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Abstract 

This study investigates the non-market value of biodiversity enhancement in New 

Zealand’s planted forests using the stated choice experiments (CE) approach. This 

study focuses on two issues. One issue is policy orientated where we estimate the 

non-market value of biodiversity enhancement and the determinants of this value. 

The other issue is about the neutrality of major experimental design criteria used 

in CE. Specifically, we examine the impact of using different criteria on attribute 

non-attendance, choice variability, choice determinism and learning.  

To estimate the non-market value of biodiversity enhancement, a random 

parameters logit model with error components is used to analyse choice data 

collected from 209 respondents across New Zealand. The panel nature of the 

choice data set is exploited to calculate the marginal willingness-to-pay (WTP) for 

environmental attributes of each respondent. Panel random-effects regression 

models are subsequently employed to determine the factors that influence 

individual-specific WTP values. Results suggest that New Zealand taxpayers 

would be willing to pay $26.5 million per year for five years for a proposed 

biodiversity enhancement programme. Random effects regression analysis suggest 

that respondents living close to large planted forests (i.e., less than 10 kilometres 

away) would pay more for the programme.  

 To study whether the selection of experimental design criterion affects 

attribute non-attendance and choice variability, we analyse a balanced sample 

with split designs. The balanced sample is composed of 1509 choice observations 

equally distributed across three experimental designs, namely: orthogonal, 

Bayesian D-efficient and optimal orthogonal. Results from latent class logit 
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analysis suggest that tasks derived from the Bayesian D-efficient design (BDD) 

criterion are more attended than those derived from orthogonal and optimal 

orthogonal designs. Heteroskedastic logit analysis indicates that, unlike the two 

other designs, higher choice task complexity (as measured by entropy proxies) in 

the BDD does not increase choice variability of respondents. This is indicated by 

the absence of a significant increase in the variance of the Gumbel error in the 

choice data collected using BDD unlike the data collected using the two other 

criteria. 

To study whether the three experimental designs vary in terms of choice 

determinism and task order effects, a separate analysis of the balanced data set 

using heteroskedastic logit models is undertaken. Results show that higher levels 

of choice task complexity (as measured by attribute dispersion proxies) in BDD 

contribute to increasing choice determinism of respondents but not in the 

orthogonal design. Choice data collected using BDD choice tasks exhibit a steady 

learning effect, unlike the other designs which do not exhibit any form of 

continuous learning.  

We conclude that the BDD criterion provides choice tasks that are superior 

compared to the other two design criteria. Choice data collected using this 

criterion has a higher quality as indicated by more attended choice tasks, lower 

choice variability and a pattern of continuous learning. These results point to a 

higher behavioural efficiency of respondents in evaluating complex choice tasks. 

However, these results might be specific to the choice data collected in this 

current study. We suggest that future studies should further investigate the 

impacts of different experimental designs to verify the findings of this study. 
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Chapter 1: Introduction 

 

1.1 Overview 

Biodiversity conservation is essential to human existence (Pimentel, et al., 1992; 

Folke, et al., 1996). Biodiversity services provided by planted forests (e.g. habitat 

provision to threatened native species) have gained increasing ecological 

importance (Carnus et al., 2006; FAO, 2010; Humprey et al., 2003) and have been 

found to have a high economic value (Scarpa, 2003; Hanley et al., 2002; Bienabe 

and Hearne, 2006). In the case of New Zealand, although policy makers are keen 

to include biodiversity values into forest management, identifying the 

management options that would provide the greatest biodiversity benefit to 

society remains a big challenge (Maunder, 2008). This is because the value that 

New Zealanders place on biodiversity enhancement in planted forests remains 

unclear and therefore unlikely to be included in policy decision making. However, 

with the development of economic valuation techniques (i.e. Choice Experiment), 

complex biodiversity values can be estimated. Choice Experiment (CE) can be 

used to investigate the preferences and willingness-to-pay values of an individual 

on the changes in biodiversity outcomes in planted forests. A crucial component 

in CE is the selection of a criterion to construct the Experimental Design (ED) of 

the choice questions in a survey instrument. ED refers to the systematic 

arrangement of the changes in the levels of attributes of an environmental good 

presented to respondents in a series of choice situations called choice sets (or 

choice tasks). In generating the ED, the analyst must select what statistical 

properties the design should exhibit, such as orthogonality or statistical efficiency. 



2 

 

As there are a number of ED criteria (e.g., orthogonal design criterion, D-efficient 

design criterion, utility-balanced design criterion) that have been developed for 

CE, the choice analyst is faced with the decision to select a design criterion that 

would support his/her objective.  For example, an analyst who would like to 

minimize standard errors of coefficients estimates would likely choose a D-

efficient design, whilst an analyst who aims to generate a design with alternatives 

that have equally likely chance of being selected would elect to have a utility-

balanced design.  

Despite the fact that different design criteria are now being used in CE, 

many CE studies to date assume that the selection of the ED criterion is neutral to 

the estimated parameters (e.g., coefficients and scale parameters). In other words, 

many recent CE studies continue to assume that different design criteria would 

likely have the same effect on the parameter estimates. This may be because many 

choice analysts assume that the parameter estimates are mainly influenced by the 

preferences of respondents. However, given that different ED criteria have 

different objectives (e.g., higher statistical efficiency, utility balance) they could 

also have a systematic effect on the choice tasks generated that could influence the 

mean and variance of the estimated parameters. If this systematic effect existed 

and was not taken into account, parameter estimates would likely be biased. 

As described above, it is important to identify the best options for 

managing biodiversity in planted forests so as to benefit society. This is done here 

by examining the preference and values of a sample of potential biodiversity 

enhancement beneficiaries using CE. In using CE, it is important to investigate 

whether the selection of the experimental design criterion would be likely to 
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influence the estimation of the parameters. This thesis aims to answer two general 

questions: 

(1) Would New Zealanders be willing to pay for a biodiversity 

enhancement programme in the country’s planted forests? If so, 

how much would this amount be? 

(2) Are the most commonly employed selection criteria for 

experimental design neutral to parameter estimates? If not, how 

does one criterion differ from the other in terms of behavioural 

efficiency? 

The questions above are addressed by studying the preferences and 

willingness-to-pay (WTP) values of New Zealanders using the CE exercise that 

employed different experimental design criteria. Between November 2009 and 

August 2010, 209 respondents sampled across New Zealand completed a choice 

experiment questionnaire through phone-mail survey and phone-internet survey. 

The choice questions collected data on stated preferences for a proposed 

biodiversity enhancement programme in New Zealand’s planted forests. WTP 

estimates were then derived from random utility models estimated on such data. 

To estimate the WTP for a biodiversity programme that aims to enhance 

the habitat for threatened native species in planted forests, random parameters 

logit models are used to analyse the full sample of data. Within it five different 

experimental designs are used. The full sample has 209 survey respondents each 

of whom provided preferred options from nine choice tasks. The random 

parameters logit model with error components was used to provide estimates that 

were used to simulate the median and variance WTP for each choice attribute. 
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Aggregated WTP values under different scenarios, accounting for different 

sources of bias (e.g., hypothetical, aggregation biases), are also estimated to show 

the national value of the proposed biodiversity enhancement programme. 

To study whether the selection of an experimental design criterion is 

neutral, we analyse a balanced sample with split designs. The balanced sample is 

a subset of the full sample mentioned above. The data is composed of 1509 choice 

observations equally distributed across three experimental designs, obtained from 

the full factorial using three separate criteria: orthogonality, Bayesian D-

efficiency and optimised orthogonality. Heteroskedastic logit models are used to 

examine the effect of each design on the choice behaviour of respondents. We 

explore whether choice variability of respondents are affected differently by 

higher complexity levels of choice tasks derived from the three criteria. We 

employ two methods in examining the effect of choice task complexity. The first 

method is based on entropy as a measure of choice task complexity which is 

proposed by Swait and Adamowicz (2001a). The second method is based on 

another choice task specific measure that we call attribute dispersion which is 

described in DeShazo and Fermo (2002). By also using the Heteroskedastic logit 

approach, we examine whether the ED criteria have different learning effects 

along the sequence of choices made by each respondent. In addition to choice 

complexity and learning effects, we also compare the three design criteria in terms 

of attribute non-attendance as described in Scarpa et al. (2009, 2010) where we 

employ latent class logit models in the analysis.  

Results in Chapter 3 suggest that the proposed biodiversity enhancement 

programme is highly valued by New Zealand taxpayers. Our calculations show 

that taxpayers had an aggregate WTP value of NZ$26 million per year for the 
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proposed five-year programme. The calculation of the aggregate WTP value 

accounts for different sources of biases which include aggregation and 

hypothetical biases. 

Findings on the comparison of different ED criteria are presented in 

Chapters 4 and 5. In Chapter 4, we report that attribute non-attendance is found to 

be different across designs when using an approach based on latent classes, with 

choice tasks derived from the Bayesian D-efficient design (BDD) being more 

attended to relative to the other two designs. Similarly, using the heteroskedastic 

logit models, we find that higher levels of choice task complexity affect variance 

heterogeneity differently across designs. The null of design entropy affecting error 

variance fails to be rejected only by the BDD, which is hence deemed to be 

comparatively superior. In Chapter 5, we report our findings that different ED 

criteria vary in terms of the effect of attribute dispersion and learning on the scale 

factor. We conclude that in our case BDD provided behaviourally more efficient 

choice tasks. We also recommend that further investigation should be done on the 

impacts of different ED criteria on behavioural efficiency.  

 

1.2 Background and research questions 

New Zealand’s 1.8 million ha of planted forests account for approximately 7% of 

the country’s land area. These forests consist mainly of exotic trees such as radiata 

pine, Douglas-fir and eucalyptus. They provide habitat for at least 118 threatened 

native animals and plants (Pawson, et al., 2010; Brockerhoff, et al., 2008). Studies 

also suggest that habitat for threatened native species can be enhanced through 

forest management (Humpreys et al., 2003; Carnus, et al., 2006; Seaton, et al., 
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2010; Maunder et al., 2005). While there is evidence that a typical New Zealander 

would be willing to pay to support a biodiversity enhancement programme on 

private land by planting more native trees (Yao and Kaval, 2010), it is not known 

if this also holds for biodiversity in privately owned exotic planted forests. This 

motivates us to ask the first research question or RQ1:  

RQ1. Would New Zealanders be willing to pay for biodiversity enhancement 

in planted forests, and if so, approximately how much?  

The answer to this question is the subject in Chapter 3 of this thesis, where 

we investigate whether a typical New Zealand taxpayer would be willing to 

financially support a proposed biodiversity enhancement programme.  

There are several criteria for generating a choice experimental design. 

Three design criteria are examined in this thesis. The first is the orthogonality 

criterion (the most frequently employed design criterion used in the beginning of 

the CE literature) which constrains the correlation between attribute levels to zero. 

This criterion is also efficient when the model to be used in the data analysis is the 

multivariate linear regression model. The second criterion is the optimised 

orthogonality criterion, which selects the design from the various orthogonal 

designs available assuming that a non-linear regression model (e.g., logit) will be 

used in analysing the data collected, and hence based on the properties of this 

model’s asymptotic variance covariance matrix. While the orthogonal design 

criterion does not make any assumption on the coefficient estimates, the optimal 

orthogonal criteria generate designs with the assumption that the model 

coefficient estimates are all zero, according to the approach by Street and Burgess 

(2005). Thus, the two design criteria basically assume that the contribution to the 
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indirect utility of the choice attributes is zero. We therefore classify orthogonal 

and optimal orthogonal designs to belong to the group called utility neutral 

designs. The third criterion is the Bayesian D-efficiency criterion, which assumes 

that the coefficient estimates are non-zeroes. To generate an experimental design, 

the Bayesian D-efficiency criterion requires some prior information about the 

mean and distribution of coefficient values to be estimated, which may come 

either from a pilot survey, from related previous study, or from some experts’ 

opinions.  

In a statistical sense, using a variety of indicators, experimental designs 

derived by means of the Bayesian efficiency criterion have been proven to 

outperform choice experimental designs that did not take into account prior 

information (Kessels et al., 2006; Bliemer and Rose, 2011; Bliemer and Rose, 

2009; Vermuelen et al., 2011; Scarpa et al., 2009). However, in a behavioural 

sense, we still have very limited empirical studies to show how Bayesian efficient 

designs compare with utility neutral designs.  

A recent study by Louviere et al. (2008) suggests that EDs with “higher 

statistical efficiency” resulted in less consistent choice responses. Louviere et al. 

compared 44 different designs (40 optimal orthogonal and 4 adaptive) with 

varying levels of efficiency following the “D-efficiency” measure described in 

Street and Burgess (2007). Their results suggest that responses to choice tasks 

were systematically less consistent as statistical efficiency increased. However, in 

the study by Louviere, designs that were compared were not derived from using a 

priori  information on coefficient values. 
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Swait and Adamowicz (2001a, 2001b) and DeShazo and Fermo (2002) 

modelled the effect of choice task complexity on choice variability by examining 

the effect on the variance of the error component, but these studies both used 

choice observations derived from choice tasks with varying numbers of 

alternatives and attribute levels that were all generated from designs derived using 

the orthogonal criterion. 

Hess et al. (2008) compared three different designs: orthogonal with 

random blocking, orthogonal with blocking and a D-efficient design. Their 

findings indicate that the D-efficient design performed only slightly better (in 

terms of behavioural efficiency) than the orthogonal design with blocking. 

Although the D-efficient design used a priori information, the design treated the a 

priori  estimates with perfect certainty. In contrast, the Bayesian D-efficiency 

criterion accounts for the uncertainty of the given prior distribution of parameters 

(see Ferrini and Scarpa, 2007).   

Huber and Zwerina (1996) suggest that the utility-balanced design 

increases statistical efficiency of the design that could lead to a reduction in the 

theoretically minimum number of respondents needed to estimate a basic 

conditional logit model. To investigate the impact of utility-balanced design on 

choice behaviour, Viney et al. (2005) empirically investigated three different 

designs – utility-balanced, orthogonal, and random designs. Their results suggest 

that choice tasks derived from utility-balanced designs yielded data with greater 

inconsistency or random variability in responses compared to the other two 

designs.  
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While the abovementioned studies have compared the behavioural impacts 

of different experimental design criteria, none of them compared the behavioural 

effects of two particular experimental design criteria (i.e., with Bayesian a priori 

versus without a priori information) on choice behaviour. This is probably the 

first study to compare the impacts of these two experimental design criteria on 

different aspects of choice behaviour. 

Going back to the study of Viney et al. (2005) as mentioned above, where 

they found greater random variability of utility balanced design, a possible cause 

of greater variability is greater choice complexity. Swait and Adamowicz (2001a) 

suggest that the complexity of a choice task can be represented by entropy. 

Entropy is a choice task specific measure of complexity where the theoretically 

maximum entropy is achieved when each of the three alternatives in a choice task 

had an equally likely chance of being selected. A choice task with alternatives that 

have an equally likely chance of being selected has alternatives that are identical 

in utility terms. Given that different experimental design criteria would lead to 

different systematic arrangements of attribute levels in a choice task, this might 

contribute to differences in entropy levels between different designs. This study 

aims to answer the second set of research questions:  

RQ2. Do different experimental designs differ in entropy levels? If so, 

would a higher entropy level have the same effect on choice variability across 

designs?  

Scarpa et al. (2009, 2010) provide evidence that CE respondents may tend 

not to process all the attributes that are used to illustrate the choice alternatives. 

Their results suggest that accounting for attribute non-attendance in choice 
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analysis results in significant improvement in model goodness of fit and higher 

efficiency of coefficient estimates. As different designs would likely have 

different choice tasks generated, we ask the third set of research questions:  

RQ3. Does the selection of experimental design criterion influence 

attribute non-attendance? If so, what are the effects on the parameter estimates 

and WTP values?  

DeShazo and Fermo (2002) have shown two characteristics of choice tasks 

that contribute to choice complexity giving a respondent greater cognitive burden 

in selecting the preferred alternative in a choice task. These characteristics are the 

average standard deviation between attribute levels across alternatives in a choice 

task and the dispersion of standard deviation of attribute levels across alternatives 

in a choice task. We collectively call these two choice task specific characteristics 

attribute dispersion. The higher the attribute dispersion, the greater the 

complexity; this corresponds to providing greater cognitive burden to respondents. 

It is important to note that attribute dispersion is another measure of choice task 

complexity and the calculation of this measure is different to the entropy measure 

described in Swait and Adamowicz (2001a). This leads to the fourth research 

question:  

RQ4. Is there a relationship between the variance of the attributes and the 

Gumbel error variance? 

Several CE studies have shown that the ordering of choice tasks influences 

the estimation of indirect marginal utility and the the Gumbel error variance 

(Caussade et al., 2005; Holmes and Boyle, 2005; van der Waerden et al., 2006; 

Kjær et al., 2006; Day and Pinto-Prades, 2010; Day et al., 2010). To illustrate this, 
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as a respondent answers a sequence of choice sets (e.g., 1st, 2nd,… …, 9th), the first 

choice set would likely involve the highest degree of lack of familiarity with the 

choice context. As a respondent selects the preferred alternatives from the second, 

third and fourth choice sets, he/she would likely find them easier to select than 

earlier ones because of the learning effects. Selecting from the latter choice sets 

(7th, 8th and 9th) could tend to make a respondent tired or start to experience 

fatigue. This leads us to the fifth research question:  

RQ5. Do different choice experimental design criteria generate sets of 

choice tasks with different learning/fatigue effects?  

 

1.3 Structure of the thesis 

This thesis has five chapters. Chapter 1 (this chapter) motivates the study and 

provides an overview of the thesis and its overall objectives. It presents the five 

sets of research questions and discusses some things that can be expected from 

this thesis. Chapter 2 provides an overview of choice experiments, the choice 

models used for the analyses, the design efficiency measures and the choice data 

sets analysed in Chapters 3, 4 and 5.  

Chapter 3 is the first main chapter which is policy orientated. We present 

the estimates of WTP values using the collected choice data set that we analysed 

using logit models. This chapter also describes how individual willingness-to-pay 

values are aggregated to represent a national level value for a proposed 

biodiversity enhancement programme in planted forests.  



12 

 

To answer research questions 2 and 3 (i.e., RQ2 and RQ3), Chapter 4 

focuses on studying impacts of experimental design selection in terms of entropy 

as a complexity measure and attribute non-attendance as a behavioural response to 

complexity. We calculate the entropy measure for each design and compare how 

entropy levels affect choice variability across designs using heteroskedastic logit 

models. For analysing attribute non-attendance, we use latent class logit models 

where we identified the different groups of respondents following different 

attribute processing patterns based on reported non-attending behaviour. We also 

calculate the WTP value for each attribute and compare the differences in WTP 

values between the three design treatments. 

To further investigate if the selection of criteria for choice experiment 

design matters, Chapter 5 presents results from an examination of the effects of 

higher attribute dispersion and learning on the variance of the Gumbel error terms 

across designs. Heteroskedastic logit models are used to examine the differences 

in attribute dispersion and learning/fatigue effects across designs. Chapter 6 

summarises the results. Policy recommendations are formulated and future 

research directions are suggested. 
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Chapter 2: Methods, designs and data 

This chapter starts by providing a description of choice experiments and the 

econometric models used in Chapters 3, 4 and 5 of this thesis. This is followed by 

the experimental designs used in this study and their evaluations in terms of 

statistical measures of design efficiency. We also describe here the sampling 

strategies and how well these sampling strategies were achieved. Finally, the two 

types of data sets (i.e., full sample and balanced sub-sample) used in this study are 

described. This chapter provides an overview of the key elements of the thesis and 

these will be referred to in the next three chapters. 

2.1 Choice experiments for biodiversity valuation in planted forest 

2.1.1 Overview of stated choice experiments 

Stated choice experiments (CEs) are conducted in the field of environmental 

economics to obtain data on the hypothetical behaviour of individuals in regard to 

the changes in the provision of environmental goods and calculate measures of 

values on the changes of attribute levels such as willingness-to-pay.1 In a CE 

survey, a respondent is provided with a series of choice tasks that leads to the 

collection of a panel of choice responses. Each choice task contains a set of 

alternatives that may include a status quo alternative (with attributes at their 

current levels of provision) and hypothetical alternatives (including current and 

improved attribute levels) constructed from an experimental design (ED). Each 

alternative is described by several attributes of relevance to the respondent that 

                                                           

1 Choice experiments in environmental economics are also called as Attribute-based methods. This 
is described in Holmes and Adamowicz (2003). For further details about choice experimental 
design criteria, one may read Ferrini and Scarpa (2007) and Scarpa and Rose (2008). 
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include environmental attributes and a cost for each option in the choice task. 

When a respondent selects the preferred alternative (from among the three 

alternatives), he or she implicitly makes trade-offs between the levels of attributes 

in all the alternatives shown in a choice task.  

2.1.2 The choice model  

The Random Utility Maximization (RUM) model proposed by McFadden (1974) 

provides the standard framework for modelling the choice behaviour of an 

individual. Under the RUM framework, an individual evaluates different 

alternatives in a choice task and selects the one that provides the highest expected 

utility level. To illustrate this, we first describe the structure of the utility function 

that has deterministic and stochastic components as modelled by the basic 

conditional logit model. The analyst aims to estimate a K×1  row of utility 

weights or utility coefficients β for a column of vector X of 1×K  attributes for 

respondent n's indirect utility function iV . The estimation is based on data 

showing respondents’ chosen alternative among the set of J competing 

alternatives presented in choice task s. For this exercise, each respondent was 

presented with nine choice tasks (S = 9). As shown in Figure 3.2 (on page 68), 

each choice task has three alternatives (J = 3); with one representing the status 

quo (sq) or the current condition identified based on expert opinion and facts from 

the environmental literature, while the other two are changed alternatives (a1, a2) 

composed of different combinations of attribute levels generated using an 

experimental design.  

We represent the utility perceived by respondent n from selecting 

alternative j in choice task s as Unjs.  Based on random utility theory, utility has 
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two components: the observed indirect utility Vnjs and the unobserved error 

component εnjs. Vnjs is associated with the satisfaction derived by respondent n 

from the changes in attribute levels, εnjs represents the stochastic component of 

utility that is independently and identically Extreme Value Type I (or Gumbel) 

distributed across the alternatives. The utility function can be shown as  

njsnjsnjs VU ε+=  (2.1) 

 

The deterministic component Vnjs is specified to be linear in parameters (i.e., 

njsnjs XV β ′= ) where Xnjs is a vector of observed variables relating to alternative j. 

The conditional logit probabilities can be specified with Gumbel error scale λ > 0: 
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where Pnls represents the probability that alternative l will be selected by 

respondent n from the set of J alternatives shown on choice task s. The values of 

Xnjs are defined by the experimental design. An efficient design is expected to 

maximise the amount of information the design conveys to identify the estimates 

for the vector of marginal utilities, β. The information matrix for the design 

assuming a conditional logit model is defined by the matrix of second derivatives 

of the log-likelihood function presented as 
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The ( )njsXI ,β  matrix above that has a dimension of KK × represents the Fisher 

Information Matrix (FIM). FIM is a measure of the amount of information that 

observable sources of utility Xnjs carry about β where choice probabilities depend 

upon. 

The popularity of the conditional logit model can be attributed to the fact 

that its set of choice probabilities takes a closed form (Train, 2009). This refers to 

the simple mathematical formulation of the Jacobian (vector of first derivatives of 

the Log-likelihood function) and the Hessian (matrix of second derivatives of the 

Log-likelihood function). As these two matrices are functions of utility 

coefficients β and the experimental design Xnjs, an experimental design that 

increases the magnitude of the elements in ( )njsXI ,β  with respect to a baseline 

design is therefore a more informative design. It is important to note that the 

negative of the inverse of the expected FIM is the maximum likelihood estimator 

of the asymptotic variance-covariance (AVC) matrix that can be shown as  
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where Lln  is the log-likelihood of design Xnjs: 
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and Ynjs represents the indicator of choice that takes the value of 1 if chosen or 0 

otherwise. The diagonal and off-diagonal elements of AVC represent, respectively, 

the variance and covariance of estimated coefficients β. The smaller the elements 

of AVC of the design, the more efficient the design is. A good criterion for 

choosing an efficient design is the one that minimises the determinant of the AVC 

matrix.2 An appropriate algorithm to generate and search for an efficient design 

would need to generate new designs from an existing coded design matrix, 

evaluate each design based on efficiency as a function of the arrangement of 

attribute levels, and identify the generated design that has AVC with the lowest 

determinant. 

2.1.3 Measures of choice experimental design efficiency  

As the AVC matrix of a design contains many elements, it first needs to be 

transformed into a single number for a straightforward comparison of efficiency 

between different designs. One single measure of matrix size is the determinant. 

The determinant of a matrix refers to the summation of the terms, each term 

representing a product of systematically selected elements of a square matrix. For 

a square matrix to have a non-zero determinant (or non-singular), it should be full 

rank which implies that matrix columns are independent or not collinear. 

Therefore, the determinant of the AVC matrix provides a valid measure of design 

efficiency. However, as the number of matrix column (K) increases, the 

determinant also becomes larger. Thus, the determinant should be normalised by 

K. This determinant of the AVC matrix is the Dp –error presented formally as 

                                                           

2 As AVC and FIM are inversely related, minimising the determinant of the AVC corresponds to 
maximising the determinant of FIM.  
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( )( ) K
njsp xAVCerrorD 1,det β=−  (2.6) 

Another measure of design efficiency that has been occasionally reported in 

experimental design literature is the A-error.  

( )( )
K

xAVCtrace
errorA njs,β

=−  (2.7) 

A–error is similar to the Dp –error in that it uses the AVC matrix and also account 

for the number of columns. However, instead of a determinant, it employs the 

trace of the AVC matrix that only accounts for the diagonal elements (variance) 

and not off-diagonals (covariance). Not fully accounting for all the elements of 

the AVC matrix might be the reason for the relatively lower acceptance of the A–

error in the literature. 

The Dp–error (also called point D-error or local D-optimal) is not without 

drawbacks. Under this measure, the values of β are treated with certainty at the 

experimental design stage. This is not plausible because if the analyst already has 

good estimates of β, there is no need to generate an efficient design for a choice 

experiments survey. Usually, the estimates of β are derived from relevant previous 

studies, expert opinion or from a pilot survey. In this case, estimates of β would 

likely have a degree of uncertainty. This uncertainty can be accounted for by 

providing adequate a priori distributions (Sandor and Wedel, 2001, 2002, 2005; 

Ferrini and Scarpa, 2007). This makes the Bayesian D-error or Db-error a more 

attractive design measure because it accounts for the uncertainty where an 

expectation is taken over the assumed a priori distributions of β.  Formally, Db -

error can be presented as  
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( )( )[ ] ( ) βµβ dNxAVCerrorD
K

njsb Σ=− ∫ ,,det
1

 (2.8) 

where the term ( )σµ ,N  tells that the values of β are a priori distributed normal 

with mean µ and variance-covariance Σ. Imposing a normal distribution for prior β 

may indicate that reliable a priori information has been used (e.g., coming from a 

pilot survey). However, if priors came from less reliable source due to limited 

availability of relevant studies or lack of resources to do a pilot survey, a less 

reliable prior assuming a uniform distribution may be employed leading to 

errorD
ub −  shown below 

( )( )[ ] ( ) βµβ dUxerrorD
k

sjbu
ΣΩ=− ∫ ,,det

1
 (2.9) 

As D-error and A-error are measures of design efficiency, Huber and 

Zwerina (1996) have shown evidence that utility balance contributes to improving 

design efficiency particularly if a priori parameter estimates are accounted for in 

the construction of the design. The utility balanced criterion is centred on choice 

probabilities of the alternatives in a choice task. Given a choice task with three 

alternatives, if these alternatives are equally attractive to a respondent, then each 

alternative gets a choice probability of 0.33, resulting to a perfectly utility 

balanced choice task.  If a choice task has an alternative with all attributes being 

more attractive (e.g., low cost, greater numbers of threatened species sighted) than 

the other two alternatives, that dominating alternative would get a choice 

probability of 1.00. This is based on the assumption that respondents’ utility levels 

would increase monotonically with improvements in environmental attributes. A 

choice task with a dominating alternative would be very easy to respond to, 

however, the choice data collected would be uninformative to model parameters 
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resulting in less precise estimates of parameters. Huber and Zwerina (1996) 

indicate that if one out of three alternatives in a choice task is chosen almost all of 

the time, then this leads to extreme values of the cumulative probability function. 

In general, choice tasks that generate extreme probabilities (e.g., 1.0 or 0.0) are 

less effective at constraining the choice model parameters than those generating 

moderate ones. To ensure that good information from an exercise in choice 

experiments is obtained, one should minimise (and if possible eliminate) the 

occurrence of choice sets with dominant alternatives (Krieger and Green, 1991; 

Huber and Zwerina, 1996).  

Dominance in an experimental design can be detected manually by 

examining each choice task. Alternatively, the Utility-Balanced (UB) measure 

proposed by Kessels et al (2004) can be used to measure the degree of dominance 

in a design. In contrast to the design efficiency measures mentioned above, that 

account for the AVC matrix, the UB measure focuses on the choice probabilities. 

UB can be presented as  
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where l represents the chosen alternative and S is the number of choice tasks in a 

design. This UB measure is expressed in percentage form with 0% indicating that 

each choice task in the design has a dominant alternative and with 100% 

suggesting that every alternative in each choice task has an equal chance of being 

selected. ChoiceMetrics (2011 p. 95) suggests that observed utility balance 
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measure of efficient designs lies between 70 to 90 percent. Viney et al. (2005) 

compared empirically three different experimental designs: orthogonal main 

effects, utility-balanced, and random. Their results indicate that although the three 

experimental designs did not impact the underlying parameter estimates, the 

utility-balanced design yielded greater random variability in the responses. A 

possible reason for the increase in variability could be as a result of a higher level 

of choice complexity because choosing an alternative from a choice task with 

equally attractive alternatives would require more effort that could lead 

respondents to make different choices (Swait and Adamowicz, 2001a, 2001b). 

The variability of responses can be modelled by parameterising the scale of the 

coefficients of the indirect utility function under the heteroskedastic logit 

framework that is discussed in the next section. 

 

2.1.4 Heteroskedastic logit model 

The cumulative distribution function (cdf) of an individual error component of the 

Conditional Logit (CL) model in Equation (2.1) can be presented as  

( ) ( )( ) 0,,expexp >∞<<∞−−−= λελεε njnjnjF  (2.11) 

 

whereλ represents the scale parameter. The above cdf suggests that the variance 

of 
njε  

is 222 6λπσ =  (Ben Akiva and Lerman, 1995). This follows a set of 

assumptions that gives rise to CL as presented in Equation (2.2), whereλ  is a 

scalar constant that allows scale to vary based on factors that would likely 

influence the variance of the error component σ (or the unobserved component of 

utility). The conditional logit model assumes that the error variance is constant 
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across individuals. However, the assumption of constant error variance has been 

questioned in several papers (Hensher et al. 1999; Louviere, 2001; Swait and 

Adamowicz, 2001a; Swait and Adamowicz, 2001b DeShazo and Fermo, 2002; 

Louviere et al., 2002). Accounting for scale differences offers advantages which 

include getting superior model fits from choice analysis where the analyst can 

pool and rescale the data set (Ben Akiva and Morikawa, 1990). Sinceλ cannot be 

identified, the analyst should estimate the product( )Xβλ  based on a reference 

point (Swait and Louviere, 1993). Given that 22 6/ σπλ = , on one hand as σ  

approaches infinity, λ  approaches zero which makes the CL model allocate equal 

choice probabilities for all three alternatives. On the other hand, as σ  approaches 

zero, λ  approaches infinity leading to a CL model that predicts a probability of 

one to the alternative that provides the highest systematic utility (Ben-Akiva and 

Lerman, 1985).  

To parameterise the scale parameter, we follow Swait and Adamowicz 

(2001a) where we use a heteroskedastic logit model to account for q factors that 

would likely influence the scale parameter. This we formally present as 


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where q-factors may include experimental design, choice complexity, order (or 

learning) effects and interaction between these factors. 
qγ represents an estimate 

of slope shifter of the scale for the qth factor where a negative sign implies that the 

factor contributes to a decrease in scale (higher error variance), while a positive 
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sign indicates an increase in scale (lower error variance). As we relaxed the 

assumption of a constant scale parameter, we also relaxed the assumption that the 

Gumbel error is independent and identically distributed (i.i.d.).3 This is because 

the error variance is no longer constant as we allow it to vary based on q-factors 

that would likely influence λ. This set up allows the simultaneous estimation of 

the utility coefficients and error variance as a function of q-factors. 

2.1.5 Latent class model with attribute non-attendance  

The success in making CE methods more realistic contributed to an increase in its 

use for economic valuation (Louviere et al., 2000; Hess and Rose, 2009). A 

desirable feature of CEs is their ability to place respondents into situations in 

which they must make trade-offs among multiple attributes of alternatives. 

However, as an analyst tries to make choice tasks as realistic as possible—e.g. by 

including the most relevant attributes that were carefully identified from literature 

reviews, focus group meetings and pre-testing—some respondents may attend 

only to attributes that they are most interested in and ignore the others. One reason 

for attribute non-attendance (ANA) is that some respondents may tend to reduce 

cognitive effort in the evaluation of alternatives by attending only to a subset of 

attributes. The issue of ANA has been corroborated from empirical evidence 

drawn from many CE studies in the field of transport, marketing and health, 

environmental economics and food choice (Swait, 2001; Hensher et al., 2005; 

Hensher, 2006, 2008, 2010; Swait and Adamowicz, 2001a, 2001b; Fasolo et al., 

2007; Islam et al., 2007; McIntosh and Ryan, 2002; Lancsar and Louviere, 2006; 

                                                           

3 The term i.i.d. implies that the variances associated with a component of random utility 
expression describing each alternative (capturing all the unobserved influences on choice) are 
identical, and that the unobserved effects are not correlated between all pairs of alternatives. 
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Bruschi et al., 2010; Scarpa et al., 2011a; Hensher and Greene, in press). The 

presence of attribute ANA leads to the violation of the continuity axiom that 

assumes fully compensatory choice behaviour, which implies that respondents 

attended to all attributes in a choice task (see Hensher 2006 for details of this 

axiom). In essence, non-attendance to one or some attributes results in non-

compensatory choice behaviour because despite any improvements in the levels of 

unattended attributes, they will fail to compensate for the worsening in the levels 

of other attributes (Lockwood, 1996; Spash, 2000; Sælensmine, 2002; Rekola, 

2003). Scarpa et al (2009) present some empirical evidence showing the different 

types of ANA behaviour where some respondents ignored one attribute, others 

ignored more than one, while a few ignored all attributes (hence made random 

choices). Their results suggest that accounting for different non-attending 

behaviour of respondents in choice analysis contributes to a significant 

improvement in model goodness of fit and more accurate estimates of parameter 

values. Scarpa et al. (2009) suggest a modelling technique that allows the 

grouping of respondents (up to a probability) into different latent classes that 

could represent groupings based on non-attendance to certain subsets of attributes.  

We model ANA following the Panel Latent Class Logit Model (PLCM) 

described in Scarpa, et al. (2009).  PLCM can be presented as  

�����|��� 	 �
���, ��, … , ��|��� 	 � ������
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∑ ���� ���
���
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��
 (2.13) 

 

where c represents non-attendance latent classes, �� represents the probability of 

respondent n observing a set of S choices ��� ���,��,…,��,  is a product of logits 
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�
�� . To obtain the unconditional probability of the panel of choices 

of respondent n, the law of total probability is used. This is by summing up the 

conditional probabilities over the finite set of membership probabilities, ��*�, of 

the specified ANA classes. The unconditional probability can be expressed as: 
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where α represents class-specific constants indentified by imposing that they sum 

to zero.  

In the PLCM above, ANA is operationalised by allowing individuals to be 

classified to latent classes with utility coefficients restricted to zero for selected 

attributes, while unrestricted (non-zero) attributes are assumed to have exactly the 

same value across classes. For the current study, an example of a latent class 

would be a group of respondents who attended only to the bird attributes (i.e. 

falcon and brown kiwi) while ignoring the non-bird attributes (i.e. kokopu, 

kakabeak and gecko). For this latent class, we constrain the utility coefficients of 

the non-bird attributes to zero while allowing the bird utility coefficients to vary. 

We can also include other latent classes such as a class that attended to all 

attributes and a class that ignored the status quo option. For the class that attended 

all attributes, all utility coefficients are allowed to vary; while for the class that 

ignored the status quo option, we restrict the utility coefficient for SQ option to be 

zero. Suppose the three ANA latent classes above represent the most applicable 

specification for our sample data, then the statistical fit of the model should 

significantly increase (relative to the conditional logit model) indicating the 
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presence of non-attendance (suggesting that discontinuous preference exists). For 

this exercise, to identify the most applicable number of latent classes and types of 

latent classes (e.g., class ignoring the cost attribute, class ignoring bird attributes) 

we use the minimum Akaike Information Criterion (AIC) approach (Swait, 1994; 

Boxall and Adamowicz, 2002).  AIC is one of the alternative measures of 

goodness of fit to pseudo R2 in non-linear regression models (e.g. conditional 

logit).  Under the conditional logit model, AIC minimizes .2ln2 3 24 where lnL 

represents the log-likelihood value and k is the number of parameters (Kennedy, 

2008). However, as AIC does not account for the number of choice observations 

N, we elected to use the normalized AIC criterion which can be expressed as 

AIC/N. Normalised AIC is a relative measure allowing for the comparison of two 

or more models or model specifications. The smaller the normalised AIC value 

the better the model fit while accounting for the number of parameters estimated. 

 

2.2 Overview of experimental design criteria used in the study 

Experimental design in CE provides a means to construct choice tasks in an 

efficient way as it can influence the accuracy of WTP estimates (Lusk and 

Norwood, 2005; Campbell, 2007). The literature on experimental design for CE 

has progressed significantly over the last two decades. Several experimental 

design strategies have been developed (Kuhfeld et al., 1994; Huber and Zwerina, 

1996; Carlsson and Martinsson, 2003; Street et al., 2005; Johnson et al., 2007; 

Scarpa and Rose, 2008). Although there are several experimental design criteria, 

this study focuses on empirically examining three criteria: (1) orthogonal design 
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(ORD), (2) optimal orthogonal design (OOD), and (3) Bayesian D-efficient design 

(BDD). We describe each in turn in the following. 

 

2.2.1 Orthogonal design 

The first experimental design criterion used for CE was ORD (Louviere and 

Hensher, 1982; Louviere and Woodworth, 1983). The rationale for constructing 

ORD is derived from linear multivariate models originally used for analysing 

treatment effects in biological experiments using linear regression models (e.g., 

Ordinary Least Squares) (Ferrini and Scarpa, 2007). However, choice data is 

analysed using non-linear regression models (e.g., logit) to examine changes in 

utilities, hence orthogonality is not a criterion for statistical efficiency for discrete 

choice experiments (Train, 2009; Bliemer and Rose, 2006). Kessels, et al (2006) 

and Bliemer and Rose (2009 p. 21) demonstrate that the statistical efficiency of 

designs following the ORD criterion are relatively lower compared to the more 

recently developed class of efficient designs (e.g., BDD) where the estimated 

parameters are more precise as indicated by lower covariances. Lower covariances 

correspond to a smaller D-error which is the determinant of the asymptotic 

variance-covariance (AVC) matrix as shown in Equation (2.6). 

There are two main approaches to generate orthogonal designs: sequential 

and simultaneous (Rose et al. 2008). The sequential approach generates designs 

with attributes that are uncorrelated within, but not between, alternatives. To 

construct a sequential ORD, one initially creates an ORD for the first alternative 

then generates subsequent alternatives by re-arranging the rows of the first 

alternative. The sequential approach allows the analyst to construct designs with a 
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lesser number of choice tasks compared to a simultaneously generated ORD. One 

drawback of a sequentially generated ORD is that it may not be appropriate for 

choice tasks with labelled alternatives that, under the orthogonality criterion, 

would also require orthogonality between alternatives.  

The simultaneous orthogonal approach generates designs with a set of 

attribute levels that are independent both within and between alternatives. Under 

the simultaneous approach, all alternatives are constructed at the same time. The 

advantage of simultaneous orthogonal designs is that they can be used for both 

labelled and unlabelled choice experiments. Given this advantage, this study 

employed the simultaneous approach in generating the orthogonal design that was 

used to generate the choice tasks for collecting the choice data for the ORD 

sample. The simultaneous ORD was generated using the experimental design 

software NGENE version 1.02. 

2.2.2 Optimal orthogonal design 

Street et al. (2001, 2005) propose a design criterion called Optimal Orthogonal 

Design (OOD). Following the OOD criterion, one can generate choice tasks 

(mainly applicable for unlabelled or generic alternatives) with improved statistical 

properties compared to the traditional orthogonal design (Street and Burgess, 

2005; Rose and Bliemer, 2008). OOD offers a two-fold improvement over ORD. 

First, respondents are forced to make trade-offs on all attributes of a choice task as 

all pairs of attributes take different values, an improvement compared to ORD that 

would likely include two attributes in a choice set having the same level (Rose et 

al., 2011). Second, OOD takes into account that the model used for the analysis is 

a non-linear regression model (e.g., conditional logit model) where we analyse 
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utility differences (see Train, 2009). The measure of statistical efficiency for OOD 

is called D-efficiency and is expressed in percentage form where the closer the D-

efficiency to 100%, the more efficient the design. The calculation for the D-

efficiency is explained in detail in Burgess and Street (2003, 2005), Street and 

Burgess (2004, 2007), Street et al. (2005) and Rose and Bliemer (2008a).  It is 

important to note that this measure of efficiency is different from the “D-error” in 

Equation 2.6. For this study, we generated an optimal orthogonal design with D-

efficiency rating of 100% using NGENE 1.02. 

Similar to ORD, OOD does not use prior information of parameter 

estimates. This design employs an algorithm that searches through different 

experimental designs generated, assuming that all parameter estimates from a 

multinomial logit model are equal to zero (Street and Burgess, 2005; Sandor and 

Wedel, 2005). Assuming a set of prior parameter estimates to be all equal to zero 

can be too naïve because an analyst could easily access information about some 

approximation of parameters from related studies (Huber and Zwerina, 1996; 

Chaloner and Verdinelli, 1995; Ferrini and Scarpa, 2007; Scarpa and Rose, 2008). 

One could readily assume the sign of the parameter estimate for the cost attribute 

to be negative. In addition, assuming that all parameters are equal to zero may be 

unrealistic because the contribution of attributes to the utility of an individual can 

be large as attributes were carefully identified by the analyst as those that would 

likely influence an individual’s utility level (Kessels et al., 2006).  

2.2.3 Efficient design 

Huber and Zwerina (1996) suggest the importance of constructing experimental 

designs based on prior information that could lead to higher design efficiency (or 
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lower D-error).4 Their work focused on using priors estimated from pre-test 

interviews that were treated with exact certainty. This approach was extended by 

Sandor and Wedel (2001, 2002, 2005) who proposed experimental designs that 

account for uncertainty in prior information used for design construction in a 

Bayesian fashion.5 Several types of Bayesian experimental designs have been 

developed to suit the needs of analysts. These include Bayesian D-efficient, 

Bayesian C-efficient and Bayesian S-efficient designs. The Bayesian D-efficient 

design strategy aims to minimise the standard errors of parameter estimates by 

using a priori information and generating (or updating) a design based on this 

prior information (Chaloner and Verdinelli, 1995; Ferrini and Scarpa, 2007). The 

Bayesian C-efficient design aims to reduce the variance of the ratio of the 

parameters i.e., Willingness-to-Pay (WTP) which is a scale free measure of value 

(Scarpa and Rose, 2008; Vermuelen et al., 2011; Kerr and Sharp, 2010). This 

design strategy favours analysts who prefer to have narrower confidence intervals 

of WTP. The Bayesian S-efficient design criterion minimises the required sample 

size of the experiment without compromising the accuracy of parameter estimates 

(Bliemer and Rose, 2005; 2009a; 2009b). This favours analysts who face a limited 

budget for conducting surveys, by reducing the theoretically minimum required 

number of respondents. Thus, the Bayesian S-efficient design criterion helps to 

reduce the cost of conducting choice surveys that traditionally require a large 

sample of respondents to produce quality model estimates (i.e., significantly high 

t-ratios). 
                                                           

4 Gain in statistical efficiency reduces the theoretically minimum sample size and, to a certain 
extent, allows the reduction in the number of choice tasks, which can be considered advantageous 
for both analysts and survey respondents. 

5 Construction of Bayesian experimental designs is described in Chaloner and Verdinelli (1995). 
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The Bayesian D-efficient design (BDD) generated and examined in this 

study assumes a conditional logit model. The design was generated following the 

criterion of minimising the determinant of the AVC matrix or the D-error. 

Reduction in D-error could also lead to a decrease in the theoretically minimum 

required sample size that can be translated into savings in time and money from 

the perspective of the analyst. Prior information used to generate BDD came from 

a pilot survey of 35 respondents (randomly drawn from the New Zealand 

population) who each completed nine choice tasks generated using simultaneous 

orthogonal design. According to Ferrini and Scarpa (2007), prior information 

from pilot surveys can be considered reliable and this can be used for improving 

the efficiency of an existing design. One way to improve the efficiency of an 

existing design is to employ a sequential survey method where one first collects 

an initial wave of choice survey data, estimates the model parameters and uses 

these estimated parameters to update the existing design (Scarpa, Campbell and 

Hutchinson, 2007). This technique was implemented using NGENE 1.02 to 

generate the Bayesian D-efficient design to construct the BDD choice tasks. These 

choice tasks were used to collect the choice data for the BDD sample that we 

analysed in this present study. 

As an aside, there are many other design criteria in addition to orthogonal, 

optimal orthogonal and efficient designs. These other criteria include adaptive 

(Toubia et al., 2007; Tilahun et al., 2007), random (Train and Wilson, 2008), 

choice percentage (Toner et al., 1999; Kanninen, 2002; Johnson et al., 2006), 

Bayesian A-optimal, G-optimal and V-optimal designs (Kessels et al., 2006). 
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2.3 Generation and evaluation of the three experimental designs 

The three main experimental designs (ORD, BDD and OOD) discussed above 

were all generated using NGENE version 1.02. ORD was generated using the 

simultaneous approach. This simultaneous orthogonal design was used in the first 

batch of survey where we collected 35 completed surveys (9 choice sets × 24 

respondents = 216 choice observations). From these choice responses, we 

constructed a choice data set following the dummy coding procedure described in 

Hensher et al. (2005).6 This data set was used to estimate the coefficients and 

standard errors of a conditional logit model. These estimates were used as a priori 

information for the generation of the three Bayesian efficient designs (D-, S- and 

C-efficient designs). For the generation of OOD, we did not use those coefficients 

because this criterion assumes that beta coefficients are all zeroes. 

Equations 2.6 to 2.10 show the different experimental design measures 

which include D-error and Utility-balanced measures. We know that the lower the 

D-error, the more statistically efficient the design becomes. Utility balance was 

considered important by Huber and Zwerina (1996) which suggested that the 

more utility balanced the design is, the higher the quality of information we 

collect from respondents. We use these design measures to evaluate the three 

designs that we compare in Chapters 4 and 5 and to assess empirically the claim 

made by the proponents. 

OOD is an experimental design criterion that minimises D-efficiency 

measure assuming that we do not have prior information about the parameter 

estimates. In this case, Table 2.1 shows that the Dz-and Az errors for OOD are 
                                                           

6 We also describe how we implemented dummy coding on Page 70 of this thesis. 



33 

 

lower (or better) than those of BDD and ORD. If we evaluate the designs 

assuming that we have fixed prior information, BDD is the most efficient design 

with a Dp-error of 0.213 whilst OOD becomes the worst design with a Dp-error 

twice as that of BDD. The Bayesian D-efficiency measure also accounts for prior 

information but it also accounts for a degree of uncertainty around the prior 

information used for updating the design. The Db-error is slightly higher for BDD 

(0.22) but four times as much for OOD (0.94). This is not surprising because the 

OOD criterion maximises the differences between alternatives in choice tasks and 

this could lead to a higher determinant of the AVC matrix, thus leading to a higher 

Db-error. Table 2.1 also shows the effects of optimising the three updated designs 

(ORD, BDD and OOD) following the BDD criterion using a priori information 

from larger sample sizes.  

This three EDs that we are comparing here were all generated using 

NGENE 1.02. Before using the BDD generated from NGENE, we have checked 

first for the presence of dominant alternatives. With the assumption that the utility 

of an individual increases monotonically with the improvement in attribute levels 

(i.e., Level 2 is strictly preferred to Level 1 which is strictly preferred to the 

current condition), we found two choice tasks with dominant alternatives in one of 

the three blocks. To eliminate the presence of dominance, we relabelled and 

swapped attribute levels across choice tasks within a block. We are aware that this 

procedure has implications on the efficiency of the design. In addition, the BDD 

design generated from NGENE was not dummy coded so we then converted the 

designs to dummy coding. As we have relabelled, swapped and converted into 

dummy coding, the efficiency measures previously calculated for the initial BDD 

design have therefore been altered. After constructing the new dummy coded 
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BDD design, we recalculated the efficiency ratings using the design evaluation 

feature on NGENE 1.02 (e.g., “;eval = recoded_design_BDD.ngd”).  

The evaluation of the three designs in terms of statistical efficiency is 

presented on Table 2.1. Columns 2, 3 and 4 of Table 2.1 show the three sets of 

efficiency measures. In the first set, we assumed that parameter values are zeroes 

(βs = 0). OOD has the lowest Dz-error and Az-error hence it is the most efficient 

design under this measure. This is followed by BDD and ORD, respectively. In 

the second set, where we assumed that parameter values are not equal to zero (βs ≠ 

0), BDD is the most efficient design based on having the lowest Dp and Ap errors 

while OOD has the lowest efficiency. This is not surprising because BDD follows 

the Bayesian D-efficiency criterion, where we used parameters values estimated 

using conditional logit model from the initial set of choice data (shown on Table 

2.1). These sets of priors can be considered “reliable” because they came from 

actual survey respondents. The term reliable is mentioned in Ferrini and Scarpa 

(2007) where a sample from a pilot survey can be considered reliable if the 

difference in the marginal rates of substitutions (e.g. marginal WTP) between 

pilot and final sample is small. To check for the reliability of priors that we 

derived from the pilot survey of 35 respondents, we compare the calculated 

marginal Willingness to Pay (WTP) from this pilot WTPP with the WTP from the 

full sample (WTPF) of 209 respondents. Table 2.2 shows the percentage difference 

between WTPs for the increase in abundance of brown kiwi which is 

approximately 10% between the pilot and the full sample. For the highest feasible 

increase in Falcon abundance (or attribute level two), the WTP from the full 

sample is lower by 20%. This relatively small difference of WTPs between the 

pilot and full samples suggests that our set of priors can be considered reliable. 
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The WTP for the non-bird attributes may be difficult to compare because the 

utility coefficients from the pilot sample are not statistically significant. 

Despite BDD being the most efficient, its theoretically minimum required 

sample size or Sp estimate (4,157) is more than ten times the Sp estimate for ORD 

(375). As the calculation for Sp estimate is based on having all parameters being 

statistically significant at 5% level, this might have been influenced by the 

presence of non-bird attributes in the choice task which have been found to have a 

comparatively low contribution to individual utility and hence have utility 

coefficient values very close to zero. These coefficient estimates might have 

required a significantly large number of choice observations to become significant 

at the 5% level. One may argue that those attributes should not have been 

included in the investigation at all, but they were included because of their 

importance for wildlife management. 

 In the second set of efficiency measures above, although we accounted for 

the effect of parameter values not being equal to zero (β ≠ 0), we have assumed 

those parameters to be fixed and therefore to be known with certainty. However, 

there typically exists a considerable amount of uncertainty about parameter values 

β and such uncertainty should be accounted for. We accounted for this uncertainty 

by following the sequential Bayesian framework suggested in Ferrini and Scarpa 

(2007) and applied in Scarpa et al. (2007). The third set of design efficiency 

measures is based on the sequential Bayesian approach. As expected, the BDD is 

the most efficient design based on Bayesian D-error (Db-error). The Bayesian 

measure for theoretically minimum sample size, or Sb estimate, for OOD is 6 
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million choice observations while BDD and ORD respectively got Sb estimates of 

1.3 million and 0.2 million. 

 After evaluating the three EDs that we used in the survey, we also optimised 

each ED to derive updated Bayesian D-efficient designs using conditional logit 

model estimated parameter values from respective design sample of 503 choice 

observations in Table 4.1. Using NGENE, the ORD design used in the survey was 

optimised for Bayesian D-efficient design using the utility coefficient estimates of 

logit model from the ORD sample in Table 4.1. Similarly, we generated updated 

Bayesian D-efficient designs for the OOD and BDD using the same procedure. 

We then evaluated the design efficiency of the three updated Bayesian D-efficient 

designs. These new design efficiency measures are presented in columns 5, 6 and 

7 of Table 2.1. The three new designs all demonstrate considerable improvement 

in terms of D-error, A-error and S-estimate. Although BDD was previously the 

most efficient design, it still improved in efficiency from Db-error of 0.223 to 

0.150. The OOD, which was previously the least efficient, not surprisingly had the 

most remarkable improvement in design efficiency from Db-error of 0.937 to 

0.170. The OOD design that was optimised for Bayesian D-efficiency has 

outperformed the efficiency of ORD which got a Db-error = 0.185. These results 

corroborate the notion put forward in other studies (Scarpa et al., 2007, Kerr and 

Sharp, 2010) that EDs can be updated and be made more statistically efficient 

using more reliable prior information from a bigger sample of respondents. 

However, if an analyst had used a utility neutral design for the first wave of 

survey, that ED could still be optimised following the BDD criterion and 

significantly gain statistical efficiency (i.e., lower Db-error). As described in 

Scarpa et al. (2007) an improvement in the statistical efficiency of ED leads to 
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more accurate parameter estimates in addition to a reduction in the theoretically 

minimum sample size. As a result of optimising for the BDD criterion, all 

efficiency measures (i.e., D-error, A-error, Sb estimates) for the three designs 

significantly improved, with OOD exhibiting the highest degree of improvement. 

In terms of the percentage of improvement, more weight should be given to the 

improvement (or reduction) in D-error as it is a measure of statistical efficiency of 

the overall experimental design. Lesser weight may be given to the Sb estimate (or 

S-efficiency score) which represents the maximum of the individual scores for 

parameters. Although OOD achieved an impressive improvement of 79,517%, 

this may be considered irrelevant because one cannot get an economically feasible 

sample size to retrieve significant parameters for the relevant attributes however 

efficient the design process is.
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Table 2.1: Evaluation of the three experimental designs used in the falcon survey 

 Evaluation of efficiency of existing designs 
Optimised for Bayesian D-efficiency of existing 

design using parameter estimates from each 
design treatment 

 ORD BDD OOD ORD BDD OOD 
Assuming βs = 0        
Dz-error 0.205 0.178 0.091 -- -- -- 
Az-error 0.542 0.478 0.308 -- -- -- 
       
Assuming βs ≠ 0 but fixed       
Dp-error 0.290 0.213 0.589 0.173 0.143 0.161 
Ap-error 0.801 0.595 3.417 0.345 0.274 0.309 
Sp estimate 375 4,157   4,114  174 1,237 478 
       
Assuming βs ≠ 0 and accounting for uncertainty       
Db-error 0.307 0.223 0.937 0.185 0.150 0.170 
Ab-error 0.850 0.622 18.886 0.369 0.289 0.327 
Sb estimate      212,740 1,265,695  6,091,078 562 6,432 7,660 
% of improvement from optimisation for BDD    After 6,990 

evaluations on 
NGENE 

After 6,659 
evaluations on 

NGENE 

After 6,657 
evaluations on 

NGENE 
Dp-error -- -- -- 167% 149% 365% 
Ap-error -- -- -- 232% 217% 1,105% 
Sp estimate -- -- -- 215% 336% 862% 
       
Db-error -- -- -- 166% 148% 550% 
Ab-error -- -- -- 230% 215% 5,770% 
Sb estimate -- -- -- 37,861% 19,678% 79,517% 

Note: Conditional logit model estimates of βs from pilot survey data used as priors are presented on Table 2.3. 
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Table 2.2: Willingness to Pay estimates from pilot and full survey samples 
 Pilot Sample (n=35) Full Sample (n=209)  

 Coefficient Standard 
Error 

P-value Marginal 
WTPP 

Coefficient Standard 
Error 

P-value Marginal 
WTPF 

% diff in 
WTPa 

 
Brown kiwi 1 0.462 0.252 0.07  $    22.00  0.504 0.098   <0.01  $    20.16  9.1% 

Brown kiwi 2 0.591 0.251 0.02  $    28.14  0.622 0.095   <0.01  $    24.88  13.1% 

Native fish 1 0.242 0.241 0.32 NS 0.287 0.093   <0.01  $    11.48  -- 

Native fish 2 0.286 0.248 0.25 NS 0.143 0.095 0.13 NS -- 

Native plant 1 0.335 0.233 0.15 NS 0.145 0.094 0.13 NS -- 

Native plant 2 0.112 0.251 0.66 NS 0.210 0.094 0.03  $       8.40  -- 

Green gecko 1 0.190 0.246 0.44 NS 0.017 0.093 0.86 NS -- 

Green gecko 2 0.549 0.241 0.02  $    26.14  0.092 0.093 0.32 NS -- 

Bush falcon 1 0.550 0.253 0.03  $    26.19  0.453 0.098   <0.01  $    18.12  44.5% 

Bush falcon 2 0.706 0.246 <0.01  $    33.62  0.700 0.094   <0.01  $    28.00  20.1% 

Cost to respondent -0.021 0.004 <0.01 -- -0.025 0.002   <0.01 -- -- 

Indicator for status quo 0.876 0.413 0.03  0.177 0.158 0.26   

Pseudo R2 0.060    0.245     

Number of choice obs 314    1850     
a To calculate for the percentage difference in marginal WTP, we used the formula: %diff = [(WTPP – WTPF)/ WTPF] x 100% 
 
Note1: NS means not significant at the 90% confidence level. 
Note2: Values in boldface font represent statistical significance of utility coefficients at the 90% confidence level.
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Table 2.3: Conditional logit model estimates using the data set with the first 
35 respondents (first wave) 

 Coefficient Standard Error T-ratio P-value 

Brown kiwi 1 0.462 0.252 1.832 0.067 

Brown kiwi 2 0.591 0.251 2.354 0.019 

Native fish 1 0.242 0.241 1.002 0.316 

Native fish 2 0.286 0.248 1.155 0.248 

Native plant 1 0.335 0.233 1.441 0.150 

Native plant 2 0.112 0.251 0.446 0.655 

Green gecko 1 0.190 0.246 0.771 0.441 

Green gecko 2 0.549 0.241 2.278 0.023 

Bush falcon 1 0.550 0.253 2.174 0.030 

Bush falcon 2 0.706 0.246 2.865 0.004 

Cost to respondent -0.021 0.004 -5.136 <0.001 

Indicator for status quo 0.876 0.413 2.122 0.034 

     

Log-likelihood value   -324.473 

Pseudo Rho2    0.078 

Adj Pseudo R2   0.060 

Number of choice observations  314 

Number of respondents  35 

Number of iterations  5 

Note: Text in boldface font indicates statistical significance at the 90% confidence level 
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2.4 Sampling procedure 

We planned to have four different levels of sample stratification. The first type 

was about getting representative samples from regions with a large proportion of 

planted forests and those regions with relatively smaller proportion of these 

forests. The second was to get representative samples of respondents living in 

rural and urban areas of the country. The third focus was to have 50-50 split 

samples of respondents who completed mail survey and online survey. The fourth 

was to split the full survey sample into groups of respondents who completed 

choice tasks generated from different experimental designs. This section of the 

thesis presents the sample stratification that we tried to achieve. At the end of 

each sub-section below we compare the sampling stratification we aimed for with 

the actual split of the sample data we collected. 

2.4.1 Regional groupings 

In order to get a representative survey sample of respondents across New Zealand, 

we employed a stratified sampling approach based on the distribution of the 

population. The strata employed include the location of residence across the 18 

regions of the country. To get a balanced representation of respondents living in 

regions with large planted forests and those with smaller ones, the 18 regions were 

grouped into two categories based on the proportion of the area planted forests to 

the total area of the region. To do this, a digital map of New Zealand called Land 

Cover Database version 2 (LCDB2) was used. A spatial software called ArcGIS 

was used to extract the total planted forest area by region and intersect these with 

the total area by region. Six regions have been found to have at least 12% of 

planted forest area (Group 1) while the remaining 12 regions have less than 12% 
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of planted forests (Group 2). Group 1 represents the regions where one can find 

the country’s largest plated forests (e.g., Kaingaroa, Matariki). Group 2 regions 

generally have smaller and sparse planted forests. From each regional group, we 

tried to sample 50% of the respondents. Table 2.4 presents the two regional 

groups with Group 1 having six regions and Group 2 with 10 regions. Based on 

the 2006 population census data of Statistics New Zealand, 75% of the country’s 

population lived in Group 2 regions while only 25% lived in Group 1 regions. We 

aimed to over-sample in Group 1 regions to come up with a 50-50 split (50% of 

the sample from Group 1 and 50% from Group 2).  

Table 2.4: Groupings of New Zealand regions by proportion of planted 
forests 
Region 

Land Area 
(in 1000 ha) 

Planted Forest 
Area 

(in 1000 ha) 
Percentage 

    
Group 1 (Large planted forests)   
Nelson 422,397 131,049 31.0% 
Bay of Plenty 12,160,133 3,036,148 25.0% 
Gisborne 8,360,456 1,590,658 19.0% 
Waikato 24,442,870 3,640,194 14.9% 
Northland 12,508,417 1,819,227 14.5% 
Hawkes Bay 14,173,620 1,730,250 12.2% 
    
Group 2 (Smaller planted forests)   
Auckland 4,517,341 519,078 11.5% 
Tasman 9,636,113 1,034,553 10.7% 
Wellington 8,103,633 687,051 8.5% 
Marlborough 10,222,844 732,016 7.2% 
Manawatu-Wanganui 22,210,568 1,458,517 6.6% 
New Plymouth 7,258,142 287,316 4.0% 
Otago 31,873,471 1,253,361 3.9% 
Canterbury 45,226,480 1,207,128 2.7% 
Southland 31,379,319 810,510 2.6% 
West Coast 23,356,245 473,449 2.0% 
    
Overall total     265,852,049      20,410,506  7.7% 

Source: Data adapted from http://koordinates.com/#/search/?q=lcdb2 

 

Table 2.5 shows the planned stratification and actual distribution of 

respondents by regional grouping and by region. The planned stratification was 
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based on the population distribution of New Zealand across regions (Statistics 

New Zealand 2012). As the Waikato region has the highest proportion of 

population in Group 1, we allocated the highest proportion of respondents (36%) 

for that group. As Auckland has the highest proportion of population of the 

regions in Group 2 (and in the country as well), we tried to allocate to it the 

highest proportion of respondents (40%) in that group. However, since we got 

more respondents in Group 1 than in Group 2, some targeted proportions of 

respondents per region were not achieved. In Group 1, the actual proportion of 

respondents in Waikato was 45% instead of the targeted 36%.  While in Group 2, 

instead of getting 40% for Auckland, we only got 26%.  Overall, as we suffered 

from a low response rate, this sampling strategy was not fully achieved. We got 

66% of respondents from Group 1 regions and 34% from Group 2 regions.  
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Table 2.5: Planned stratification following the population distribution in New 
Zealand and actual distribution of respondents 

Grouping 
Planned Actual Difference 

Number % Number % Number % 
Group 1 (Large planted forests)       
Northland Region 15 14% 17 12% 2 2% 
Waikato Region 38 36% 63 45% 25 9% 
Bay of Plenty Region 25 24% 34 24% 9 0% 
Gisborne Region 6 6% 9 6% 3 0% 
Hawke's Bay Region 15 14% 8 6% -7 8% 
Nelson Region 6 6% 8 6% 2 0% 
   Group 1 Total 105 100% 139 100% 34 18% 
Group 2 (Smaller planted forests)       
Auckland Region 42 40% 18 26% -24 14% 
Taranaki Region 4 4% 2 3% -2 1% 
Manawatu-Wanganui Region 8 8% 12 17% 4 9% 
Wellington Region 15 14% 17 24% 2 10% 
Tasman Region 4 4% 0 0% -4 4% 
Marlborough Region 4 4% 4 6% 0 2% 
West Coast Region 2 2% 1 1% -1 1% 
Canterbury Region 17 16% 10 14% -7 2% 
Otago Region 6 6% 3 4% -3 2% 
Southland Region 2 2% 3 4% 1 2% 
   Group 2 Total 104 100% 70 100% -34 46% 
Note: For the target number of respondents, we have assumed here that 209 was the target to 
provide comparison with the actual number of respondents. 
 
 

2.4.2 Urban-rural split 

We also attempted to use another stratum which is the urban-rural split.  Statistics 

New Zealand (2010) reports that in 2006, 72% of the households lived in urban 

areas while 28% lived in rural communities. As we have drawn our survey sample 

from the Whitepages, we were able to compile phone numbers of households 

residing in the 14 urban centres of the country. The 14 urban centres were 

composed of the 14 key cities in the country which are: Whangarei, New 

Plymouth, Wanganui, Nelson, Auckland, Gisborne, Palmerston North, 

Christchurch, Hamilton, Napier-Hastings, Kapiti Coast, Tauranga, Rotorua, 

Wellington and Invercargill. To draw rural respondents, we selected people living 

outside these urban centres. However, due to low response rate, we ended up with 



45 

 

a slightly different urban-rural distribution of 60-40 instead of the 72-28 split we 

originally aimed for.  

2.4.3 Mail-online split 

In 2006, 92 percent of New Zealand households had land-based telephone units 

while 66% had internet connection (Statistics New Zealand, 2010). We therefore 

employed a phone-mail and phone-internet survey. We initially aimed to get 60% 

of the respondents from phone-mail while 40% of the respondents from phone-

internet. In doing this two-stage survey technique, we first called people listed in 

the White Pages and asked if they were interested in participating in a survey. 

Three economic survey assistants, all New Zealand-born native English speakers, 

so as to minimize interviewer bias, were hired and trained to call people on the 

phone list. A total of 2,996 phone calls were made between December 2009 and 

August 2010. The calling exercise, suggests a pattern that for every four numbers 

dialled, two ended up getting in contact with a New Zealand household member 

while the remaining two ended up with either answering machine or continuous 

ringing. For every two persons contacted, one would likely agree to participate in 

the survey while the other one would likely be uninterested or too busy to 

participate. People who agreed to participate were asked to choose whether they 

preferred to participate in the survey by mail or online. Those who preferred 

online were asked to provide their email addresses. Each online participant was 

sent an email containing a link to an online questionnaire that corresponded to a 

particular version of the questionnaire. For each survey link that was emailed, we 

included an identification number to track the completion of the survey and to 

facilitate sending a follow up email message in case the online survey had not 

been completed within two to three weeks. If the person talked to preferred to 
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participate in the survey through a mail questionnaire, the home address listed in 

the White Pages was verified for accuracy. Each questionnaire sent by mail had an 

ID number to facilitate tracking for follow up phone calls if the survey was not 

returned within three weeks. During the follow up phone call, we emphasized that 

we valued their participation in the survey and if the questionnaire was not 

received or got misplaced, a new copy of the questionnaire would be sent off.  

 A total of 781 mail surveys or online invitations were sent out. A larger 

proportion of people expressed interest in completing the survey by mail so, it was 

later decided to focus solely on collecting survey data using the phone-mail 

approach. We have also seen that the online questionnaire had some formatting 

issues when two other internet browsers Google Chrome and Mozilla Firefox 

compared with Internet Explorer where the online survey could be better viewed. 

We finished with 261 filled-out surveys, 84% of which were mail and 16% online. 

Mail surveys had a relatively higher valid survey rate of 81% compared to online 

with 74%.  

2.4.4 Experimental design split 

We employed the sequential survey method described in Scarpa, et al. (2007) 

where we sent surveys in two waves. The experimental design technique used for 

the first wave followed the orthogonal design criterion. The structure of the 

orthogonal design, and so as the subsequent designs in this study, is composed of 

27 choice tasks divided into three blocks. Each respondent was provided with nine 

choice tasks (therefore potentially nine choice observations per respondent). Each 

choice task had three alternatives.  The first alternative represents the current 

situation with cost = $0 (not included in the design). The other two alternatives 
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represent changed alternatives with combination of levels derived from a 

particular experimental design with the cost attribute getting $30, $60 or $90. For 

the first wave, we allocated 108 respondents who agreed on the phone to 

participate in the survey. Unfortunately we were able to get back only 35 

completed questionnaires out of these 108 people. Choice observations compiled 

from the first wave served as out pilot choice data. 

The second wave of survey involved 432 respondents who agreed to 

participate. This wave consisted of four experimental designs with each design 

targeted to have 108 respondents. The four designs were: (1) Optimal orthogonal, 

(2) Bayesian D-efficient, (3) Bayesian S-efficient, and (4) Bayesian C-efficient. 

The second, third and fourth designs belong to the class of Bayesian efficient 

designs that assume a conditional logit model will be used to analyse the collected 

choice data. These four designs were generated using NGENE 1.02 using the 

conditional logit coefficient estimates from the initial set of surveys completed by 

35 respondents, as a priori distribution of the parameters of the indirect utility 

function. Table 2.3 presents the conditional logit model estimates from the first 35 

respondents. 

We had originally planned to conduct a third wave survey that would have 

432 respondents distributed over four advanced experimental designs with each 

design allocated with 108 respondents. The four designs were: (AD1) Random 

parameter logit with panel implementation S-efficient design; (AD2) Random 

parameter logit with error components panel S-efficient design; (AD3) Model 

Averaging 1 with equal weights for CL, RPPanel and RPECPanel; and (AD4) 

Model Averaging 2 with more weights to RPPanel and RPECPanel than CL. 
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Advance designs AD1, AD3 and AD4 are described in detail in Scarpa and Rose 

(2008). 

We used parameter estimates from the completed first and second wave of 

surveys as a priori information to create these more advanced designs. However, 

we were not able to generate any of the more advanced designs with the property 

that we desired which had a realistic sample size requirement. When we use the 

panel and cross sectional specifications, we arrived at a minimum required sample 

size of 1.5 million choice observations which seemed impossible to satisfy. A 

possible reason for the extremely high sample size requirement is that we included 

environmental attributes that represent the less charismatic native species (i.e., 

native fish, native plant, green gecko) which seem to be less attractive to many 

respondents. This resulted in having parameter estimates with low t-ratios (hence 

not significant) which consequently contributed to the requirement of larger 

sample sizes for the four advance designs. We therefore decided not to pursue the 

empirical examination of the more advanced designs. We leave this task for future 

research and different operational conditions. 

2.5 Choice data 

From the choice experiments survey, two types of data sets were constructed: the 

full sample which includes all the completed questionnaires; and the balanced 

sample which excluded several observations from the full sample to facilitate 

comparison of the three choice experimental designs. The full sample was used in 

the analysis reported in Chapter 3 whilst the balanced sample was used in the 

analysis presented in Chapters 4 and 5. 
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2.5.1 The full sample 

A total of 821 people agreed on the phone to join the survey. Each person was 

sent a survey package which included the questionnaire, return stamped envelope, 

a pen and a note pad. 261 respondents filled out and returned the survey which 

corresponds to a second stage survey response rate of 32%. Out of these 261 

respondents, 209 provided valid entries to the choice data set. 201 respondents 

evaluated all nine choice tasks provided to them while eight respondents 

completed only part of the nine choice tasks. Those eight respondents ended 

completing 1, 3, 6, 7 or 8 choice tasks. As we have sent out self administered 

questionnaire, it is difficult to determine the reasons why these eight respondents 

did not complete the nine choice tasks. We speculate that some accidentally 

missed a couple of choice tasks while some might have found the last choice tasks 

to be too tiring. Some must have preferred to skip some choice tasks rather than 

provide random answers. Because of the non-completion of some choice tasks, 

instead of collecting 1881 choice observations, we ended up with 1850 

observations for the final full data set. 

We used five choice experimental designs in collecting the full data set, 

namely: orthogonal (ORD), optimal orthogonal (OOD), Bayesian D-efficient 

(BDD), Bayesian C-efficient (BCD) and Bayesian S-efficient (BSD). Table 2.6 

shows the distribution of choice data across designs. As we focused on comparing 

the first three experimental designs, a large majority (83%) of the choice 

observations of the full sample came from those designs. 
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Table 2.6: Sample distribution by choice set order and experimental design of 
the full sample 

Choice set     
order 

ORD OOD BDD BCD BSD Pooled 

1st 57 60 56 17 18 208 

2nd 57 59 56 16 18 206 

3rd 57 59 55 17 18 206 

4th 57 57 56 17 18 205 

5th 57 58 56 17 18 206 

6th 57 58 56 17 18 206 

7th 56 57 56 17 18 204 

8th 56 57 56 17 18 204 

9th 57 57 56 17 18 205 

Total choice 
Observations 

511 
(28%) 

522 
(28%) 

503 
(27%) 

152 
(8%) 

162 
(9%) 

1850 
(100%) 

Total number of 
respondents 

58 
(28%) 

60 
(29%) 

56 
(27%) 

18 
(8%) 

17 
(8%) 

209 
(100%) 

 

We originally planned to compare all five different designs. However, due 

to very low response rates and limited resources (i.e., time and money), we 

decided to focus on comparing three experimental designs and there are ORD, 

OOD and BDD. To address low response rates and unevenly distributed design 

blocks for these three designs, we recruited more respondents on the telephone 

and sent them the questionnaires that were not completed and returned from 

previous mail outs to fill in the gaps and to increase the existing sample size. In 

August 2010, we recruited 204 additional respondents over the phone and sent 

them the questionnaires with blocks from the three experimental designs that were 

not completed in the previous mail outs. Forty-two respondents fully completed 

and returned the surveys. The additional 42 respondents increased the number of 
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choice observations for ORD, BDD and OOD while also contributing to a more 

balanced distribution across three blocks (Table 2.7). As we did not send out 

surveys to fill in the gaps for BCD and BSD, the distribution across blocks for 

these designs was relatively unbalanced compared to the first three designs. The 

observation in the BSD design treatment was concentrated on block 3 (50%) 

while BCD on block 2 (46%).  

Table 2.7: Sample distribution by block and experimental design of the full 
sample 

Block 
number 

ORD 
(%) 

BDD 
(%) 

OOD 
(%) 

BCD 
(%) 

BSD 
(%) 

Pooled 
(%) 

1 162 152 125 45 27 511 

 (32%) (30%) (24%) (30%) (17%) (27%) 

2 171 198 187 70 54 680 

 (33%) (39%) (36%) (46%) (33%) (37%) 

3 178 153 210 37 81 659 

 (35%) (31%) (40%) (24%) (50%) (36%) 

Total 
 

511 503 522 152 162 1850 

Note: “(%)” above indicates the proportion of the choice observations per design treatment. 

 

2.5.2 The balanced sample  

As we decided to focus on comparing the three experimental designs which are 

the ORD, OOD and BDD, we constructed a balanced data set with split design. 

Table 2.8 shows the distribution of the three design samples (each with 414 choice 

observations) before we added the 42 additional respondents. Table 2.9 shows the 

more balanced distribution across blocks for the three designs after adding choice 

observation from the additional sample. 
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Table 2.8: Sample distribution by block and experimental design of the 
earlier sample 
Block ORD % OOD % BDD % Pooled % 

1 117 28% 98 24% 134 32% 349 28% 

2 153 37% 127 31% 189 46% 469 38% 

3 144 35% 189 46% 91 22% 424 34% 

Total 414 100% 414 100% 414 100% 1242 100% 

 

Table 2.9: Sample distribution by block and experimental design of the final 
balanced sample 
Block  ORD % OOD % BDD % Pooled % 

1 162 32% 125 25% 152 30% 439 29% 

2 171 34% 187 37% 198 39% 556 37% 

3 170 34% 191 38% 153 30% 514 34% 

Total 503 100% 503 100% 503 100% 1509 100% 

 

To construct the final balanced data set in Table 2.9, as we got higher 

response rates for ORD and OOD compared with the BDD design (Table 2.7), we 

excluded 8 and 19 observations from the orthogonal and optimal orthogonal 

samples, respectively. This is to make the distribution of choice samples on a per 

block and a per order basis exactly the same across the three designs.  Table 2.10 

shows the number of observations per choice task order. As each respondent was 

provided with nine choice tasks, choice tasks were ordered as 1st, 2nd, 4th,… …, 

until the 9th choice task. The number of observations for each choice task order 

was 56 for each design treatment with the exception of the 3rd choice task that had 

55 observations for each sample. The reason for this imbalance was because some 

respondents were not able to complete the evaluation of the nine choice tasks. 
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The criteria used for excluding choice observations to construct the 

balanced sample were: (1) choice observations from respondents who did not 

complete the nine choice tasks; (2) choice observations from respondents who 

sent back the questionnaire very late because we had already completed the 

planned design when we received those; and (3) for convenience, other choice 

observations at the bottom of the worksheet were removed.  

After excluding the above choice observations, we constructed a balanced 

data set from 172 respondents. The 503 choice observations from the ORD came 

from 57 respondents, while choice observations for OOD and BDD samples came 

from 59 and 56 respondents, respectively (Table 2.10). The reason for the 

differences in the number of respondents (despite the same number of choice 

observations per design sample) is that not all respondents completed the nine 

choice tasks assigned to them. For the ORD sample, three respondents did not 

complete the nine choice tasks, while for OOD and BDD samples, seven and one 

respondents did not complete, respectively.  
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Table 2.10: Sample distribution by choice task number and experimental 
design of the final balanced sample 

Choice set     
order 

No. of Observed Choice Sets 

ORD OOD BDD Pooled 

1st 56 56 56 168 

2nd 56 56 56 168 

3rd 55 55 55 165 

4th 56 56 56 168 

5th 56 56 56 168 

6th 56 56 56 168 

7th 56 56 56 168 

8th 56 56 56 168 

9th 56 56 56 168 

Total Choice 
Observations 503 503 503 1509 

Total number of 
respondents 

57 59 56 172 

 

 

2.6 Summary 

In this chapter, we set up the formal theory of choice models that will be 

estimated in Chapters 3, 4 and 5 of the thesis. These three types of logit models 

include conditional, heteroskedastic and latent class models. We also described 

the different measures of design efficiency such as the Bayesian D-error, D-

efficiency and Utility Balanced measures. In the next three chapters, we will be 

referring to the above description of the models and data.  
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Chapter 3: Valuing biodiversity enhancement in planted forests: 

socio-economic and spatial determinants of willingness-to-pay 

3.1 Introduction 

The world’s planted forests cover approximately 264 million hectares accounting 

for about seven percent of the global forest area (FAO, 2010). A planted forest, 

which can be composed of a single exotic forest species, is generally considered 

as a legitimate land use to address the global demand for roundwood, pulp, non-

wood products and other forest goods (Bauhus et al., 2010). Planted forests 

contribute to the conservation of natural forests by off-setting pressure on primary 

and old growth forests (UNCED, 1992; Dyck, 2003). In addition, they provide 

important ecosystem services that include habitat provision for native species, 

including those threatened with extinction (Jukes and Peace, 2003; Brockerhoff et 

al., 2008; Pawson et al., 2010). Planted forests can be managed to enhance the 

provision of habitats for rare and protected native species (Jactel et al., 2006; 

Pawson et al., 2005; Hartly 2002; Maunder et al., 2008; Bauhus and Schmerbeck, 

2010). However, enhancing the provision of habitats for threatened species comes 

at a price (Seaton et al., 2006; Maunder et al., 2008; Weir, 2010). It is therefore 

important to examine whether the general public would benefit from a 

biodiversity enhancement initiative and if they did would they be willing to pay to 

support such initiative. 

 New Zealand (NZ) has a total of 1.8 million hectares of planted forests 

accounting for 22% of the country’s total forest area (MAF, 2010). In 2009, total 

revenue derived from sale of planted forests products was the country’s third 

largest export earner contributing NZ$3.7 billion (2.8% of GDP) to the economy. 
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NZ planted forests are composed of exotic trees, with Radiata pine (Pinus 

radiata) as the dominant species accounting for 90% of the forest area. The 

remaining species include Douglas fir (Pseudotsuga menziesii), Cypress 

(Cupresus sp.) and Eucalypts (Eucalyptus sp.) (MAF, 2010). Exotic forests 

provide habitats for at least 118 threatened native species that include the brown 

kiwi (the country’s national symbol) and the bush falcon (Pawson et al., 2010). 

Areas in between clear cut and remaining forest stands of the 135,000-hectare 

Kaingaroa forest in the Central North Island region provide habitats for the bush 

falcon which are better than any other habitat areas with stands of native forests in 

isolated hilly areas of the country (Seaton, 2006; 2010). The Kaingaroa forest area 

has the highest concentration of bush falcon in the country (Stewart and Hyde, 

2004). The bush falcon is the country’s fastest bird and it preys mainly on exotic 

bird species and insects (Seaton, 2006). 

The Department of Conservation (2000) reports that New Zealanders place 

a high value on native plants and animals, as they form a basis to the culture and a 

sense of national identity. Native birds and plants can be seen all over the country 

both in public conservation lands (e.g., national parks, forest parks) and private 

lands (e.g., residential lands, planted forests). Using a dichotomous choice 

contingent valuation method, Yao and Kaval (2010) (referred to as YK) have 

shown that a typical New Zealand individual would be willing to pay about $82 

per year in additional local taxes (or local rates) to support the planting of more 

native trees and shrubs on public land and $42 per year for more natives on 

private land.7 Private land in YK mainly referred to private properties large 

                                                           

7 It was mentioned in the survey that additional native trees and shrubs would provide additional 
habitat to native birds, fish and geckos. 
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enough to accommodate the planting of native trees. Private land in YK did not 

include planted forests which could be as large as 135,000 hectares as the 

Kaingaroa Forest or the 16,000-hectare City Forests in Dunedin. Although YK 

has shown that additional native trees are valued on private land, it remains 

unclear if increasing the number of threatened species in exotic planted forests by 

improving the habitat would be valued by New Zealanders.  

This chapter is motivated by the general question Is a proposed 

biodiversity enhancement programme in planted forests valued by New 

Zealanders? Answers to this question would provide some insights for the 

country’s existing biodiversity programme on private land that is part of New 

Zealand’s 20-year Biodiversity Action Plan (2000 to 2020). We also envision that 

those answers would provide some pointers in the formulation of future policies 

for the management of planted forests in countries where similar conditions exist. 

Specifically, this thesis chapter aims to answer two research questions: 

(1) Would New Zealanders be willing to pay for biodiversity enhancement 

in planted forests, and if so, approximately how much? 

(2) What are the factors that would likely influence the willingness-to-pay 

(WTP) of an individual for biodiversity enhancement? And by how much 

would these factors affect the median WTP? 

The first question is addressed by analysing a survey data collected using the 

stated choice experiments (CE) approach (please refer to Chapter 2 for details of 

CE). WTP values (or WTPs) are calculated by taking the ratios of the coefficient 

of the attribute level over the marginal utility of income. By using the Monte 

Carlo simulation, we have accounted for the distribution of WTP in these ratios. 
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Simulated median WTPs are subsequently aggregated (accounting for potential 

biases) to represent a national value of biodiversity enhancement in New 

Zealand’s planted forests. This method is described in detail in Section 3.3 of this 

chapter. The second question is answered by determining the factors that would 

likely influence individual specific WTPs using panel random effects regression 

models with a panel of 10 WTP values per respondent as dependent variable. This 

follows the panel random effects ordinary least squares (OLS) regression method 

described in Campbell (2008a) and Scarpa et al. (2011b). We made an innovation 

here as we have combined socio-economic and attitudinal covariates with 

geospatial distance of respondents from large planted forests as additional 

explanatory variables of individual specific means of marginal WTP.   

Marginal WTPs calculated from utility coefficient estimates of logit 

models suggest that New Zealand taxpayers, accounting for potential sources of 

bias, would pay an aggregate value of NZ$26 million per year for five years to 

support a proposed government coordinated programme on enhancing the 

provision of habitat for threatened native species found in planted forests. Results 

from panel regression analyses indicate that the factors that influence individual 

specific WTP include higher education, attitude toward conservation and 

proximity to large planted forests.  

 The next section of this chapter (section 3.2) provides a brief overview of 

the importance of biodiversity around the world and in New Zealand. Section 3.3 

describes how this study contributes to, or extends previous studies. In 3.4, we 

describe the econometric models and other methods used in the analyses. Section 

3.5 illustrates how choice data were collected and constructed for the choice 

analysis. Section 3.6 presents the results of econometric analyses and discusses 
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the answers to the two main questions above. This chapter ends with conclusions 

and policy implications in section 3.7. 

3.2 Biodiversity and planted forests 

The term “biodiversity” is defined by the Convention on Biological Diversity as 

“the variability among living organisms from all sources including, terrestrial, 

marine and other aquatic ecosystems and the ecological complexes of which they 

are part; this includes diversity within species, between species and of 

ecosystems” (CBD 1992). This suggests that biodiversity includes diversity within 

species populations (genetic variation); the number of species, and the diversity of 

ecosystems. For this study we focus on some of New Zealand’s threatened native 

species whose numbers considerably declined in the past decades.  

Biodiversity decline is considered as the most important global 

environmental issue (FAO 1992; World Bank 2002).  In 2009, 191 countries 

ratified the Convention on Biological Diversity (CBD) indicating that world 

leaders recognise the importance of putting a halt to biodiversity decline (CBD, 

2010). Countries like the United Kingdom, United States, Australia and New 

Zealand developed long-term Biodiversity Action Plans to provide a platform for 

the incorporation of biodiversity conservation in policy decision making to 

address biodiversity decline. Despite the development and implementation of 

these action plans, biodiversity levels in those countries continue to decline (e.g., 

the population of threatened species continue to decrease). A possible reason is 

that although many governments aim to incorporate biodiversity in their 

environmental policies, many types of data, such as robust non-market values that 

can be used for cost benefit analysis, are not available. Very limited studies have 
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attempted to estimate the value that people would be willing to pay to support 

biodiversity conservation in planted forests (de Groot and van der Meer, 2010). 

This restricts the inclusion of biodiversity values into the decision making 

framework and limits the value of planted forests only in terms of timber products 

(or only in terms of market values). This situation persists around the world 

despite the increasing evidence showing that planted forests provide ecosystems 

services such as carbon sequestration, soil erosion control, water regulation and 

biodiversity conservation (Norton, 1998; Scott et al., 2005; Byrne and Milne, 

2006). Over the last decade, the capacity of planted forests to provide habitats for 

plants and animals has gained increasing attention (Schroth and da Mota, 2004; 

Carnus et al., 2006), especially in areas in where native forests have become rare 

(Humpreys et al., 2006; Berndt et al., 2008).  

New Zealand’s planted forests consist mainly of radiata pine (Pinus 

radiata), an introduced species typically managed as monoculture stands and 

harvested between 26 and 32 years after planting (Carnus et al., 2006; Dyck, 

2003). Although these productive planted forests are mainly managed for timber 

production, they also provide an excellent habitat for indigenous plants and 

animals (Pawson et al., 2010; Brockerhoff et al., 2003; Norton, 1998; Spellerberg 

and Sawyer, 1995). Radiata pine forests, especially large ones with areas greater 

than 5000 hectares, provide habitats for threatened native animals (e.g., NZ bush 

falcon, brown kiwi, giant kokopu fish, green gecko) and plants (e.g., kakabeak 

shrub, native orchids) (Seaton, 2006; Pawson et al., 2006; Maunder et al., 2005; 

Brockerhoff et al., 2003; Pierce et al., 2002; Borkin, 2009). They also provide 

connectivity between areas of native ecosystems such as corridors that enable 
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native fauna to gain better access for food from neighbouring native ecosystems 

(Norton, 1998; Carnus, et al., 2006; Brockerhoff et al., 2008; Pawson et al., 2010). 

NZ forest companies recognise the importance of planted forests in 

providing habitat for native species (Maunder, 2008). Comprehensive ecological 

studies were undertaken and sponsored by forest companies to examine how 

planted forests can be managed to better suit the needs of threatened native animal 

inhabitants such as the bush falcon in Kaingaroa forest and long-tailed bat in 

Kinleith forest (Seaton, 2006; Borkin, 2008). Management of planted forests for 

biodiversity is encouraged in voluntary forest certification schemes (e.g., Forest 

Stewarship Certificate (FSC)). FSC certified companies regularly conduct 

ecological surveys which include monitoring for the presence of threatened native 

species and coordination with concerned non-government organisations (e.g., 

Wingspan, Forest and Bird) for the protection native birds (and other species) 

from forest harvesting operations  (PF Olsen, 2009; Maunder, 2005). The 

management of planted forests for the provision of habitats for threatened native 

species indicates that NZ forest companies value and also benefit from 

biodiversity conservation as certified timber products gain better access to both 

global and domestic markets. For instance home improvement chains such as 

Home Depot in the US, B&Q in the UK and Bunnings Warehouse in New 

Zealand all prefer to buy and sell more FSC certified wood products than non 

certified ones. 

 Habitat provision is a type of ecosystem service. There is a rising public and 

corporate awareness of the importance of well-functioning ecosystem (Fisher et 

al., 2008; TEEB, 2010). Economic valuation of habitat provision for native 

wildlife had been undertaken on several forests (e.g., Czajkowski et al., 2008; 
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Christie et al., 2006). In the case of New Zealand planted forests, to our 

knowledge, the economic value of habitat provision has not yet been studied. This 

study is probably the first to estimate the economic value of a proposed habitat 

enhancement programme in planted forests. This is in line with the New Zealand 

Department of Conservation’s (DOC’s) policy to protect and enhance threatened 

native species which include the brown kiwi (Holzapfel et al., 2008). 

With the development of economic valuation techniques (e.g., CE), 

complex biodiversity values can now be estimated. CE can be used to examine 

preferences and estimate WTPs of an individual on the changes in biodiversity 

outcomes in planted forests. However, in using CE there is a need to account for 

biases (e.g., hypothetical) that may arise in the elicitation of WTPs. Aggregation 

of the WTP values have inherent biases (e.g, aggregation bias). This study has 

accounted for both hypothetical and aggregation biases. We describe how we 

accounted for these biases in Section 3.3. 

This thesis chapter presents aggregated WTP values of an important aspect 

of biodiversity that is the enhancement of iconic (e.g., brown kiwi) and less 

visible (e.g., giant kokopu fish) threatened native species in planted forests. 

Previous studies have shown that New Zealanders value indigenous biodiversity 

in general, however, those estimates of values mainly refer to indigenous 

biodiversity in national parks or regional forest parks which are composed mainly 

of native trees and shrubs (Yao and Kaval, 2010). National parks and forest parks 

are part of DOC’s owned and managed conservation lands that usually have 

native trees of different ages and different types. Those landscapes are extremely 

different from planted forests. This is because a stand or plot of planted forest 

usually consists of a single type of exotic pine trees often with same tree age. Yet, 
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despite the highly modified environment in an exotic forests stand, they still 

contribute to providing habitats for more than 100 threatened native species. In 

fact some threatened native species, like the bush falcon, has benefited more, 

living along the forest edges of large stands of Pinus radiata in Kaingaroa forests 

than in stands of native forests in the country’s hilly areas (Seaton, 2006). 

Although the contribution of planted forests to biodiversity conservation has been 

recognized to be quite phenomenal, the monetary value of the benefits from this 

service still remains unclear and needs further examination to be included in 

future policy decision making. It is therefore the aim of this study to provide an 

estimate of an aggregate value of biodiversity enhancement in the country’s 

planted forests to recognise that planted forests not only provide timber products 

that can be sold in the market, but also native biodiversity that could be enhanced 

to improve the welfare of society.  

3.3 Approaches for valuing biodiversity enhancement 

This study aims to estimate the WTP of New Zealand taxpayers to improve the 

habitats of selected threatened species that can be seen (e.g., bush falcon) or 

potentially sighted (e.g., giant kokopu, a native fish) in New Zealand’s planted 

forests. WTP estimation is undertaken using the CE valuation framework. We 

describe in this section how the choice attributes were identified and how the 

questionnaire was developed. The econometric models used that are not described 

in Chapter 2, which include the Random Parameters Logit Model and Panel Data 

Random Effects Regression, are also discussed. 
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3.3.1 Focus groups and identification of attributes 

Between June and August 2009, we conducted four focus group meetings. These 

were held in Rotorua on 6 June, in Whakatane on 8 July, in Taupo on 16 July and 

in Hamilton on 5 August (Table 3.1). The focus group in Rotorua was held at 

Scion (Rotorua) and this mainly served as a practice run to provide a feel for the 

author in moderating a focus group as he never moderated a focus group before. 

(The author was mentored by a senior staff at Scion who conducted a number of 

focus groups in the past.) Five volunteer Scion staff members attended this 

practice session. In the next three focus groups, participants were drawn from the 

general public through links with local councils and a university. Focus groups in 

Whakatane and Taupo were done in coordination with key council staff members 

who helped in disseminating the call for participation. They helped to post flyers 

in bulletin boards that would attract the attention of potential survey respondents 

who could be anybody from the general public. The fourth (and last) focus group 

in Hamilton was done in coordination with the University of Waikato and was 

attended by five students and a Maori community volunteer. Participants in the 

three focus groups consisted of labourers, retired people, council staff members, 

unemployed, students, a Maori community volunteer, and council staff members.  

Table 3.1: Location, date and occupation of focus group participants 

Location Date 
Number of 
attendees 

Occupations of attendees 

Rotorua 6 June 2009 
 

5 
1 chemist, 1 spatial analyst, 1 entomologist, 2 
communication specialists 

Whakatane 8 July 
5 

1 retired, 1 labourer, 1 clerk, 2 council staff 
members  

Taupo 16 July 
8 

1 retired, 1 office staff, 1 farm worker, 1 
labourer, 3 council staff members, 1 
unemployed 

Hamilton 5 August  
6 

4 students, 1 unemployed, 1 Maori ecological 
restoration volunteer 
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A range of native species were suggested by focus group participants which 

include brown kiwi, kereru, frog, worm, mistletoe, snail, eels, bat, pohutukawa, 

wood rose, falcon, gecko, weta, giant kokopu, inanga, morepork, kokako, 

fernbird, kakabeak, and spotless crake. This list was discussed with ecologists and 

was trimmed down to five based on the species conservation status and if the 

species’ visibility could be enhanced through forest management. Consultations 

with ecologists helped identify the feasible set of five threatened species 

composed of the New Zealand bush falcon, the Auckland green tree gecko, the 

giant kokopu fish, the kakabeak plant and the brown kiwi. The frog and bat were 

excluded because of their low visibility in planted forests.  

Figure 3.1 shows the five identified species with corresponding description 

of different levels of presence in planted forests. The column labelled as “current 

condition” represents the existing level of abundance in specific planted forests. 

On page 5 of the survey questionnaire (see Appendix A), we provided a detailed 

description of the current situation of the five attributes or the five threatened 

native species in planted forests.  This is to introduce or familiarise the 

respondents with the current condition wherein planted forests provide suitable 

habitats to indigenous plants and animals. From the current condition, we 

explored the feasible ranges of increase for Level 1 (intermediate level 

improvement) and Level 2 (highest level of improvement) in consultation with 

forest ecologists and forest managers. The range of payment values (i.e., dollar 

bid values $30, $60 and $90) to increase the abundance of these species were also 

identified in focus group meetings. 
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Figure 3.1: The five native species, their current condition and two feasible 
levels of enhanced conditions 

 

 

Figure 3.1 above shows that the description of levels is framed using words such 

as “sighted”, “heard” and “occurring” in order to collect a combination of use, 

option, existence and bequest values from respondents. Use values include direct 

use such as the value a recreationist derives from bird watching and indirect use 

such as the value derived from knowing a forest provides habitat for wildlife. 

Option value includes knowing that one would hear a kiwi in a forest in the future. 

Existence value comes from knowing threatened birds exist in a forest. Bequest 

value comes from ensuring that a threatened bird will be conserved for future 

generations.  

The abovementioned values represent the different components of economic 

value. In this case, economic value refers to the degree to which biodiversity 

Threatened Animal/Plant Current 
Condition Level 1 Level 2 

Brown 
Kiwi 

Kiwi calls heard 
in 1 out of 200 
planted forests 

Kiwi calls heard 
in 10 out of 200 
planted forests 

Kiwi calls heard 
in 20 out of 200 
planted forests 

Giant 
Kokopu 

Kokopu seen  
in 1 out of 10 

suitable streams 

Kokopu seen  
in 3 out of 10 

suitable streams 

Kokopu seen  
in 5 out of 10 

suitable streams 

Kakabeak 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

At least 
10 actively 
managed 
Kakabeak 

shrubs 

At least 
20 actively 
managed 

Kakabeak shrubs 

Auckland 
Green 
Gecko 

Gecko sighted 
in 1 out of 50 

walks  

Gecko sighted 
in 3 out of 50 

walks  

Gecko sighted 
in 5 out of 50 

walks  

NZ Bush 
Falcon 

Bush falcon 
sighted 

in 1 out of 8 
drives  

Bush falcon 
sighted 

in 3 out of 8 
drives  

Bush falcon 
sighted 

in 5 out of 8 
drives  
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enhancement in planted forests satisfies individual preferences. Therefore, 

economic value can be measured by the amount of money that the individual is 

willing to pay for supporting biodiversity services in planted forests. Under the 

choice experiments approach to valuation, each survey respondent is presented 

with a series of choice tasks (as described in Chapter 2). To systematically 

populate the choice tasks with bundles of attribute levels, an experimental design 

is used. Attribute levels in Figure 3.1 are coded to allow each level to be 

accounted for into an experimental design framework.  (We describe the different 

experimental designs in Chapter 2).  Figure 3.2 presents a sample of a choice task 

used in the study. This choice task is part of a choice set series following an 

orthogonal design. Column 1 of Figure 3.2 shows the five threatened species and 

their corresponding locations. This is to emphasize that the five species can be 

found in planted forests in different parts of the country. For instance, the native 

plant kakabeak can be seen mainly in planted forests in the East Coast while the 

bush falcon can found mainly in the Kaingaroa forest and in Nelson.  
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Figure 3.2: Example of a choice task showing five environmental attributes, a 
cost attribute and three alternatives 

 

3.3.2 Choice attributes, levels and coding 

The sample choice task in Figure 3.2 is composed of six attributes; five 

environmental attributes and a cost for the given policy alternative. Each 

environmental attribute is represented by a threatened native species that was 

identified as important to New Zealanders from a series of focus group meetings 

shown in Table 3.1. The identification of the five key species in the choice task 

was undertaken in consultation with forest ecologists and supplemented by the 

ecological literature. Key species selection was also guided by the conduct of 

Threatened Animal/Plant 
 

Current 
Condition 

 Option A  Option B 

Brown Kiwi  
(Frequency of hearing calls 
in planted forests in North 
Island) 
 
 

 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 20 out of 200 
planted forests 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Giant Kokopu 
(Occurrence in slow moving 
streams with overhanging 
native vegetation in planted 
forests throughout New 
Zealand) 

 

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kokopu seen  
in 3 out of 10 

suitable streams 

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kakabeak 
(Occurrence in 20% of the 
planted forests on the East 
Coast and Hawke’s Bay) 
 
  

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
10 actively 
managed  

Kakabeak shrubs 

Auckland Green Gecko 
(Gecko sightings in open 
grounds in planted forests in 
Northland, Waikato and 
Bay of Plenty regions) 
  

 

Gecko sighted 
in 1 out of 50 

walks  

 

Gecko sighted 
in 5 out of 50 

walks  

 

Gecko sighted 
in 1 out of 50 

walks  

 

NZ Bush Falcon 
(Bush falcon sightings 
while driving through pine 
forests in Central North 
Island and Nelson) 
 
 

 

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

 

Bush falcon 
sighted 

in 3 out of 8 
drives  

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

Additional amount to be paid yearly in  
your income tax for five years only 

 

$0 

 

 
$30 

 
$60 

 
I would choose (please tick) 

 

 

□ 

 

□  □ 
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focus group meetings. Focus group participants suggested that increasing the 

abundance of threatened native species, including non-bird species, is very 

important for forest wildlife management, and this would likely be valued by the 

general public (DOC, 2000) .  

Brown kiwi and bush falcon are popular native bird species which can be 

considered as iconic species in the country. These two iconic species inhabit 

several planted forests and these forests can be managed to increase their 

abundance (Maunder et al., 2005; Colbourne et al., 2005).  The brown kiwi can be 

found in planted forests in the North Island, particularly in Northland, 

Coromandel, Tongariro and Hawke’s Bay (Pawson et al., 2010). Recognition of 

the importance of plantations for kiwi conservation is increasing. New forest 

management guidelines have been developed to minimise the effect of forest 

operations to kiwi population (http://rarespecies.nzfoa.org.nz/fauna/forest_birds/ 

species/kiwi.htm). Sporle and Bliss (2008) suggest conservation orientated 

management regimes with the aim of achieving kiwi safe forestry operations in 

plantations inhabited by brown kiwi. On the other hand, it was mentioned earlier 

that New Zealand bush falcon is doing well in the Kaingaroa forest (Stewart and 

Hyde, 2004; Seaton 2006, 2010). The bush falcon is at the top of the food chain 

making it a good biodiversity indicator (Stewart, 2012). 

In addition to the two bird species above, a number of threatened non-bird 

species (which include the kokopu, gecko and kakabeak), can also be found in 

planted forests (Pawson et al., 2010). Many planted forests have rivers and 

streams which provide habitats to native fish such as giant kokopu (Hanchet, 

1990). Some planted forests on the East Coast and Hawke’s Bay, provide habitat 



70 

 

to kakabeak  (Shaw and Burns, 1997). Auckland green gecko had been sighted in 

planted forests in Northland, Bay of Plenty and Waikato (BioWeb, 2009).  

The three non-bird (or less iconic) species have been included in the choice 

task as ecologists that we approached pointed out their high ecological importance 

and their potential to be seen or heard in planted forests (therefore capturing both 

use and non-use values).  The green gecko is a pollinator and seed disperser of 

certain species of native plants (Rowlands, 1989). It can be seen in tree branches 

and open ground. It can bark or chirp by clicking its tongue against the roof of the 

mouth. Planted forests can have native understoreys which can benefit from the 

increase in abundance of green geckos. 

The native plant Kakabeak has special significance to New Zealanders 

because it is widely known and commonly used as an image in gifts, tourist 

souvenirs and the like. The presence of Kakabeak indicates good control of 

browsing animals (e.g., deer, goats, introduced snails) (Shaw, 1993). The 

Maungataniwha pine forest in northern Hawke’s Bay has some parts with securely 

fenced enclosures; a Kakabeak plant was found in one of the enclosures (Slui, 

2011). 

The presence of Giant Kokopu is an indicator of good water quality in the 

waterways of planted forests. It indicates that a planted forest maintains a good 

riparian cover and clear running water. The threatened giant kokopu is listed as 

'vulnerable' on the IUCN Red List of Threatened Species.8 The term “giant” 

comes from the fact that it is the largest of all the 34 Galaxias species worldwide. 

                                                           

8
 http://www.iucnredlist.org/ 
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Each attribute in the choice task has three levels representing different levels 

of population abundance of the species in planted forests. The initial, or base 

level, represents the current level of population abundance identified in 

consultation with forest ecologists and forest managers. From the current 

condition, we explored the feasible ranges of increase for Level 1 (intermediate 

level improvement) and Level 2 (highest level of improvement) again in 

consultation with forest ecologists and forest managers. The payment values were 

proposed to be paid per year for a five year period (i.e., dollar bid values $30, $60 

and $90) to increase the population of threatened native species. The range of 

“realistic” values was identified in a final focus group. 

In presenting the choice tasks to respondents, we did not vary the order of 

the environmental attributes. The brown kiwi was always on top of the other 

species while the bush falcon was always the species at the bottom. In 

constructing the choice data set, we employed dummy coding where two dummy 

variables are assigned to each environmental attribute. The first dummy variable 

takes the value of 1 if the attribute is on level 1 and 0 otherwise. The second 

dummy takes the value of 1 if the attribute is on level 2 and 0 otherwise. If the 

environmental attribute level is on current condition, then both dummy variables 

take the value of zero. The four-level cost attribute was assigned with one variable 

that takes the values of $0, $30, $60 and $90. The cost variable takes the value 

zero if it was a status quo option and $30, $60 and $90 if it was a changed 

alternative. 
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3.3.3 Survey questionnaire and the valuation scenario 

The attribute levels and bid amounts were coded to allow them to be entered into 

an experimental design framework following the orthogonality criterion. This 

initial design was used to populate the nine choice tasks that were included in the 

questionnaire that was pre-tested. 

 The survey questionnaire was first tested with a pilot survey involving five 

respondents. Some of the pilot respondents indicated that the survey was too long 

primarily because of the lengthy description. We therefore trimmed down the 

questionnaire by deleting some of the unnecessary words, as indicated by the pilot 

respondents. We then conducted a second pilot test with another five respondents. 

Four out of five respondents mentioned that the questionnaire was long, but they 

were able to fully understand the questions and recognised the reasons for the 

presence of descriptions, which was mainly to make the valuation scenario as 

clear and realistic as possible. Nevertheless, in the following revision we still cut 

out a few more irrelevant words mentioned by the second set of pilot respondents. 

In the CE valuation scenario, we included a “cheap talk” script as first 

described in Cummings and Taylor (1999). Some of the reasons for including the 

script are: to draw the respondent’s attention specifically to the cost variable; to 

remind respondents that they could use their money to buy other things they enjoy 

or to simply remind respondents of the opportunity cost of their money (Cameron 

and DeShazo, 2010). Although we did not use deception in the elicitation process, 

we have carefully designed a cheap talk script to address hypothetical bias 

inherent in the valuation scenario (Cummings and Taylor, 1999; Bishop and 

Heberlin 1979). In the aggregation process, we accounted for the remaining 
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hypothetical bias by considering that hypothetical WTP is about twice the actual 

WTP (Christie, 2007).9 We have also accounted for the aggregation bias by 

considering that people who agreed to participate but did not complete the survey 

would possibly indicate a WTP of zero (Morrison, 2000).  Furthermore, as not all 

of the respondents were taxpayers, we also took account of the fact that non-

taxpayers such as those retired or students would also have a WTP of zero. 

3.3.4 Determinants of WTP 

Campbell (2007) and Scarpa et al. (2011b) have used panel random effects 

regression models to determine the factors influencing WTP for the improvement 

of environmental goods. Campbell used a panel of individual specific median 

WTP estimates (estimated using a mixed logit model with panel specification) as 

dependent variable and socio economic characteristics and location as explanatory 

variables. Results suggest that income levels, community type and location 

significantly influence the variation of individual means of marginal WTPs. 

Similarly, Scarpa et al. (2011b) explained the variation of individual specific 

means of marginal WTP estimates (from exploded logit model with panel 

specification) using socio-economic characteristics such as marital status (e.g., 

single, married) and education level, and found that these explain reasonably well 

the observed variability. The above two studies identified the determinants of 

variation of individual means of marginal WTPs in terms of socio-economic 

                                                           

9 The disparity between actual and hypothetical WTP has been studied in the 1970s (e.g., Bishop 
and Heberlin, 1979), 80s (Sinden, 1988), 90s (Foster et al., 1997; Frykblom, 1997; List and 
Shogren, 1998) and 2000s (Hofler and List, 2000; List and Gallet, 2001). For our current study, we 
find the Christie (2007) as the most appropriate for accounting for the disparity. 
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characteristics, attitude and affiliations but did not include the distance of the 

respondents to the location of those public amenities.  

Choice analyses that account for the effects of distance on WTP are a very 

limited but growing area of research in the stated preference literature (Johnston et 

al., 2011). Several contingent valuation studies have used global distance decay 

models and found that WTP is negatively associated with the distance of the 

individual from the environmental good in question (e.g., Bateman et al. 2000, 

2006; Hanley et al., 2003). However, Johnston et al. (2011) find no clear pattern 

of global distance decay on WTPs from a choice experiments exercise because of 

the occurrence of non-continuous spatial variation. Johnston has identified the 

presence of WTP hotspots in a stated discrete choice experiments framework by 

applying the Getis-Ord statistic (Getis and Ord, 1992). However, both studies 

examined the distance effects on WTP for a particular environmental good (i.e., a 

river, a watershed) in one specific location.  

Campbell et al. (2009) explored the spatial variation of choice experiments 

estimates with the application of spatial kriging methods to interpolate 

information from individual specific WTP estimates for landscape improvements 

across the Republic of Ireland. These authors found that WTP values for a rural 

landscape improvement scheme are not evenly distributed as they vary across the 

country. In a related study, Campbell et al. (2008b) examined the spatial 

dependence of individual specific WTP values for the landscape improvement 

scheme and found that the values are not spatially uniform, but rather are globally 

clustered. 
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The present study examines the effects of distance of the location of 

residence of respondents with respect to large planted forests which can be found 

in many different areas in the country. In addition to collecting data on personal 

characteristics, an approach was also developed to locate the geo-referenced 

spatial coordinates of each respondent’s place of residence. Respondents’ existing 

addresses in the database were first verified using New Zealand Post’s address-

postcode-finder. Once confirmed, specific latitude and longitude coordinates for 

all addresses were found using the web site http://stevemorse.org/jcal/latlon.php 

which uses GoogleMaps to identify coordinates. The advantage of this technique 

is that we did not need to use a Global Positioning System (GPS) data logger to 

locate the coordinates nor ask each respondent to report his/her coordinate. We 

simply used the physical addresses of respondents on the mailing list to identify 

the coordinates.10  Spatial coordinates of several online respondents were not 

located because of the absence of accurately verified address as the White Pages 

did not have their complete address. 

Given that there are multiple sites with large planted forests, we developed 

a method in collaboration with geo-spatial analysts, where the geo-spatial 

coordinate of each respondent was used to create geographical buffers. Using a 

digital layer of the New Zealand map, geographical buffers with radius of 10, 50 

and 100 km were created using ArcInfo © 9.10 and the programming language 

Python 2.6. Using a second digital layer that contains the New Zealand Land 

Cover Database version 2 (please see MfE, 2011), each buffer was intersected 

                                                           

10 We initially thought of sending the GeoBatch link to online respondents and request them to 
report the coordinates on the survey. However, this option was not employed as some online 
respondents might get suspicious as to why we are tracking their exact locations, which might 
adversely affect the response rate. 
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with the sum of the area of planted forests, thus enabling the identification of 

planted forest areas around each geo-spatial coordinate. A further step was taken 

to consider that threatened native species could only establish themselves in large 

forests. To determine those large forest areas, contiguous planted forests of more 

than 5000 ha were aggregated and all the other scattered forests were ignored and 

this procedure created the final buffer intersections. We used the area of large 

planted forests derived from these final buffer intersections to create the spatial 

variables that we used as spatial covariates in the random effects regression 

model. In addition to these spatial covariates, we also included other covariates 

collected from the survey such as socio-economic characteristics, attitudes, 

affiliation to further explain the variation in calculated individual specific means 

of marginal WTPs. 

Results from this analysis may be useful for policy decision makers 

involved in the formulation and implementation of afforestation schemes to 

provide insights as to how WTPs are influenced by distance and socio economic 

characteristics of people in nearby or faraway communities. One important 

measure is price elasticity of demand for biodiversity in planted forests. 

Estimating the price elasticity would answer the question, if an existing large 

planted forest area (i.e., at least 5000 hectares in size) is situated less than 10 

kilometres away from an individual, would this increase his/her WTP for 

biodiversity enhancement? The answer to this question would be useful for the 

planning of one of the country’s proposed afforestation scheme as described in 

Watt et al. (2011). 
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3.4 Models 

The models we estimate in this chapter are the conditional logit (CL) model, the 

latent class logit model (LCM), the random parameters logit (RPL) model, the 

random parameters logit model with error components (RPLEC) and the panel 

data random effects regression model. To estimate the final utility coefficients that 

were used to simulate the willingness to pay values, RPLEC has been used. From 

RPLEC, we simulate individual specific estimates of WTP which allows us to 

generate a new panel data set. The constructed panel data set has a 10-period 

panel which is used to estimate a panel random effects regression model where we 

identified the determinants of willingness to pay of respondents. 

3.4.1 Random parameters logit (RPL) model 

We have described CL and LCM in Chapter 2 of this thesis. We therefore start by 

describing the RPL model. The RPL model (also known as mixed logit model) 

provides computationally practical and flexible econometric approach for discrete 

choice models derived from random utility maximisation (McFadden and Train, 

2000). RPL overcomes major limitations of the basic conditional logit model by 

(1) taking into account that different individuals have different taste intensities or 

preferences; (2) allowing unrestricted substitution patterns; and (3) accounting for 

correlation in unobserved factors (Train, 2003, 2009; Hensher and Greene, 2003). 

The RPL approach relaxes the strong assumption of independent and identically 

distributed (i.i.d.) error terms, which corresponds to the behavioural property of 

independence of irrelevant alternatives (IIA) (Revelt and Train, 1998). The 

consequence of assuming that error terms are distributed i.i.d. is that it does not 

allow for the error components of different alternatives to be correlated. To 
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account for this correlation, the unobserved portion of utility (i.e., error 

components) is partitioned into two additive terms where one term is 

heteroskedastic and correlated over alternatives (η ) while the other is i.i.d. over 

alternatives (ε ) as show in Equation 3.1  

5�6
 	 7�89: 3 ;<89: 3 =�6
> (3.1) 

where η  is the first random term with zero mean and with distribution over 

individuals and alternatives depends on underlying parameters and observed data 

relating to respondent n selecting alternative j in choice set s; ε is the second 

random term that is i.i.d. extreme value Type I distributed (Hensher and Greene, 

2003). The η  may be assumed a priori to have a particular distribution, which 

can be assumed to be normal, lognormal, truncated normal, triangular, Weibull 

and exponential (or any other). Assuming normal and lognormal distributions can 

be problematic as the former is sensitive to “wrong” signs (e.g., positive cost 

coefficient) while the latter exhibits fat tails (Train and Weeks, 2005). These 

properties are relevant to the current study of valuing biodiversity enhancements 

where taste intensities are expected to be positive for various improvements from 

the status quo. After evaluating the estimates from a number of specifications and 

distributional assumptions, we found the bounded triangular distribution as 

described in Hensher et al. (2005) was the most appropriate approach for this 

exercise. We employed an RPL model with a panel specification that facilitates 

the estimation of individual specific WTPs (Train, 2009). 
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3.4.2 Error components RPL model 

Although the RPL model, as mentioned above, accounts for individual 

heterogeneity, it still does not account for status quo effects. In CE for 

environmental valuation, a typical choice task consists of three alternatives: a 

status quo alternative (hereby called SQ) that serves as the reference point (e.g., 

current condition) and is held fixed across all choice tasks; and two alternatives 

depicting a scenario different from the status quo with attribute levels generated 

from an experimental design. Respondents are likely to consider the SQ utility in 

a systematically different manner from the utility associated with the designed 

alternatives because SQ is experienced while the designed options are 

hypothetical (Scarpa et al., 2005). The utilities derived from the two designed 

options would likely be more correlated between themselves than with the utilities 

derived from SQ. This correlation structure can be accounted for by specifying a 

RPL model with additional errors that consider the difference in correlation across 

utilities (Herriges and Phaneuf, 2002). Specifying this RPL model with the 

additional error component addresses SQ effects as reported in previous studies 

(e.g., Samuelson and Zeckhauser, 1988; Haaijer, 1999; Haaijer, et al., 2001).  

Given the three alternatives for each choice task in this choice experiments 

exercise, the error component model may be specified as:11 

 
sqsqXAscsqU εβ ++=)(  (3.2) 

 
111)1( cccXcU εγβ ++=  (3.3) 

 
222)2( cccXcU εγβ ++=  (3.4) 

                                                           

11 In equations 3.2 to 3.4, we excluded the subscripts njs that are shown in Equation 3.1 for a 
parsimonious presentation. Subscript j represents the j th alternative which can either be sq, c1, c2. 
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whereβ  represents a vector taste parameters for biodiversity enhancements which 

can either be random or fixed; Asc accounts for the systematic effect on SQ; ε  

represents the unobserved component of utility with extreme value Type I 

distribution; and γ  is a normally distributed error component with zero mean that 

applies to changed alternatives c1 and c2. An important feature of γ is that it 

allows flexible patterns of substitution through an induced correlation structure 

across utilities amongst designed alternatives (Scarpa et al., 2005; Scarpa et al., 

2007).12  The RPL error component (RPLEC) logit model may be considered as 

an analogue of the nested logit model as it allows for correlation of utilities across 

alternatives in the same nest but different correlation across nests. But unlike 

nested logit, the RPLEC model relaxes the IIA assumption within alternatives of 

the same nest. For this exercise, we employed the RPLEC with panel specification 

which implies that the additional error component is the same across the choices 

made by the same individual (Scarpa et al., 2005).  

3.4.3 Panel random effects regression models 

To determine the factors that influence the individual means of the marginal WTP 

estimates we employed the panel random effects regression models. The formula 

for simulating individual specific marginal WTPs used here was proposed in 

Greene et al. (2005) and was applied in Scarpa et al. (2011b). The random effects 

models can address two important problems of cross-sectional data analysis, 

namely: unobserved heterogeneity and omitted variable bias.13 Panel models can 

                                                           

12 Note that η  in Equation 3.1 is different from γ  in Equations 3.3 and 3.4. The η  accounts for 

the correlation of all three alternatives while γ  is an additional error term of the RPL model that 

induces the correlation amongst changed alternatives c1 and c2. 

13 More information on panel data analysis can be found in Baltagi (2008) and Greene (2008). 
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control for unobserved heterogeneity by accounting for it as having either a fixed 

or a random effect. In this study, random effects models are used to account for 

the correlation of WTPs across attributes for each respondent. Random effects 

models also allow researchers to control for certain types of omitted and 

unobserved variables where omitted variables are treated to be different between 

respondents but constant across different biodiversity enhancement outcomes. The 

panel random effects approach employed here is described in Campbell (2007). 

 Panel data models can account for systematic group effects. In this exercise, 

we create a variable that contains a 10-period panel of individual specific WTP 

estimates for the 10 biodiversity enhancement attribute levels (e.g., respondent n's 

WTP for a level one increase in the number of falcons sighted). This represents 

the dependent variable, Wna. The panel model can be specified as: 

nannnanna SXAW εδβγα ++++= ///  (3.5) 

where Wna represents a panel vector of respondent-specific means of marginal 

WTPs for attribute level a for respondent n, nα  represents independent random 

variables with constant mean and variance, naA  is a vector of indicator variables 

for 1−k attribute levels, nX  represents a vector of socio-economic characteristics, 

attitude and indicator of affiliations reported by respondent n, nS  is a vector of the 

natural log of areas of large planted forests included within a particular unit of 

radius from respondent n (e.g., 10 km radius, between 10 and 50 km radius, 

between 50 and 100 km radius). 

 The dependent variable Wna is derived from the estimates of the best fitting 

model where we calculated the respondent-specific means of the marginal WTP 
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distributions for each of the 209 respondents and for each of the 10 attribute 

levels. We then regress those values on socio-economic, attitudinal, affiliation and 

spatial covariates in the form of a 10-period panel to account for dependencies of 

the values from the same respondent. Unlike the Wna that varies within a 

respondent, the four groups of covariates mentioned above are fixed for the 10-

period panel for each respondent. For example, the indicator for gender of 

respondent n remains the same for the 10-period panel. To control for the effect of 

the 10 different WTPs for particular attribute levels, we included a vector of 1−k

indicator variables with one attribute level serving as reference to avoid the 

dummy variable trap.  

 We start with the fixed effects regression followed by the random effects 

to explore the determinants of the means of the marginal WTPs. This is to identify 

patterns of sensitivity of estimated individual means of marginal WTP to both 

personal and spatial characteristics of respondents. This study therefore attempts 

to enhance the theoretical validity of the hypothetical survey on the value of 

improving existing biodiversity services in planted forests. 

 

3.5 Data summary 

Data used for discrete choice analysis consists of 209 respondents who provided 

valid responses to the choice experiments questions. Choice responses from these 

209 respondents provided 1850 choice observations which are referred to in 

Chapter 2 as the full data set. Table 3.2 shows that the sample of respondents is 

slightly biased towards the high income group as demonstrated by the 34% of the 
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respondents having an income above $100,000 while the New Zealand population 

averaged 22%.   

 
Table 3.2: Income distribution of respondents versus the national proportion 

Household income Proportion of Respondents National Proportion reported by 
Statistics New Zealand 

$20,000 or less 8% 9% 

$20,001–$30,000 11% 13% 

$30,001–$50,000 17% 20% 

$50,001–$70,000 12% 19% 

$70,001–$100,000 17% 19% 

$100,001 or more 34% 22% 

        TOTAL 100% 100% 

 

Table 3.3 presents a summary of the socio economic and attitudinal 

characteristics of the 209 choice respondents. About 44% of the respondents had 

tertiary or post graduate education while 64% were female. These proportions are 

slightly higher compared to the national proportions of 40% for higher education 

and 51% for female. A small proportion of respondents reported they were 

volunteers to conservation organizations such as Forest and Bird and New 

Zealand Government’s Department of Conservation (DOC). One out of five of the 

respondents wanted to include the Tui bird, a popular non-threatened native bird, 

in the choice tasks. Respondents were asked about their attitude toward supporting 

the proposed biodiversity programme and we found that one out of five had a 

“Government-should-pay” attitude. As respondents were provided with a 

description of the proposed programme and a walk-through of how to select the 

preferred alternative in each choice task, we asked each respondent to rate his/her 

level of understanding of the choice questions after completing the nine choice 

tasks. Twenty-one percent of the respondents gave a rating of 10 indicating that 
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they completely understood the choice questions. Less than half (42%) gave a 

rating between five and seven while 11% gave a rating of four and below. 

Table 3.3: Summary statistics of socio-economic and attitudinal covariates 
Item Percentage of 

respondents 
SNZ National 

Proportion 
Completed higher education  44% 40% 
Female 64% 51% 
Forest and Bird member 8% -- 
DOC volunteer 3% -- 
Tui should be in the choice set 21% -- 
Government should pay 18% -- 

Self-rated understanding of CE questions (“10” represents “completely 
understood” and “1” represents “did not understand at all”) 

 

         – 8 to 10 47% -- 

         – 5 to 7 42% -- 

         – 1 to 4 11% -- 

 

Table 3.4 presents a summary of the spatial variables used as covariates in the 

random effects panel regression analysis. We located the geo-spatial referenced 

coordinates of only 115 choice respondents. We did not find the coordinates for 

the other 94 choice respondents due to several reasons which include insufficient 

details of the address provided and respondents lived in a very rural area. Of the 

115 spatial choice respondents, 28 (24%) were found to be situated less than 10 

spatial kilometres away from large planted forests with an area of at least 5,000 

hectares.14 Using ESRI ArcMap 10.0, we intersected a 10-kilometre radius for 

each respondent’s spatial coordinate with the digitally mapped areas of large 

planted forests in New Zealand. The intersection resulted in the identification of 

forest areas included in the 10-kilometre radius of each of the 28 respondents with 

areas ranging between 17 and 14,000 hectares. About half of the respondents lived 

                                                           

14 We assumed that 5,000 hectares of planted forests would be sufficiently large to provide habitat 
to threatened native species like the falcon and other native species (e.g., bush robins, native fish). 
In addition, large planted forests also form a landscape view where people would be able to 
recognise their presence. Furthermore, a large forest area would likely provide connectivity 
between areas with native forests therefore contributing to biodiversity service. 
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in areas with large planted forests situated between 10- and 50-kilometre radii. 

While 25% of respondents lived in properties where one could find large planted 

forests between 50 and 100 km of spatial distance. 

 
Table 3.4: Summary statistics for the three spatial covariates 
Spatial Covariate Area of planted 

forests within the 
radius (hectares) 

Number of  
respondents (% of 115 

respondents with 
spatial coordinates) 

10-km radius   28 (24.4%) 
       – Average  3,936  
       – Minimum 17  
       – Maximum 14,000  
Between 10- and 50-km radius  58 (50.4%) 
       – Average  40,175  
       – Minimum 1,900  
       – Maximum 220,000  
Between 50- and 100-km radius  29 (25.2%) 
       – Average  62,334  
       – Minimum 6,200  

       – Maximum 770,000  

 

The 10, 50 and 100 km buffers in Table 3.4 above were chosen to represent 

different types of visits that would have an implication on the use value of planted 

forests. Respondents living within the 10 km buffer would be able to visit the 

planted forest either by bicycle or a short drive. Those living within the 50 km 

buffer but beyond 10 km would likely be able to make a day trip. Those beyond 

the 50 km buffer but within the 100 km buffer would be at the border of a one day 

trip and might require a place a spend the night.  

While we accounted for the distance of planted forests to respondents, we 

elected not to study in detail the impacts of some recreational attributes as we 

mentioned at the outset that this study focuses on valuing biodiversity 

enhancement. As some planted forests like Whakarewarewa in Rotorua and 
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Woodhill in Auckland offer recreational facilities such as walking trails, mountain 

biking tracks, tree adventures and horse riding tracks (Dhakal et al., 2012; 

Auckland Council, 2011), we opted not to collect those data for this study. 

However, I plan to examine those attributes spatially in my future research work 

at Scion which include valuing avoided erosion and the economics of tangibles 

and intangibles.  

3.6 Results 

3.6.1 Logit models 

We analysed the full choice data set with 1850 choice observations using four 

logit models.  Model 1 is the basic conditional logit (CL) model where estimated 

coefficients for both environmental and cost attributes demonstrate the expected 

signs (i.e. negative sign for cost, positive sign for marginal utilities) (Table 3.5). 

The coefficient for the indicator for SQ is positive but not significant. This might 

indicate that there is no additional utility associated with the status quo over and 

above that associated with its attribute levels. The conditional logit model imposes 

the restrictive IIA assumption which assumes that all respondents have the same 

preference (Greene and Hensher, 2003). To relax the assumption of preference 

homogeneity, we estimate Model 2 which is a Latent Class logit model with panel 

specification (PLCM) that assumes that a sample of respondents would have 

different types of preferences that can be grouped into latent classes or class 

memberships (Heckman and Singer 1984; Greene and Hensher, 2003).  Following 

the panel latent class framework in Scarpa et al. (2009) we estimate the class 

memberships of different groups of respondents based on the attributes that they 

likely did not attend to. Under this approach, the coefficients of those particular 
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attribute levels are constrained to zero following a latent class logit model 

framework. Initially, 20 latent class logit models with different latent classes were 

estimated. The PLCM estimates reported in Model 2 of Table 3.5 has the best 

model fit among the 20 specifications tested as indicated by the lowest normalised 

AIC of -1.154. Appendix Table 1 shows the AICs of the 20 latent class model 

specifications distributed into two groups: 10 cross-section and 10 panel 

specifications. The panel type specification exhibited lower normalised AIC 

values not exceeding 1.28 compared to the higher AICs of cross sectional models 

(always above 1.93). The cross section specification of LC Model 5 has the 

highest normalised AIC (worst model fit) while the panel LC Model 5 has the 

lowest AIC (best model fit). The improvement in model fit in the panel 

specification (versus cross-section) suggests that it is important to take into 

account that the process of evaluating choice task s by respondent n is correlated 

to the way one evaluates other choice tasks in the series assigned to him/her. 

Going back to the coefficient estimates in Model 2, the coefficient for the 

SQ indicator is negative and significant, indicating that a typical respondent 

derives more utility by choosing the changed alternative or enhanced biodiversity 

level than the current condition. In terms of non-attendance to choice attributes, 

Model 2 results suggest that about one-third of the respondents ignored the cost 

attribute. This is consistent with Scarpa et al. (2009) which report that cost is one 

of the most non-attended attribute in a choice task. Model 2 estimates also suggest 

that 37% of the sample ignored the SQ option, 23% did not attend to less iconic 

species (i.e., kokopu (native fish), kakabeak (native plant) and gecko), while 6% 

ignored all attributes. Non-attendance to SQ is consistent with the negative 

coefficient for the indicator of SQ, which means that respondents on average 
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would be more satisfied with the creation of a new programme that aims to 

enhance the level of biodiversity in planted forests. While more than half of the 

respondents have still attended to the SQ option in selecting the preferred 

alternative in a choice task, about 37% might have simply ignored it because they 

elected to focus more on the changed options that presented combinations of 

mostly higher attribute levels while attribute levels in SQ are fixed and represent 

the lowest attribute level. 

Although Model 2 provides interesting results regarding attribute non-

attendance, the coefficients for the changed levels of the less iconic species are no 

longer significant while in Model 1 the coefficients for Native Fish 1 and Native 

Plant 2 are positive and significant. To address this issue, we employed the 

Random Parameters Logit (RPL) model with panel specification that accounts for 

individual heterogeneity. Compared to LCM, RPL takes into account that each 

respondent has a unique set of preferences for the environmental good in question.  

Before finally settling with the RPL specification reported in Model 3, we 

first determine the superior RPL model specification from among a series of 

preliminary RPL models. First we ran an RPL model where we assume that all 

utility coefficients are random. From there we identify which random coefficients 

would likely have significant effects to utility by running different model 

specifications. Out of the more than 20 different specifications tested, we 

identified four random parameters to have significant effects. We also identified 

the suitable distributional assumption of these four random parameters by testing 

on normal, log normal, uniform and triangular distributions.  The triangular 

distribution resulted to the best model goodness of fit (i.e., highest log-likelihood 

value) with the log-likelihood value of -1034.95 compared to -1035.93 for normal, 
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-1089.23 for uniform, and -1811.48 for log normal. The selection of the triangular 

distribution is also based on Train (2009 p. 138) which states that “The triangular 

distribution has positive density.. … taking the form of a tent. … These densities 

have the advantage of being bounded on both sides, thereby avoiding the problem 

that can rise with normals and log normals having unreasonably large coefficients 

for some share of decision makers.” The triangular distribution is also known for 

avoiding the allocation of shares to extreme values of coefficient, which is a 

drawback in other distributional assumptions, such as in the normal or log-normal. 

From the above series of tests for RPL, we settled with a preferred RPL 

model with four random parameters that are assumed to have triangular 

distributions. The cost parameter is assumed to have a constrained triangular 

distribution wherein it has been constrained to be negative with an upper limit of 

zero. The three other random parameters were not constrained. The standard 

deviations of the four random parameters are significant at the 5% level indicating 

taste heterogeneity. The coefficients for changed attributes for Native plant 1, 

Native plant 2 and Native fish 1 are positive and significant while the coefficient 

for Gecko remains not significant similar to Model 1. However, the RPL panel 

model in Model 3 does not account for SQ effects. Thus we employed Model 4 to 

induce the correlation amongst SQ and the changed alternatives as described in 

Scarpa et al. (2006). Estimates for Model 4 indicate a strong correlation between 

the two changed alternatives as indicated by the coefficient for the error 

components being positive and significant. Model fit significantly improves with 

the addition of error components as exhibited by the significant increase in the 

log-likelihood value from -1,035 in Model 3 to -991 in Model 4. Although the p-

values in Model 4 remained virtually the same as in Model 3, the magnitude of the 
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coefficient for cost in Model 4 is significantly lower, while the coefficients for the 

environmental attributes remain virtually the same. This translates to higher WTP 

for biodiversity enhancement. This implies that the RPL panel with error 

components model better allows the accounting of changes in attribute levels by 

inducing the correlation between the changed alternatives. We therefore used 

Model 4 estimates to simulate the median WTP values that we subsequently used 

to compute for the aggregated WTP as described in the next section. We also used 

Model 4 to estimate the individual specific WTP values that we included in the 

construction of the panel data to identify the determinants of WTP. 

As an aside, it is also important to mention that estimates of utility 

coefficients for native fish levels 1 and 2 in Table 3.5 demonstrate pattern of lack 

of insensitivity to scope. This is indicated by complete insensitivity to higher 

levels of fish protection. Lack of sensitivity to scope (sometimes called as lack of 

sensitivity to scale) has been identified as a potential issue in contingent valuation 

and in choice experiments (Ryan and Wordsworth, 2000; Foster and Mourato, 

2003; Goldberg and Roosen, 2007; Rolfe and Windle 2010).  Although we are 

aware that this chapter is more policy orientated, in that the issue of insensitivity 

to scope may not be important (Ryan and Wordsworth, 2000), we still attempted 

to address this issue by using a non-linear coding approach called piecewise linear 

coding (PWLC). PWLC captures the sensitivity within the intervals as well as 

enforces continuity and weak monotonicity of the utility function (Bierlaire, 

2008). 

PWLC is different from dummy coding. In dummy coding, we can assign 

two dummy variables (e.g., Kiwi1, Kiwi2) per attribute with three levels. For 

status quo these two variables can be assigned respective values (0,0), for level 1 
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increase in abundance (1,0), for level 2 increase (0,1). From dummy coding, one 

can create PWLC variables by using the Kiwi1 and Kiwi2 to generate a new 

variable which is defined as Kiwi1a = Kiwi1 + Kiwi2. From here the analyst 

would now need to use Kiwi1b and Kiwi2 for each three level attribute. However, 

the interpretation of estimates from PWLC is different because Kiwi1a is now 

also shared by Kiwi2.  

Appendix Table 2 shows the estimates for Models 1 to 4 where we used 

PWLC. Comparing the estimates for Model 4 with PWLC to Model 4 with 

dummy coding in Table 3.5, the coefficients for Brown kiwi 2 and Bush falcon 2 

(of the former) are no longer significant. We interpret the PWLC coefficients for 

level 1a (e.g., Brown kiwi 1a) differently compared to dummy coding because 

Brown kiwi 1a now relates to both levels (Brown kiwi 1 and Brown kiwi 2). 

Results from PWLC show a pattern of a big jump with level 1a of improvement 

(e.g., Brown kiwi 1a) while the coefficient for the second level (e.g., Brown kiwi 

2)  are never significant meaning that they do not produce further benefits. These 

results are actually more consistent with utility theory in economics. Although 

model estimates in Table 3.5 using dummy coding provide better statistical 

estimates, estimates in Appendix Table 2 provide better results from the stand 

point of economic theory of utility.  
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  Table 3.5: Estimates of logit models (n = 1850 choice observations) 

  
  Note1: Values in italics represent coefficient estimates for random parameters. 
  Note2: Values in boldface font represent estimates statistically significant at 5% level.  

Item 
Model 1 

Conditional Logit 
Model 2 

Latent Class Logit Panel 
Model 3 

Random Parameters Logit Panel 

Model 4 
Random Parameters Logit Panel 

with Error Components 
Attributes and SQ Coef Std err p-value Coef Std err p-value Coef Std err p-value Coef Std err p-value 

Brown kiwi 1 0.504 0.098 <0.01 0.669 0.121 <0.01 0.921 0.141 <0.01 0.898 0.137   <0.01 

Brown kiwi 2 0.622 0.095 <0.01 0.818 0.123 <0.01 1.094 0.138 <0.01 1.048 0.128   <0.01 

Native fish 1  0.287 0.093 <0.01 0.163 0.131 0.21 0.330 0.134 0.01 0.307 0.153 0.04 

Native fish 2 0.143 0.095 0.13 0.024 0.138 0.86 0.201 0.138 0.15 0.138 0.145 0.34 

Native plant 1 0.145 0.094 0.13 0.181 0.136 0.18 0.348 0.138 0.01 0.343 0.163 0.04 

Native plant 2 0.210 0.094 0.03 0.129 0.130 0.32 0.299 0.143 0.04 0.329 0.161 0.04 

Green gecko 1 0.017 0.093 0.86 -0.115 0.135 0.40 -0.047 0.139 0.74 -0.053 0.135 0.70 

Green gecko 2 0.092 0.093 0.32 -0.061 0.139 0.66 0.003 0.164 0.99 0.124 0.159 0.43 

Bush falcon 1 0.453 0.098 <0.01 0.476 0.120 <0.01 0.860 0.145 <0.01 0.909 0.147   <0.01 

Bush falcon 2 0.700 0.094 <0.01 0.914 0.122 <0.01 1.178 0.153 <0.01 1.188 0.147   <0.01 

Status Quo Indicator 0.177 0.158 0.26 -5.864 0.504 <0.01 -3.767 0.318 <0.01 -1.594 0.637 0.01 

Cost -0.025 0.002 <0.01 -0.123 0.011 <0.01 -0.169 0.013 <0.01 -0.063 0.004   <0.01 

Attribute non-attendance            
Ignoring cost    0.347 0.133 0.01       

Ignoring status quo    0.369 0.158 0.02       

Ignoring non-iconics    0.227 0.060 0.00       

Ignoring all attributes    0.057 0.020 0.00       

Random Parameters             
Bush falcon 2       1.755 0.500 <0.01 1.606 0.658 0.01 

Native plant 2       1.244 0.538   0.02 1.446 0.557 0.01 

Cost       0.320 0.023 <0.01 0.063 0.004   <0.01 

Green gecko 2       2.197 0.493 <0.01 1.369 0.520 0.01 

Error Component          7.652 1.005   <0.01 
             

Log-likelihood -1785.14   -1052.57   -1034.95   -990.68   

Normalised AIC 1.943   1.154   1.136   1.088   

McFadden Pseudo R2 0.116   0.482   0.491   0.512   
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Another issue worth mentioning is that in Chapter 2 (on Pages 41 and 42 of 

this thesis), we can divide the full sample into two regional groupings. We got 

66% of the full sample from Group 1 regions (regions with a large proportion of 

planted forests) and 34% from Group 2 regions (regions with a small proportion 

of planted forests). We therefore estimate Model 4 in Table 3.5 using split 

samples of Groups 1 and 2 respondents. We present these model estimates in 

Appendix Table 3.  

 Both Groups 1 and 2 sub-samples appear to value levels 1 and 2 increases in 

abundance of brown kiwi and bush falcon in planted forests. However, it appears 

that only the group who lived in regions with a larger proportion of planted 

forests, controlling for other factors, would have a significant increase in utility 

relative to status quo if a biodiversity programme would be implemented. This 

might indicate that the presence of more forests or greater accessibility to planted 

forests could be an important factor for consideration if there is a need to prioritise 

regions for biodiversity enhancement. 

 However, despite Appendix Tables 2 and 3 provide estimates that address 

insensitivity to scale as well as heterogeneity across regional groupings, we lost 

the statistical significance for non-bird attributes. Compared to Model 4 in Table 

3.5 with nine utility coefficients being statistically significant, in the Appendix 

Table 2 only four utility coefficients are statistically significant, while for the split 

samples in Appendix Table 3, only five or six coefficients are significant. As 

Model 4 results using the full sample in Table 3.5 demonstrate superior statistical 

properties we elect to use these estimates in the simulation of marginal WTPs and 

aggregation.  
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3.6.2 Median and aggregate WTPs 

As Model 4 in Table 3.5 provides the best model fit as indicated by the lowest 

normalised AIC and highest Pseudo R2 among the models, we simulated the 

median WTP (or the 50th percentile) for each attribute and the corresponding 

confidence intervals around the median using Monte Carlo simulation with 10,000 

random draws following the R-code described in Thiene and Scarpa (2009). We 

simulated median WTPs instead of mean WTPs because the latter cannot be 

simulated when the cost coefficient is distributed log-normal, triangular or 

constrained triangular as suggested in Daly, et al. (2011). In that recent paper, it 

was mentioned that “the moments of the WTP distribution might not exist for a 

given distribution of the cost coefficient” which include the constrained triangular 

distribution that we used in this present study. For this present study, simulated 

median WTPs suggest that the two most valued attribute levels are level 2 

increases in Falcon ($19/year) and Brown Kiwi ($17/year) (Table 3.6). We also 

report the 95% confidence interval around the median WTP for more falcons ($17 

to $21) and kiwis ($15 to $18) that we derived from the simulation exercise. A 

level 1 increase in the number of endangered native plant kakabeak and the native 

fish kokopu were also valued at around $5/year for five years through an addition 

in the amount payable to income tax.  

Table 3.6 also shows the total WTP of a typical respondent for increasing 

the abundance of threatened native species is approximately $65 per year for five 

years. This total WTP also includes the willingness to pay for the development of 

a new forest biodiversity programme of approximately $25 per year. If the sample 

of respondents represented the New Zealand population of taxpayers, we could 

simply multiply the total WTP per year by the total number of people who pay 
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their annual income tax. However, that would be biased. In addition, the 

elicitation method used was based on a hypothetical market. Therefore, in 

aggregating the WTP values to the national level, we accounted for two of the 

major sources of biases as mentioned in the stated preference literature. These are 

hypothetical (List and Gallet, 2001) and aggregation (Morrison, 2000) biases. List 

and Gallet (2001) suggest that hypothetical WTP would likely be two to three 

times as the actual WTP. To account for this bias we divided the hypothetical 

WTP by two.15 Table 3.6 shows the discounted WTP values for each attribute 

where the WTP for the level 2 option decreased to about $33 per year for five 

years. Morrison (2000) suggests that one way to address aggregation bias is to 

consider survey non-responses to have WTP of zero. For every 100 surveys we 

sent out, 43 completed surveys returned, thus a response rate of 43%. We 

therefore assumed that 57% of the New Zealand taxpayers have a WTP of zero. 

As of 2006, New Zealand had a total of 3 million taxpayers. As we have a 

response rate of 43%, we multiply 3 million by 43% of the total taxpayers which 

is 1.29 million.  We have also taken into account that in our sample of 209 

respondents, only 64% of them were taxpayers as other people were retired, 

students or homemakers. From this sample proportion, we multiply 1.29 million 

taxpayers by 64% which results to 825,600 willing taxpayers.   

Overall, the aggregated WTP values for a Level 2 increase in threatened 

species amounted to a national value of about $26.5 million per year for five years 

                                                           

15 As we have included a cheap talk script in the description of the choice experiment scenario, we 
assumed that the script addresses the upward WTP bias. We therefore opted to multiply the 
hypothetical WTP by 0.50 instead of 0.33. 
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(with present value of this five-year annuity at more than $100 million)16. It is 

envisioned that the amount will be used to fund the proposed five-year 

biodiversity enhancement programme only and will not cover administration fees.  

If the biodiversity enhancement programme managers opted to focus only on the 

more visible and more popular bird species (i.e., brown kiwi and bush falcon), the 

national WTP value for a level 2 increase corresponds to about $22.3 million per 

year for five years. 

                                                           

16 Present Value (PVA) of a five year annuity was calculated using the formula 

( )( )( )[ ]11
11 −−

⋅+−⋅= iiAPV n
A  where A represents the aggregated annual WTP, i is the annual 

interest rate of 8 percent, and n is the number of years (n = 5 years). 
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Table 3.6: Simulated WTP estimates from Model 4 and aggregated to the national level 

Threatened Species 
All Attributes  Bird Species Only Non-bird species 

(in NZ$/year for five years) (in NZ$/year for five years) (in NZ$/year for five years) 

 Level 1 Level 2 Level 1 Level 2 Level 1 Level 2 

Brown kiwi 

14.26 

(12.46 – 16.10) 

16.64 

(14.89-18.45) 

14.26 

(12.46 – 16.10) 

16.64 

(14.89-18.45) 

- - 

Giant Kokopu 

4.87 

(3.00-6.78) 

NS - NS 4.87 

(3.00-6.78) 

NS 

Kakabeak 

5.45 

(3.45-7.48) 

5.22 

(3.25-7.23) 

- - 5.45 

(3.45-7.48) 

5.22 

(3.25-7.23) 

Green gecko NS NS NS NS NS NS 

Bush falcon 

14.43 

(12.52-16.39) 

18.86 

(16.85-20.93) 

14.43 

(12.52-16.39) 

18.86 

(16.85-20.93) 

  

Indicator for changed alternative 

25.28 

(17.36-33.46) 

25.28 

(17.36-33.46) 

25.28 

(17.36-33.46) 

25.28 

(17.36-33.46) 

25.28 

(17.36-33.46) 

25.28 

(17.36-33.46) 

     - - 

   T O T A L 64.29 66.00 53.97 60.78 35.60 30.50 

Discounted WTP per taxpayer (50%) - to account 

for hypothetical bias 
32.15 33.00 26.99 30.39 17.80 15.25 

Aggregated annual WTP (multiplied by 825,600 

willing NZ taxpayers) 26,538,912 27,244,800 22,278,816 25,089,984 14,695,680 12,590,400 

Present value of five annual payments (PVA) 105,962,180 108,780,586 88,952,852 100,177,031 58,675,589 50,269,816 

Note 1: “NS” means not significant at the 95% confidence level. 
Note 2: Figures in parentheses represent simulated 95% confidence intervals of median WTP. 
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3.6.3 WTP determinants 

Using the specification in Model 4 in Table 3.5, which is the RPLEC panel model, 

we estimated individual-specific means of the conditional distributions of 

marginal WTPs. As each of the 10 means of WTP for each respondent would 

likely be correlated, we used panel random effects regressions to explain patterns 

of variation. In the set of explanatory variables of the random effects models, we 

included indicator variables for k–1 changed attribute levels to control for WTP 

variation within each respondent. We explore the role of socio-economic, attitudes 

and spatial characteristics of each respondent on individual specific WTP values. 

Table 3.7 presents the estimates for three panel random effects regression models. 

Model A includes socio-economic and attitude covariates. It has 161 respondents 

each with 10-period panel (or observed 10 times). The reduction from the full 

sample size of 209 to 161 respondents is because not all respondents provided 

data on these covariates. Because we have mainly employed a mail survey, some 

respondents did not report their highest educational attainment. Others did not 

complete page 18 of the questionnaire which could have provided the data as to 

whether they were DOC volunteers or Forest and Bird member. This created gaps 

in the socio economic data that resulted to the exclusion of 48 respondents in the 

panel random effects regression for Model A.  

Model B has the same set of covariates as Model A but with a reduced 

sample size that matches the sample size in Model C. As mentioned earlier, the 

spatial coordinates for some respondents were not located due to insufficient data 

on addresses of respondents especially those who completed the survey online 
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whose home addresses were not verified. As a result, the sample size was reduced 

to 1110 observations for the model with spatial covariates.  

Estimates in Models A, B, and C suggest that having tertiary education as 

highest educational attainment has a significantly positive effect of about $1.25 to 

$3.10 on median WTP. Similar to the results of the panel random effects 

regression in Campbell (2007), results from Model A suggests that being female 

positively influences WTP where a typical female respondent would contribute 

approximately $2.00 more than male. However, keeping the variable Female in 

Model B, which used a smaller sample, resulted to an insignificant coefficient 

estimate. Keeping the variable female in Model C resulted to the panel random 

effects regression model not converging as indicated by a note in NLOGIT saying 

“Error 249: Random effects. Did not find positive estimated component.” We 

therefore dropped this variable in Model C.  

Estimates from Model C indicate that being affiliated with or serving as 

volunteers for conservation institutions such as DOC and the environmental NGO 

Forest and Bird has even greater positive significance of approximately $9.16. As 

expected, having a negative attitude towards contributing a dollar amount for 

biodiversity (i.e., having a “Government should pay” attitude) significantly 

reduces WTP by about $3.00. Having a good level of understanding of the choice 

questions, from a self-rated scale of 1 to 10, with 10 as the highest rating, 

indicates that an increase in one level of understanding increases WTP by $0.41. 

Interestingly, respondents who would like to include the non-threatened but 

popular native bird Tui also demonstrate a positive marginal impact on median 

WTP of about $1.26 (significant at the 15% level). 
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 The main highlight of the estimates in Table 3.7 is the coefficient estimates 

for the spatial covariates. Including the three spatial covariates in Model C 

significantly increases the log-likelihood value from -4233 in Model B to -4222 in 

Model C. The calculated likelihood ratio test statistic of 23.06 between the two 

models exceeds the critical chi square value of 16.27 at the 99.9% confidence 

level. Thus, the null hypothesis that individual specific WTPs for biodiversity 

enhancement are not a function of geo-spatial distance of respondents from large 

planted forests is strongly rejected.  

Using the group of respondents who lived more than 100 kilometres away 

from large planted forests as reference, the coefficient for the 10 km radius 

suggests that a respondent living close to large planted forests would be willing to 

pay $0.17 more for biodiversity enhancement than a respondent living further 

away. This is consistent with the results from previous studies suggesting some 

form of distance decay in environmental use values (e.g. Bateman et al. 2006; 

Pate and Loomis, 1997). This is because, as mentioned earlier, a person situated 

within a 10-km radius can have better access to an enhanced forest biodiversity 

(biking distance or less than a five-minute drive to the site). This somewhat 

indicates that a respondent situated close to a planted forest has both use and non-

use value for the enhancement of the resource. 

Estimates in Table 3.7 indicate that the WTP of an individual living in a 

place with large planted forests beyond the 10-kilometre radius (i.e., 10- to 50-

kilometre radius) does not increase with biodiversity enhancement. A possible 

reason for this is that people perceived that the potential to benefit is low as they 

live further away. People living within this range seem to be concerned more 

about option value than direct use value.  
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In terms of respondents living in places where planted forests had a spatial 

distance between 50 to 100 kilometre radii, they demonstrate a pattern of increase 

in WTP of $0.15 per respondent for biodiversity enhancement. This might 

indicate the presence of non-use value whereby respondents who reside very far 

away from planted forests would be willing to pay more by simply knowing that 

the habitat was enhanced to increase the abundance of threatened species even 

though they might not be able to visit those forest areas. However, the estimate for 

Between 50- and 100-km radius is significant only at the 81% confidence level 

and therefore statistically weaker than that for the 10-kilometre radius.  
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Table 3.7: Panel random effects model parameter estimates 
 Model A 

Model with Socio-economic Covariates 
Model B 

Model with Socio-economic Covariates  
Reduced sample size 

Model C 
Model with Socio-economic and Spatial 

Covariates – Reduced sample size 
 Coeff Std Err p-value Coeff Std Err p-value Coeff Std Err p -value 

Indicator for attribute level          
Brown kiwi 1 23.234 1.167 <0.01 24.399 1.483 <0.01     24.399       1.457  <0.01 

Brown kiwi 2 26.907 1.167 <0.01 28.256 1.483 <0.01     28.256       1.457  <0.01 

Native fish 1  8.799 1.167 <0.01 9.241 1.483 <0.01      9.241       1.457  <0.01 

Native fish 2 4.657 1.167 <0.01 4.891 1.483 <0.01      4.891       1.457  <0.01 

Native plant 1 9.677 1.167 <0.01 10.162 1.483 <0.01     10.162       1.457  <0.01 

Native plant 2 8.842 1.167 <0.01 9.426 1.483 <0.01      9.426       1.457  <0.01 

Green gecko 2 4.477 1.167 <0.01 4.839 1.483 <0.01      4.839       1.457  <0.01 

Bush falcon 1 23.496 1.167 <0.01 24.674 1.483 <0.01     24.674       1.457  <0.01 

Bush falcon 2 29.228 1.167 <0.01 30.472 1.483 <0.01     30.472       1.457  <0.01 
Socio-economic covariate          
Tertiary 1.264 0.595 0.03 3.098 0.827 <0.01      2.393       0.851  <0.01 

Female 1.963 0.553 <0.01 0.535 0.728 0.46 - - - 

Forest and Bird 6.194 1.014 <0.01 8.324 1.192 <0.01      9.165       1.176  <0.01 

DOC Volunteer 10.930 1.706 <0.01 9.012 1.841 <0.01      8.675       1.787  <0.01 

Understanding of CE questions 0.310 0.114 0.01 0.344 0.148 0.02      0.410       0.149  0.01  

Tui should be in the choice set 3.308 0.641 <0.01 1.838 0.799 0.02      1.257       0.798  0.12  

Government should pay -2.755 0.692 <0.01 -2.968 0.866 <0.01 -2.968       0.850  <0.01 
Constant -3.956 1.162 <0.01 -5.149 1.490 <0.01 -6.477       2.723  0.02  
Spatial Covariate          
Log of forest area in 10-km radius - - - - - -      0.168       0.051  <0.01 

Log of area in 10-50 km radius - - - - - - -0.049       0.098  0.62  

Log of area in 50-100 km radius - - - - - -      0.147       0.110  0.18  

Log-likelihood -6023.50   -4233.07   -4221.54   

Pseudo R2 0.513   0.517   0.527   

No. of observations 1610   1110   1110   

Note: Values in boldface font represent estimates statistically significant at 5% level.  
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3.7 Conclusions and policy implications 

Results from data collected from 209 choice respondents across New Zealand 

indicate that a typical respondent values biodiversity enhancement in the 

country’s 1.8 million hectares of planted forests, especially those in large planted 

forests. An aggregate WTP of NZ$26.5 million per year for five years would be 

paid through income tax to fund a proposed biodiversity enhancement programme 

that aims to increase the abundance of threatened species seen or heard in planted 

forests.17 This study provides empirical evidence that New Zealanders would 

collectively be willing to financially contribute a considerable amount to 

biodiversity enhancement in planted forests. This extends previous study by Yao 

and Kaval (2010) that New Zealanders would be WTP for biodiversity 

enhancement on private land by demonstrating that even in exotic planted forests 

they still value habitat enhancement for threatened species. The estimated value 

may be useful not only for future policy decision making but also to satisfy the 

growing interest of large corporations in incorporating ecosystem services values 

in business plans (TEEB, 2010; WBCSD, 2011). 

Both socio-economic and spatial factors are found to influence individual 

specific means of marginal WTP estimates. Those that significantly contribute 

positively to WTP are affiliation to conservation organisations, higher education, 

and having an appreciation of native birds. Those that contribute negatively to 

WTP include an attitude of reliance mainly on the government to fund the 

                                                           

17 Perhaps a way to check for the robustness of the estimated WTPs is to include an option in the 
Internal Revenue Department’s (IRD’s) income tax return form where taxpayers would be 
provided an option to donate a portion of their tax refund to a briefly described biodiversity 
enhancement in planted forests. 
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proposed enhancement programme. These empirical results suggest the 

characteristics of relevant individuals (or maybe groups) to focus on in winning 

support for enhancing biodiversity in planted forests. Analytic results also indicate 

the enhancement of biodiversity provides more benefits those living within a 10-

kilometre radius from large planted forests compared to those living further away.  

The above findings might be useful for a future study that seeks to identify an 

appropriate funding mechanism for biodiversity enhancement in planted forests. 

We also acknowledge that due to the low response rate, we collected a 

small sample size 209 choice respondents. This sample size might be too small to 

calculate a national estimate of value for biodiversity enhancement. We suggest 

that future studies that would aim to come up with a national estimate of value 

would require more resources to allow the collection of a bigger sample size to 

estimate national WTP values from a more representative national sample. 
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Chapter 4: An investigation of experimental design criteria and 

their behavioural efficiency: entropy and attribute non-

attendance 

4.1 Introduction 

The Choice Experiments (CE) method has been widely used to study behavioural 

responses in different fields which include transportation, health economics, 

marketing, energy, political science and environmental economics. Part of its 

wide acceptance can be attributed to the fact that it provides a theoretically valid 

framework that allows the examination of individual preferences. The framework 

allows an individual to reveal the tradeoffs amongst alternatives with different 

combinations of attribute levels in a choice task. A crucial component of CE is the 

systematic arrangement of attribute levels on each alternative in a choice task 

which is addressed by using a fraction of the full factorial, or the Experimental 

Design (ED).18 A common approach in constructing an ED is the fractional 

factorial approach to generate an initial series of single alternatives that are then 

allocated to choice tasks using various methods which include randomised, 

cyclical, and Bayesian (Bunch et al., 1996; Sándor and Wedel, 2001, 2002, 2005; 

Kanninen, 2002; Bliemer and Rose, 2006). 

 The ED is usually optimised following a certain criterion chosen by the 

analyst.19 One of the first ED criteria used for CE was the orthogonality criterion 

                                                           

18
 Chapter 2 of this thesis (on pages 26 to 31) provides an overview of the different statistical 

measures of design efficiency. This current introductory section of Chapter 4 focuses on how 
different experimental design criteria evolved to suit the needs of choice analysts. 

19
 Some of the earlier choice tasks were generated by randomly populating the alternatives with the 

identified attribute levels. This criterion is referred to as random design criterion. 
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derived from linear multivariate models originally used for statistical analysis of 

treatment effects in biological experiments (Louviere and Woodworth, 1983; 

Louviere and Hensher, 1983).  The orthogonality criterion generates fractional 

factorial designs that exhibit no correlation between each row of design attributes 

and/or between columns of alternatives.20 One advantage of this criterion is that 

the analyst does not need any a priori knowledge of the parameter estimates and 

their distribution (or parameter mean and standard error). The analyst can generate 

an orthogonal design by simply knowing the number of attributes, alternatives and 

number of choice tasks per respondent for a CE exercise. However, orthogonality 

is a design property appropriate mainly for linear regression models (e.g., 

Ordinary Least Squares). Since CE data are analysed using non-linear regression 

models (e.g., logit) to examine changes in utilities, orthogonality is not necessarily 

a criterion for efficiency (Bliemer and Rose, 2006). Bliemer and Rose (2009 p. 

21) demonstrate using a logit model that the statistical efficiency of an orthogonal 

design is relatively low compared with an efficient design. They find that the 

theoretically minimum required number of CE respondents, following a 

conditional logit model, with orthogonal design is seven times more compared to 

a Bayesian D-efficient design. The gain in statistical efficiency enables the analyst 

to reduce the required sample size and/or reduce the number of choice tasks. The 

former translates into a reduction in survey costs while the latter leads to lesser 

time required for respondents to complete the survey. 

                                                           

20 Orthogonal designs are described in detail in Louviere, et al. (2000) and Hensher, et al. (2005). 
An electronic library of orthogonal designs is available at 
http://www2.research.att.com/~njas/oadir/ 
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However, the Bayesian D-efficient Design (BDD) criterion requires 

reliable prior knowledge of parameter estimates which could come from a pilot 

survey (Ferrini and Scarpa, 2007). Given that analysts would not have enough 

time to collect a priori information but would still like to generate a design 

derived from logit model, he/she might opt to employ the Optimal Orthogonal 

Design (OOD) criterion in generating the ED. OOD criterion employs an 

algorithm that search through different EDs generated assuming that all parameter 

estimates (from a conditional logit model) are equal to zero (Street and Burgess, 

2005; Sandor and Wedel, 2005). However, assuming a set of prior parameter 

values of zero might be too naïve because an analyst could easily access 

information about the priors from related studies. One could also readily assume 

that the sign of the parameter for the cost attribute to be negative and for 

obviously positive changes to be positive. 

Given that analysts select a particular ED criterion depending on their 

objectives and specific situation, very limited studies have accounted for the 

behavioural impact of using different design criteria. In terms of statistical 

efficiency, previous studies compared different design criteria using simulations 

and found that designs following the BDD criterion provide more statistically 

efficient parameter estimates than those from ORD criterion (Bliemer and Rose, 

2009; Vermuelen et al., 2011; Scarpa et al., 2009).  However, no study to date has 

empirically investigated the impact of different ED criteria on measures of 

behavioural efficiency, such as choice complexity and attribute non-attendance, 

using a real sample and with a specifically controlled design.  
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Choice task complexity has been linked to the manner in which attribute 

levels are arranged across alternatives in a choice task. We use the complexity 

measure called “entropy” described in Swait and Adamowicz (2001a, 2001b). The 

higher the entropy value the greater the complexity level of a choice task. Such 

choice task would require respondents to exert more cognitive effort in the 

selection of the preferred alternative.  

Attribute Non-Attendance (ANA) refers to the tendency of some 

respondents to systematically ignore particular attributes in the evaluation of 

alternatives in a choice task (Scarpa et al., 2009). (Pages 34 to 37 (Chapter 2) 

include a description of how to model ANA). There are currently two ways of 

addressing ANA, namely: Inferred and Stated. Inferred ANA is derived from 

observed patterns of choice made by respondents, while Stated ANA is obtained 

from respondents self-reporting their non-attendance to specific attributes after 

completing a choice task (or a series of choice tasks) (Scarpa et al., 2011a). In this 

study, as we collected very limited data on stated ANA, we focus our analysis on 

inferred ANA. The data analysis reported in this chapter aims to answer the 

following research questions: 

(1) Does the selection of ED criterion affect inferred Attribute 

Non-Attendance? If so, what are the effects on the parameter 

estimates and WTP values? 

(2) Is there an effect of higher choice task complexity on the 

variance of the Gumbel error (the unobserved component of 

utility)? 
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(3) If so, does this vary across different experimental designs? 

Which particular experimental design provides the most benefit 

to a choice experiments exercise? 

Answers to the above questions would cast some light on the issue of 

criterion selection for stated choice experimental design. Identification of an 

experimental design that provides the highest behavioural efficiency would 

benefit not only choice analysts, but also the respondents who evaluate a series of 

complex choice questions. Attribute Non-Attendance (ANA) is described in 

Chapter 2 and very briefly in Section 4.2. The choice complexity metric is 

discussed in 4.3 and 4.4. Section 4.5 briefly describes the balanced data set used 

in the analysis. Section 4.6 presents the results in comparing ANA of different 

design criteria where we estimated panel latent class logit models to examine this. 

We also present the estimates of heteroskedastic logit models where we test the 

null hypothesis that the selection of ED has no effect on choice variability (via the 

entropy proxies). Conclusions are reported in section 4.7 where we show which 

design performed the best among the three designs studied here. 

4.2 Attribute non-attendance and experimental design  

The concept of attribute non-attendance and its modelling is described in Chapter 

2 of this thesis. Although it is evident that ANA in CE studies exists and 

econometric models have been developed to account for its presence, to our 

knowledge, there has been no study yet that examined the factors that contribute 

to ANA. This study aims to contribute to answering this research question by 

empirically investigating the effect of different ED criteria on attribute non-

attendance and on the estimated parameter values. We therefore attempt to test the 

null hypothesis: Attribute non-attendance is the same for both utility neutral and 
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Bayesian efficient designs. Utility neutral designs are EDs derived from design 

criteria that do not use prior knowledge of the parameters (e.g., ORD and OOD) 

while BDD falls under the group of Bayesian efficient designs that account for a 

priori  information of the parameters. 

4.3 Choice complexity 

CE approaches have demonstrated to yield greater information than contingent 

valuation (CV) approaches. However, the higher amount of information collected 

from CE comes at the cost of requiring respondents to exert additional cognitive 

effort (Swait and Adamowicz, 2001a, 2001b; DeShazo and Fermo, 2002, 2004). 

CE respondents are expected to have a full understanding of how to select the 

preferred alternative on each choice task, process the information provided and 

then choose the preferred alternative by making tradeoffs. This can be quite 

complex and the level of complexity in processing choice questions vary between 

CE studies as complexity level can be affected by the number of attributes and the 

number of attribute levels (Swait and Adamowicz, 2001a, 2001b; De Shazo and 

Fermo, 2002; Arentze et al., 2003). One consequence of higher complexity might 

be that respondents would tend to select the status quo alternative leading to status 

quo bias, which could seriously affect the welfare measure (Dhar, 1997a; Dhar, 

1997b; Boxall et al., 2009).  In addition, different complexity levels have been 

found to significantly influence decision strategy selection (Payne, 1976; 

Olshavsky, 1979; Payne et al., 1988; Simonson and Tversky, 1992). Despite the 

importance of studying choice complexity in CE, very few studies have been 

carried out to examine its impacts or to account for its presence (e.g., Mazzotta 

and Opaluch, 1995; Boxall et al., 2009; Bliemer and Rose, 2011).  
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Our literature review indicates that very limited number of studies 

examined the effects of different ED criteria on choice complexity. A few studies 

examined choice complexity in CE and employed the orthogonal design criterion 

(e.g., Arentze et al. 2003; DeShazo and Fermo, 2002; Swait and Adamowicz, 

2001a, 2001b). Louviere et al. (2008) compare the effects of different 

experimental designs on complexity by examining 44 EDs with systematically 

varying design dimensions as well as statistical efficiency. These authors focused 

on two ED criteria (i.e., optimal orthogonal and adaptive designs) with neither 

groups of designs being derived from a priori information on coefficient values. 

Viney et al (2005) focused on examining the effects of three different EDs (i.e., 

orthogonal, utility-balanced and random) on complexity by looking at the 

variance of the error term. Similar to Louviere et al., Viney et al. examined 

different EDs that were generated without any assumptions on parameter priors 

called “utility neutral designs” (Kessels et al., 2006).  

 Bliemer and Rose (2011) compare Bayesian D-efficient design with 

orthogonal design but their empirical analysis focused mainly on the gains in 

statistical efficiency (i.e., lower standard errors of attribute coefficients) but did 

not examine their effects on complexity. Many other studies compared utility 

neutral designs and Bayesian efficient designs and similarly they have shown 

empirical evidence that CEs based on efficient designs provide more accurate 

parameter estimates than utility neutral design (e.g., Kessels et al., 2006; Scarpa 

and Rose, 2008; Kerr and Sharp, 2010). 

 This is probably the first study to test whether the selection of different ED 

criteria influences the cognitive effort exerted by respondent as measured by 
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choice complexity in CE. In doing so, we employ the method described by Swait 

and Adamowicz (2001a) where complexity is measured by entropy that we 

describe in section 4.4. Following Swait and Adamowicz 2001a, we calculated the 

entropy value of each choice task. Using the heteroskedastic logit model we 

evaluate the impact of entropy on the scale parameter for each of the three design 

treatments. Doing this helped us to answer the question Does the effect of choice 

task complexity (via the entropy proxy) on choice variability vary across different 

experimental designs?  

 

4.4 Entropy as a measure of complexity and choice variability 

Swait and Adamowicz (2001a) suggest that the complexity of a choice task can be 

represented by entropy. Following their paper, Equations 4.1 and 4.2 shows the 

formulae to calculate for the entropy value E of choice set s represented as Es: 
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where Qnjs represents the choice probability that individual n chooses alternative j 

among k alternatives in choice set s. The betas are the estimated values from a 

conditional logit model. 
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 We now show how calculated choice task specific entropy value Es can be 

incorporated into the heteroskedastic logit model that we described in Chapter 2. 

Swait and Adamowicz (2001a) show that Es or the complexity of choice task s 

affects the error variance ( )2
sσ .  sσ is inversely related to the scale factor λs which 

can be presented as 
6⋅

=
s

s σ
πλ  where π is the constant that is approximately 

3.1416. We assume that λs is a quadratic function of Es of the choice situation so 

as to capture nonlinearities of entropy. 

( ) ( )2

21
exp ssss EEC γγλ +=  (4.3) 

 

The quadratic form in 4.3 above allows λs to account for the reaction of a 

respondent described by Keller and Staelin (1987) where one may tend to exert 

greater effort to making decisions (which could enhance preference consistency 

across respondents) up to a certain level of complexity. After reaching a particular 

level, respondents may tend to employ simplifying decision heuristics resulting to 

collection of data with greater preference inconsistencies. If this situation applies 

to one of the design treatments, then we could expect that 4.3 would have 01 <γ  

and 02 >γ . If 01 <γ  and 02 =γ , then we have a situation where an individual 

reacted to an increase in complexity level mainly by resorting to simplifying 

heuristics and very limited cognitive effort to cope with higher entropy. Finally, if 

02 =γ  and 01 =γ  then we fail to reject the null hypothesis that entropy has no 

effect on scale. This implies that the increase in complexity would not likely reach 

a point at which greater preference inconsistencies could occur.  
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4.5 Data 

For examining the effects of different ED criteria on attribute non-attendance and 

choice complexity, we use the Balanced sample described in Section 2.5 of this 

thesis. This sample consists of 1509 choice observations that are evenly 

distributed across three different ED samples composed of Orthogonal Design 

(ORD), Optimal Orthogonal Design (OOD) and Bayesian D-efficient Design 

(BDD). For an objective comparison of the three EDs, we allocated each design 

treatment with 503 choice observations. The three samples all have equal number 

of observed choice set orders (i.e., 56 observations for the 1st, 2nd, 4th, 5th, 6th, 7th, 

8th and 9th choice set orders; and 55 observations for the 3rd choice set order).  

4.6 Results 

4.6.1 Conditional logit model 

We estimated the coefficients for the same utility specification of a conditional 

logit model (Table 4.1) from three different samples of choices each based on 

different design criterion. In terms of parameter estimates, the coefficients for cost 

for the three samples are all negative and significant, suggesting that the decision 

of respondents to choose their desired alternative is negatively influenced by the 

amount of money that they would pay to enhance biodiversity in planted forests. 

All significant coefficients for the environmental attributes (e.g., Brown kiwi 1, 

Brown kiwi 2, Bush falcon 2) have positive signs which implies that the proposed 

biodiversity enhancement outcomes contribute positively to the utility of an 

individual. Although some estimated coefficients (e.g., Green gecko 1, Native 

plant 1) have negative signs, these are not statistically significant. A relatively 

larger proportion of coefficient estimates in the OOD sample are not statistically 
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significant particularly the non-bird species which maybe considered as less 

charismatic species. We suspect that this situation might indicate non-attendance 

to that particular subset of attributes. This might be attributed to the fact that the 

bird species would likely be more familiar or more readily seen in planted forests 

while the native plant, gecko and native fish seem less visible in planted forests or 

other areas of New Zealand.  

The coefficient for the indicator for status quo option (SQ) for the ORD 

sample is positive and significant while those from the two other designs are 

negative but not significant. We surmise that respondents with choice tasks 

generated from the ORD criterion would likely choose SQ or they have a higher 

tendency to opt out compared to the other two designs. We investigate this 

conjecture by using the latent class panel models that account for attribute non-

attendance in the next section.
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Table 4.1: Conditional logit model estimates for the three design treatments 

Attribute 
ORD BDD OOD 

Coeff Std Err p-value Coeff Std Err p-value Coeff Std Err p-value 

Brown kiwi 1 0.471 0.209 0.02 0.377 0.179 0.04 0.198 0.198      <0.01 

Brown kiwi 2 0.702 0.206      <0.01 0.456 0.168 0.01 0.191 0.191      <0.01 

Native fish 1  0.349 0.195 0.07 0.378 0.161 0.02 0.180 0.180 0.36 

Native fish 2 0.242 0.202 0.23 -0.031 0.169 0.86 0.175 0.175 0.28 

Native plant 1 0.259 0.185 0.16 -0.039 0.180 0.83 0.187 0.187 0.25 

Native plant 2 -0.092 0.205 0.65 0.436 0.165 0.01 0.184 0.184 0.58 

Green gecko 1 0.132 0.200 0.51 -0.053 0.167 0.75 0.190 0.190 0.78 

Green gecko 2 0.443 0.197 0.03 -0.179 0.167 0.29 0.180 0.180 0.45 

Bush falcon 1 0.499 0.208 0.02 0.567 0.170      <0.01 0.196 0.196 0.14 

Bush falcon 2 0.823 0.202      <0.01 0.789 0.172      <0.01 0.186 0.186      <0.01 

Cost to respondent -0.026 0.003      <0.01 -0.020 0.003      <0.01 0.003 0.003      <0.01 

Indicator for SQ option 0.734 0.329        0.03 -0.039 0.307 0.90 -0.273 0.273 0.17 

          

Log-likelihood -459.28   -497.66   -469.62   

Rho-square 0.169   0.099   0.150   

Adjusted rho-square 0.147   0.078   0.128   

Observations 503   503   503   
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4.6.2 Panel latent class logit model results 

To identify some of the possible latent classes for attribute non-attendance, on page 

16 of the questionnaire, we asked each respondent which attributes that he/she did not 

attend to. This question immediately followed after a respondent completed the 

evaluation of the nine choice tasks on pages 7 to 15. Table 4.2 presents the self-

reported attribute non-attendance of the three design treatments. BDD has the lowest 

average non-attendance rate of 6.4% while ORD has the highest average. About 5% 

of the responses in the ORD sample did not attend to brown kiwi while the two other 

treatments both have zero non-attendance rate. The ORD treatment has the highest 

proportions of stated ANA in four out of the five environmental attributes. The BDD 

treatment consistently demonstrates the lowest proportion of non-attendance in all 

five attributes. The p-values in the sixth column of Table 4.2 indicate significant 

differences in the proportions of stated non-attendance between ORD and BDD.  

Table 4.2: Percentage (%) of respondents stating non-attendance and testing the 
equality of proportions between treatments 

 

ORD BDD OOD Pooled 

Test of equality of proportions between 
treatments (p-value) 

 
ORD vs 

BDD 
ORD vs 
OOD 

BDD vs 
OOD 

Brown kiwi 5.4 0.0 0.0 1.8 <0.001 <0.001   1.000 

Native fish 17.5 12.5 17.9 16.0 <0.001   0.775 <0.001 

Native plant 14.3 10.7 14.3 13.1   0.003   1.000   0.003 

Green gecko 17.5 7.2 7.2 10.6 <0.001 <0.001   1.000 

Bush falcon 3.6 1.8 1.8 2.4   0.002   0.002   1.000 

Average 11.7 6.4 8.2 8.8 -- -- -- 
Minimum 3.6 0.0 0.0 1.8 -- -- -- 
Maximum 17.5 12.5 17.9 16.0 -- -- -- 
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Table 4.2 also shows a pattern that the non-bird attributes (fish, plant and gecko) have 

higher rates of non-attendance relative to the two native bird species. This allows the 

identification of non-attendance to non-bird species as one latent class. The next latent 

class identified is non-attendance to status quo option. This is based on the fact that in 

choice experiments, there could potentially be a status quo bias where a respondent 

would tend to choose the status quo option or simply opt out from evaluating the 

change alternatives (Boxall et al., 2009). We assume here that the opposite can also 

hold true wherein respondents could also tend to ignore the status quo and focus only 

on the changed alternatives. There is a possibility that the underlying experimental 

design could affect this potential source of bias. A third possible latent class is full 

attendance where a class of respondents considered all the six attributes in the 

evaluation of choice tasks.  

Ten latent class model specifications have been tested through a grid search 

procedure. The grid search was done to identify a group of latent classes across 

designs that produce the best model fit and, at the same time, latent class models 

should have converged for the three design treatments. This is to allow the 

comparison of the three treatments. Table 4.3 shows the normalised AICs of 10 

different latent class model specifications of the design treatments. As much as we 

would like to use the estimates of specifications with the lowest AICs, there were 

convergence issues in those groups. Some specifications that converged show p-

values of 1.00 in the latent classes making them unusable. For instance, although 

specification number 5 has lower AICs, the p-value for the cost coefficient in the 

OOD gets a p-value of 1.00 which can be a sign of misspecification.We settled on 

using the estimates from LCM specification number 3 because the model for all three 

treatments converged and all p-values of latent classes made sense.   
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Table 4.3: Estimates of normalised AICs of latent class logit models using the 
three design samples  

Specification 
Number 

Latent classes (LCs) – Attributes 
ignored 

Normalised AIC (AIC/N) 

ORD BDD OOD 

1 LC1 - Ignored SQ,  
LC2 – Ignored Gecko, Kakabeak 
and Kokopu 
LC3 – Ignored all attributes 

1.126  Did not 
converge 

1.309 

2 LC1 - Ignored SQ,  
LC2 – Ignored Gecko, Kakabeak 
and Kokopu 
LC3 – Ignored Cost 

1.168 
 
 

1.339 1.243  

3 LC1 – Ignored SQ,  
LC2 – Ignored Gecko, Kakabeak 
and Kokopu 
LC3 – Full attendance 

1.135 1.362 1.309 

4 LC1 – Ignored SQ  
LC2 – Ignored Gecko, Kakabeak 
and Kokopu 
LC3 – Full attendance 
LC4  – Ignored all attributes 

1.077 Did not 
converge 

1.332 

5 LC1 – Ignored cost 
LC2 – Ignored SQ  
LC3 – Ignored Gecko, Kakabeak 
and Kokopu 
LC4  – Ignored all attributes 

1.147 1.340  1.413 

6 LC1 – Ignored cost 
LC2 – Ignored SQ  
LC3 – Ignored Gecko, Kakabeak 
and Kokopu 
LC4  – Ignored Falcon 

1.172 1.342  1.085 

7 LC1 – Ignored cost 
LC2 – Ignored SQ  
LC3 – Ignored Gecko, Kakabeak 
and Kokopu 
LC4  – Ignored Kiwi 

1.131  1.335 1.247  

8 LC1 – Ignored SQ  
LC2 – Ignored Gecko, Kakabeak 
and Kokopu 
LC3  – Full attendance 
LC4  – Ignored Kiwi 

1.139 1.365 Did not 
converge 

9 LC1 – Ignored SQ  
LC2 – Ignored Gecko, Kakabeak 
and Kokopu 
LC3  – Full attendance 
LC4  – Ignored Falcon 

1.139 1.366 1.362 

10 LC1 - Ignored SQ  
LC2 – Ignored Gecko, Kakabeak 
and Kokopu 
LC3  – Ignored Kiwi 
LC4  – Ignored Falcon 

Did not 
converge 

1.366 1.371 
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Table 4.4 presents the estimates of latent class panel model for the three design 

treatments for specification 3 from Table 4.3. For each design treatment, the three 

behaviourally defined latent classes were: (1) a class that attended to all six attributes; 

(2) a class that did not attend to non-bird species which were Green gecko, Kakabeak 

plant and Kokopu fish; and (3) a class that ignored the SQ alternative. For the first 

class, as all attributes were assumed to have been attended, all coefficients were not 

constrained. For the second class, we defined this latent class by constraining to zero 

the coefficients of the three non-bird species. For the third class, the coefficient for 

SQ was constrained to zero.  

 As expected, the model goodness of fit significantly improved when the latent 

class panel model is used compared to the conditional logit model (Table 4.4). This is 

indicated by the statistically significant increases in the log likelihood values (e.g., for 

ORD, from -459 to -271). This provides evidence of the presence of heterogeneity in 

attribute attendance in the three choice data sets. Table 4.4 reports results for the three 

design treatments, the estimated probabilities for the class that ignored the SQ 

alternative are significant at the 99.9% level. The BDD sample has the highest latent 

class probability of ignoring the SQ (0.647) while OOD has the lowest probability 

(0.481) and closely followed by ORD (0.489). This result might indicate that choice 

tasks generated from BDD criterion would likely have better encouraged respondents 

to focus more on the designed alternatives compared to the two other design 

treatments. On the other hand, the latent class probabilities for OOD and ORD are 

virtually the same. To compare these two design treatments, we look at the signs of 

the utility coefficients for SQ, which is negative and significant for OOD while 

positive and significant for ORD. This suggests that in the ORD sample, the 

expectation of moving away from the current situation would partly affect people’s 
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utility negatively. While in OOD sample, moving away from the current situation 

would partly positively affect utility. These results indicate that using ORD will lead 

to more respondents opting out compared to OOD. 

Table 4.4 shows that the coefficients of the indicators for the SQ option are 

both positive and significant for both ORD and BDD treatments. This suggests that, 

after controlling for non-attendance, respondents in both treatments who tended not to 

ignore the SQ option, seem to like the current condition and would be willing to 

support it. This is the opposite of what we found in the OOD sample, where the 

coefficient for the SQ option is negative and significant, indicating that a typical 

respondent would not be likely to stay with the current scenario but would gain more 

utility from the scenario with greater level of biodiversity.  

Table 4.4 also shows that the OOD sample has the highest probability value 

(0.519) for the class that ignored the less charismatic species. A possible reason for 

greater occurrence of non-attendance is that respondents may have felt that attending 

to all attributes is more complex or imposing greater cognitive burden in choice tasks 

designed using the optimal orthogonal criterion. This design may have made them 

attend to a smaller number of attributes, perhaps as an attempt to reduce their effort in 

doing tradeoffs so as to still complete all the nine choice tasks they were expected to 

finish.  

The BDD design has the highest probability value (0.647) for the class that 

ignored SQ. This indicates that this class would be likely to focus more attention on 

the scenario alternatives proposing change and therefore more likely to place a higher 

value to the changed alternatives. We speculate that a possible reason for this is that 

the combination of attribute levels presented in the alternatives different to the SQ 
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have been found to be “more coherent” by respondents and this somewhat reduced the 

cognitive effort in evaluating those alternatives. What I meant by “more coherent” is 

that attribute levels from choice tasks derived from BDD are more logically arranged 

compared to the two other designs. There seem to be a criterion in BDD that imposes 

moderate overlaps of attribute levels between alternatives. By visually comparing 

choice tasks across the three design treatments, ORD choice tasks, in general, exhibit 

the most number of overlaps; OOD does not have any overlap; while BDD choice 

tasks seem to be in-between or have moderate number of overlaps. (This was based on 

actual observation of the choice tasks generated from the three different designs.) We 

speculate here that the overlaps in BDD might be at the right frequency that makes the 

attribute levels in the choice tasks to somewhat appear more logically arranged to 

respondents. Appendix Figures 1, 2 and 3 show examples of choice tasks of the three 

designs with different levels of overlaps. Chrzan and Orme (2000) define minimal 

overlap as “Within choice sets, attribute levels are duplicated as little as possible.” 

Chrzan and Orme provide results suggesting that choice based conjoint designs with 

moderate or balanced overlaps would be a desirable design strategy compared to 

minimal or higher frequencies of overlaps. 

To further examine if the BDD treatment results to greater non-attendance to 

the SQ option, we used the balanced pooled sample and ran the panel latent class 

model (PLCM) that we used earlier on each design sub sample. Table 4.5 (columns 5, 

6 and 7) presents the PLCM estimates from the pooled sample.  All three non-

attendance latent class probabilities are significant at the 90% confidence level with 

the class ignoring the SQ option predicted to have the highest proportion of 

respondents at 50%, followed by those who ignored the non-bird attributes at 36% 

and then full attendance at 14%.  Columns 8, 9 and 10 of Table 4.5 present the 
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estimates from the panel latent class model that allows each class membership to be a 

function of design.  For the class that ignored the SQ option, the coefficient for BDD 

is the highest among the three designs and is significant at the 90% level. This 

corroborates the finding in the split samples that BDD choice tasks have the highest 

proportion of respondents who ignored the SQ option.    
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Table 4.4: Panel latent class model estimates for the three design treatments 

Attribute 
ORD BDD OOD 

Coeff Std Err p-value Coeff Std Err p-value Coeff Std Err p-value 

Brown kiwi 1 0.806 0.508 0.11 0.873 0.192     <0.01 0.985 0.229     <0.01 

Brown kiwi 2 1.176 0.437 0.01 1.081 0.223     <0.01 1.094 0.252     <0.01 

Native fish 1  0.997 0.378 0.01 0.556 0.255 0.03 -0.167 0.386 0.67 

Native fish 2 0.867 0.450 0.05 0.267 0.208 0.20 -0.361 0.412 0.38 

Native plant 1 0.986 0.366 0.01 0.534 0.233 0.02 -1.336 0.565 0.02 

Native plant 2 0.653 0.470 0.16 0.820 0.207     <0.01 -0.603 0.397 0.13 

Green gecko 1 0.339 0.264 0.20 0.255 0.227 0.26 -0.861 0.447 0.05 

Green gecko 2 1.236 0.411     <0.01 0.189 0.244 0.44 0.054 0.408 0.90 

Bush falcon 1 1.307 0.409     <0.01 1.031 0.246     <0.01 0.477 0.217 0.03 

Bush falcon 2 1.976 0.280     <0.01 1.348 0.234     <0.01 0.668 0.220     <0.01 

Cost to respondent -0.037 0.003     <0.01 -0.014 0.003     <0.01 -0.045 0.005     <0.01 

Indicator for SQ option 4.419 0.843     <0.01 4.277 0.580     <0.01 -4.002 0.508     <0.01 

Latent Class (LC) LC Prob Std Err p-value LC Prob Std Err p-value LC Prob Std Err p-value 

C1 - Full Attendance 0.114 0.303 0.71 0.083 0.328 0.80 <0.001 <0.001 0.98 

C2 - Ignored 3 non-bird attributes 0.397 0.171 0.02 0.270 0.182 0.14 0.519 0.104      <0.01 

C3 - Ignored the SQ alternative 0.489 0.161      <0.01 0.647 0.071      <0.01 0.481 0.112      <0.01 

Log-likelihood -271.47    -328.49    -315.27    

Normalised AIC 1.135    1.362    1.309    

Normalised Finite Sample AIC 1.137    1.364    1.311    

Normalised BIC 1.252    1.479    1.427    

Observations 503     503     503     
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Table 4.5: Panel latent class model estimates from the pooled balanced sample 
Item Multinomial Logit Model Panel Latent Class Logit (PLCL) 

Model on Pooled Balanced Sample 
PLCL Model with class membership 

as a function of design 

Coeff Std Err p-value Coeff Std Err p-value Coeff Std Err p-value 

Kiwi 1 0.495 0.109 <0.01 0.667 0.128 <0.01 0.670 0.130 <0.01 

Kiwi 2 0.654 0.105 <0.01 1.125 0.132 <0.01 1.156 0.135 <0.01 

Kokopu 1 0.318 0.101 <0.01 0.653 0.135 <0.01 0.690 0.134 <0.01 

Kokopu 2 0.134 0.103 0.19 0.565 0.145 <0.01 0.598 0.147 <0.01 

Kakabeak 1 0.179 0.103 0.08 0.695 0.127 <0.01 0.726 0.130 <0.01 

Kakabeak 2 0.228 0.103 0.03 0.637 0.118 <0.01 0.667 0.122 <0.01 

Gecko 1 0.019 0.102 0.85 0.227 0.113 0.04 0.246 0.115 0.03 

Gecko 2 0.098 0.101 0.33 0.195 0.104 0.06 0.206 0.105 0.05 

Falcon 1 0.481 0.106 <0.01 0.538 0.140 <0.01 0.536 0.141 <0.01 

Falcon 2 0.720 0.104 <0.01 0.883 0.119 <0.01 0.891 0.123 <0.01 

Indicator for status quo 0.159 0.171 0.35 -0.429 0.235 0.07 -0.404 0.253 0.11 

Cost -0.026 0.002 <0.01 -0.095 0.006 <0.01 -0.093 0.006 <0.01 

LC1 - Full attendance 
   

0.137 0.076 0.07 
   

LC2 - Ignored SQ 
   

0.502 0.046 <0.01 
   

LC3 - Ignored non-bird attributes 
   

0.361 0.083 <0.01 
   

Full attendance (LC1 as a function of design) 
      

   - Constant (ORD) 
      

-1.021 0.786 0.19 

   - BDD 
      

-0.632 0.871 0.47 

   - OOD 
      

0.531 0.685 0.44 

Ignored SQ (LC2 as a function of design) 
      

   - Constant (ORD) 
      

-0.123 0.377 0.74 

   - BDD 
      

0.758 0.445 0.09 

   - OOD 
      

0.524 0.438 0.23 

Log-likelihood -1460.32 
  

-964.09 
  

-960.51 
  

Normalised AIC 1.951 
  

1.296 
  

1.297 
  

Number of choice observations 1509 
  

1509 
  

1509 
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4.6.3 Complexity and heteroskedastic logit by design treatment 

Swait and Adamowicz (2001a) suggest that entropy is a convenient scalar measure of 

complexity that summarises the impacts of number of alternatives, number of 

attributes, number of attribute levels, and preference similarity among alternatives. 

The three design treatments we examine here are identical in terms of number of 

alternatives, number of attributes and attribute levels. However, since they were 

constructed using three different design criteria, they are likely to differ in terms of 

preference similarity among alternatives. The theoretically maximum entropy is 

achieved when each alternative in a choice task has an equal chance of being selected 

compared with other alternatives. Having an equal chance of being selected could 

have two outcomes: (1) respondents exerted more effort in evaluating choice tasks 

with higher complexity, or (2) respondents chose the “preferred” alternative randomly 

without applying any effort.   

Following Equation 4.1, we calculate the entropy of each design block of the 

three designs. Table 4.6 shows a summary of these entropy measures by block and by 

design. Among the three design criteria, ORD has the lowest mean and median 

entropy values of 0.894 and 0.942. However, ORD also has the highest entropy 

standard deviation that is at least twice as large as the other two designs. One reason 

for this is that the choice tasks in Block 2 of ORD, on average, have low entropy 

values and these have reduced the overall mean entropy. This resulted in a wide 

dispersion of entropy values across ORD choice tasks. The above implies that 

although ORD is the design with the lowest overall entropy, complexity levels across 

choice tasks vary twice as much as the choice tasks in the other designs. As BDD has 
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the least standard deviation, the variation in complexity across choice task is the 

lowest among the three designs. 

We illustrate the distribution of entropy measures of the choice tasks (Es) for 

each design using the kernel density plot shown in Figure 4.1. Each kernel density 

shows the proportion of the 27 choice tasks (distributed into three blocks) for each 

design. ORD has the widest entropy range while BDD and OOD have virtually the 

same entropy range. However, despite the similarity of entropy ranges for BDD and 

OOD, the entropy for the former is more concentrated towards less than 1.0 with the 

latter towards greater than 1.0. This illustrates the fact that the BDD design has more 

entropy values distributed over the lower range than the OOD. The narrower BDD 

kernel density also illustrates that it has the lowest dispersion of entropy as suggested 

by the lower standard deviation of 0.078 compared to ORD and OOD with 0.171 and 

0.085, respectively (please see Table 4.6).  

Figure 4.1: Kernel density of entropy by experimental design 

 

 

0

1

2

3

4

5

6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

D
en

si
ty

Entropy

Orthogonal

Bayesian D-efficient

Optimal orthogonal



128 

 

Table 4.6: Distribution of entropy values by design and by block 
 Orthogonal Bayesian D-efficient Optimal orthogonal Pooled Sample 

 B1 B2 B3 All B1 B2 B3 All B1 B2 B3 All B1 B2 B3 All 

Mean 0.984 0.717 0.982 0.894 0.952 0.959 0.954 0.955 0.927 0.991 0.962 0.960 0.954 0.889 0.966 0.939 

Median 0.963 0.744 0.989 0.942 0.951 0.971 0.961 0.962 0.912 1.015 1.015 1.013 0.944 0.936 0.989 0.962 

Standard deviation 0.083 0.178 0.053 0.171 0.052 0.112 0.058 0.078 0.082 0.080 0.083 0.085 0.077 0.178 0.066 0.122 

Minimum 0.838 0.431 0.906 0.431 0.871 0.772 0.865 0.772 0.830 0.788 0.832 0.788 0.830 0.431 0.832 0.431 

Maximum 1.097 0.960 1.052 1.097 1.029 1.085 1.050 1.085 1.092 1.068 1.060 1.092 1.097 1.085 1.060 1.097 

Number of choice 
tasks 

27 27 27 81 27 27 27 81 27 27 27 81 81 81 81 243 

 
 
Table 4.7: Estimates from conditional and heteroskedastic logit models 

Design 
No. of observed 

choice sets 
Log-likelihood 

Conditional Logit 
Log-likelihood 

Heteroskedastic Logit 
Likelihood ratio test 

statistic 

Estimated Coefficient 
of Entropy 

(Robust p-value) 

Estimated Coefficient 
of Entropy Squared 
(Robust p-value) 

ORD 503 -459.28 -455.09 8.38 
-11.1 

(<0.01) 
9.46 

(<0.01) 

BDD 503 -497.66 -496.14 3.04 
5.67 

(0.90) 
-4.75 
(0.84) 

OOD 503 -469.62 -468.92 1.40 
-5.86 
(0.03) 

2.41 
(0.21) 

Pooled 
 

1509 -1460.32 -1458.86 2.92 
-4.82 
(0.21) 

2.67 
(0.28) 
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Table 4.7 presents the estimates from the conditional and heteroskedastic logit 

models for the three design treatments. (Conditional and heteroskedastic logit models 

are earlier introduced in Chapter 2). The conditional logit model imposes the 

restriction that scale is not a function of entropy or complexity while the 

heteroskedastic logit model relaxes this assumption by allowing the scale to vary 

based on complexity level of choice tasks. Of the three designs, only the ORD has a 

significant improvement in log likelihood value when scale is considered to be a 

function of entropy. This is indicated by the likelihood ratio (LR) test statistic of 8.38 

which exceeds the critical Chi-square value with two degrees of freedom at the 95% 

confidence level of 5.99.  

The pooled sample did not have a significant improvement in fit with scale as 

indicated by the Chi-square test statistic of only 2.92. This result is not surprising as 

OOD and BDD samples (or two-thirds of the pooled sample) both have low Chi-

square test statistics. Similarly, both BDD and OOD treatments failed to reject the null 

hypothesis that scale is not a function of complexity as indicated by Chi-square test 

statistics of 3.04 and 1.40, respectively. This result is consistent with the findings in 

Swait and Adamowicz (2001a) which suggests that “the lack of variability in entropy 

across respondents is leading to this non-significant impact of complexity”. Swait and 

Adamowicz suggest that the design of CE should include some fraction of simpler 

tradeoffs (e.g., entropy range [0.60,0.80]) and some fraction with an extreme entropy 

range (e.g., [1.00,1.20]) to allow the separation of variance and taste effects. 

However, that paper also mentioned that the objective of allowing a wide entropy 

range would be advantageous for analysing data sets that combine Stated Preference 

(SP) with Revealed Preference (RP) data. The EDs examined in that paper consisted 

of 10 data sets (6 SPs and 4 RPs) that were all derived from the orthogonal main 
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effects design criterion which is the criterion used in constructing ORD for this 

present study. In the present study ORD varies highly in complexity as denoted by the 

0.431-1.097 entropy range, while BDD and OOD had ranges of 0.772-1.085 and 

0.788-1.092 , respectively. It appears that when the design criterion assumes that the 

choice data will be analysed using a conditional logit model, the entropy range is 

minimised and this contributes to a reduction in the statistical significance of the 

effect of entropy on the scale factor. 

The scale coefficients for entropy in column 5 of Table 4.7 show that OOD 

and ORD are negative and significant which is consistent with respondents in both 

treatments resorting, to some degree, to simplifying decision heuristics. This might 

include attribute non-attendance and avoiding cognitive burden by defaulting to the 

SQ option (Swait and Adamowicz, 2001b; Boxall et al., 2009). Those simplifying 

heuristics generate greater preference inconsistencies, which can be reflected by an 

increase in the variance of the unobserved component of utility.  

Columns 5 and 6 of Table 4.7 show that, in the ORD treatment, scale is a 

function of entropy as indicated by very low p-values of the scale coefficients for 

entropy and entropy squared. The p-value of the scale coefficient for entropy is less 

than 0.05 while for entropy squared is nearly significant. Thus we cannot jointly omit 

the scale for OOD. For the BDD treatment, high p-values of both scale coefficients 

indicate that we can jointly omit scale. The ED derived from the BDD criterion seems 

to have provided choice tasks that somewhat reduced the effort on the part of the 

respondents to find the utility maximising choice. This might provide the reason why 

65% of the respondents who completed the BDD choice tasks were likely to ignore 

the SQ option. This shows a pattern that the absence of influence of entropy on scale 
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resulted in more coherent experimentally designed alternatives in choice tasks where 

respondents paid more attention to all attributes.  

It is important to note that the sample size of each design treatment only has 

503 choice observations which might not be enough to make the above results 

generalisable. The above results might be specific to the relatively small choice data 

set analysed here.  Appendix Table 4 presents the utility coefficients of the 

heteroskedastic logit models, where scale coefficients for entropy are presented in 

Table 4.7. Unfortunately all utility coefficients (in Appendix Table 4) which are 

significant in the conditional logit model estimates in Table 4.1 are no longer 

significant with the addition of entropy scale coefficients. We speculate that a possible 

reason for this is that we used a small sample size that resulted to a lack of variability. 

This might suggest that the findings in this study may be specific to the choice data 

collected here. 

4.6.4 Complexity and heteroskedastic logit (pooled sample) 

We have pooled the three ED samples and analysed the effect of entropy on scale 

while controlling for the design effects. Table 4.8 begins with Model 1 which is the 

basic conditional logit model. Model 1 shows significant coefficient estimates very 

similar to those of the conditional logit estimates for the BDD sample in Table 4.1. 

Model 2 is a heteroskedastic conditional logit model which allows for factors that 

could influence scale. Similar to the results in the split samples, all estimates of utility 

coefficients, including cost, are no longer significant. However, as we added four 

scale factors related to entropy and design criteria, these contributed to significantly 

improving model fit from a log-likelihood of -1460 in Model 1 to -1453 in Model 2. 

The log-likelihood ratio test statistic of 14.3 exceeds the critical Chi-square value at 
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the 95% confidence level of 9.49 and implies rejection of the restricted form. Model 2 

allows the testing of entropy measures on scale where the signs of the two scale 

coefficients suggest a quadratic effect but not statistically significant. While 

controlling for the quadratic effects of entropy on scale, we also tested for the effects 

of EDs. Using ORD as the reference design, the scale coefficient for BDD is 

negatively significant at the 98% confidence level while OOD is also negative but not 

significant. This might indicate that relative to ORD, and after controlling for entropy, 

BDD contributes to increasing the variance of the error term leading to greater choice 

inconsistency. This contradicts the results presented in sections 4.6.2 and 4.6.3 which 

show that BDD contributes more to increasing attendance to the designed alternatives 

and provides greater choice consistency relative to the other two designs. We further 

examine this result using Model 3, which is a heteroskedastic logit model where we 

interacted entropy variables with ED indicators to capture the net effect of the 

designs. Model 3 estimates show positive scale coefficients for BDD and OOD but 

not statistically significant. Actually it may be difficult to say anything from Model 3 

estimates as all utility and scale coefficients are no longer significant. There is also no 

significant improvement in model fit from moving from Model 2 to Model 3. 

However, focusing on the signs and magnitudes of the design coefficients, these 

results are consistent with those in the previous sections suggesting that the net effect 

of BDD results to lower error variance relative to ORD. Consequently, given that we 

neither see any clear net effect of design nor any joint effect of the interaction 

between design and entropy in Table 4.8, we examine further the effect of choice 

complexity via the attribute dispersion proxy (which is another component of choice 

task complexity) in the next chapter of this thesis.  



133 

 

Table 4.8: Estimates from Logit models from the pooled sample 
 
 

Model 1 
Conditional Logit Model 

Model 2 
Heteroskedastic Conditional Logit 

Order, Designs and Entropy as Scale 

Model 3 
Heteroskedastic Conditional Logit 

Order, Designs & Entropy with 
Interaction 

 Coeff Std Err p-value Coeff Std Err p-value Coeff Std Err p-value 

Brown kiwi 1 0.495 0.111 <0.01 1.960 2.620 0.45 8.460 15.900 0.60 
Brown kiwi 2 0.654 0.105 <0.01 2.730 3.820 0.48 11.700 23.200 0.61 
Native fish 1  0.318 0.101 <0.01 1.170 1.600 0.47 4.960 9.810 0.61 
Native fish 2 0.134 0.104 0.20 0.527 0.768 0.49 2.550 5.090 0.62 
Native plant 1 0.179 0.102 0.08 0.728 1.090 0.50 2.970 5.850 0.61 
Native plant 2 0.228 0.105 0.03 0.658 0.911 0.47 2.810 5.210 0.59 
Green gecko 1 0.020 0.103 0.85 0.040 0.420 0.92 0.083 1.930 0.97 
Green gecko 2 0.098 0.101 0.33 0.485 0.680 0.48 2.430 5.320 0.65 
Bush falcon 1 0.481 0.107 <0.01 1.780 2.520 0.48 8.220 16.400 0.62 
Bush falcon 2 0.720 0.101 <0.01 2.760 3.770 0.46 12.100 23.500 0.61 
Cost to respondent -0.026 0.002 <0.01 -0.103 0.140 0.46 -0.445 0.863 0.61 
Indicator for SQ  0.159 0.176   0.37 -0.590 1.090 0.59 -3.500 7.920 0.66 

Indicator for Bayesian D-efficient design (BDD)   -0.473 0.170 0.01 10.100 13.100 0.44 

Indicator for Optimal orthogonal design (OOD)  -0.030 0.139 0.83 7.190 14.300 0.61 

Entropy of a choice task    -2.910 3.600 0.42 -7.640 5.600 0.17 

Entropy square    1.670 2.310 0.47 5.070 3.780 0.18 

BDD * Entropy       -21.700 29.900 0.47 

BDD * Entropy square       11.000 17.000 0.52 

OOD * Entropy       -12.900 31.600 0.68 

OOD * Entropy square       5.420 17.400 0.76 

Log-likelihood -1460.32   -1453.17   -1451.44   

Number of choice observations 1509   1509   1509   
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In Chapter 5, the same pooled balanced sample examined in this chapter will 

be used to examine whether the effect of higher attribute dispersion on the error 

variance vary across experimental designs.  Attribute dispersion was described and 

used in DeShazo and Fermo (2002) to show that respondents evaluated choice 

situations less consistently as task complexity increases. It is a different set of 

measures of task complexity in that it accounts mainly for the dispersion of attribute 

levels in a choice task. Compared to entropy, it does not use coefficient estimates to 

calculate the complexity measure. DeShazo and Fermo (2002) evaluate groups of 

choice tasks with varying number of alternatives, attributes and attribute levels which 

were all derived from the orthogonal criterion. In contrast, the analysis in Chapter 5 

focuses on the effect of attribute dispersion on the error variance of choice data 

collected from choice tasks with the same number of alternatives, attributes and 

attribute levels but derived from three different design criteria. 

 

4.7 Conclusions  

We conclude that based on the sample choice observations studied here, using the 

BDD criterion may offer some advantages. These include more statistically efficient 

parameter estimates, reduction in the theoretically minimum number of respondents 

and providing respondents with choice tasks that are relatively more behaviourally 

efficient. Higher behavioural efficiency is indicated by higher rates of attendance to 

the designed alternatives and lesser occurrence of choice inconsistencies. The above 

may be translated to higher data quality, more reliable parameter estimates and 

reduction in survey time and cost. However, we acknowledge that the above results 

might be specific to the split sample studied here. It would be good to have a future 



135 

 

study that could verify this result with a much larger choice data set with similar split 

designs.  

This chapter provides some evidence of the superiority of the Bayesian D-

efficient design criterion in terms of behavioural efficiency relative to optimal 

orthogonal and orthogonal designs. We found that the selection of ED criterion 

strongly affects both stated and inferred attribute non-attendance. Results indicate that 

the sequence of choice tasks derived from the Bayesian D-efficiency criterion tend to 

minimise stated attribute non-attendance. Design alternatives from this criterion were 

found to have lower inferred attribute non-attendance relative to the other two 

designs. The lower attribute non-attendance rate is found to lead to more accurate 

welfare estimates as respondents tend to be more engaged in the evaluation of 

designed alternatives and demonstrated a relatively lower incidence of opting out. 

In terms of the impact of choice task complexity on choice variability of 

respondents, we found that the three design criteria have varying impacts. Results 

suggest that the variation in complexity levels (via the entropy proxy) of choice tasks 

derived from the Bayesian D-efficiency criterion does not lead to an increase in 

choice inconsistency (via the error variance proxy) of respondents, whilst the 

variation in task complexity of the other two criteria does increase choice 

inconsistency. We found that, unlike in the two other design treatments, the entropy 

levels in choice tasks derived from the Bayesian D-efficiency criterion do not increase 

in any way, the variance of the Gumbel error.  

We have shown that, in terms of attribute non-attendance and contribution to 

choice consistency, Bayesian D-efficiency is the superior criterion. However, there 

may be other factors that could show the difference between the three EDs examined 
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here, such as attribute dispersion of choice tasks and learning/fatigue effects 

(DeShazo and Fermo, 2002; Plott, 1986; Bateman et al., 2008; Caussade et al., 2005). 

We present and discuss our examination on the effects of attribute dispersion and 

learning on choice variability across designs in the next chapter of this thesis. 
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Chapter 5: Design criteria effects on choice complexity and learning 

5.1 Introduction 

Stated Choice Experiments (CE) has been widely used in many different fields to 

study the preferences of individuals. Over the last two decades, several Experimental 

Design (ED) criteria (e.g., Bayesian D-efficient design (BDD), Optimal orthogonal 

design (OOD)) have been developed to address the drawbacks of the most widely 

used criterion Orthogonal Design (ORD). However, despite analysts employ different 

EDs for conducting CE exercises, most of them assumed that the selection of ED 

criterion is neutral to the estimated parameter values. This chapter explores this issue 

and investigates whether the three different EDs have the same effect on the estimates 

of the coefficients (β) of the indirect utility function and scale coefficients (λ), while 

controlling for the effects of task complexity and task order. 

In Chapter 4, we presented the results of our examination of three ED criteria 

(i.e., ORD, BDD and OOD) based on choice task specific entropy levels. We reported 

some empirical evidence that higher entropy levels in the choice tasks derived from 

the different EDs have varying effects on scale. We have shown that different ED 

criteria can result in different patterns of attribute non-attendance which could lead to 

different estimates of the utility coefficients and willingness-to-pay (WTP) values. We 

concluded in Chapter 4 that using the BDD criterion, relative to the two other ED 

criteria, results in the generation of a superior ED that has the following 

characteristics: (1) highest design efficiency as indicated by having the lowest Db-

error; (2) greater choice consistency as the entropy level does not reduce the scale 

factor unlike the two other EDs; and (3) provides more realistic WTP estimates as the 



138 

 

designed alternatives have been more attended to compared to the designed 

alternatives in the other two EDs. 

 Chapter 4 has examined the effect of entropy on choice consistency. Entropy is 

one of the proposed measures of choice task complexity. However, there is another 

measure of complexity that is described in DeShazo and Fermo (2002, 2004). We call 

this task specific measure attribute dispersion. Similar to entropy, attribute dispersion 

is choice task specific. However, unlike entropy, which is a single overall measure of 

complexity of a choice task, attribute dispersion is broken down into two 

subcomponents, namely: average standard deviation of attribute levels across 

alternatives in a choice task (ASD) and dispersion of standard deviation of attributes 

levels across alternatives in a choice task (DSD).21 The calculation of attribute 

dispersion values does not include any coefficient values (unlike entropy) as we will 

present soon. In addition, although attribute dispersion is a different component of 

choice task complexity, it can directly influence entropy (Adamowicz and Swait, 

2001b).22 Given the association between entropy and attribute dispersion, we examine 

the effect of attribute dispersion on the variance of the unobservable component of 

utility (or error variance) separately from entropy. This chapter examines how 

attribute dispersion is associated with the Gumbel error variance in the three EDs 

employed in our study here. We also investigate how the ordering of choice tasks in 

the three EDs can influence the error variance in more detail which we very briefly 

examined in Chapter 4. In the final part of the analysis, we used a pooled sample to 

                                                           

21 We describe ASD and DSD in detail in section 5.2. 

22 Our experimental design data shows strong and significant relationship between entropy and attribute 
dispersion. We present the strength and significance of these relationships in Section 5.5. 
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jointly examine the effects of different EDs, attribute dispersion and choice task order 

on the error variance. 

5.2 Measures of choice complexity 

Discrete choice models generally assume that an individual is certain about his/her 

preferences. However, when an individual deals with complex decisions, he/she may 

become uncertain about the utility derived from the available alternatives. This may 

be due to the complexity of the choice environment where an individual may not fully 

understand the implications of the tradeoffs between alternatives. Many CE studies 

have shown that varying certain aspects of choice tasks influences the cognitive cost 

(or choice complexity) of evaluating the choice tasks (e.g., Dellaert, et al., 1999; 

DeShazo and Fermo, 2002; Ohler, et al., 2000; Hensher, 2003). Several studies have 

shown some empirical evidence that increasing the complexity levels of the choice 

tasks is positively associated with greater error variance. Some aspects of choice tasks 

found to be positively associated with the error variance include the following: 

• number of alternatives in a choice task (Widlert 1998; Hensher et al. 2001; De 

Shazo and Fermo 2002; Arentze et al. 2003; DeShazo and Fermo 2004; 

Caussade et al. 2005; Hensher 2006; Rose et al. 2009); 

• number of attributes per choice alternative (Mazotta and Opaluch 1995; Ohler 

et al. 2000; Pullman et al. 2000; Wang and Li 2002; DeShazo and Fermo 

2002, 2004; Caussade et al. 2005; Hensher 2001, 2006); 

• number of attribute levels (Dellaert et al. 1999; Wang and Li 2002; DeShazo 

and Fermo 2002, 2004; Caussade et al. 2005; Boxall et al. 2009); and  
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• dispersion of attribute levels across the alternatives in a choice set (that we 

refer to here as attribute dispersion) (DeShazo and Fermo 2002, 2004). 

Whilst the number of alternatives, number attributes, and number of attribute 

levels have been shown to be positively associated with the error variance in many 

studies (including those enumerated above), few studies have examined the effect of 

attribute dispersion on error variance. DeShazo and Fermo (2002, 2004) provide some 

empirical evidence that attribute dispersion is positively associated with error variance 

suggesting that higher attribute dispersion would likely lead to decreasing choice 

determinism. This is because under the Random Utility Maximisation (RUM) theory, 

a higher error variance leads to lower contribution of the deterministic component of 

the utility function whilst the contribution of the stochastic component in explaining 

utility increases. We refer to choice determinism as inversely related to choice 

stochasticity. We define the increase in choice determinism as the decrease in 

variation in choice outcomes not explained by the underlying utility function. For 

example, an individual with perfect information given choice task t with three 

attributes would rank-order those attributes as A3 > A2 > A1. However, as choice task 

complexity increases (resulting to a decrease in choice determinism), an individual 

would likely provide inconsistent choices that could possibly make A3 no longer the 

most important attribute. A number of factors can contribute to lower choice 

determinism (higher choice stochasticity) and these include: (1) preference ordering 

may be incomplete such that A3 > A1 while A2 is not included in the rank-order; and 

(2) a respondent may become indifferent between the two alternatives and may 

choose randomly. 
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DeShazo and Fermo (2002) [hereby referred to as DSF] demonstrate that 

greater attribute dispersion contributes to a greater cognitive burden to respondents 

that result in lower choice determinism in the evaluation of alternatives in choice 

tasks. DSF compared different blocks of choice tasks with varying characteristics 

(e.g., different number of attributes, different number of attribute levels). All those 

choice tasks were generated using the ORD criterion. In this present study, we explore 

the effect of higher attribute dispersion of choice tasks to the cognitive cost of 

respondents. We formulate a null hypothesis that the effect of attribute dispersion on 

cognitive costs does not vary across different EDs. This study aims to answer the 

research question: Do attribute dispersions in different ED criteria demonstrate 

varying effect on choice determinism? If so, which ED criterion provides the most 

benefit to a choice analyst based on the effect to choice determinism? 

In this chapter, we show how choice tasks from the three EDs differ in terms 

of attribute dispersion and how different dispersion levels influence the error variance. 

As ED criteria have different objective functions (e.g., ORD imposes orthogonality 

between attribute levels, BDD minimises the Bayesian D-error assuming 0≠β , and 

OOD maximises D-optimality measure assuming0=β ), it can be expected that EDs 

generated from those criteria would differ in terms of the two dispersion measures – 

ASD and DSD. We describe below the formulae that we used to calculate for ASD 

and DSD of the set of choice tasks of each ED.  

We calculate ASDs based on the standard deviation in attribute levels of 

alternative j (SDj).  SDj is defined as the standard deviation among the normalized 

attribute levels of alternative j in choice task s and can be shown as  
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where xij is the normalized i th attribute of alternative j, i is the total number of 

attributes of alternative j. We calculate SDj using an ordinal-integer metric where the 

attribute levels vary along three monotonically increasing levels of 1, 2, 3. These 

values represent the values we used in generating the three EDs. These levels were 

translated in the choice task as categorical metrics familiar to respondents. For 

example, the three levels of the attribute (that we include in the choice task for this 

study) on the occurrence of a threatened bird species can be translated as “sighted 

once”, “sighted 3 times”, and “sighted 5 times”. Using the ordinal-integer metric for 

calculating SDj ensures that attribute levels for each attribute are equally weighted on 

this alternative specific measure of dispersion. This measure of dispersion varies 

based on the similarity of attribute levels in an alternative. If all attribute levels in 

alternative j are all highly desirable, then the value of SDj would be lower compared 

to say alternative h that contains a combination of the most desirable and the least 

desirable attribute levels. This is because an alternative with very similar attribute 

levels would tend to be cognitively easier to process since it does not require a 

respondent to make intra-alternative tradeoffs. An alternative with a highly dispersed 

set of attribute levels can be expected to be more difficult to process.  

SDj is used to calculate for the choice set specific measure ASDj, which is the 

average standard deviation of attribute levels across alternatives in choice task s. 

Equation 5.2 shows that we simply divide the summation of SDj by J which represents 

the total number of alternatives in choice task s: 
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ASDs represents the average effect of SDj for choice task s.   

The second attribute dispersion measure for choice task s is DSDs. DSDs 

describes the dispersion of average standard deviation of attribute levels across 

alternatives of choice task s.23  Higher values of DSDs suggest greater degree of 

spread across alternatives in the within-alternative attribute dispersions. The study by 

DSF suggests that higher values of DSDs correspond to greater cognitive cost that 

could contribute to increasing choice task complexity. 
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Other measures of complexity described in DSF, which include number of 

attributes per alternative and number of alternatives per choice task, are not used in 

this study because all respondents were provided with choice tasks with the same 

number of alternatives, with each alternative having the same number of attributes. 

Each respondent was provided with nine choice tasks. Given the nine choice tasks, 

there would likely be some order effects that could result in a respondent learning 

how to more efficiently evaluate the alternatives of the initial orders (1st, 2nd, 3rd) of 

choice tasks. Answering the latter sequence of the choice tasks could later result in 

                                                           

23 One may also refer to DSD as the dispersion of the dispersion of attribute levels while ASD as the 
average of the dispersion of attribute levels. 
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fatigue or boredom whereby a respondent gets tired of evaluating the alternatives after 

several replications (e.g., 7th, 8th, 9th). We describe how we examine learning and 

fatigue effects in the next section. 

5.3 Learning and fatigue effects 

Similar to the effects of attribute dispersion to choice determinism, several 

applications of CE have shown that the ordering of choice tasks influences the 

estimates of indirect marginal utility and the error variance (Bradley and Daly 1994; 

Stopher and Hensher, 2000; Hensher et al., 2001; Ortúzar et al., 2000; Ortúzar and 

Rodríguez, 2002; Pérez et al., 2003; Caussade et al., 2005; Holmes and Boyle, 2005; 

van der Waerden et al., 2006; Kjær et al., 2006; Bateman, et al., 2008; Day and Pinto 

Prades, 2010; Day et al., 2010). However, unlike attribute dispersion which would 

likely be positively (negatively) associated with the variance (scale) of the error term, 

the order effect can vary from initial choice task replications with increasing scale and 

then in the latter choice tasks with decreasing scale. Holmes and Boyle (2005) show a 

pattern of increasing scale factor as respondents learn to evaluate the alternatives as 

they proceed through a series of choice tasks. A number of empirical studies suggest 

that choice determinism is low for the first choice tasks, increases in the next ones 

then decreases again at some point (e.g., Caussade et al. 2005; Day et al. 2010, Scarpa 

et al. 2011b). This trend follows a common sequence where at first the respondent 

tries to learn the choice task and the effort needed to accomplish it, then he/she 

applies the learned behaviour in the next choice tasks, and finally the respondent gets 

tired or bored in the last choice tasks. Possible reasons for this trend include the 

occurrence of learning, boredom and fatigue (Adamowicz and Swait 2001b; DeSarbo 

et al. 2004; Holmes and Boyle 2005; DeSarbo et al. 2005). Given that different ED 
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have different complexity levels they might tend to exhibit different patterns of 

learning/fatigue effects. This study also aims to answer the research questions: 

(1) Does learning/fatigue effects vary in different experimental designs?  

(2) If so, which ED criterion provides the most benefit to choice analyst based 

on learning/fatigue effects? 

Task order effects in CE surveys would likely occur because each respondent 

is provided with several choice questions which can range between 3 and 64 

replications. Caussade, et al. (2005) provided each respondent with 16 choice tasks 

and analytical results suggest that the order effects in the series of choice tasks can be 

divided into three parts: (1) the first eight choice tasks exhibited a trend of decreasing 

error variance indicating that a respondent tended to gain a better understanding of 

how to evaluate a sequence of choice tasks as they went through the first few 

replications; (2) the 9th to the 11th choice tasks show a decline in the learning pattern 

as fatigue or boredom overpowered a respondent’s evaluating effort; and (3) the third 

part is from the 12th choice task onwards where a typical respondent exhibited 

increasing fatigue levels as indicated by a pattern of increasing error variance. 

While Caussade et al found fatigue effects, many other CE exercises did not 

find sufficient evidence of fatigue effects (e.g., Ohler et al., 2000; Savage and 

Waldman 2008) despite respondents completing relatively large number of choice 

tasks e.g., up to 64 choice tasks (Brazell and Louviere, 1997). This could possibly be 

due to the fact that the choice tasks evaluated were either simple or at least not too 

complex, so as not to engender the occurrence of fatigue (Day et al., 2010). Another 

reason could be associated with the ED criterion as used to construct the choice tasks, 

because different ED criteria would result in different choice task complexity levels. 
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For instance, the ORD criterion creates EDs that have uncorrelated attribute levels 

within alternatives and does not assume any parameter values. The ORD criterion also 

assumes that respondents have an equal preference for all attribute levels and 

therefore assumes that the contribution of an alternative in a choice task to the 

observed utility is the same as the other alternatives (Grossmann, Holling, and 

Schwabe, 2002). There is also an ED criterion that imposes utility balance where 

respondents would likely place equal weight on the set of alternatives in a choice task 

and this would probably be difficult for respondents to answer (Huber and Zwerina, 

1996). However, a choice task derived from a utility balanced design would likely 

have a high entropy level because of high similarity in utilities across alternatives in a 

choice task (Swait and Adamowicz, 2001a). Viney, et al. (2006) report evidence of 

having a set of utility balanced choice tasks which positively correlates with error 

variance. This suggests that ED criterion selection could influence the way 

respondents answer a series of choice tasks. Based on the above discussion we 

formulate the null hypothesis that the ED criterion does not influence the learning, 

fatigue or boredom effects. We test this hypothesis using the data collected from a CE 

exercise with nine choice tasks where we collected choice data using the three EDs 

that we described in Chapter 2 and evaluated in Chapter 4. We describe how we 

model choice determinism as a function of choice complexity and order effects in the 

next section. 

5.4 Measuring choice determinism 

In measuring choice determinism, we use an observable proxy which is the standard 

deviation of the random error in the individual’s utility function represented as “σ ”. 

A lower value of σ  indicates an increase in choice determinism. Assuming that the 

unobserved effects or error terms ε , are Extreme Value Type I distributed, 
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πσ  where λ  represents the scale factor that is inversely related toσ . The 

assumption that the error terms are independent and identically distributed (i.i.d.) 

allows the scale factor to be fixed which implies that the utility function can be scaled 

by an arbitrary constant without affecting logit choice probabilities, jsP . Under the 

i.i.d. assumption,λ  is often assigned a fixed value of approximately 1.28255 

corresponding to the usual assumption of 1=σ . 

To relax the i.i.d. assumption we allow the systematic component of the error 

term to be explained by the scale factorλ . To do this we employ the heteroskedastic 

(also called covariance heterogeneity) logit model to parameterise λ  to vary across 

different measures of choice determinism. This can be shown as 
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where iqsV  represents the observed component of utility; qλ  is a function of a vector 

of q choice determinism measures, Cq, which includes ASD and DSD as well as 

measures of choice task order effects described in Section 5.3. This parameterisation 

of the scale factor follows Swait and Adamowicz (2001a) where λ  is specified as an 

exponential function to preclude negative scale parameters. Although this 

specification results to a highly non-linear-in-parameters model, it has excellent 

convergence properties (Swait and Adamowicz, 2001a; DeShazo and Fermo, 2002; 

DeShazo and Fermo, 2004).  To estimate heteroskedastic logit models for this 

exercise we have used Biogeme 1.8 (Bierlaire, 2009). 
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The scale factor in Equation 5.5 above is no longer constant, as it is a function of 

choice determinism, which is in turn approximated by measures of attribute dispersion 

and task order effects. The sign of the estimated scale coefficient qγ shows how the 

scale factor is affected by the qth choice determinism measure (e.g., DSD).  A negative 

sign indicates a reduction in scale which implies a decrease in the level of choice 

determinism. If the scale coefficient for ASD is positive, this would imply that higher 

ASD would contribute to increasing the scale factor or increasing choice determinism. 

The effects on scale in the initial choice tasks of the sequence can be expected to be 

positive as these contribute to learning, which in the early stages is strong. The 

coefficients for the latter choice tasks can be expected to have negative coefficients as 

fatigue and/or boredom would likely contribute to a decrease in choice determinism. 

We also expect that the effects of attribute dispersion and order effects on the scale 

factor would vary across choice data sets collected using different EDs. We present 

our analytical results in the next section. 

5.5 Results 

Using the attribute dispersion measures in equations 5.1 to 5.3, we calculate the ASDs 

and DSDs of the three EDs (i.e., ORD, BDD, OOD) that we used to collect choice 

data for the Balanced Data Set24. We present and compare the calculated values of 

ASD and DSD of the three EDs in section 5.5.1. In section 5.5.2, we discuss the 

relationships of ASD and DSD with the entropy values (presented in Chapter 4 of this 

                                                           

24 The Balanced Data Set is described in Chapter 2. 
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thesis) based on pairwise correlation coefficients. Section 5.5.3 presents the effect of 

ASD and DSD on the scale factor across the three designs based on the analysis of the 

Balanced Data Set. In section 5.5.4, we analysed again the Balanced Data Set where 

we specifically evaluate the effects of learning and fatigue on the scale factor for each 

ED sample (e.g., choice data set collected using ORD). In section 5.5.5, we analyse 

the pooled sample to investigate how measures of choice determinism (i.e., ASD, 

DSD, order effects) jointly affect the scale factor while controlling for the effects of 

different EDs.  

5.5.1 Attribute dispersion levels of the three experimental designs 

We present the attribute dispersion measures of the three experimental designs (EDs) 

in Table 5.1. Each ED has a total of 243 choice alternatives. Two-thirds of these 

alternatives are generated from one of the three ED criteria (and are called designed 

alternatives) whilst one-third are Status Quo (SQ) alternatives that represent the 

current set of biodiversity levels that are fixed and were not derived from an ED. The 

two-third to one-third ratio arises due to the fact that each choice task has three 

alternatives: two designed alternatives and an SQ alternative. The 243 alternatives of 

each ED are divided into three blocks (Blocks 1, 2 and 3) with each block distributed 

into nine choice tasks.    

Following Equations 5.1 to 5.3, we calculated the two choice task specific 

measures of attribute dispersion ASD and DSD. Table 5.1 shows that ORD has the 

lowest overall mean ASD of 1.10 while BDD and OOD have virtually the same mean 

ASD. As ASD measures the average standard deviation in attribute levels in a choice 

task, this indicates that attribute levels within alternatives in ORD are more similar 

compared to BDD and OOD. DeShazo and Fermo (2002) suggest that an alternative 
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with similar levels (e.g., all high, all low, all moderate) requires less cognitive effort 

to process. The minimum and maximum ASD values for ORD are always lower 

compared to the two other designs which might indicate that ORD has the least 

complex choice tasks among the three EDs, given the relatively higher similarity in 

attribute levels of each alternative. However, the spread of ASD is highest for ORD as 

indicated by the standard deviation of 0.19 compared to BDD and OOD with 0.13 and 

0.15, respectively. This suggests that although on average ORD choice tasks have 

relatively lower complexity, the level of complexity between choice tasks vary the 

most for ORD. This is further demonstrated by the fact that the ranges (Max less Min) 

of ASD for all three blocks of ORD, especially Block 1, are all greater than the ranges 

of the three blocks of the other two EDs (please see Table 5.1). The distributions of 

ASD for the three EDs are illustrated using histograms with kernel density graphs in 

Figures 5.1a, 5.1b and 5.1c. The figures show that ORD has the widest spread of ASD 

followed by OOD and then BDD. ASD figures and graphs in Table 5.1 and Figure 

5.1b suggest that BDD has the least spread of ASD. This implies that the complexity 

levels of the set of choice tasks generated using BDD criterion have the smallest range 

of variation of complexity among the three designs. The dispersion of ASD for the 

three EDs are further illustrated in Figure 5.2 using kernel density graphs 

demonstrating that the ASD values for ORD have relatively lower densities and 

exhibit the widest spread. 

 Both ASD and DSD are choice task specific measures of complexity. However, 

unlike ASD, which represents a measure of the average complexity of the three 

alternatives in a choice task, DSD is a measure of the spread of complexity across 

alternatives in a choice task. Table 5.2 shows that ORD and OOD are tied as having 

the highest overall mean DSD of 0.19. ORD demonstrates greater variation in DSD 
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across three blocks while OOD have consistently high level of DSD across blocks. 

BDD has the lowest overall mean DSD of 0.16 and this value is virtually the same 

across three blocks suggesting that BDD consistently demonstrates low dispersion of 

complexity across blocks. In addition, the standard deviation of DSD and the 

maximum of DSD are lowest for BDD which indicate that this design has the lowest 

spread of dispersion of complexity among the three designs. The histograms with 

kernel density graphs in Figure 5.3a, Figure 5.3b and Figure 5.3c illustrate the spread 

of dispersion of the three EDs. Again BDD exhibits the lowest level of complexity 

among the three designs in terms of overall mean and overall spread of dispersion of 

complexity of choice tasks. We also present kernel density graphs of DSD in Figure 

5.4 to further illustrate that ORD demonstrates the greatest spread in terms of the DSD 

measure of attribute dispersion. We can see here a pattern that ORD choice tasks have 

wider spread of ASD and DSD than the two other design criteria. This is probably 

because BDD and OOD are optimised for particular beta values (e.g., 7 	 0 @A 7 B
0). We speculate that the optimisation processes in BDD and OOD might have 

contributed to the narrowing of spread of dispersion. For instance, minimising the D-

error would likely contribute to minimising the spread of dispersion. However, this 

might not be generalisable and further investigation should be done to verify this. 

The effects of ASD and DSD on choice determinism can be tested by using 

choice survey data and examine how these two measures of attribute dispersion are 

associated with the scale factor. We conjecture that the wide range of variability of 

ASD of the choice tasks in ORD would contribute to a greater decrease in choice 

determinism than other designs. To examine whether the effects of ASD and DSD on 

the scale factor vary across designs, we use again the heteroskedastic logit model. 

Estimation results from these are presented in section 5.5.3. The next section shows 
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the relationship between attribute dispersion and entropy of the choice tasks across the 

three EDs examined here.
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Table 5.1: Average standard deviation (ASD) of attribute levels across alternatives in a choice task  
 Orthogonal (ORD) Bayesian D-efficiency (BDD) Optimal Orthogonal (OOD) Pooled 

Block1 Block2 Block3 All Block1 Block2 Block3 All Block1 Block2 Block3 All 

Mean 1.07 1.12 1.11 1.10 1.19 1.13 1.17 1.17 1.19 1.17 1.17 1.18 1.15 

Standard deviation 0.28 0.11 0.15 0.19 0.15 0.11 0.11 0.13 0.05 0.10 0.16 0.11 0.15 

Minimum 0.48 0.92 0.81 0.48 0.98 1.01 1.01 0.98 1.05 1.05 0.73 0.73 0.48 

Maximum 1.41 1.29 1.32 1.41 1.46 1.32 1.35 1.46 1.23 1.32 1.29 1.32 1.46 

Range (Max less Min) 0.93 0.37 0.51 0.93 0.48 0.31 0.34 0.48 0.18 0.27 0.56 0.59 0.98 

Number of choice tasks 27 27 27 81 27 27 27 81 27 27 27 81 243 

 

Table 5.2: Dispersion of standard deviation (DSD) of attribute levels across alternatives in a choice task 
 Orthogonal (ORD) Bayesian D-efficiency (BDD) Optimal Orthogonal (OOD) Pooled 

 Block1 Block2 Block3 All Block1 Block2 Block3 All Block1 Block2 Block3 All 

Mean 0.25 0.12 0.19 0.19 0.15 0.16 0.16 0.16 0.17 0.17 0.21 0.19 0.18 

Standard deviation 0.12 0.10 0.11 0.12 0.08 0.06 0.09 0.08 0.06 0.14 0.15 0.12 0.11 

Minimum 0.05 0.02 0.07 0.02 0.02 0.06 0.03 0.02 0.10 0.07 0.02 0.02 0.02 

Maximum 0.39 0.30 0.43 0.43 0.31 0.23 0.36 0.36 0.29 0.53 0.53 0.53 0.53 

Range (Max less Min) 0.34 0.28 0.36 0.41 0.29 0.17 0.33 0.34 0.19 0.46 0.51 0.51 0.51 

Number of choice tasks 27 27 27 81 27 27 27 81 27 27 27 81 243 
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Figure 5.1a: Histogram and kernel density of ASD for ORD 
 

 
 
 
Figure 5.1b: Histogram and kernel density of ASD for BDD 
 

 
 
Figure 5.1c: Histogram and kernel density of ASD for OOD 
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Figure 5.2: Kernel density of ASD by design 
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Figure 5.3a: Histogram and kernel density of DSD for ORD 

 
 
Figure 5.3b: Histogram and kernel density of DSD for BDD 

 
 
Figure 5.3c: Histogram and kernel density of DSD for OOD 
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Figure 5.4: Kernel density of DSD by design 

 

 

5.5.2 Relationship of ASD and DSD with entropy by design 

We mentioned earlier that although entropy and attribute dispersion are two different 

components of choice complexity, the two are associated because both affect choice 

probabilities (Swait and Adamowicz, 2001b). As entropy and attribute dispersion are 

both choice task specific measures of complexity, we can examine the relationship 
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we used to undertake our analysis on entropy in Chapter 4 of this thesis. For the 
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task which are summarised in Tables 5.1 and 5.2. To explore whether correlation 

applies to our design data sets we calculated pairwise correlation coefficients between 

entropy and attribute dispersion using those choice task specific values. Column 5 of 

Table 5.3 shows that the pooled set of designs indicate that entropy values and 

attribute dispersion values are somewhat positively correlated in a significant way. 

ASD and entropy are significantly negatively correlated because the increase in the 
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dispersion of attribute levels of alternatives across a choice task increases the 

difference between alternatives in terms of contribution to utility. This in turn 

increases the difference in choice probabilities of alternatives in a choice task. For 

example, a choice task with three alternatives sq, a1, a2 with a low ASD value (e.g., 

0.4) would have choice probabilities of sq=0.32, a1=0.33, a2=0.35 while one with 

high ASD value (e.g., 1.5) would have sq=0.05, a1=0.65, a2=0.35.25 As mentioned in 

Chapter 4, a choice task with alternatives having very similar contributions to utility 

would have a very high entropy value and vice versa. Thus, the above supports the 

assertion that ASD is negatively correlated with entropy. For the pooled set of 

designs, DSD and entropy are significantly positively correlated. This is because as 

DSD increases, the contributions to utility of alternatives in a choice task become 

similar leading to an increase in the entropy level of a choice task. 

 Columns 2 and 4 of Table 5.3 show that the correlation between attribute 

dispersion and entropy for ORD and OOD are consistent with the pooled design set. 

However, for BDD, entropy and DSD have weaker positive correlation and lack 

statistical significance. This suggests that the increase in DSD in the Bayesian D-

efficient design contributes less to increasing entropy compared to the two other EDs. 

A possible reason for this is that, as Table 5.2 shows, BDD choice tasks have 

relatively lower mean DSD (and narrower range of DSD) compared to the other EDs.  

We have also calculated the correlation coefficients for ASD and DSD for 

each design sets and pooled design set. Table 5.3 shows a relatively strong negative 

correlation in BDD while the two other EDs have weak positive correlations. This 

                                                           

25 Please note that those values of choice probabilities were arbitrarily selected to distinguish a choice 
task with high ASD from one with low ASD. 
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implies that in choice tasks generated using the BDD criterion, one can expect that as 

ASD increases DSD decreases while the opposite applies for the two other EDs. This 

demonstrates that BDD has a different attribute level dispersion property compared 

with ORD and OOD.  

Table 5.3: Summary of correlation coefficients showing the association between 
attribute level dispersion and entropy of groups of choice tasks 

 ORD BDD OOD Pooled 

ASD and Entropy -0.327 -0.270 -0.239 -0.227 
 (0.003) (0.015) (0.032) (0.000) 
     
DSD and Entropy 0.438 0.139 0.387 0.327 
 (0.000) (0.215) (0.000) (0.000) 
     
ASD and DSD 0.049 -0.203 0.037 -0.021 

 (0.666) (0.069) (0.742) (0.746) 
Number of choice 
tasks observations 

27 27 27 81 

Note: Figures in parentheses represent p-values. 

 

5.5.3 Effects of ASD and DSD on the scale factor by design 

To examine the effects of ASD and DSD on the scale factor, we analyse the balanced 

data set described in detail in Chapter 2. Columns 3 and 4 of Table 5.4 show the log-

likelihood values from conditional (or homoskedastic) logit and heteroskedastic logit 

models of the three design treatment and the pooled sample. The homoskedastic logit 

approach assumes that scale is not a function of components of complexity (via the 

ASD and DSD proxies) while the heteroskedastic logit approach allows the scale to 

vary based on ASD and DSD values of each choice task. Column 5 presents the chi-

square statistics for the hypothesis that both ASD and DSD terms in the scale function 

are zero, suggesting that preferences are not a function of complexity. Since the 

critical value is 5.991 at the 95% confidence level, we reject the null hypothesis that 

the scale factor is not a function of complexity in the BDD treatment. Since the 
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analysis of ORD and OOD data indicates that we lack sufficient evidence to reject 

homoskedasticity, this suggests that the complexity levels in ORD and OOD choice 

tasks do not influence choice determinism. We also fail to reject homoskedasticity in 

the pooled sample. However, it is important to note that, the heteroskedastic logit 

models used in Table 5.4 suffer from a problem of having non-significant estimates of 

utility coefficients. This could have implications for the robustness of the conclusions 

drawn from the effects of designs on choice behavior. Estimated utility coefficients 

for the joint effects of attribute dispersion for the split design and pooled samples are 

reported in Appendix Table 5. 

Column 6 of Table 5.4 shows significantly positive scale coefficient estimates 

of ASD in the BDD sample suggesting that higher ASD leads to increase in scale. 

This indicates that higher ASD is actually advantageous as it contributes to a decrease 

in the cognitive cost of respondents in evaluating choice tasks. As Table 5.3 shows 

somewhat a negative correlation (-0.203) between ASD and DSD for the BDD choice 

tasks, we tested what would happen to the p-values of scale coefficients if we 

estimated ASD and DSD separately. The 10th row of Table 5.4 shows a lower p-value 

and a higher magnitude of the ASD scale coefficient for BDD when estimated 

separately with DSD. This suggests that ASD in the BDD treatment, is the only 

measure of dispersion that positively influences scale. This is corroborated by the 

result reported in the third to the last row where the DSD coefficient remains not 

significant in terms of effect on scale.   

Column 7 row 4 of Table 5.4 shows a negative scale coefficient for DSD 

(significant at the 88% confidence level) in the ORD sample indicating that higher 

DSD contributes to an increase in cognitive cost. This is consistent with the findings 
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in DeShazo and Fermo (2002), which also generated choice tasks using the ORD 

criterion. Although we know from Table 5.3 that ASD and DSD are very weakly 

associated (or not associated) in the ORD treatment, we still separately estimated the 

two scale coefficients as shown in rows 9 and 14 in Table 5.4. Separate estimation 

shows an increase in most p-values of the ASD and DSD scale coefficients indicating 

that the joint effect of the two on scale is stronger than their individual or separate 

effects. However, the BDD sample is an exception where the 10th row shows that the 

p-value for ASD scale coefficient is lower and the magnitude of the coefficient is also 

higher indicating a stronger effect with separate scale estimation. 

 Although Table 5.4 shows that only the BDD sample has a statistically 

significant scale coefficient estimate for ASD (as indicated by a p-value of 0.06), 

three other scale coefficient estimates are nearly significant. We plotted scale 

coefficient estimates for ASD and DSD in Figures 5.5 and 5.6 to illustrate their 

association to the scale factor for the three designs. Figure 5.5 shows the variation of 

the effect of ASD on the scale factor for BDD, OOD and Pooled samples. The graph 

for ORD was not included because ASD in that sample did not lead to any statistically 

significant decrease (increase) in scale (variance) as shown in Table 5.4. Figure 5.5 

shows that the higher ASD in BDD and OOD samples result in an increase in the 

scale factor which implies that higher ASD, especially in BDD, contributes to 

increasing the consistency of choices made by respondents. In terms of the impact of 

DSD on the scale factor, Figure 5.6 shows that higher DSD in the ORD sample would 

likely contribute to greater choice complexity (or lower choice determinism) as 

indicated by a decreasing trend in the scale factor as DSD increases. 
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Table 5.4: Conditional and heteroskedastic logit model estimates 

(1) (2) (3) (4) (5) (6) (7) 

Experi-
mental 
Design 
(ED) 

No. of 
observed 
choice 
sets 

Log-
likelihood 
Conditio-
nal Logit 

Log-likelihood 
Heteroskedastic 

Logit 

Likelihood 
Ratio Test 
(-2*(LL 0-

LL1)) 
 

Estimated 
Scale 

Coefficient 
of ASD 

(Robust p-
value) 

Estimated  
Scale 

Coefficient 
of DSD 

(Robust p-
value) 

ASD and DSD      
ORD 
 

503 -459.28 -457.51 3.54 -0.55 
(0.33) 

-1.49 
(0.11) 

BDD 
 

503 -497.66 -493.85 7.62* 2.59 
(0.06) 

-1.72 
(0.41) 

OOD 
 

503 -469.62 -468.77 1.70 1.42 
(0.20) 

-0.76 
(0.56) 

Pooled 
 

1509 -1460.32 -1458.18 3.02 -0.65 
(0.14) 

-1.15 
(0.13) 

ASD Only      
ORD 
 

503 -459.28 -458.98 0.60 -0.43 
(0.45) 

 

BDD 
 

503 -497.66 -494.28 6.76* 2.79 
(0.05) 

 

OOD 
 

503 -469.62 -468.98 1.28 1.27 
(0.20) 

 

Pooled 
 

1509 -1460.32 -1459.57 1.49 -0.55 
(0.21) 

 

DSD Only      

ORD 
 

503 -459.28 -458.01 2.54  -1.40 
(0.13) 

BDD 
 

503 -497.66 -496.80 1.72  -2.25 
(0.23) 

OOD 
 

503 -469.62 -469.47 0.30  -0.68 
(0.62) 

Pooled 
 

1509 -1460.32 -1459.24 2.16  -1.40 
(0.13) 

* Significant at the 95% confidence level as it exceeds critical Chi-square value with 2 degrees of 

freedom 99.595.0
2 =χ  (One degree of freedom = 3.084) 
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Figure 5.5: Effect of ASD on the scale factor by design 

 

 

Figure 5.6: Effect of DSD on the scale factor by design 
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5.5.4 Choice task order effects by design 

We present here the estimation results on the effects of choice task order on the scale 

factor. Estimates of scale coefficients for task order effects are presented in Table 5.5. 

All three heteroskedastic logit regression models converged with ORD taking only 30 

iterations to converge while BDD took 298 iterations with both starting the search 

from pre-estimated initial values. The highly non-linear-in-parameters specification 

might have contributed to making some of the utility coefficients to become non-

significant compared to the estimates of the homoskedastic conditional logit model.  

Another possible reason is that higher statistical efficiency of BDD has contributed to 

a lower variation in both DSD and ASD and this might have affected the model 

estimation process.  

Table 5.5 shows that the scale coefficients for choice task order in the ORD 

sample are all non-significant, suggesting that this ED neither exhibits learning nor 

fatigue effects. The set of scale coefficients for BDD, instead, exhibits learning effects 

as shown by a steadily increasing coefficient values from 2nd&3rd choice task to the 8th 

choice task. There seems to be strong evidence of learning especially in the 8th choice 

task where the scale coefficient increases from 1.13 in the 7th to 1.84 in the 8th choice 

task. Although the coefficient for the 9th choice task is slightly lower than the 8th, the 

former remains higher than the coefficient for the 7th.  This shows a pattern of 

continuous and sustained learning in the case of the BDD which may indicate that we 

could have increased the number of choice task in our survey from nine to maybe 

sixteen choice tasks to build upon the favourable learning effect brought about by 

using BDD. In terms of the OOD sample, the set of scale coefficients show a sign of 
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significant learning effect in the 6th choice task. However, there is neither a clear sign 

of a continuous learning nor a clear indication of fatigue effects.  

Figure 5.7 illustrates the effects of task order on the scale factor by design. 

BDD exhibits the best pattern of learning beginning from the 4th choice task to the 

8th.26  This pattern of continuous learning might indicate that respondents tended to 

become increasingly interested in evaluating the sequence of choice tasks as they 

progress through the first eight choice tasks. It might also indicate a pattern that 

respondents exerted more effort to understand the succeeding choice tasks as 

demonstrated by a trend of increasing scale coefficients (increasing choice 

determinism) up to the 8th task order. The graph for OOD exhibited a distinctive 

learning effect on the 6th choice task while ORD does not show any learning effect. 

All EDs do not exhibit any significant fatigue effects which are consistent with 

findings in Ohler, et al., (2000); Savage and Waldman (2008); and Brazell and 

Louviere (1997).

                                                           

26
 We used the first choice task as reference since it is likely to be the most difficult task to evaluate 

because respondents would typically exert the greatest effort to learn how to properly choose the 
preferred alternative. 
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Table 5.5: Heteroskedastic logit model estimates of choice task order effects on the scale factor 

 
Note: Figures in boldface font are significant at the 90% confidence level; those in italics are nearly significant.

 ORD  BDD OOD 
 

Coef 
Robust 
Std Err 

Robust 
p-value 

Coef 
Robust 
Std Err 

Robust 
p-value 

Coef 
Robust 
Std Err 

Robust 
p-value 

Utility coefficients          

Brown kiwi 1 0.447 0.275 0.10 0.164 0.156 0.29 0.486 0.292 0.10 
Brown kiwi 2 0.618 0.353 0.08 0.225 0.141 0.11 0.469 0.230 0.04 
Native fish 1  0.372 0.214 0.08 0.246 0.273 0.37 0.137 0.162 0.40 
Native fish 2 0.225 0.232 0.33 -0.004 0.101 0.97 0.186 0.150 0.21 
Native plant 1 0.259 0.283 0.36 -0.145 0.255 0.57 0.092 0.161 0.57 
Native plant 2 -0.184 0.298 0.54 0.033 0.115 0.77 0.068 0.162 0.68 
Green gecko 1 0.095 0.185 0.61 0.066 0.118 0.57 -0.116 0.152 0.44 
Green gecko 2 0.379 0.248 0.13 -0.007 0.068 0.92 0.030 0.155 0.85 
Bush falcon 1 0.469 0.341 0.17 0.261 0.339 0.44 0.148 0.236 0.53 
Bush falcon 2 0.787 0.508 0.12 0.374 0.326 0.25 0.320 0.169 0.06 
Cost to resp -0.025 0.015 0.08 -0.008 0.008 0.26 -0.023 0.009 0.02 
Indicator for non-SQ -0.509 0.414 0.22 0.003 0.162 0.98 0.296 0.321 0.36 
Scale coefficients          
2nd & 3rd task order 0.015 0.558 0.98 0.045 2.190 0.98 0.384 0.459 0.40 
4th 0.416 0.692 0.55 0.777 1.090 0.48 0.628 0.571 0.27 
5th 0.439 0.766 0.57 0.937 1.090 0.39 0.314 0.495 0.53 
6th 0.254 0.680 0.71 1.000 1.400 0.47 0.916 0.490 0.06 
7th -0.136 0.609 0.82 1.130 0.704 0.11 0.134 0.697 0.85 
8th -0.058 0.773 0.94 1.840 1.050 0.08 -0.251 0.765 0.74 
9th -0.091 0.648 0.89 1.410 1.020 0.17 0.257 0.552 0.64 
Log-likelihood value -456.46   -490.59   -465.36   

Number of observations 503   503   503   

Number of  iterations 30   298   37   

Converged? Yes   Yes   Yes   
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Figure 5.7: Choice task order effects on scale by experimental design 

 

 

It is important to note that, in the survey questionnaire, we provided as much 

information as possible to the respondents about the five environmental attributes to 

illustrate a clear picture of the environmental good that they valued. We have also 

provided them with some coaching on how to properly evaluate each choice task. On 

page 6 of the survey questionnaire, we provided respondents with a description of 

each attribute and the coaching was represented by a demonstration of how a person 

might think her way through to evaluate each choice task. Given the amount of details 

that we provided them, it seems that, based on the results of choice task order effects, 

the sequence of choice tasks generated from the BDD criterion has sustained 

respondents’ enthusiasm to answer the sequence of choice tasks.  
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described in Equation 5.4. The pooled data set has 1509 choice observations as each 

of the three design treatments has 503 observations. Estimates for the three 

heteroskedastic logit models are presented in Table 5.6. The columns under Model 1 

are estimates for the conditional logit model, where the estimated utility coefficients 

are consistent with economic theory as sign that environmental improvements are 

positive, while the marginal utility of income exhibits a negative sign. The utility 

coefficients for additional native birds (i.e., kiwi and falcon) and a Level 1 increase in 

the number of native fish are significantly positive indicating that those improvements 

are valued by respondents and they would be willing to pay to support the increase in 

population of those threatened species. However, the coefficients for the increase in 

the number of geckos and the native plant kakabeak are not significant. As mentioned 

earlier, one might believe these attributes were irrelevant to the population and that 

they should not have been included in the choice task.  

Model 2 is a heteroskedastic logit model where we investigate the effects of 

task order, experimental designs BDD and OOD, and attribute dispersion (ASD and 

DSD) on the scale factor.27 In a side regression, where we evaluated the task order 

effects on the scale factor, we found that orders 4 to 6 and orders 7 to 9 contributed 

similar magnitudes of positive increases in the scale factor. From this result, we 

elected to use an indicator variable for two groups of task orders in Model 2. The 

indicator variable for Task orders 4 to 6 is significantly positive at the 99.9% 

confidence level. This indicates the presence of learning effect that increases 

(decreases) scale (error variance) thereby increasing choice determinism. The scale 

                                                           

27 Model 2 has a higher log-likelihood value (-1446) compared to Model 1 (-1460). Likelihood ratio 
test shows a Chi-square value of 28.40 that exceeds the critical 52.209.99

5 =χ .Thus, the null 

hypothesis that scale is not a function of choice inconsistency is strongly rejected.  



169 

 

coefficients for BDD and OOD are both negative with BDD having a p-value less 

than 0.01. This suggests that, with ORD as the reference design, BDD contributes 

significantly to reducing choice determinism while OOD does not. This result 

contradicts the findings and discussion in sections 5.5.3 and 5.5.4 suggesting that the 

BDD criterion produces choice tasks that contribute to increasing the scale factor. 

Section 5.5.4 suggests that BDD exhibits the most favourable learning effect as 

indicated by the steady increase in the scale factor from task orders 3 to 8 while the 

two other EDs do not show any pattern of continuous learning. There could possibly 

be some joint effects between EDs, attribute correlations and task orders. To account 

for joint effects, we include interaction variables in the set of scale coefficients in 

Model 3. 

Accounting for joint effects, Model 3 estimates suggest that BDD does not 

have any net effect on scale, but OOD has a highly significant negative net effect on 

the scale factor of -3.2 (with ORD as the reference design). Although the interaction 

between OOD and ASD (or the joint effect of OOD and ASD) has a significantly 

positive scale coefficient of 2.0, the magnitude of this still does not sufficiently 

compensate for the greater negative magnitude of the net effect of OOD on scale. By 

controlling for the joint effect of ED and attribute dispersion, we find the result that 

supports the findings in section 5.5.3 where, relative to ORD, BDD does not 

contribute to decreasing choice determinism while OOD significantly contributes to 

decreasing choice determinism. In terms of joint effects of ED and task order, the 

interaction between BDD and Task Orders 7 to 9 is positive and significant at the 98% 

confidence level. This supports the finding in 5.5.4 that the greater learning effect in 

BDD, relative to the other EDs, contributes to increasing choice determinism.  
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In terms of the net effect of attribute dispersion, Model 3 shows that higher 

levels of DSD significantly reduce choice determinism. These results are consistent 

with the findings in DeShazo and Fermo (2002, 2004) that suggest that greater 

attribute dispersion is positively associated with an  increase in choice inconsistency. 

With regard to the net effect of Task_orders_4_to_6, the magnitude of its effect has 

diminished from Model 2 to Model 3 as it was interacted with the design variables. 

However, it remains positive and significant at the 92% confidence level.  

With regard to the joint effect of EDs and attribute dispersion, the scale 

coefficient for the interaction of BDD and DSD is significantly positive suggesting 

that higher DSD in choice tasks generated using the BDD criterion would likely 

increase the scale factor relative to choice tasks from ORD criterion with high DSD. 

OOD × ASD is also positively significant indicating that higher ASD in choice task 

generated from OOD criterion would lead to higher scale factor relative to ORD 

choice task with higher ASD. Given that BDD×DSD provided the highest magnitude 

of increase in the scale factor, a choice analyst would be better off employing the 

BDD design criterion because it contributes the most to increasing choice 

determinism relative to the two other design criteria. 
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Table 5.6: Heteroskedastic logit model estimates for the pooled sample 

 
Note: Figures in boldface font are statistically significant at the 90% confidence level. 

 
 

Model 1 
Conditional Logit Model  

Model 2 
HMNL no interactions 

Order, Designs, ASD and DSD 

Model 3 
HMNL with interactions  

Order, Designs, ASD and DSD 
 

Coef 
Robust 
Std Err 

Robust 
P-value 

Coef 
Robust 
Std Err 

Robust 
P-value 

Coef 
Robust 
Std Err 

Robust 
P-value 

Brown kiwi 1 0.495 0.111 <0.01 0.990 0.554 0.07 1.270 0.907 0.16 

Brown kiwi 2 0.654 0.105 <0.01 1.230 0.679 0.07 1.620 1.240 0.19 

Native fish 1  0.318 0.101 <0.01 0.650 0.383 0.09 0.903 0.700 0.20 

Native fish 2 0.134 0.104   0.20 0.351 0.268 0.19 0.530 0.441 0.23 

Native plant 1 0.179 0.102   0.08 0.302 0.248 0.22 0.324 0.347 0.35 

Native plant 2 0.228 0.105   0.03 0.322 0.257 0.21 0.219 0.363 0.55 

Green gecko 1 0.020 0.103   0.85 -0.022 0.196 0.91 0.064 0.285 0.82 

Green gecko 2 0.098 0.101   0.33 0.198 0.208 0.34 0.279 0.301 0.35 

Bush falcon 1 0.481 0.107 <0.01 0.930 0.538 0.08 1.260 0.945 0.18 

Bush falcon 2 0.720 0.101 <0.01 1.380 0.758 0.07 1.780 1.350 0.19 

Cost to respondent -0.026 0.002 <0.01 -0.050 0.028 0.08 -0.070 0.053 0.19 

Indicator for SQ -0.159 0.176   0.37 -0.336 0.379 0.38 -0.198 0.492 0.69 

Task orders 4 to 6    0.467 0.156      <0.01 0.452 0.252 0.07 

Task orders 7 to 9    0.231 0.170 0.17 0.036 0.245 0.88 

Indicator for BDD    -0.483 0.164      <0.01 1.230 2.000 0.54 

Indicator for OOD    -0.117 0.128 0.36 -2.660 1.290 0.04 

ASD    -0.492 0.442 0.27 -0.571 0.622 0.36 

DSD    -0.830 0.673 0.22 -1.630 0.881 0.06 

BDD * ASD       -2.440 1.720 0.16 

BDD * DSD       3.650 1.850 0.05 

OOD * ASD       2.040 1.100 0.06 

OOD * DSD       1.200 1.780 0.50 

BDD * Ord 4-6       0.464 0.445 0.30 

BDD * Ord 7-9       1.110 0.453 0.01 

OOD * Ord 4-6       -0.153 0.391 0.70 
OOD * Ord 7-9       -0.102 0.419 0.81 

Log-likelihood -1460.32   -1446.12   -1436.93   

Adj rho-square 0.112   0.117   0.118   

Observations 1509   1509   1509   

No. of iterations 7   25   31   
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5.6 Conclusions 

Based on the data studied here, overall, our results indicate that BDD is the superior 

design criterion, as it generates choice tasks that would likely reduce the cognitive 

burden to respondents while also providing respondents with a better learning 

experience in evaluating of a sequence of choice tasks. These features thereby 

contribute to the enhancement of behavioural efficiency of a CE respondent who is 

required to evaluate relatively complex sets of alternatives. Since a major issue in CE 

is the complexity of choice tasks, choosing an ED that could contribute to increasing 

choice determinism and enhancing the learning effects would be very helpful in 

improving the quality of choice data collected from expensive CE surveys. This 

research has addressed the problem faced by many choice analysts as to what 

particular ED would be most appropriate for their CE exercise, given the several ED 

criteria to choose from. However, our results might be specific to the data studied 

here. Our sample size is also small making it more difficult to be generalised. In 

future studies, this problem might be addressed by using a larger sample as well as 

using an experimental design algorithm that allows the increase or decrease of the 

range of attribute dispersion.  

 We consider this study as being one of the few works to empirically investigate 

how different experimental designs affect choice behaviour in general and choice 

determinism in particular. We hope this study opens the door for more studies that 

would provide useful suggestions for choice analysts to further improve the method of 

collecting choice data. Whilst many would consider that using an ED with statistically 

higher efficiency (i.e., minimal D-error) is important, identifying an ED that could 

help improve behavioural efficiency of respondents is equally important. In this study, 

we found that choice tasks generated from an ED criterion with the lowest D-error 



173 

 

contributed the most to enhancing respondents’ behavioural efficiency relative to the 

two other EDs with higher D-errors. We therefore conclude that the Bayesian D-

efficient criterion not only contribute to the provision of choice tasks with higher 

statistical efficiency, but also increase behavioural efficiency relative to the other 

designs studied here. However, there are still other areas that should be examined 

further. We suggest that future studies should examine different EDs based on 

strengths, weaknesses and potential of respondents to attend to complex choice tasks 

(relative to contingent valuation scenarios). It would be interesting to see how the 

Bayesian D-efficient Design criterion (under the conditional logit model assumption) 

compares in behavioural efficiency achieved in other types of EDs which are not 

examined here (e.g., Bayesian S-efficient design under model averaging approach 

(Scarpa and Rose, 2008); heterogenous design (Sandor and Wedel, 2005)). We also 

support the suggestion of Louviere et al. (2011) to undertake a concerted effort to 

transparently examine different EDs for the benefit of everybody in this field (e.g., 

applied researchers, respondents, academicians, policy analysts). 
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Chapter 6: Conclusions and future research 

6.1 Thesis summary and conclusions 

Chapter 1 provides an overview and main research questions of the thesis. Chapter 2 

is a generic chapter that describes most of the models that have been estimated. It also 

describes some of measured of design efficiency. Furthermore, it also provides a 

description of how the data was collected and shows a summary of the data sets that 

were constructed and analysed using various logit models. Chapter 3 has shown using 

choice experiments that a typical New Zealander would be willing to financially 

support biodiversity enhancement in the country’s 1.8 million hectares of planted 

forests. Accounting for hypothetical and aggregation biases, New Zealand taxpayers 

would be willing to pay an aggregated national value of approximately NZ$26.5 

million per year for five years to support a national biodiversity enhancement 

initiative coordinated by the Department of Conservation (DOC) with forest 

companies, environmental NGOs and community groups. Using Random Effects 

Panel Regression Analysis, the factors identified to positively influence WTP include 

being a volunteer to conservation organisations such as DOC and Forest and Bird, 

being a female, having higher education, having appreciation of native birds and 

residing in a place with large planted forests within the 10-kilometre radius. We find 

the spatial factor to be very useful for planning the country’s afforestation programme 

where native biodiversity in planted forests are valued by people. 

Chapter 4 provides an overview of attribute non-attendance (ANA) and choice 

task complexity (via the entropy proxies) in CE. We tested the hypothesis that the 

selection of ED criterion does not influence ANA and choice variability. The analysis 

has examined three ED criteria which are Orthogonal Design (ORD), Optimal 
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Orthogonal Design (OOD) and Bayesian D-efficient Design (BDD). Estimated Latent 

Class Logit models with panel specification accounting for ANA indicate that the 

selection of ED criterion matters. We find that higher complexity levels in choice 

tasks derived from the BDD criterion do not increase choice variability unlike ORD 

and OOD. This could explain why BDD choice tasks are more attended than choice 

tasks derived from the two other designs. However, these results might be specific to 

the data studied here. 

Chapter 5 provides an overview of another component of choice task 

complexity called attribute dispersion. DeShazo and Fermo (2002) have shown 

evidence that higher ASD leads to a decrease in choice determinism based on their 

choice data collected using ORD. In contrast, this present study shows the opposite 

where estimation results from our choice data collected using BDD choice tasks 

indicate that higher ASD leads to increasing choice determinism. This shows an 

important implication of selecting a design criterion in the study of task complexity. 

This is because as higher ASD may have a negative impact on choice determinism in 

one design criterion, this may have a totally different impact on choice determinism in 

another design. Overall our empirical results in Chapter 5 indicate that in choosing a 

design criterion, an analyst would be better to select the BDD criterion, as it generates 

choice tasks that would likely reduce the cognitive burden of respondents while 

providing them with a better learning experience in evaluating a sequence of choice 

tasks. This research has therefore addressed the problem faced by many choice 

analysts as to what particular ED would be most appropriate for their CE exercise 

given the several ED criteria to choose from. 
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6.2 Implications and future directions 

On the policy side, we have shown evidence that a proposed biodiversity 

enhancement programme in planted forests is valued by New Zealand taxpayers with 

an aggregate amount of NZ$26.5 million per year for five years. This shows that 

enhancing the provision of an environmental service in planted forests would benefit 

society and the taxpayers would be willing to financially support such initiative. This 

corroborates the report of the New Zealand Department of Conservation which 

mentions that New Zealanders place a high value on indigenous species, as they form 

a basis of national identity (DOC, 2000). The estimated national value of biodiversity 

enhancement also sheds light on the true value of planted forests. This is because, at 

present, the value of planted forests is regarded mainly in terms of forest products 

such as timber, pulp and paper, and, to a certain extent, carbon sequestration service.  

But in fact, in addition to providing habitat for threatened native species, they also 

provide other ecosystem services such as erosion control, flood mitigation, water 

quality improvement and recreation. The present situation shows that planted forests 

are highly under valued in terms of their contribution to species conservation and 

habitat creation. One major reason is that the economic value of other ecosystem 

services they provide is poorly understood and not accounted for in policy decision 

making. Estimating the value of habitat provision as we have done here is an initial 

step towards defining the true value of planted forests. We therefore suggest that 

future studies should estimate other ecosystem services provided by planted forests in 

addition to developing market mechanisms to sustain and further enhance these 

services. Furthermore, markets for biodiversity services are now being established by 

groups of large multinationals in coordination with universities and government 

institutions (Corporate Ecosystem Valuation) (WBCSD, 2011).  
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On the research dimension, we contributed by extending previous studies that 

provide empirical evidence that the Bayesian D-efficient design (BDD) criterion 

produces significantly improved results, in a statistical sense of relative efficiency 

(e.g., Rose et al. 2008). This study provides evidence that in addition to improved 

statistical efficiency, as indicated by lower Bayesian D-error, the BDD criterion might 

also contribute to improving behavioural efficiency of respondents thereby 

contributing to higher quality data collected from a choice survey. The sequence of 

choice tasks derived from the BDD criterion has been found to be more attended to 

and demonstrated a pattern of continuous learning. Data collected has lower choice 

variability that could somehow indicate that respondents have found the choice tasks 

more coherent compared to OOD and ORD. This study therefore provides some 

evidence as to what ED criterion an analyst should choose given three different ED 

criteria. It would also be interesting to examine the preferences of analysts in 

choosing a particular design given that each of them is caught in different situations in 

terms of budget, time, software and number of available respondents. It is therefore 

suggested that choice analysts, especially those who have been involved in several 

choice experiments exercises, should be interviewed given that they may have 

different preferences in choosing an experimental design based on their situation. 

Analysts might choose to trade off between statistical efficiency, behavioural 

efficiency, or maybe avoid constructing choice tasks with dominant alternatives.  

It is important to note that the sample size of the three design data sets that we 

analysed in this study is relatively small. This limited us to the use of the basic 

heteroskedastic logit model and not the heteroskedastic mixed logit model that could 

account for individual heterogeneity.  We suggest that future studies aiming to 

compare the behavioural efficiency of different designs should have a relatively large 
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sample size and use more advance heteroskedastic logit models (e.g., heteroskedastic 

panel mixed logit model with error components, and generalised mixed logit models).  

It is worth mentioning that the study of ANA and entropy in this exercise would 

have benefited from knowing the amount of time it took a respondent to complete 

each choice task. The amount of time spent in evaluating each choice task would 

likely provide an indication whether a respondent had either thoroughly processed the 

information in a choice task or made random choices. We suggest that future studies 

on choice task complexity and/or ANA should account for the time spent responding 

to each choice task. Several online survey packages (e.g., Qualtrics28) allow the 

recording of the number of seconds and/or minutes it took a respondent to browse 

through certain pages of the online questionnaire. We believe that incorporating task 

response time as described in Rose and Black (2006) would cast additional light on 

this area of research. 

 

                                                           

28 Accessed on 10 May 2011 at http://www.qualtrics.com/ 
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Threatened Native Animals and Plants in New Zealand’s Planted Forests: 
What Do You Think? 

 

Scion (NZ Forest Research Institute), in collaboration with the University of Waikato and the University 
of Sydney, is conducting a study on the management of exotic planted forests for the conservation of 
threatened native animals and plants (e.g., kiwi, kakabeak). We would like to know your views on the role 
of exotic forests for NZ native plants and animals. While about 90% of these forests consist of one type of 
exotic (foreign) tree, which is Radiata pine (Pinus radiata), the remaining 10% include other foreign 
trees, such as Douglas-fir (Pseudotsuga menziesii) and Gum tree (Eucalyptus nitens/ fastigata). Your 
views on planted forests are important to us. If you report your honest views to us they will help guide 
future decision making. 
 
 

The Survey 
There are no right or wrong answers to this survey. We are only interested in your honest views. All your 
answers will be kept confidential in compliance with the Privacy Act of 1993. 
 

Where you live (If you own or manage more than one property, please answer these questions in relation 
to the property you live at for most of the year) 
 

1. Is your home located in (please tick one): 
 □ Whangarei   □ Auckland   □ Hamilton □ Tauranga 
 □ New Plymouth   □ Gisborne  □ Napier-Hastings □ Rotorua  

  □ Wanganui   □ Palmerston North  □ Kapiti Coast  □ Wellington  
  □ Nelson   □ Christchurch  □ Dunedin  □ Invercargill 

 □ Other: specify city, town or nearby town ____________________________________ 

 

2. How many years have you lived at this property?   ___________  
 

3. Approximately how large is your property?   _____ hectares or   _____ acres  or   ______ sq metres 
 

4. Do you own or rent this property?  (Please tick one)      

  □ Own        □ Rent          □ Other: please specify ___________________________ 

5a. Is your home located close (less than 10 km) to an exotic planted forest?     □ Yes   □ No 
 5b. If Yes, can you please specify the name of this planted forest?  __________________________ 
 

 5c. If Yes, approximately how far is your home from this planted forest?  ____________ km  

6. Have you previously lived in a property close to a planted forest?      □ Yes   □ No 
 

7. Are you aware that New Zealand’s planted forests could provide habitat for rare native plants and 
animals even though the trees are non-native in New Zealand?   □ Yes        □ No 

 

8. Since this survey is about threatened plants and animals that can be found in New Zealand’s exotic  
 planted forests, can you please indicate your level of familiarity with the species in the table below  
 by ticking the box “□”:  
 Never heard 

of 
Heard of 

Read 
about 

Seen in zoo/ 
garden/aquarium 

Seen in 
the bush 

Sought in 
the bush 

NZ Bush Falcon (bird) □ □ □ □ □ □ 
Giant Kokopu (fish) □ □ □ □ □ □ 
Long-tailed Bat  □ □ □ □ □ □ 
Brown Kiwi (bird) □ □ □ □ □ □ 
Auckland Green Gecko  □ □ □ □ □ □ 
Kakabeak (plant) □ □ □ □ □ □ 

Questionnaire Page 1 
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Your Views About Planted Forest 
 

9. This next set of questions indicates some things that an exotic planted forest in New Zealand can 
help provide. Please indicate the extent to which you agree or disagree by circling the appropriate 
number.  If you are unsure, please circle “U”. 

 

Do you agree that NZ planted forests provide… Strongly 
disagree 

Slightly 
disagree 

Neutral 
Slightly 
agree 

Strongly 
agree 

Unsure 

 
9a. habitat for threatened native plants (e.g., 
kakabeak, orchids) 
  

1 2 3 4 5 U 

 
9b. habitat for threatened native fish (e.g., 
banded kokopu, giant kokopu, inanga) 
 

1 2 3 4 5 U 

 
9c. habitat for threatened native mammals 
(e.g., long-tailed bat, short-tailed bat) 
  

1 2 3 4 5 U 

 
9d. habitat for threatened native birds (e.g., 
kiwi, bush falcon) 
  

1 2 3 4 5 U 

 
9e. habitat for non-threatened native birds 
(e.g., tui, bellbirds, whitehead, tomtit) 
  

1 2 3 4 5 U 

 
9f. habitat for threatened native reptiles 
(e.g., frogs, skinks, geckos) 
  

1 2 3 4 5 U 

9g. habitat for non-threatened native insects 
(e.g., tree weta, huhu beetles) 
  

1 2 3 4 5 U 

 
9h. connectivity between native forest 
patches (e.g., movement of native species and 
shelter) 
  

1 2 3 4 5 U 

 
9i. maintenance of existing native bush (e.g., 
rimu, kauri, kahikatea) 
  

1 2 3 4 5 U 

 
9j. a rich understorey of native plants (e.g., 
ponga, kanono) 
  

1 2 3 4 5 U 

 

9k. The maintenance of water quality (e.g., 
clean streams) 
  

1 2 3 4 5 U 

 
9l. Recreation (e.g., walking, fishing, biking, 
horse riding, camping, hunting) 
   

1 2 3 4 5 U 

 
9m. Storage of carbon in forests to mitigate 
climate change 
  

1 2 3 4 5 U 

Questionnaire Page 2 
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10. The NZ Bush Falcon in Kaingaroa Forest in the Central North Island 
 
We would now like to provide you with some background information about the NZ bush falcon in the 
Kaingaroa Forest.  Please read the following information before answering the survey questions. 
 
The NZ bush falcon, known by Maori as “Karearea”, is unique to NZ. NZ bush falcons are the country’s 
fastest bird. They achieve speeds of up to 97 km/hour and their eyesight is eight times more powerful than 
our own.  
 
Despite these extraordinary abilities, the NZ bush falcon is a “threatened” native bird. The word 
“threatened” means that their population is very low, with a risk of becoming extinct, particularly when no 
conservation effort is undertaken. Recent estimates revealed that there are only 3,000 left, and they are rarer 
than some species of kiwi. The reasons for their demise include habitat loss and introduced predators. The 
fact that bush falcons nest on the ground, coupled with their inability to see well at night, makes falcon eggs 
and chicks vulnerable to attack by predators (ferret, stoat and weasel) introduced to New Zealand. 
 
Planted forests offer a good habitat for bush falcons. ‘Cutover’ areas remaining after harvesting provide 
hunting grounds and suitable nesting sites. But, bush falcons are still at risk from forestry operations. Forest 
managers can help protect these birds by controlling predators and reducing the impact of harvesting and 
planting operations in known nesting areas.  
 
Such initiatives have helped to conserve the bush falcon in 
Kaingaroa Forest in the Central North Island. This large forest 
currently has the highest bush falcon concentration in the country 
and successful control of predators has enabled the local 
population of NZ falcon to slightly increase. NZ bush falcons may 
be observed frequently in different sections of the forest. Between 
2005 and 2006, 36 bush falcon nests were found in the forest.   
 
Project  
A government-coordinated conservation programme will be undertaken over the next five years to increase 
and sustain the bush falcon population in Kaingaroa Forest. This conservation programme needs public 
support.  
 
Project Aim 
This study aims to measure how much members of the public would value the conservation of the NZ bush 
falcon in Kaingaroa Forest.   
 
 
Please select one answer     

 □ I have read fully the description above 

 □ I have partly read or skimmed through the description above 
 
 

Falcon Nest 

   Forest Edge  

Questionnaire Page 3 
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THE IMPORTANT QUESTION 
 

We would like to know if you would contribute some money to support a 5-year conservation programme to 
increase and sustain the bush falcon population in Kaingaroa Forest. The money would be paid in the form 
of an additional amount in your annual income tax for 5 years only. The collected money would be given to 
the Department of Conservation, which—in collaboration with the forest corporations—would use it to 
undertake the programme.  (If you do not pay any income tax now, please answer the question as if you did 
pay income tax). Please, note that all funding will go directly towards this programme and none will be used 
for administrative fees. In answering the following questions please consider that you could use this money 
for alternative uses. For example, to pay for other needs in your household and for other activities you enjoy.  

Sometimes when people are asked these types of questions they do not pay sufficient attention to the dollar 
amount as they think that we are dealing with an imaginary situation.  However, it is very important to 
obtain your honest response to these questions. It is perfectly fine if you would not be willing to pay any 
amount to support the conservation of the NZ bush falcon in Kaingaroa Forest.   

 

10a. We would now like to know if you prefer to pay an additional amount in your income tax to support 
the programme to increase and sustain the bush falcon population in Kaingaroa Forest.  Please 
respond just exactly as you would if you were really going to commit an additional amount in your 
income tax over the next five years.  Now, would you be willing to pay $10 per year for five years? 

□ Yes                      □ No 
 

10b. If you ticked “Yes” above, would you pay $30?     or      If you ticked “No”, would you pay $5? 

                 □ Yes        □ No             □ Yes        □ No 
 
 
10c. If you are not prepared to pay any amount, please explain why. (Tick one only) 

 □ I did not want to place a dollar value  □ The government should pay 

 □ I object to the way the question is presented  □ Not enough information provided 

 □ I am opposed to a further increase in income tax □ Other: specify ___________________ 

 □ Forest companies should pay              _______________________________ 
 
 
 
10d. Please rate your understanding of the background information on the NZ bush falcon  
 (circle a number below): 
  
     Did not           Moderately              Completely 
                Understand          Understood            Understood 
         at all 
 

                    
          

1 2 3 4 5 6 7 8 9 10 
  
 
 
 
 

Questionnaire Page 4 
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Valuing Threatened Animals and Plants in New Zealand’s Planted Forests 
 
When undertaken, conservation programmes in planted forests of NZ can also benefit other threatened 
species apart from the NZ bush falcon. In 2008, exotic planted forests represented 22% of New Zealand’s 
total forest area. These forests provide habitat to over 100 threatened native animals and plants (including 
the NZ bush falcon). The word “threatened” means that their population is very low, with a risk of 
becoming extinct, particularly when no conservation effort is undertaken. Some of these threatened animals 
and plants in planted forests include: 

 

Brown Kiwi 
Throughout New Zealand, the brown kiwi  population has been declining at a rate of  
5% per year, which implies their population halves every decade. Conservation  
initiatives have started to ensure that the brown kiwi continues to live in a few exotic 
forests. They can be found in planted forests in Northland , Coromandel, Central  
North Island, Bay of Plenty and Hawke’s Bay that also contain remnants of native 
trees, stream edges with trees, clearfell and stands of various ages. The brown kiwi is 
nocturnal and can be heard calling after dark.  

 

Native Fish  
The giant kokopu is a rare native fish whose populations are gradually declining 
throughout New Zealand. They can be found in suitable waterways in planted forests  
in Bay of Plenty, East Coast, Waikato, southern North Island, West Coast and 
Southland. They can be seen at night in gently flowing streams with overhanging  
native vegetation. 
  

 

 

Native Shrub 
The kakabeak is a widely cultivated shrub, however, natural populations are extremely 
rare in the wild.  Kakabeak has been found in planted forests on the East Coast and 
Hawke’s Bay, where they are found in stream edges with trees and in steep gullies. 
 

 

Native Lizard 
Populations of the Auckland green gecko are in gradual decline. Populations have  
been found in planted forests in Northland , Waikato and Bay of Plenty regions. They 
have well developed vocal cords and can bark or chirp by clicking their tongues against 
the roof of the mouth. They can be seen in tree branches, foliage and open ground.   
Although they hunt by night for insects, they also like to sunbathe. 

 

NZ Bush Falcon 
The NZ bush falcon is classified as vulnerable to extinction. Very few bush falcons  
can be sighted on native bush but many can be found in large planted forests in North 
Island which include Kaingaroa Forest in the Central North Island  and in South 
Island planted forests including the Golden Downs in Nelson. They can be sighted in 
forest stand edges between clearfell and mature stands. 

 
We are now going to present you with a number of choice situations. These describe the outcomes of 
conservation policies that could be undertaken by the Department of Conservation in partnership with 
concerned organisations (e.g., forest corporations).  Ecologists suggest that over the next five years, planted 
forests could be managed to provide better habitat for threatened species. These species include the above 
four threatened animals and one plant species. For each choice situation we present you, we will ask you to 
select the alternative with the conservation outcomes you prefer. Some outcomes will require a contribution 
to the Department of Conservation through an additional amount in your annual income tax for five years. In 
each choice situation, there is also the possibility of taking no conservation action (“Current Condition”) and 
paying no money. 
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11. An example of answering the choice situation on the next few pages: 
Below is an example of a choice situation that provides you with three options. The column heading “current 
condition” represents an alternative with no change. In this case, there is no enhancement of habitat for 
threatened species in planted forests. There is no increase in the occurrence of threatened species in planted 
forests, and this has no cost to you. If you chose Option 1, the associated additional annual cost in your 
income tax is $50 for five years only.  Choosing Option 1 would guarantee an increase in hearing kiwi 
calls from the current condition of 1 out of 200 planted forests to a changed condition of 20 out of 200 
planted forests, a 10% increase. Forest ecologists suggested that this 10% increase is feasible. Choosing 
Option 1 also corresponds to an increase in Bush falcon sightings when driving through plantations from 1 
out of 8 to 3 out of 8 occasions.  Alternatively, if you chose Option 2, you would pay less than Option 1, 
only $25.  However, this option would have less increase in the number of kiwi calls heard (10 out of 200), 
but more bush falcons would be seen when driving through the forests (5 out of 8 occasions).  Option 2 
also provides a greater increase in Kakabeak in 20% of the planted forest areas on the East Coast and 
Hawkes Bay.  In this case, and after considering the change in the condition of the Auckland green gecko 
and Giant kokopu, if you prefer to hear more Kiwi , you can tick (�) the box under Option A and this also 
indicates that you would be willing to pay $50 in extra income tax for five years. 
 

Threatened Animal/Plant 
 

Current 
Condition 

 Option 1  Option 2 

Brown Kiwi  
(Frequency of hearing calls 
in planted forests in North 
Island) 
 

 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 20 out of 200 
planted forests 

 

Kiwi calls heard 
in 10 out of 200 
planted forests 

 

Giant Kokopu 
(Occurrence in slow moving 
streams with overhanging 
native vegetation in planted 
forests throughout New 
Zealand)  

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kokopu seen  
in 5 out of 10 

suitable streams 

 

Kokopu seen  
in 3 out of 10 

suitable streams 

 

Kakabeak 
(Occurrence in 20% of the 
planted forests on the East 
Coast and Hawke’s Bay) 

 

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
10 actively 
managed 

Kakabeak shrubs 

 

At least 
20 actively 
managed 

Kakabeak shrubs 

Auckland Green Gecko 
(Gecko sightings in open 
grounds in planted forests in 
Northland, Waikato and 
Bay of Plenty regions) 
  

 

Gecko sighted 
in 1 out of 50 

walks  

 

Gecko sighted 
in 5 out of 50 

walks  

 

Gecko sighted 
in 3 out of 50 

walks  

 

NZ Bush Falcon 
(Bush falcon sightings 
while driving through pine 
forests in Central North 
Island and Nelson) 
  

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

 

Bush falcon 
sighted 

in 3 out of 8 
drives 

 

Bush falcon 
sighted 

in 5 out of 8 
drives 

Additional amount to be paid yearly in  
your income tax for five years 

 

$0 

 

 
$50 

 
$25 

 
I would choose (please tick) 

 

 

 
 

 

 

 
� 
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Now that we drove you through an example on the previous page, we would like you to make the next 
choices on your own. Please remember to consider the payment as if it was real and give honest answers so 
as to inform conservation policy.  
 

11a. Which of the three options below would you prefer most? Read the description and tick the box “□” 

that corresponds to your most preferred option. 

 

Threatened Animal/Plant 
 

Current 
Condition 

 Option A  Option B 

Brown Kiwi  
(Frequency of hearing calls 
in planted forests in North 
Island) 
 
 

 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 20 out of 200 
planted forests 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Giant Kokopu 
(Occurrence in slow moving 
streams with overhanging 
native vegetation in planted 
forests throughout New 
Zealand)  

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kokopu seen  
in 3 out of 10 

suitable streams 

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kakabeak 
(Occurrence in 20% of the 
planted forests on the East 
Coast and Hawke’s Bay) 
 
  

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
10 actively 
managed  

Kakabeak shrubs 

Auckland Green Gecko 
(Gecko sightings in open 
grounds in planted forests in 
Northland, Waikato and 
Bay of Plenty regions) 
  

 

Gecko sighted 
in 1 out of 50 

walks  

 

Gecko sighted 
in 5 out of 50 

walks  

 

Gecko sighted 
in 1 out of 50 

walks  

 

NZ Bush Falcon 
(Bush falcon sightings 
while driving through pine 
forests in Central North 
Island and Nelson) 
 
 

 

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

 

Bush falcon 
sighted 

in 3 out of 8 
drives  

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

Additional amount to be paid yearly in  
your income tax for five years only 

 

$0 

 

 
$30 

 
$60 

 
I would choose (please tick) 

 

 

□ 

 

□  □ 
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11b. Below is a choice situation different to that of 11a, taking into account your income constraints and 

household needs, etc., which of the three options below would you prefer most? Tick the box “□” at the 

bottom that corresponds to your most preferred option. 

 

Threatened Animal/Plant 

 

Current 
Condition 

 Option C  Option D 

Brown Kiwi  
(Frequency of hearing calls 
in planted forests in North 
Island) 
 
 

 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 10 out of 200 
planted forests 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Giant Kokopu 
(Occurrence in slow moving 
streams with overhanging 
native vegetation in planted 
forests throughout New 
Zealand)  

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kokopu seen  
in 3 out of 10 

suitable streams 

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kakabeak 
(Occurrence in 20% of the 
planted forests on the East 
Coast and Hawke’s Bay) 
 
  

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
10 actively 
managed 

Kakabeak shrubs 

Auckland Green Gecko 
(Gecko sightings in open 
grounds in planted forests in 
Northland, Waikato and 
Bay of Plenty regions) 
  

 

Gecko sighted 
in 1 out of 50 

walks  

 

Gecko sighted 
in 1 out of 50 

walks  

 

Gecko sighted 
in 3 out of 50 

walks  

 

NZ Bush Falcon 
(Bush falcon sightings 
while driving through pine 
forests in Central North 
Island and Nelson) 
 
 

 

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

 

Bush falcon 
sighted 

in 3 out of 8 
drives  

 

Bush falcon 
sighted 

in 5 out of 8 
drives  

Additional amount to be paid yearly in  
your income tax for five years only 

 

$0 

 

 
$90 

 
$30 

 
I would choose (please tick) 

 

 

□ 

 

□  □ 
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11c. Looking at a different choice situation below, taking into account your income constraints and 

household needs, etc., which of the three options below would you prefer most? Tick the box “□” that 

corresponds to your most preferred option. 

 

Threatened Animal/Plant 

 

Current 
Condition 

 Option E  Option F 

Brown Kiwi  
(Frequency of hearing calls 
in planted forests in North 
Island) 
 
 

 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 10 out of 200 
planted forests 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Giant Kokopu 
(Occurrence in slow moving 
streams with overhanging 
native vegetation in planted 
forests throughout New 
Zealand)  

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kokopu seen  
in 5 out of 10 

suitable streams 

 

Kakabeak 
(Occurrence in 20% of the 
planted forests on the East 
Coast and Hawke’s Bay) 
 
  

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
10 actively 
managed 

Kakabeak shrubs 

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

Auckland Green Gecko 
(Gecko sightings in open 
grounds in planted forests in 
Northland, Waikato and 
Bay of Plenty regions) 
  

 

Gecko sighted 
in 1 out of 50 

walks  

 

Gecko sighted 
in 1 out of 50 

walks  

 

Gecko sighted 
in 5 out of 50 

walks  

 

NZ Bush Falcon 
(Bush falcon sightings 
while driving through pine 
forests in Central North 
Island and Nelson) 
 
 

 

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

 

Bush falcon 
sighted 

in 5 out of 8 
drives  

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

Additional amount to be paid yearly in  
your income tax for five years only 

 

$0 

 

 
$60 

 
$60 

 
I would choose (please tick) 

 

 

□ 

 

□  □ 
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11d. Looking at another choice situation below, taking into account your income constraints and household 

needs, etc., which of the three options below would you prefer most? Tick the box “□” that corresponds to 

your most preferred option. 

 

Threatened Animal/Plant 
 

Current 
Condition 

 Option G  Option H 

Brown Kiwi  
(Frequency of hearing calls 
in planted forests in North 
Island) 
 
 

 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 20 out of 200 
planted forests 

 

Kiwi calls heard 
in 10 out of 200 
planted forests 

 

Giant Kokopu 
(Occurrence in slow moving 
streams with overhanging 
native vegetation in planted 
forests throughout New 
Zealand)  

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kokopu seen  
in 3 out of 10 

suitable streams 

 

Kokopu seen  
in 5 out of 10 

suitable streams 

 

Kakabeak 
(Occurrence in 20% of the 
planted forests on the East 
Coast and Hawke’s Bay) 
 
  

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
10 actively 
managed  

Kakabeak shrubs 

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

Auckland Green Gecko 
(Gecko sightings in open 
grounds in planted forests in 
Northland, Waikato and 
Bay of Plenty regions) 
  

 

Gecko sighted 
in 1 out of 50 

walks  

 

Gecko sighted 
in 5 out of 50 

walks  

 

Gecko sighted 
in 1 out of 50 

walks  

 

NZ Bush Falcon 
(Bush falcon sightings 
while driving through pine 
forests in Central North 
Island and Nelson) 
 
 

 

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

 

Bush falcon 
sighted 

in 3 out of 8 
drives  

 

Bush falcon 
sighted 

in 5 out of 8 
drives  

Additional amount to be paid yearly in  
your income tax for five years only 

 

$0 

 

 
$30 

 
$60 

 
I would choose (please tick) 

 

 

□ 

 

□  □ 
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11e. Looking at the fifth choice situation below, taking into account your income constraints and household 

needs, etc., which of the three options below would you prefer most? Tick the box “□” that corresponds to 

your most preferred option. 

 

Threatened Animal/Plant 
 

Current 
Condition 

 Option I  Option J 

Brown Kiwi  
(Frequency of hearing calls 
in planted forests in North 
Island) 
 
 

 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 10 out of 200 
planted forests 

 

Kiwi calls heard 
in 10 out of 200 
planted forests 

 

Giant Kokopu 
(Occurrence in slow moving 
streams with overhanging 
native vegetation in planted 
forests throughout New 
Zealand)  

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kokopu seen  
in 5 out of 10 

suitable streams 

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kakabeak 
(Occurrence in 20% of the 
planted forests on the East 
Coast and Hawke’s Bay) 
 
  

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
10 actively 
managed  

Kakabeak shrubs 

Auckland Green Gecko 
(Gecko sightings in open 
grounds in planted forests in 
Northland, Waikato and 
Bay of Plenty regions) 
  

 

Gecko sighted 
in 1 out of 50 

walks  

 

Gecko sighted 
in 3 out of 50 

walks  

 

Gecko sighted 
in 5 out of 50 

walks  

 

NZ Bush Falcon 
(Bush falcon sightings 
while driving through pine 
forests in Central North 
Island and Nelson) 
 
 

 

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

 

Bush falcon 
sighted 

in 3 out of 8 
drives  

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

Additional amount to be paid yearly in  
your income tax for five years only 

 

$0 

 

 
$60 

 
$90 

 
I would choose (please tick) 

 

 

□ 

 

□  □ 
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11f. Looking at the sixth choice situation below, taking into account your income constraints and household 

needs, etc., which of the three options below would you prefer most? Tick the box “□” that corresponds to 

your most preferred option. 

 

Threatened Animal/Plant 
 

Current 
Condition 

 Option K  Option L 

Brown Kiwi  
(Frequency of hearing calls 
in planted forests in North 
Island) 
 
 

 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 10 out of 200 
planted forests 

 

Kiwi calls heard 
in 20 out of 200 
planted forests 

 

Giant Kokopu 
(Occurrence in slow moving 
streams with overhanging 
native vegetation in planted 
forests throughout New 
Zealand)  

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kokopu seen  
in 3 out of 10 

suitable streams 

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kakabeak 
(Occurrence in 20% of the 
planted forests on the East 
Coast and Hawke’s Bay) 
 
  

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
10 actively 
managed 

Kakabeak shrubs 

 

At least 
10 actively 
managed 
Kakabeak 

shrubs 

Auckland Green Gecko 
(Gecko sightings in open 
grounds in planted forests in 
Northland, Waikato and 
Bay of Plenty regions) 
  

 

Gecko sighted 
in 1 out of 50 

walks  

 

Gecko sighted 
in 3 out of 50 

walks  

 

Gecko sighted 
in 5 out of 50 

walks  

 

NZ Bush Falcon 
(Bush falcon sightings 
while driving through pine 
forests in Central North 
Island and Nelson) 
 
 

 

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

 

Bush falcon 
sighted 

in 5 out of 8 
drives  

Additional amount to be paid yearly in  
your income tax for five years only 

 

$0 

 

 
$90 

 
$90 

 
I would choose (please tick) 

 

 

□ 

 

□  □ 
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11g. Looking at the seventh choice situation below, taking into account your income constraints and 

household needs, etc., which of the three options below would you prefer most? Tick the box “□” that 

corresponds to your most preferred option. 

 

Threatened Animal/Plant 
 

Current 
Condition 

 Option M  Option N 

Brown Kiwi  
(Frequency of hearing calls 
in planted forests in North 
Island) 
 
 

 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 20 out of 200 
planted forests 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Giant Kokopu 
(Occurrence in slow moving 
streams with overhanging 
native vegetation in planted 
forests throughout New 
Zealand)  

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kokopu seen  
in 5 out of 10 

suitable streams 

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kakabeak 
(Occurrence in 20% of the 
planted forests on the East 
Coast and Hawke’s Bay) 
 
  

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
20 actively 
managed 

Kakabeak shrubs 

 

At least 
20 actively 
managed 

Kakabeak shrubs 

Auckland Green Gecko 
(Gecko sightings in open 
grounds in planted forests in 
Northland, Waikato and 
Bay of Plenty regions) 
  

 

Gecko sighted 
in 1 out of 50 

walks  

 

Gecko sighted 
in 5 out of 50 

walks  

 

Gecko sighted 
in 1 out of 50 

walks  

 

NZ Bush Falcon 
(Bush falcon sightings 
while driving through pine 
forests in Central North 
Island and Nelson) 
 
 

 

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

 

Bush falcon 
sighted 

in 5 out of 8 
drives  

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

Additional amount to be paid yearly in  
your income tax for five years only 

 

$0 

 

 
$60 

 
$30 

 
I would choose (please tick) 

 

 

□ 

 

□  □ 
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11h. Looking at the eight and last choice situation below, taking into account your income constraints and 

household needs, etc., which of the three options below would you prefer most? Tick the box “□” that 

corresponds to your most preferred option. 

 

Threatened Animal/Plant 
 

Current 
Condition 

 Option O  Option P 

Brown Kiwi  
(Frequency of hearing calls 
in planted forests in North 
Island) 
 
 

 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 20 out of 200 
planted forests 

 

Giant Kokopu 
(Occurrence in slow moving 
streams with overhanging 
native vegetation in planted 
forests throughout New 
Zealand)  

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kokopu seen  
in 5 out of 10 

suitable streams 

 

Kokopu seen  
in 3 out of 10 

suitable streams 

 

Kakabeak 
(Occurrence in 20% of the 
planted forests on the East 
Coast and Hawke’s Bay) 
 
  

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
10 actively 
managed  

Kakabeak shrubs  

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

Auckland Green Gecko 
(Gecko sightings in open 
grounds in planted forests in 
Northland, Waikato and 
Bay of Plenty regions) 
  

 

Gecko sighted 
in 1 out of 50 

walks  

 

Gecko sighted 
in 3 out of 50 

walks  

 

Gecko sighted 
in 5 out of 50 

walks  

 

NZ Bush Falcon 
(Bush falcon sightings 
while driving through pine 
forests in Central North 
Island and Nelson) 
 
 

 

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

 

Bush falcon 
sighted 

in 3 out of 8 
drives  

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

Additional amount to be paid yearly in  
your income tax for five years only 

 

$0 

 

 
$90 

 
$60 

 
I would choose (please tick) 

 

 

□ 

 

□  □ 
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11i. Looking at the eight and last choice situation below, taking into account your income constraints and 

household needs, etc., which of the three options below would you prefer most? Tick the box “□” that 

corresponds to your most preferred option. 

 

Threatened Animal/Plant 

 

Current 
Condition 

 Option Q  Option R 

Brown Kiwi  
(Frequency of hearing calls 
in planted forests in North 
Island) 
 
 

 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 20 out of 200 
planted forests 

 

Giant Kokopu 
(Occurrence in slow moving 
streams with overhanging 
native vegetation in planted 
forests throughout New 
Zealand)  

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kokopu seen  
in 5 out of 10 

suitable streams 

 

Kokopu seen  
in 3 out of 10 

suitable streams 

 

Kakabeak 
(Occurrence in 20% of the 
planted forests on the East 
Coast and Hawke’s Bay) 
 
  

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
20 actively 
managed  

Kakabeak shrubs 

 

At least 
10 actively 
managed  

Kakabeak shrubs 

Auckland Green Gecko 
(Gecko sightings in open 
grounds in planted forests in 
Northland, Waikato and 
Bay of Plenty regions) 
  

 

Gecko sighted 
in 1 out of 50 

walks  

 

Gecko sighted 
in 5 out of 50 

walks  

 

Gecko sighted 
in 1 out of 50 

walks  

 

NZ Bush Falcon 
(Bush falcon sightings 
while driving through pine 
forests in Central North 
Island and Nelson) 
 
 

 

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

 

Bush falcon 
sighted 

in 5 out of 8 
drives  

 

Bush falcon 
sighted 

in 3 out of 8 
drives  

Additional amount to be paid yearly in  
your income tax for five years only 

 

$0 

 

 
$60 

 
$90 

 
I would choose (please tick) 

 

 

□ 

 

□  □ 
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11j. In answering questions 11a to 11h, what feature/s attracted you most when you made your  

 selection? (tick all that apply) 

 □ Would like to hear more kiwi calls  □ More giant kokopu in the wild 
 □ Would like to have more sightings of bush falcons □ Location sites of the programme 
 □ Would like to see a kakabeak in the wild  □ Other: specify __________________
 □ Would like to see and/ or hear more green geckos      _______________________________ 
            
 
11k. Assuming that you have considered the proposed cost, are there any species that you ignored when  
 making your selection? If so, which? (tick all that apply) 

 □ NZ bush falcon  □ Giant kokopu □ Auckland green gecko 

 □ Kakabeak  □ Brown kiwi  
 
 
11l. Are there any other animals or plants that we did not include in the above options that you would  
 prefer to pay for? 

 □ Long-tailed bat  □ Hochstetter’s Frog     □ Blue duck 

 □ Ponga   □ Tui      □ Other: specify _________________ 
                 _____________________________ 
 
 
11m. Please rate your understanding of the choice Questions in 11a to 11h (circle a number below): 
  
     Did not           Moderately              Completely 
                Understand          Understood            Understood 
         at all 
 

                    
          

1 2 3 4 5 6 7 8 9 10 
  
 
11n. Please rate how easy it was to choose your most preferred option in Questions 11a to 11h (circle a  
 number below): 
  
        Very        Neither Easy                     Very 
      Difficult       nor Difficult                             Easy 
 

                    
          

1 2 3 4 5 6 7 8 9 10 
 
 
11o. If you did not choose any changed option in Questions 11a to 11h (e.g., more kiwi heard, increase  
 in the number of falcon sightings), please explain why? (tick all that apply) 

 □ I didn’t want to place a dollar value  □ The government should pay   

 □ I object to the way the question is presented  □ Not enough information provided 

 □ I am opposed to further increases in income tax □ Other: specify ___________________ 

 □ I am unsure at the moment, need to ask someone first       _______________________________ 
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About You  
 

ALL YOUR ANSWERS IN THIS QUESTIONNAIRE ARE STRICTLY  CONFIDENTIAL AND 
WILL ONLY BE USED FOR THE ANALYSIS OF THIS STUDY. N AMES AND ADDRESSES 
WILL NOT BE DISCLOSED. 
 

12. Are you (Please tick one box):       □ Male    □ Female 

13. Were you born in New Zealand?    □ Yes     □ No 
 

14. Which age group do you belong to?     
       Under 25 years old 55 to 64  
       25 to 34 65 to 74  
       35 to 44 75 and above 
       45 to 54  

 

15. How many people live in your home (including yourself)?     
  Adults (18 and above) _____     Children (under 18) ______  Elderly dependent(s) ______ 
 
16. What is your highest level of formal schooling? (Tick one box) 
        Primary           Tertiary/Undergraduate/University  

       Secondary/High School/College         Post Graduate/Masters/PhD 
       Trades certificate/Post-school diploma         Other: specify ___________________________ 

 
17. Which one of the following best describes your current employment status? 
        Employed full time      Not in the labour force (retired, student, etc) 

       Employed part time      On ACC or sickness benefit 
       Self employed       Other: specify ___________________________ 
       Not employed, but seeking work             ___________________________ 

 
18. What is your current main occupation?   __________________________________________ 
 
19. Type of employer (Agriculture, Healthcare, Sales, etc) ________________________________ 
 
 

20a. Have you ever driven through an exotic planted forests?                      Yes              No        
 
20b. Have you ever visited an exotic planted forests?                      Yes                 No        
 
 20c. If Yes, please specify the name/s of the exotic planted forests you have visited? 
         _________________________________________________________________________ 
 

 20d. If you have visited at least one planted forest, what activities did you participate in?  
                   (Tick all that apply) 
          Bird watching  Horse riding          Fishing 
        Walking  Jogging/Running     Nature observation 
        Camping  Picnicking      Cycling  
  Photography  Hunting      Other/s: specify  
           ___________________ 
 
21a. Would you be willing to volunteer (e.g. bird counting, habitat restoration, giving talks) to help  

 in the conservation of threatened animals and plants in planted forests?        □ Yes    □ No 
 

 21b. If Yes, how many days in the next 365 days would you be willing to volunteer? ______ days 
 

 21c. If No, please explain why. 
  □ Prefer to volunteer in native forests  □ Involved in other voluntary endeavour  
  □ Lack of time to volunteer  □ Other: specify __________________
         _______________________________ 

Questionnaire Page 17 
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22. Do you or does any of your household members own a share of a planted forest or stock in a  
 forestry company in New Zealand? 

    □ Yes    □ No 
23. What ethnic group do you belong to:  
  New Zealand Māori  Pacific Islands origin      Asian  
  New Zealand born European African      Latin American 
  European immigrant         Other: specify 
     _______________________________________ 
 
24. Your last year’s personal income before taxes (tick one) 
  $10,000 and below                $50,001 to $60,000     $100,001 to $110,000            
  $10,001 to $20,000         $60,001 to $70,000     $110,001 to $120,000  
  $20,001 to $30,000         $70,001 to $80,000     $120,001 and above 
  $30,001 to $40,000         $80,001 to $90,000     Not Applicable  
  $40,001 to $50,000         $90,001 to $100,000       
 
25. Your spouse’s personal income before taxes last year (tick one) 
  $10,000 and below                $50,001 to $60,000     $100,001 to $110,000            
  $10,001 to $20,000         $60,001 to $70,000     $110,001 to $120,000  
  $20,001 to $30,000         $70,001 to $80,000     $120,001 and above 
  $30,001 to $40,000         $80,001 to $90,000     Not Applicable  
  $40,001 to $50,000         $90,001 to $100,000       
 
26. Do you participate in any conservation organisations? (Tick all that apply). 
  Bird conservation member (e.g., Wingspan) Green Peace member 
  Forest and Bird member   Department of Conservation volunteer 

 Care group (e.g., Kokako Trust)  Other/s: specify ____________________ 
  None    _________________________________  
 
27. If you participate in one or more community organisations, please tick all that apply. 
  Federated Farmers or Young Farmers  Rural Women NZ 
  Service Club (e.g., Lions, Rotary)  Church group 
  Playgroup, Kindergarten or Kohanga Reo Family recreation group (e.g., cards) 
  Sports, Hunting or Fishing Club  Professional organisation 
  None    Other/s: specify ____________________ 
      _________________________________ 
 

 
Thank you very much for completing the survey. We greatly appreciate your input in helping us 

study the importance of threatened species in New Zealand’s exotic planted forests. 
 

 

Although not required:  Feel free to use this space for notes, comments, etc. 
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Appendix Table 1 
 
Estimates of normalised AICs of 20 latent class logit model specifications (full sample) 
 

LC Model 
Number 

Latent classes (LC#s) – Attributes ignored 

Normalised AIC 
(AIC/N) 

Cross section 
specification 

Panel specification 

1 LC1 - Ignored SQ,  
LC2 – Ignored Gecko, Kakabeak and 
Kokopu 
LC3 – Ignored all attributes 

1.932 1.256 

2 LC1 - Ignored SQ,  
LC2 – Ignored Gecko, Kakabeak and 
Kokopu 
LC3 – Ignored Cost 

1.940 1.272 

3 LC1 - Ignored SQ,  
LC2 – Ignored Gecko, Kakabeak and 
Kokopu 
LC3 – Full attendance 

Did not converge 1.266 

4 LC1 - Ignored SQ  
LC2 – Ignored Gecko, Kakabeak and 
Kokopu 
LC3 – Full attendance 
LC4  – Ignored all attributes 

1.941 1.256 

5 LC1 – Ignored cost 
LC2 - Ignored SQ  
LC3 – Ignored Gecko, Kakabeak and 
Kokopu 
LC4  – Ignored all attributes 

1.941 1.154 

6 LC1 – Ignored cost 
LC2 - Ignored SQ  
LC3 – Ignored Gecko, Kakabeak and 
Kokopu 
LC4  – Ignored Falcon 

1.941 1.273 

7 LC1 – Ignored cost 
LC2 - Ignored SQ  
LC3 – Ignored Gecko, Kakabeak and 
Kokopu 
LC4  – Ignored Kiwi 

1.935 1.273 

8 LC1 - Ignored SQ  
LC2 – Ignored Gecko, Kakabeak and 
Kokopu 
LC3  – Full attendance 
LC4  – Ignored Kiwi 

1.935 1.267 

9 LC1 - Ignored SQ  
LC2 – Ignored Gecko, Kakabeak and 
Kokopu 
LC3  – Full attendance 
LC4  – Ignored Falcon 

1.936 Did not converge 

10 LC1 - Ignored SQ  
LC2 – Ignored Gecko, Kakabeak and 
Kokopu 
LC3  – Ignored Kiwi 
LC4  – Ignored Falcon 

1.936 1.268 
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Appendix Table 2 
Estimates of logit models using piecewise linear coded attributes 

Item Model 1 
Conditional Logit 

Model 2 
Latent Class Logit Panel 

Model 3 
Random Parameters Logit (RPL) 

Model 4 
RPL with Error Components 

Attributes and SQ Coef Std Err P-value Coef Std Err P-value Coef Std Err P-value Coef Std Err P-value 
Brown kiwi 1a 0.504 0.098 <0.01 0.669 0.121 <0.01 0.894 0.139 <0.01 0.914 0.136 <0.01 
Brown kiwi 2 0.118 0.090 0.19 0.150 0.121 0.22 0.115 0.133 0.38 0.150 0.142 0.29 
Native fish 1a 0.287 0.093 <0.01 0.163 0.131 0.21 0.331 0.133 0.01 0.299 0.156 0.05 
Native fish 2 -0.144 0.091 0.11 -0.139 0.130 0.28 -0.212 0.134 0.11 -0.179 0.179 0.32 
Native plant 1a 0.287 0.093 <0.01 0.181 0.136 0.18 -0.025 0.136 0.85 -0.057 0.135 0.68 
Native plant 2 0.065 0.090 0.47 -0.053 0.127 0.68 -0.020 0.135 0.88 -0.013 0.162 0.94 
Green gecko 1a 0.017 0.093 0.86 -0.115 0.135 0.40 -0.025 0.136 0.85 -0.057 0.135 0.68 
Green gecko 2 0.076 0.093 0.41 0.053 0.128 0.68 0.181 0.152 0.23 0.178 0.172 0.30 
Bush falcon 1a 0.453 0.098 <0.01 0.476 0.120 <0.01 0.964 0.144 <0.01 0.949 0.153 <0.01 
Bush falcon 2 0.248 0.089 0.01 0.438 0.120 <0.01 0.285 0.148 0.05 0.285 0.181 0.11 
Status Quo Indicator 0.177 0.158 0.26 -5.864 0.504 <0.01 -3.591 0.284 <0.01 -1.473 0.578 0.01 
Cost -0.025 0.002 <0.01 -0.123 0.011 <0.01 -0.183 0.010 <0.01 -0.064 0.004 <0.01 
Attribute non-attendance 

           
Ignoring cost 

   0.347 0.038 <0.01 
      

Ignoring status quo 
   0.369 0.043 <0.01 

      
Ignoring non-iconics 

   0.227 0.038 <0.01 
      

Ignoring all attributes 
   0.057 0.020 <0.01 

      
Random parameters 

            
Bush falcon 2 

      
1.905 0.482 <0.01 1.770 0.639 0.01 

Native plant 2 
      

1.057 0.597 0.08 1.490 0.508 <0.01 
Cost 

      
0.183 0.010 <0.01 0.064 0.004 <0.01 

Green gecko 2 
      

2.040 0.547 <0.01 1.888 0.532 <0.01 
Error components                   7.793 1.017 <0.01 
Log-likelihood -1785.14 

  
-1052.57 

  
-1139.32 

  
-990.50 

  
Normalised AIC 1.943 

  
1.154 

  
1.248 

  
1.088 

  
McFadden Pseudo R2 0.122 

  
0.482 

  
0.439 

  
0.513 

  
No. of observations 1850 

  
1850 

  
1850 

  
1850 
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Appendix Table 3 
 

Model 4 estimates of RPL-EC models using full and split samples (with dummy coded attribute levels) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note1: Values in italics represent estimates for random parameters 
Note2: Values in boldface font represent estimates statistically significant at 5% level.  

Item 
Model 4 

Full Sample 
Model 4L 

Large planted forest sample 
Model 4S 

Small planted forest sample 

Attributes and SQ Coef Std err p-value Coef Std err p-value Coef Std err p-value 

Brown kiwi 1 0.898 0.137   <0.01 1.063 0.198   <0.01 0.715 0.291 0.01 
Brown kiwi 2 1.048 0.128   <0.01 1.365 0.186   <0.01 0.669 0.326 0.04 
Native fish 1 0.307 0.153 0.04 0.243 0.210 0.25 0.399 0.290 0.17 
Native fish 2 0.138 0.145 0.34 0.017 0.200 0.93 0.324 0.324 0.32 
Native plant 1 0.343 0.163 0.04 0.326 0.200 0.10 0.240 0.426 0.57 
Native plant 2 0.329 0.161 0.04 0.280 0.210 0.18 0.297 0.348 0.39 
Green gecko 1 -0.053 0.135 0.70 -0.060 0.173 0.73 -0.027 0.306 0.93 
Green gecko 2 0.124 0.159 0.43 0.011 0.212 0.96 0.388 0.370 0.29 
Bush falcon 1 0.909 0.147   <0.01 0.824 0.202   <0.01 1.046 0.335   <0.01 
Bush falcon 2 1.188 0.147   <0.01 1.334 0.200   <0.01 1.029 0.302   <0.01 
Status Quo Indicator -1.594 0.637 0.01 -2.024 0.806 0.01 -0.814 1.453 0.58 
Cost -0.063 0.004   <0.01 -0.077 0.007 <0.01 -0.041 0.006 <0.01 
Random Parameters 

         
Bush falcon 2 1.606 0.658 0.01 1.179 0.903 0.19 1.652 1.228 0.18 
Native plant 2 1.446 0.557 0.01 1.291 0.866 0.14 1.752 0.855 0.04 
Cost 1.369 0.520 0.01 0.077 0.007 <0.01 0.041 0.006 <0.01 
Green gecko 2 0.063 0.004   <0.01 1.944 0.768 0.01 0.480 2.165 0.82 

Error Component 7.652 1.005   <0.01 8.050 1.207 <0.01 7.652 2.272 <0.01 

Log-likelihood -990.68 
  

-664.84 
  

-313.69 
  

Normalised AIC 1.088 
  

1.056 
  

1.177 
  

McFadden Pseudo R2 0.512 
  

0.531 
  

0.490 
  

Number of observations 1850 
  

1290 
  

560 
  

No. of groups 209 
  

145 
  

64 
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Appendix Table 4 
 

Heteroskedastic logit model (scale as a function of entropy) estimates for split and the pooled samples 
 

 ORD BDD OOD Pooled 

 Coeff Std Err p-value Coeff Std Err p-value Coeff Std Err p-value Coeff Std Err p-value 

Utility coefficient             
Brown kiwi 1 9.540 10.400 0.37 0.082 1.290 0.96 17.400 73.500 0.36 4.120 6.080 0.50 

Brown kiwi 2 14.700 15.000 0.35 0.121 1.870 0.96 20.000 83.700 0.33 5.730 8.730 0.51 

Native fish 1  5.120 6.040 0.42 0.106 1.650 0.96 3.470 15.100 0.54 2.620 3.920 0.50 

Native fish 2 3.230 4.810 0.52 -0.040 0.610 0.96 6.140 26.400 0.45 0.864 1.440 0.55 

Native plant 1 2.310 3.560 0.51 -0.042 0.653 0.96 5.370 23.000 0.52 1.490 2.450 0.54 

Native plant 2 -3.070 4.860 0.53 0.155 2.380 0.96 2.150 10.400 0.72 1.700 2.500 0.50 

Green gecko 1 2.780 4.440 0.53 0.003 0.084 0.98 -2.010 10.600 0.75 0.296 0.994 0.77 

Green gecko 2 5.490 5.600 0.30 -0.039 0.609 0.96 3.640 15.600 0.53 0.545 1.070 0.61 

Bush falcon 1 9.640 10.100 0.35 0.171 2.640 0.96 7.030 30.200 0.45 4.130 6.260 0.51 

Bush falcon 2 16.300 16.300 0.35 0.231 3.570 0.96 13.400 56.500 0.37 5.870 8.720 0.50 

Cost to respondent -0.497 0.486 0.33 -0.006 0.097 0.96 -0.927 3.890 0.35 -0.215 0.320 0.50 

Indicator for SQ -13.600 14.600 0.38 0.060 0.910 0.96 12.800 54.800 0.47 -1.300 2.400 0.59 

Scale  coefficient             

Entropy -11.100 3.660 <0.01 5.670 33.900 0.90 -5.860 9.150 0.03 -4.820 3.860 0.21 

Entropy squared 9.460 3.190 <0.01 -4.750 18.500 0.84 2.410 5.060 0.21 2.670 2.450 0.28 

Model statistics             

Adjusted Rho-square 0.151   0.102   0.126   0.120   

Log-likelihood value -455.09   -496.14   -468.92   -1458.86   

Number of choice observations 503   503   503   1509   
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Appendix Table 5 
 

Heteroskedastic logit model (scale as a function of attribute dispersion) estimates for split and the pooled samples 
 

 ORD BDD OOD Pooled 

 Coeff Std Err p-value Coeff Std Err p-value Coeff Std Err p-value Coeff Std Err p-value 

Utility coefficient             
Brown kiwi 1 0.971 0.654 0.14 0.012 0.023 0.59 0.126 0.196 0.52 1.260 0.689 0.07 
Brown kiwi 2 1.600 1.060 0.13 0.020 0.030 0.51 0.163 0.240 0.50 1.640 0.865 0.06 
Native fish 1  0.741 0.647 0.25 0.021 0.031 0.49 0.045 0.075 0.55 0.849 0.499 0.09 
Native fish 2 0.625 0.584 0.28 -0.015 0.020 0.46 0.045 0.075 0.55 0.362 0.316 0.25 
Native plant 1 0.355 0.472 0.45 -0.016 0.021 0.43 0.051 0.084 0.54 0.447 0.345 0.19 
Native plant 2 -0.492 0.660 0.46 0.025 0.037 0.50 0.029 0.054 0.59 0.558 0.369 0.13 
Green gecko 1 0.029 0.506 0.95 -0.008 0.014 0.55 -0.005 0.042 0.91 0.016 0.260 0.95 
Green gecko 2 0.622 0.502 0.21 -0.014 0.020 0.49 0.031 0.057 0.58 0.117 0.264 0.66 
Bush falcon 1 1.460 1.070 0.17 0.042 0.054 0.43 0.051 0.092 0.58 1.270 0.715 0.08 
Bush falcon 2 2.070 1.390 0.13 0.054 0.071 0.45 0.113 0.171 0.51 1.810 0.956 0.06 
Cost to respondent -0.065 0.047 0.17 -0.001 0.002 0.44 -0.007 0.010 0.51 -0.067 0.037 0.07 
Indicator for SQ -1.160 0.767 0.13 0.023 0.033 0.48 0.055 0.114 0.63 -0.311 0.449 0.49 

Scale  coefficient             

ASD -0.554 0.555 0.32 2.590 1.040 0.01 1.420 1.260 0.26 -0.653 0.438 0.14 

DSD -1.490 0.903 0.10 -1.720 1.880 0.36 -0.763 1.240 0.54 -1.150 0.722 0.11 

Model statistics             

Adjusted Rho-square 0.147   0.081   0.126   0.120   

Log-likelihood value -457.51   -493.85   -468.77   1458.18   

Number of choice observations 503   503   503   1509   
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Appendix Figure 1 
 
A sample choice task derived from an orthogonal design with overlaps in three 
attributes. Many ORD choice tasks have at least one overlapping attribute levels. 
 

 
 
 
  

Threatened Animal/Plant 

 

Current 
Condition 

 Option I  Option J 

Brown Kiwi  
(Frequency of hearing calls 
in planted forests in North 
Island) 
 
 

 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 10 out of 200 
planted forests 

 

Giant Kokopu 
(Occurrence in slow moving 
streams with overhanging 
native vegetation in planted 
forests throughout New 
Zealand)  

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kakabeak 
(Occurrence in 20% of the 
planted forests on the East 
Coast and Hawke’s Bay) 
 
  

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
10 actively 
managed 

Kakabeak shrubs 

 

At least 
10 actively 
managed 

Kakabeak shrubs 

Auckland Green Gecko 
(Gecko sightings in open 
grounds in planted forests in 
Northland, Waikato and 
Bay of Plenty regions) 
  

 

Gecko sighted 
in 1 out of 50 

walks  

 

Gecko sighted 
in 5 out of 50 

walks  

 

Gecko sighted 
in 3 out of 50 

walks  

 

NZ Bush Falcon 
(Bush falcon sightings 
while driving through pine 
forests in Central North 
Island and Nelson) 
 
 

 

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

 

Bush falcon 
sighted 

in 5 out of 8 
drives  

 

Bush falcon 
sighted 

in 5 out of 8 
drives  

Additional amount to be paid yearly in  
your income tax for five years only 

 

$0 

 

 
$90 

 
$60 

 
I would choose (please tick) 

 

 

□ 

 

□  □ 
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Appendix Figure 2 
 

A choice task derived Bayesian D-efficient design with an overlap in cost attribute. 
One would occasionally find overlaps in BDD choice tasks. 
 

 
 
 
 
  

Threatened Animal/Plant 

 

Current 
Condition 

 Option I  Option J 

Brown Kiwi  
(Frequency of hearing calls 
in planted forests in North 
Island) 
 
 

 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 20 out of 200 
planted forests 

 

Giant Kokopu 
(Occurrence in slow moving 
streams with overhanging 
native vegetation in planted 
forests throughout New 
Zealand)  

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kokopu seen  
in 3 out of 10 

suitable streams 

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kakabeak 
(Occurrence in 20% of the 
planted forests on the East 
Coast and Hawke’s Bay) 
 
  

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
20 actively 
managed 

Kakabeak shrubs 

 

At least 
3 actively 
managed 

Kakabeak shrubs 

Auckland Green Gecko 
(Gecko sightings in open 
grounds in planted forests in 
Northland, Waikato and 
Bay of Plenty regions) 
  

 

Gecko sighted 
in 1 out of 50 

walks  

 

Gecko sighted 
in 3 out of 50 

walks  

 

Gecko sighted 
in 1 out of 50 

walks  

 

NZ Bush Falcon 
(Bush falcon sightings 
while driving through pine 
forests in Central North 
Island and Nelson) 
 
 

 

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

 

Bush falcon 
sighted 

in 5 out of 8 
drives  

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

Additional amount to be paid yearly in  
your income tax for five years only 

 

$0 

 

 
$30 

 
$30 

 
I would choose (please tick) 

 

 

□ 

 

□  □ 
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Appendix Figure 3 
 
A choice task derived from optimal orthogonal design with no attribute overlap. No 
overlapping attribute levels were found in all pairs of changed alternatives in OOD 
choice tasks. 
 

 

Threatened Animal/Plant 

 

Current 
Condition 

 Option I  Option J 

Brown Kiwi  
(Frequency of hearing calls 
in planted forests in North 
Island) 
 
 

 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Kiwi calls heard 
in 20 out of 200 
planted forests 

 

Kiwi calls heard 
in 1 out of 200 
planted forests 

 

Giant Kokopu 
(Occurrence in slow moving 
streams with overhanging 
native vegetation in planted 
forests throughout New 
Zealand)  

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kokopu seen  
in 5 out of 10 

suitable streams 

 

Kokopu seen  
in 1 out of 10 

suitable streams 

 

Kakabeak 
(Occurrence in 20% of the 
planted forests on the East 
Coast and Hawke’s Bay) 
 
  

 

At least 
3 naturally 
occurring  

Kakabeak shrubs 

 

At least 
10 actively 
managed 

Kakabeak shrubs 

 

At least 
20 actively 
managed 

Kakabeak shrubs 

Auckland Green Gecko 
(Gecko sightings in open 
grounds in planted forests in 
Northland, Waikato and 
Bay of Plenty regions) 
  

 

Gecko sighted 
in 1 out of 50 

walks  

 

Gecko sighted 
in 1 out of 50 

walks  

 

Gecko sighted 
in 3 out of 50 

walks  

 

NZ Bush Falcon 
(Bush falcon sightings 
while driving through pine 
forests in Central North 
Island and Nelson) 
 
 

 

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

 

Bush falcon 
sighted 

in 1 out of 8 
drives  

 

Bush falcon 
sighted 

in 3 out of 8 
drives  

Additional amount to be paid yearly in  
your income tax for five years only 

 

$0 

 

 
$30 

 
$60 

 
I would choose (please tick) 

 

 

□ 

 

□  □ 

 


