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Abstract

MassiveOnline Analysis (MOA) is a software environment for implementingaithms and run-
ning experiments for online learning from evolving dataeams. MOA includes a collection of
offline and online methods as well as tools for evaluationpadrticular, it implements boosting,
bagging, and Hoeffding Trees, all with and withoutiia Bayes classifiers at the leaves. MOA
supports bi-directional interaction with WEKA, the Waikdovironment for Knowledge Analy-
sis, and is released under the GNU GPL license.
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1. Introduction

Green computings the study and practice of using computing resources efficiently. A main ap-
proach to green computing is based on algorithmic efficiency. In the datarstredel, data arrive
at high speed, and an algorithm must process them under very strittaiots of space and time.
MOA is an open-source framework for dealing with massive evolving dagams. MOA is
related to WEKA, the Waikato Environment for Knowledge Analysis, whichnisaard-winning
open-source workbench containing implementations of a wide range di bachine learning
methods.
A data stream environment has different requirements from the traditiated earning setting.
The most significant are the following:

Requirement 1 Process an example at a time, and inspect it only once (at most)
Requirement 2 Use a limited amount of memory

Requirement 3 Work in a limited amount of time

Requirement 4 Be ready to predict at any time

Figure 1 illustrates the typical use of a data stream classification algorithrhganthe require-
ments fit in a repeating cycle:

1. The algorithm is passed the next available example from the streami(@&wequot 1).
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Figure 1: The data stream classification cycle

2. The algorithm processes the example, updating its data structuress lsaavithout exceed-
ing the memory bounds set on it (requirement 2), and as quickly as poéRidgirement
3).

3. The algorithm is ready to accept the next example. On request it is ginlediot the class of
unseen examples (Requirement 4).

In traditional batch learning the problem of limited data is overcome by analgzidg@veraging
multiple models produced with different random arrangements of trainingestddata. In the
stream setting the problem of (effectively) unlimited data poses diffetmitenges. One solution
involves taking snapshots at different times during the induction of a modektthew much the
model improves.

The evaluation procedure of a learning algorithm determines which exaarglesed for train-
ing the algorithm, and which are used to test the model output by the algorithm.@énsidering
what procedure to use in the data stream setting, one of the unique®ixkow to build a picture
of accuracy over time. Two main approaches arise:

e Holdout: When traditional batch learning reaches a scale where cross-validatmmtime
consuming, it is often accepted to instead measure performance on a silugletiset. This
is most useful when the division between train and test sets has beelefpred, so that
results from different studies can be directly compared.

e Interleaved Test-Then-Train or Prequential: Each individual example can be used to test
the model before it is used for training, and from this the accuracy candoementally
updated. When intentionally performed in this order, the model is alwayg liegted on
examples it has not seen. This scheme has the advantage that no hetdsuiessded for
testing, making maximum use of the available data. It also ensures a smoothasdoticacy
over time, as each individual example will become increasingly less sigrtitizéime overall
average (Gama et al., 2009).
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Figure 2: MOA Graphical User Interface

As data stream classification is a relatively new field, such evaluation gadie not nearly as
well researched and established as they are in the traditional batch settengiajority of experi-
mental evaluations use less than one million training examples. In the contetbafteams this is
disappointing, because to be truly useful at data stream classificatiolytni#hans need to be ca-
pable of handling very large (potentially infinite) streams of examples. Demating systems only
on small amounts of data does not build a convincing case for capacity ® saike demanding
stream applications (Kirkby, 2007).

MOA permits evaluation of data stream classification algorithms on large stréaths,order
of tens of millions of examples where possible, and under explicit memory limity. |égs than
this does not actually test algorithms in a realistically challenging setting.

2. Experimental Framework

MOA is written in Java. The main benefits of Java are portability, where apiplitsacan be run on
any platform with an appropriate Java virtual machine, and the strong aldi@veloped support
libraries. Use of the language is widespread, and features such asagiotgarbage collection help
to reduce programmer burden and error.

MOA contains stream generators, classifiers and evaluation methodse Bighows the MOA
graphical user interface. However, a command line interface is alsolaeaila

Considering data streams as data generated from pure distributions, M@&sra concept
drift event as a weighted combination of two pure distributions that chaizesahe target concepts
before and after the drift. Within the framework, it is possible to define tbbatility that instances
of the stream belong to the new concept after the drift. It uses the sigmuitida, as an elegant
and practical solution (Bifet et al., 2009a,b).

MOA contains the data generators most commonly found in the literature. M@anstrcan be
built using generators, reading ARFF files, joining several streamdtasirfg streams. They allow
for the simulation of a potentially infinite sequence of data. The following gdoes are currently
available: Random Tree Generator, SEA Concepts Generator, STR&BEcepts Generator, Ro-
tating Hyperplane, Random RBF Generator, LED Generator, Wave@enerator, and Function
Generator.
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MOA contains several classifier methods such as: Naive Bayes, De@&sionp, Hoeffding
Tree, Hoeffding Option Tree (Pfahringer et al., 2008), Bagging,d8nog, Bagging usindDW N,
and Bagging using Adaptive-Size Hoeffding Trees (Bifet et al., 2D09b

2.1 Website, Tutorials, and Documentation

MOA can be found atht t p: / / npa. ¢s. wai kat 0. ac. nz/ .

The website includes a tutorial, an API reference, a user manual, andwahadoout mining
data streams. Several examples of how the software can be usedikigl@vi&or example, a non-
trivial example of the EvaluatelnterleavedTestThenTrain task creatirgrena separated values
file, training the HoeffdingTree classifier on the WaveformGenerator, tiaiaing and testing on
a total of 100 million examples, and testing every one million examples, is enctgzbia the
following commandline:

java -cp .:nmpa.jar:weka.jar -javaagent:sizeofag.jar noa.DoTask \
"Eval uat el nterl eavedTest ThenTrain -1 HoeffdingTree \
-s generators. Wavef or nenerator \
-i 100000000 -f 1000000" > htresult.csv

MOA is easy to use and extend. A simple approach to writing a new classifiereistéad
moa. ¢l assifiers. Abstract C assifier, which will take care of certain details to ease the task.
Although the current focus in MOA is on classification, we plan to extendrdradwork to include
data stream clustering, regression, and frequent pattern learnireg, (BifL0).
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