-priori parameter, Algorithm
Lazari and Anderson, 1994 D Det (X X) - Unspecified
Kuhfeld et al., 1994 D Det (X X) Modified Fedorov
Bunchet al., 1996 D Det (X X)

Huber and Zwerina, 1996 D, Det{ Iyynp(X,3)7 1} Bo RS
Zwerinaet al., 1996 D, Det{Iynr(X,8)7 1} Bo Modified Fedorov
Sandor and Wedel, 2001 Dy E [Det{Iyni(X,8)7 '} N (8|50, X0) RSC
Sandor and Wedel, 2002 Dy E [De{Ippr(X,5)7'}] N (8|50, X0) RSC
Kanninen, 2002 D, Det{Iynr(X,8)7 1} Sequential update
Burgess and Street, 2003 D, Det{Iynr(X,8)7 1} Bo

Kuhfeld, 2004 D, Det{ Iyynp(X,3)7 1} Bp Modified Fedorov
Kesselst al., 2004 Dy E [Det{Iyni(X,B) ] BU[-1,1]g Modified Fedorov

Tab. 1: Approaches to experimental design for discrete choicerarpats.
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Authors Number Choice task Choice tasks Experimental Model Sampled
and paper of Attributes | Alternatives | per respondent Design Specification respondents
Boxall et al., 1996 6 24 sq 16 - MNL 271
(EE) (4422)
Hanleyet al., 1998 4 2+ sq 4 - MNL 181
(ERE) (2%
Rolfe et al., 2000 7 2+ sq 16 - MNL 105
(EE) (8149)
Carlsson and Martinsson), 3 2 14 D-optimal EVHL 350
2001 (JEEM) (3%) Zwerinaet al., 1996
Boxall and Adamowicz, 5 5+ sq 8 Orthogonal main effects LC 620
2002 (ERE) (4%) RPL
Blameyet al., 2002 6 2+ sq 4/8 MNL NL 480
(ERE) (443151 441 Fractional factorial LC 620
DeShazo and Fermo, 4/9 2/7 - Factorial orthogonal | Heteroskedastic| 1800/2100
2002(JEEM) randomised MNL
Seelensminde, 2002 3/4 2 9 Fractional factorial Binary 2568
(ERE) orthogonal Logit
Hanleyet al., 2002 6 2+ sq 4/8 Fractional factorial MNL NL 267
(ERE) (442161
Foster and Mourato, 5 2+ sq Fractional factorial MNL RPL 290
2003 (ERE) (SPEED software)
Horne and Petajisto, 5 2+ sq 4/8 Fractional factorial MNL 1296
2003 (LE) (4%21)
Scarpeet al., 2003 5 2+ sq 6 Fractional factorial MNL+Heterosk. 300
(EE) (332241) RPL
7 Fractional factorial MNL
Carlssoret al., 2003 (253141 2+ sq 4 D-optimal RPL 5800
(EE) OPTEX (SAS)
D-optimal design MNL
Rodriguez and Leon, 6 2+ sq 8 Huber and Zwerina, RPL 350
2004 (ERE) (324222) 1996 EVHL
Wattageet al., 3 16 - Orthogonal main effects MNL 30
2005 (EE) (3%24h)
Jinetal., 3 1+ sq 8 Main effects MNL 260
2005 (EE) (2341) factorial design

MNL=Multinomial Logit, EVHL=Extreme Value HeteroscheduslL ogit, RPL=Random Parameter, NL=Nested Logit; LC= Inat€lass (JEEM)= Journal of Environmental Economics and

Management, (LE)= Land Economics, (ERE)= EnvironmentdlRasource Economics, (EE)= Ecological Economics.

Tab. 2: Selected features @hoice experiment studies in environmental economics.
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Criteria Shifted | D,-optimal Df-optimal D;-optimal

D-criterion | 0.03946| 0.03858 0.03901 0.05194
A-criterion | 1.00399| 1.02008 1.13810 1.61498
& 14.84 14.60 14.02 15.93

Tab. 3: Design comparison criteria evaluatedsaty;, and with dummy coding.

MNL KL-Asc

Tax —-0.037 (-4.46) —0.049 (—4.45)
Ml _alot 0.712 (13.84) 0.683 (10.28)
Ml_some| 0.369 ( 7.06) 0.294 ( 4.03)
S alot 0.711 (14.22)] 0.662 ( 9.15)
Ssome | 0.495 ( 8.99)] 0.413 ( 4.92)
P_alot 0.589 (11.90)] 0.540 ( 7.47)
Psome | 0.416 ( 8.01)] 0.358 ( 4.80)
A _alot 0.545 (11.00)] 0.481 ( 7.02)
A_some | 0.443 ( 8.58)] 0.370 ( 5.27)
Asc -1.420 (-6.20)
o 1.351 ( 7.73)

Asymptoticz-values in brackets.

Tab. 4: Maximum likelihood estimates of MNL model and maximum siated estimates of KL-Asc

model for the landscape study.



Assumption: Multinomial logit

DGP: Multinomial logit

Shifted design D,-optimal D{f—optimal D;-optimal

N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500
MRSy, 21.38 21.25 21.44| 1936 19.56 19.73| 19.03 19.45 19.35] 20.41 20.43 20.25

(4.25) (2.81) (1.95)| (4.78) (2.95) (2.04)| (5.47) (3.36) (2.38)| (4.18) (2.52) (1.85)
M—RSJ\/ILPM 10.56 10.10 10.36| 8.70 8.88 8.64 | 1050 10.02 10.03] 10.89 10.35 10.08

(4.36) (2.86) (1.99)| (4.53) (2.85) (2.06)| (5.12) (3.21) (2.27)| (4.37) (2.96) (2.07)
M—SEMLGM 2212 11.49 8.12| 22.79 8.72 430| 29.93 11.28 5.64| 18.60 7.48 4.21
M—SEMLW, 19.28 8.15 4.06 | 22.18 9.40 6.13 | 26.40 10.29 5.21| 19.81 8.85 4.26
WMLGM 0.19 0.14 0.12 | 0.20 0.12 0.09| 0.22 0.14 0.10 | 0.18 0.11 0.08
WMLW- 0.35 0.23 0.16 | 0.38 0.24 0.20 | 0.40 0.26 0.18 | 0.36 0.23 0.17
T(005.0L,,,) | 16 21 21 15 27 36 13 23 29 18 30 37
T (0.05.0 Ly 8 14 21 8 13 16 8 14 21 8 15 18

TueWTP: M RSayp,,,, = 1935 MESap,,, = 10.02

Tab. 5: Summary statistics from Monte Carlo experiment on data fild&P MNL and estimates from MNL specification.

sa|qelL L

0€



DGP: Multinomial logit

Assumption: Kernel Logit-Asc

Shifted design D,-optimal D¥-optimal D;-optimal
N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500 N=100 N=250 N=500

23.04 2246 2258 2351 22,79 2229 19.54 19.85 19.71| 21.52 2125 21.05
(5.33) (3.22) (2.31)| (6.61) (4.14) (2.89) (6.89) (4.10) (2.79)| (4.79) (2.84) (2.07)
MRSy, | 11.95 1119 11.43| 11.41 11.01 10.34| 10.39 10.07 10.41] 11.39 10.92 10.82
(5.48) (3.31) (2.27)| (6.05) (3.59) (2.58)| (6.44) (3.89) (2.65)| (5.61) (3.62) (2.52)

MRSy,

alot

MSEyz,,, | 41.96 2003 1574/ 60.90 2897 16.94| 4750 17.07 7.89| 27.60 11.68  7.16
MSEuy,,.. | 3371 1229 7.11| 3848 1386 7.77| 4148 1513 7.18| 33.30 1389 7.01

RAEwz,, | 027 019 018| 032 022 017| 028 017 012| 022 014 011
RAEup.,. | 046 028 022| 048 030 022| 049 030 021| 046 029 021
ToosMLy,) | 11 17 12 8 15 17 | 11 19 26 | 15 22 27
L0050 Lume) | 8 10 14 8 9 13 9 12 14 8 10 12

True WTP: MRSy p,,, , =19.35 MRSy, = 10.02

Tab. 6: Summary statistics from Monte Carlo experiment on data fild&P MNL and estimates from KL-Asc specification.
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Fig. 1. DGP MNL and estimation MNLkernel-smoothed distribution (optimal bandwidth) of the MRS
estimates of landscape attribute Mountain Ladd. ;.
Continous lineshifted design,
Dashed line:D,-optimal design,
Dotted line: D -optimal design,

Dashed and dotted ling?;-optimal design.
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Fig. 2: DGP MNL and estimation MNLkernel-smoothed distribution (optimal bandwidth) of the abso-
lute relative error of landscape attribute Mountain Ladd. ;.
Continous lineshifted design,
Dashed line:D,-optimal design,
Dotted line: D-optimal design,

Dashed and dotted ling?;-optimal design.
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Fig. 3: DGP MNL and estimation KL-Asc, designed obtained under MMNiswaptions: kernel-
smoothed distribution (optimal bandwidth) of the absolute relataeor of landscape attribute
Mountain LandM L.

Continous lineshifted design,
Dashed line:D,-optimal design,
Dotted Iine:DZ’j—optimal design,

Dashed and dotted ling?;-optimal design.
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Fig. 4: DGP KL-Asc and estimation KL-Asc, designed obtained undéilLMassumptions: kernel-
smoothed distribution (optimal bandwidth) of the absolute relataeor of landscape attribute
Mountain LandM L.

Continous lineshifted design,
Dashed line:D,-optimal design,
Dotted Iine:DZ’j—optimal design,

Dashed and dotted ling?;-optimal design.





