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Abstract
MassiveOnline Analysis (MOA) is a software environment for implementing algorithms and run-
ning experiments for online learning from evolving data streams. MOA includes a collection of
offline and online methods as well as tools for evaluation. Inparticular, it implements boosting,
bagging, and Hoeffding Trees, all with and without Naı̈ve Bayes classifiers at the leaves. MOA
supports bi-directional interaction with WEKA, the WaikatoEnvironment for Knowledge Analy-
sis, and is released under the GNU GPL license.
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1. Introduction

Green computingis the study and practice of using computing resources efficiently. A main ap-
proach to green computing is based on algorithmic efficiency. In the data stream model, data arrive
at high speed, and an algorithm must process them under very strict constraints of space and time.

MOA is an open-source framework for dealing with massive evolving data streams. MOA is
related to WEKA, the Waikato Environment for Knowledge Analysis, which is an award-winning
open-source workbench containing implementations of a wide range of batch machine learning
methods.

A data stream environment has different requirements from the traditional batch learning setting.
The most significant are the following:

Requirement 1 Process an example at a time, and inspect it only once (at most)

Requirement 2 Use a limited amount of memory

Requirement 3 Work in a limited amount of time

Requirement 4 Be ready to predict at any time

Figure 1 illustrates the typical use of a data stream classification algorithm, andhow the require-
ments fit in a repeating cycle:

1. The algorithm is passed the next available example from the stream (Requirement 1).
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(1) Input
Requirement 1
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Figure 1: The data stream classification cycle

2. The algorithm processes the example, updating its data structures. It does so without exceed-
ing the memory bounds set on it (requirement 2), and as quickly as possible(Requirement
3).

3. The algorithm is ready to accept the next example. On request it is able topredict the class of
unseen examples (Requirement 4).

In traditional batch learning the problem of limited data is overcome by analyzingand averaging
multiple models produced with different random arrangements of training andtest data. In the
stream setting the problem of (effectively) unlimited data poses different challenges. One solution
involves taking snapshots at different times during the induction of a model to see how much the
model improves.

The evaluation procedure of a learning algorithm determines which examplesare used for train-
ing the algorithm, and which are used to test the model output by the algorithm.When considering
what procedure to use in the data stream setting, one of the unique concerns is how to build a picture
of accuracy over time. Two main approaches arise:

• Holdout: When traditional batch learning reaches a scale where cross-validationis too time
consuming, it is often accepted to instead measure performance on a single holdout set. This
is most useful when the division between train and test sets has been pre-defined, so that
results from different studies can be directly compared.

• Interleaved Test-Then-Train or Prequential: Each individual example can be used to test
the model before it is used for training, and from this the accuracy can beincrementally
updated. When intentionally performed in this order, the model is always being tested on
examples it has not seen. This scheme has the advantage that no holdout set is needed for
testing, making maximum use of the available data. It also ensures a smooth plot of accuracy
over time, as each individual example will become increasingly less significant to the overall
average (Gama et al., 2009).
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Figure 2: MOA Graphical User Interface

As data stream classification is a relatively new field, such evaluation practices are not nearly as
well researched and established as they are in the traditional batch setting. The majority of experi-
mental evaluations use less than one million training examples. In the context of data streams this is
disappointing, because to be truly useful at data stream classification the algorithms need to be ca-
pable of handling very large (potentially infinite) streams of examples. Demonstrating systems only
on small amounts of data does not build a convincing case for capacity to solve more demanding
stream applications (Kirkby, 2007).

MOA permits evaluation of data stream classification algorithms on large streams,in the order
of tens of millions of examples where possible, and under explicit memory limits. Any less than
this does not actually test algorithms in a realistically challenging setting.

2. Experimental Framework

MOA is written in Java. The main benefits of Java are portability, where applications can be run on
any platform with an appropriate Java virtual machine, and the strong and well-developed support
libraries. Use of the language is widespread, and features such as automatic garbage collection help
to reduce programmer burden and error.

MOA contains stream generators, classifiers and evaluation methods. Figure 2 shows the MOA
graphical user interface. However, a command line interface is also available.

Considering data streams as data generated from pure distributions, MOA models a concept
drift event as a weighted combination of two pure distributions that characterizes the target concepts
before and after the drift. Within the framework, it is possible to define the probability that instances
of the stream belong to the new concept after the drift. It uses the sigmoid function, as an elegant
and practical solution (Bifet et al., 2009a,b).

MOA contains the data generators most commonly found in the literature. MOA streams can be
built using generators, reading ARFF files, joining several streams, or filtering streams. They allow
for the simulation of a potentially infinite sequence of data. The following generators are currently
available: Random Tree Generator, SEA Concepts Generator, STAGGER Concepts Generator, Ro-
tating Hyperplane, Random RBF Generator, LED Generator, WaveformGenerator, and Function
Generator.
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MOA contains several classifier methods such as: Naive Bayes, Decision Stump, Hoeffding
Tree, Hoeffding Option Tree (Pfahringer et al., 2008), Bagging, Boosting, Bagging usingADWIN,
and Bagging using Adaptive-Size Hoeffding Trees (Bifet et al., 2009b).

2.1 Website, Tutorials, and Documentation

MOA can be found at:http://moa.cs.waikato.ac.nz/.
The website includes a tutorial, an API reference, a user manual, and a manual about mining

data streams. Several examples of how the software can be used are available. For example, a non-
trivial example of the EvaluateInterleavedTestThenTrain task creating a comma separated values
file, training the HoeffdingTree classifier on the WaveformGenerator data, training and testing on
a total of 100 million examples, and testing every one million examples, is encapsulated by the
following commandline:

java -cp .:moa.jar:weka.jar -javaagent:sizeofag.jar moa.DoTask \
"EvaluateInterleavedTestThenTrain -l HoeffdingTree \
-s generators.WaveformGenerator \
-i 100000000 -f 1000000" > htresult.csv

MOA is easy to use and extend. A simple approach to writing a new classifier is toextend
moa.classifiers.AbstractClassifier, which will take care of certain details to ease the task.
Although the current focus in MOA is on classification, we plan to extend the framework to include
data stream clustering, regression, and frequent pattern learning (Bifet, 2010).
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