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Abstract

This study investigates the non-market value ofliviersity enhancement in New
Zealand’s planted forests using the stated choiperanents (CE) approach. This
study focuses on two issues. One issue is poliey@ted where we estimate the
non-market value of biodiversity enhancement aeddtterminants of this value.
The other issue is about the neutrality of majgregsxmental design criteria used
in CE. Specifically, we examine the impact of usitiferent criteria on attribute

non-attendance, choice variability, choice detersnmand learning.

To estimate the non-market value of biodiversitiga@rcement, a random
parameters logit model with error components igluseanalyse choice data
collected from 209 respondents across New ZealHmel panel nature of the
choice data set is exploited to calculate the matgvillingness-to-pay (WTP) for
environmental attributes of each respondent. Panelom-effects regression
models are subsequently employed to determineattierks that influence
individual-specific WTP values. Results suggest New Zealand taxpayers
would be willing to pay $26.5 million per year fiive years for a proposed
biodiversity enhancement programme. Random effegiession analysis suggest
that respondents living close to large plantedsisr@.e., less than 10 kilometres

away) would pay more for the programme.

To study whether the selection of experimentaigtesriterion affects
attribute non-attendance and choice variability analyse a balanced sample
with split designs. The balanced sample is compo§&809 choice observations
equally distributed across three experimental dhessigamely: orthogonal,

Bayesian D-efficient and optimal orthogonal. Restidm latent class logit



analysis suggest that tasks derived from the Bagd3iefficient design (BDD)
criterion are more attended than those derived fsaimogonal and optimal
orthogonal designs. Heteroskedastic logit analysigates that, unlike the two
other designs, higher choice task complexity (aasueed by entropy proxies) in
the BDD does not increase choice variability opaegdents. This is indicated by
the absence of a significant increase in the vaeari the Gumbel error in the
choice data collected using BDD unlike the datdectéd using the two other

criteria.

To study whether the three experimental designg imalerms of choice
determinism and task order effects, a separatgsisalf the balanced data set
using heteroskedastic logit models is undertakesuRs show that higher levels
of choice task complexity (as measured by attriloigpersion proxies) in BDD
contribute to increasing choice determinism of oegjents but not in the
orthogonal design. Choice data collected using BlDBice tasks exhibit a steady
learning effect, unlike the other designs whicmadb exhibit any form of

continuous learning.

We conclude that the BDD criterion provides chdasks that are superior
compared to the other two design criteria. Choeta dollected using this
criterion has a higher quality as indicated by metttended choice tasks, lower
choice variability and a pattern of continuous ihéag. These results point to a
higher behavioural efficiency of respondents inleating complex choice tasks.
However, these results might be specific to thaashdata collected in this
current study. We suggest that future studies shiomther investigate the

impacts of different experimental designs to vetlifg findings of this study.
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Chapter 1: Introduction

1.1 Overview

Biodiversity conservation is essential to humarsiexice (Pimentel, et al., 1992;
Folke, et al., 1996). Biodiversity services prowdsy planted forests (e.g. habitat
provision to threatened native species) have gamedasing ecological
importance (Carnus et al., 2006; FAO, 2010; Humgtesl., 2003) and have been
found to have a high economic value (Scarpa, 2B@8jey et al., 2002; Bienabe
and Hearne, 2006). In the case of New Zealandywdiin policy makers are keen
to include biodiversity values into forest managatn&lentifying the
management options that would provide the greaiediversity benefit to

society remains a big challenge (Maunder, 2008is iBhbecause the value that
New Zealanders place on biodiversity enhancemepliainted forests remains
unclear and therefore unlikely to be included iigyodecision making. However,
with the development of economic valuation techagj(i.e. Choice Experiment),
complex biodiversity values can be estimated. Gh&ixperiment (CE) can be
used to investigate the preferences and willingbegmy values of an individual
on the changes in biodiversity outcomes in plafbeglsts. A crucial component
in CE is the selection of a criterion to constriing Experimental Design (ED) of
the choice questions in a survey instrument. EBrseto the systematic
arrangement of the changes in the levels of ategaf an environmental good
presented to respondents in a series of choicatisitis called choice sets (or
choice tasks). In generating the ED, the analysitreelect what statistical

properties the design should exhibit, such as gdhality or statistical efficiency.

1



As there are a number of ED criteria (e.g., ortim@jaesign criterion, D-efficient
design criterion, utility-balanced design critendhat have been developed for
CE, the choice analyst is faced with the decistosdlect a design criterion that
would support his/her objective. For example, aalyst who would like to
minimize standard errors of coefficients estimatesid likely choose a D-
efficient design, whilst an analyst who aims tograte a design with alternatives
that have equally likely chance of being selectedld elect to have a utility-

balanced design.

Despite the fact that different design criteria@og being used in CE,
many CE studies to date assume that the seledtitve &D criterion is neutral to
the estimated parameters (e.g., coefficients aalg garameters). In other words,
many recent CE studies continue to assume thatréift design criteria would
likely have the same effect on the parameter estisnd his may be because many
choice analysts assume that the parameter estiar@®esainly influenced by the
preferences of respondents. However, given thrdift ED criteria have
different objectives (e.g., higher statistical @tncy, utility balance) they could
also have a systematic effect on the choice taskergted that could influence the
mean and variance of the estimated parameteftssisystematic effect existed

and was not taken into account, parameter estimadakl likely be biased.

As described above, it is important to identify best options for
managing biodiversity in planted forests so asetiodfit society. This is done here
by examining the preference and values of a saofgdetential biodiversity
enhancement beneficiaries using CE. In using CE,important to investigate

whether the selection of the experimental desigeravn would be likely to



influence the estimation of the parameters. Thesighaims to answer two general

questions:

(1) Would New Zealanders be willing to pay for adiversity
enhancement programme in the country’s plantegte?df so,

how much would this amount be?

(2) Are the most commonly employed selection datéor
experimental design neutral to parameter estimates®, how
does one criterion differ from the other in termi$ehavioural

efficiency?

The questions above are addressed by studyingéfergnces and
willingness-to-pay (WTP) values of New Zealandestg the CE exercise that
employed different experimental design criteriatviBeen November 2009 and
August 2010, 209 respondents sampled across Nelardeeompleted a choice
experiment questionnaire through phone-mail suareyphone-internet survey.
The choice questions collected data on statednerafes for a proposed
biodiversity enhancement programme in New Zealapl#sted forests. WTP

estimates were then derived from random utility eisestimated on such data.

To estimate the WTP for a biodiversity programmag #ims to enhance
the habitat for threatened native species in ptaftieests, random parameters
logit models are used to analyse thié sampleof data. Within it five different
experimental designs are used. The full sampl88ssurvey respondents each
of whom provided preferred options from nine chdasks. The random
parameters logit model with error components wasl s provide estimates that

were used to simulate the median and variance VBT Baich choice attribute.



Aggregated WTP values under different scenariacsy@atting for different
sources of bias (e.g., hypothetical, aggregatiasds), are also estimated to show

the national value of the proposed biodiversityamd@ment programme.

To study whether the selection of an experimergalgh criterion is
neutral, we analyselalanced sampleith split designs. The balanced sample is
a subset of the full sample mentioned above. Theidacomposed of 1509 choice
observations equally distributed across three éxytal designs, obtained from
the full factorial using three separate criterighogonality, Bayesian D-
efficiency and optimised orthogonality. Heterosksttalogit models are used to
examine the effect of each design on the choicawetr of respondents. We
explore whether choice variability of respondemtsatfected differently by
higher complexity levels of choice tasks deriveahirthe three criteria. We
employ two methods in examining the effect of clbd&sk complexity. The first
method is based antropyas a measure of choice task complexity which is
proposed by Swait and Adamowicz (2001a). The seowegttiod is based on
another choice task specific measure that weattibute dispersionwhichis
described in DeShazo and Fermo (2002). By als@ubim Heteroskedastic logit
approach, we examine whether the ED criteria h#fferent learning effects
along the sequence of choices made by each respohdaddition to choice
complexity and learning effects, we also compaesctiinee design criteria in terms
of attribute non-attendance as described in Saatrph (2009, 2010) where we

employ latent class logit models in the analysis.

Results in Chapter 3 suggest that the proposeadveisity enhancement
programme is highly valued by New Zealand taxpay@ts calculations show

that taxpayers had an aggregate WTP value of NA$Ri®n per year for the
4



proposed five-year programme. The calculation efafggregate WTP value
accounts for different sources of biases whichudelaggregation and

hypothetical biases.

Findings on the comparison of different ED criteara presented in
Chapters 4 and 5. In Chapter 4, we report thabater non-attendance is found to
be different across designs when using an approaséd on latent classes, with
choice tasks derived from the Bayesian D-efficaedign (BDD) being more
attended to relative to the other two designs. I8nhgi using the heteroskedastic
logit models, we find that higher levels of chotask complexity affect variance
heterogeneity differently across designs. The oiutlesign entropy affecting error
variance fails to be rejected only by the BDD, whis hence deemed to be
comparatively superior. In Chapter 5, we reportfdings that different ED
criteria vary in terms of the effect of attributispersion and learning on the scale
factor. We conclude that in our case BDD providebdviourally more efficient
choice tasks. We also recommend that further iiyesdn should be done on the

impacts of different ED criteria on behaviourali@éncy.

1.2 Background and research questions

New Zealand’s 1.8 million ha of planted forestsagot for approximately 7% of
the country’s land area. These forests consistlgnafrexotic trees such as radiata
pine, Douglas-fir and eucalyptus. They provide tetlfor at least 118 threatened
native animals and plants (Pawson, et al., 20106¢lBarhoff, et al., 2008). Studies
also suggest that habitat for threatened nativeispean be enhanced through
forest management (Humpreys et al., 2003; Carnad,, 2006; Seaton, et al.,

5



2010; Maunder et al., 2005). While there is evidetnat a typical New Zealander
would be willing to pay to support a biodiversityrncement programme on
private land by planting more native trees (Yao Kadal, 2010), it is not known
if this also holds for biodiversity in privately owd exotic planted forests. This

motivates us to ask the first research questidR@t:

RQ1. Would New Zealanders be willing to pay fodbiersity enhancement

in planted forests, and if so, approximately howcihiu

The answer to this question is the subject in Glvapof this thesis, where
we investigate whether a typical New Zealand tagpayould be willing to

financially support a proposed biodiversity enhaneet programme.

There are several criteria for generating a cheiqeerimental design.
Three design criteria are examined in this thddis. first is the orthogonality
criterion (the most frequently employed designeciin used in the beginning of
the CE literature) which constrains the correlat@tween attribute levels to zero.
This criterion is also efficient when the modeb®used in the data analysis is the
multivariate linear regression model. The secoiitérion is the optimised
orthogonality criterion, which selects the desigmf the various orthogonal
designs available assuming that a non-linear regnesnodel (e.g., logit) will be
used in analysing the data collected, and hencsdbas the properties of this
model's asymptotic variance covariance matrix. \&hle orthogonal design
criterion does not make any assumption on the woeft estimates, the optimal
orthogonal criteria generate designs with the agsiom that the model
coefficient estimates are all zero, according ®dpproach by Street and Burgess

(2005). Thus, the two design criteria basicallyuass that the contribution to the

6



indirect utility of the choice attributes is zele therefore classify orthogonal
and optimal orthogonal designs to belong to theigmalledutility neutral
designsThe third criterion is the Bayesian D-efficiencyterion, which assumes
that the coefficient estimates are non-zeroes.efegate an experimental design,
the Bayesian D-efficiency criterion requires someranformation about the
mean and distribution of coefficient values to breated, which may come
either from a pilot survey, from related previotisdy, or from some experts’

opinions.

In a statistical sense, using a variety of indicgtexperimental designs
derived by means of the Bayesian efficiency catetave been proven to
outperform choice experimental designs that didtalke into account prior
information (Kessels et al., 2006; Bliemer and R@84.1; Bliemer and Rose,
2009; Vermuelen et al., 2011; Scarpa et al., 2086yvever, in a behavioural
sense, we still have very limited empirical studeéeshow how Bayesian efficient

designs compare with utility neutral designs.

A recent study by Louviere et al. (2008) suggdsas EDs with “higher
statistical efficiency” resulted in less consistenbice responses. Louviere et al.
compared 44 different designs (40 optimal orthogand 4 adaptive) with
varying levels of efficiency following the “D-effiency” measure described in
Street and Burgess (2007). Their results suggastésponses to choice tasks
were systematically less consistent as statistif@iency increased. However, in
the study by Louviere, designs that were comparee wot derived from usirey

priori information on coefficient values.



Swait and Adamowicz (2001a, 2001b) and DeShazd-antio (2002)
modelled the effect of choice task complexity onich variability by examining
the effect on the variance of the error componauitthese studies both used
choice observations derived from choice tasks wattying numbers of
alternatives and attribute levels that were allegated from designs derived using

the orthogonal criterion.

Hess et al. (2008) compared three different desigisogonal with
random blocking, orthogonal with blocking and a fileeent design. Their
findings indicate that the D-efficient design penfed only slightly better (in
terms of behavioural efficiency) than the orthodatesign with blocking.
Although the D-efficient design usedpriori information, the design treated the
priori estimates with perfect certainty. In contrast, Blagesian D-efficiency
criterion accounts for the uncertainty of the giyeior distribution of parameters

(see Ferrini and Scarpa, 2007).

Huber and Zwerina (1996) suggest that the utilalahced design
increases statistical efficiency of the design tmatld lead to a reduction in the
theoretically minimum number of respondents neddeaxbtimate a basic
conditional logit model. To investigate the impatutility-balanced design on
choice behaviour, Viney et al. (2005) empiricaltyestigated three different
designs — utility-balanced, orthogonal, and randi@signs. Their results suggest
that choice tasks derived from utility-balancedigles yielded data with greater
inconsistency or random variability in responsespared to the other two

designs.



While the abovementioned studies have comparebdehavioural impacts
of different experimental design criteria, nongrefm compared the behavioural
effects of two particular experimental design crédi.e.,with Bayesian a priori
versuswithout a prioriinformation) on choice behaviour. This is probatblg
first study to compare the impacts of these twaeexpental design criteria on

different aspects of choice behaviour.

Going back to the study of Viney et al. (2005) asntroned above, where
they found greater random variability of utilitylaaced design, a possible cause
of greater variability is greater choice complexByvait and Adamowicz (2001a)
suggest that the complexity of a choice task carepeesented by entropy.
Entropy is a choice task specific measure of corigylevhere the theoretically
maximum entropy is achieved when each of the thlteenatives in a choice task
had an equally likely chance of being selectedhdice task with alternatives that
have an equally likely chance of being selectedditasnatives that are identical
in utility terms. Given that different experimentisign criteria would lead to
different systematic arrangements of attributelirea choice task, this might
contribute to differences in entropy levels betwd#ferent designs. This study

aims to answer the second set of research questions

RQ2. Daodifferent experimental designs differ in entropyels? If so,
would a higher entropy level have the same effleachwice variability across

designs?

Scarpa et al. (2009, 2010) provide evidence thatgSgondents may tend
not to process all the attributes that are useaituiirate the choice alternatives.

Their results suggest that accounting for attrimae-attendance in choice
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analysis results in significant improvement in miggleodness of fit and higher
efficiency of coefficient estimates. As differergsigns would likely have

different choice tasks generated, we ask the #ataf research questions:

RQ3. Doegshe selection of experimental design criterionuafice
attribute non-attendance? If so, what are the ¢ffen the parameter estimates

and WTP values?

DeShazo and Fermo (2002) have shown two charaatereg choice tasks
that contribute to choice complexity giving a resgent greater cognitive burden
in selecting the preferred alternative in a chaé&sk. These characteristics are the
average standard deviation between attribute leaelsss alternatives in a choice
task and the dispersion of standard deviationtabate levels across alternatives
in a choice task. We collectively call these twaick task specific characteristics
attribute dispersionThe higher the attribute dispersion, the greider
complexity; this corresponds to providing greategrative burden to respondents.
It is important to note that attribute dispersisranother measure of choice task
complexity and the calculation of this measurefi®ent to the entropy measure
described in Swait and Adamowicz (2001a). This $gadhe fourth research

guestion:

RQA4. Is there a relationship between the variarfahe attributes and the

Gumbel error variance?

Several CE studies have shown that the orderinfp@te tasks influences
the estimation of indirect marginal utility and ttee Gumbel error variance
(Caussade et al., 2005; Holmes and Boyle, 2005¢eaNVaerden et al., 2006;

Kjeer et al., 2006; Day and Pinto-Prades, 2010; &a}., 2010). To illustrate this,
10



as a respondent answers a sequence of choicesptsf( 2 ... ... , 9", the first
choice set would likely involve the highest degoééack of familiarity with the
choice context. As a respondent selects the pesfaiternatives from the second,
third and fourth choice sets, he/she would likéhg fthem easier to select than
earlier ones because of the learning effects. tefefrom the latter choice sets
(7" 8" and 9") could tend to make a respondent tired or staekferience

fatigue. This leads us to the fifth research qoesti

RQ5. Do different choice experimental design cidtgenerate sets of

choice tasks with different learning/fatigue efééct

1.3 Structure of the thesis

This thesis has five chapters. Chapter 1 (this tempmotivates the study and
provides an overview of the thesis and its ovarbjéctives. It presents the five
sets of research questions and discusses soms thatgcan be expected from
this thesis. Chapter 2 provides an overview of cheixperiments, the choice
models used for the analyses, the design efficiemegsures and the choice data

sets analysed in Chapters 3, 4 and 5.

Chapter 3 is the first main chapter which is polickentated. We present
the estimates of WTP values using the collectedcetaata set that we analysed
using logit models. This chapter also describes imohividual willingness-to-pay
values are aggregated to represent a national velis for a proposed

biodiversity enhancement programme in planted feres
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To answer research questions 2 and 3 (i.e., RQRQ4R), Chapter 4
focuses on studying impacts of experimental desajection in terms of entropy
as a complexity measure and attribute non-attermdlas@ behavioural response to
complexity. We calculate the entropy measure fehatesign and compare how
entropy levels affect choice variability acrossiges using heteroskedastic logit
models. For analysing attribute non-attendancejsedatent class logit models
where we identified the different groups of respamtd following different
attribute processing patterns based on reportegatiending behaviour. We also
calculate the WTP value for each attribute and amthe differences in WTP

values between the three design treatments.

To further investigate if the selection of critefta choice experiment
design matters, Chapter 5 presents results froexamination of the effects of
higher attribute dispersion and learning on théavene of the Gumbel error terms
across designs. Heteroskedastic logit models a@ tasexamine the differences
in attribute dispersion and learning/fatigue efemtross designs. Chapter 6
summarises the results. Policy recommendation®aralated and future

research directions are suggested.

12



Chapter 2: Methods, designs and data

This chapter starts by providing a descriptiontafice experiments and the
econometric models used in Chapters 3, 4 and lBithesis. This is followed by
the experimental designs used in this study and ¢lvaluations in terms of
statistical measures of design efficiency. We disscribe here the sampling
strategies and how well these sampling strategezs achieved. Finally, the two
types of data sets (i.e., full sample and balascédsample) used in this study are
described. This chapter provides an overview ok#heelements of the thesis and

these will be referred to in the next three chapter

2.1 Choice experiments for biodiversity valuationn planted forest
2.1.1 Overview of stated choice experiments

Stated choice experiments (CEs) are conducteckifidld of environmental
economics to obtain data on the hypothetical beha\of individuals in regard to
the changes in the provision of environmental gaod$ calculate measures of
values on the changes of attribute levels suchilisgmess-to-pay. In a CE
survey, a respondent is provided with a seriedofae tasks that leads to the
collection of a panel of choice responses. Eacliceltask contains a set of
alternatives that may include a status quo alter#vith attributes at their
current levels of provision) and hypothetical alegives (including current and
improved attribute levels) constructed from an expental design (ED). Each

alternative is described by several attributest#vance to the respondent that

! Choice experiments in environmental economicsatse called as Attribute-based methods. This
is described in Holmes and Adamowicz (2003). Fahfer details about choice experimental
design criteria, one may read Ferrini and Scarp@{2and Scarpa and Rose (2008).
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include environmental attributes and a cost fohegation in the choice task.
When a respondent selects the preferred alterndtov@ among the three
alternatives), he or she implicitly makes tradesdfétween the levels of attributes

in all the alternatives shown in a choice task.
2.1.2 The choice model

The Random Utility Maximization (RUM) model propasky McFadden (1974)
provides the standard framework for modelling theice behaviour of an
individual. Under the RUM framework, an individuataluates different
alternatives in a choice task and selects thelmateprovides the highest expected
utility level. To illustrate this, we first descalihe structure of the utility function
that has deterministic and stochastic componemsoaielled by the basic
conditional logit model. The analyst aims to esteralx K row of utility

weights or utility coefficient® for a column of vectoX of K x1 attributes for
respondeni’'s indirect utility functionV,. The estimation is based on data

showing respondents’ chosen alternative amongetefd competing
alternatives presented in choice taskor this exercise, each respondent was
presented with nine choice tasl&H9). As shown in Figure 3.2 (on page 68),
each choice task has three alternatives 3); with one representing the status
quo 60 or the current condition identified based on ekpginion and facts from
the environmental literature, while the other twe ehanged alternativea;( a,)
composed of different combinations of attributeele\generated using an

experimental design.

We represent the utility perceived by responaeinbm selecting

alternativeg in choice tasls asUy;s. Based on random utility theory, utility has
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two components: the observed indirect utilty and the unobserved error
componenty;s. Vijs Is associated with the satisfaction derived bpoasentn
from the changes in attribute levelgs represents the stochastic component of
utility that is independently and identically Extre Value Type | (or Gumbel)

distributed across the alternatives. The utilitydiion can be shown as

U njs = ans + ‘Enjs (21)

The deterministic componeWt;s is specified to be linear in parameters (i.e.,

Ve = B'X njs) whereXs is a vector of observed variables relating toratigve;.

The conditional logit probabilities can be spedifigith Gumbel error scale> O:

_ eX[.(/‘(ﬂ/ans)) ,J=1,2,3

" Sedilsx,)

(2.2)

whereP,s represents the probability that alternativéll be selected by
respondenh from the set of alternatives shown on choice tasK he values of
Xnjs are defined by the experimental design. An effitiesign is expected to
maximise the amount of information the design cgswue identify the estimates
for the vector of marginal utilitieg. The information matrix for the design
assuming a conditional logit model is defined bg mhatrix of second derivatives

of the log-likelihood function presented as

U

2 N J S o o
| (ﬂ, ans) = 07InlL = ZZZ Pnjs(xnjs - ans)(xnjs - ans) (23)
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The (g, x . ) matrix above that has a dimensionkok K represents the Fisher

Information Matrix (FIM). FIM is a measure of themaunt of information that
observable sources of utili¥s;s carry aboup where choice probabilities depend

upon.

The popularity of the conditional logit model cam ditributed to the fact
that its set of choice probabilities takes a cldeech (Train, 2009). This refers to
the simple mathematical formulation of the Jacolfiector of first derivatives of
the Log-likelihood function) and the Hessian (matf second derivatives of the
Log-likelihood function). As these two matrices &wactions of utility
coefficientsp and the experimental desi¥Rs, an experimental design that

increases the magnitude of the elements(n x . ) with respect to a baseline

design is therefore a more informative desigrs ltportant to note that the
negative of the inverse of the expected FIM isnttaximum likelihood estimator

of the asymptotic variance-covariance (AVC) mathat can be shown as

0%In L] 2.4)

AvC= (B, X,..)=[E[l (8. X, | = {W

whereln L is the log-likelihood of desigKys:

N J S

InL:ZZZYnjsln Pnjs(xnjs’ﬁ) (25)

n=1 j=1 s=1
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andYyjs represents the indicator of choice that takewv#hee of 1 if chosen or 0
otherwise. The diagonal and off-diagonal elemeh&\&C represent, respectively,
the variance and covariance of estimated coeffisgnThe smaller the elements
of AVC of the design, the more efficient the design igjo&d criterion for
choosing an efficient design is the one that mis@sithe determinant of thé&/C
matrix? An appropriate algorithm to generate and searchricefficient design
would need to generate new designs from an existdgd design matrix,
evaluate each design based on efficiency as aifunat the arrangement of
attribute levels, and identify the generated detigih hasAVC with the lowest

determinant.

2.1.3 Measures of choice experimental design effay

As theAVC matrix of a design contains many elements, it fiessds to be
transformed into a single number for a straightBmevcomparison of efficiency
between different designs. One single measure tobosaze is the determinant.
The determinant of a matrix refers to the summabiothe terms, each term
representing a product of systematically selecteshents of a square matrix. For
a square matrix to have a non-zero determinamdpossingular), it should be full
rank which implies that matrix columns are indeparticbr not collinear.
Therefore, the determinant of tA®&C matrix provides a valid measure of design
efficiency. However, as the number of matrix colufdhincreases, the
determinant also becomes larger. Thus, the detamhshould be normalised by

K. This determinant of th&VC matrix is theD,—error presented formally as

2 As AVC and FIM are inversely related, minimisifgtdeterminant of the AVC corresponds to
maximising the determinant of FIM.
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D, —error= de{avdp, ans))]/K (2.6)

Another measure of design efficiency that has leeeasionally reported in

experimental design literature is tAeerror.

trace(AVC(,B + Xojs ))
K

A-error = (2.7)

A—erroris similar to theD,—error in that it uses thAVC matrix and also accoun:t
for the number of columns. However, instead of i@meinant, it employs the
trace of theAVC matrix that only accounts for the diagonal eleraguariance)
and not off-diagonals (covariance). Not fully aceting for all the elements of
the AVC matrix might be the reason for the relatively lowmeceptance of thé—

error in the literature.

The Dy—error (also callegoint D-error or local D-optima) is not without
drawbacks. Under this measure, the valugsark treated with certainty at the
experimental design stage. This is not plausibtabee if the analyst already has
good estimates ¢, there is no need to generate an efficient desiga choice
experiments survey. Usually, the estimates afe derived from relevant previous
studies, expert opinion or from a pilot surveythis case, estimates gfwould
likely have a degree of uncertainty. This uncetiagan be accounted for by
providing adequatae priori distributions (Sandor and Wedel, 2001, 2002, 2005;
Ferrini and Scarpa, 2007). This makesBlagesian D-erroor Dy-error a more
attractive design measure because it accounthdauricertainty where an
expectation is taken over the assuragatiori distributions of. Formally,Dy,-

error can be presented as
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D, —error = _[[det(AVC(,B, Xuis NN (. 2)ds (2.8)

where the termN (u, o) tells that the values @farea priori distributed normal

with mearu and variance-covarianég Imposing a normal distribution for prigr
may indicate that reliable priori information has been used (e.g., coming from a
pilot survey). However, if priors came from lesBalgle source due to limited
availability of relevant studies or lack of resasdo do a pilot survey, a less
reliable prior assuming a uniform distribution ni@yemployed leading to

D, - error Shown below

D,, —error = j[det(Q(ﬂ,xsj))]]/kU (1,2)dB (2.9)

As D-error andA-error are measures of design efficiency, Huber and |
Zwerina (1996) have shown evidence that utilityabak contributes to improving
design efficiency particularly & priori parameter estimates are accounted for in
the construction of the design. The utility balahceterion is centred on choice
probabilities of the alternatives in a choice taSkien a choice task with three
alternatives, if these alternatives are equalkgetive to a respondent, then each
alternative gets a choice probability of 0.33, hasg to a perfectly utility
balanced choice task. If a choice task has amalige with all attributes being
more attractive (e.g., low cost, greater numbethi&atened species sighted) than
the other two alternatives, that dominating altéweawould get a choice
probability of 1.00. This is based on the assunmpti@t respondents’ utility levels
would increase monotonically with improvements mvieonmental attributes. A
choice task with a dominating alternative wouldveey easy to respond to,

however, the choice data collected would be unmédive to model parameters
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resulting in less precise estimates of parametkrser and Zwerina (1996)
indicate that if one out of three alternatives ithaice task is chosen almost all of
the time, then this leads to extreme values otthmeulative probability function.

In general, choice tasks that generate extremeapiiities (e.g., 1.0 or 0.0) are
less effective at constraining the choice modeapeters than those generating
moderate ones. To ensure that good information &xnraxercise in choice
experiments is obtained, one should minimise (&pdssible eliminate) the
occurrence of choice sets with dominant alternat(\&ieger and Green, 1991,

Huber and Zwerina, 1996).

Dominance in an experimental design can be detectedially by
examining each choice task. Alternatively, theitytiBalanced (UB) measure
proposed by Kessels et al (2004) can be used teureethe degree of dominance
in a design. In contrast to the design efficien@asures mentioned above, that
account for the AVC matrix, thdB measure focuses on the choice probabilities.

UB can be presented as

S J
Z( I:)nls]
uB=| = l’_l x100%

: (2.10)
S\

wherel represents the chosen alternative &iglthe number of choice tasks in a
design. Thi2JB measure is expressed in percentage form with @éating that
each choice task in the design has a dominanhatiee and with 100%
suggesting that every alternative in each choisk k@s an equal chance of being

selected. ChoiceMetrics (2011 p. 95) suggestsaibhsdrved utility balance
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measure of efficient designs lies between 70 tp&@ent. Viney et al. (2005)
compared empirically three different experimentsigns: orthogonal main
effects, utility-balanced, and random. Their resultlicate that although the three
experimental designs did not impact the underlypatameter estimates, the
utility-balanced design yielded greater randomalaitity in the responses. A
possible reason for the increase in variabilitylddae as a result of a higher level
of choice complexity because choosing an alteradtimm a choice task with
equally attractive alternatives would require meiffert that could lead
respondents to make different choices (Swait ana#alvicz, 2001a, 2001b).
The variability of responses can be modelled bpipaterising the scale of the
coefficients of the indirect utility function undtdre heteroskedastic logit

framework that is discussed in the next section.

2.1.4 Heteroskedastic logit model

The cumulative distribution function (cdf) of ardimidual error component of the

Conditional Logit (CL) model in Equation (2.1) che presented as

F(snj): exp(—exp(—snj/l» , —w<g <o , A>0 (2.11)

whereAd represents the scale parameter. The above cdfstsgbat the variance

of ¢ is 0° = m?/6}* (Ben Akiva and Lerman, 1995). This follows a skt o

nj
assumptions that gives rise to CL as presentedjirafion (2.2), wherg is a
scalar constant that allows scale to vary basddaiors that would likely
influence the variance of the error compone(ar the unobserved component of

utility). The conditional logit model assumes thia error variance is constant
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across individuals. However, the assumption of t@rserror variance has been
questioned in several papers (Hensher et al. 19898%jiere, 2001; Swait and
Adamowicz, 2001a; Swait and Adamowicz, 2001b DeSlzad Fermo, 2002;
Louviere et al., 2002). Accounting for scale diéfieces offers advantages which
include getting superior model fits from choice lggs where the analyst can
pool and rescale the data set (Ben Akiva and Magkd 990). Sincd cannot be

identified, the analyst should estimate the prod(}6x ) based on a reference

point (Swait and Louviere, 1993). Given that Jm? 1602 , on one hand ag
approaches infinityd approaches zero which makes the CL model allcagteal
choice probabilities for all three alternatives. tba other hand, ag approaches
zero, A approaches infinity leading to a CL model thatiots a probability of
one to the alternative that provides the highestesyatic utility (Ben-Akiva and

Lerman, 1985).

To parameterise the scale parameter, we follow Symal Adamowicz
(2001a) where we use a heteroskedastic logit ntodstcount foq factors that

would likely influence the scale parameter. Thisfarenally present as

A= ex;{i quq] (2.12)

whereg-factors may include experimental design, choigemexity, order (or

learning) effects and interaction between theswfacy_ represents an estimate

of slope shifter of the scale for th8 factor where a negative sign implies that the

factor contributes to a decrease in scale (higtrer gariance), while a positive
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sign indicates an increase in scale (lower erraamae). As we relaxed the
assumption of a constant scale parameter, we elsoed the assumption that the
Gumbel error is independent and identically disitéfol (i.i.d.)® This is because
the error variance is no longer constant as wevalito vary based og-factors
that would likely influencé.. This set up allows the simultaneous estimation of

the utility coefficients and error variance as adiion ofg-factors.

2.1.5 Latent class model with attribute non-attamca

The success in making CE methods more realistitriboited to an increase in its
use for economic valuation (Louviere et al., 2088ss and Rose, 2009). A
desirable feature of CEs is their ability to plaespondents into situations in
which they must make trade-offs among multiplalattes of alternatives.
However, as an analyst tries to make choice tasksadistic as possible—e.g. by
including the most relevant attributes that weneftaly identified from literature
reviews, focus group meetings and pre-testing—s@s@ondents may attend
only to attributes that they are most interesteand ignore the others. One reason
for attribute non-attendance (ANA) is that someoeglents may tend to reduce
cognitive effort in the evaluation of alternativ@gattending only to a subset of
attributes. The issue of ANA has been corroborft@d empirical evidence
drawn from many CE studies in the field of transpararketing and health,
environmental economics and food choice (Swait126{&nsher et al., 2005;
Hensher, 2006, 2008, 2010; Swait and Adamowicz12PR001b; Fasolo et al.,

2007; Islam et al., 2007; MciIntosh and Ryan, 2Q@2icsar and Louviere, 2006;

% The term i.i.d. implies that the variances asdediavith a component of random utility
expression describing each alternative (capturiintpe unobserved influences on choice) are
identical, and that the unobserved effects areootlated between all pairs of alternatives.
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Bruschi et al., 2010; Scarpa et al., 2011a; HenshérGreene, in press). The
presence of attribute ANA leads to the violationthad continuity axiom that
assumes fully compensatory choice behaviour, winigities that respondents
attended to all attributes in a choice task (seesHer 2006 for details of this
axiom). In essence, non-attendance to one or stnisiges results in non-
compensatory choice behaviour because despitengmpvements in the levels of
unattended attributes, they will fail to compendatehe worsening in the levels
of other attributes (Lockwood, 1996; Spash, 20@8lehsmine, 2002; Rekola,
2003). Scarpa et al (2009) present some empindgdérce showing the different
types of ANA behaviour where some respondents gphone attribute, others
ignored more than one, while a few ignored allladiies (hence made random
choices). Their results suggest that accountinglift@rent non-attending
behaviour of respondents in choice analysis camiebto a significant
improvement in model goodness of fit and more aateuestimates of parameter
values. Scarpa et al. (2009) suggest a modelleignique that allows the
grouping of respondents (up to a probability) idiiberent latent classes that

could represent groupings based on non-attendarzthin subsets of attributes.

We model ANA following the Panel Latent Class Lddibdel (PLCM)

described in Scarpa, et al. (2009). PLCM can lesented as

exp(XisBc)

2.13
| S cexp (B0 &13)

Pn(Ynlﬁc) = Ps(ill iZ' '"liSlﬁc) =

wherec represents non-attendance latent claggiagpresents the probability of
respondenh observing a set @& choicesl;,- ¢y, 5, ..y} IS @ product of logits
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S exp(XisBc)

=1 o (af) To obtain the unconditional probability of thenphof choices

of respondenn, the law of total probability is used. This issyymming up the
conditional probabilities over the finite set of migership probabilities? (c¢), of

the specified ANA classes. The unconditional praiigttan be expressed as:

exp(ay) T exp(XisBe)

2.14
L Seemplad | T gy 41

Pt = ) P(O) PalislB) =

wherea represents class-specific constants indentifiesnppsing that they sum

to zero.

In the PLCM above, ANA is operationalised by alloagiindividuals to be
classified to latent classes with utility coefficie restricted to zero for selected
attributes, while unrestricted (non-zero) attrilsusee assumed to have exactly the
same value across classes. For the current stusikaample of a latent class
would be a group of respondents who attended ortllye bird attributes (i.e.
falcon and brown kiwi) while ignoring the non-battributes (i.e. kokopu,
kakabeak and gecko). For this latent class, wet@nghe utility coefficients of
the non-bird attributes to zero while allowing thied utility coefficients to vary.
We can also include other latent classes suclclsa that attended to all
attributes and a class that ignored the statusogtion. For the class that attended
all attributes, all utility coefficients are allodi¢o vary; while for the class that
ignored the status quo option, we restrict thetyitoefficient for SQ option to be
zero. Suppose the three ANA latent classes ab@regent the most applicable
specification for our sample data, then the sta#ikfit of the model should

significantly increase (relative to the conditiotadit model) indicating the
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presence of non-attendance (suggesting that discoots preference exists). For
this exercise, to identify the most applicable nemiif latent classes and types of
latent classes (e.g., class ignoring the cosbat| class ignoring bird attributes)
we use the minimum Akaike Information Criterion (Blapproach (Swait, 1994;
Boxall and Adamowicz, 2002). AIC is one of thesafiative measures of
goodness of fit to pseud?f in non-linear regression models (e.g. conditional
logit). Under the conditional logit model, AIC ninizes—2InL + 2k wherelnL
represents the log-likelihood value dni$ the number of parameters (Kennedy,
2008). However, as AIC does not account for the lmemof choice observations
N, we elected to use the normalized AIC criterionclkttan be expressed as
AIC/N. Normalised AIC is a relative measure allowingtfoe comparison of two
or more models or model specifications. The sm#tiemormalised AIC value

the better the model fit while accounting for thember of parameters estimated.

2.2 Overview of experimental design criteria usechithe study

Experimental design in CE provides a means to cacisthoice tasks in an
efficient way as it can influence the accuracy ofFR\estimates (Lusk and
Norwood, 2005; Campbell, 2007). The literature mpegimental design for CE
has progressed significantly over the last two desaSeveral experimental
design strategies have been developed (Kuhfeld, i994; Huber and Zwerina,
1996; Carlsson and Martinsson, 2003; Street e2@05; Johnson et al., 2007,
Scarpa and Rose, 2008). Although there are seseparimental design criteria,

this study focuses on empirically examining thretega: (1) orthogonal design
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(ORD), (2) optimal orthogonal design (OOD), and Bayesian D-efficient design

(BDD). We describe each in turn in the following.

2.2.1 Orthogonal design

The first experimental design criterion used forW&s ORD (Louviere and
Hensher, 1982; Louviere and Woodworth, 1983). Htiemale for constructing
ORD is derived from linear multivariate models anagjly used for analysing
treatment effects in biological experiments usingdr regression models (e.g.,
Ordinary Least Squares) (Ferrini and Scarpa, 2080G\ever, choice data is
analysed using non-linear regression models (egjt) to examine changes in
utilities, hence orthogonality is not a criteriar Gtatistical efficiency for discrete
choice experiments (Train, 2009; Bliemer and R2686). Kessels, et al (2006)
and Bliemer and Rose (2009 p. 21) demonstratdlibattatistical efficiency of
designs following the ORD criterion are relativedywer compared to the more
recently developed class of efficient designs (8BD) where the estimated
parameters are more precise as indicated by lowariances. Lower covariances
correspond to a small@-error which is the determinant of the asymptotic

variance-covariance (AVC) matrix as shown in Equaf2.6).

There are two main approaches to generate orthbdesmgnssequential
andsimultaneougRose et al. 2008). The sequential approach gersedasigns
with attributes that are uncorrelated within, bat between, alternatives. To
construct a sequential ORD, one initially create©&D for the first alternative
then generates subsequent alternatives by re-amgatige rows of the first

alternative. The sequential approach allows théyahto construct designs with a
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lesser number of choice tasks compared to a sinedtssly generated ORD. One
drawback of a sequentially generated ORD is thatay not be appropriate for
choice tasks with labelled alternatives that, utlerorthogonality criterion,

would also require orthogonality between alterregiv

The simultaneous orthogonal approach generategraesith a set of
attribute levels that are independent both witimd between alternatives. Under
the simultaneous approach, all alternatives arstoacted at the same time. The
advantage of simultaneous orthogonal designs idhbs can be used for both
labelled and unlabelled choice experiments. Gilshadvantage, this study
employed the simultaneous approach in generatmgiinogonal design that was
used to generate the choice tasks for collectiaghwoice data for the ORD
sample. The simultaneous ORD was generated usengxiperimental design

software NGENE version 1.02.
2.2.2 Optimal orthogonal design

Street et al. (2001, 2005) propose a design aitezalledOptimal Orthogonal
Design(OOD). Following the OOD criterion, one can generetoice tasks
(mainly applicable for unlabelled or generic altgives) with improved statistical
properties compared to the traditional orthogorsigh (Street and Burgess,
2005; Rose and Bliemer, 2008). OOD offers a two-folprovement over ORD.
First, respondents are forced to make trade-offalloattributes of a choice task as
all pairs of attributes take different values, mprovement compared to ORD that
would likely include two attributes in a choice salving the same level (Rose et
al., 2011). Second, OOD takes into account thattbdel used for the analysis is

a non-linear regression model (e.g., conditiongitimodel) where we analyse
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utility differences (see Train, 2009). The measafrstatistical efficiency for OOD
is calledD-efficiencyand is expressed in percentage form where therctbe D-
efficiency to 100%, the more efficient the desighe calculation for the D-
efficiency is explained in detail in Burgess ante8t (2003, 2005), Street and
Burgess (2004, 2007), Street et al. (2005) and BodeBliemer (2008a). It is
important to note that this measure of efficiersifferent from the “D-error” in
Equation 2.6. For this study, we generated an @btarthogonal design with D-

efficiency rating of 100% using NGENE 1.02.

Similar to ORD, OOD does not use prior informatadrparameter
estimates. This design employs an algorithm thatcbes through different
experimental designs generated, assuming thahadhpeter estimates from a
multinomial logit model are equal to zero (Stread 8urgess, 2005; Sandor and
Wedel, 2005). Assuming a set of prior parametemades to be all equal to zero
can be too naive because an analyst could easgamformation about some
approximation of parameters from related studiag@t and Zwerina, 1996;
Chaloner and Verdinelli, 1995; Ferrini and Scagt)7; Scarpa and Rose, 2008).
One could readily assume the sign of the paranestenate for the cost attribute
to be negative. In addition, assuming that all pegi@rs are equal to zero may be
unrealistic because the contribution of attributethe utility of an individual can
be large as attributes were carefully identifiedty analyst as those that would

likely influence an individual’s utility level (Kesls et al., 2006).

2.2.3 Efficient design

Huber and Zwerina (1996) suggest the importan@@os$tructing experimental
designs based on prior information that could keakligher design efficiency (or
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lower D-error)? Their work focused on using priors estimated frme-test
interviews that were treated with exact certaifiityis approach was extended by
Sandor and Wedel (2001, 2002, 2005) who propospédrerental designs that
account for uncertainty in prior information used élesign construction in a
Bayesian fashioh Several types of Bayesian experimental designe haen
developed to suit the needs of analysts. ThesedaedBayesian D-efficient,
Bayesian C-efficient and Bayesian S-efficient desig'he Bayesian D-efficient
design strategy aims to minimise the standard € obparameter estimates by
usinga priori information and generating (or updating) a desigsed on this
prior information (Chaloner and Verdinelli, 199%rFni and Scarpa, 2007). The
Bayesian C-efficient design aims to reduce theavexe of the ratio of the
parameters i.e., Willingness-to-Pay (WTP) which scale free measure of value
(Scarpa and Rose, 2008; Vermuelen et al., 201T; &t Sharp, 2010). This
design strategy favours analysts who prefer to In@aveower confidence intervals
of WTP. The Bayesian S-efficient design criteriomimises the required sample
size of the experiment without compromising theuaacy of parameter estimates
(Bliemer and Rose, 2005; 2009a; 2009b). This favamalysts who face a limited
budget for conducting surveys, by reducing the rdgzally minimum required
number of respondents. Thus, the Bayesian S-etffidesign criterion helps to
reduce the cost of conducting choice surveys thdittonally require a large
sample of respondents to produce quality modemnesés (i.e., significantly high

t-ratios).

* Gain in statistical efficiency reduces the theioedly minimum sample size and, to a certain
extent, allows the reduction in the number of cadasks, which can be considered advantageous
for both analysts and survey respondents.

® Construction of Bayesian experimental design®&cdbed in Chaloner and Verdinelli (1995).
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TheBayesian D-efficient desigBDD) generated and examined in this
study assumes a conditional logit model. The desigs generated following the
criterion of minimising the determinant of the A\f@atrix or the D-error.
Reduction in D-error could also lead to a decr@asiee theoretically minimum
required sample size that can be translated iMiogsin time and money from
the perspective of the analyst. Prior informatisedito generate BDD came from
a pilot survey of 35 respondents (randomly dravamfthe New Zealand
population) who each completed nine choice taskemged using simultaneous
orthogonal design. According to Ferrini and Scdgi#7), prior information
from pilot surveys can be considered reliable &msl¢an be used for improving
the efficiency of an existing design. One way t@iave the efficiency of an
existing design is to employ a sequential survethotwhere one first collects
an initial wave of choice survey data, estimatesntodel parameters and uses
these estimated parameters to update the exisgtgigrd(Scarpa, Campbell and
Hutchinson, 2007). This technique was implemengdguUNGENE 1.02 to
generate the Bayesian D-efficient design to consthe BDD choice tasks. These
choice tasks were used to collect the choice adatthé BDD sample that we

analysed in this present study.

As an aside, there are many other design criteraldition to orthogonal,
optimal orthogonal and efficient designs. Theseothiteria include adaptive
(Toubia et al., 2007; Tilahun et al., 2007), rand@main and Wilson, 2008),
choice percentage (Toner et al., 1999; Kannine®22@ohnson et al., 2006),

Bayesian A-optimal, G-optimal and V-optimal desigkessels et al., 2006).
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2.3 Generation and evaluation of the three experinmtal designs

The three main experimental designs (ORD, BDD a@dpdiscussed above
were all generated using NGENE version 1.02. ORP gemerated using the
simultaneous approach. This simultaneous orthogtesgn was used in the first
batch of survey where we collected 35 completedesis (9 choice sets x 24
respondents = 216 choice observations). From ttlesiee responses, we
constructed a choice data set following the dumaodirgy procedure described in
Hensher et al. (2008)This data set was used to estimate the coeffiizmd
standard errors of a conditional logit model. Thestmates were used agpriori
information for the generation of the three Bayes#icient designs (D-, S- and
C-efficient designs). For the generation of OOD,diknot use those coefficients

because this criterion assumes that beta coeffecame all zeroes.

Equations 2.6 to 2.10 show the different experirmletésign measures
which include D-error and Utility-balanced measui&® know that the lower the
D-error, the more statistically efficient the deslgecomes. Utility balance was
considered important by Huber and Zwerina (1996rwkuggested that the
more utility balanced the design is, the higherdhality of information we
collect from respondents. We use these design mesaguevaluate the three
designs that we compare in Chapters 4 and 5 aasstess empirically the claim

made by the proponents.

OOD is an experimental design criterion that misiesi D-efficiency
measure assuming that we do not have prior infoomabout the parameter

estimates. In this case, Table 2.1 shows that tkenB A errors for OOD are

® We also describe how we implemented dummy codinBage 70 of this thesis.
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lower (or better) than those of BDD and ORD. If ev@luate the designs
assuming that we have fixed prior information, Bi3dhe most efficient design
with a Dy-error of 0.213 whilst OOD becomes the worst desigh a D,-error
twice as that of BDD. The Bayesian D-efficiency su& also accounts for prior
information but it also accounts for a degree afartainty around the prior
information used for updating the design. Theelror is slightly higher for BDD
(0.22) but four times as much for OOD (0.94). Tikisot surprising because the
OOD criterion maximises the differences betweearalitives in choice tasks and
this could lead to a higher determinant of the AM@trix, thus leading to a higher
Dy-error. Table 2.1 also shows the effects of opiimgishe three updated designs
(ORD, BDD and OOD) following the BDD criterion ugja priori information

from larger sample sizes.

This three EDs that we are comparing here wergealerated using
NGENE 1.02. Before using the BDD generated from N&Ewe have checked
first for the presence of dominant alternativesthtthe assumption that the utility
of an individual increases monotonically with thgrovement in attribute levels
(i.e., Level 2 is strictly preferred to Level 1 whiis strictly preferred to the
current condition), we found two choice tasks vdtiminant alternatives in one of
the three blocks. To eliminate the presence of danue, we relabelled and
swapped attribute levels across choice tasks wahilock. We are aware that this
procedure has implications on the efficiency ofdlesign. In addition, the BDD
design generated from NGENE was not dummy codedesihven converted the
designs to dummy coding. As we have relabelledpped and converted into
dummy coding, the efficiency measures previouslgutated for the initial BDD

design have therefore been altered. After constigithe new dummy coded
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BDD design, we recalculated the efficiency ratingsg the design evaluation

feature on NGENE 1.02 (e.g., “;eval = recoded_dedpD.ngd”).

The evaluation of the three designs in terms dissizal efficiency is
presented on Table 2.1. Columns 2, 3 and 4 of Talllshow the three sets of
efficiency measures. In the first set, we assurhatigarameter values are zeroes
(fs=0). OOD has the lowe®error andA-error hence it is the most efficient
design under this measure. This is followed by B&id ORD, respectively. In
the second set, where we assumed that parametes\ae not equal to zey £
0), BDD is the most efficient design based on havimglowesD, andA, errors
while OOD has the lowest efficiency. This is notsising because BDD follows
the Bayesian D-efficiency criterion, where we upatameters values estimated
using conditional logit model from the initial sgtchoice data (shown on Table
2.1). These sets of priors can be considered hiefidbbecause they came from
actual survey respondents. The tealable is mentioned in Ferrini and Scarpa
(2007) where a sample from a pilot survey can msideredeliable if the
difference in the marginal rates of substitutiomg(marginal WTP) between
pilot and final sample is small. To check for tle&ability of priors that we
derived from the pilot survey of 35 respondents cammpare the calculated
marginal Willingness to Pay (WTP) from this pilMTR with the WTP from the
full sample WTR:) of 209 respondents. Table 2.2 shows the perceriffgrence
between WTPs for the increase in abundance of bkawinvhich is
approximately 10% between the pilot and the futhgke. For the highest feasible
increase in Falcon abundance (or attribute leve),tiihne WTP from the full
sample is lower by 20%. This relatively small diéiece of WTPs between the

pilot and full samples suggests that our set arprcan be considered reliable.
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The WTP for the non-bird attributes may be diffidol compare because the

utility coefficients from the pilot sample are rstatistically significant.

Despite BDD being the most efficient, its theoraflic minimum required
sample size 0§, estimate (4,157) is more than ten times3hestimate for ORD
(375). As the calculation fdg, estimate is based on having all parameters being
statistically significant at 5% level, this migrd\e been influenced by the
presence of non-bird attributes in the choice talsich have been found to have a
comparatively low contribution to individual utiiand hence have utility
coefficient values very close to zero. These coieffit estimates might have
required a significantly large number of choiceafations to become significant
at the 5% level. One may argue that those attr#siteuld not have been
included in the investigation at all, but they wereluded because of their

importance for wildlife management.

In the second set of efficiency measures aboteoadh we accounted for
the effect of parameter values not being equaéto g+ 0), we have assumed
those parameters to be fixed and therefore to bavkiwith certainty. However,
there typically exists a considerable amount ofestainty about parameter values
p and such uncertainty should be accounted for. ¥eumted for this uncertainty
by following the sequential Bayesian framework sgigd in Ferrini and Scarpa
(2007) and applied in Scarpa et al. (2007). Thel thet of design efficiency
measures is based on the sequential Bayesian apprsexpected, the BDD is
the most efficient design based on Bayesian D-éDgerror). The Bayesian

measure for theoretically minimum sample sizesastimate, for OOD is 6
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million choice observations while BDD and ORD redpely gotS, estimates of

1.3 million and 0.2 million.

After evaluating the three EDs that we used instimey, we also optimised
each ED to derive updated Bayesian D-efficientgresusing conditional logit
model estimated parameter values from respectisgulieample of 503 choice
observations in Table 4.1. Using NGENE, the OROgiessed in the survey was
optimised for Bayesian D-efficient design using thiéty coefficient estimates of
logit model from the ORD sample in Table 4.1. Sarlyl, we generated updated
Bayesian D-efficient designs for the OOD and BDIihngshe same procedure.
We then evaluated the design efficiency of theghnedated Bayesian D-efficient
designs. These new design efficiency measuresrasemted in columns 5, 6 and
7 of Table 2.1. The three new designs all demotestrensiderable improvement
in terms ofD-error,A-error andS-estimate. Although BDD was previously the
most efficient design, it still improved in efficiey fromDy-error of 0.223 to
0.150. The OOD, which was previously the leastadfit, not surprisingly had the
most remarkable improvement in design efficienoyrfDy-error of 0.937 to
0.170. The OOD design that was optimised for BayeBi-efficiency has
outperformed the efficiency of ORD which goDgerror = 0.185. These results
corroborate the notion put forward in other studesarpa et al., 2007, Kerr and
Sharp, 2010) that EDs can be updated and be maestadistically efficient
using more reliable prior information from a biggample of respondents.
However, if an analyst had used a utility neutesign for the first wave of
survey, that ED could still be optimised followitige BDD criterion and
significantly gain statistical efficiency (i.e. M@r Dy-error). As described in

Scarpa et al. (2007) an improvement in the stesikéfficiency of ED leads to
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more accurate parameter estimates in additiorrédwaction in the theoretically
minimum sample size. As a result of optimisingtfeg BDD criterion, all
efficiency measures (i.e., D-error, A-err8,estimates) for the three designs
significantly improved, with OOD exhibiting the igst degree of improvement.
In terms of the percentage of improvement, morglateshould be given to the
improvement (or reduction) in D-error as it is aasre of statistical efficiency of
the overall experimental design. Lesser weight begiven to th&, estimate (or
S-efficiency score) which represents the maximunhefindividual scores for
parameters. Although OOD achieved an impressiveaugment of 79,517%,
this may be considered irrelevant because one t@gebhan economically feasible
sample size to retrieve significant parametergHemrelevant attributes however

efficient the design process is.
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Table 2.1: Evaluation of the three experimental degns used in the falcon survey

Optimised for Bayesian D-efficiency of existing

Evaluation of efficiency of existing designs design using parameter estimates from each

design treatment

ORD BDD 00D ORD BDD 00D
Assumingis =0
D error 0.205 0.178 0.091 -- -- --
A,-error 0.542 0.478 0.308 -- -- --
Assumingss # 0 but fixed
Dy-error 0.290 0.213 0.589 0.173 0.143 0.161
Ag-error 0.801 0.595 3.417 0.345 0.274 0.309
S estimate 375 4,157 4,114 174 1,237 478
Assumingis# 0 and accounting for uncertainty
Dy-error 0.307 0.223 0.937 0.185 0.150 0.170
Ap-error 0.850 0.622 18.886 0.369 0.289 0.327
S estimate 212,740 1,265,695 6,091,078 562 6,432 7,660

% of improvement from optimisation for BDD

Dy-error
Ag-error
S, estimate

Dy-error
Ay-error
S, estimate

Aft6r990 After 6,659 After 6,657
evaluations on evaluations on evaluations on

NGENE NGENE NGENE
-- -- -- 167% 149% 365%
-- -- -- 232% 217% 1,105%
-- -- -- 215% 336% 862%
-- -- -- 166% 148% 550%
-- -- -- 230% 215% 5,770%
-- -- -- 37,861% 19,678% 79,517%

Note: Conditional logit model estimatesgsffrom pilot survey data used as priors are presenmtelable 2.3.
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Table 2.2: Willingness to Pay estimates from piloand full survey samples

Pilot Sample (n=35)

Full Sample (n=209)

Coefficient Standard P-value Marginal  Coefficient Standard P-value Marginal % diff in
Error WTP; Error WTP: WTP?

Brown kiwi 1 0.462 0.252 0.07 $ 22.00 0.504 0.098 <0.01 $ 20.16 9.1%
Brown kiwi 2 0.591 0.251 0.02 $ 28.14 0.622 0.095 <0.01 $ 24.88 13.1%
Native fish 1 0.242 0.241 0.32 NS 0.287 0.093 <0.01 $ 11.48 -
Native fish 2 0.286 0.248 0.25 NS 0.143 0.095 0.13 NS -
Native plant 1 0.335 0.233 0.15 NS 0.145 0.094 0.13 NS -
Native plant 2 0.112 0.251 0.66 NS 0.210 0.094 0.03 $ 8.40 -
Green gecko 1 0.190 0.246 0.44 NS 0.017 0.093 0.86 NS -
Green gecko 2 0.549 0.241 0.02 $ 26.14 0.092 0.093 0.32 NS -
Bush falcon 1 0.550 0.253 0.03 $ 26.19 0.453 0.098 <0.01 $ 18.12 44.5%
Bush falcon 2 0.706 0.246 <0.01 $ 33.62 0.700 0.094 <0.01 $ 28.00 20.1%
Cost to respondent -0.021 0.004 <0.01 -- -0.025 0.002 <0.01 -- --
Indicator for status quo 0.876 0.413 0.03 0.177 0.158 0.26

Pseudo R2 0.060 0.245

Number of choice obs 314 1850

4To calculate for the percentage difference in nmaigivTP, we used the formula: %diff = [(WFR WTR)/ WTP{ x 100%

Notel: NS meansot significantat the90% confidence level.
Note2: Values in boldface font represent statissggnificance of utility coefficients at the 90%rdfidence level.

39



Table 2.3: Conditional logit model estimates usinthe data set with the first

35 respondents (first wave)

Coefficient Standard Error T-ratio P-value
Brown kiwi 1 0.462 0.252 1.832 0.067
Brown kiwi 2 0.591 0.251 2.354 0.019
Native fish 1 0.242 0.241 1.002 0.316
Native fish 2 0.286 0.248 1.155 0.248
Native plant 1 0.335 0.233 1.441 0.150
Native plant 2 0.112 0.251 0.446 0.655
Green gecko 1 0.190 0.246 0.771 0.441
Green gecko 2 0.549 0.241 2.278 0.023
Bush falcon 1 0.550 0.253 2.174 0.030
Bush falcon 2 0.706 0.246 2.865 0.004
Cost to respondent -0.021 0.004 -5.136 <0.001
Indicator for status quo 0.876 0.413 2.122 0.034
Log-likelihood value -324.473
Pseudo Rho2 0.078
Adj Pseudo R2 0.060
Number of choice observations 314
Number of respondents 35
Number of iterations 5

Note: Text in boldface font indicates statistiagh#ficance at the 90% confidence level
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2.4 Sampling procedure

We planned to have four different levels of sangptatification. The first type
was about getting representative samples from negioth a large proportion of
planted forests and those regions with relativetalter proportion of these
forests. The second was to get representative sarmplespondents living in
rural and urban areas of the country. The thirdisowas to have 50-50 split
samples of respondents who completed mail surveyahne survey. The fourth
was to split the full survey sample into groupsedpondents who completed
choice tasks generated from different experimedgalgns. This section of the
thesis presents the sample stratification thatried to achieve. At the end of
each sub-section below we compare the samplintifision we aimed for with

the actual split of the sample data we collected.
2.4.1 Regional groupings

In order to get a representative survey samplesgaondents across New Zealand,
we employed a stratified sampling approach baseti@distribution of the
population. The strata employed include the locatibresidence across the 18
regions of the country. To get a balanced reprasientof respondents living in
regions with large planted forests and those withlker ones, the 18 regions were
grouped into two categories based on the propodidhe area planted forests to
the total area of the region. To do this, a digitap of New Zealand called Land
Cover Database version 2 (LCDB2) was used. A dpsdfaware called ArcGIS
was used to extract the total planted forest aye@fion and intersect these with
the total area by region. Six regions have beendda have at least 12% of

planted forest area (Group 1) while the remainiBgehions have less than 12%
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of planted forests (Group 2). Group 1 represerdselyions where one can find
the country’s largest plated forests (e.g., KaingaMatariki). Group 2 regions
generally have smaller and sparse planted foreéstm each regional group, we
tried to sample 50% of the respondents. Table zdegmts the two regional
groups with Group 1 having six regions and Grouwyth 10 regions. Based on
the 2006 population census data of Statistics Nealahd, 75% of the country’s
population lived in Group 2 regions while only 2%%ed in Group 1 regions. We
aimed to over-sample in Group 1 regions to comwitipa 50-50 split (50% of

the sample from Group 1 and 50% from Group 2).

Table 2.4: Groupings of New Zealand regions by progrtion of planted
forests

Region Planted Forest
Land Area
(in 1000 ha) _ Area Percentage
(in 1000 ha)
Group 1 (Large planted forests)
Nelson 422,397 131,049 31.0%
Bay of Plenty 12,160,133 3,036,148 25.0%
Gisborne 8,360,456 1,590,658 19.0%
Waikato 24,442,870 3,640,194 14.9%
Northland 12,508,417 1,819,227 14.5%
Hawkes Bay 14,173,620 1,730,250 12.2%
Group 2 (Smaller planted forests)
Auckland 4,517,341 519,078 11.5%
Tasman 9,636,113 1,034,553 10.7%
Wellington 8,103,633 687,051 8.5%
Marlborough 10,222,844 732,016 7.2%
Manawatu-Wanganui 22,210,568 1,458,517 6.6%
New Plymouth 7,258,142 287,316 4.0%
Otago 31,873,471 1,253,361 3.9%
Canterbury 45,226,480 1,207,128 2.7%
Southland 31,379,319 810,510 2.6%
West Coast 23,356,245 473,449 2.0%
Overall total 265,852,049 20,410,506 7.7%

Source: Data adapted framtp://koordinates.com/#/search/?qg=lcdb2

Table 2.5 shows the planned stratification andaatistribution of

respondents by regional grouping and by region.plaened stratification was
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based on the population distribution of New Zealaass regions (Statistics
New Zealand 2012). As the Waikato region has tghést proportion of
population in Group 1, we allocated the highespprtion of respondents (36%)
for that group. As Auckland has the highest praparbf population of the
regions in Group 2 (and in the country as well),trvied to allocate to it the
highest proportion of respondents (40%) in thatugrdiowever, since we got
more respondents in Group 1 than in Group 2, samgeted proportions of
respondents per region were not achieved. In Gigtipe actual proportion of
respondents in Waikato was 45% instead of the tadg@6%. While in Group 2,
instead of getting 40% for Auckland, we only go®@6QOverall, as we suffered
from a low response rate, this sampling strategy ned fully achieved. We got

66% of respondents from Group 1 regions and 34% fBsoup 2 regions.
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Table 2.5: Planned stratification following the poplation distribution in New

Zealand and actual distribution of respondents

Grouping Planned Actual Difference
Number % Number % Number %
Group 1 (Large planted forests)
Northland Region 15 14% 17 12% 2 2%
Waikato Region 38 36% 63 45% 25 9%
Bay of Plenty Region 25 24% 34 24% 9 0%
Gisborne Region 6 6% 9 6% 3 0%
Hawke's Bay Region 15 14% 8 6% -7 8%
Nelson Region 6 6% 8 6% 2 0%
Group 1 Total 105 100% 139 100% 34 18%
Group 2 (Smaller planted forests)
Auckland Region 42 40% 18 26% -24 14%
Taranaki Region 4 4% 2 3% -2 1%
Manawatu-Wanganui Region 8 8% 12 17% 4 9%
Wellington Region 15 14% 17 24% 2 10%
Tasman Region 4 4% 0 0% -4 4%
Marlborough Region 4 4% 4 6% 0 2%
West Coast Region 2 2% 1 1% -1 1%
Canterbury Region 17 16% 10 14% -7 2%
Otago Region 6 6% 3 4% -3 2%
Southland Region 2 2% 3 4% 1 2%
Group 2 Total 104 100% 70 100% -34 46%

Note: For the target number of respondents, we hasemed here that 209 was the target to
provide comparison with the actual number of resienis.

2.4.2 Urban-rural split

We also attempted to use another stratum whidhmeisitban-rural split. Statistics

New Zealand (2010) reports that in 2006, 72% ofriheseholds lived in urban

areas while 28% lived in rural communities. As veed drawn our survey sample

from the Whitepages, we were able to compile phmamabers of households

residing in the 14 urban centres of the countrye T urban centres were

composed of the 14 key cities in the country wlacdt Whangarei, New

Plymouth, Wanganui, Nelson, Auckland, Gisbornepfeaston North,

Christchurch, Hamilton, Napier-Hastings, Kapiti Ggalauranga, Rotorua,

Wellington and Invercargill. To draw rural responte we selected people living

outside these urban centres. However, due to leporese rate, we ended up with
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a slightly different urban-rural distribution of 8 instead of the 72-28 split we

originally aimed for.
2.4.3 Mail-online split

In 2006, 92 percent of New Zealand households &wad-based telephone units
while 66% had internet connection (Statistics NeaalZnd, 2010). We therefore
employed a phone-mail and phone-internet surveyinitially aimed to get 60%
of the respondents from phone-mail while 40% ofrdsgondents from phone-
internet. In doing this two-stage survey technigue first called people listed in
the White Pages and asked if they were interestediiticipating in a survey.
Three economic survey assistants, all New Zealamd-bative English speakers,
S0 as to minimize interviewer bias, were hired ashed to call people on the
phone list. A total of 2,996 phone calls were mhetwveen December 2009 and
August 2010. The calling exercise, suggests anpatbat for every four numbers
dialled, two ended up getting in contact with a N&saland household member
while the remaining two ended up with either ansmgemachine or continuous
ringing. For every two persons contacted, one wakédy agree to participate in
the survey while the other one would likely be derasted or too busy to
participate. People who agreed to participate \asked to choose whether they
preferred to participate in the survey by mail oliree. Those who preferred
online were asked to provide their email addredsash online participant was
sent an email containing a link to an online questaire that corresponded to a
particular version of the questionnaire. For eaglesy link that was emailed, we
included an identification number to track the cdetipn of the survey and to
facilitate sending a follow up email message iredag online survey had not

been completed within two to three weeks. If thespe talked to preferred to
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participate in the survey through a mail questiar@ahe home address listed in
the White Pages was verified for accuracy. Eaclstiuanaire sent by mail had an
ID number to facilitate tracking for follow up phemwalls if the survey was not
returned within three weeks. During the follow umppe call, we emphasized that
we valued their participation in the survey anthé questionnaire was not

received or got misplaced, a new copy of the qaestire would be sent off.

A total of 781 mail surveys or online invitatiowgre sent out. A larger
proportion of people expressed interest in commuietine survey by mail so, it was
later decided to focus solely on collecting surdata using the phone-mail
approach. We have also seen that the online quesiie had some formatting
issues when two other internet browsers Google iGarand Mozilla Firefox
compared with Internet Explorer where the onlinevey could be better viewed.
We finished with 261 filled-out surveys, 84% of whiwere mail and 16% online.
Mail surveys had a relatively higher valid survaterof 81% compared to online

with 74%.

2.4.4 Experimental design split

We employed the sequential survey method descitb8darpa, et al. (2007)
where we sent surveys in two waves. The experirhdatagn technique used for
the first wave followed the orthogonal design erge. The structure of the
orthogonal design, and so as the subsequent designs study, is composed of
27 choice tasks divided into three blocks. Eachardent was provided with nine
choice tasks (therefore potentially nine choicecobetions per respondent). Each
choice task had three alternatives. The firstadtéve represents the current

situation with cost = $0 (not included in the de3igrhe other two alternatives
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represent changed alternatives with combinatidewadls derived from a
particular experimental design with the cost atitigbgetting $30, $60 or $90. For
the first wave, we allocated 108 respondents wheeaon the phone to
participate in the survey. Unfortunately we wertedb get back only 35
completed questionnaires out of these 108 peopleic€ observations compiled

from the first wave served as out pilot choice data

The second wave of survey involved 432 respondehtsagreed to
participate. This wave consisted of four experirabdesigns with each design
targeted to have 108 respondents. The four desigres (1) Optimal orthogonal,
(2) Bayesian D-efficient, (3) Bayesian S-efficieaud (4) Bayesian C-efficient.
The second, third and fourth designs belong tackass of Bayesian efficient
designs that assume a conditional logit modelbdglused to analyse the collected
choice data. These four designs were generated MSEENE 1.02 using the
conditional logit coefficient estimates from thétied set of surveys completed by
35 respondents, aspriori distribution of the parameters of the indirectityti
function. Table 2.3 presents the conditional logitdel estimates from the first 35

respondents.

We had originally planned to conduct a third wanevey that would have
432 respondents distributed over four advancedrerpatal designs with each
design allocated with 108 respondents. The fouigdesvere: (AD1) Random
parameter logit with panel implementation S-efiintidesign; (AD2) Random
parameter logit with error components panel S-ifficdesign; (AD3) Model
Averaging 1 with equal weights for CL, RPPanel &RECPanel; and (AD4)

Model Averaging 2 with more weights to RPPanel RRECPanel than CL.
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Advance designs AD1, AD3 and AD4 are describedetaitlin Scarpa and Rose

(2008).

We used parameter estimates from the completedaficssecond wave of
surveys as priori information to create these more advanced deskimsever,
we were not able to generate any of the more a@¢hdesigns with the property
that we desired which had a realistic sample sgeirement. When we use the
panel and cross sectional specifications, we atratea minimum required sample
size of 1.5 million choice observations which sednmepossible to satisfy. A
possible reason for the extremely high samplergigairement is that we included
environmental attributes that represent the leasi@iatic native species (i.e.,
native fish, native plant, green gecko) which s¢etoe less attractive to many
respondents. This resulted in having parametemasts with lowt-ratios (hence
not significant) which consequently contributedtie requirement of larger
sample sizes for the four advance designs. Weftirerdecided not to pursue the
empirical examination of the more advanced desidfesleave this task for future

research and different operational conditions.

2.5 Choice data

From the choice experiments survey, two types td dats were constructed: the
full samplewhich includes all the completed questionnaires, thebalanced
samplewhich excluded several observations from thedathple to facilitate
comparison of the three choice experimental desigims full sample was used in
the analysis reported in Chapter 3 whilst the baddrsample was used in the

analysis presented in Chapters 4 and 5.
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2.5.1 The full sample

A total of 821 people agreed on the phone to joendurvey. Each person was
sent a survey package which included the questitmmaturn stamped envelope,
a pen and a note pad. 261 respondents filled @utetorned the survey which
corresponds to a second stage survey responsaf 2280. Out of these 261
respondents, 209 provided valid entries to theaghdata set. 201 respondents
evaluated all nine choice tasks provided to thentendight respondents
completed only part of the nine choice tasks. Thagkt respondents ended
completing 1, 3, 6, 7 or 8 choice tasks. As we hsare out self administered
questionnaire, it is difficult to determine the seas why these eight respondents
did not complete the nine choice tasks. We speetitat some accidentally
missed a couple of choice tasks while some migh fieund the last choice tasks
to be too tiring. Some must have preferred to skime choice tasks rather than
provide random answers. Because of the non-coroplefisome choice tasks,
instead of collecting 1881 choice observationsewaed up with 1850

observations for the final full data set.

We used five choice experimental designs in caligdhe full data set,
namely: orthogonal (ORD), optimal orthogonal (OOBayesian D-efficient
(BDD), Bayesian C-efficient (BCD) and Bayesian 8egfnt (BSD). Table 2.6
shows the distribution of choice data across desige we focused on comparing
the first three experimental designs, a large nitgj(83%) of the choice

observations of the full sample came from thoségdes
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Table 2.6: Sample distribution by choice set ordeand experimental design of
the full sample

Choice set

ORD 00D BDD BCD BSD Pooled
order

1% 57 60 56 17 18 208

2nd 57 59 56 16 18 206

3 57 59 55 17 18 206

4 57 57 56 17 18 205

5 57 58 56 17 18 206

6 57 58 56 17 18 206

70 56 57 56 17 18 204

ghn 56 57 56 17 18 204

g 57 57 56 17 18 205
Total choice 511 522 503 152 162 1850

Observations (28%) (28%) (27%) (8%) (9%) (100%)
Total number of 58 60 56 18 17 209

respondents (28%) (29%) (27%) (8%) (8%) (100%)

We originally planned to compare all five differetgsigns. However, due
to very low response rates and limited resources {ime and money), we
decided to focus on comparing three experimentsibds and there are ORD,
OOD and BDD. To address low response rates ancenhedistributed design
blocks for these three designs, we recruited megpandents on the telephone
and sent them the questionnaires that were not ledecpand returned from
previous mail outs to fill in the gaps and to irage the existing sample size. In
August 2010, we recruited 204 additional resporslexer the phone and sent
them the questionnaires with blocks from the tlenggerimental designs that were
not completed in the previous mail outs. Forty-t@spondents fully completed

and returned the surveys. The additional 42 resprasdncreased the number of
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choice observations for ORD, BDD and OOD while aeatributing to a more
balanced distribution across three blocks (Tablg¢ As we did not send out
surveys to fill in the gaps for BCD and BSD, thetdbution across blocks for
these designs was relatively unbalanced compartetiirst three designs. The
observation in the BSD design treatment was conaiat on block 3 (50%)

while BCD on block 2 (46%).

Table 2.7: Sample distribution by block and experinental design of the full

sample
Block ORD BDD 00D BCD BSD Pooled
number (%) (%) (%) (%) (%) (%)

1 162 152 125 45 27 511
(32%) (30%) (24%) (30%) (17%) (27%)

2 171 198 187 70 54 680
(33%) (39%) (36%) (46%) (33%) (37%)

3 178 153 210 37 81 659
(35%) (31%) (40%) (24%) (50%) (36%)
Total 511 503 522 152 162 1850

Note: “(%)” above indicates the proportion of tHeice observations per design treatment.

2.5.2 The balanced sample

As we decided to focus on comparing the three exyatal designs which are
the ORD, OOD and BDD, we constructed a balancea skttwith split design.
Table 2.8 shows the distribution of the three desigmples (each with 414 choice
observations) before we added the 42 additionploregents. Table 2.9 shows the
more balanced distribution across blocks for tmedtdesigns after adding choice

observation from the additional sample.
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Table 2.8: Sample distribution by block and experinental design of the
earlier sample

Block ORD % OoOoD % BDD % Pooled %
1 117 28% 98 24% 134 32% 349 28%
2 153 37% 127 31% 189 46% 469 38%
3 144 35% 189 46% 91 22% 424 34%

Total 414 100% 414 100% 414 100% 1242 100%

Table 2.9: Sample distribution by block and experinental design of the final
balanced sample

Block ORD % OoOoD % BDD % Pooled %
1 162 32% 125 25% 152 30% 439 29%
2 171 34% 187 37% 198 39% 556 37%
3 170 34% 191 38% 153 30% 514 34%

Total 503 100% 503 100% 503 100% 1509 100%

To construct the final balanced data set in Talfe & we got higher
response rates for ORD and OOD compared with thB B&sign (Table 2.7), we
excluded 8 and 19 observations from the orthogandloptimal orthogonal
samples, respectively. This is to make the distidouof choice samples on a per
block and a per order basis exactly the same atlegtiree designs. Table 2.10
shows the number of observations per choice taddroAs each respondent was
provided with nine choice tasks, choice tasks veedered as®i, 29, 4", ... ... ,
until the 9" choice task. The number of observations for efdice task order
was 56 for each design treatment with the exceqtfdhe 3° choice task that had
55 observations for each sample. The reason feiribalance was because some

respondents were not able to complete the evatuafithe nine choice tasks.

52



The criteria used for excluding choice observatiimnsonstruct the
balanced sample were: (1) choice observations fespondents who did not
complete the nine choice tasks; (2) choice obsemnsfrom respondents who
sent back the questionnaire very late because dealh@ady completed the
planned design when we received those; and ()diovenience, other choice

observations at the bottom of the worksheet warewed.

After excluding the above choice observations, westructed a balanced
data set from 172 respondents. The 503 choice wdigans from the ORD came
from 57 respondents, while choice observation0GD and BDD samples came
from 59 and 56 respondents, respectively (Tabl@)2The reason for the
differences in the number of respondents (despéesame number of choice
observations per design sample) is that not gllaedents completed the nine
choice tasks assigned to them. For the ORD satfwke respondents did not
complete the nine choice tasks, while for OOD abdBamples, seven and one

respondents did not complete, respectively.
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Table 2.10: Sample distribution by choice task numér and experimental
design of the final balanced sample

Choice set No. of Observed Choice Sets
order ORD 0OD BDD Pooled
1% 56 56 56 168
2" 56 56 56 168
3¢ 55 55 55 165
4" 56 56 56 168
5 56 56 56 168
6" 56 56 56 168
7" 56 56 56 168
g" 56 56 56 168
g 56 56 56 168
5%@523&%1 503 503 503 1509
Total number of 57 59 56 172
respondents
2.6 Summary

In this chapter, we set up the formal theory ofichanodels that will be
estimated in Chapters 3, 4 and 5 of the thesiss@ ll@ee types of logit models
include conditional, heteroskedastic and laterglaodels. We also described
the different measures of design efficiency sucthadBayesian D-error, D-
efficiency and Utility Balanced measures. In th&trieree chapters, we will be

referring to the above description of the models data.
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Chapter 3: Valuing biodiversity enhancement in planed forests:

socio-economic and spatial determinants of willingess-to-pay

3.1 Introduction

The world’s planted forests cover approximately g@#ion hectares accounting
for about seven percent of the global forest afded, 2010). A planted forest,
which can be composed of a single exotic forestispeis generally considered
as a legitimate land use to address the global dérwa roundwood, pulp, non-
wood products and other forest goods (Bauhus ,e2@l0). Planted forests
contribute to the conservation of natural foresteti-setting pressure on primary
and old growth forests (UNCED, 1992; Dyck, 2008)atidition, they provide
important ecosystem services that include habitatipion for native species,
including those threatened with extinction (Juked Beace, 2003; Brockerhoff et
al., 2008; Pawson et al., 2010). Planted forestdbeamanaged to enhance the
provision of habitats for rare and protected nasipecies (Jactel et al., 2006;
Pawson et al., 2005; Hartly 2002; Maunder et 80& Bauhus and Schmerbeck,
2010). However, enhancing the provision of habifiatshreatened species comes
at a price (Seaton et al., 2006; Maunder et a082Weir, 2010). It is therefore
important to examine whether the general publicld/denefit from a

biodiversity enhancement initiative and if they diduld they be willing to pay to

support such initiative.

New Zealand (NZ) has a total of 1.8 million heetof planted forests
accounting for 22% of the country’s total forea(MAF, 2010). In 2009, total
revenue derived from sale of planted forests prtsiwas the country’s third

largest export earner contributing NZ$3.7 billi@8% of GDP) to the economy.
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NZ planted forests are composed of exotic treeth Radiata pineRinus

radiata) as the dominant species accounting for 90% ofdfest area. The
remaining species include Douglas fiseudotsuga menzigsiCypress
(Cupresus sp.and EucalyptsEucalyptus sp.(MAF, 2010). Exotic forests
provide habitats for at least 118 threatened naipezies that include the brown
Kiwi (the country’s national symbol) and the bualtbn (Pawson et al., 2010).
Areas in between clear cut and remaining foresidstaf the 135,000-hectare
Kaingaroa forest in the Central North Island regioovide habitats for the bush
falcon which are better than any other habitatsaveth stands of native forests in
isolated hilly areas of the country (Seaton, 2@18,0). The Kaingaroa forest area
has the highest concentration of bush falcon ircthentry (Stewart and Hyde,
2004). The bush falcon is the country’s fastest hind it preys mainly on exotic

bird species and insects (Seaton, 2006).

The Department of Conservation (2000) reports Neat Zealanders place
a high value on native plants and animals, as fibvey a basis to the culture and a
sense of national identity. Native birds and plarats be seen all over the country
both in public conservation lands (e.g., natioraakp, forest parks) and private
lands (e.g., residential lands, planted forestsingya dichotomous choice
contingent valuation method, Yao and Kaval (2016kefred to as YK) have
shown that a typical New Zealand individual woutvailling to pay about $82
per year in additional local taxes (or local rates3upport the planting of more
native trees and shrubs on public land and $4¥gear for more natives on

private land’. Private land in YK mainly referred to private pesfes large

" It was mentioned in the survey that additionaiveatrees and shrubs would provide additional
habitat to native birds, fish and geckos.
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enough to accommodate the planting of native tfeéegate land in YK did not
include planted forests which could be as largg3%5000 hectares as the
Kaingaroa Forest or the 16,000-hectare City Foiadisinedin. Although YK

has shown that additional native trees are valumeprivate land, it remains
unclear if increasing the number of threatenedispen exotic planted forests by

improving the habitat would be valued by New Zed&ms.

This chapter is motivated by the general quedsamnproposed
biodiversity enhancement programme in planted tsreaslued by New
Zealanders’Answers to this question would provide some insdor the
country’s existing biodiversity programme on prizddnd that is part of New
Zealand’s 20-year Biodiversity Action Plan (200@fR0). We also envision that
those answers would provide some pointers in thadtation of future policies
for the management of planted forests in countxiesre similar conditions exist.

Specifically, this thesis chapter aims to answer tesearch questions:

(1) Would New Zealanders be willing to pay for hiatsity enhancement

in planted forests, and if so, approximately howchiu

(2) What are the factors that would likely influentthe willingness-to-pay
(WTP) of an individual for biodiversity enhancemeeitnd by how much

would these factors affect the median WTP?

The first question is addressed by analysing aeyuthata collected using the
stated choice experiments (CE) approach (pleasete@fChapter 2 for details of
CE). WTP values (or WTPs) are calculated by takimggratios of the coefficient
of the attribute level over the marginal utilityiotome. By using the Monte

Carlo simulation, we have accounted for the digtidn of WTP in these ratios.
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Simulated median WTPs are subsequently aggregatedinting for potential
biases) to represent a national value of biodit)eesihancement in New
Zealand'’s planted forests. This method is describefbtail in Section 3.3 of this
chapter. The second question is answered by detegrtihe factors that would
likely influence individual specific WTPs using pamandom effects regression
models with a panel of 10 WTP values per responaeependent variable. This
follows the panel random effects ordinary leasiesgs (OLS) regression method
described in Campbell (2008a) and Scarpa et al.1{20 We made an innovation
here as we have combined socio-economic and attétlicovariates with
geospatial distance of respondents from large gthfarests as additional

explanatory variables of individual specific meafsnarginal WTP.

Marginal WTPs calculated from utility coefficiergtenates of logit
models suggest that New Zealand taxpayers, acomufuti potential sources of
bias, would pay an aggregate value of NZ$26 milpen year for five years to
support a proposed government coordinated prograomeshancing the
provision of habitat for threatened native spetesd in planted forests. Results
from panel regression analyses indicate that tt@if& that influence individual
specific WTP include higher education, attitude aodvconservation and

proximity to large planted forests.

The next section of this chapter (section 3.2yjol®s a brief overview of
the importance of biodiversity around the world am#llew Zealand. Section 3.3
describes how this study contributes to, or extgmdsious studies. In 3.4, we
describe the econometric models and other metheet$ in the analyses. Section
3.5 illustrates how choice data were collected @ntstructed for the choice

analysis. Section 3.6 presents the results of enetrac analyses and discusses
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the answers to the two main questions above. Hapter ends with conclusions

and policy implications in section 3.7.

3.2 Biodiversity and planted forests

The term “biodiversity” is defined by the Convemtion Biological Diversity as
“the variability among living organisms from alllgges including, terrestrial,
marine and other aquatic ecosystems and the ecalagimplexes of which they
are part; this includes diversity within speciestween species and of
ecosystems” (CBD 1992). This suggests that bioditseincludes diversity within
species populations (genetic variation); the nunatbepecies, and the diversity of
ecosystems. For this study we focus on some of Realand’s threatened native

species whose numbers considerably declined ipdabedecades.

Biodiversity decline is considered as the most irtgod global
environmental issue (FAO 1992; World Bank 2002).2009, 191 countries
ratified the Convention on Biological Diversity (OBindicating that world
leaders recognise the importance of putting atbditodiversity decline (CBD,
2010). Countries like the United Kingdom, Unitect8s, Australia and New
Zealand developed long-term Biodiversity Actionridlao provide a platform for
the incorporation of biodiversity conservation wlipy decision making to
address biodiversity decline. Despite the develogrard implementation of
these action plans, biodiversity levels in thosentoes continue to decline (e.qg.,
the population of threatened species continue ¢cedse). A possible reason is
that although many governments aim to incorporadiversity in their
environmental policies, many types of data, suctobast non-market values that

can be used for cost benefit analysis, are notatai Very limited studies have
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attempted to estimate the value that people woeldilling to pay to support
biodiversity conservation in planted forests (de@rmand van der Meer, 2010).
This restricts the inclusion of biodiversity valuet the decision making
framework and limits the value of planted forest/on terms of timber products
(or only in terms of market values). This situatgmrsists around the world
despite the increasing evidence showing that pibimieests provide ecosystems
services such as carbon sequestration, soil erasiatnol, water regulation and
biodiversity conservation (Norton, 1998; Scottlet2005; Byrne and Milne,
2006). Over the last decade, the capacity of pthftieests to provide habitats for
plants and animals has gained increasing atte(ffonroth and da Mota, 2004;
Carnus et al., 2006), especially in areas in whatee forests have become rare

(Humpreys et al., 2006; Berndt et al., 2008).

New Zealand's planted forests consist mainly ofatadpine (Pinus
radiata), an introduced species typically manageth@noculture stands and
harvested between 26 and 32 years after plantiagn(G et al., 2006; Dyck,
2003). Although these productive planted forestsnaainly managed for timber
production, they also provide an excellent halfdatndigenous plants and
animals (Pawson et al., 2010; Brockerhoff et &I02 Norton, 1998; Spellerberg
and Sawyer, 1995). Radiata pine forests, espedaathe ones with areas greater
than 5000 hectares, provide habitats for threateag@de animals (e.g., NZ bush
falcon, brown kiwi, giant kokopu fish, green geclaod plants (e.g., kakabeak
shrub, native orchids) (Seaton, 2006; Pawson 2@06; Maunder et al., 2005;
Brockerhoff et al., 2003; Pierce et al., 2002; BoyR009). They also provide

connectivity between areas of native ecosystents asicorridors that enable

60



native fauna to gain better access for food frorght®uring native ecosystems

(Norton, 1998; Carnus, et al., 2006; Brockerhofflet2008; Pawson et al., 2010).

NZ forest companies recognise the importance oftpthforests in
providing habitat for native species (Maunder, 20@®mprehensive ecological
studies were undertaken and sponsored by foregpauies to examine how
planted forests can be managed to better suitebdsnof threatened native animal
inhabitants such as the bush falcon in Kaingarosstand long-tailed bat in
Kinleith forest (Seaton, 2006; Borkin, 2008). Maeagent of planted forests for
biodiversity is encouraged in voluntary forest ifiedtion schemes (e.g., Forest
Stewarship Certificate (FSC)). FSC certified comesamegularly conduct
ecological surveys which include monitoring for firesence of threatened native
species and coordination with concerned non-goventmmrganisations (e.g.,
Wingspan, Forest and Bird) for the protection ratiwrds (and other species)
from forest harvesting operations (PF Olsen, 200&;nder, 2005). The
management of planted forests for the provisiohatfitats for threatened native
species indicates that NZ forest companies valdeadso benefit from
biodiversity conservation as certified timber progugain better access to both
global and domestic markets. For instance homeadugmnent chains such as
Home Depot in the US, B&Q in the UK and Bunningsréfeuse in New
Zealand all prefer to buy and sell more FSC cedifivood products than non

certified ones.

Habitat provision is a type of ecosystem servideere is a rising public and
corporate awareness of the importance of well-fonatg ecosystem (Fisher et
al., 2008; TEEB, 2010). Economic valuation of habgrovision for native

wildlife had been undertaken on several forests ,(€zajkowski et al., 2008;
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Christie et al., 2006). In the case of New Zealplaated forests, to our
knowledge, the economic value of habitat providias not yet been studied. This
study is probably the first to estimate the ecormovaiue of a proposed habitat
enhancement programme in planted forests. Thislise with the New Zealand
Department of Conservation’s (DOC’s) policy to gaitand enhance threatened

native species which include the brown kiwi (Holle et al., 2008).

With the development of economic valuation techegj(e.g., CE),
complex biodiversity values can now be estimatdfic@n be used to examine
preferences and estimate WTPs of an individuaherchanges in biodiversity
outcomes in planted forests. However, in using I@#e is a need to account for
biases (e.g., hypothetical) that may arise in tiogtaion of WTPs. Aggregation
of the WTP values have inherent biases (e.g, aggoggbias). This study has
accounted for both hypothetical and aggregatiosdsiaWe describe how we

accounted for these biases in Section 3.3.

This thesis chapter presents aggregated WTP vafussimportant aspect
of biodiversity that is the enhancement of icomi@(, brown kiwi) and less
visible (e.g., giant kokopu fish) threatened naspecies in planted forests.
Previous studies have shown that New Zealandeue watligenous biodiversity
in general, however, those estimates of valueslgneefer to indigenous
biodiversity in national parks or regional foreatls which are composed mainly
of native trees and shrubs (Yao and Kaval, 2018jioMal parks and forest parks
are part of DOC’s owned and managed conservatiaasléhat usually have
native trees of different ages and different tygdsse landscapes are extremely
different from planted forests. This is becaustaador plot of planted forest

usually consists of a single type of exotic piree# often with same tree age. Yet,
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despite the highly modified environment in an ex@drests stand, they still
contribute to providing habitats for more than i@atened native species. In
fact some threatened native species, like the falsbn, has benefited more,
living along the forest edges of large stands afiRiradiata in Kaingaroa forests
than in stands of native forests in the countrylly areas (Seaton, 2006).
Although the contribution of planted forests todiiersity conservation has been
recognized to be quite phenomenal, the monetanewval the benefits from this
service still remains unclear and needs furtheméxation to be included in
future policy decision making. It is therefore @ien of this study to provide an
estimate of an aggregate value of biodiversity anement in the country’s
planted forests to recognise that planted forest®nly provide timber products
that can be sold in the market, but also nativdibearsity that could be enhanced

to improve the welfare of society.

3.3 Approaches for valuing biodiversity enhancement

This study aims to estimate the WTP of New Zealamgayers to improve the
habitats of selected threatened species that caadre(e.g., bush falcon) or
potentially sighted (e.g., giant kokopu, a natigé¥in New Zealand’s planted
forests. WTP estimation is undertaken using thev@lkation framework. We
describe in this section how the choice attributese identified and how the
guestionnaire was developed. The econometric magels that are not described
in Chapter 2, which include the Random Parametegst Model and Panel Data

Random Effects Regression, are also discussed.
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3.3.1 Focus groups and identification of attributes

Between June and August 2009, we conducted fousfgooup meetings. These
were held in Rotorua on 6 June, in Whakatane an\g ih Taupo on 16 July and
in Hamilton on 5 August (Table 3.1). The focus gran Rotorua was held at
Scion (Rotorua) and this mainly served as a practia to provide a feel for the
author in moderating a focus group as he never natetka focus group before.
(The author was mentored by a senior staff at Seiom conducted a number of
focus groups in the past.) Five volunteer Scioff astembers attended this
practice session. In the next three focus grougsicpants were drawn from the
general public through links with local councilgdaauniversity. Focus groups in
Whakatane and Taupo were done in coordination kathcouncil staff members
who helped in disseminating the call for participat They helped to post flyers
in bulletin boards that would attract the attentdpotential survey respondents
who could be anybody from the general public. Theath (and last) focus group
in Hamilton was done in coordination with the Unsigy of Waikato and was
attended by five students and a Maori communityrtder. Participants in the
three focus groups consisted of labourers, repiesple, council staff members,

unemployed, students, a Maori community voluntaed council staff members.

Table 3.1: Location, date and occupation of focusrgup participants

Location Date Number of Occupations of attendees
attendees
Rotorua 6 June 2009 5 1 chemist, 1 spatial analyst, 1 entomologist, 2
communication specialists
Whakatane 8 July 5 1 retired, 1 labourer, 1 clerk, 2 council staff
members
Taupo 16 July 1 retired, 1 office staff, 1 farm worker, 1
8 labourer, 3 council staff members, 1
unemployed
Hamilton 5 August 6 4 students, 1 unemployed, 1 Maori ecological

restoration volunteer
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A range of native species were suggested by foauggarticipants which
include brown kiwi, kereru, frog, worm, mistlet@nail, eels, bat, pohutukawa,
wood rose, falcon, gecko, weta, giant kokopu, isamgorepork, kokako,
fernbird, kakabeak, and spotless crake. This lest discussed with ecologists and
was trimmed down to five based on the species ceasen status and if the
species’ visibility could be enhanced through foreanagement. Consultations
with ecologists helped identify the feasible setivé threatened species
composed of the New Zealand bush falcon, the Anckireen tree gecko, the
giant kokopu fish, the kakabeak plant and the brkiwmmn The frog and bat were

excluded because of their low visibility in plantedests.

Figure 3.1 shows the five identified species withresponding description
of different levels of presence in planted fore$tse column labelled as “current
condition” represents the existing level of aburaaim specific planted forests.
On page 5 of the survey questionnaire (see Appeldiwe provided a detailed
description of the current situation of the fiviiautes or the five threatened
native species in planted forests. This is taohiice or familiarise the
respondents with the current condition wherein f@driorests provide suitable
habitats to indigenous plants and animals. Fronttineent condition, we
explored the feasible ranges of increase for LéV@ltermediate level
improvement) and Level 2 (highest level of improes) in consultation with
forest ecologists and forest managers. The rangayhent values (i.e., dollar
bid values $30, $60 and $90) to increase the almaedaf these species were also

identified in focus group meetings.
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Figure 3.1: The five native species, their currentondition and two feasible

levels of enhanced conditions

Threatened Animal/Plant Curr_ent Level 1 Level 2
Condition
Brown Kiwi calls heard Kiwi calls heard Kiwi calls heard
Kiwi in 1 out of 200 in 10 out of 200 | in 20 out of 200
— planted forests planted forests planted forests
Giant Kokopu seen Kokopu seen Kokopu seen
Kokobu in 1 out of 10 in 3 out of 10 in 5out of 10
£.0xopu suitable streams | suitable streams | suitable streams
At least At Ie_ast At least
3 I 10 actively ivel
Kakabeak naturally managed 20 actively
occurring Kakabeak managed
Kakabeak shrubs Kakabeak shrubs
shrubs
Auckland Gecko sighted Gecko sighted Gecko sighted
Green in 1 out of 50 in 3 out of 50 in 5 out of 50
Gecko walks walks walks
Bush falcon Bush falcon Bush falcon
NZ Bush sighted sighted sighted
Falcon in 1 out of 8 in 3 outof 8 in 5out of 8
drives drives drives

Figure 3.1 above shows that the description ofléeigeframed using words such
as “sighted”, “heard” and “occurring” in order tollect a combination of use,
option, existence and bequest values from respasiddae values include direct
use such as the value a recreationist derives Ihicanvatching and indirect use
such as the value derived from knowing a foresvipies habitat for wildlife.
Option value includes knowing that one would hekima in a forest in the future.
Existence value comes from knowing threatened l@xist in a forest. Bequest
value comes from ensuring that a threatened bilido@iconserved for future

generations.

The abovementioned values represent the diffe@nponents of economic

value. In this case, economic value refers to #grek to which biodiversity
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enhancement in planted forests satisfies indivigueflerences. Therefore,
economic value can be measured by the amount oéynibiat the individual is
willing to pay for supporting biodiversity servicasplanted forests. Under the
choice experiments approach to valuation, eacheyuespondent is presented
with a series of choice tasks (as described in @n&). To systematically
populate the choice tasks with bundles of attrilbenels, an experimental design
is used. Attribute levels in Figure 3.1 are codedltow each level to be
accounted for into an experimental design framewd@vKe describe the different
experimental designs in Chapter 2). Figure 3.2qmts a sample of a choice task
used in the study. This choice task is part of@ahset series following an
orthogonal design. Column 1 of Figure 3.2 showditheethreatened species and
their corresponding locations. This is to emphagiaé the five species can be
found in planted forests in different parts of toeintry. For instance, the native
plant kakabeak can be seen mainly in planted feraghe East Coast while the

bush falcon can found mainly in the Kaingaroa foee®l in Nelson.
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Figure 3.2: Example of a choice task showing fivengironmental attributes, a

cost attribute and three alternatives

Threatened Animal/Plant

Brown Kiwi

(Frequency of hearing calls
in planted forests in North
Island)

Giant Kokopu —z o
(Occurrence in slow moving

streams with overhanging
native vegetation in planted
forests throughout New
Zealand

Current
Condition

Option A

Option B

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 20 out of 200
planted forests

Kiwi calls heard
in 1 out of 200
planted forests

Kokopu seen
in 1 out of 10
suitable streamg

Kokopu seen
in 3 out of 10
suitable streamg

Kokopu seen
in 1 out of 10
suitable streamg

Kakabeak

(Occurrence in 20% of the
planted forests on the East
Coast and Hawke’s Bay)

At least
3 naturally
occurring
Kakabeak shrub

At least
3 naturally
occurring
Kakabeak shrub

At least
10 actively
managed
Kakabeak shrub

Auckland Green Gecko
(Gecko sightings in open
grounds in planted forests in§

Gecko sighted

Gecko sighted

Gecko sighted

Northland, Waikato and n 1v8:|tkgf & n SVS:Itkgf 50 n 1v3;|tkgf 50

Bay of Plenty regions)

NZ Bush Falcon

(BL?Sh fa_llc_on sightings . Bush falcon Bush falcon Bush falcon

while dr_lvmg through pine sighted sighted sighted

E{:ﬁéséﬂdcﬁgfglnmnh in 1 out of 8 in 3 out of 8 in 1 out of 8
) drives drives drives

Additional amount to be paid yearly in

your income tax for five years only 0 $30 $60

I would choose (please tick) ] ] ]

3.3.2 Choice attributes, levels and coding

The sample choice task in Figure 3.2 is composeikadttributes; five

environmental attributes and a cost for the givelicp alternative. Each

environmental attribute is represented by a thresmtenative species that was

identified as important to New Zealanders from réeseof focus group meetings

shown in Table 3.1. The identification of the fisey species in the choice task

was undertaken in consultation with forest ecolisgemd supplemented by the

ecological literature. Key species selection was guided by the conduct of
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focus group meetings. Focus group participantsestgd that increasing the
abundance of threatened native species, includingoird species, is very
important for forest wildlife management, and thisuld likely be valued by the

general public (DOC, 2000) .

Brown kiwi and bush falcon are popular native lspe&cies which can be
considered as iconic species in the country. Theseconic species inhabit
several planted forests and these forests can baged to increase their
abundance (Maunder et al., 2005; Colbourne e2@05). The brown kiwi can be
found in planted forests in the North Island, pautarly in Northland,
Coromandel, Tongariro and Hawke’s Bay (Pawson.eP8lL0). Recognition of
the importance of plantations for kiwi conservatisincreasing. New forest
management guidelines have been developed to ns@ithe effect of forest
operations to kiwi population (http://rarespeciefoa.org.nz/fauna/forest_birds/
species/kiwi.htm). Sporle and Bliss (2008) suggesiservation orientated
management regimes with the aim of achieving kafe $orestry operations in
plantations inhabited by brown kiwi. On the othand, it was mentioned earlier
that New Zealand bush falcon is doing well in therigaroa forest (Stewart and
Hyde, 2004; Seaton 2006, 2010). The bush falcantise top of the food chain

making it a good biodiversity indicator (Stewar®12).

In addition to the two bird species above, a nunabénreatened non-bird
species (which include the kokopu, gecko and kadda@hean also be found in
planted forests (Pawson et al., 2010). Many plafdaessts have rivers and
streams which provide habitats to native fish saglgiant kokopu (Hanchet,

1990). Some planted forests on the East Coast andkéis Bay, provide habitat
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to kakabeak (Shaw and Burns, 1997). Auckland ggeeko had been sighted in

planted forests in Northland, Bay of Plenty and kdto (BioWeb, 2009).

The three non-bird (or less iconic) species haenliecluded in the choice
task as ecologists that we approached pointecheuthigh ecological importance
and their potential to be seen or heard in plafdeskts (therefore capturing both
use and non-use values). The green gecko isiagtoll and seed disperser of
certain species of native plants (Rowlands, 198@an be seen in tree branches
and open ground. It can bark or chirp by clickitegtongue against the roof of the
mouth. Planted forests can have native understovhieh can benefit from the

increase in abundance of green geckos.

The native plant Kakabeak has special significaoddéew Zealanders
because it is widely known and commonly used asage in gifts, tourist
souvenirs and the like. The presence of Kakabedikaites good control of
browsing animals (e.g., deer, goats, introducedsgr(®&haw, 1993). The
Maungataniwha pine forest in northern Hawke’s Bay fome parts with securely
fenced enclosures; a Kakabeak plant was foundenobthe enclosures (Slui,

2011).

The presence of Giant Kokopu is an indicator ofdyaater quality in the
waterways of planted forests. It indicates thalaated forest maintains a good
riparian cover and clear running water. The thmeadegiant kokopu is listed as
'vulnerable' on the IUCN Red List of Threatened$=® The term “giant”

comes from the fact that it is the largest of ladl 84 Galaxias species worldwide.

® http://www.iucnredlist.org/
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Each attribute in the choice task has three leneglsesenting different levels
of population abundance of the species in plardegists. The initial, or base
level, represents the current level of populationralance identified in
consultation with forest ecologists and forest nggma. From the current
condition, we explored the feasible ranges of iasesfor Level 1 (intermediate
level improvement) and Level 2 (highest level opnovement) again in
consultation with forest ecologists and forest nggma. The payment values were
proposed to be paid per year for a five year pedfiied dollar bid values $30, $60
and $90) to increase the population of threatergigderspecies. The range of

“realistic” values was identified in a final focgsoup.

In presenting the choice tasks to respondents,idvaat vary the order of
the environmental attributes. The brown kiwi wasaajs on top of the other
species while the bush falcon was always the speatithe bottom. In
constructing the choice data set, we employed dusoding where two dummy
variables are assigned to each environmental at#rid he first dummy variable
takes the value of 1 if the attribute is on levant O otherwise. The second
dummy takes the value of 1 if the attribute isewel 2 and O otherwise. If the
environmental attribute level is on current cormtifithen both dummy variables
take the value of zero. The four-level cost attiebwas assigned with one variable
that takes the values of $0, $30, $60 and $90.cbkevariable takes the value
zero if it was a status quo option and $30, $60%&8dif it was a changed

alternative.
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3.3.3 Survey guestionnaire and the valuation sdenar

The attribute levels and bid amounts were codediéav them to be entered into
an experimental design framework following the ogbnality criterion. This
initial design was used to populate the nine chtasks that were included in the

questionnaire that was pre-tested.

The survey questionnaire was first tested withl@ purvey involving five
respondents. Some of the pilot respondents indidag the survey was too long
primarily because of the lengthy description. Werdifiore trimmed down the
questionnaire by deleting some of the unnecessargisyas indicated by the pilot
respondents. We then conducted a second pilowvistinother five respondents.
Four out of five respondents mentioned that thestioienaire was long, but they
were able to fully understand the questions andgmised the reasons for the
presence of descriptions, which was mainly to ntakevaluation scenario as
clear and realistic as possible. Nevertheless$arfdllowing revision we still cut

out a few more irrelevant words mentioned by theed set of pilot respondents.

In the CE valuation scenario, we included a “chiedly’ script as first
described in Cummings and Taylor (1999). Some @fdasons for including the
script are: to draw the respondent’s attentioni§ipally to the cost variable; to
remind respondents that they could use their mtméwy other things they enjoy
or to simply remind respondents of the opportuodgt of their money (Cameron
and DeShazo, 2010). Although we did not use dememti the elicitation process,
we have carefully designed a cheap talk scriptittreéss hypothetical bias
inherent in the valuation scenario (Cummings angloral1999; Bishop and

Heberlin 1979). In the aggregation process, we @atea for the remaining
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hypothetical bias by considering that hypothetiwdIP is about twice the actual
WTP (Christie, 2007§.We have also accounted for the aggregation bias by
considering that people who agreed to participatedld not complete the survey
would possibly indicate a WTP of zero (MorrisonP@Q Furthermore, as not all
of the respondents were taxpayers, we also toasuatof the fact that non-

taxpayers such as those retired or students wdsdchave a WTP of zero.
3.3.4 Determinants of WTP

Campbell (2007) and Scarpa et al. (2011b) have paedl random effects
regression models to determine the factors influren@/TP for the improvement
of environmental goods. Campbell used a paneldi¥idual specific median
WTP estimates (estimated using a mixed logit madtl panel specification) as
dependent variable and socio economic charactariatid location as explanatory
variables. Results suggest that income levels, aomitgntype and location
significantly influence the variation of individualeans of marginal WTPs.
Similarly, Scarpa et al. (2011b) explained theatawn of individual specific
means of marginal WTP estimates (from exploded logidel with panel
specification) using socio-economic characterisiosh as marital status (e.g.,
single, married) and education level, and found tiase explain reasonably well
the observed variability. The above two studiesified the determinants of

variation of individual means of marginal WTPsanms of socio-economic

° The disparity between actual and hypothetical & been studied in the 1970s (e.g., Bishop
and Heberlin, 1979), 80s (Sinden, 1988), 90s (Fedtal., 1997; Frykblom, 1997; List and
Shogren, 1998) and 2000s (Hofler and List, 2006t &nd Gallet, 2001). For our current study, we
find the Christie (2007) as the most appropriateaftcounting for the disparity.
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characteristics, attitude and affiliations but dat include the distance of the

respondents to the location of those public amesiti

Choice analyses that account for the effects aadee on WTP are a very
limited but growing area of research in the statederence literature (Johnston et
al., 2011). Several contingent valuation studieseh&sed global distance decay
models and found that WTP is negatively associaiduthe distance of the
individual from the environmental good in quest{erg., Bateman et al. 2000,
2006; Hanley et al., 2003). However, Johnston.gR8l11) find no clear pattern
of global distance decay on WTPs from a choice expants exercise because of
the occurrence of non-continuous spatial variatlmmnston has identified the
presence of WTP hotspots in a stated discrete eleiperiments framework by
applying the Getis-Ord statistic (Getis and Ordd2)9 However, both studies
examined the distance effects on WTP for a padroathvironmental good (i.e., a

river, a watershed) in one specific location.

Campbell et al. (2009) explored the spatial vasiatf choice experiments
estimates with the application of spatial krigingthods to interpolate
information from individual specific WTP estimaties landscape improvements
across the Republic of Ireland. These authors fabhatlWTP values for a rural
landscape improvement scheme are not evenly digtdbas they vary across the
country. In a related study, Campbell et al. (2Q0@8tamined the spatial
dependence of individual specific WTP values fe lndscape improvement
scheme and found that the values are not spatiaifgrm, but rather are globally

clustered.
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The present study examines the effects of distahttee location of
residence of respondents with respect to largegdigiorests which can be found
in many different areas in the country. In additiorcollecting data on personal
characteristics, an approach was also developledate the geo-referenced
spatial coordinates of each respondent’s placesiflence. Respondents’ existing
addresses in the database were first verified usew Zealand Post's address-
postcode-finder. Once confirmed, specific latitaee longitude coordinates for
all addresses were found using the web site Hdtpviémorse.org/jcal/latlon.php
which uses GoogleMaps to identify coordinates. dtieantage of this technique
is that we did not need to use a Global Positiodggtem (GPS) data logger to
locate the coordinates nor ask each respondeaptotrhis/her coordinate. We
simply used the physical addresses of responderttseamailing list to identify
the coordinate¥’ Spatial coordinates of several online respondests not
located because of the absence of accuratelyeg@iidress as the White Pages

did not have their complete address.

Given that there are multiple sites with large farforests, we developed
a method in collaboration with geo-spatial analystsere the geo-spatial
coordinate of each respondent was used to creatgaghical buffers. Using a
digital layer of the New Zealand map, geographiedfers with radius of 10, 50
and 100 km were created using Arcinfo © 9.10 amdatogramming language
Python 2.6. Using a second digital layer that costéhe New Zealand Land

Cover Database version 2 (please see MfE, 2014, lma#fer was intersected

1%\e initially thought of sending the GeoBatch limkonline respondents and request them to
report the coordinates on the survey. However,aghi®n was not employed as some online
respondents might get suspicious as to why werackihg their exact locations, which might
adversely affect the response rate.
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with the sum of the area of planted forests, tmabkng the identification of
planted forest areas around each geo-spatial cwiediA further step was taken
to consider that threatened native species codjdestablish themselves in large
forests. To determine those large forest areagigtaus planted forests of more
than 5000 ha were aggregated and all the othaeseatforests were ignored and
this procedure created the final buffer intersertioNe used the area of large
planted forests derived from these final buffeersections to create the spatial
variables that we used as spatial covariates inath@om effects regression
model. In addition to these spatial covariatesaise included other covariates
collected from the survey such as socio-economacatteristics, attitudes,
affiliation to further explain the variation in callated individual specific means

of marginal WTPs.

Results from this analysis may be useful for potiegision makers
involved in the formulation and implementation &fbaestation schemes to
provide insights as to how WTPs are influenced istadce and socio economic
characteristics of people in nearby or faraway camities. One important
measure is price elasticity of demand for biodiigiis planted forests.
Estimating the price elasticity would answer thegjion,if an existing large
planted forest area (i.e., at least 5000 hectaresize) is situated less than 10
kilometres away from an individual, would this iease his/her WTP for
biodiversity enhancemenihe answer to this question would be useful fer th
planning of one of the country’s proposed afforgstascheme as described in

Watt et al. (2011).
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3.4 Models

The models we estimate in this chapter are theitondl logit (CL) model, the
latent class logit model (LCM), the random paramselegit (RPL) model, the
random parameters logit model with error componéRELEC) and the panel
data random effects regression model. To estinhatéral utility coefficients that
were used to simulate the willingness to pay valBR#d_EC has been used. From
RPLEC, we simulate individual specific estimateS\6FP which allows us to
generate a new panel data set. The constructed getaeset has a 10-period
panel which is used to estimate a panel randonetsffegression model where we

identified the determinants of willingness to pdyeaspondents.
3.4.1 Random parameters logit (RPL) model

We have described CL and LCM in Chapter 2 of thésis. We therefore start by
describing the RPL model. The RPL model (also knas/mixed logit model)
provides computationally practical and flexible mometric approach for discrete
choice models derived from random utility maximigat(McFadden and Train,
2000). RPL overcomes major limitations of the basicditional logit model by
(1) taking into account that different individualave different taste intensities or
preferences; (2) allowing unrestricted substitupatterns; and (3) accounting for
correlation in unobserved factors (Train, 2003,208ensher and Greene, 2003).
The RPL approach relaxes the strong assumptiamdepiendent and identically
distributed (i.i.d.) error terms, which correspomalshe behavioural property of
independence of irrelevant alternatives (ll1A) (Reaad Train, 1998). The
consequence of assuming that error terms arehdistd i.i.d. is that it does not

allow for the error components of different altérmas to be correlated. To
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account for this correlation, the unobserved partibutility (i.e., error
components) is partitioned into two additive tenuigere one term is

heteroskedastic and correlated over alternatiggsahile the other is i.i.d. over

alternatives € ) as show in Equation 3.1

Unjs = BXnjs + [1injs + €njs] (3.1)
wheren is the first random term with zero mean and wittrtbution over
individuals and alternatives depends on underlpagmeters and observed data
relating to respondemtselecting alternativein choice ses; ¢ is the second
random term that is i.i.d. extreme value Type tribsited (Hensher and Greene,

2003). Then may be assumedlpriori to have a particular distribution, which

can be assumed to be normal, lognormal, truncaigdal, triangular, Weibull
and exponential (or any other). Assuming normallagdormal distributions can
be problematic as the former is sensitive to “wrasigns (e.g., positive cost
coefficient) while the latter exhibits fat tailsr@in and Weeks, 2005). These
properties are relevant to the current study afimgl biodiversity enhancements
where taste intensities are expected to be poddivearious improvements from
the status quo. After evaluating the estimates faomumber of specifications and
distributional assumptions, we found the boundehgular distribution as
described in Hensher et al. (2005) was the mosoagpite approach for this
exercise. We employed an RPL model with a panadipation that facilitates

the estimation of individual specific WTPs (Tra2909).
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3.4.2 Error components RPL model

Although the RPL model, as mentioned above, acsdontindividual
heterogeneity, it still does not account for stajus effects. In CE for
environmental valuation, a typical choice task ¢stsf three alternatives: a
status quo alternative (hereby called SQ) thateseag the reference point (e.g.,
current condition) and is held fixed across allichdasks; and two alternatives
depicting a scenario different from the status witb attribute levels generated
from an experimental design. Respondents are licetpnsider the SQ utility in
a systematically different manner from the utibit§sociated with the designed
alternatives because SQ is experienced while thigmed options are
hypothetical (Scarpa et al., 2005). The utilitiesided from the two designed
options would likely be more correlated betweenrtbelves than with the utilities
derived from SQ. This correlation structure carabeounted for by specifying a
RPL model with additional errors that consider difeerence in correlation across
utilities (Herriges and Phaneuf, 2002). Specifyiinig RPL model with the
additional error component addresses SQ effeatspasted in previous studies
(e.g., Samuelson and Zeckhauser, 1988; HaaijeB; ¥®&aijer, et al., 2001).
Given the three alternatives for each choice taghis choice experiments

exercise, the error component model may be spdcifié"

U(sq) = Asc+ X, + £ (3.2)
U (Cl) = 18>(Cl + ycl + Ecl (33)
U (C2) = IB>(C2 + ch +£c2 (34)

In equations 3.2 to 3.4, we excluded the subsomjstthat are shown in Equation 3.1 for a
parsimonious presentation. Subscjipgpresents th' alternative which can either Isg c1, c2.
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wheref represents a vector taste parameters for biodiyershancements which

can either be random or fixedscaccounts for the systematic effect on SQ);
represents the unobserved component of utility exineme value Type |

distribution; andy is a normally distributed error component withaerean that
applies to changed alternativeilsandc2. An important feature oy is that it

allows flexible patterns of substitution throughiaduced correlation structure
across utilities amongst designed alternativesrfacet al., 2005; Scarpa et al.,
2007)* The RPL error component (RPLEC) logit model maycbnsidered as
an analogue of the nested logit model as it allfmwgorrelation of utilities across
alternatives in the same nest but different cotiggleacross nests. But unlike
nested logit, the RPLEC model relaxes the IIA agstion within alternatives of
the same nest. For this exercise, we employed BidER with panel specification
which implies that the additional error componenthie same across the choices

made by the same individual (Scarpa et al., 2005).
3.4.3 Panel random effects regression models

To determine the factors that influence the indraldmeans of the marginal WTP
estimates we employed the panel random effectesemgmn models. The formula
for simulating individual specific marginal WTPsaashere was proposed in
Greene et al. (2005) and was applied in Scarph @04.1b). The random effects
models can address two important problems of csestional data analysis,

namely: unobserved heterogeneity and omitted vieriaias'® Panel models can

2 Note that/7 in Equation 3.1 is different frony in Equations 3.3 and 3.4. Tk accounts for
the correlation of all three alternatives whijle is an additional error term of the RPL model that
induces the correlation amongst changed alterrstivandc2.

'3 More information on panel data analysis can badon Baltagi (2008) and Greene (2008).
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control for unobserved heterogeneity by accourfiongt as having either a fixed
or a random effect. In this study, random effectelets are used to account for
the correlation of WTPs across attributes for easpondent. Random effects
models also allow researchers to control for cergies of omitted and
unobserved variables where omitted variables aegdd to be different between
respondents but constant across different biodiyegehancement outcomes. The

panel random effects approach employed here igideddan Campbell (2007).

Panel data models can account for systematic ggtiapts. In this exercise,
we create a variable that contains a 10-periodlpnedividual specific WTP
estimates for the 10 biodiversity enhancementaitei levels (e.g., responderd
WTP for a level one increase in the number of fladceighted). This represents

the dependent variabld/,.. The panel model can be specified as:

W, =a,+y A, +B'X,+0d'S, +¢,, (3.5)
whereW,, represents a panel vector of respondent-specdans of marginal
WTPs for attribute leved for respondem, @, represents independent random
variables with constant mean and variangg,is a vector of indicator variables
for k —1attribute levelsX, represents a vector of socio-economic charaatesjst
attitude and indicator of affiliations reported i®gpondent, S, is a vector of the

natural log of areas of large planted forests ithetuwithin a particular unit of
radius from respondent(e.g., 10 km radius, between 10 and 50 km radius,

between 50 and 100 km radius).

The dependent variabli,, is derived from the estimates of the best fitting

model where we calculated the respondent-speciians of the marginal WTP
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distributions for each of the 209 respondents ane#&ch of the 10 attribute
levels. We then regress those values on socio-eaonattitudinal, affiliation and
spatial covariates in the form of a 10-period paoelccount for dependencies of
the values from the same respondent. UnlikeNhgthat varies within a
respondent, the four groups of covariates mentiabede are fixed for the 10-
period panel for each respondent. For examplanttieator for gender of
respondenih remainshe same for the 10-period panel. To control ferdffect of
the 10 different WTPs for particular attribute Isyave included a vector &f -1
indicator variables with one attribute level segvas reference to avoid the

dummy variable trap.

We start with the fixed effects regression folloWey the random effects
to explore the determinants of the means of thegmakWTPs. This is to identify
patterns of sensitivity of estimated individual meaf marginal WTP to both
personal and spatial characteristics of respond&hts study therefore attempts
to enhance the theoretical validity of the hypattetsurvey on the value of

improving existing biodiversity services in plantedests.

3.5 Data summary

Data used for discrete choice analysis consisd8frespondents who provided
valid responses to the choice experiments questiimsice responses from these
209 respondents provided 1850 choice observatitimswvare referred to in
Chapter 2 as thialll data set Table 3.2 shows that the sample of respondents is

slightly biased towards the high income group asalestrated by the 34% of the
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respondents having an income above $100,000 wiel&lew Zealand population

averaged 22%.

Table 3.2: Income distribution of respondents verssithe national proportion

National Proportion reported by

Household income Proportion of Respondents Statistics New Zealand
$20,000 or less 8% 9%
$20,001-$30,000 11% 13%
$30,001-$50,000 17% 20%
$50,001-$70,000 12% 19%
$70,001-$100,000 17% 19%
$100,001 or more 34% 22%

TOTAL 100% 100%

Table 3.3 presents a summary of the socio econandattitudinal
characteristics of the 209 choice respondents. A% of the respondents had
tertiary or post graduate education while 64% weneale. These proportions are
slightly higher compared to the national proporsiah 40% for higher education
and 51% for female. A small proportion of resportdeaported they were
volunteers to conservation organizations such asstand Bird and New
Zealand Government’s Department of ConservationGR@ne out of five of the
respondents wanted to include the Tui bird, a popubn-threatened native bird,
in the choice tasks. Respondents were asked aimiuattitude toward supporting
the proposed biodiversity programme and we fouatl @dhe out of five had a
“Government-should-pay” attitude. As respondentsawmovided with a
description of the proposed programme and a walkitih of how to select the
preferred alternative in each choice task, we asket respondent to rate his/her
level of understanding of the choice questions &itenpleting the nine choice

tasks. Twenty-one percent of the respondents gaatng of 10 indicating that
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they completely understood the choice questionss klean half (42%) gave a

rating between five and seven while 11% gave agatf four and below.

Table 3.3: Summary statistics of socio-economic arattitudinal covariates

Item Percentage of SNZ National

respondents Proportion

Completed higher education 44% 40%

Female 64% 51%

Forest and Bird member 8% --

DOC volunteer 3% --

Tui should be in the choice set 21% --

Government should pay 18% --

Self-rated understanding of CE questions (“10” espnts “completely
understood” and “1” represents “did not understanall”)

—-8to0 10 47% --
-5t07 42% --
-1to4 11% --

Table 3.4 presents a summary of the spatial vasalded as covariates in the
random effects panel regression analysis. We |ddat geo-spatial referenced
coordinates of only 115 choice respondents. Wendidind the coordinates for
the other 94 choice respondents due to severamsasghich include insufficient
details of the address provided and respondergd liva very rural area. Of the
115 spatial choice respondents, 28 (24%) were fooite situated less than 10
spatial kilometres away from large planted foregth an area of at least 5,000
hectared? Using ESRI ArcMap 10.0, we intersected a 10-kilomeadius for
each respondent’s spatial coordinate with the aligimapped areas of large
planted forests in New Zealand. The intersectieulted in the identification of
forest areas included in the 10-kilometre radiusath of the 28 respondents with

areas ranging between 17 and 14,000 hectares. Abtuif the respondents lived

4 We assumed that 5,000 hectares of planted fonestil be sufficiently large to provide habitat
to threatened native species like the falcon ahdratative species (e.g., bush robins, native fish)
In addition, large planted forests also form a knaghe view where people would be able to
recognise their presence. Furthermore, a largstfarea would likely provide connectivity
between areas with native forests therefore carnttrig to biodiversity service.
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in areas with large planted forests situated betvi€e and 50-kilometre radii.
While 25% of respondents lived in properties whare could find large planted

forests between 50 and 100 km of spatial distance.

Table 3.4: Summary statistics for the three spatiatovariates

Spatial Covariate Area of planted Number of
forests within the  respondents (% of 115
radius (hectares) respondents with

spatial coordinates)

10-km radius 28 (24.4%)

— Average 3,936
— Minimum 17
— Maximum 14,000
Between 10- and 50-km radius 58 (50.4%)
— Average 40,175
— Minimum 1,900
— Maximum 220,000
Between 50- and 100-km radius 29 (25.2%)
— Average 62,334
— Minimum 6,200
— Maximum 770,000

The 10, 50 and 100 km buffers in Table 3.4 aboveewhosen to represent
different types of visits that would have an imption on the use value of planted
forests. Respondents living within the 10 km buffeuld be able to visit the
planted forest either by bicycle or a short driZkose living within the 50 km
buffer but beyond 10 km would likely be able to makday trip. Those beyond
the 50 km buffer but within the 100 km buffer wolnd at the border of a one day

trip and might require a place a spend the night.

While we accounted for the distance of planteddtsréo respondents, we
elected not to study in detail the impacts of soeweeational attributes as we
mentioned at the outset that this study focusegtiring biodiversity

enhancement. As some planted forests like Whakaesveain Rotorua and
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Woodhill in Auckland offer recreational facilitissich as walking trails, mountain
biking tracks, tree adventures and horse ridingksgDhakal et al., 2012;
Auckland Council, 2011), we opted not to colleagd data for this study.
However, | plan to examine those attributes sggtialmy future research work
at Scion which include valuing avoided erosion #releconomics of tangibles

and intangibles.

3.6 Results
3.6.1 Logit models

We analysed the full choice data set with 1850 @hobservations using four
logit models. Model 1 is the basic conditionalitd@L) model where estimated
coefficients for both environmental and cost atités demonstrate the expected
signs (i.e. negative sign for cost, positive signrharginal utilities) (Table 3.5).
The coefficient for the indicator for SQ is posgtilaut not significant. This might
indicate that there is no additional utility assbed with the status quo over and
above that associated with its attribute level®e Gbnditional logit model imposes
the restrictive 1IA assumption which assumes thlaeapondents have the same
preference (Greene and Hensher, 2003). To relaashiemption of preference
homogeneity, we estimate Model 2 which is a La@ass logit model with panel
specification (PLCM) that assumes that a samplesgondents would have
different types of preferences that can be grouptedatent classes or class
memberships (Heckman and Singer 1984; Greene anshidg 2003). Following
the panel latent class framework in Scarpa ek@D9) we estimate the class
memberships of different groups of respondentsasedhe attributes that they

likely did not attend to. Under this approach, tbefficients of those particular
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attribute levels are constrained to zero followanigitent class logit model
framework. Initially, 20 latent class logit mode¥gh different latent classes were
estimated. The PLCM estimates reported in Moddl Bable 3.5 has the best
model fit among the 20 specifications tested axatdd by the lowest normalised
AIC of -1.154. Appendix Table 1 shows the AICsloé 20 latent class model
specifications distributed into two groups: 10 srgection and 10 panel
specifications. The panel type specification exbibbiower normalised AIC
values not exceeding 1.28 compared to the high€sAf cross sectional models
(always above 1.93). The cross section specifisaifd.C Model 5 has the
highest normalised AIC (worst model fit) while thanel LC Model 5 has the
lowest AIC (best model fit). The improvement in nebft in the panel
specification (versus cross-section) suggeststtisimportant to take into
account that the process of evaluating choicesdskrespondem is correlated

to the way one evaluates other choice tasks is¢hes assigned to him/her.

Going back to the coefficient estimates in Modeh2, coefficient for the
SQ indicator is negative and significant, indicgtthat a typical respondent
derives more utility by choosing the changed alitwe or enhanced biodiversity
level than the current condition. In terms of néteradance to choice attributes,
Model 2 results suggest that about one-third oféspondents ignored the cost
attribute. This is consistent with Scarpa et 200@ which report that cost is one
of the most non-attended attribute in a choice.tigkldel 2 estimates also suggest
that 37% of the sample ignored the SQ option, 28¥ndt attend to less iconic
species (i.e., kokopu (native fish), kakabeak (eaplant) and gecko), while 6%
ignored all attributes. Non-attendance to SQ isistent with the negative

coefficient for the indicator of SQ, which meanatthrespondents on average
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would be more satisfied with the creation of a q@@gramme that aims to
enhance the level of biodiversity in planted fose®Vhile more than half of the
respondents have still attended to the SQ opti@electing the preferred
alternative in a choice task, about 37% might rerely ignored it because they
elected to focus more on the changed options tlegsepted combinations of
mostly higher attribute levels while attribute lessan SQ are fixed and represent

the lowest attribute level.

Although Model 2 provides interesting results reljyag attribute non-
attendance, the coefficients for the changed ledellse less iconic species are no
longer significant while in Model 1 the coefficisrfor Native Fish 1 and Native
Plant 2 are positive and significant. To addressitsue, we employed the
Random Parameters Logit (RPL) model with panelifipation that accounts for
individual heterogeneity. Compared to LCM, RPL &k#o account that each

respondent has a unique set of preferences famnieonmental good in question.

Before finally settling with the RPL specificatioeported in Model 3, we
first determine the superior RPL model specificafimm among a series of
preliminary RPL models. First we ran an RPL modeére we assume that all
utility coefficients are random. From there we itiignwhich random coefficients
would likely have significant effects to utility bynning different model
specifications. Out of the more than 20 differgregcfications tested, we
identified four random parameters to have significzffects. We also identified
the suitable distributional assumption of these famdom parameters by testing
on normal, log normal, uniform and triangular dmitions. The triangular
distribution resulted to the best model goodnedt @fe., highest log-likelihood

value) with the log-likelihood value of -1034.95ngpared to -1035.93 for normal,
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-1089.23 for uniform, and -1811.48 for log nornhe selection of the triangular
distribution is also based on Train (2009 p. 13Bjcl states that “The triangular
distribution has positive density.. ... taking thenficof a tent. ... These densities
have the advantage of being bounded on both diue®by avoiding the problem
that can rise with normals and log normals havingeasonably large coefficients
for some share of decision makers.” The triangdistribution is also known for
avoiding the allocation of shares to extreme vabfeefficient, which is a

drawback in other distributional assumptions, sa€in the normal or log-normal.

From the above series of tests for RPL, we settiéida preferred RPL
model with four random parameters that are assumbdve triangular
distributions. The cost parameter is assumed te hasonstrained triangular
distribution wherein it has been constrained toégative with an upper limit of
zero. The three other random parameters were mstrained. The standard
deviations of the four random parameters are sagmf at the 5% level indicating
taste heterogeneity. The coefficients for chandetates for Native plant 1,
Native plant 2 and Native fish 1 are positive algghificant while the coefficient
for Gecko remains not significant similar to ModeHowever, the RPL panel
model in Model 3 does not account for SQ effectsisTwe employed Model 4 to
induce the correlation amongst SQ and the chanligethatives as described in
Scarpa et al. (2006). Estimates for Model 4 in@i@astrong correlation between
the two changed alternatives as indicated by tle#icent for the error
components being positive and significant. Modesifynificantly improves with
the addition of error components as exhibited leysilgnificant increase in the
log-likelihood value from -1,035 in Model 3 to -9891Model 4. Although the-

values in Model 4 remained virtually the same asladel 3, the magnitude of the
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coefficient for cost in Model 4 is significantlywer, while the coefficients for the
environmental attributes remain virtually the safftas translates to higher WTP
for biodiversity enhancement. This implies that RfeL panel with error
components model better allows the accounting ahghs in attribute levels by
inducing the correlation between the changed ateres. We therefore used
Model 4 estimates to simulate the median WTP valaswe subsequently used
to compute for the aggregated WTP as describdukiméxt section. We also used
Model 4 to estimate the individual specific WTPues that we included in the

construction of the panel data to identify the deteants of WTP.

As an aside, it is also important to mention trstineates of utility
coefficients for native fish levels 1 and 2 in TaBL5 demonstrate pattern of lack
of insensitivity to scope. This is indicated by quete insensitivity to higher
levels of fish protection. Lack of sensitivity toape (sometimes called &€k of
sensitivity toscalg has been identified as a potential issue in ogetit valuation
and in choice experiments (Ryan and WordsworthQ2B0ster and Mourato,
2003; Goldberg and Roosen, 2007; Rolfe and Win@l® Although we are
aware that this chapter is more policy orientaitedhat the issue of insensitivity
to scope may not be important (Ryan and Wordsw@fn0), we still attempted
to address this issue by using a non-linear codppgoach callegiecewise linear
coding(PWLC). PWLC captures the sensitivity within timéervals as well as
enforces continuity and weak monotonicity of thiitytfunction (Bierlaire,
2008).

PWLC is different from dummy coding. In dummy coglinve can assign
two dummy variables (e.g., Kiwil, Kiwi2) per attute with three levels. For

status quo these two variables can be assignedataspvalues (0,0), for level 1
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increase in abundance (1,0), for level 2 incre@sB.(From dummy coding, one
can create PWLC variables by using the Kiwil an@iRito generate a new
variable which is defined as Kiwila = Kiwil + KiwiErom here the analyst
would now need to use Kiwilb and Kiwi2 for eachetievel attribute. However,
the interpretation of estimates from PWLC is difier because Kiwila is now
also shared by Kiwi2.

Appendix Table 2 shows the estimates for Models 4 where we used
PWLC. Comparing the estimates for Model 4 with PWb@odel 4 with
dummy coding in Table 3.5, the coefficients for Brokiwi 2 and Bush falcon 2
(of the former) are no longer significant. We iptext the PWLC coefficients for
level 1a (e.g., Brown kiwi 1a) differently compareddummy coding because
Brown kiwi 1a now relates to both levels (Brown kilvand Brown kiwi 2).
Results from PWLC show a pattern of a big jump vatlel 1a of improvement
(e.g., Brown kiwi 1a) while the coefficient for tsecond level (e.g., Brown kiwi
2) are never significant meaning that they dopmotluce further benefits. These
results are actually more consistent with utilitga@ry in economics. Although
model estimates in Table 3.5 using dummy codingidebetter statistical
estimates, estimates in Appendix Table 2 provideebeesults from the stand

point of economic theory of utility.
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Table 3.5: Estimates of logit models (n = 1850 cite observations)

Item

Model 1

Conditional Logit

Model 2

Latent Class Logit Panel

Random Parameters Logit Panel

Model 3

Model 4
Random Parameters Logit Panel
with Error Components

Coef

Std err

Attributes and SQ p-value Coef Stderr  p-value Coef Std err  p-value Coef Std err  p-value
Brown kiwi 1 0.504 0.098 <0.01 0.669 0.121 <0.01 0.921 0.141 0%kO. 0.898 0.137 <0.01
Brown kiwi 2 0.622 0.095 <0.01 0.818 0.123 <0.01 1.094 0.138 0XkO. 1.048 0.128 <0.01
Native fish 1 0.287 0.093 <0.01 0.163 0.131 0.21 0.330 0.134 0.01 0.307 0.153 0.04
Native fish 2 0.143 0.095 0.13 0.024 0.138 0.86 00.2 0.138 0.15 0.138 0.145 0.34
Native plant 1 0.145 0.094 0.13 0.181 0.136 0.18 0.348 0.138 0.01 0.343 0.163 0.04
Native plant 2 0.210 0.094 0.03 0.129 0.130 0.32 0.299 0.143 0.04 0.329 0.161 0.04
Green gecko 1 0.017 0.093 0.86 -0.115 0.135 0.40 .0470 0.139 0.74 -0.053 0.135 0.70
Green gecko 2 0.092 0.093 0.32 -0.061 0.139 0.66 0.003 0.164 0.99 0.124 0.159 0.43
Bush falcon 1 0.453 0.098 <0.01 0.476 0.120 <0.01 0.860 0.145 0%kO. 0.909 0.147 <0.01
Bush falcon 2 0.700 0.094 <0.01 0.914 0.122 <0.01 1.178 0.153 <0.01 1.188 0.147 <0.01
Status Quo Indicator 0.177 0.158 0.26 -5.864 0.504 <0.01 -3.767 0.318 <0.01 -1.594 0.637 0.01
Cost -0.025 0.002 <0.01 -0.123 0.011 <0.01 -0.169 0.013 <0.01 -0.063 0.004 <0.01
Attribute non-attendance

Ignoring cost 0.347 0.133 0.01

Ignoring status quo 0.369 0.158 0.02

Ignoring non-iconics 0.227 0.060 0.00

Ignoring all attributes 0.057 0.020 0.00

Random Parameters

Bush falcon 2 1.755 0.500 <0.01 1.606 0.658 0.01
Native plant 2 1.244 0.538 0.02 1.446 0.557 0.01
Cost 0.320 0.023 <0.01 0.063 0.004 <0.01
Green gecko 2 2.197 0.493 <0.01 1.369 0.520 0.01
Error Component 7.652 1.005 <0.01
Log-likelihood -1785.14 -1052.57 -1034.95 0FB

Normalised AIC 1.943 1.154 1.136 1.088

McFadden Pseudo’R  0.116 0.482 0.491 0.512

Notel: Values iitalics represent coefficient estimates for random parerset
Note2: Values ioldface fontrepresent estimates statistically significant%tlBvel.
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Another issue worth mentioning is that in Chaptéor2 Pages 41 and 42 of
this thesis), we can divide the full sample int@ t@gional groupings. We got
66% of the full sample from Group 1 regions (regiaith a large proportion of
planted forests) and 34% from Group 2 regions ¢regjiwith a small proportion
of planted forests). We therefore estimate Model Bable 3.5 using split
samples of Groups 1 and 2 respondents. We prdses# model estimates in

Appendix Table 3.

Both Groups 1 and 2 sub-samples appear to vahetsl&é and 2 increases in
abundance of brown kiwi and bush falcon in plaritedsts. However, it appears
that only the group who lived in regions with aglar proportion of planted
forests, controlling for other factors, would havsignificant increase in utility
relative to status quo if a biodiversity programwuld be implemented. This
might indicate that the presence of more forestgeater accessibility to planted
forests could be an important factor for considersif there is a need to prioritise

regions for biodiversity enhancement.

However, despite Appendix Tables 2 and 3 provatemates that address
insensitivity to scale as well as heterogeneitpsgiregional groupings, we lost
the statistical significance for non-bird attribsit€ompared to Model 4 in Table
3.5 with nine utility coefficients being statistilyasignificant, in the Appendix
Table 2 only four utility coefficients are statesdlly significant, while for the split
samples in Appendix Table 3, only five or six caméints are significant. As
Model 4 results using the full sample in Table @Bnonstrate superior statistical
properties we elect to use these estimates inrndation of marginal WTPs and

aggregation.
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3.6.2 Median and aggregate WTPs

As Model 4 in Table 3.5 provides the best modehdiindicated by the lowest
normalised AIC and highest Pseudoa@ong the models, we simulated the
median WTP (or the 30percentile) for each attribute and the correspomdi
confidence intervals around the median using M@##do simulation with 10,000
random draws following the R-code described in mbiand Scarpa (2009). We
simulated median WTPs instead of mean WTPs bec¢hadatter cannot be
simulated when the cost coefficient is distributeginormal, triangular or
constrained triangular as suggested in Daly, €28llL1). In that recent paper, it
was mentioned that “the moments of the WTP distidoumight not exist for a
given distribution of the cost coefficient” whichalude the constrained triangular
distribution that we used in this present study. thts present study, simulated
median WTPs suggest that the two most valued attrilevels are level 2
increases in Falcon ($19/year) and Brown Kiwi ($&@f) (Table 3.6). We also
report the 95% confidence interval around the methNa P for more falcons ($17
to $21) and kiwis ($15 to $18) that we derived fribra simulation exercise. A
level 1 increase in the number of endangered natevt kakabeak and the native
fish kokopu were also valued at around $5/yeafiferyears through an addition

in the amount payable to income tax.

Table 3.6 also shows the total WTP of a typicgboeslent for increasing
the abundance of threatened native species isx@ppately $65 per year for five
years. This total WTP also includes the willingnespay for the development of
a new forest biodiversity programme of approxima®5 per year. If the sample
of respondents represented the New Zealand populatitaxpayers, we could

simply multiply the total WTP per year by the totaimber of people who pay
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their annual income tax. However, that would besédh In addition, the
elicitation method used was based on a hypothetieaket. Therefore, in
aggregating the WTP values to the national levelaacounted for two of the
major sources of biases as mentioned in the spaiefdrence literature. These are
hypothetical (List and Gallet, 2001) and aggregafidorrison, 2000) biases. List
and Gallet (2001) suggest that hypothetical WTPIld/bkely be two to three
times as the actual WTP. To account for this biagiivided the hypothetical
WTP by two'® Table 3.6 shows the discounted WTP values for aticbute
where the WTP for the level 2 option decreasedtut$33 per year for five
years. Morrison (2000) suggests that one way toesddaggregation bias is to
consider survey non-responses to have WTP of Eercevery 100 surveys we
sent out, 43 completed surveys returned, thusponse rate of 43%. We
therefore assumed that 57% of the New Zealand yexpdnave a WTP of zero.
As of 2006, New Zealand had a total of 3 milliordayers. As we have a
response rate of 43%, we multiply 3 million by 48%ihe total taxpayers which
is 1.29 million. We have also taken into accotmat in our sample of 209
respondents, only 64% of them were taxpayers as p#ople were retired,
students or homemakers. From this sample proposermultiply 1.29 million

taxpayers by 64% which results to 825,600 williagpayers.

Overall, the aggregated WTP values for a LevelcPeiase in threatened

species amounted to a national value of about $28lidn per year for five years

!> As we have included a cheap talk script in thedeson of the choice experiment scenario, we
assumed that the script addresses the upward WAEP\vie therefore opted to multiply the
hypothetical WTP by 0.50 instead of 0.33.
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(with present value of this five-year annuity atrethan $100 milliorif. It is
envisioned that the amount will be used to fundpitegosed five-year
biodiversity enhancement programme only and witlgaver administration fees.
If the biodiversity enhancement programme manageted to focus only on the
more visible and more popular bird species (i.@wn kiwi and bush falcon), the
national WTP value for a level 2 increase corresigsdn about $22.3 million per

year for five years.

'8 present ValueRV,) of a five year annuity was calculated using ieniula

An V1] o
PVA = A[Kl— ((1+ I)n) )[ﬂ 1J whereA represents the aggregated annual Wi®the annual
interest rate of 8 percent, ands the number of years (n = 5 years).
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Table 3.6: Simulated WTP estimates from Model 4 andggregated to the national level

All Attributes

Threatened Species

(in NZ$/year for five years)

Bird Species Only

(in NZ$/year for five years)

Non-bird species
(in NZ$/year for five years)

Level 1 Level 2 Level 1 Level 2 Level 1 Level 2
14.26 16.64 14.26 16.64 - -
Brown Kiwi (12.46 - 16.10) (14.89-18.45) (12.46 —16.10) (14.89-18.45)
4.87 NS - NS 4.87 NS
Giant Kokopu (3.00-6.78) (3.00-6.78)
5.45 5.22 - - 5.45 5.22
Kakabeak (3.45-7.48) (3.25-7.23) (3.45-7.48) (3.25-7.23)
Green gecko NS NS NS NS NS NS
14.43 18.86 14.43 18.86
Bush falcon (12.52-16.39)  (16.85-20.93)  (12.52-16.39)  (16.85-20.93)
25.28 25.28 25.28 25.28 25.28 25.28

Indicator for changed alternative (17.36-33.46)

(17.36-33.46)

(17.36-33.46)

(17.36-33.46)

(17.36-33.46)  (17.36-33.46)

TOTAL 64.29 66.00 53.97 60.78 35.60 30.50
Discounted WTP per taxpayer (50%) - to account
) ) 32.15 33.00 26.99 30.39 17.80 15.25
for hypothetical bias
Aggregated annual WTP (multiplied by 825,600
willing NZ taxpayers) 26,538,912 27,244,800 22,278,816 25,089,984 14605, 12,590,400
Present value of five annual payments (PV 105,962,180 108,780,586 88,952,852 100,177,031 75&%69 50,269,816

Note 1: “NS” means not significant at the 95% cdefice level.

Note 2: Figures in parentheses represent simu@iée confidence intervals of median WTP.

97



3.6.3 WTP determinants

Using the specification in Model 4 in Table 3.5,ig¥his the RPLEC panel model,
we estimated individual-specific means of the cbadal distributions of

marginal WTPs. As each of the 10 means of WTP dcheaespondent would
likely be correlated, we used panel random effesgsessions to explain patterns
of variation. In the set of explanatory variablésh@ random effects models, we
included indicator variables fé&1 changed attribute levels to control for WTP
variation within each respondent. We explore the ob socio-economic, attitudes
and spatial characteristics of each respondemdimidual specific WTP values.
Table 3.7 presents the estimates for three pandbra effects regression models.
Model A includes socio-economic and attitude caatas. It has 161 respondents
each with 10-period panel (or observed 10 timekg fEduction from the full
sample size of 209 to 161 respondents is becaus®l mespondents provided
data on these covariates. Because we have maipipgead a mail survey, some
respondents did not report their highest educattiatt@inment. Others did not
complete page 18 of the questionnaire which coaletprovided the data as to
whether they were DOC volunteers or Forest and Biedhber. This created gaps
in the socio economic data that resulted to théusian of 48 respondents in the

panel random effects regression for Model A.

Model B has the same set of covariates as ModeltAvith a reduced
sample size that matches the sample size in Modat@nentioned earlier, the
spatial coordinates for some respondents wereogatdd due to insufficient data

on addresses of respondents especially those whpleted the survey online
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whose home addresses were not verified. As a rékalsample size was reduced

to 1110 observations for the model with spatialac@tes.

Estimates in Models A, B, and C suggest that haiengary education as
highest educational attainment has a significamblyitive effect of about $1.25 to
$3.10 on median WTP. Similar to the results ofgheel random effects
regression in Campbell (2007), results from Modedulygests that being female
positively influences WTP where a typical femalsp@ndent would contribute
approximately $2.00 more than male. However, kegfiie variabld-emalein
Model B, which used a smaller sample, resultechtmsignificant coefficient
estimate. Keeping the variable female in Model €lilted to the panel random
effects regression model not converging as indithtea note in NLOGIT saying
“Error 249: Random effects. Did not find positiv&ienated component.” We

therefore dropped this variable in Model C.

Estimates from Model C indicate that being affditvith or serving as
volunteers for conservation institutions such asdnd the environmental NGO
Forest and Bird has even greater positive sigmfiesof approximately $9.16. As
expected, having a negative attitude towards dautirig a dollar amount for
biodiversity (i.e., having a “Government should paititude) significantly
reduces WTP by about $3.00. Having a good levahakrstanding of the choice
questions, from a self-rated scale of 1 to 10, @@las the highest rating,
indicates that an increase in one level of undeditg increases WTP by $0.41.
Interestingly, respondents who would like to in@utle non-threatened but
popular native bird Tui also demonstrate a posinagginal impact on median

WTP of about $1.26 (significant at the 15% level).
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The main highlight of the estimates in Table 3.thie coefficient estimates
for the spatial covariates. Including the thredigpaovariates in Model C
significantly increases the log-likelihood valuerfr -4233 in Model B to -4222 in
Model C. The calculated likelihood ratio test sitti of 23.06 between the two
models exceeds the critical chi square value @71t the 99.9% confidence
level. Thus, the null hypothesis that individua¢sific WTPs for biodiversity
enhancement are not a function of geo-spatial mtistaf respondents from large

planted forests is strongly rejected.

Using the group of respondents who lived more @ kilometres away
from large planted forests as reference, the aoeffi for the 10 km radius
suggests that a respondent living close to largetet forests would be willing to
pay $0.17 more for biodiversity enhancement theespondent living further
away. This is consistent with the results from pras studies suggesting some
form of distance decay in environmental use va(eaes Bateman et al. 2006;
Pate and Loomis, 1997). This is because, as mediearlier, a person situated
within a 10-km radius can have better access &némlanced forest biodiversity
(biking distance or less than a five-minute drioete site). This somewhat
indicates that a respondent situated close tordqugorest has both use and non-

use value for the enhancement of the resource.

Estimates in Table 3.7 indicate that the WTP oinaividual living in a
place with large planted forests beyond the 10rkétre radius (i.e., 10- to 50-
kilometre radius) does not increase with biodiwgrenhancement. A possible
reason for this is that people perceived that titergial to benefit is low as they
live further away. People living within this rangeem to be concerned more

about option value than direct use value.
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In terms of respondents living in places where fgdriorests had a spatial
distance between 50 to 100 kilometre radii, thaypaestrate a pattern of increase
in WTP of $0.15 per respondent for biodiversity amtement. This might
indicate the presence of non-use value wherebynegmts who reside very far
away from planted forests would be willing to pagmaby simply knowing that
the habitat was enhanced to increase the abundétiveatened species even
though they might not be able to visit those foegstis. However, the estimate for
Between 50- and 100-km radiigssignificant only at the 81% confidence level

and therefore statistically weaker than that ferit-kilometre radius
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Table 3.7: Panel random effects model parameter astates

Model A
Model with Socio-economic Covariates

Model B

Model with Socio-economic Covariates

Reduced sample size

Model C
Model with Socio-economic and Spatial
Covariates — Reduced sample size

Coeff Std Err p-value Coeff Std Err p-value Coeff Std Err p -value
Indicator for attribute level
Brown kiwi 1 23.234 1.167 <0.01 24.399 1.483 <0.01 24.399 1.457 <0.01
Brown kiwi 2 26.907 1.167 <0.01 28.256 1.483 <0.01 28.256 1.457 <0.01
Native fish 1 8.799 1.167 <0.01 9.241 1.483 <0.01 9.241 1.457 <0.01
Native fish 2 4.657 1.167 <0.01 4.891 1.483 <0.01 4.891 1.457 <0.01
Native plant 1 9.677 1.167 <0.01 10.162 1.483 <0.01 10.162 1.457 <0.01
Native plant 2 8.842 1.167 <0.01 9.426 1.483 <0.01 9.426 1.457 <0.01
Green gecko 2 4.477 1.167 <0.01 4.839 1.483 <0.01 4.839 1.457 <0.01
Bush falcon 1 23.496 1.167 <0.01 24.674 1.483 <0.01 24.674 1.457 <0.01
Bush falcon 2 29.228 1.167 <0.01 30.472 1.483 <0.01 30.472 1.457 <0.01
Socio-economic covariate
Tertiary 1.264 0.595 0.03 3.098 0.827 <0.01 2.393 0.851 <0.01
Female 1.963 0.553 <0.01 0.535 0.728 0.46 - -
Forest and Bird 6.194 1.014 <0.01 8.324 1.192 <0.01 9.165 1.176 <0.01
DOC Volunteer 10.930 1.706 <0.01 9.012 1.841 <0.01 8.675 1.787 <0.01
Understanding of CE questions 0.310 0.114 0.01 0.344 0.148 0.02 0.410 0.149 0.01
Tui should be in the choice set 3.308 0.641 <0.01 1.838 0.799 0.02 1.257 0.798 0.12
Government should pay -2.755 0.692 <0.01 -2.968 0.866 <0.01 -2.968 0.850 <0.01
Constant -3.956 1.162 <0.01 -5.149 1.490 <0.01 -6.477 2.723 0.02
Spatial Covariate
Log of forest area in 10-km radius - - - 0.168 0.051 <0.01
Log of area in 10-50 km radius - - - -0.049 0.098 0.62
Log of area in 50-100 km radius - - - 0.147 0.110 0.18
Log-likelihood -6023.50 -4233.07 -4221.54
Pseudo R 0.513 0.517 0.527
No. of observations 1610 1110 1110

Note: Values irboldface fontrepresent estimates statistically significant%tIBvel.
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3.7 Conclusions and policy implications

Results from data collected from 209 choice respatglacross New Zealand
indicate that a typical respondent values biodiyeenhancement in the
country’s 1.8 million hectares of planted forestspecially those in large planted
forests. An aggregate WTP of NZ$26.5 million pearytor five years would be
paid through income tax to fund a proposed biodtgenhancement programme
that aims to increase the abundance of threatqreses seen or heard in planted
forests’’ This study provides empirical evidence that NewlZeders would
collectively be willing to financially contribute @nsiderable amount to
biodiversity enhancement in planted forests. Thiemds previous study by Yao
and Kaval (2010) that New Zealanders would be Warfbiodiversity
enhancement on private land by demonstrating thext & exotic planted forests
they still value habitat enhancement for threatespegties. The estimated value
may be useful not only for future policy decisioaking but also to satisfy the
growing interest of large corporations in incorgorg ecosystem services values

in business plans (TEEB, 2010; WBCSD, 2011).

Both socio-economic and spatial factors are foendftuence individual
specific means of marginal WTP estimates. Thosesifgaificantly contribute
positively to WTP are affiliation to conservatiorganisations, higher education,
and having an appreciation of native birds. Thbs¢ ¢ontribute negatively to

WTP include an attitude of reliance mainly on tlo@grnment to fund the

" perhaps a way to check for the robustness ofstimated WTPs is to include an option in the
Internal Revenue Department’s (IRD’s) income taxme form where taxpayers would be
provided an option to donate a portion of theirrefund to a briefly described biodiversity
enhancement in planted forests.
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proposed enhancement programme. These empiricdlsresiggest the
characteristics of relevant individuals (or maybeugs) to focus on in winning
support for enhancing biodiversity in planted fese&nalytic results also indicate
the enhancement of biodiversity provides more hengfose living within a 10-
kilometre radius from large planted forests comg@aoethose living further away.
The above findings might be useful for a futuredgtthat seeks to identify an

appropriate funding mechanism for biodiversity erdement in planted forests.

We also acknowledge that due to the low resporisewe collected a
small sample size 209 choice respondents. ThisIsasige might be too small to
calculate a national estimate of value for biodsitgrenhancement. We suggest
that future studies that would aim to come up waithational estimate of value
would require more resources to allow the collecbba bigger sample size to

estimate national WTP values from a more repretieataational sample.
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Chapter 4: An investigation of experimental desigreriteria and
their behavioural efficiency: entropy and attribute non-

attendance

4.1 Introduction

The Choice Experiments (CE) method has been wigdg to study behavioural
responses in different fields which include tranggton, health economics,
marketing, energy, political science and environtalesconomics. Part of its
wide acceptance can be attributed to the factitipabvides a theoretically valid
framework that allows the examination of individpaéferences. The framework
allows an individual to reveal the tradeoffs amdragternatives with different
combinations of attribute levels in a choice taskrucial component of CE is the
systematic arrangement of attribute levels on @dtelnative in a choice task
which is addressed by using a fraction of thefadtorial, or the Experimental
Design (ED)'® A common approach in constructing an ED is thetivaal
factorial approach to generate an initial seriesingle alternatives that are then
allocated to choice tasks using various methodshwimiclude randomised,
cyclical, and Bayesian (Bunch et al., 1996; Samhor Wedel, 2001, 2002, 2005;

Kanninen, 2002; Bliemer and Rose, 2006).

The ED is usually optimised following a certaiit@ion chosen by the

analyst™® One of the first ED criteria used for CE was tinéhogonality criterion

'® Chapter 2 of this thesis (on pages 26 to 31) pesvigh overview of the different statistical
measures of design efficiency. This current intaidry section of Chapter 4 focuses on how
different experimental design criteria evolved u@ the needs of choice analysts.

¥ Some of the earlier choice tasks were generatedrzjomly populating the alternatives with the
identified attribute levels. This criterion is rafed to as random design criterion.
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derived from linear multivariate models originallged for statistical analysis of
treatment effects in biological experiments (Lowgiand Woodworth, 1983;
Louviere and Hensher, 1983). The orthogonalitiedon generates fractional
factorial designs that exhibit no correlation besweach row of design attributes
and/or between columns of alternativ@®©ne advantage of this criterion is that
the analyst does not need anpriori knowledge of the parameter estimates and
their distribution (or parameter mean and standarak). The analyst can generate
an orthogonal design by simply knowing the numbetwibutes, alternatives and
number of choice tasks per respondent for a CEceseertHowever, orthogonality
is a design property appropriate mainly for linesgression models (e.g.,
Ordinary Least Squares). Since CE data are analb@rgd non-linear regression
models (e.g., logit) to examine changes in utsitierthogonality is not necessarily
a criterion for efficiency (Bliemer and Rose, 200Bljemer and Rose (2009 p.
21) demonstrate using a logit model that the sieaisefficiency of an orthogonal
design is relatively low compared with an efficieleisign. They find that the
theoretically minimum required number of CE respanmtd, following a

conditional logit model, with orthogonal desigrseven times more compared to
a Bayesian D-efficient design. The gain in statatefficiency enables the analyst
to reduce the required sample size and/or red@crumber of choice tasks. The
former translates into a reduction in survey costde the latter leads to lesser

time required for respondents to complete the surve

?° Orthogonal designs are described in detail in lienay et al. (2000) and Hensher, et al. (2005).
An electronic library of orthogonal designs is dahble at
http://www2.research.att.com/~njas/oadir/
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However, the Bayesian D-efficient Design (BDD) eribn requires
reliable prior knowledge of parameter estimatescWitiould come from a pilot
survey (Ferrini and Scarpa, 2007). Given that atalywould not have enough
time to collecta priori information but would still like to generate a igs
derived from logit model, he/she might opt to enydlee Optimal Orthogonal
Design (OOD) criterion in generating the ED. OOldezion employs an
algorithm that search through different EDs gereglatssuming that all parameter
estimates (from a conditional logit model) are eqoaero (Street and Burgess,
2005; Sandor and Wedel, 2005). However, assumgsgj af prior parameter
values of zero might be too naive because an drayfd easily access
information about the priors from related studi@se could also readily assume
that the sign of the parameter for the cost atteilba be negative and for

obviously positive changes to be positive.

Given that analysts select a particular ED critedepending on their
objectives and specific situation, very limiteddses have accounted for the
behavioural impact of using different design craem terms of statistical
efficiency, previous studies compared differentiglesriteria using simulations
and found that designs following the BDD criterjgmovide more statistically
efficient parameter estimates than those from OR#@®ron (Bliemer and Rose,
2009; Vermuelen et al., 2011; Scarpa et al., 206f)wever, no study to date has
empirically investigated the impact of different EEBteria on measures of
behavioural efficiency, such as choice complexitgt attribute non-attendance,

using a real sample and with a specifically cotgrbtesign.
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Choice task complexity has been linked to the mamenhich attribute
levels are arranged across alternatives in a chaste We use the complexity
measure called “entropy” described in Swait andrAoaicz (2001a, 2001b). The
higher the entropy value the greater the complditgl of a choice task. Such
choice task would require respondents to exert roogaitive effort in the

selection of the preferred alternative.

Attribute Non-Attendance (ANA) refers to the tendgmf some
respondents to systematically ignore particulaiaites in the evaluation of
alternatives in a choice task (Scarpa et al., 2qQ@%3ges 34 to 37 (Chapter 2)
include a description of how to model ANA). There aurrently two ways of
addressing ANA, namelynferred andStated Inferred ANA is derived from
observed patterns of choice made by respondentle Stated ANA is obtained
from respondents self-reporting their non-attendancspecific attributes after
completing a choice task (or a series of choicesjaScarpa et al., 2011a). In this
study, as we collected very limited data on stétNd, we focus our analysis on
inferred ANA. The data analysis reported in thiamter aims to answer the

following research questions:

(1) Does the selection of ED criterion affect infersttribute
Non-Attendance? If so, what are the effects orptrameter
estimates and WTP values?

(2) Is there an effect of higher choice task compleaitythe
variance of the Gumbel error (the unobserved corepoof

utility)?
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(3) If so, does this vary across different experimedésigns?
Which particular experimental design provides thesnbenefit
to a choice experiments exercise?

Answers to the above questions would cast someadiglhe issue of
criterion selection for stated choice experimedgsign. Identification of an
experimental design that provides the highest beheal efficiency would
benefit not only choice analysts, but also the sadpnts who evaluate a series of
complex choice questions. Attribute Non-Attenda@®&A) is described in
Chapter 2 and very briefly in Section 4.2. The ceaiomplexity metric is
discussed in 4.3 and 4.4. Section 4.5 briefly dessrthe balanced data set used
in the analysis. Section 4.6 presents the resultemparing ANA of different
design criteria where we estimated panel latersisdiagit models to examine this.
We also present the estimates of heteroskedagitchmdels where we test the
null hypothesis that the selection of ED has neafbn choice variability (via the
entropy proxies). Conclusions are reported in eacti.7 where we show which

design performed the best among the three desigdeed here.

4.2 Attribute non-attendance and experimental desiy

The concept of attribute non-attendance and itsattingd is described in Chapter
2 of this thesis. Although it is evident that AN CE studies exists and
econometric models have been developed to accouitsfpresence, to our
knowledge, there has been no study yet that exahtireefactors that contribute
to ANA. This study aims to contribute to answerhig research question by
empirically investigating the effect of differenDEcriteria on attribute non-
attendance and on the estimated parameter valuethékefore attempt to test the

null hypothesisAttribute non-attendance is the same for bothtytiteutral and
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Bayesian efficient designdtility neutral designs are EDs derived from dasig
criteria that do not use prior knowledge of thegpaeters (e.g., ORD and OOD)
while BDD falls under the group of Bayesian effitiéesigns that account far

priori information of the parameters.

4.3 Choice complexity

CE approaches have demonstrated to yield gredtemation than contingent
valuation (CV) approaches. However, the higher amhotiinformation collected
from CE comes at the cost of requiring respondengxert additional cognitive
effort (Swait and Adamowicz, 2001a, 2001b; DeShazd Fermo, 2002, 2004).
CE respondents are expected to have a full undelisg of how to select the
preferred alternative on each choice task, proitessformation provided and
then choose the preferred alternative by makindetwHis. This can be quite
complex and the level of complexity in processihgice questions vary between
CE studies as complexity level can be affectecheyntumber of attributes and the
number of attribute levels (Swait and Adamowic2)28, 2001b; De Shazo and
Fermo, 2002; Arentze et al., 2003). One consequehlasigher complexity might
be that respondents would tend to select the stpinislternative leading to status
guo bias, which could seriously affect the welfareasure (Dhar, 1997a; Dhar,
1997b; Boxall et al., 2009). In addition, diffetemmplexity levels have been
found to significantly influence decision strateggtection (Payne, 1976;
Olshavsky, 1979; Payne et al., 1988; Simonson aedsky, 1992). Despite the
importance of studying choice complexity in CE,wiw studies have been
carried out to examine its impacts or to accounttfopresence (e.g., Mazzotta

and Opaluch, 1995; Boxall et al., 2009; Bliemer Ruse, 2011).
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Our literature review indicates that very limiteahmber of studies
examined the effects of different ED criteria omicke complexity. A few studies
examined choice complexity in CE and employed ttieogional design criterion
(e.g., Arentze et al. 2003; DeShazo and Fermo, ;2B@ait and Adamowicz,
2001a, 2001b). Louviere et al. (2008) compare tfeets of different
experimental designs on complexity by examinind=®D% with systematically
varying design dimensions as well as statistidatiehcy. These authors focused
on two ED criteria (i.e., optimal orthogonal andhptive designs) with neither
groups of designs being derived franpriori information on coefficient values.
Viney et al (2005) focused on examining the effedttree different EDs (i.e.,
orthogonal, utility-balanced and random) on compyelxy looking at the
variance of the error term. Similar to Louviereakt Viney et al. examined
different EDs that were generated without any agdgioms on parameter priors

called “utility neutral designs” (Kessels et aD0B).

Bliemer and Rose (2011) compare Bayesian D-efftaiesign with
orthogonal design but their empirical analysis seaimainly on the gains in
statistical efficiency (i.e., lower standard errofsttribute coefficients) but did
not examine their effects on complexity. Many otserdies compared utility
neutral designs and Bayesian efficient designssandarly they have shown
empirical evidence that CEs based on efficientgiesprovide more accurate
parameter estimates than utility neutral design (&essels et al., 2006; Scarpa

and Rose, 2008; Kerr and Sharp, 2010).

This is probably the first study to test whethes selection of different ED

criteria influences the cognitive effort exertedregpondent as measured by
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choice complexity in CE. In doing so, we employ thethod described by Swait
and Adamowicz (2001a) where complexity is measbsedntropy that we
describe in section 4.4. Following Swait and Adantav001a, we calculated the
entropy value of each choice task. Using the hekemastic logit model we
evaluate the impact of entropy on the scale pammfiet each of the three design
treatments. Doing this helped us to answer thetmuneldoes the effect of choice
task complexity (via the entropy proxy) on choi@gability vary across different

experimental designs?

4.4 Entropy as a measure of complexity and choicasability
Swait and Adamowicz (2001a) suggest that the caxitglef a choice task can be
represented by entropy. Following their paper, Equa 4.1 and 4.2 shows the

formulae to calculate for the entropy valief choice ses represented ds:

£ =->0,InQ, (4.1)
where
_ exdﬁxms)
ans N (4.2)
ZeXdﬁXnks)

ik,

whereQy;s represents the choice probability that individuahooses alternatiye
amongk alternatives in choice setThe betas are the estimated values from a

conditional logit model.
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We now show how calculated choice task speciftoogry valueEs can be
incorporated into the heteroskedastic logit moldat tve described in Chapter 2.

Swait and Adamowicz (2001a) show tligtor the complexity of choice task

affects the error variande?). 0is inversely related to the scale factgwhich

can be presented als = where 71is the constant that is approximately

n
g, 1/6
3.1416. We assume thatis a quadratic function @& of the choice situation so

as to capture nonlinearities of entropy.

Alc.)=exply E, + v, E?) (4.3)

The quadratic form in 4.3 above allowgo account for the reaction of a
respondent described by Keller and Staelin (198¥revone may tend to exert
greater effort to making decisions (which couldamde preference consistency
across respondents) up to a certain level of coxitpléAfter reaching a particular
level, respondents may tend to employ simplifyiegidion heuristics resulting to
collection of data with greater preference incaesisies. If this situation applies

to one of the design treatments, then we could@xpat 4.3 would have, <0
andy, >0.If y, <0 andy, =0, then we have a situation where an individual
reacted to an increase in complexity level mainlydsorting to simplifying
heuristics and very limited cognitive effort to eowith higher entropy. Finally, if
¥, =0 and y, = 0 then we fail to reject the null hypothesis thatrepy has no
effect on scale. This implies that the increaseoimplexity would not likely reach

a point at which greater preference inconsistermedd occur.
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4.5 Data

For examining the effects of different ED criteoia attribute non-attendance and
choice complexity, we use tiBalanced sampldescribed in Section 2.5 of this
thesis. This sample consists of 1509 choice obsensthat are evenly
distributed across three different ED samples caagof Orthogonal Design
(ORD), Optimal Orthogonal Design (OOD) and Bayediaefficient Design
(BDD). For an objective comparison of the three Elbs allocated each design
treatment with 503 choice observations. The thagepdes all have equal number
of observed choice set orders (i.e., 56 obsenafionthe ¥, 2" 4" 5" g" 71

8" and 9" choice set orders; and 55 observations for thet®ice set order).

4.6 Results
4.6.1 Conditional logit model

We estimated the coefficients for the same utdpgcification of a conditional
logit model (Table 4.1) from three different sangpté choices each based on
different design criterion. In terms of parametgtiraates, the coefficients for cost
for the three samples are all negative and sigmficsuggesting that the decision
of respondents to choose their desired alternatimegatively influenced by the
amount of money that they would pay to enhanceibaosity in planted forests.
All significant coefficients for the environmentaitributes (e.g., Brown kiwi 1,
Brown kiwi 2, Bush falcon 2) have positive signsiethimplies that the proposed
biodiversity enhancement outcomes contribute pasitito the utility of an
individual. Although some estimated coefficientg(eGreen gecko 1, Native
plant 1) have negative signs, these are not statigtsignificant. A relatively

larger proportion of coefficient estimates in th@@sample are not statistically
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significant particularly the non-bird species whiolaybe considered as less
charismatic species. We suspect that this situatigiht indicate non-attendance
to that particular subset of attributes. This mightattributed to the fact that the
bird species would likely be more familiar or moeadily seen in planted forests
while the native plant, gecko and native fish séess visible in planted forests or

other areas of New Zealand.

The coefficient for the indicator for status qudiop (SQ) for the ORD
sample is positive and significant while those fribra two other designs are
negative but not significant. We surmise that resiemts with choice tasks
generated from the ORD criterion would likely che@&Q or they have a higher
tendency to opt out compared to the other two dssid/e investigate this
conjecture by using the latent class panel modelisaccount for attribute non-

attendance in the next section.
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Table 4.1: Conditional logit model estimates for tk three design treatments

ORD BDD Oo0oD
Attribute

Coeff Std Err p-value Coeff Std Err p-value Coeff Std Err p-value
Brown kiwi 1 0.471 0.209 0.02 0.377 0.179 0.04 8.19 0.198 <0.01
Brown kiwi 2 0.702 0.206 <0.01 0.456 0.168 10.0 0.191 0.191 <0.01
Native fish 1 0.349 0.195 0.07 0.378 0.161 0.02 180. 0.180 0.36
Native fish 2 0.242 0.202 0.23 -0.031 0.169 0.86 178. 0.175 0.28
Native plant 1 0.259 0.185 0.16 -0.039 0.180 0.83 .18D 0.187 0.25
Native plant 2 -0.092 0.205 0.65 0.436 0.165 0.01 189 0.184 0.58
Green gecko 1 0.132 0.200 0.51 -0.053 0.167 0.75 1900. 0.190 0.78
Green gecko 2 0.443 0.197 0.03 -0.179 0.167 0.29 1800. 0.180 0.45
Bush falcon 1 0.499 0.208 0.02 0.567 0.170 0kO. 0.196 0.196 0.14
Bush falcon 2 0.823 0.202 <0.01 0.789 0.172 <0.01 0.186 0.186 <0.01
Cost to respondent -0.026 0.003 <0.01 -0.020 .00 <0.01 0.003 0.003 <0.01
Indicator for SQ option 0.734 0.329 0.03 032 0.307 0.90 -0.273 0.273 0.17
Log-likelihood -459.28 -497.66 -469.62
Rho-square 0.169 0.099 0.150
Adjusted rho-square 0.147 0.078 0.128
Observations 503 503 503
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4.6.2 Panel latent class logit model results

To identify some of the possible latent classesaftiibute non-attendance, on page
16 of the questionnaire, we asked each respondanh\attributes that he/she did not
attend to. This question immediately followed atiegespondent completed the
evaluation of the nine choice tasks on pages Btdable 4.2 presents the self-
reported attribute non-attendance of the threggdeéseatments. BDD has the lowest
average non-attendance rate of 6.4% while ORDHeakighest average. About 5%
of the responses in the ORD sample did not attefdawn kiwi while the two other
treatments both have zero non-attendance rateORi2treatment has the highest
proportions of stated ANA in four out of the fivevaronmental attributes. The BDD
treatment consistently demonstrates the lowestgotiom of non-attendance in all
five attributes. The-values in the sixth column of Table 4.2 indicagngicant

differences in the proportions of stated non-ataee between ORD and BDD.

Table 4.2: Percentage (%) of respondents stating neattendance and testing the
equality of proportions between treatments

Test of equality of proportions between
treatmentsg-value)
ORD vs ORD vs BDD vs

ORD BDD OO0D Pooled

BDD 00D 00D
Brown kiwi 5.4 0.0 0.0 1.8 <0.001 <0.001 1.000
Native fish 17.5 12.5 17.9 16.0 <0.001 0.775 0.0
Native plant 14.3 10.7 14.3 13.1 0.003 1.000 0.003
Green gecko 17.5 7.2 7.2 10.6 <0.001 <0.001 1.000
Bush falcon 3.6 1.8 1.8 2.4 0.002 0.002 1.000
Average 11.7 6.4 8.2 8.8 - - -
Minimum 3.6 0.0 0.0 1.8 - - -
Maximum 17.5 12.5 17.9 16.0 - - -
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Table 4.2 also shows a pattern that the non-birdbates (fish, plant and gecko) have
higher rates of non-attendance relative to thertatove bird species. This allows the
identification of non-attendance to non-bird spe@s one latent class. The next latent
class identified is non-attendance to status qu@pThis is based on the fact that in
choice experiments, there could potentially beatustquo bias where a respondent
would tend to choose the status quo option or sirapt out from evaluating the
change alternatives (Boxall et al., 2009). We asshare that the opposite can also
hold true wherein respondents could also tendrtorgthe status quo and focus only
on the changed alternatives. There is a possibilaythe underlying experimental
design could affect this potential source of bfasghird possible latent class is full
attendance where a class of respondents considitee six attributes in the

evaluation of choice tasks.

Ten latent class model specifications have bed¢add¢krough a grid search
procedure. The grid search was done to identifsoaof latent classes across
designs that produce the best model fit and, asdinge time, latent class models
should have converged for the three design treasn&his is to allow the
comparison of the three treatments. Table 4.3 shiogveormalised AICs of 10
different latent class model specifications of design treatments. As much as we
would like to use the estimates of specificatiornih whe lowest AICs, there were
convergence issues in those groups. Some speidfisahat converged shqw
values of 1.00 in the latent classes making theusaiple. For instance, although
specification number 5 has lower AICs, fiealue for the cost coefficient in the
OOD gets a p-value of 1.00 which can be a signis§pecification.We settled on
using the estimates from LCM specification numbée8ause the model for all three

treatments converged and pdalues of latent classes made sense.
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Table 4.3: Estimates of normalised AICs of latentlass logit models using the
three design samples

Specification Latent classes (LCs) — Attributes

Normalised AIC (AIC/N)

Number ignored ORD BDD 00D

1 LC1 - Ignored SQ, 1.126 Did not 1.309
LC2 — Ignored Gecko, Kakabeak converge
and Kokopu
LC3 — Ignored all attributes

2 LC1 - Ignored SQ, 1.168 1.339 1.243
LC2 — Ignored Gecko, Kakabeak
and Kokopu
LC3 — Ignored Cost

3 LC1 — Ignored SQ, 1.135 1.362 1.309
LC2 — Ignored Gecko, Kakabeak
and Kokopu
LC3 — Full attendance

4 LC1 — Ignored SQ 1.077 Did not 1.332
LC2 — Ignored Gecko, Kakabeak converge
and Kokopu
LC3 — Full attendance
LC4 — Ignored all attributes

5 LC1 — Ignored cost 1.147 1.340 1.413
LC2 — Ignored SQ
LC3 — Ignored Gecko, Kakabeak
and Kokopu
LC4 — Ignored all attributes

6 LC1 — Ignored cost 1.172 1.342 1.085
LC2 — Ignored SQ
LC3 — Ignored Gecko, Kakabeak
and Kokopu
LC4 - Ignored Falcon

7 LC1 — Ignored cost 1.131 1.335 1.247
LC2 — Ignored SQ
LC3 — Ignored Gecko, Kakabeak
and Kokopu
LC4 — Ignored Kiwi

8 LC1 — Ignored SQ 1.139 1.365 Did not
LC2 — Ignored Gecko, Kakabeak converge
and Kokopu
LC3 - Full attendance
LC4 — Ignored Kiwi

9 LC1 - Ignored SQ 1.139 1.366 1.362
LC2 — Ignored Gecko, Kakabeak
and Kokopu
LC3 — Full attendance
LC4 - Ignored Falcon

10 LC1 - Ignored SQ Did not 1.366 1.371
LC2 — Ignored Gecko, Kakabeak converge

and Kokopu
LC3 - Ignored Kiwi
LC4 — Ignored Falcon
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Table 4.4 presents the estimates of latent classl paodel for the three design
treatments for specification 3 from Table 4.3. Each design treatment, the three
behaviourally defined latent classes were: (1pasthat attended to all six attributes;
(2) a class that did not attend to non-bird spewigish were Green gecko, Kakabeak
plant and Kokopu fish; and (3) a class that ignahedSQ alternative. For the first
class, as all attributes were assumed to haveditmrded, all coefficients were not
constrained. For the second class, we definedatant class by constraining to zero
the coefficients of the three non-bird species.tRerthird class, the coefficient for

SQ was constrained to zero.

As expected, the model goodness of fit signifilyaimiproved when the latent
class panel model is used compared to the condltiogit model (Table 4.4). This is
indicated by the statistically significant increage the log likelihood values (e.g., for
ORD, from -459 to -271). This provides evidencehaf presence of heterogeneity in
attribute attendance in the three choice data $atde 4.4 reports results for the three
design treatments, the estimated probabilitieshferclass that ignored the SQ
alternative are significant at the 99.9% level. Bi#D sample has the highest latent
class probability of ignoring the SQ (0.647) wHD®D has the lowest probability
(0.481) and closely followed by ORD (0.489). Thasult might indicate that choice
tasks generated from BDD criterion would likely bawetter encouraged respondents
to focus more on the designed alternatives compartte two other design
treatments. On the other hand, the latent clagsapitities for OOD and ORD are
virtually the same. To compare these two desigatrinents, we look at the signs of
the utility coefficients for SQ, which is negatigad significant for OOD while
positive and significant for ORD. This suggestd thahe ORD sample, the

expectation of moving away from the current sitiativould partly affect people’s
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utility negatively. While in OOD sample, moving ayviom the current situation
would partly positively affect utility. These ressiindicate that using ORD will lead

to more respondents opting out compared to OOD.

Table 4.4 shows that the coefficients of the indicafor the SQ option are
both positive and significant for both ORD and BBBatments. This suggests that,
after controlling for non-attendance, respondemtsath treatments who tended not to
ignore the SQ option, seem to like the current @@mmand would be willing to
support it. This is the opposite of what we foundhe OOD sample, where the
coefficient for the SQ option is negative and digant, indicating that a typical
respondent would not be likely to stay with thereat scenario but would gain more

utility from the scenario with greater level of tigersity.

Table 4.4 also shows that the OOD sample has gtesi probability value
(0.519) for the class that ignored the less chaignspecies. A possible reason for
greater occurrence of non-attendance is that regme may have felt that attending
to all attributes is more complex or imposing gee@bgnitive burden in choice tasks
designed using the optimal orthogonal criterionsTdesign may have made them
attend to a smaller number of attributes, perhapmaattempt to reduce their effort in
doing tradeoffs so as to still complete all theenthoice tasks they were expected to

finish.

The BDD design has the highest probability valué4) for the class that
ignored SQ. This indicates that this class wouldikegy to focus more attention on
the scenario alternatives proposing change andftirermore likely to place a higher
value to the changed alternatives. We speculatathassible reason for this is that

the combination of attribute levels presented ealternatives different to the SQ
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have been found to be “more coherent” by resposdemd this somewhat reduced the
cognitive effort in evaluating those alternativégat | meant by “more coherent” is
that attribute levels from choice tasks derivedfi8DD are more logically arranged
compared to the two other designs. There seem &ocbiéerion in BDD that imposes
moderate overlaps of attribute levels betweenradteres. By visually comparing
choice tasks across the three design treatmentd, @DRBice tasks, in general, exhibit
the most number of overlaps; OOD does not haveogaasiap; while BDD choice
tasks seem to be in-between or have moderate nuwhbeerlaps. (This was based on
actual observation of the choice tasks generated the three different designs.) We
speculate here that the overlaps in BDD might leetight frequency that makes the
attribute levels in the choice tasks to somewhpeapmore logically arranged to
respondents. Appendix Figures 1, 2 and 3 show ebesn@b choice tasks of the three
designs with different levels of overlaps. Chrzad &®rme (2000) define minimal
overlap as “Within choice sets, attribute levels duplicated as little as possible.”
Chrzan and Orme provide results suggesting thatetmased conjoint designs with
moderate or balanced overlaps would be a desidaslign strategy compared to

minimal or higher frequencies of overlaps.

To further examine if the BDD treatment resultgteater non-attendance to
the SQ option, we used the balanced pooled sampleaa the panel latent class
model (PLCM) that we used earlier on each desidgpsamnple. Table 4.5 (columns 5,
6 and 7) presents the PLCM estimates from the pdasdenple. All three non-
attendance latent class probabilities are sigmifiedthe 90% confidence level with
the class ignoring the SQ option predicted to hheehighest proportion of
respondents at 50%, followed by those who igndnedhbn-bird attributes at 36%

and then full attendance at 14%. Columns 8, 91&nhdf Table 4.5 present the
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estimates from the panel latent class model thawaleach class membership to be a
function of design. For the class that ignoredSKeoption, the coefficient for BDD

is the highest among the three designs and isfisigmni at the 90% level. This
corroborates the finding in the split samples B2D choice tasks have the highest

proportion of respondents who ignored the SQ option
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Table 4.4: Panel latent class model estimates fdne three design treatments

ORD BDD OOD
Attribute

Coeff Std Err p-value Coeff Std Err p-value Coeff Std Err p-value
Brown kiwi 1 0.806 0.508 0.11 0.873 0.192 <0.01 0.985 0.229 <0.01
Brown kiwi 2 1.176 0.437 0.01 1.081 0.223 <0.01 1.094 0.252 <0.01
Native fish 1 0.997 0.378 0.01 0.556 0.255 0.03 -0.167 0.386 0.67
Native fish 2 0.867 0.450 0.05 0.267 0.208 0.20 -0.361 0.412 0.38
Native plant 1 0.986 0.366 0.01 0.534 0.233 0.02 -1.336 0.565 0.02
Native plant 2 0.653 0.470 0.16 0.820 0.207 <0.01 -0.603 0.397 0.13
Green gecko 1 0.339 0.264 0.20 0.255 0.227 0.26 -0.861 0.447 0.05
Green gecko 2 1.236 0.411 <0.01 0.189 0.244 0.44 0.054 0.408 0.90
Bush falcon 1 1.307 0.409 <0.01 1.031 0.246 <0.01 0.477 21D 0.03
Bush falcon 2 1.976 0.280 <0.01 1.348 0.234 <0.01 0.668  .22@ <0.01
Cost to respondent -0.037 0.003 <0.01 -0.014 0.003 <0.01 5.04 0.005 <0.01
Indicator for SQ option 4.419 0.843 <0.01 4.277 0.580 <0.01 -4.002  0.508 <0.01
Latent Class (LC) LC Prob Std Err p-value LC Prob Std Err p-value LC Prob Std Err p-value
C1 - Full Attendance 0.114 0.303 0.71 0.083 0.328 .800 <0.001 <0.001 0.98
C2 - Ignored 3 non-bird attributes 0.397 0.171 0.02 0.270 0.182 0.14 0.519 0.104 <0.01
C3 - Ignored the SQ alternative 0.489 0.161 .0x0 0.647 0.071 <0.01 0.481 0.112 <0.01
Log-likelihood -271.47 -328.49 -315.27
Normalised AIC 1.135 1.362 1.309
Normalised Finite Sample AIC 1.137 1.364 131
Normalised BIC 1.252 1.479 1.427
Observations 503 503 503
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Table 4.5: Panel latent class model estimates frothe pooled balanced sample

Panel Latent Class Logit(@€L)

PLCL Model with class membership

Item Multinomial Logit Model
Model on Pooled Balanced Sample as a function of design
Coeff Std Err p-value Coeff Std Err p-value Coeff  td &rr p-value
Kiwi 1 0.495 0.109 <0.01 0.667 0.128 <0.01 0.670 130. <0.01
Kiwi 2 0.654 0.105 <0.01 1.125 0.132 <0.01 1.156 136. <0.01
Kokopu 1 0.318 0.101 <0.01 0.653 0.135 <0.01 0.690 0.134 <0.01
Kokopu 2 0.134 0.103 0.19 0.565 0.145 <0.01 0.598 .14 <0.01
Kakabeak 1 0.179 0.103 0.08 0.695 0.127 <0.01 0.726 0.130 <0.01
Kakabeak 2 0.228 0.103 0.03 0.637 0.118 <0.01 0.667 0.122 <0.01
Gecko 1 0.019 0.102 0.85 0.227 0.113 0.04 0.246 150.1 0.03
Gecko 2 0.098 0.101 0.33 0.195 0.104 0.06 0.206 050.1 0.05
Falcon 1 0.481 0.106 <0.01 0.538 0.140 <0.01 0.536 0.141 <0.01
Falcon 2 0.720 0.104 <0.01 0.883 0.119 <0.01 0.891 0.123 <0.01
Indicator for status quo 0.159 0.171 0.35 -0.429 235. 0.07 -0.404 0.253 0.11
Cost -0.026 0.002 <0.01 -0.095 0.006 <0.01 -0.093 .00® <0.01
LC1 - Full attendance 0.137 0.076 0.07
LC2 - Ignored SQ 0.502 0.046 <0.01
LC3 - Ignored non-bird attributes 0.361 0.083 <0.01
Full attendance (LC1 as a function of design)
- Constant (ORD) -1.021 0.786 0.19
- BDD -0.632 0.871 0.47
- 00D 0.531 0.685 0.44
lgnored SQ (LC2 as a function of design)
- Constant (ORD) -0.123 0.377 0.74
- BDD 0.758 0.445 0.09
- 00D 0.524 0.438 0.23
Log-likelihood -1460.32 -964.09 -960.51
Normalised AIC 1.951 1.296 1.297
Number of choice observations 1509 1509 1509

125



4.6.3 Complexity and heteroskedastic logit by desigatment

Swait and Adamowicz (2001a) suggest that entropydgnvenient scalar measure of
complexity that summarises the impacts of numbeadtefnatives, number of
attributes, number of attribute levels, and prafeeesimilarity among alternatives.
The three design treatments we examine here anéadkin terms of number of
alternatives, number of attributes and attributelle However, since they were
constructed using three different design critehay are likely to differ in terms of
preference similarity among alternatives. The tegcally maximum entropy is
achieved when each alternative in a choice taslahagjual chance of being selected
compared with other alternatives. Having an egbahce of being selected could
have two outcomes: (1) respondents exerted mooet @ffevaluating choice tasks
with higher complexity, or (2) respondents chose“fireferred” alternative randomly

without applying any effort.

Following Equation 4.1, we calculate the entropgath design block of the
three designs. Table 4.6 shows a summary of thesepy measures by block and by
design. Among the three design criteria, ORD haddtvest mean and median
entropy values of 0.894 and 0.942. However, ORD hés the highest entropy
standard deviation that is at least twice as laggthe other two designs. One reason
for this is that the choice tasks in Block 2 of QRID average, have low entropy
values and these have reduced the overall meappgnirhis resulted in a wide
dispersion of entropy values across ORD choicestalke above implies that
although ORD is the design with the lowest ovezalropy, complexity levels across

choice tasks vary twice as much as the choice fagke other designs. As BDD has
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the least standard deviation, the variation in dexify across choice task is the

lowest among the three designs.

We illustrate the distribution of entropy measuréthe choice task<€() for
each design using the kernel density plot showkigare 4.1. Each kernel density
shows the proportion of the 27 choice tasks (distad into three blocks) for each
design. ORD has the widest entropy range while BIDD OOD have virtually the
same entropy range. However, despite the similafigntropy ranges for BDD and
OOD, the entropy for the former is more concenttatevards less than 1.0 with the
latter towards greater than 1.0. This illustratesfact that the BDD design has more
entropy values distributed over the lower range tih@ OOD. The narrower BDD
kernel density also illustrates that it has thedstndispersion of entropy as suggested
by the lower standard deviation of 0.078 compaoe@RD and OOD with 0.171 and

0.085, respectively (please see Table 4.6).

Figure 4.1: Kernel density of entropy by experimerdl design
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Table 4.6: Distribution of entropy values by desigrand by block

Orthogonal Bayesian D-efficient Optimal orthogonal Pooled Sample

Bl B2 B3 All Bl B2 B3 All Bl B2 B3 All B3 All
Mean 0.984 0.717 0.982 0.894 0952 0.959 0.954 50.9®.927 0.991 0.962 0.960 0.889 0.966 0.939
Median 0.963 0.744 0.989 0.942 0951 0.971 0.9619620. 0.912 1.015 1.015 1.013 0.936 0.989 0.962
Standard deviation  0.083 0.178 0.053 0.171 0.0521120. 0.058 0.078 0.082 0.080 0.083 0.085 0.1T8066 0.122
Minimum 0.838 0431 0.906 0431 0.871 0.772 0.865.77D 0.830 0.788 0.832 0.788 0.431 0.832 10.43
Maximum 1.097 0.960 1.052 1.097 1.029 1.085 1.050083 1.092 1.068 1.060 1.092 1.085 1.060 71.09
g‘;’l;”sber of choice 57 27 27 81 27 27 27 81 27 27 27 81 81 243

Table 4.7: Estimates from conditional and heteroskaastic logit models

Estimated Coefficient Estimated Coefficient

vesin YU cobtenatont e ogt e SrEniopy ot Enopy S
(Robustp-value) (Robustp-value)
ORD 503 -459.28 -455.09 8.38 (;%)%611) (<96i?1)
BDD 503 -497.66 -496.14 3.04 (3183) (_g-g‘?)
00D 503 -469.62 -468.92 1.40 ('g_'gg) (5;‘2‘1)
Pooled 1509 -1460.32 -1458.86 2.92 ('3,'512) (g:%)
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Table 4.7 presents the estimates from the conditimnd heteroskedastic logit
models for the three design treatments. (Conditiand heteroskedastic logit models
are earlier introduced in Chapter 2). The condéldagit model imposes the
restriction that scale is not a function of entr@oy}omplexity while the
heteroskedastic logit model relaxes this assumfityoallowing the scale to vary
based on complexity level of choice tasks. Of tire¢ designs, only the ORD has a
significant improvement in log likelihood value whecale is considered to be a
function of entropy. This is indicated by the likelod ratio (LR) test statistic of 8.38
which exceeds the critical Chi-square value witb tiegrees of freedom at the 95%

confidence level of 5.99.

The pooled sample did not have a significant imprognt in fit with scale as
indicated by the Chi-square test statistic of ¢hB2. This result is not surprising as
OOD and BDD samples (or two-thirds of the poolemhgie) both have low Chi-
square test statistics. Similarly, both BDD and O@datments failed to reject the null
hypothesis that scale is not a function of compyeas indicated by Chi-square test
statistics of 3.04 and 1.40, respectively. Thisiitas consistent with the findings in
Swait and Adamowicz (2001a) which suggests that [délck of variability in entropy
across respondents is leading to this non-sigmificapact of complexity”. Swait and
Adamowicz suggest that the design of CE shouldugeelsome fraction of simpler
tradeoffs (e.g., entropy range [0.60,0.80]) andesnaction with an extreme entropy
range (e.g., [1.00,1.20]) to allow the separatibwasiance and taste effects.
However, that paper also mentioned that the oljed allowing a wide entropy
range would be advantageous for analysing datatsgtsombine Stated Preference
(SP) with Revealed Preference (RP) data. The EBs@ed in that paper consisted

of 10 data sets (6 SPs and 4 RPs) that were alledieirom the orthogonal main
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effects design criterion which is the criterion dige constructing ORD for this
present study. In the present study ORD varieslyighcomplexity as denoted by the
0.431-1.097 entropy range, while BDD and OOD hadgjes of 0.772-1.085 and
0.788-1.092 , respectively. It appears that wherdtsign criterion assumes that the
choice data will be analysed using a conditiongitimodel, the entropy range is
minimised and this contributes to a reduction i ¢hatistical significance of the

effect of entropy on the scale factor.

The scale coefficients for entropy in column 5 able 4.7 show that OOD
and ORD are negative and significant which is cstesit with respondents in both
treatments resorting, to some degree, to simptifgacision heuristics. This might
include attribute non-attendance and avoiding dognburden by defaulting to the
SQ option (Swait and Adamowicz, 2001b; Boxall et 2009). Those simplifying
heuristics generate greater preference inconsis&nghich can be reflected by an

increase in the variance of the unobserved compafertility.

Columns 5 and 6 of Table 4.7 show that, in the QRRBtment, scale is a
function of entropy as indicated by very Ipavalues of the scale coefficients for
entropy and entropy squared. Tgalue of the scale coefficient for entropy is less
than 0.05 while for entropy squared is nearly gigant. Thus we cannot jointly omit
the scale for OOD. For the BDD treatment, hpgiralues of both scale coefficients
indicate that we can jointly omit scale. The EDided from the BDD criterion seems
to have provided choice tasks that somewhat redineedffort on the part of the
respondents to find the utility maximising choid¢éis might provide the reason why
65% of the respondents who completed the BDD chaisles were likely to ignore

the SQ option. This shows a pattern that the alesehinfluence of entropy on scale
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resulted in more coherent experimentally desigiedreatives in choice tasks where

respondents paid more attention to all attributes.

It is important to note that the sample size ohedesign treatment only has
503 choice observations which might not be enooghdke the above results
generalisable. The above results might be spdoifibe relatively small choice data
set analysed here. Appendix Table 4 presentstility coefficients of the
heteroskedastic logit models, where scale coefiisi®or entropy are presented in
Table 4.7. Unfortunately all utility coefficientsn(Appendix Table 4) which are
significant in the conditional logit model estimaia Table 4.1 are no longer
significant with the addition of entropy scale doménts. We speculate that a possible
reason for this is that we used a small sampletbeteresulted to a lack of variability.
This might suggest that the findings in this stutly be specific to the choice data

collected here.

4.6.4 Complexity and heteroskedastic logit (pocia@ahple)

We have pooled the three ED samples and analysesffdrt of entropy on scale
while controlling for the design effects. Table #&gins with Model 1 which is the
basic conditional logit model. Model 1 shows sigraht coefficient estimates very
similar to those of the conditional logit estimatesthe BDD sample in Table 4.1.
Model 2 is a heteroskedastic conditional logit madach allows for factors that
could influence scale. Similar to the results ia $iplit samples, all estimates of utility
coefficients, including cost, are no longer sigrafit. However, as we added four
scale factors related to entropy and design citéinese contributed to significantly
improving model fit from a log-likelihood of -1468 Model 1 to -1453 in Model 2.
The log-likelihood ratio test statistic of 14.3 erds the critical Chi-square value at
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the 95% confidence level of 9.49 and implies repecof the restricted form. Model 2
allows the testing of entropy measures on scaleemiie signs of the two scale
coefficients suggest a quadratic effect but ndtstteally significant. While

controlling for the quadratic effects of entropyswale, we also tested for the effects
of EDs. Using ORD as the reference design, theesuafficient for BDD is
negatively significant at the 98% confidence lewvblle OOD is also negative but not
significant. This might indicate that relative t&D, and after controlling for entropy,
BDD contributes to increasing the variance of ttrerderm leading to greater choice
inconsistency. This contradicts the results presemt sections 4.6.2 and 4.6.3 which
show that BDD contributes more to increasing athice to the designed alternatives
and provides greater choice consistency relatitkamther two designs. We further
examine this result using Model 3, which is a hetkedastic logit model where we
interacted entropy variables with ED indicatorgapture the net effect of the
designs. Model 3 estimates show positive scaldicaafts for BDD and OOD but

not statistically significant. Actually it may béfitult to say anything from Model 3
estimates as all utility and scale coefficientsravéonger significant. There is also no
significant improvement in model fit from movingon Model 2 to Model 3.
However, focusing on the signs and magnitudesetitsign coefficients, these
results are consistent with those in the previeatiens suggesting that the net effect
of BDD results to lower error variance relativeQ&D. Consequently, given that we
neither see any clear net effect of design norjainy effect of the interaction
between design and entropy in Table 4.8, we exafitiger the effect of choice
complexity via the attribute dispersion proxy (whis another component of choice

task complexity) in the next chapter of this thesis
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Table 4.8: Estimates from Logit models from the poed sample

Model 1 Model 2 Model 3
Conditional Logit Model Heteroskedastic Conditional Logit Heteroskedastic Conditional Logit
Order, Designs and Entropy as Scale Order, Designs & Entropy with
Interaction
Coeff Std Err p-value Coeff Std Err p-value Coeff Std Err p-value
Brown kiwi 1 0.495 0.111 <0.01 1.960 2.620 0.45 8.460 15.900 0.60
Brown kiwi 2 0.654 0.105 <0.01 2.730 3.820 0.48 11.700 23.200 0.61
Native fish 1 0.318 0.101 <0.01 1.170 1.600 0.47 4.960 9.810 0.61
Native fish 2 0.134 0.104 0.20 0.527 0.768 0.49 2.550 5.090 0.62
Native plant 1 0.179 0.102 0.08 0.728 1.090 0.50 2.970 5.850 0.61
Native plant 2 0.228 0.105 0.03 0.658 0.911 0.47 2.810 5.210 0.59
Green gecko 1 0.020 0.103 0.85 0.040 0.420 0.92 0.083 1.930 0.97
Green gecko 2 0.098 0.101 0.33 0.485 0.680 0.48 2.430 5.320 0.65
Bush falcon 1 0.481 0.107 <0.01 1.780 2.520 0.48 8.220 16.400 0.62
Bush falcon 2 0.720 0.101 <0.01 2.760 3.770 0.46 12.100 23.500 0.61
Cost to respondent -0.026 0.002 <0.01 -0.103 0.140 0.46 -0.445 0.863 0.61
Indicator for SQ 0.159 0.176 0.37 -0.590 1.090 0.59 -3.500 7.920 0.66
Indicator for Bayesian D-efficient design (BDD) -0.473 0.170 0.01 10.100 13.100 0.44
Indicator for Optimal orthogonal design (OOD) -0.030 0.139 0.83 7.190 14.300 0.61
Entropy of a choice task -2.910 3.600 0.42 -7.640 5.600 0.17
Entropy square 1.670 2.310 0.47 5.070 3.780 0.18
BDD * Entropy -21.700 29.900 0.47
BDD * Entropy square 11.000 17.000 0.52
OOD * Entropy -12.900 31.600 0.68
OOD * Entropy square 5.420 17.400 0.76
Log-likelihood -1460.32 -1453.17 -1451.44
Number of choice observations 1509 1509 1509
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In Chapter 5, the same pooled balanced sample agdrmm this chapter will
be used to examine whether the effect of highebate dispersion on the error
variance vary across experimental designs. Atteilispersion was described and
used in DeShazo and Fermo (2002) to show that nelgmbs evaluated choice
situations less consistently as task complexitygases. It is a different set of
measures of task complexity in that it accountsntgdor the dispersion of attribute
levels in a choice task. Compared to entropy, @sdaot use coefficient estimates to
calculate the complexity measure. DeShazo and FE&6GP) evaluate groups of
choice tasks with varying number of alternativésjkates and attribute levels which
were all derived from the orthogonal criterionchmtrast, the analysis in Chapter 5
focuses on the effect of attribute dispersion @neiror variance of choice data
collected from choice tasks with the same numbeiltefnatives, attributes and

attribute levels but derived from three differeasun criteria.

4.7 Conclusions

We conclude that based on the sample choice oligersatudied here, using the
BDD criterion may offer some advantages. Thesaigeimore statistically efficient
parameter estimates, reduction in the theoreticaiiymum number of respondents
and providing respondents with choice tasks thataatively more behaviourally
efficient. Higher behavioural efficiency is indieatby higher rates of attendance to
the designed alternatives and lesser occurrencleadte inconsistencies. The above
may be translated to higher data quality, moreipd parameter estimates and
reduction in survey time and cost. However, we aekadge that the above results

might be specific to the split sample studied hi#mnould be good to have a future
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study that could verify this result with a muchgar choice data set with similar split

designs.

This chapter provides some evidence of the supgrioirthe Bayesian D-
efficient design criterion in terms of behavioue#ficiency relative to optimal
orthogonal and orthogonal designs. We found thas#iection of ED criterion
strongly affects both stated and inferred attrimde-attendance. Results indicate that
the sequence of choice tasks derived from the Bayé&sefficiency criterion tend to
minimise stated attribute non-attendance. Desigpradtives from this criterion were
found to have lower inferred attribute non-attera#arelative to the other two
designs. The lower attribute non-attendance rdtauisd to lead to more accurate
welfare estimates as respondents tend to be mgeged in the evaluation of

designed alternatives and demonstrated a relatioelgr incidence of opting out.

In terms of the impact of choice task complexityobiwice variability of
respondents, we found that the three design @aiteave varying impacts. Results
suggest that the variation in complexity levels(the entropy proxy) of choice tasks
derived from the Bayesian D-efficiency criterioredanot lead to an increase in
choice inconsistency (via the error variance prafyjespondents, whilst the
variation in task complexity of the other two critedoes increase choice
inconsistency. We found that, unlike in the twoestesign treatments, the entropy
levels in choice tasks derived from the Bayesiagffiziency criterion do not increase

in any way, the variance of the Gumbel error.

We have shown that, in terms of attribute non-a@®ice and contribution to
choice consistency, Bayesian D-efficiency is theesior criterion. However, there

may be other factors that could show the differdret&veen the three EDs examined
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here, such as attribute dispersion of choice taskdearning/fatigue effects
(DeShazo and Fermo, 2002; Plott, 1986; Batemah, &098; Caussade et al., 2005).
We present and discuss our examination on theteftéattribute dispersion and

learning on choice variability across designs mlext chapter of this thesis.
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Chapter 5: Design criteria effects on choice compkity and learning

5.1 Introduction

Stated Choice Experiments (CE) has been widely usethny different fields to

study the preferences of individuals. Over the tastdecades, several Experimental
Design (ED) criteria (e.g., Bayesian D-efficiensam (BDD), Optimal orthogonal
design (OOD)) have been developed to address #vebdicks of the most widely

used criterion Orthogonal Design (ORD). Howevespie analysts employ different
EDs for conducting CE exercises, most of them assutimat the selection of ED
criterion is neutral to the estimated parametenesl This chapter explores this issue
and investigates whether the three different ED® hlae same effect on the estimates
of the coefficientsf) of the indirect utility function and scale coefénts {), while

controlling for the effects of task complexity atagk order.

In Chapter 4, we presented the results of our exatioin of three ED criteria
(i.e., ORD, BDD and OOD) based on choice task $igesntropylevels. We reported
some empirical evidence that higher entropy leiwrethe choice tasks derived from
the different EDs have varying effects on scale.N&ee shown that different ED
criteria can result in different patterns of atiitd» non-attendance which could lead to
different estimates of the utility coefficients andlingness-to-pay (WTP) values. We
concluded in Chapter 4 that using the BDD criteri@hative to the two other ED
criteria, results in the generation of a superiDrtkat has the following
characteristics: (1) highest design efficiencyrabdated by having the loweiSt,-
error; (2) greater choice consistency as the enti®gel does not reduce the scale

factor unlike the two other EDs; and (3) providesrerealistic WTP estimates as the
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designed alternatives have been more attendedipared to the designed

alternatives in the other two EDs.

Chapter 4 has examined the effect of entropy amncehconsistency. Entropy is
one of the proposed measures of choice task complelowever, there is another
measure of complexity that is described in DeSlaambFermo (2002, 2004). We call
this task specific measuadtribute dispersionSimilar to entropy, attribute dispersion
is choice task specific. However, unlike entrophjch is a single overall measure of
complexity of a choice task, attribute dispersieibioken down into two
subcomponents, namelveragestandarddeviation of attribute levels across
alternatives in a choice task (ASD) aigpersion oftandarddeviation of attributes
levels across alternatives in a choice task (D3Dhe calculation of attribute
dispersion values does not include any coeffickahies (unlike entropy) as we will
present soon. In addition, although attribute disipa is a different component of
choice task complexity, it can directly influencgrepy (Adamowicz and Swait,
2001b)* Given the association between entropy and atgibispersion, we examine
the effect of attribute dispersion on the variaotthe unobservable component of
utility (or error variance) separately from entroppyis chapter examines how
attribute dispersion is associated with the Guneber variance in the three EDs
employed in our study here. We also investigate tieaordering of choice tasks in
the three EDs can influence the error varianceanendetail which we very briefly

examined in Chapter 4. In the final part of thelgsia, we used a pooled sample to

2L\We describe ASD and DSD in detail in section 5.2.

2 Our experimental design data shows strong andfisint relationship between entropy and attribute
dispersion. We present the strength and signifieafichese relationships in Section 5.5.
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jointly examine the effects of different EDs, ditrie dispersion and choice task order

on the error variance.

5.2 Measures of choice complexity

Discrete choice models generally assume that anichcl is certain about his/her
preferences. However, when an individual deals witinplex decisions, he/she may
become uncertain about the utility derived fromdkailable alternatives. This may
be due to the complexity of the choice environnvemere an individual may not fully
understand the implications of the tradeoffs betwaternatives. Many CE studies
have shown that varying certain aspects of chaiskstinfluences the cognitive cost
(or choice complexity) of evaluating the choicektaée.g., Dellaert, et al., 1999;
DeShazo and Fermo, 2002; Ohler, et al., 2000; H#n2003). Several studies have
shown some empirical evidence that increasing oinepdexity levels of the choice
tasks is positively associated with greater eresrance. Some aspects of choice tasks

found to be positively associated with the erraiarece include the following:

* number of alternatives in a choice task (Widlei®8:Hensher et al. 2001; De
Shazo and Fermo 2002; Arentze et al. 2003; DeSéwad d-ermo 2004;

Caussade et al. 2005; Hensher 2006; Rose et &);200

e number of attributes per choice alternative (Mazatid Opaluch 1995; Ohler
et al. 2000; Pullman et al. 2000; Wang and Li 2ad@Shazo and Fermo

2002, 2004; Caussade et al. 2005; Hensher 2006);200

* number of attribute levels (Dellaert et al. 199%™y and Li 2002; DeShazo

and Fermo 2002, 2004; Caussade et al. 2005; Beixall 2009); and
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» dispersion of attribute levels across the altevestin a choice set (that we

refer to here aattribute dispersiop(DeShazo and Fermo 2002, 2004).

Whilst the number of alternatives, number attrisugnd number of attribute
levels have been shown to be positively associattidthe error variance in many
studies (including those enumerated above), fediestthave examined the effect of
attribute dispersion on error variance. DeShazoFarcho (2002, 2004) provide some
empirical evidence that attribute dispersion isifpady associated with error variance
suggesting that higher attribute dispersion wolklely lead to decreasing choice
determinism. This is because under the RandomtyJkilaximisation (RUM) theory,

a higher error variance leads to lower contribubbthe deterministic component of
the utility function whilst the contribution of thetochastic component in explaining
utility increases. We refer to choice determinisnraversely related to choice
stochasticity. We define the increase in choicemeinism as the decrease in
variation in choice outcomes not explained by theeulying utility function. For
example, an individual with perfect information givchoice task t with three
attributes would rank-order those attributes as>A& > Al. However, as choice task
complexity increases (resulting to a decrease @icehdeterminism), an individual
would likely provide inconsistent choices that abpbssibly make A3 no longer the
most important attribute. A number of factors cantdbute to lower choice
determinism (higher choice stochasticity) and theskide: (1) preference ordering
may be incomplete such that A3 > Al while A2 is mafuded in the rank-order; and
(2) a respondent may become indifferent betweetvtbelternatives and may

choose randomly.
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DeShazo and Fermo (2002) [hereby referred to a§ B&Ronstrate that
greater attribute dispersion contributes to a greatgnitive burden to respondents
that result in lower choice determinism in the ea#ibn of alternatives in choice
tasks. DSF compared different blocks of choicedasikh varying characteristics
(e.g., different number of attributes, differentwher of attribute levels). All those
choice tasks were generated using the ORD critehiothis present study, we explore
the effect of higher attribute dispersion of chd@sks to the cognitive cost of
respondents. We formulate a null hypothesis thaetfect of attribute dispersion on
cognitive costs does not vary across different HDgs study aims to answer the
research questiomo attribute dispersions in different ED criteri@mhonstrate
varying effect on choice determinism? If so, wik€hcriterion provides the most

benefit to a choice analyst based on the effechtace determinism?

In this chapter, we show how choice tasks fromtiinee EDs differ in terms
of attribute dispersion and how different dispemdevels influence the error variance.
As ED criteria have different objective functiorsd., ORD imposes orthogonality

between attribute levels, BDD minimises the Baye§laerror assuming # 0, and
OOD maximises D-optimality measure assumiwg0), it can be expected that EDs

generated from those criteria would differ in terofishe two dispersion measures —
ASD and DSD. We describe below the formulae thatised to calculate for ASD

and DSD of the set of choice tasks of each ED.

We calculateASD, based on the standard deviation in attribute o€l
alternativeg (SD). SD is defined as the standard deviation among thealzed

attribute levels of alternativiein choice tasls and can be shown as
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sD :\/ b %) (5.1)

wherex; is the normalized" attribute of alternativg i is the total number of
attributes of alternative We calculatéSD using an ordinal-integer metric where the
attribute levels vary along three monotonicallyréasing levels of 1, 2, 3. These
values represent the values we used in generdmntihtee EDs. These levels were
translated in the choice task as categorical nsetaimiliar to respondents. For
example, the three levels of the attribute (thatrvetide in the choice task for this
study) on the occurrence of a threatened bird spaxan be translated as “sighted
once”, “sighted 3 times”, and “sighted 5 times”.itdgthe ordinal-integer metric for
calculatingSD ensures that attribute levels for each attributeegually weighted on
this alternative specific measure of dispersions Tineasure of dispersion varies
based on the similarity of attribute levels in #ermative. If all attribute levels in
alternative are all highly desirable, then the values@f would be lower compared
to say alternativé that contains a combination of the most desirahtbthe least
desirable attribute levels. This is because amralteye with very similar attribute
levels would tend to be cognitively easier to psscgince it does not require a
respondent to make intra-alternative tradeoffsal@rnative with a highly dispersed

set of attribute levels can be expected to be miffieult to process.

SD is used to calculate for the choice set specikasnreASD, which is the
average standard deviation of attribute levelssxcaiternatives in choice task
Equation 5.2 shows that we simply divide the sunmnadf SO by J which represents

the total number of alternatives in choice task
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ASD =ﬁ (5.2)

ASD represents the averagfect ofSD for choice tasls.

The second attribute dispersion measure for chagles is DSDs. DSDy
describes the dispersiaf average standard deviation of attribute leael®ss
alternatives of choice tasié® Higher values oDSD; suggest greater degree of
spread across alternatives in the within-altereaditiribute dispersions. The study by
DSF suggests that higher valued&D; correspond to greater cognitive cost that

could contribute to increasing choice task compyexi

> (s - AsDf (5.3)

DSD, =
J

Other measures of complexity described in DSF, iwimclude number of
attributes per alternative and number of altermstiper choice task, are not used in
this study because all respondents were providddakbice tasks with the same
number of alternatives, with each alternative hgihre same number of attributes.
Each respondent was provided with nine choice t&Ske&n the nine choice tasks,
there would likely be some order effects that caekllt in a respondent learning
how to more efficiently evaluate the alternativéshe initial orders (T, 2", 3% of

choice tasks. Answering the latter sequence ofliogce tasks could later result in

23 One may also refer to DSD as ttispersion of the dispersiasf attribute levels while ASD as the
average of the dispersiaf attribute levels.
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fatigue or boredom whereby a respondent gets tifedaluating the alternatives after
several replications (e.g."78", 9"). We describe how we examine learning and

fatigue effects in the next section.

5.3 Learning and fatigue effects

Similar to the effects of attribute dispersion hmice determinism, several
applications of CE have shown that the orderinghafice tasks influences the
estimates of indirect marginal utility and the ewariance (Bradley and Daly 1994;
Stopher and Hensher, 2000; Hensher et al., 20Q0z&ret al., 2000; Ortazar and
Rodriguez, 2002; Pérez et al., 2003; Caussade €08b; Holmes and Boyle, 2005;
van der Waerden et al., 2006; Kjeer et al., 2006eman, et al., 2008; Day and Pinto
Prades, 2010; Day et al., 2010). However, unlikebate dispersion which would
likely be positively (negatively) associated wiltetvariance (scale) of the error term,
the order effect can vary from initial choice tasklications with increasing scale and
then in the latter choice tasks with decreasintgst#olmes and Boyle (2005) show a
pattern of increasing scale factor as respondeats to evaluate the alternatives as
they proceed through a series of choice tasks.men of empirical studies suggest
that choice determinism is low for the first chotesks, increases in the next ones
then decreases again at some point (e.g., Caussal€005; Day et al. 2010, Scarpa
et al. 2011b). This trend follows a common sequevitere at first the respondent
tries to learn the choice task and the effort néedeaccomplish it, then he/she
applies the learned behaviour in the next choiskstaand finally the respondent gets
tired or bored in the last choice tasks. Posses#esans for this trend include the
occurrence of learning, boredom and fatigue (Adamopand Swait 2001b; DeSarbo

et al. 2004; Holmes and Boyle 2005; DeSarbo €2Gf)5). Given that different ED
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have different complexity levels they might tencetdnibit different patterns of

learning/fatigue effects. This study also aimsrieveer the research questions:

(1) Does learning/fatigue effects vary in differentesmental designs?
(2) If so, which ED criterion provides the most bentfithoice analyst based

on learning/fatigue effects?

Task order effects in CE surveys would likely ocbacause each respondent
is provided with several choice questions which i@aige between 3 and 64
replications. Caussade, et al. (2005) provided essiondent with 16 choice tasks
and analytical results suggest that the order &fiecdhe series of choice tasks can be
divided into three parts: (1) the first eight cleotasks exhibited a trend of decreasing
error variance indicating that a respondent terideghin a better understanding of
how to evaluate a sequence of choice tasks asabetythrough the first few
replications; (2) the'®to the 11" choice tasks show a decline in the learning patter
as fatigue or boredom overpowered a respondendlisiaiing effort; and (3) the third
part is from the 12 choice task onwards where a typical responderibiet

increasing fatigue levels as indicated by a patbéincreasing error variance.

While Caussade et al found fatigue effects, mahgroCE exercises did not
find sufficient evidence of fatigue effects (e@hler et al., 2000; Savage and
Waldman 2008) despite respondents completing velstlarge number of choice
tasks e.g., up to 64 choice tasks (Brazell and leway1997). This could possibly be
due to the fact that the choice tasks evaluatee esher simple or at least not too
complex, so as not to engender the occurrencdigtiéa(Day et al., 2010). Another
reason could be associated with the ED criterionsasl to construct the choice tasks,

because different ED criteria would result in difiet choice task complexity levels.
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For instance, the ORD criterion creates EDs tha¢ hencorrelated attribute levels
within alternatives and does not assume any paemalues. The ORD criterion also
assumes that respondents have an equal prefemmaédttribute levels and
therefore assumes that the contribution of anradtere in a choice task to the
observed utility is the same as the other alteraat{Grossmann, Holling, and
Schwabe, 2002). There is also an ED criterionithpbses utility balance where
respondents would likely place equal weight ondteof alternatives in a choice task
and this would probably be difficult for respondetd answer (Huber and Zwerina,
1996). However, a choice task derived from a ythidlanced design would likely
have a high entropy level because of high simyantutilities across alternatives in a
choice task (Swait and Adamowicz, 2001a). Vinewyle(2006) report evidence of
having a set of utility balanced choice tasks wipokitively correlates with error
variance. This suggests that ED criterion seleatmuid influence the way
respondents answer a series of choice tasks. Bast above discussion we
formulate the null hypothesis thiiie ED criterion does not influence the learning,
fatigue or boredom effectgVe test this hypothesis using the data collettad a CE
exercise with nine choice tasks where we collectedice data using the three EDs
that we described in Chapter 2 and evaluated irptéhd. We describe how we
model choice determinism as a function of choiaa@exity and order effects in the

next section.

5.4 Measuring choice determinism

In measuring choice determinism, we use an obskryabxy which is the standard
deviation of the random error in the individualtdity function represented ass"”.

A lower value ofg indicates an increase in choice determinism. Agsgithat the

unobserved effects or error terms are Extreme Value Type | distributed,
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o=—""_ whereA represents the scale factor that is inverselyedltoo . The

AG/6
assumption that the error terms are independenidamtically distributedi(.d.)
allows the scale factor to be fixed which implikattthe utility function can be scaled

by an arbitrary constant without affecting logibate probabilitiesp, . Under the

i.i.d. assumption] is often assigned a fixed value of approximateR8255

corresponding to the usual assumptiorwct 1.

To relax thea.i.d. assumption we allow the systematic componentetthnor
term to be explained by the scale factoifo do this we employ the heteroskedastic
(also called covariance heterogeneity) logit madglarameterisel to vary across
different measures of choice determinism. Thisliaghown as

o - edA(C)M, )
" Z/\DA(q)eXd/‘q(Cq)[qvqu» (54)

wherev, represents the observed component of utilityjs a function of a vector

of g choice determinism measuré€, which includes ASD and DSD as well as
measures of choice task order effects describ&dation 5.3. This parameterisation
of the scale factor follows Swait and Adamowicz(28) whereAd is specified as an
exponential function to preclude negative scalampaters. Although this
specification results to a highly non-linear-in-gaueters model, it has excellent
convergence properties (Swait and Adamowicz, 20D&&hazo and Fermo, 2002;
DeShazo and Fermo, 2004). To estimate heteroskettagt models for this

exercise we have used Biogeme 1.8 (Bierlaire, 2009)
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Q
Alc)=exd > chqj (5.5)

The scale factor in Equation 5.5 above is no logestant, as it is a function of
choice determinism, which is in turn approximatgdieasures of attribute dispersion

and task order effects. The sign of the estimatatescoefficienty, shows how the

scale factor is affected by tilg® choice determinism measure (e.g., DSD). A negativ
sign indicates a reduction in scale which impliekearease in the level of choice
determinism. If the scale coefficient fAEDis positive, this would imply that higher
ASDwould contribute to increasing the scale factoinoreasing choice determinism.
The effects on scale in the initial choice taskthefsequence can be expected to be
positive as these contribute to learning, whicthimearly stages is strong. The
coefficients for the latter choice tasks can beeceigd to have negative coefficients as
fatigue and/or boredom would likely contribute tdexrease in choice determinism.
We also expect that the effects of attribute disiparand order effects on the scale
factor would vary across choice data sets collegtaag different EDs. We present

our analytical results in the next section.

5.5 Results

Using the attribute dispersion measures in equsitoh to 5.3, we calculate the ASDs
and DSDs of the three EDs (i.e., ORD, BDD, OODj} tha used to collect choice
data for theBalanced Data S&t We present and compare the calculated values of
ASD and DSD of the three EDs in section 5.5.1 éetisn 5.5.2, we discuss the

relationships of ASD and DSD with the entropy val(@gresented in Chapter 4 of this

24 TheBalanced Data Sés described in Chapter 2.
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thesis) based on pairwise correlation coefficieBextion 5.5.3 presents the effect of
ASD and DSD on the scale factor across the thregle based on the analysis of the
Balanced Data Set. In section 5.5.4, we analysathdle Balanced Data Sghere

we specifically evaluate the effects of learning &atigue on the scale factor for each
ED sample (e.g., choice data set collected usinB)OR section 5.5.5, we analyse
the pooled sample to investigate how measuresateldeterminism (i.e., ASD,

DSD, order effects) jointly affect the scale faatdrile controlling for the effects of

different EDs.

5.5.1 Attribute dispersion levels of the three expental designs

We present the attribute dispersion measures dhtiee experimental designs (EDs)
in Table 5.1. Each ED has a total of 243 choiceradttives. Two-thirds of these
alternatives are generated from one of the threerti€ria (and are calledesigned
alternative$ whilst one-third are Status Quo (SQ) alternatived represent the
current set of biodiversity levels that are fixeul avere not derived from an ED. The
two-third to one-thirdratio arises due to the fact that each choiceliaskhree
alternatives: two designed alternatives and an I&@hative. The 243 alternatives of
each ED are divided into three blocks (Blocks and 3) with each block distributed

into nine choice tasks.

Following Equations 5.1 to 5.3, we calculated the thoice task specific
measures of attribute dispersiaBDandDSD. Table 5.1 shows that ORD has the
lowest overall meaASDof 1.10 while BDD and OOD have virtually the samean
ASD As ASDmeasures the average standard deviation in atribuels in a choice
task, this indicates that attribute levels withiteanatives in ORD are more similar
compared to BDD and OOD. DeShazo and Fermo (20@f)est that an alternative
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with similar levels (e.qg., all high, all low, alloderate) requires less cognitive effort
to process. The minimum and maximum ASD value©fi@D are always lower
compared to the two other designs which might iatichat ORD has the least
complex choice tasks among the three EDs, giverethé@vely higher similarity in
attribute levels of each alternative. However,sheead oASDis highest for ORD as
indicated by the standard deviation of 0.19 comp&weBDD and OOD with 0.13 and
0.15, respectively. This suggests that althoughwamage ORD choice tasks have
relatively lower complexity, the level of complexibetween choice tasks vary the
most for ORD. This is further demonstrated by the that the rangedax less Min

of ASDfor all three blocks of ORD, especially Block le @il greater than the ranges
of the three blocks of the other two EDs (pleageTsble 5.1). The distributions of
ASDfor the thre€eDs are illustrated using histograms with kernel dgngiaphs in
Figures 5.1a, 5.1b and 5.1c. The figures show®#D has the widest spreadA$D
followed by OOD and then BDASDfigures and graphs in Table 5.1 and Figure
5.1b suggest that BDD has the least spreagkSal This implies that the complexity
levels of the set of choice tasks generated usDD Briterion have the smallest range
of variation of complexity among the three desigitse dispersion of ASD for the
three EDs are further illustrated in Figure 5.2hgsternel density graphs
demonstrating that the ASD values for ORD havetikaly lower densities and

exhibit the widest spread.

Both ASDandDSD are choice task specific measures of complexiopéier,
unlike ASD, which represents a measure of the average coityptéthe three
alternatives in a choice tadRSDis a measure of the spread of complexity across
alternatives in a choice task. Table 5.2 shows@RID and OOD are tied as having

the highest overall meddSD of 0.19. ORD demonstrates greater variation in DSD
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across three blocks while OOD have consistentliz lkegel of DSD across blocks.
BDD has the lowest overall me&$D of 0.16 and this value is virtually the same
across three blocks suggesting that BDD consisteetihonstrates low dispersion of
complexity across blocks. In addition, the standdiation of DSD and the
maximum of DSD are lowest for BDD which indicatatlhis design has the lowest
spread of dispersion of complexity among the thiesgns. The histograms with
kernel density graphs in Figure 5.3a, Figure 5/@bfigure 5.3c illustrate the spread
of dispersion of the three EDs. Again BDD exhilits lowest level of complexity
among the three designs in terms of overall medmaarall spread of dispersion of
complexity of choice tasks. We also present kedeekity graphs of DSD in Figure
5.4 to further illustrate that ORD demonstratesgtreatest spread in terms of the DSD
measure of attribute dispersion. We can see hpattern that ORD choice tasks have
wider spread of ASD and DSD than the two othergtesriteria. This is probably
because BDD and OOD are optimised for particulta balues (e.gff = 0or f #

0). We speculate that the optimisation process&DiD and OOD might have
contributed to the narrowing of spread of disperskeor instance, minimising the D-
error would likely contribute to minimising the sjad of dispersion. However, this

might not be generalisable and further investigasibould be done to verify this.

The effects oASDandDSD on choice determinism can be tested by using
choice survey data and examine how these two messtiattribute dispersion are
associated with the scale factor. We conjecturettieawide range of variability of
ASD of the choice tasks in ORD would contributeatgreater decrease in choice
determinism than other designs. To examine whehteeeffects of ASD and DSD on
the scale factor vary across designs, we use #gaimeteroskedastic logit model.

Estimation results from these are presented ingebt5.3. The next section shows
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the relationship between attribute dispersion aritbpy of the choice tasks across the

three EDs examined here.
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Table 5.1: Average standard deviation (ASD) of atibute levels across alternatives in a choice task

Orthogonal (ORD) Bayesian D-efficiency (BDD) Optin@rthogonal (OOD) Pooled
Blockl Block2 Block3 All Blockl Block2 Block3 All Bckl Block2 Block3 All
Mean 1.07 1.12 1.11 1.10 1.19 1.13 1.17 1.17 119 171 1.17 1.18 1.15
Standard deviation 0.28 0.11 0.15 0.19 0.15 011 110. 0.13 0.05 0.10 0.16 0.11 0.15
Minimum 0.48 0.92 0.81 0.48 0.98 1.01 1.01 0.98 51.0 1.05 0.73 0.73 0.48
Maximum 1.41 1.29 1.32 1.41 1.46 1.32 1.35 1.46 312 1.32 1.29 1.32 1.46
Range (Max less Min) 0.93 0.37 0.51 0.93 0.48 031 0.34 0.48 0.18 0.27 0.56 0.59 0.98
Number of choice tasks 27 27 27 81 27 27 27 81 27 7 2 27 81 243
Table 5.2: Dispersion of standard deviation (DSD)faattribute levels across alternatives in a choictask
Orthogonal (ORD) Bayesian D-efficiency (BDD) Optin@rthogonal (OOD) Pooled
Blockl Block2 Block3 All Blockl Block2 Block3 All Bckl Block2 Block3 All
Mean 0.25 0.12 0.19 0.19 0.15 0.16 0.16 0.16 0.17 017 .210 0.19 0.18
Standard deviation 0.12 0.10 0.11 0.12 0.08 0.06 0.09 0.08 0.06 0.14 150 0.12 0.11
Minimum 0.05 0.02 0.07 0.02 0.02 0.06 0.03 0.02 0.10 0.07 .020 0.02 0.02
Maximum 0.39 0.30 0.43 0.43 0.31 0.23 0.36 0.36 0.29 053 .530 0.53 0.53
Range (Max less Min) 0.34 0.28 0.36 0.41 0.29 0.17 0.33 0.34 0.19 0.46 510 0.51 0.51
Number of choice tasks 27 27 27 81 27 27 27 81 27 27 27 81 243
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Figure 5.1a: Histogram and kernel density of ASD foORD
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Figure 5.1b: Histogram and kernel density of ASD foBDD




Figure 5.2: Kernel density of ASD by design
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Figure 5.3a: Histogram and kernel density of DSD floORD
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Figure 5.3c: Histogram and kernel density of DSD floOOD
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Figure 5.4: Kernel density of DSD by design

N \ ——ORD
A}

Density

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

5.5.2 Relationship of ASD and DSD with entropy ésigh

We mentioned earlier that although entropy andbaittie dispersion are two different
components of choice complexity, the two are asgedibecause both affect choice
probabilities (Swait and Adamowicz, 2001b). As epyr and attribute dispersion are
both choice task specific measures of complexigycan examine the relationship
between them for each ED. For each choice taskalesilated the entropy value that
we used to undertake our analysis on entropy irp@hnd& of this thesis. For the
attribute dispersion measures, we calculated the &8 DSD values of each choice
task which are summarised in Tables 5.1 and 5.2Xptore whether correlation
applies to our design data sets we calculated areorrelation coefficients between
entropy and attribute dispersion using those chiaisk specific values. Column 5 of
Table 5.3 shows that the pooled set of designsatelithat entropy values and
attribute dispersion values are somewhat positigelyelated in a significant way.

ASD and entropy are significantly negatively coatetl because the increase in the
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dispersion of attribute levels of alternatives asra choice task increases the
difference between alternatives in terms of contrdn to utility. This in turn
increases the difference in choice probabilitiealtdrnatives in a choice task. For
example, a choice task with three alternativeasga2 with a low ASD value (e.g.,
0.4) would have choice probabilities of sq=0.32@&B33, a2=0.35 while one with
high ASD value (e.g., 1.5) would have sq=0.05, a850a2=0.35> As mentioned in
Chapter 4, a choice task with alternatives haviexy gimilar contributions to utility
would have a very high entropy value and vice versas, the above supports the
assertion that ASD is negatively correlated wittrgpy. For the pooled set of
designs, DSD and entropy are significantly posiyiverrelated. This is because as
DSD increases, the contributions to utility of ati&ives in a choice task become

similar leading to an increase in the entropy lefed choice task.

Columns 2 and 4 of Table 5.3 show that the carmeidetween attribute
dispersion and entropy for ORD and OOD are consistéh the pooled design set.
However, for BDD, entropy and DSD have weaker pasicorrelation and lack
statistical significance. This suggests that tlegase in DSD in the Bayesian D-
efficient design contributes less to increasingat compared to the two other EDs.
A possible reason for this is that, as Table 5@&s) BDD choice tasks have

relatively lower mean DSD (and narrower range oblpS&ompared to the other EDs.

We have also calculated the correlation coeffiddat ASD and DSD for
each design sets and pooled design set. Tabldévdssa relatively strong negative

correlation in BDD while the two other EDs have weasitive correlations. This

% please note that those values of choice prohiabilitere arbitrarily selected to distinguish a choi
task with high ASD from one with low ASD.
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implies that in choice tasks generated using th® BEXerion, one can expect that as
ASD increases DSD decreases while the oppositéeadpt the two other EDs. This
demonstrates that BDD has a different attributelleispersion property compared

with ORD and OOD.

Table 5.3: Summary of correlation coefficients shoimg the association between
attribute level dispersion and entropy of groups othoice tasks

ORD BDD OO0D Pooled
ASD and Entropy -0.327 -0.270 -0.239 -0.227
(0.003) (0.015) (0.032) (0.000)
DSD and Entropy 0.438 0.139 0.387 0.327
(0.000) (0.215) (0.000) (0.000)
ASD and DSD 0.049 -0.203 0.037 -0.021
(0.666) (0.069) (0.742) (0.746)
Number of choice 27 27 27 81

tasks observations

Note: Figures in parentheses repregevalues.

5.5.3 Effects of ASD and DSD on the scale factatdsygn

To examine the effects of ASD and DSD on the stzadtor, we analyse the balanced
data set described in detail in Chapter 2. Colughasd 4 of Table 5.4 show the log-
likelihood values from conditional (or homoskedeystogit and heteroskedastic logit
models of the three design treatment and the paaetle. The homoskedastic logit
approach assumes that scale is not a functionmpoaents of complexity (via the
ASD and DSD proxies) while the heteroskedastictlagproach allows the scale to
vary based on ASD and DSD values of each choiée @dumn 5 presents the chi-
square statistics for the hypothesis that both A8® DSD terms in the scale function
are zero, suggesting that preferences are notciidarof complexity. Since the
critical value is 5.991 at the 95% confidence lewad reject the null hypothesis that

the scale factor is not a function of complexityhe BDD treatment. Since the
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analysis of ORD and OOD data indicates that we $arfkcient evidence to reject
homoskedasticity, this suggests that the compléeitgls in ORD and OOD choice
tasks do not influence choice determinism. We t8do reject homoskedasticity in
the pooled sample. However, it is important to nbag, the heteroskedastic logit
models used in Table 5.4 suffer from a problemayfitig non-significant estimates of
utility coefficients. This could have implicatiofisr the robustness of the conclusions
drawn from the effects of designs on choice behratdstimated utility coefficients

for the joint effects of attribute dispersion foetsplit design and pooled samples are

reported in Appendix Table 5.

Column 6 of Table 5.4 shows significantly positsaale coefficient estimates
of ASD in the BDD sample suggesting that higher A8&s to increase in scale.
This indicates that higher ASD is actually advaetags as it contributes to a decrease
in the cognitive cost of respondents in evaluatingice tasks. As Table 5.3 shows
somewhat a negative correlation (-0.203) betweeb ASd DSD for the BDD choice
tasks, we tested what would happen topivalues of scale coefficients if we
estimated ASD and DSD separately. Th& d@w of Table 5.4 shows a lowpsvalue
and a higher magnitude of the ASD scale coefficienBDD when estimated
separately with DSD. This suggests that ASD inBB® treatment, is the only
measure of dispersion that positively influencesescThis is corroborated by the
result reported in the third to the last row whitree DSD coefficient remains not

significant in terms of effect on scale.

Column 7 row 4 of Table 5.4 shows a negative soaddficient for DSD
(significant at the 88% confidence level) in the@@&ample indicating that higher

DSD contributes to an increase in cognitive cobtsTs consistent with the findings
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in DeShazo and Fermo (2002), which also generdtete tasks using the ORD
criterion. Although we know from Table 5.3 that A&Dd DSD are very weakly
associated (or not associated) in the ORD treatnaenstill separately estimated the
two scale coefficients as shown in rows 9 and 1fable 5.4. Separate estimation
shows an increase in mgstvalues of the ASD and DSD scale coefficients iatlitgy
that the joint effect of the two on scale is strentipan their individual or separate
effects. However, the BDD sample is an exceptioenalthe 10 row shows that the
p-value for ASD scale coefficient is lower and thagnitude of the coefficient is also

higher indicating a stronger effect with separatdesestimation.

Although Table 5.4 shows that only the BDD saniyae a statistically
significant scale coefficient estimate for ASD (jagdicated by g-value of 0.06),
three other scale coefficient estimates are neaghjficant. We plotted scale
coefficient estimates for ASD and DSD in Figures &nd 5.6 to illustrate their
association to the scale factor for the three assigigure 5.5 shows the variation of
the effect of ASD on the scale factor for BDD, O@id Pooled samples. The graph
for ORD was not included because ASD in that sardjglenot lead to any statistically
significant decrease (increase) in scale (variaasehown in Table 5.4. Figure 5.5
shows that the higher ASD in BDD and OOD samplssltén an increase in the
scale factor which implies that higher ASD, espigcia BDD, contributes to
increasing the consistency of choices made by resgas. In terms of the impact of
DSD on the scale factor, Figure 5.6 shows thatdn@sD in the ORD sample would
likely contribute to greater choice complexity (ower choice determinism) as

indicated by a decreasing trend in the scale faddSD increases.
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Table 5.4: Conditional and heteroskedastic logit miel estimates

) 2) 3) 4) ) (6) )
oo Estimated Estimated
Experi- No. of Log- . leghhood Scale Scale
i Log-likelihood Ratio Test - -
mental observed likelihood Heteroskedastic (-2*(LL o- Coefficient  Coefficient
Design choice  Conditio- Logit LL ))0 of ASD of DSD
(ED) sets nal Logit 9 L (Robustp- (Robustp-
value) value)
ASD and DSD
ORD 503 -459.28 -457.51 3.54 -0.55 -1.49
(0.33) (0.11)
BDD 503 -497.66 -493.85 7.62* 2.59 -1.72
(0.06) (0.41)
0oo0D 503 -469.62 -468.77 1.70 1.42 -0.76
(0.20) (0.56)
Pooled 1509 -1460.32 -1458.18 3.02 -0.65 -1.15
(0.14) (0.13)
ASD Only
ORD 503 -459.28 -458.98 0.60 -0.43
(0.45)
BDD 503 -497.66 -494.28 6.76* 2.79
(0.05)
0oO0D 503 -469.62 -468.98 1.28 1.27
(0.20)
Pooled 1509 -1460.32 -1459.57 1.49 -0.55
(0.22)
DSD Only
ORD 503 -459.28 -458.01 2.54 -1.40
(0.13)
BDD 503 -497.66 -496.80 1.72 -2.25
(0.23)
0o0D 503 -469.62 -469.47 0.30 -0.68
(0.62)
Pooled 1509 -1460.32 -1459.24 2.16 -1.40
(0.13)

* Significant at the 95% confidence level as itesds critical Chi-square value with 2 degrees of

freedom)(2095 = 599 (One degree of freedom = 3.084)
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Figure 5.5: Effect of ASD on the scale factor by dggn
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5.5.4 Choice task order effects by design

We present here the estimation results on thetsftéchoice task order on the scale
factor. Estimates of scale coefficients for taskeoreffects are presented in Table 5.5.
All three heteroskedastic logit regression modelsverged with ORD taking only 30
iterations to converge while BDD took 298 iterasamith both starting the search
from pre-estimated initial values. The highly namelr-in-parameters specification
might have contributed to making some of the ytitivefficients to become non-
significant compared to the estimates of the homdaktic conditional logit model.
Another possible reason is that higher statisetiadiency of BDD has contributed to
a lower variation in both DSD and ASD and this ntigave affected the model

estimation process.

Table 5.5 shows that the scale coefficients foiigghtask order in the ORD
sample are all non-significant, suggesting that B neither exhibits learning nor
fatigue effects. The set of scale coefficientsBBID, instead, exhibits learning effects
as shown by a steadily increasing coefficient v&lisem 2'%&3™ choice task to the'8
choice task. There seems to be strong evidenaanfihg especially in thé"&hoice
task where the scale coefficient increases fror8 ththe 7' to 1.84 in the 8 choice
task. Although the coefficient for th& @hoice task is slightly lower than th8,8he
former remains higher than the coefficient for e This shows a pattern of
continuous and sustained learning in the caseeoBID which may indicate that we
could have increased the number of choice taskiirsorvey from nine to maybe
sixteen choice tasks to build upon the favouraddering effect brought about by

using BDD. In terms of the OOD sample, the setcales coefficients show a sign of
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significant learning effect in thé"&hoice task. However, there is neither a clear sig

of a continuous learning nor a clear indicatioriatigue effects.

Figure 5.7 illustrates the effects of task ordetlmnscale factor by design.
BDD exhibits the best pattern of learning beginrfirugn the &' choice task to the
8".2% This pattern of continuous learning might indéctitat respondents tended to
become increasingly interested in evaluating tlggisece of choice tasks as they
progress through the first eight choice tasks.igfhinalso indicate a pattern that
respondents exerted more effort to understandubteesding choice tasks as
demonstrated by a trend of increasing scale coeftis (increasing choice
determinism) up to the"&ask order. The graph for OOD exhibited a distirect
learning effect on the"Bchoice task while ORD does not show any learnffepe
All EDs do not exhibit any significant fatigue egfe which are consistent with
findings in Ohler, et al., (2000); Savage and Waldr{2008); and Brazell and

Louviere (1997).

**We used the first choice task as reference sirisdikely to be the most difficult task to evalaat
because respondents would typically exert the gseaffort to learn how to properly choose the
preferred alternative.
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Table 5.5: Heteroskedastic logit model estimates choice task order effects on the scale factor

ORD BDD OO0D
Coef Robust Robust Coef Robust Robust Coef Robust Robust

Std Err p-value Std Err p-value Std Err p-value
Utility coefficients
Brown kiwi 1 0.447 0.275 0.10 0.164 0.156 0.29 0.486 0.292 0.10
Brown kiwi 2 0.618 0.353 0.08 0.225 0.141 0.11 0.469 0.230 0.04
Native fish 1 0.372 0.214 0.08 0.246 0.273 0.37 0.137 0.162 0.40
Native fish 2 0.225 0.232 0.33 -0.004 0.101 0.97 0.186 0.150 0.21
Native plant 1 0.259 0.283 0.36 -0.145 0.255 0.57 0.092 0.161 0.57
Native plant 2 -0.184 0.298 0.54 0.033 0.115 0.77 0.068 0.162 0.68
Green gecko 1 0.095 0.185 0.61 0.066 0.118 0.57 -0.116 0.152 0.44
Green gecko 2 0.379 0.248 0.13 -0.007 0.068 0.92 0.030 0.155 0.85
Bush falcon 1 0.469 0.341 0.17 0.261 0.339 0.44 0.148 0.236 0.53
Bush falcon 2 0.787 0.508 0.12 0.374 0.326 0.25 0.320 0.169 0.06
Cost to resp -0.025 0.015 0.08 -0.008 0.008 0.26 -0.023 0.009 0.02
Indicator for non-SQ -0.509 0.414 0.22 0.003 0.162 0.98 0.296 0.321 0.36
Scale coefficients
2" & 3" task order 0.015 0.558 0.98 0.045 2.190 0.98 0.384 0.459 0.40
4" 0.416 0.692 0.55 0.777 1.090 0.48 0.628 0.571 0.27
5" 0.439 0.766 0.57 0.937 1.090 0.39 0.314 0.495 0.53
6" 0.254 0.680 0.71 1.000 1.400 0.47 0.916 0.490 0.06
7" -0.136 0.609 0.82 1.130 0.704 0.11 0.134 0.697 0.85
g" -0.058 0.773 0.94 1.840 1.050 0.08 -0.251 0.765 0.74
9" -0.091 0.648 0.89 1.410 1.020 0.17 0.257 0.552 0.64
Log-likelihood value -456.46 -490.59 -465.36
Number of observations 503 503 503
Number of iterations 30 298 37
Converged? Yes Yes Yes

Note: Figures in boldface font are significantred 0% confidence level; those in italics are ryesignificant.
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Figure 5.7: Choice task order effects on scale bygerimental design
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It is important to note that, in the survey quastiare, we provided as much
information as possible to the respondents abautite environmental attributes to
illustrate a clear picture of the environmental gi¢loat they valued. We have also
provided them with some coaching on how to propevigluate each choice task. On
page 6 of the survey questionnaire, we provideplardents with a description of
each attribute and the coaching was representeddeynonstration of how a person
might think her way through to evaluate each chtas&. Given the amount of details
that we provided them, it seems that, based orethdts of choice task order effects,
the sequence of choice tasks generated from the &@&ion has sustained

respondents’ enthusiasm to answer the sequendmimiectasks.

5.5.5 Heteroskedastic logit regressions on poosede

To jointly test for the effects of attribute dispiem and task order on the scale factor,
we analyse the pooled balanced data set usingetieeoskedastic logit model
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described in Equation 5.4. The pooled data sefl688 choice observations as each
of the three design treatments has 503 observatistisnates for the three
heteroskedastic logit models are presented in TableThe columns under Model 1
are estimates for the conditional logit model, vehidne estimated utility coefficients
are consistent with economic theory as sign tharemmental improvements are
positive, while the marginal utility of income ekits a negative sign. The utility
coefficients for additional native birds (i.e., kiand falcon) and a Level 1 increase in
the number of native fish are significantly postimdicating that those improvements
are valued by respondents and they would be witbngay to support the increase in
population of those threatened species. Howevergakefficients for the increase in
the number of geckos and the native plant kakabeakot significant. As mentioned
earlier, one might believe these attributes weeddwvant to the population and that

they should not have been included in the choisle ta

Model 2 is a heteroskedastic logit model wherenvestigate the effects of
task order, experimental designs BDD and OOD, @inidbate dispersion (ASD and
DSD) on the scale factdf.In a side regression, where we evaluated thecmis
effects on the scale factor, we found that orddars@land orders 7 to 9 contributed
similar magnitudes of positive increases in thdestactor. From this result, we
elected to use an indicator variable for two groofssk orders in Model 2. The
indicator variable foifask orders 4 to & significantly positive at the 99.9%
confidence level. This indicates the presenceariag effect that increases

(decreases) scale (error variance) thereby incrgas$ioice determinism. The scale

" Model 2 has a higher log-likelihood value (-1446npared to Model 1 (-1460). Likelihood ratio
test shows a Chi-square value of 28.40 that exdbedsriticaly 2*° = 2052 .Thus, the null
hypothesis that scale is not a function of cham®nsistency is strongly rejected.
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coefficients for BDD and OOD are both negative vBIDD having gp-value less

than 0.01. This suggests that, with ORD as theeate design, BDD contributes
significantly to reducing choice determinism wHd®D does not. This result
contradicts the findings and discussion in sect®bs3 and 5.5.4 suggesting that the
BDD criterion produces choice tasks that contridatancreasing the scale factor.
Section 5.5.4 suggests that BDD exhibits the neatudrable learning effect as
indicated by the steady increase in the scale f&cim task orders 3 to 8 while the
two other EDs do not show any pattern of contindeasning. There could possibly
be some joint effects between EDs, attribute cati@is and task orders. To account
for joint effects, we include interaction variablaghe set of scale coefficients in

Model 3.

Accounting for joint effects, Model 3 estimates gesst that BDD does not
have any net effect on scale, but OOD has a hgjglyificant negative net effect on
the scale factor of -3.2 (with ORD as the referesiegign). Although the interaction
between OOD and ASD (or the joint effect of OOD &®D) has a significantly
positive scale coefficient of 2.0, the magnitudehisg still does not sufficiently
compensate for the greater negative magnitudeeafi¢h effect of OOD on scale. By
controlling for the joint effect of ED and attrilsutlispersion, we find the result that
supports the findings in section 5.5.3 where, n&tatio ORD, BDD does not
contribute to decreasing choice determinism whi@DCsignificantly contributes to
decreasing choice determinism. In terms of joifeéa$ of ED and task order, the
interaction betweeBDD andTask Orders 7 to & positive and significant at the 98%
confidence level. This supports the finding in 8.that the greater learning effect in

BDD, relative to the other EDs, contributes to e@asing choice determinism.
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In terms of the net effect of attribute dispersiblodel 3 shows that higher
levels of DSD significantly reduce choice deterrsimi These results are consistent
with the findings in DeShazo and Fermo (2002, 2@64) suggest that greater
attribute dispersion is positively associated \aith increase in choice inconsistency.
With regard to the net effect dask_orders 4 to ,@he magnitude of its effect has
diminished from Model 2 to Model 3 as it was intdesl with the design variables.

However, it remains positive and significant at #286 confidence level.

With regard to the joint effect of EDs and attridulispersion, the scale
coefficient for the interaction of BDD and DSD igrsficantly positive suggesting
that higher DSD in choice tasks generated usind@d criterion would likely
increase the scale factor relative to choice téasks ORD criterion with high DSD.
OOD x ASD is also positively significant indicating thagher ASD in choice task
generated from OOD criterion would lead to higheais factor relative to ORD
choice task with higher ASD. Given that BBDSD provided the highest magnitude
of increase in the scale factor, a choice analgstidvbe better off employing the
BDD design criterion because it contributes the tnmgncreasing choice

determinism relative to the two other design cidter
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Table 5.6: Heteroskedastic logit model estimatesifthe pooled sample

Model 1 _Mo_del 2 . _l\_/loc_iel 3 .
Conditional Loait Model HMNL no interactions HMNL thh interactions
~onditional Loqit vodel Order, Designs, ASD and DSD Order, Designs, ASD and DSD
Coef Robust Robust Coef Robust Robust Coef Robust Robust
Std Err P-value Std Err P-value Std Err P-value

Brown kiwi 1 0.495 0.111 <0.01 0.990 0.554 0.07 1.270 0.907 0.16
Brown kiwi 2 0.654 0.105 <0.01 1.230 0.679 0.07 1.620 1.240 0.19
Native fish 1 0.318 0.101 <0.01 0.650 0.383 0.09 0.903 0.700 0.20
Native fish 2 0.134 0.104 0.20 0.351 0.268 0.19 .530 0.441 0.23
Native plant 1 0.179 0.102 0.08 0.302 0.248 0.22 0.324 0.347 0.35
Native plant 2 0.228 0.105 0.03 0.322 0.257 0.21 0.219 0.363 0.55
Green gecko 1 0.020 0.103 0.85 -0.022 0.196 0.91 0.064 0.285 0.82
Green gecko 2 0.098 0.101 0.33 0.198 0.208 0.34 .2790 0.301 0.35
Bush falcon 1 0.481 0.107 <0.01 0.930 0.538 0.08 1.260 0.945 0.18
Bush falcon 2 0.720 0.101 <0.01 1.380 0.758 0.07 1.780 1.350 0.19
Cost to respondent -0.026 0.002 <0.01 -0.050 0.028 0.08 -0.070 0.053 0.19
Indicator for SQ -0.159 0.176 0.37 -0.336 0.379 .380 -0.198 0.492 0.69
Task orders 4 to 6 0.467 0.156 <0.01 0.452 0.252 0.07
Task orders 7 to 9 0.231 0.170 0.17 0.036 0.245 0.88
Indicator for BDD -0.483 0.164 <0.01 1.230 2.000 0.54
Indicator for OOD -0.117 0.128 0.36 -2.660 1.290 0.04
ASD -0.492 0.442 0.27 -0.571 0.622 0.36
DSD -0.830 0.673 0.22 -1.630 0.881 0.06
BDD * ASD -2.440 1.720 0.16
BDD * DSD 3.650 1.850 0.05
OOD * ASD 2.040 1.100 0.06
OOD *DSD 1.200 1.780 0.50
BDD * Ord 4-6 0.464 0.445 0.30
BDD * Ord 7-9 1.110 0.453 0.01
OOD *Ord 4-6 -0.153 0.391 0.70
OOD *Ord 7-9 -0.102 0.419 0.81
Log-likelihood -1460.32 -1446.12 -1436.93
Adj rho-square 0.112 0.117 0.118
Observations 1509 1509 1509
No. of iterations 7 25 31

Note: Figures in boldface font are statisticallyrsiicant at the 90% confidence level.
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5.6 Conclusions

Based on the data studied here, overall, our eBwdicate that BDD is the superior
design criterion, as it generates choice tasksabatd likely reduce the cognitive
burden to respondents while also providing respotsdeith a better learning
experience in evaluating of a sequence of chogkstalrhese features thereby
contribute to the enhancement of behavioural e&fficy of a CE respondent who is
required to evaluate relatively complex sets adralatives. Since a major issue in CE
is the complexity of choice tasks, choosing an E&} tould contribute to increasing
choice determinism and enhancing the learning &ffeould be very helpful in
improving the quality of choice data collected frempensive CE surveys. This
research has addressed the problem faced by marce@nalysts as to what
particular ED would be most appropriate for thelt €xercise, given the several ED
criteria to choose from. However, our results migdtspecific to the data studied
here. Our sample size is also small making it nadfecult to be generalised. In
future studies, this problem might be addresseddsinyg a larger sample as well as
using an experimental design algorithm that alltvesincrease or decrease of the

range of attribute dispersion.

We consider this study as being one of the fewka/tw empirically investigate
how different experimental designs affect choickawsour in general and choice
determinism in particular. We hope this study opesdoor for more studies that
would provide useful suggestions for choice analystfurther improve the method of
collecting choice data. Whilst many would consithett using an ED with statistically
higher efficiency (i.e., minimal D-error) is impartt, identifying an ED that could
help improve behavioural efficiency of respondestsqually important. In this study,

we found that choice tasks generated from an Er@n with the lowest D-error
172



contributed the most to enhancing respondents’\betil efficiency relative to the
two other EDs with higher D-errors. We thereforadade that the Bayesian D-
efficient criterion not only contribute to the prsion of choice tasks with higher
statistical efficiency, but also increase behawabefficiency relative to the other
designs studied here. However, there are stillraheas that should be examined
further. We suggest that future studies should examiifferent EDs based on
strengths, weaknesses and potential of respontieatsend to complex choice tasks
(relative to contingent valuation scenarios). liebbe interesting to see how the
Bayesian D-efficient Design criterion (under th@dional logit model assumption)
compares in behavioural efficiency achieved in otigees of EDs which are not
examined here (e.g., Bayesian S-efficient desigleumodel averaging approach
(Scarpa and Rose, 2008); heterogenous design (SanddVedel, 2005)). We also
support the suggestion of Louviere et al. (201)ridertake a concerted effort to
transparently examine different EDs for the bersdf#verybody in this field (e.qg.,

applied researchers, respondents, academiciansy poklysts).
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Chapter 6: Conclusions and future research

6.1 Thesis summary and conclusions

Chapter 1 provides an overview and main researebtouns of the thesis. Chapter 2
is a generic chapter that describes most of theefaddat have been estimated. It also
describes some of measured of design efficienagh&umore, it also provides a
description of how the data was collected and stosismmary of the data sets that
were constructed and analysed using various logdets. Chapter 3 has shown using
choice experiments that a typical New Zealanderlevba willing to financially
support biodiversity enhancement in the country&rillion hectares of planted
forests. Accounting for hypothetical and aggregab@ses, New Zealand taxpayers
would be willing to pay an aggregated national eabdfiapproximately NZ$26.5
million per year for five years to support a natéibhiodiversity enhancement

initiative coordinated by the Department of Conséinn (DOC) with forest
companies, environmental NGOs and community groupsg Random Effects
Panel Regression Analysis, the factors identifteddsitively influence WTP include
being a volunteer to conservation organisations siscDOC and Forest and Bird,
being a female, having higher education, havingepation of native birds and
residing in a place with large planted forests imitihhe 10-kilometre radius. We find
the spatial factor to be very useful for plannihg tountry’s afforestation programme

where native biodiversity in planted forests arkigd by people.

Chapter 4 provides an overview of attribute noefrattince (ANA) and choice
task complexity (via the entropy proxies) in CE. Wsted the hypothesis that the
selection of ED criterion does not influence ANAdarhoice variability. The analysis

has examined three ED criteria which are Orthogbralign (ORD), Optimal
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Orthogonal Design (OOD) and Bayesian D-efficiensiDe (BDD). Estimated Latent
Class Logit models with panel specification accounfor ANA indicate that the
selection of ED criterion matters. We find thatheg complexity levels in choice
tasks derived from the BDD criterion do not inceeakoice variability unlike ORD
and OOD. This could explain why BDD choice tasksmaore attended than choice
tasks derived from the two other designs. Howeabese results might be specific to

the data studied here.

Chapter 5 provides an overview of another compoakahoice task
complexity calledattribute dispersionDeShazo and Fermo (2002) have shown
evidence that higher ASD leads to a decrease irtelhieterminism based on their
choice data collected using ORD. In contrast, pnesent study shows the opposite
where estimation results from our choice data ctéle using BDD choice tasks
indicate that higher ASD leads to increasing chdiegrminism. This shows an
important implication of selecting a design criterin the study of task complexity.
This is because as higher ASD may have a negatigadt on choice determinism in
one design criterion, this may have a totally défé impact on choice determinism in
another design. Overall our empirical results imfikr 5 indicate that in choosing a
design criterion, an analyst would be better tectehe BDD criterion, as it generates
choice tasks that would likely reduce the cognitiweden of respondents while
providing them with a better learning experiencevaluating a sequence of choice
tasks. This research has therefore addresseddhkepr faced by many choice
analysts as to what particular ED would be most@mmte for their CE exercise

given the several ED criteria to choose from.
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6.2 Implications and future directions

On the policy side, we have shown evidence thabpgsed biodiversity
enhancement programme in planted forests is vdlyédew Zealand taxpayers with
an aggregate amount of NZ$26.5 million per yeaffif@ years. This shows that
enhancing the provision of an environmental seringaanted forests would benefit
society and the taxpayers would be willing to ficially support such initiative. This
corroborates the report of the New Zealand DepartroeConservation which
mentions that New Zealanders place a high valuedigenous species, as they form
a basis of national identity (DOC, 2000). The eated national value of biodiversity
enhancement also sheds light on the true valutaotga forests. This is because, at
present, the value of planted forests is regardadlgnin terms of forest products
such as timber, pulp and paper, and, to a cerkh@nt carbon sequestration service.
But in fact, in addition to providing habitat fdweatened native species, they also
provide other ecosystem services such as erosittnotaflood mitigation, water
guality improvement and recreation. The presenasiin shows that planted forests
are highly under valued in terms of their contribatto species conservation and
habitat creation. One major reason is that the @oonvalue of other ecosystem
services they provide is poorly understood andagobunted for in policy decision
making. Estimating the value of habitat provisienage have done here is an initial
step towards defining the true value of plante@d$ts. We therefore suggest that
future studies should estimate other ecosystencesrprovided by planted forests in
addition to developing market mechanisms to sustathfurther enhance these
services. Furthermore, markets for biodiversity®ess are now being established by
groups of large multinationals in coordination withiversities and government

institutions (Corporate Ecosystem Valuation) (WBG2D11).
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On the research dimension, we contributed by extgralevious studies that
provide empirical evidence that the Bayesian Degdfit design (BDD) criterion
produces significantly improved results, in a statal sense of relative efficiency
(e.g., Rose et al. 2008). This study provides awidehat in addition to improved
statistical efficiency, as indicated by lower BagesD-error, the BDD criterion might
also contribute to improving behavioural efficierafyrespondents thereby
contributing to higher quality data collected franchoice survey. The sequence of
choice tasks derived from the BDD criterion hasnbieeind to be more attended to
and demonstrated a pattern of continuous leariiata collected has lower choice
variability that could somehow indicate that respmts have found the choice tasks
more coherent compared to OOD and ORD. This stuelefore provides some
evidence as to what ED criterion an analyst shohtibse given three different ED
criteria. It would also be interesting to examihe preferences of analysts in
choosing a particular design given that each ahtieecaught in different situations in
terms of budget, time, software and number of abéel respondents. It is therefore
suggested that choice analysts, especially thosehate been involved in several
choice experiments exercises, should be intervieyineeh that they may have
different preferences in choosing an experimergalgh based on their situation.
Analysts might choose to trade off between staasefficiency, behavioural

efficiency, or maybe avoid constructing choice sasith dominant alternatives.

It is important to note that the sample size ofttihree design data sets that we
analysed in this study is relatively small. Thmaitied us to the use of the basic
heteroskedastic logit model and not the heterostedaixed logit model that could
account for individual heterogeneity. We suggkeat future studies aiming to

compare the behavioural efficiency of differentigaes should have a relatively large
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sample size and use more advance heteroskedagtimlodels (e.g., heteroskedastic

panel mixed logit model with error components, gaderalised mixed logit models).

It is worth mentioning that the study of ANA andrepy in this exercise would
have benefited from knowing the amount of time@dk a respondent to complete
each choice task. The amount of time spent in etialy each choice task would
likely provide an indication whether a respondead kither thoroughly processed the
information in a choice task or made random choidés suggest that future studies
on choice task complexity and/or ANA should accdonthe time spent responding
to each choice task. Several online survey pack@ygs Qualtric®) allow the
recording of the number of seconds and/or minuteok a respondent to browse
through certain pages of the online questionnglife believe that incorporating task
response time as described in Rose and Black (200@d cast additional light on

this area of research.

8 Accessed on 10 May 2011 hitp://www.qualtrics.com/
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Appendix A: Example of a survey instrument used irthe
study

Threatened Native Animals and Plants
In New Zealand’s Planted Forests:
What Do You Think?

Adult fle New Zealand falcon. D. Stewart 2003.

SCION <

Next generation biomaterials

THE UNIVERSITY OF

The University of Sydney
Kol
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Questionnaire Page 1

Threatened Native Animals and Plants in New Zealanrid Planted Forests:
What Do You Think?

Scion (NZ Forest Research Institute), in collaboratvith the University of Waikato and the Univeysi
of Sydney, is conducting a study on the managemEekotic planted forestsfor the conservation of
threatened native animals and plants (e.g., kiakakeak). We would like to know your views on toker
of exotic forests for NZ native plants and anim&ile about 90% of these forests consist of ope f
exotic (foreign) tree,which is Radiata pine (Pinus radiatg, the remaining 10% include other foreign
trees, such aBouglas-fir (Pseudotsuga menziegiand Gum tree (Eucalyptus nitens/ fastigata Your
views on planted forests are important to us. li yeport your honest views to us they will helpdgui
future decision making.

The Survey
There are no right or wrong answers to this sur\ég.are only interested in your honest views. Alliy

answers will be kept confidential in compliancehntihe Privacy Act of 1993.

Where you live (If you own or manage more than one property, qgesnswer these questions in relation
to the property you live at for most of the year)

1. Is your home located in (please tick one):
[] Whangarei [ Auckland ] Hamilton [] Tauranga
[1 New Plymouth [ Gisborne [ Napier-Hastings [ Rotorua
] wanganui [] Palmerston North [ Kapiti Coast L] wellington
1 Nelson 1 Christchurch 1 Dunedin LI Invercargill

[ Other: specify city, town or nearby town

2. How many years have you lived at this property?

3. Approximately how large is your property? hectares or acres or sq metres
Do you own or rent this property? (Please tiok)

1 Own ] Rent L] Other: please specify

5a. Is your home located close (less than 10 krahptexotic planted forest? [1 Yes [1 No
5b. If Yes, can you please specify the name afptanted forest?

5c. If Yes, approximately how far is your homenfrthis planted forest? km

6. Have you previously lived in a property closatplanted forest? [ Yes [1 No

7. Are you aware that New Zealand’s planted forestdd provide habitat for rare native plants and
animals even though the trees are non-native in Remland? L Yes 1 No

8. Since this survey is about threatened plantsaaidals that can be found in New Zealand’s exotic

planted forests, can you please indicate yout levamiliarity with the species in the table belo
by ticking the box 1"

Never heard Heard of Read Seen in zoo/ Seenin | Soughtin

of about | garden/aquarium the bush | the bush
NZ Bush Falcon (bird) O O O O O O
Giant Kokopu (fish) O O O O O O
Long-tailed Bat O O O O ] U
Brown Kiwi (bird) O O O O O O
Auckland Green Gecko O O O O O O
Kakabeak (plant) O O O O O O
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Questionnaire Page 2

Your Views About Planted Forest

9. This next set of questions indicates some thithgsan exotic planted forest in New Zealand can
help provide. Please indicate the extent to which ggree or disagree by circling the appropriate
number. If you are unsure, please circle “U”.

Do you agree that NZ planted forests providd. STON9l | Slightly |- ye o) | Slightly | Strongly |\,
disagree| disagree agree agree

9a. habitat for threatened natipkants (e.g., 1 2 3 4 5 U

kakabeak, orchids)

9b. habitat for threatened natifish (e.g., 1 2 3 4 5 U

banded kokopu, giant kokopu, inanga)

9c. habitat for threatened natiT@mmals 1 2 3 4 5 U

(e.g., long-tailed bat, short-tailed bat)

9d. habitat for threatened natibeds (e.g., 1 2 3 4 5 U

kiwi, bush falcon)

9e. habitat for non-threatened natbieds 1 2 3 4 5 U

(e.g., tui, bellbirds, whitehead, tomtit)

of. habitat for threatened nativeptiles 1 2 3 4 5 U

(e.g., frogs, skinks, geckos)

9g. habitat for non-threatened natimeects

(e.g., tree weta, huhu beetles) 1 2 3 4 5 u

9h.  connectivity between nativerest

patches (e.g., movement of native species and 1 2 3 4 5 u

shelter)

9i. maintenance of existing natibeish (e.g. 1 2 3 4 5 U

rimu, kauri, kahikatea)

9j. a rich understorey of natiydants (e.qg., 1 2 3 4 5 U

ponga, kanono)

9k. The maintenance of water quality (e.g. 1 5 3 4 5 U

clean streams)

al. Recreation (e.g., walking, fishing, biking, 2 3 4 5 U

horse riding, camping, hunting)

9m. Storage of carbon in forests to mitigate 1 2 3 4 5 U

climate change
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Questionnaire Page 3

10. The NZ Bush Falcon in Kaingaroa Forest in the €ntral North Island

We would now like to provide you with some backgrdunformation about the NZ bush falcon in the
Kaingaroa Forest. Please read the following infdiom before answering the survey questions.

The NZ bush falcon, known by Maori as “Karearea”uhique to NZ. NZ bush falcons are the country’s
fastest bird. They achieve speeds of up to 97 kan/aad their eyesight is eight times more powettfiain
our own.

Despite these extraordinary abilities, the NZ bdalton is a “threatened” native bird. The word
“threatened” means that their population is very,lwith a risk of becoming extinct, particularly @i no
conservation effort is undertakeRecent estimates revealed that there are onl)3edt) and they are rarer
than some species of kiwi. The reasons for thainiske include habitat loss and introduced predaiins.
fact that bush falcons nest on the ground, coupigdtheir inability to see well at night, makescan eggs
and chicks vulnerable to attack by predators (festeat and weasel) introduced to New Zealand.

Planted forests offer a good habitat for bush fadcdCutover’ areas remaining after harvesting mev
hunting grounds and suitable nesting sites. Bughldalcons are still at risk from forestry operasoForest
managers can help protect these birds by contgopiedators and reducing the impact of harvestimdy a
planting operations in known nesting areas.

Such initiatives have helped to conserve the bushoh in
Kaingaroa Forest in the Central North Island. Tlaigge forest
currently has the highest bush falcon concentratioe country §
and successful control of predators has enabled Itoal
population of NZ falcon to slightly increase. NZshufalcons may [
be observed frequently in different sections of fiivest. Between g
2005 and 2006, 36 bush falcon nests were founukirfdarest.

Adult fle New Zealand falcon. D. Stewart 2003.

Project
A government-coordinated conservation programmeheilundertaken over the next five years to in@eas

and sustain the bush falcon population in Kaingdfoeest. This conservation programme needs public
support.

Project Aim
This study aims to measure how much members gbuwbéc would value the conservation of the NZ bush

falcon in Kaingaroa Forest.

Please select one answer

L1 I have read fully the description above

L] | have partly read or skimmed through the desiorpabove
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Questionnaire Page 4

THE IMPORTANT QUESTION

We would like to know if you would contribute sommney to support a 5-year conservation programme to
increase and sustain the bush falcon populatidfaingaroa Forest. The money would be paid in thenfo

of an additional amount in your annual income @x5 years only. The collected money would be giteen
the Department of Conservation, which—in collaboratwith the forest corporations—would use it to
undertake the programme. (If you do not pay angrme tax now, please answer the question as ifli®u
pay income tax). Please, note that all funding gadlldirectly towards this programme and none véliused

for administrative fees. In answering the followiqgestions please consider that you could usenthizey

for alternative uses. For example, to pay for ottesxds in your household and for other activitis gnjoy.

Sometimes when people are asked these types diansethey do not pay sufficient attention to trodlat
amount as they think that we are dealing with aagimary situation. However, it is very important t
obtain your honest response to these questioms pkrfectly fine if you would not be willing to paany
amount to support the conservation of the NZ ba&tof in Kaingaroa Forest.

10a. We would now like to know if you prefer to payy additional amount in your income tax to support
the programme to increase and sustain the busbnfgpopulation in Kaingaroa Forest. Please
respond jusexactlyas you would if you were really going to commit aaditional amount in your
income tax over the next five years. Now, would ye willing to pays10per year for five years?

] Yes 1 No

10b. If you ticked “Yes” above, would you p&30? or  If you ticked “No”, would you pa$5?
] vyes [INo L] yes [INo

10c. If you are not prepared to pay any amounggaexplain why. (Tick one only)

L1 1did not want to place a dollar value 1 The government should pay
L1 I object to the way the question is presented [1 Not enough information provided

[1 1 am opposed to a further increase in income tax 1 Other: specify

[] Forest companies should pay

10d. Please rate your understandifighe background informatioon the NZ bush falcon
(circle a number below):

Did not Moderately Completely
Understand Understood Understood
at all
[ [ [ [ [ [ [ [ [ |
1 2 3 4 5 6 7 8 9 10
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Questionnaire Page 5

Valuing Threatened Animals and Plants in New Zealad's Planted Forests

When undertaken, conservation programmes in plaftezbts of NZ can also benefit other threatened
species apart from the NZ bush falcon. In 2008tiexsanted forests represented 22% of New Zeatand’
total forest area. These forests provide habitavey 100threatenednative animalsandplants (including

the NZ bush falcon) The word “threatened” means that their populati®rvery low, with a risk of
becoming extinct, particularly when no conservagdiiort is undertaken. Some of these threatenetalsi
and plants in planted forests include:

Brown Kiwi

Throughout New Zealand, theown kiwi population has been declining at a rate o
5% per year, which implies their population halegery decade. Conservation
initiatives have started to ensure that the broiwm éontinues to live in a few exotic
forests. They can be found in planted forestdanthland, Coromandel, Central
North Island, Bay of PlentyandHawke’s Bay that also contain remnants of native
trees, stream edges with trees, clearfell and stahdarious ages. The brown kiwi is
nocturnal and can be heard calling after dark.

=

Native Fish

Thegiant kokopu is a rare native fish whose populations are grkddaclining
throughout New Zealand. They can be found in slétalaterways in planted forests
in Bay of Plenty, East Coast Waikato, southern North Island, West Coasiand
Southland. They can be seen at night in gently flowing streavith overhanging
native vegetation.

Native Shrub
Thekakabeakis a widely cultivated shrub, however, naturalydapons are extremely
rare in the wild. Kakabeak has been found in gldrfibrests on thEast Coastand
Hawke's Bay, where they are found in stream edges with tredsrasteep gullies.

Native Lizard

Populations of théuckland green geckoare in gradual decline. Populations have
been found in planted forestsNtorthland, Waikato andBay of Plentyregions. They
have well developed vocal cords and can bark epdy clicking their tongues against
the roof of the mouth. They can be seen in treadbras, foliage and open ground.
Although they hunt by night for insects, they dike to sunbathe.

NZ Bush Falcon

TheNZ bush falconis classified as vulnerable to extinction. Veryfieush falcons
can be sighted on native bush but many can be fouladge planted forests in North
Island which includé&aingaroa Forestin theCentral North Island and inSouth
Island planted forests including tligolden Downs in NelsonThey can be sighted inj
forest stand edges between clearfell and matunelsta

We are now going to present you with a number dafiagh situations. These describe the outcomes of
conservation policies that could be undertaken H® Department of Conservation in partnership with
concerned organisations (e.g., forest corporatioigplogists suggest that over the next five ygaented
forests could be managed to provide better hafuitathreatened species. These species includebibvea
four threatened animals and one plant speciesed&adr choice situation we present you, we will ask to
select the alternative with the conservation oue®you prefer. Some outcomes will require a coutioin

to the Department of Conservation through an aalthii amount in your annual income tax for five pedn
each choice situation, there is also the possilwlitaking no conservation action (“Current Coratit) and
paying no money.
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Questionnaire Page 6

11. An example of answering the choice situation @nrtext few pages:

Below is an example of a choice situation that gles you with three options. The column headingrent
condition” represents an alternative with no charigethis case, there is no enhancement of hafitat
threatened species in planted forests. There inatease in the occurrence of threatened specipkimed
forests, and this has no cost to you. If you choption 1, the associated additional annual cost in your
income tax is$50 for five years only ChoosingOption 1 would guarantee an increase in heatiwi
calls from the current condition df out of 200 planted forestdo a changed condition @0 out of 200
planted forests a 10% increase. Forest ecologists suggestedhisal0% increase is feasible. Choosing
Option 1 also corresponds to an increas&ush falcon sightingswhen driving through plantations froin
out of 8to 3 out of 8 occasions Alternatively, if you chos®ption 2, you would pay less than Option 1,
only $25. However, this option would have less increasténumber okiwi calls heard 10 out of 200,
but morebush falconswould be seen when driving through the foreSt®(t of 8 occasions).Option 2
also provides a greater increaseKiakabeak in 20% of the planted forest areas on the EastiCaad
Hawkes Bay. In this case, and after consideriegctimnge in the condition of tieickland green gecko
andGiant kokopu, if you prefer to hear mor€iwi , you can tick ") the box unde©Option A and this also
indicates that you would be willing to pay $50 kira income tax for five years.

Current

Condition Option 2

Threatened Animal/Plant Option 1

Brown Kiwi

(Frequency of hearing calls
in planted forests in North
Island)

Giant Kokopu
(Occurrence in slow moving

streams with overhanging
native vegetation in planted
forests throughout New
Zealand)

Kakabeak

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 20 out of 200
planted forests

Kiwi calls heard
in 10 out of 200
planted forests

Kokopu seen
in 1 out of 10
suitable streams

Kokopu seen
in 5 out of 10
suitable streams

Kokopu seen
in 3 out of 10
suitable streams

(Occurrence in 20% of the 3 AL IeasI} 1 ?t Iegstl 5 (':‘t Ie_astl
planted forests on the East 022&‘:; gy m:rf;g: dy m;rf;gsg
Coast and Hawke's Bay) Kakabeak shrubg| Kakabeak shrubg| Kakabeak shrub
Auckland Green Gecko
é?(?fﬁg;;gg‘gg; ljn fgf:sr;s in Gecko sighted Gecko sighted Gecko sighted
Northland, Waikato and in 1 out of 50 in 5 out of 50 in 3 out of 50

) walks walks walks
Bay of Plenty regions)
NZ Bush Falcon
(Bush falcon sightings Bush falcon Bush falcon Bush falcon
while driving through pine sighted sighted sighted
forests in Central North in 1 out of 8 in 3 out of 8 in 5 out of 8
Island and Nelson) drives drives drives
Additional amount to be paid yearly in $0 $50 $25

your income tax for five years

| would choose (please tick)

[]

[]
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Questionnaire Page 7

Now that we drove you through an example on theipos page, we would like you to make the next
choices on your own. Please remember to considgpdaliment as if it was real and give honest ansseers
as to inform conservation policy.

11a.Which of the three options below would you preferst’? Read the description and tick the boX “

that corresponds to your most preferred option.

Threatened Animal/Plant

Brown Kiwi

(Frequency of hearing calls
in planted forests in North
Island)

Giant Kokopu
(Occurrence in slow moving

streams with overhanging
native vegetation in planted
forests throughout New
Zealand)

Current
Condition

Option A

Option B

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 20 out of 200
planted forests

Kiwi calls heard
in 1 out of 200
planted forests

Kokopu seen
in 1 out of 10
suitable streams

Kokopu seen
in 3 out of 10
suitable streams

Kokopu seen
in 1 out of 10
suitable streams

Kakabeak

(Occurrence in 20% of the At least At least At least
planted forests on the East 3 naturally 3 naturally 10 actively
Coast and Hawke’'s Bay) occurring occurring managed
Kakabeak shrubg| Kakabeak shrub$| Kakabeak shrub

Auckland Green Gecko
é?:jﬁg:;gﬁ';gé :jn ng:sr':s i Gecko sighted Gecko sighted Gecko sighted
Northland, Waikato and in 1V(;;1|tkts)f 50 in SVfI);Jltkgf 50 in 1V3;Itkgf 50
Bay of Plenty regions)
NZ Bush Falcon
(BL.’Sh fa_ilqon sightings . Bush falcon Bush falcon Bush falcon
while dr_|vmg through pine sighted sighted sighted
];(s)lraerfésalz dCﬁgi[:\)lnNorth in 1 out of 8 in 3 out of 8 in 1 out of 8

) drives drives drives
Additional amount to be paid yearly in $0 $30 $60

your income tax for five years only

| would choose (please tick)
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Questionnaire Page 8

11b. Below is a choice situation different to that dfal taking into account your income constraints and
household needs, etc., which of the three opti@ewwould you prefer most? Tick the box™ at the

bottom that corresponds to your most preferrecbapti

Threatened Animal/Plant

Brown Kiwi

(Frequency of hearing calls
in planted forests in North
Island)

Giant Kokopu
(Occurrence in slow moving

streams with overhanging
native vegetation in planted
forests throughout New
Zealand)

Current
Condition

Option C

Option D

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 10 out of 200
planted forests

Kiwi calls heard
in 1 out of 200
planted forests

Kokopu seen
in 1 out of 10
suitable streams

Kokopu seen
in 3 out of 10
suitable streams

Kokopu seen
in 1 out of 10
suitable streams

Kakabeak

(Occurrence in 20% of the At least At least At least
planted forests on the East 3 naturally 3 naturally 10 actively
Coast and Hawke’'s Bay) occurring occurring managed
Kakabeak shrubg| Kakabeak shrub$| Kakabeak shrub

Auckland Green Gecko
é?:lfrlfgssilr?r;)tllgr?tse :jn fgfgsr':s ink Gecko sighted Gecko sighted Gecko sighted
Northland, Waikato and in 1V(;;1|tkts)f 50 in 1V8;J|tkgf 50 in ngltkgf 50
Bay of Plenty regions)
NZ Bush Falcon
(BL.’Sh fa_ilqon sightings . Bush falcon Bush falcon Bush falcon
while dr_lvmg through pine sighted sighted sighted
];(s)lraerfésalz dCﬁgi[;c’;lnNorth in 1 out of 8 in 3 out of 8 in 5 out of 8

) drives drives drives
Additional amount to be paid yearly in $0 $90 $30

your income tax for five years only

| would choose (please tick)
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Questionnaire Page 9

11c. Looking at a different choice situation below, itak into account your income constraints and
household needs, etc., which of the three optiaievb would you prefer most? Tick the boxi™ that

corresponds to your most preferred option.

Threatened Animal/Plant

Brown Kiwi

(Frequency of hearing calls
in planted forests in North
Island)

Giant Kokopu
(Occurrence in slow moving

streams with overhanging
native vegetation in planted
forests throughout New
Zealand)

Current
Condition

Option E

Option F

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 10 out of 200
planted forests

Kiwi calls heard
in 1 out of 200
planted forests

Kokopu seen
in 1 out of 10
suitable streams

Kokopu seen
in 1 out of 10
suitable streams

Kokopu seen
in 5 out of 10
suitable streams

Kakabeak

(Occurrence in 20% of the At least At least At least
planted forests on the East 3 naturally 10 actively 3 naturally
Coast and Hawke’'s Bay) occurring managed occurring
Kakabeak shrubg| Kakabeak shrub$| Kakabeak shrub

Auckland Green Gecko
é?:lfrlfgssilr?r;)tllgr?tse :jn fgfgsr':s ink Gecko sighted Gecko sighted Gecko sighted
Northland, Waikato and in 1V(;;1|tkts)f 50 in 1V8;J|tkgf 50 in ngltkgf 50
Bay of Plenty regions)
NZ Bush Falcon
(BL.’Sh fa_ilqon sightings . Bush falcon Bush falcon Bush falcon
while dr_|vmg through pine sighted sighted sighted
];(s)lraerfésalz dCﬁgi[;c’;lnNorth in 1 out of 8 in 5 out of 8 in 1 out of 8

) drives drives drives
Additional amount to be paid yearly in $0 $60 $60

your income tax for five years only

| would choose (please tick)
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Questionnaire Page 10

11d. Looking at another choice situation below, takimigp account your income constraints and household
needs, etc., which of the three options below wgold prefer most? Tick the boxd” that corresponds to

your most preferred option.

Threatened Animal/Plant

Brown Kiwi

(Frequency of hearing calls
in planted forests in North
Island)

Giant Kokopu
(Occurrence in slow moving

streams with overhanging
native vegetation in planted
forests throughout New
Zealand)

Current
Condition

Option G

Option H

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 20 out of 200
planted forests

Kiwi calls heard
in 10 out of 200
planted forests

Kokopu seen
in 1 out of 10
suitable streams

Kokopu seen
in 3 out of 10
suitable streams

Kokopu seen
in 5 out of 10
suitable streams

Kakabeak

(Occurrence in 20% of the At least At least At least
planted forests on the East 3 naturally 10 actively 3 naturally
Coast and Hawke’s Bay) occurring managed occurring
Kakabeak shrubg| Kakabeak shrubg| Kakabeak shrub

Auckland Green Gecko
é?c?lfrlfgssilr?::llgr?tse:jn fgfeesr;s ink Gecko sighted Gecko sighted Gecko sighted
Northland, Waikato and in 1V(;;1|tkts)f 50 in SVfI);Jltkgf 50 in 1V3;Itkgf 50
Bay of Plenty regions)
NZ Bush Falcon
(quh fa_llc_on sightings . Bush falcon Bush falcon Bush falcon
while dr_lvmg through pine sighted sighted sighted
];(s)lraerfésalz dCﬁgi[;c’;lnNorth in 1 out of 8 in 3 out of 8 in 5 out of 8

) drives drives drives
Additional amount to be paid yearly in $0 $30 $60

your income tax for five years only

| would choose (please tick)
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Questionnaire Page 11

11e.Looking at the fifth choice situation below, tagimto account your income constraints and houskhol
needs, etc., which of the three options below wgold prefer most? Tick the boxd” that corresponds to

your most preferred option.

Threatened Animal/Plant

Brown Kiwi

(Frequency of hearing calls
in planted forests in North
Island)

Giant Kokopu
(Occurrence in slow moving

streams with overhanging
native vegetation in planted
forests throughout New
Zealand)

Current
Condition

Option |

Option J

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 10 out of 200
planted forests

Kiwi calls heard
in 10 out of 200
planted forests

Kokopu seen
in 1 out of 10
suitable streams

Kokopu seen
in 5 out of 10
suitable streams

Kokopu seen
in 1 out of 10
suitable streams

Kakabeak

(Occurrence in 20% of the At least At least At least
planted forests on the East 3 naturally 3 naturally 10 actively
Coast and Hawke’s Bay) occurring occurring managed
Kakabeak shrubg| Kakabeak shrub§| Kakabeak shrub

Auckland Green Gecko
é?c?lfrlfgssilr?::llgr?tse :jn fgfeesr;s ink Gecko sighted Gecko sighted Gecko sighted
Northland, Waikato and in 1V(;;1|tkts)f 50 in 3V8;J|tkgf 50 in ngltkgf 50
Bay of Plenty regions)
NZ Bush Falcon
(quh fa_llc_on sightings . Bush falcon Bush falcon Bush falcon
while dr_lvmg through pine sighted sighted sighted
];(s)lraerfésalz dCﬁgi[;c’;lnNorth in 1 out of 8 in 3 out of 8 in 1 out of 8

) drives drives drives
Additional amount to be paid yearly in $0 $60 $90

your income tax for five years only

| would choose (please tick)

206



Questionnaire Page 12

11f. Looking at the sixth choice situation below, takinto account your income constraints and houskhol
needs, etc., which of the three options below wgold prefer most? Tick the boxd” that corresponds to

your most preferred option.

Threatened Animal/Plant

Brown Kiwi

(Frequency of hearing calls
in planted forests in North
Island)

Giant Kokopu
(Occurrence in slow moving

streams with overhanging
native vegetation in planted
forests throughout New
Zealand)

Current
Condition

Option K

Option L

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 10 out of 200
planted forests

Kiwi calls heard
in 20 out of 200
planted forests

Kokopu seen
in 1 out of 10
suitable streams

Kokopu seen
in 3 out of 10
suitable streams

Kokopu seen
in 1 out of 10
suitable streams

Kakabeak

(Occurrence in 20% of the At least At least 1(')0‘ fatlci?\l/sgl

planted forests on the East 3 naturally 10 actively manage dy

Coast and Hawke’s Bay) occurring managed Kakabgeak
Kakabeak shrubg| Kakabeak shrub Shrubs

Auckland Green Gecko

é?c?lfrlfgssilr?::llgr?tse :jn fgfeesr;s ink Gecko sighted Gecko sighted Gecko sighted

Northland, Waikato and in 1V(;;1|tkts)f 50 in 3V8;J|tkgf 50 in ngltkgf 50

Bay of Plenty regions)

NZ Bush Falcon

(quh fa_llc_on sightings . Bush falcon Bush falcon Bush falcon

while dr_lvmg through pine sighted sighted sighted

];(s)lraerfésalz dCﬁgi[:\)lnNorth in 1 out of 8 in 1 out of 8 in 5 out of 8

) drives drives drives
Additional amount to be paid yearly in $0 $90 $90

your income tax for five years only

| would choose (please tick)
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Questionnaire Page 13

11g. Looking at the seventh choice situation below,ingkinto account your income constraints and
household needs, etc., which of the three optiaiewb would you prefer most? Tick the box™ that

corresponds to your most preferred option.

Threatened Animal/Plant

Brown Kiwi

(Frequency of hearing calls
in planted forests in North
Island)

Giant Kokopu
(Occurrence in slow moving

streams with overhanging
native vegetation in planted
forests throughout New
Zealand)

Current
Condition

Option M

Option N

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 20 out of 200
planted forests

Kiwi calls heard
in 1 out of 200
planted forests

Kokopu seen
in 1 out of 10
suitable streams

Kokopu seen
in 5 out of 10
suitable streams

Kokopu seen
in 1 out of 10
suitable streams

Kakabeak

(Occurrence in 20% of the At least At least At least
planted forests on the East 3 naturally 20 actively 20 actively
Coast and Hawke’s Bay) occurring managed managed
Kakabeak shrubg| Kakabeak shrub§| Kakabeak shrub

Auckland Green Gecko
é?c?lfrlfgssilr?::llgr?tse :jn fgfeesr;s ink Gecko sighted Gecko sighted Gecko sighted
Northland, Waikato and in 1V(;;1|tkts)f 50 in SVfI);Jltkgf 50 in 1V3;Itkgf 50
Bay of Plenty regions)
NZ Bush Falcon
(quh fa_llc_on sightings . Bush falcon Bush falcon Bush falcon
while dr_lvmg through pine sighted sighted sighted
];(s)lraerfésalz dCﬁgi[;c’;lnNorth in 1 out of 8 in 5 out of 8 in 1 out of 8

) drives drives drives
Additional amount to be paid yearly in $0 $60 $30

your income tax for five years only

| would choose (please tick)
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Questionnaire Page 14

11h. Looking at the eight and last choice situatiorobeltaking into account your income constraints and
household needs, etc., which of the three optiaiewb would you prefer most? Tick the box™ that

corresponds to your most preferred option.

Threatened Animal/Plant

Brown Kiwi

(Frequency of hearing calls
in planted forests in North
Island)

Giant Kokopu
(Occurrence in slow moving

streams with overhanging
native vegetation in planted
forests throughout New
Zealand)

Current
Condition

Option O

Option P

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 20 out of 200
planted forests

Kokopu seen
in 1 out of 10
suitable streams

Kokopu seen
in 5 out of 10
suitable streams

Kokopu seen
in 3 out of 10
suitable streams

Kakabeak

(Occurrence in 20% of the At least At least At least
planted forests on the East 3 naturally 10 actively 3 naturally
Coast and Hawke’s Bay) occurring managed occurring
Kakabeak shrubg| Kakabeak shrubg| Kakabeak shrub

Auckland Green Gecko
é?c?lfrlfgssilr?::llgr?tse:jn fgfeesr;s ink Gecko sighted Gecko sighted Gecko sighted
Northland, Waikato and in 1V(;;1|tkts)f 50 in 3V8;J|tkgf 50 in ngltkgf 50
Bay of Plenty regions)
NZ Bush Falcon
(quh fa_llc_on sightings . Bush falcon Bush falcon Bush falcon
while dr_lvmg through pine sighted sighted sighted
];(s)lraerfésalz dCﬁgi[;c’;lnNorth in 1 out of 8 in 3 out of 8 in 1 out of 8

) drives drives drives
Additional amount to be paid yearly in $0 $90 $60

your income tax for five years only

| would choose (please tick)
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Questionnaire Page 15

11i. Looking at the eight and last choice situatiorobeltaking into account your income constraints and
household needs, etc., which of the three optiaievb would you prefer most? Tick the boxi™ that

corresponds to your most preferred option.

Threatened Animal/Plant

Brown Kiwi

(Frequency of hearing calls
in planted forests in North
Island)

Giant Kokopu
(Occurrence in slow moving

streams with overhanging
native vegetation in planted
forests throughout New
Zealand)

Current
Condition

Option Q

Option R

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 20 out of 200
planted forests

Kokopu seen
in 1 out of 10
suitable streams

Kokopu seen
in 5 out of 10
suitable streams

Kokopu seen
in 3 out of 10
suitable streams

Kakabeak

(Occurrence in 20% of the At least At least At least
planted forests on the East 3 naturally 20 actively 10 actively
Coast and Hawke’'s Bay) occurring managed managed
Kakabeak shrubg| Kakabeak shrub$| Kakabeak shrub
Auckland Green Gecko
é?:lfrlfgssilr?r;)tllgr?tse :jn fgfgsr':s ink Gecko sighted Gecko sighted Gecko sighted
Northland, Waikato and in 1V(;;1|tkts)f 50 in SVfI);Jltkgf 50 in 1V3;Itkgf 50
Bay of Plenty regions)
NZ Bush Falcon
(BL.’Sh fa_ilqon sightings . Bush falcon Bush falcon Bush falcon
while dr_|vmg through pine sighted sighted sighted
Tolresés |ndC§n;[ral North in 1 out of 8 in 5 out of 8 in 3 out of 8
sland and Nelson) drives drives drives
Additional amount to be paid yearly in $0 $60 $90

your income tax for five years only

| would choose (please tick)
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11;.

11k.

111

11m.

11n.

11o.

Questionnaire Page 16

In answering questions 11a to 11h, what fe#suattracted you most when you made your

selection? (tick all that apply)

1 Would like to hear more kiwi calls 1 More giant kokopu in the wild
] Would like to have more sightings of bush falcong ] Location sites of the programme
1 Would like to see a kakabeak in the wild [1 Other: specify

] Would like to see and/ or hear more green geckos

Assuming that you have considered the proposst] are there any species that you ignored when
making your selection? If so, which? (tick alltlgply)

[1 NZ bush falcon [ Giant kokopu [1 Auckland green gecko
[] Kakabeak L] Brown kiwi

Are there any other animals or plants thathidenot include in the above options that you would
prefer to pay for?

[ Long-tailed bat [] Hochstetter's Frog [ Blue duck
[1 Ponga L Tui [1 Other: specify

Please rate your understandighe choice Questions in 11a to 11h (circle miper below):

Did not Moderately Completely
Understand Understood Understood
at all
[ [ [ I [ [ I I [ ]
1 2 3 4 5 6 7 8 9 10

Please rate how edasyvas to choose your most preferred option insfioas 11a to 11h (circle a
number below):

Very Neither Easy Very
Difficult nor Difficult Easy
I I I I I I I I I |
1 2 3 4 5 6 7 8 9 10

If you did not choose any changed option ieg@ions 11a to 11h (e.g., more kiwi heard, increase
in the number of falcon sightings), please expleliry? (tick all that apply)

[ 1didn’t want to place a dollar value [] The government should pay
L1 I object to the way the question is presented 1 Not enough information provided

[1 1 am opposed to further increases in income tax [1 Other: specify

] 1 am unsure at the moment, need to ask someone firs
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Questionnaire Page 17

About You

ALL YOUR ANSWERS IN THIS QUESTIONNAIRE ARE STRICTLY CONFIDENTIAL AND
WILL ONLY BE USED FOR THE ANALYSIS OF THIS STUDY. N AMES AND ADDRESSES
WILL NOT BE DISCLOSED.

12.  Are you (Please tick one box): [1 Male [1 Female

13.  Were you born in New Zealand®] Yes [1 No
14.  Which age group do you belong to?

] Under 25 years old [ 55to64
[] 25 to 34 [] 65to 74
[ 35t0 44 [0 75 and above
[]45t054
15. How many people live in your home (includingiyself)?
Adults (18 and above) Children (und®r 1 Elderly dependent(s)

16. What is your highest level of formal schoolir{@itk one box)
] Primary [ ] Tertiary/Undergraduateifiénsity
[1 Secondary/High School/College ] PastdBate/Masters/PhD
[ Trades certificate/Post-school diplom{_] Other: specify

17.  Which one of the following best describes yownrent employment status?

] Employed full time [ ] Notin the laboarde (retired, student, etc)
] Employed part time ] On ACC or sicknessdfit
[] Self employed ] Other: specify

[1 Not employed, but seeking work

18.  What is your current main occupation?

19. Type of employer (Agriculture, Healthcare, Saktc)

20a. Have you ever driven through an exotic plafdegsts? (1 Yes [] No
20b. Have you ever visited an exotic planted fafest ] Yes [] No

20c. If Yes, please specify the name/s of theiexdanted forests you have visited?

20d. If you have visited at least one planted fiprebat activities did you participate in?
(Tick all that apply)

[] Bird watching [] Horse riding ] Fisg

1 Walking [ 1 Jogging/Running [ ] Nature obstora
[ ] Camping [] Picnicking [ 1 Cycling

] Photography ] Hunting []1 Other/s: specify

21a. Would you be willing to volunteer (e.g. bimbating, habitat restoration, giving talks) to help

in the conservation of threatened animals andlarplanted forests? [1 Yes [ No

21b. If Yes, how many days in the next 365 daysld/gou be willing to volunteer? days
21c. If No, please explain why.
[ Prefer to volunteer in native forests [ Involved in other voluntary endeavour
[ Lack of time to volunteer [1 Other: specify
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22.

23.

24.

25.

26.

27.

Questionnaire Page 18

Do you or does any of your household membersashare of a planted forest or stock in a
forestry company in New Zealand?

1 Yes [INo
What ethnic group do you belong to:
[ ] New Zealand Mori [] Pacific Islands origin []  Asian
[1 New Zealand born European [] African ] Latin Aicen
[] European immigrant L] Other: specify

Your last year's personal income before taiek ¢éne)

] $10,000 and below ] $50,001 to $60,0 [ ] $100,001 to $110,000
[ ] $10,001 to $20,000 ] $60,001 to $70,000_] $110,001 to $120,000
[ ] $20,001 to $30,000 L1 $70,001 to $80,000_] $120,001 and above
] $30,001 to $40,000 ]  $80,001 to $90,000_] Not Applicable
[ ] $40,001 to $50,000 ] $90,001 to $100,000

Your spouse’s personal income before taxeyésst (tick one)
] $10,000 and below ] $50,001 to $60,0 [] $100,001 to $110,000
[ ] $10,001 to $20,000 ] $60,001 to $70,000_] $110,001 to $120,000
[ ] $20,001 to $30,000 L1 $70,001 to $80,000_] $120,001 and above
] $30,001 to $40,000 ]  $80,001 to $90,000_] Not Applicable
[ ] $40,001 to $50,000 ] $90,001 to $100,000

Do you patrticipate in any conservation orgaitosa? (Tick all that apply).
[ Bird conservation member (e.g., Wingspan)[] GrezacP member

[] Forest and Bird member [l Department of Consemwatolunteer
[ 1 Care group (e.g., Kokako Trust) [] Other/s: specify

[1 None
If you participate in one or more communityanipations, please tick all that apply.

[] Federated Farmers or Young Farmers ] Rural Wonzen N

[ Service Club (e.g., Lions, Rotary) [ 1 Church group

[] Playgroup, Kindergarten or Kohanga Reo [] Familyeaiton group (e.g., cards)
[] Sports, Hunting or Fishing Club [] Professionalamigation

] None [] Other/s: specify

Thank you very much for completing the survey. We geatly appreciate your input in helping us

study the importance of threatened species in Newealand’s exotic planted forests.

Although not required: Feel free to use this spac®r notes, comments, etc.
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Appendix Table 1

Estimates of normalised AICs of 20 latent class ligmodel specifications (full sample)

Normalised AIC
LC Model (AIC/N)

Number Latent classes (LC#s) — Attributes ignor Cross section

oo Panel specification
specification

1 LC1 - Ignored SQ, 1.932 1.256
LC2 — Ignored Gecko, Kakabeak and
Kokopu

LC3 — Ignored all attributes

2 LC1 - Ignored SQ, 1.940 1.272
LC2 — Ignored Gecko, Kakabeak and
Kokopu

LC3 — Ignored Cost

3 LC1 - Ignored SQ, Did not converge 1.266
LC2 — Ignored Gecko, Kakabeak and
Kokopu

LC3 — Full attendance

4 LC1 - Ignored SQ 1.941 1.256
LC2 — Ignored Gecko, Kakabeak and
Kokopu

LC3 — Full attendance

LC4 —Ignored all attributes

5 LC1 - Ignored cost 1.941 1.154
LC2 - Ignored SQ
LC3 — Ignored Gecko, Kakabeak and

Kokopu
LC4 — Ignored all attributes
6 LC1 - Ignored cost 1.941 1.273

LC2 - Ignored SQ
LC3 — Ignored Gecko, Kakabeak and

Kokopu
LC4 — Ignored Falcon
7 LC1 - Ignored cost 1.935 1.273

LC2 - Ignored SQ

LC3 — Ignored Gecko, Kakabeak and
Kokopu

LC4 — Ignored Kiwi

8 LC1 - Ignored SQ 1.935 1.267
LC2 — Ignored Gecko, Kakabeak and
Kokopu

LC3 - Full attendance

LC4 — Ignored Kiwi

9 LC1 - Ignored SQ 1.936 Did not converge
LC2 — Ignored Gecko, Kakabeak and
Kokopu

LC3 - Full attendance

LC4 — Ignored Falcon

10 LC1 - Ignored SQ 1.936 1.268
LC2 — Ignored Gecko, Kakabeak and
Kokopu

LC3 - Ignored Kiwi

LC4 — Ignored Falcon
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Appendix Table 2
Estimates of logit models using piecewise linear ded attributes

ltem I\/_I(_)del 1 _ Model 2 _ Model 3 _ _ Model 4
Conditional Logit Latent Class Logit Panel Random Parameters Logit (RPL) RPL with Error Components

Attributes and SQ Coef Std Err P-value Coef Std Err P-value Coef Bt P-value Coef Std Err P-value
Brown kiwi 1a 0.504 0.098 <0.01 0.669 0.121 <0.01 0.894 0.139 O0k0. 0.914 0.136 <0.01
Brown kiwi 2 0.118 0.090 0.19 0.150 0.121 0.22 6.11 0.133 0.38 0.150 0.142 0.29
Native fish 1a 0.287 0.093 <0.01 0.163 0.131 0.21 0.331 0.133 0.01  0.299 0.156 0.05
Native fish 2 -0.144 0.091 0.11 -0.139 0.130 0.28 0.212 0.134 0.11 -0.179 0.179 0.32
Native plant 1a 0.287 0.093 <0.01 0.181 0.136 0.18 -0.025 0.136 0.85 -0.057 0.135 8 0.6
Native plant 2 0.065 0.090 0.47 -0.053 0.127 0.68 0.020 0.135 0.88 -0.013 0.162 0.94
Green gecko la 0.017 0.093 0.86 -0.115 0.135 0.400.025 0.136 0.85 -0.057 0.135 0.68
Green gecko 2 0.076 0.093 0.41 0.053 0.128 0.68 810.1 0.152 0.23 0.178 0.172 0.30
Bush falcon la 0.453 0.098 <0.01 0.476 0.120 <0.01 0.964 0.144 0kO0. 0.949 0.153 <0.01
Bush falcon 2 0.248 0.089 0.01 0.438 0.120 <0.01 0.285 0.148 0.05 0.285 0.181 0.11
Status Quo Indicator 0.177 0.158 0.26 -5.864 0.504 <0.01 -3.591 0.284 <0.01 -1.473 0.578 0.01
Cost -0.025 0.002 <0.01 -0.123 0.011 <0.01 -0.183 0.010 <0.01 -0.064 0.004 <0.01
Attribute non-attendance
Ignoring cost 0.347 0.038 <0.01
Ignoring status quo 0.369 0.043 <0.01
Ignoring non-iconics 0.227 0.038 <0.01
Ignoring all attributes 0.057 0.020 <0.01
Random parameters
Bush falcon 2 1.905 0.482 <0.01 1.770 0.639 0.01
Native plant 2 1.057 0.597 0.08 1.490 0.508 <0.01
Cost 0.183 0.010 <0.01 0.064 0.004 <0.01
Green gecko 2 2.040 0.547 <0.01 1.888 0.532 <0.01
Error components 7.793 1.017 <0.01
Log-likelihood -1785.14 -1052.57 -1139.32 -990.50
Normalised AIC 1.943 1.154 1.248 1.088
McFadden Pseudo’R 0.122 0.482 0.439 0.513
No. of observations 1850 1850 1850 1850
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Appendix Table 3

Model 4 estimates of RPL-EC models using full andpdit samples (with dummy coded attribute levels)

ltem Model 4 Model 4L Model 4S

Full Sample Large planted forest sample Small planted forest sample
Attributes and SQ Coef Std err  p-value Coef Std err  p-value Coef Std err  p-value
Brown kiwi 1 0.898 0.137 <0.01 1.063 0.198 <0.01 0.715 0.291 0.01
Brown kiwi 2 1.048 0.128 <0.01 1.365 0.186 <0.01 0.669 0.326 0.04
Native fish 1 0.307 0.153 0.04 0.243 0.210 0.25 0.399 0.290 0.17
Native fish 2 0.138 0.145 0.34 0.017 0.200 0.93 0.324 0.324 0.32
Native plant 1 0.343 0.163 0.04 0.326 0.200 0.10 0.240 0.426 0.57
Native plant 2 0.329 0.161 0.04 0.280 0.210 0.18 0.297 0.348 0.39
Green gecko 1 -0.053 0.135 0.70 -0.060 0.173 0.730.027 0.306 0.93
Green gecko 2 0.124 0.159 0.43 0.011 0.212 0.96 0.388 0.370 0.29
Bush falcon 1 0.909 0.147 <0.01 0.824 0.202 <0.01 1.046 0.335 <0.01
Bush falcon 2 1.188 0.147 <0.01 1.334 0.200 <0.01 1.029 0.302 <0.01
Status Quo Indicator -1.594 0.637 0.01 -2.024 0.806 0.01 -0.814 1.453 0.58
Cost -0.063 0.004 <0.01 -0.077 0.007 <0.01 -0.041 ®.00 <0.01
Random Parameters
Bush falcon 2 1.606 0.658 0.01 1.179 0.903 0.19 1.652 1.228 0.18
Native plant 2 1.446 0.557 0.01 1.291 0.866 0.14 1.752 0.855 0.04
Cost 1.369 0.520 0.01 0.077 0.007 <0.01 0.041 0.006 0.0
Green gecko 2 0.063 0.004 <0.01 1.944 0.768 0.01 0.480 2.165 0.82
Error Component 7.652 1.005 <0.01 8.050 1.207 <0.01 7.652 2.272 0.0k
Log-likelihood -990.68 -664.84 -313.69
Normalised AIC 1.088 1.056 1.177
McFadden Pseudo’R 0.512 0.531 0.490
Number of observations 1850 1290 560
No. of groups 209 145 64

Notel: Values iritalics represent estimates for random parameters
Note2: Values imboldface fontrepresent estimates statistically significant%tI&vel.
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Appendix Table 4

Heteroskedastic logit model (scale as a function ehtropy) estimates for split and the pooled sampge

ORD BDD O0D Pooled

Coeff Std Err  p-value Coeff Std Err  p-value Coeff Std Err  p-value Coeff Std Err  p-value
Utility coefficient
Brown kiwi 1 9.540 10.400 0.37 0.082 1.290 0.96 17.400 73.500 36 0. 4.120 6.080 0.50
Brown kiwi 2 14.700 15.000 0.35 0.121 1.870 0.96 20.000 83.700 .33 0 5.730 8.730 0.51
Native fish 1 5.120 6.040 0.42 0.106 1.650 0.96 3.470 15.100 0.54 2.620 3.920 0.50
Native fish 2 3.230 4.810 0.52 -0.040 0.610 0.96 6.140 26.400 504 0.864 1.440 0.55
Native plant 1 2.310 3.560 0.51 -0.042 0.653 0.96 5.370 23.000 205 1.490 2.450 0.54
Native plant 2 -3.070 4.860 0.53 0.155 2.380 0.96 2.150 10.400 20.7 1.700 2.500 0.50
Green gecko 1 2.780 4.440 0.53 0.003 0.084 0.98 -2.010 10.600 50.7 0.296 0.994 0.77
Green gecko 2 5.490 5.600 0.30 -0.039 0.609 0.96 3.640 15.600 305 0.545 1.070 0.61
Bush falcon 1 9.640 10.100 0.35 0.171 2.640 0.96 7.030 30.200 504 4.130 6.260 0.51
Bush falcon 2 16.300 16.300 0.35 0.231 3.570 0.96 13.400 56.500 .37 0 5.870 8.720 0.50
Cost to respondent -0.497 0.486 0.33 -0.006 0.097 0.96 -0.927 3.890 350. -0.215 0.320 0.50
Indicator for SQ -13.600 14.600 0.38 0.060 0.910 0.96 12.800 54.800 0.47 -1.300 2.400 0.59
Scale coefficient
Entropy -11.100 3.660 <0.01 5.670 33.900 0.90 -5.860 9.150 0.03 -4.820 3.860 0.21
Entropy squared 9.460 3.190 <0.01 -4.750 18.500 0.84 2.410 5.060 21 0. 2.670 2.450 0.28
Model statistics
Adjusted Rho-square 0.151 0.102 0.126 0.120
Log-likelihood value -455.09 -496.14 -468.92 -1458.86
Number of choice observations 503 503 503 1509
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Appendix Table 5

Heteroskedastic logit model (scale as a function attribute dispersion) estimates for split and thgpooled samples

ORD

BDD O0D Pooled
Coeff Std Err  p-value Coeff Std Err  p-value Coeff Std Err  p-value Coeff Std Err  p-value

Utility coefficient
Brown kiwi 1 0.971 0.654 0.14 0.012 0.023 0.59 6.12 0.196 0.52 1.260 0.689 0.07
Brown kiwi 2 1.600 1.060 0.13 0.020 0.030 0.51 G.16 0.240 0.50 1.640 0.865 0.06
Native fish 1 0.741 0.647 0.25 0.021 0.031 0.49 048. 0.075 0.55 0.849 0.499 0.09
Native fish 2 0.625 0.584 0.28 -0.015 0.020 0.46 048. 0.075 0.55 0.362 0.316 0.25
Native plant 1 0.355 0.472 0.45 -0.016 0.021 0.43 .050 0.084 0.54 0.447 0.345 0.19
Native plant 2 -0.492 0.660 0.46 0.025 0.037 0.50 .029 0.054 0.59 0.558 0.369 0.13
Green gecko 1 0.029 0.506 0.95 -0.008 0.014 0.55 .0050 0.042 0.91 0.016 0.260 0.95
Green gecko 2 0.622 0.502 0.21 -0.014 0.020 0.49 0310. 0.057 0.58 0.117 0.264 0.66
Bush falcon 1 1.460 1.070 0.17 0.042 0.054 0.43 51D.0 0.092 0.58 1.270 0.715 0.08
Bush falcon 2 2.070 1.390 0.13 0.054 0.071 045 13.1 0.171 0.51 1.810 0.956 0.06
Cost to respondent -0.065 0.047 0.17 -0.001 0.002 .44 0 -0.007 0.010 0.51 -0.067 0.037 0.07
Indicator for SQ -1.160 0.767 0.13 0.023 0.033 0.48 0.055 0.114 0.63 -0.311 0.449 0.49
Scale coefficient
ASD -0.554 0.555 0.32 2.590 1.040 0.01 1.420 1.260 0.26 -0.653 0.438 0.14
DSD -1.490 0.903 0.10 -1.720 1.880 0.36 -0.763 a.24 054 -1.150 0.722 0.11
Model statistics
Adjusted Rho-square 0.147 0.081 0.126 0.120
Log-likelihood value -457.51 -493.85 -468.77 1458.18
Number of choice observations 503 503 503 9150
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Appendix Figure 1

A sample choice task derived from an orthogonal dé&m with overlaps in three
attributes. Many ORD choice tasks have at least omeverlapping attribute levels.

Threatened Animal/Plant

Brown Kiwi

(Frequency of hearing calls
in planted forests in North
Island)

Giant Kokopu e
(Occurrence in slow moving

streams with overhanging
native vegetation in planted
forests throughout New
Zealand)

Current
Condition

Option |

Option J

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 10 out of 200
planted forests

Kokopu seen
in 1 out of 10
suitable streams

Kokopu seen
in 1 out of 10
suitable streamg

Kokopu seen
in 1 out of 10
suitable streamg

Kakabeak

your income tax for five years only

(Occurrence in 20% of the At least At least At least
planted forests on the East 3 naturally 10 actively 10 actively
Coast and Hawke’'s Bay) occurring managed managed
Kakabeak shrub$)] Kakabeak shrub| Kakabeak shrub
Auckland Green Gecko
(Gecko s_lghtlngs In open Gecko sighted Gecko sighted Gecko sighted
grounds in planted forests in in 1 out of 50 in 5 out of 50 in 3 out of 50
Northland, Waikato and :
. walks walks walks
Bay of Plenty regions)
NZ Bush Falcon
(Bhglsh(j]‘glgon tsr:ghtlnr?s . Bush falcon Bush falcon Bush falcon
‘fN ! et r_|V|gg trolu’\gl] Fhme sighted sighted sighted
Ics)lraesdseizd Sgéin) or in 1 out of 8 in 5 out of 8 in 5 out of 8
drives drives drives
Additional amount to be paid yearly in $0 $90 $60

I would choose (please tick)
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Appendix Figure 2

A choice task derived Bayesian D-efficient designithh an overlap in cost attribute.
One would occasionally find overlaps in BDD choictasks.

Threatened Animal/Plant

Brown Kiwi

(Frequency of hearing calls
in planted forests in North
Island)

Giant Kokopu e
(Occurrence in slow moving

streams with overhanging
native vegetation in planted
forests throughout New
Zealand)

Current
Condition

Option |

Option J

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 20 out of 200
planted forests

Kokopu seen
in 1 out of 10
suitable streams

Kokopu seen
in 3 out of 10
suitable streamg

Kokopu seen
in 1 out of 10
suitable streamg

Kakabeak

your income tax for five years only

(Occurrence in 20% of the At least At least At least
planted forests on the East 3 naturally 20 actively 3 actively
Coast and Hawke’'s Bay) occurring managed managed
Kakabeak shrub$)] Kakabeak shrub| Kakabeak shrub
Auckland Green Gecko
(Gecko s_lghtlngs In open Gecko sighted Gecko sighted Gecko sighted
grounds in planted forests in in 1 out of 50 in 3 out of 50 in 1 out of 50
Northland, Waikato and :
. walks walks walks
Bay of Plenty regions)
NZ Bush Falcon
(Bhglsh(j]‘glgon tsr:ghtlnr?s . Bush falcon Bush falcon Bush falcon
‘fN ! et r_|V|gg trolu’\gl] Fhme sighted sighted sighted
Ics)lraesdseizd Sgéin) or in 1 out of 8 in 5 out of 8 in 1 out of 8
drives drives drives
Additional amount to be paid yearly in $0 $30 $30

I would choose (please tick)
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Appendix Figure 3

A choice task derived from optimal orthogonal desig with no attribute overlap. No
overlapping attribute levels were found in all pais of changed alternatives in OOD

choice tasks.

Threatened Animal/Plant

Brown Kiwi

(Frequency of hearing calls
in planted forests in North
Island)

Giant Kokopu
(Occurrence in slow moving

streams with overhanging
native vegetation in planted
forests throughout New
Zealand)

Current
Condition

Option |

Option J

Kiwi calls heard
in 1 out of 200
planted forests

Kiwi calls heard
in 20 out of 200
planted forests

Kiwi calls heard
in 1 out of 200
planted forests

Kokopu seen
in 1 out of 10
suitable streams

Kokopu seen
in 5 out of 10
suitable streamg

Kokopu seen
in 1 out of 10
suitable streamg

Kakabeak

your income tax for five years only

(Occurrence in 20% of the At least At least At least
planted forests on the East 3 naturally 10 actively 20 actively
Coast and Hawke’s Bay) occurring managed managed
Kakabeak shrubg$| Kakabeak shrub§| Kakabeak shrub
Auckland Green Gecko
é?;fﬁg:;gg‘;gtz linfgfgsr}[s in Gecko sighted Gecko sighted Gecko sighted
Northland, Waikato and in 1v8;|tk:f 50 in 1v(3;1Itk(S)f 50 in Sﬁgltkgf 50
Bay of Plenty regions)
NZ Bush Falcon
(BL.'Sh fa_llqon sightings . Bush falcon Bush falcon Bush falcon
while driving through pine sighted sighted sighted
Iolres(tjs IndCSnltraI North in 1 out of 8 in 1 out of 8 in 3 out of 8
sland and Nelson) drives drives drives
Additional amount to be paid yearly in $0 $30 $60

I would choose (please tick)
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