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Hadamard multiplexing provides a considerable SNR boost over additive random noise but Poisson noise
such as photon noise reduces the boost. We develop the theory for full H-matrix Hadamard transform
imaging under additive and Poisson noise effects. We show that H-matrix encoding results in no effect
on average on the noise level due to Poisson noise sources while preferentially reducing additive noise. We
use this result to explain the wavelength-dependent varying SNR boost in a Hadamard hyperspectral
imager and argue that such a preferential boost is useful when the main noise source is indeterminant or
varying. © 2009 Optical Society of America

OCIS codes: 110.4234, 110.1758, 030.4280, 350.6980.

1. Introduction

Hadamard multiplexing is the technique of measur-
ing groups of samples according to specific patterns
to boost the signal-to-noise ratio (SNR). There are
two types of Hadamard matrices commonly em-
ployed in multiplexing, namely the H-matrix and
the S-matrix [1]. The H-matrix is the full matrix of
positive and negative ones and size N ×N that is
optimal in terms of SNR boost over random noise.
The S-matrix consists of ones and zeros, is of size
ðN − 1Þ × ðN − 1Þ and can be derived from the H-
matrix. The S-matrix is more commonly used in mul-
tiplexing for the practical reason that the ones and
zeros are optically implemented as open or closed
apertures or mirror deflections towards or away from
a sensor. The negative ones in the H-matrix require
special consideration to implement. The S-matrix,
while not as optimal as the H-matrix (less SNR
boost), is conjectured to be the optimal one–zero
matrix for SNR boost over additive noise.

In light multiplexing systems the Hadamard SNR
boost is reduced by Poisson noise [2,3]. Indeed, if
Poisson noise, such as photon noise, is the only sig-
nificant noise contribution then S-matrix multiplex-
ing actually reduces the SNR. If Poisson and additive
Gaussian noise are both present then the SNR boost
achieves some intermediate value less than the the-
oretical best. Schemes have been proposed to boost
the SNR under Poisson noise [4] and to optimally
boost with a trade-off between Poisson and Gaussian
noise [5].

Hadamard transform imaging was traditionally
implemented using the S-matrix via mechanical
gratings with holes and occlusions [1]. Examples
include rectangular gratings that moved laterally,
rotating disks, and combinations thereof. Reflections
and occlusions have been used to implement the
H-matrix [6]. More recently imagers and imaging
spectrometers based on the Texas Instruments
digital micromirror device (DMD) have been de-
scribed. A variety of modalities have been investi-
gated using DMDs and single diode sensors [7],
linear sensor array dispersive spectrometers [8,9],
and two-dimensional sensor arrays such as
charge-coupled devices and diode arrays [10–12].
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The Hadamard transform has been applied to the
spatial and/or spectral dimension(s). Modulation of
the light has been implemented before [7–9] and
after the sample [10–12]. The compressed sensing
single pixel camera architecture [13,14] is a related
technique. A DMD-based optical arrangement multi-
plexes image pixels according to a random pattern
after the sample. Themultiplexed signal is measured
by a single light sensor. The coefficients of a linear
transformation of the image are then computed from
which the image is reconstructed.
We present here the theoretical development of

H-matrix encoding for multiplexed imaging. The
treatment is sufficiently general that it can be ap-
plied to nonimaging multiplexing systems. We
include random noise sources, including additive
random Gaussian instrument noise and multiplica-
tive Poisson photon noise. We also consider the cor-
rection of systematic additive and multiplicative
error. Of particular interest here is the effect of
photon noise under H-matrix multiplexing with
illumination drift. We present experimentation to de-
termine the SNR boost for our optical spatially multi-
plexed hyperspectral imager. The SNR boost is
evaluated, and the developed theory is used to
explain the observed behavior of our system. The us-
ability of the acquired spectra for practical applica-
tions is demonstrated.

2. Full Hadamard Multiplexing under Photon and
Instrument Noise

In this section we present the theoretical develop-
ment of Hadamard encoding in the presence of noise.
First we review the derivation of the well-known re-
sult for the Hadamard advantage in the presence of
random additive noise only. Then we extend the ana-
lysis to include a complement encoding implementa-
tion of full H-matrix Hadamard encoding and include
Poisson noise effects. Finally we include the effect of
reference beam correction in the analysis.

A. Background to Multiplexing

Consider Hadamard encoding with random additive
noise only. Hadamard multiplex imaging proceeds by
measuring groups of pixels according to specific pat-
terns. The patterns are the Hadamard basis func-
tions found in the rows of a Hadamard matrix [1].
A Hadamard matrix H is a self-transpose N ×N
square matrix of positive and negative ones that
satisfies

HTH ¼ H2 ¼ NI; ð1Þ
where I is the identity matrix. The Hadamardmatrix
forms an orthogonal basis set, thus it follows that the
inverse of a Hadamard matrix is

H−1 ¼ 1
N

H: ð2Þ

The data to be estimated are image pixels rep-
resented by the column vector p containing the trans-

pose of the concatenated rows. Data acquired via
Hadamard multiplexing with random additive noise
e can be modeled as

a ¼ Hpþ e: ð3Þ

Inversion gives the pixel estimates p̂ as

p̂ ¼ pþ 1
N

He: ð4Þ

If the image is acquired one pixel at a time then the
mean squared error (MSE) is σ20. In contrast, the
MSE of the estimates via Hadamard multiplexing
σ2H is given in terms of σ20 as [1]

σ2H ¼ 1
N

σ20: ð5Þ

The reduction of additive noise variance by the factor
of N is known as the Hadamard advantage [1].

B. Encoding Procedure

The data acquisition proceeds by sequential illumi-
nation of the sample according to the rows of the
Hadamard matrix. Spatial multiplexed Hadamard
hyperspectral imaging involves three dimensions
of operation: data acquisition j, pixel index i, and
wavelength λ. The encoding procedure is applied
identically to each wavelength in parallel so the
dependence on wavelength is implicitly assumed.
We split the Hadamard encoding matrix H into
two parts: a positive part Hþ and a negative part
H− such that H ¼ Hþ

−H�, where

Hþ ¼ 1þH
2

; H− ¼ 1 −H
2

:

TheHþ andH� encode complementary subsets of the
pixels. Figure 1 illustrates the splitting process.
Davis [6] used occlusion and reflection to split the
Hadamard matrix to perform hyperspectral imaging.
The optics of our system in conjunction with the split-
ting of the Hadamard matrix facilitates background
illumination removal [8], which was not considered

Fig. 1. Illustration of splitting the Hadamardmatrix intoHþ and
H− components. In Hþ the −1’s of the original H-matrix are con-
verted to 0’s. In H− the þ1’s are converted to 0’s and the −1’s are
converted to þ1’s.
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by Davis. The splitting process was also proposed in
optical communications for code division multiple ac-
cess systems [15] to boost the SNR of identifying a
single user from multiple signals.
To acquire the spectra each row of Hþ is wrapped

into a two-dimensional pattern and projected onto
the sample, and the corresponding entry of aþ is
acquired. Immediately after each row of Hþ the cor-
responding row of H� is similarly wrapped and pro-
jected onto the sample and the corresponding entry
of a� acquired. The spectra are contaminated by ran-
dom additive instrument noise e and the additive
combination of dark current, background, and stray
light, all represented by T. The light source in our
experimental setup has been shown to be stable dur-
ing the data acquisition period [16]. Regardless we
model the effect of light source drift during the data
acquisition as multiplication by the diagonal matrix
R. The jth diagonal element in R is hrij and repre-
sents the mean illumination at the time of the jth ac-
quisition. Let hri be mean illumination over the data
acquisition period, i.e., the mean of the hrij. If the
light source does not drift then hrij ¼ hri for all j
and so R ¼ hriI. The spectral parameter, αs, is intro-
duced to represent the attenuation of the light in-
tensity through the sample illumination optics.
Likewise the parameter αr represents the illumina-
tion attenuation through the reference beam optics.
The illumination has random fluctuation following
Poisson statistics represented by the diagonal matrix
of random errors EP. For pixel responses 0 ≤ fpgi ≤ 1
at pixel i on the sample, the acquired spectra are
then

aþ ¼ αsðRþ þ Eþ
P ÞHþpþ T þ eþ;

a− ¼ αsðR− þ E−

PÞH−pþ T þ e−: ð6Þ

The variance of the diagonal entries in Ep is

var
�
fEPgj;j

�
¼ fRgj;j ¼ hrij; ð7Þ

where varð·Þ denotes variance. Equation (7) states
that the illumination over the sample has random
fluctuation with variance equal to the mean inten-
sity, characteristics typified by Poisson statistics.
The superscripts on R, EP, and e highlight that ran-
dom noise sources change between acquisitions.
The combined stray and background light, T, is

assumed to be slowly changing, and because of the
source encoding [Eq. (6)], T is independent of
H [8]. As each row of the positive and negative en-
codings is taken in quick succession we make the ap-
proximation R ≈ Rþ

≈ R�. Thus taking the difference
between positive and negative encoding parts gives

a ¼ aþ − a− ¼ αsRHpþ ea;P þ e; ð8Þ

where e ¼ eþ − e− is the total additive noise and

ea;P ¼ αsðEþ
PH

þ
− E−

PH
−Þp ð9Þ

is the total Poisson photon noise.

C. Decoding and Error

Application of the inverse Hadamard transform to
the acquired spectra gives

p̂ ¼ 1
N

Ha ¼ αs
N

HRHp

þ αs
N

HðEþ
PH

þ
− E−

PH
−Þpþ 1

N
He: ð10Þ

The last term in Eq. (10) is the reduced additive
noise, as discussed in Subsection 2.A. Due to the sub-
traction operation, the variance of the last term is
σ2 ¼ 2σ20. The first term in Eq. (10) is the recon-
structed pixel values but now contaminated by a
bias. If the light source drifts over time then the bias
corrupts the relative magnitude of the entries in p̂. If
the light source does not drift then, as stated, R ¼
hriI and

αs
N

HhriIH ¼ αshri: ð11Þ

Thus when the light source does not drift then the
bias is a constant.

The second term in Eq. (10) is the photon noise. If
we were to illuminate the entire sample then the
photon noise MSE is αshrijNhpi, where hpi is the
mean pixel value and hrij is the light intensity at
the time that the jth acquisition is taken. Recall that
each positive encoding pattern (row in Hþ) illumi-
nates a subset of the pixels and the corresponding
negative encoding from H� illuminates the com-
plement subset. Thus there exists the fraction 0 <
δj < 1 such that the photon noise MSE of the jth
acquisition of the positive encoding is ðσþj;PÞ2 ¼
δjαshrijNhpi and the negative encoding ðσ−j;PÞ2 ¼
ð1 − δjÞαshrijNhpi. The photon noise MSE σ2j;a;P of
the jth acquisition in Eq. (8) is then

σ2j;a;P ¼ ðσþj;PÞ2 þ ðσ−j;PÞ2 ¼ αshrijNhpi: ð12Þ

The Hadamard decoding averages the error values
(with sign flipping due to the negative entries in H)
and it reduces the random noise MSE by a factor of
N. The MSE of the estimates due to photon noise at
decoding [Eq. (10)] is therefore

σ2p̂;P ¼ αshrihpi: ð13Þ

We contrast this with straightforward pointwise
acquisition of image spectra, where each pixel pi is
individually sampled at time t. Each pointwise mea-
surement is followed by a background measurement,
obtained by setting the encoding to zero. The
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background measurement is subsequently sub-
tracted from the corresponding pointwise measure-
ment. Thus for the pointwise acquisition if we
sample N pixels then in total 2N samples are re-
quired, the same number as the Hadamard encoding.
Obtaining a zero encoding measurement with each
pointwise measurement is necessary to mitigate
the effect of background and baseline drift. Assuming
even illumination across the sample the photon noise
MSE for individual pixel acquisition is

σ2point;i ¼ αshriipi: ð14Þ

Comparing Eqs. (13) and (14) indicates that Hada-
mard multiplexing has on average no effect on the
MSE contribution due to photon noise. Previous
authors [2,3] showed that Hadamard multiplexing
results in a MSE increase of ≈2 (SNR reduction of
≈1=

ffiffiffi
2

p
) in the photon noise dominant case. However,

those analyses used Hadamard S-matrix encoding
[1]. Full Hadamard encoding alleviates this detri-
mental effect of the S-matrix approach but still does
not produce an improvement over pixelwise acquisi-
tion. References [2,3] did not separate illumination
from pixel values, whereas the source modulation
paradigm makes the separation of illumination ef-
fects from pixel variation explicit. Also the analysis
of [3] made the simplification pi ≈ hpi (a reasonable
assumption for spectral dimension multiplexing),
which we do not. Hassler et al. [17] obtained substan-
tially the same result as Eqs. (13) and (14) under the
context of fluorescence imaging and starting from a
model considering photon noise per pixel.
The total random noise variances for both point-

wise and Hadamard imaging, respectively, σ2point;t
and σ2t , are

σ2point;t;i ¼ αshriipi þ σ2; ð15Þ

σ2t ¼ αshrihpi þ
1
N

σ2: ð16Þ

Neglecting the bias term due to light drift, the SNRs
for pointwise and Hadamard imaging are therefore

SNR2
point;i ¼

ðαshriipiÞ2
αshritpi þ σ2 ; ð17Þ

SNR2
i ¼ NðαshripiÞ2

Nαshrihpi þ σ2 : ð18Þ

Figure 2 shows theoretical SNR boosts with re-
spect to the light source intensity, r, with αs ¼ 1,
N ¼ 256, and, purely for illustrative purposes, pi ¼
0:5 for all i. The curves displayed are of the theore-
tical SNR boost,

boosti ¼
SNRi

SNRpoint;i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

αshriipi þ σ2
Nαshrihpi þ σ2

s
; ð19Þ

for a low and a moderate value of σ. The SNR boost is
greatest when σ2 dominates (σ2 > hri), thus the SNR
boost is delivered when most needed. As the signal
increases (when hri > σ2) the photon noise becomes
greater than the instrument noise, hence reducing
the SNR boost. However the SNR itself reaches
usable levels well before the SNR boost is reduced
to unity. In the event that the nature of the dominant
noise source is indeterminate or varying this prefer-
ential boost is demonstrably useful.

D. Light Drift Correction

The purpose of light drift correction is to remove the
bias due to R in the first term of Eq. (10). The sim-
plest correction method for light source drift is to ac-
quire reference spectra and divide the acquired
spectra by the reference spectra before decoding. As-
suming that the reference beam is acquired very
quickly before or after the sample spectrum, light
drift between sample and reference is negligible.
The measured reference is represented by the diag-
onal matrix Rr with entries

fRrgi;i ¼ αrfRþ EP;rgi;i þ fergi; ð20Þ

where αr is the reference optics effect, EP;r is the
reference photon noise, and er is the instrument
noise. The reference beam is designed to pass
the maximum amount of light to the sensor,
thus fRgi;i ¼ varðfEP;rgi;iÞ ≫ varðfergiÞ, moreover
fRgi;i ≫ varðfEP;rgi;iÞ1=2. The total error variance
in the reference beam is then well approximated
by the photon noise, σ2r;i ¼ αrhri.

Application of the reference beam correction and
then decoding gives

Fig. 2. Theoretical SNR boosts as a function of light source
intensity for two different values of mean squared error of the
additive noise.
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p̂ ¼ 1
N

H
1
αr

R−1½αsRHp� þ et ¼
αs
αr

pþ et; ð21Þ

where et is the total random error in the estimate,
i.e., the noise due to instrument and photon effects
combined with the reference beam noise. In a pre-
vious paper [16] we found the total random error var-
iance (MSE) for our system considering only
instrument noise. Expanding to include photon noise
variance we observe that the total MSE after refer-
ence correction is

σ2t ¼ 1
N

var
�
a
R

�

¼ 1

NhRri2
�
σ2a þ

hai2
hRri2

σ2r − 2
hai
hRri

σ2a;r
�
; ð22Þ

where the second line in Eq. (22) uses the equation
for the variance of the ratio of two variables with ran-
dom error [18], hai is the expected value of Eq. (8),
and σ2a;r is the covariance between the sample spectra
and the reference beam spectra. Substituting
σ2a ¼ αshriNhpi þ σ2, σ2r ¼ hRri ¼ αrhri, and hai ¼
αshriNhpi gives

σ2t ¼ 1

NðαrhriÞ2
�
αshriNhpi þ σ2

þ α2s hri2N2hpi2
α2r hri2

αrhri − 2
αshriNhpi

αrhri
σ2a;r

�
: ð23Þ

Only the reference beam is chopped [16], thus the
raw measurements include light from both the sam-
ple and the reference beam. The reference beammea-
surements are easily obtained by subtracting the
sample measurement from the raw measurement.
This subtraction results in a covariance of
σ2a;r ¼ −σ2 − αshriNhpi. Substituting and rearranging,
the MSE of the reference corrected estimates is

σ2t ¼ Nαshrihpi þ σ2
Nα2r hri2

�
1þ 2Nαshpi

αr

�
þNhpi2

αrhri
α2s
α2r

:

ð24Þ

Typically the light path of any reference beam sys-
tem is designed to pass as much light as possible,
thus αr ≫ αs. So, to a close approximation

σ2t ≈
αshriNhpi þ σ2

Nα2r hri2
: ð25Þ

The expected value of Eq. (21) for pixel i is αspi=αr.
Therefore the SNR is approximately

SNR2
i ≈

NðαshripiÞ2
Nαshrihpi þ σ2 : ð26Þ

The right-hand side of Eq. (26) is the same as
Eq. (18), except in Eq. (18) we neglected a bias error

term due to light source drift. Therefore, if the inten-
sity of the reference beam is sufficient (αr dominates
αs), then the decrease in SNR due to reference beam
correction is negligible. If the bias due to light drift is
significant, then the reference beam correction re-
moves the corresponding systematic error. Clearly
when Nαshrihpi ≫ σ2, SNR2 is linearly dependent
on hri. When σ2 ≫ Nαshrihpi, SNR2 is approximately
N times that of measuring each pixel individually.

3. Experimental Verification

Our prototype hyperspectral imaging system [8,16]
fits the theoretical considerations described in Sec-
tion 2. Figure 3 shows a diagram of the optical con-
figuration. The optical configuration is a broadband
image projector with a DMD as the optical modula-
tor. The DMD consists of a grid of small (typically
14 μm× 14 μm) mirrors that can be dynamically pro-
grammed to deflect to a nominally on or off state. The
flexibility of the DMD and the broad spectral charac-
teristics of the mirrors make the DMD a natural
choice for encoding light in visible/near infrared
(Vis/NIR) spectroscopy. The system projects light
patterns onto a sample to be imaged while measur-
ing the spectral response with a KES Analysis Inc.
(New York, USA) 100 series diode array spectro-
meter. The spectrometer samples light in direct view
mode, which is the entrance slit with a collection lens
directed at the sample to collect reflected light from
the entire sample object region. Photon noise occurs
in the light source, and instrument noise occurs in

Fig. 3. Plan view diagram of the optics. Arrows indicate the path
of light collected by the spectrometer.
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the optical sensor and hardware. The light source can
drift, and some background/stray light is always
present.

A. Experimentation

The SNR boost was quantified by the following
procedure [16]:

1. Acquire a set of 16 × 16 (N ¼ 256) Hadamard
hyperspectral images.
2. Concurrently acquire images by pointwise

(per-pixel) illumination of pixels.
3. Compute the SNR image for both Hadamard

and pointwise images.
4. Compute the mean SNR spectrum for each

SNR image.
5. Calculate the ratio of Hadamard to pointwise

SNR to give the SNR boost.

A Spectralon (Labsphere, North Sutton, N.H., USA)
white tile was used for the SNR measurements. The
Spectralon tile has the highest diffuse reflectivity
known to us in the Vis/NIR region, thus the photon
statistic effect on the SNR boost is maximized.
Hyperspectral images were taken of two simple

samples. The first sample consists of polystyrene
with two strips of rimu wood (Dacrydium cupressi-
num) inlaid diagonally. The second sample consists
of acrylic with PCB fiberglass overlaid on the
right-hand side. To demonstrate the usability of
the spectra we segmented the images. A singular va-
lue decomposition (SVD) [19] was used to extract the
principal components, and simple thresholding of the
SVD scores was used to perform the segmentation.

4. Results and Discussion

Figures 4–6 show spectra and images from the sim-
ple example application. A different image of the
diagonal wood and polystyrene object, acquired by
S-matrix encoding, appeared previously [8]. This is
a new image of the same object acquired by H-matrix

encoding. These application images demonstrate the
usability of the data generated by the imager. The
spectra have been white tile corrected to remove spa-
tial effects due to the imaging optics. Some edge ef-
fects are visible in the lower right-hand region of both
images. In Figs. 4 and 5 the spectra have been cut off
at 600nm due to excessive noise. In each case the
difference between the groups is clear. At all wave-
lengths the extra attenuation due to the PCB fiber-
glass over the acrylic is apparent. At 1533nm the
wood inlay appears as two dark diagonal regions
in the polystyrene. Segmentation of the images by

Fig. 4. Spectra from the eighth row of the acrylic and PCB fiber-
glass image, distinguishable by the gross intensity difference, i.e.,
acrylic has more reflectance.

Fig. 5. Spectra from the eighth row of the wood and polystyrene
image, distinguishable by their respective spectral shape. Wood
has pronounced absorbance bands near 600nm and around
1500nm.

Fig. 6. Images from the simple application. (a) Image of the ac-
rylic and PCB fiberglass sample at 1533nm. (b) Image of the wood
and polystyrene sample at 1533nm. (c) Segmented image classify-
ing the bare acrylic in (a) as black and the PCB fiberglass over ac-
rylic as white. (d) Segmented image classifying the wood in (b) as
white and polystyrene as black.
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thresholding the SVD scores distinguishes between
the two groups of each image, with the notable excep-
tion of the edge effect in the acrylic-PCB image.
Figure 7 shows the mean SNR boost for the ima-

ging system. As N ¼ 256, the theoretical maximum
boost is

ffiffiffiffiffi
N

p ¼ 16. The shape of the SNR boost is si-
milar to that of previous work [16] using S-matrix
complement encoding. The light level and detector
sensitivity both vary with wavelength. Hence the
dominant noise source varies with wavelength.
The SNR boost is about the theoretical maximum
at the highest wavelengths, coinciding with the re-
gion of minimal illumination from the light source.
The SNR boost reaches aminimum of about 3 around
700nm, which coincides with the spectral peak of the
light source, where the photon noise is greater that
the instrument noise. The discontinuity in the SNR
boost near 950nm is due to the use of two types of
sensor in the spectrometer for the different spectral
regions. The sensor for the longer wavelength region
has lower sensitivity, therefore greater sensor noise.
Thus the Hadamard advantage in the longer wave-
length region is better.
A factor not explicitly discussed in the theoretical

framework is the photon Poisson noise contribution
associated with the background and stray light. This
noise is independent of the encoding and so is re-
duced by multiplexing. Mathematically this noise
is represented in the random additive noise term.
However, strictly when the background/stray light ef-
fect is significant, the source-modulated multiplex-
ing reduces the overall influence of photon noise
on the SNR.
The full Hadamard multiplexing resulted in a

greater overall SNR boost than S-matrix comple-
ment encoding reported in [16] by approximately a
factor of 2. S-matrix complement encoding uses com-
plementary positive and negative encoding matrices
similar to the Hþ and H− patterns used here. The
theoretical SNR boost improvement in the H-matrix
method over S-matrix complement encoding for

random additive noise is
ffiffiffi
2

p
. When Poisson noise

is the only noise source, the S-matrix SNR boost is
reduced by a further

ffiffiffi
2

p
to give a maximum total the-

oretical SNR boost improvement of 2. Complement
encoding deals implicitly with background/stray
light. If instead we use S-matrix multiplexing with-
out complement encoding then explicit measurement
and subtraction of the background/stray light is ne-
cessary. Furthermore to mitigate any effect due to
drift in the background/stray then it is necessary
to obtain a background measurement for every
encoded measurement, similar to the pointwise ac-
quisition (Subsection 2.C). The SNR boost in comple-
ment S-matrix encoding is

ffiffiffi
2

p
of plain S-matrix

encoding, so the H-matrix boost is in turn a factor
of 2 more than plain S-matrix encoding.

5. Conclusion

The theory and practice of full H-matrix Hadamard
imaging with additive and multiplicative noise and
bias error sources was presented. The theory is gen-
eral and adaptable to different multiplexing situa-
tions by reconsideration of the noise and error
sources. The multiplicative noise in our case is
photon noise following Poisson statistics, the multi-
plicative bias is due to light drift. We showed that,
unlike S-matrix multiplexing, H-matrix multiplex-
ing has, on average, no effect on the photon noise var-
iance. Nevertheless the lack of reduction in photon
noise limits the Hadamard SNR boost. This limit oc-
curs when the light level, hence the SNR, is high. The
result was interpreted as a preferential noise reduc-
tion, which is useful in cases where the dominant
noise source is varying or indeterminate.

The H-matrix Hadamard imaging theory was ap-
plied to a spatially modulated hyperspectral imaging
system. The dominant noise source in the imaging
system varied with wavelength. Thus the SNR boost
also varied with wavelength. The maximum SNR
boost was delivered where the SNR in the system
was inherently lowest and was most needed. Simple
images were acquired using the imaging system, and
the spectra were processed using SVD and segmen-
ted via a threshold. The example images demon-
strate the usability of the hyperspectral images
produced by the imaging system.
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