Supremica—An Efficient Tool for
Large-Scale Discrete Event Systems

Robi Malik * Knut Akesson ** Hugo Flordal ***
Martin Fabian **

* The University of Waikato, Hamilton, New Zealand
(robiQuaikato.ac.nz)
** Chalmers University of Technology, Géteborg, Sweden
(fabian@chalmers.se, knut@chalmers.se)
*** Prover Technology, Stockholm, Sweden (hugo.flordal@prover.com)

Abstract: Supremica is a tool for the modelling and analysis of discrete-event control functions
based on state machine models of the uncontrolled plant and specification of the desired
closed-loop behaviour. The modelling framework in Supremica is based on finite-state machines
extended with variables, guard conditions, and action functions. In order to handle large-scale
problems of industrially interesting size, Supremica uses advanced model checking techniques
such as symbolic representations and compositional abstraction. Supremica has been used in
several industrial research projects to verify and synthesise control functions for embedded
controllers, industrial robots, and flexible manufacturing systems, and to verify program code
for autonomous vehicles. This paper gives an overview of the modelling features of Supremica,
shows the verification and synthesis facilities and their performance for large problems, and
presents some of the industrial applications where Supremica has been used.

Keywords: Discrete Event Systems, Supervisory Control, Extended Finite-State Machines,

Synthesis, Verification, Formal Methods.

1. INTRODUCTION

The supervisory control theory (Ramadge and Wonham,
1989) is a general framework for modelling, verification,
and synthesis of discrete event supervisors, which has
shown promising results mainly within academia. In or-
der for the supervisory control theory to be accepted in
industry, user friendly tools able to solve large-scale prob-
lems of industrially interesting sizes are critical. Suprem-
ica (Akesson et al., 2003, 2006) is an attempt to build
an integrated development environment that can to solve
large-scale supervisor verification and synthesis problems.

This paper presents Supremica and the main ideas of the
supervisory control theory for modelling discrete event
systems, as well as the technology for synthesising and
verifying control functions. The presentation focuses on
the tool from a user perspective. For a more theoretical de-
scription of the modelling framework with extended finite-
state machines, the reader may refer to Skoldstam et al.
(2007) and Mohajerani et al. (2016). For more detailed
presentations of algorithms, as well as further benchmarks,
see for example Akesson et al. (2002), Mohajerani et al.
(2014), and Pilbrow and Malik (2015).

Several research groups have developed tools for discrete
event systems, but few combine an easily accessible user in-
terface with high-performance algorithms. TCT (Feng and
Wonham, 2006) is a popular and efficient tool with tex-

* Supremica has been developed with financial support from the
Swedish Research Council under grants 621-2001-2154 and 621-2009-
3768.

tual user interface. The Integrated Discrete-Event Systems
Tool (Rudie, 2006) and DESTool (Moor et al., 2008) have
nice user interfaces but their algorithms do not achieve the
same performance as Supremica.

In the following, Section 2 gives a brief overview of the su-
pervisory control theory. Then Section 3 describes Suprem-
ica and its features, Section 4 shows some experimental
data to demonstrate its performance with large control
problems, and Section 5 describes some recent applications
of the tool. Finally, Section 6 adds concluding remarks.
This paper gives a more detailed account on Supremica
than previous publications (Akesson et al., 2003, 2006),
and describes recently added features. Supremica is con-
stantly evolving, and the latest release can always be
downloaded, free for education and research, from www.
supremica.org.

2. SUPERVISORY CONTROL THEORY

Reactive systems have been a research field within com-
puter science and engineering for a long time. Model check-
ing (Baier and Katoen, 2008) provides a means to verify
the correctness of, typically already controlled, reactive
systems against specifications of their required properties.
The supervisory control theory (Ramadge and Wonham,
1989) takes a control theoretic model-based approach.

In the supervisory control theory, the system model is sep-
arated into the plant, which represents a physical system
to be controlled, and the specification, which represents the
desired behaviour of the controlled system. The plant and

specification are typically modelled as discrete event sys-
tems, which are finite-state machines. Control is done by a
so-called supervisor, which is a safety device that hinders
the plant from executing certain events. Some events are
controllable and can be disabled by this supervisor, while
other events are uncontrollable and cannot be disabled.

Given a specification and plant, a supervisor that guaran-
tees that the entire specification can be achieved, exists if
and only if the specification is controllable. Controllability
is a safety property that states that all uncontrollable
events possible in the controlled system must be permitted
by the specification. If the specification is not controllable,
then it may still be possible to construct a supervisor,
but this supervisor only achieves a sub-behaviour of the
specification. Even more, it is known that a supremal con-
trollable sublanguage of the given plant and specification
language exists and is readily calculable. This language
may be empty, if there is no way to controllably enforce
the specification. Otherwise, it represents a least restrictive
supervisor which implements an optimal solution to the
control problem (Ramadge and Wonham, 1989).

In addition to controllability, it is desired for the supervisor
to be nonblocking. This is a progress property that guar-
antees that at least one marked state is reachable from
any state that can be reached in the controlled system.
Marked states typically represent states where all pend-
ing tasks have been completed. As above, the supremal
controllable and nonblocking sublanguage of a specification
with respect to a given plant exists and can be calculated.

Controllability and nonblocking can be checked automat-
ically using model checking techniques, and if they are
satisfied, then the specification itself can be used as an
optimal supervisor. If not satisfied, then model checking
produces a counterexample (Baier and Katoen, 2008),
which is a trace of behaviour that takes the system to an
undesired state. By inspecting counterexamples, engineers
can gain a deeper understanding of the system, enabling
them to discover and fix problems. Synthesis (Ramadge
and Wonham, 1989) goes one step further and automat-
ically produces an optimal controllable and nonblocking
Supervisor.

While the supervisory control theory has shown promis-
ing results within academia, industrial adoption is hith-
erto scarce. There seem to be two main reasons for this:
the modelling formalism, which is not straightforward
for the average control engineer typically used to Mat-
lab/Simulink; and the lack of useful tools able to handle
the complexity of real-life industrial applications. Suprem-
ica’s main focus has so far been on the second problem.
Now, being able to handle systems of industrial sizes,
the focus shifts to incorporate modelling, verification, and
synthesis into the everyday life of engineers.

3. THE SUPREMICA IDE

Supremica is designed as an Integrated Development Envi-
ronment (IDE) that allows the creation, verification, and
synthesis of discrete event system models. Fig. 1 shows
a screenshot. The main components of the IDE are the
Editor that creates state machines graphically, the Simula-

tor that animates the system behaviour, and the Analyser
that supports a variety of finite-state machine algorithms.

3.1 Editor

The Supremica editor provides a graphical user interface
to create and modify discrete event system models. Models
consisting of several finite-state machines can be saved in a
single file. They are displayed and edited graphically, with
states and transitions labelled by easy-to-use drag & drop
operations. As common in supervisory control theory, state
machines can be designated to be plants or specifications.
Events can be designated to be controllable or uncontrol-
lable as well as observable or unobservable.

Supremica supports ordinary finite-state machines (FSM)
and extended finite-state machines (EFSM). The transi-
tions of ordinary FSMs are labelled by events only, while
EFSMs are a generalisation and have transitions labelled
with guards and actions in addition to events (Chen and
Lin, 2000). The guards and actions reference wariables,
which can be declared over finite integer ranges or as
enumerated type. A transition in an EFSM is enabled if the
guard formula is true, and if it is taken, the variables are
updated in accordance with the actions on the transition.

Fig. 2 shows such an EFSM, which is part of a model
of a distributed prime sieve algorithm. Its variables c3,
c5, and x3 are defined over the integer range O,...,24.
The transition from q0 to ql is labelled with event tau3
and has a guard c3 > 0, which means that the transition
can only be taken when c3 is greater than zero. The
transition from gl to g2 has an action x3 = 3, which
means that the variable x3 will take as new value the
value that c3 currently has. Guards and actions can include
simple arithmetics, for example the guard of the transition
from g4 to q0 uses the modulo operator (%) to enable the
transition only when the value of x3 is divisible by 3.

Additionally, Supremica supports parametrisation to facil-
itate the creation of large models (Malik et al., 2011). It is
possible to create several similar state machines (FSMs
or EFSMs) by substitution of parameter variables in a
template, or to create transitions with parametrised sets of
events. State machines can also be grouped into modules
and re-used with different parameter instantiations. As
an example, these features make it possible to create a
model of a manufacturing line with a variable number n
of identical machines, and then instantiate it to get the
correct model for any value of n.

3.2 Simulator

The Supremica simulator can display several state ma-
chines in a model and show their synchronised behaviour.
At any time, the simulator displays the current state of
all state machines and the currently eligible events. The
user can choose which event to execute and observe the
resulting state changes. It is possible to step forwards and
backwards through the history, and it is easy to determine
for each event whether it is enabled, and if not, which state
machine is responsible for its disablement.

Synchronisation between FSMs is done by handshaking
based on common events (Hoare, 1985). That is, if two

O prime_sievedb.wmod
File Edit Simulate Verify Examples Modules Configure Help
L] LI I I
Editor | Simulator | Analyzer |
Automata Trace |_ $ sieve EE sieve3 ' [} Ek sieveS m sieve7 :

o= 0O 0. Initial state

o £, 1. tau0x0

o &, 2, tauo

o &, 3, tau0c2, {(x0==113}

o= &, 4, tau2. {1<=c2}

o £, 5. tau2x2, {c2==113}

o £, 5. tau2c2

o &, 7. tau2. {x2!=2}

o L, 8. tauz. {0!'=x2%2}

o= £, 0, tau2. {c3==0}

o £, 10. tau2¢3. {x2==113}

e £, 11. tau3. {1==c3}

¢ G, 12 tau3x3.{c3==113}
& sieves o q2
¥ x3 113

o £, 13 tau3c3

o= £, 14, tau3.{x3!=3}

o= £, 15, tau3.{0!=x3%3}

rau?
#T==7

o £, 16, tau3. {c5==0}
o &, 17. tau3c5. {x3==113}
o &, 18. taus.{1<=c5}
o= £, 19, tausx5, {c5==113}
o £, 20, tauscs ;
o K, 21, taus. {x5!=5} L4 4

o €, 22, taus. {0!=x5%5} fauhcd

= S1
o &, 23, taus. {c7==01} =il
o= £, 24, tauscT. {x5==113} taud
o L, 25, tau7. {l<=c7} c2==0

o C, 26, tau7x7. {c7==113} =1l
3k 52

o

OnFo JWI:1.8.0_60, Free/Total/Max mem: 72/54/1765 MB

OnFo Waters/Supremica IDE 2.2, built Oct 18, 2016 1:32:51 PM NZDT

)
3 conflict Check -ox ED
taup
Model prime_sievedb is blocking. cl1>0
Sl
| OK || Show Trace

L]

Fig. 1. Screenshot of counterexample simulation.

tau3ch
c5=x3

Fig. 2. Extended finite-state machine (EFSM).

or more state machines use the same event, then this
event can only be executed if all these state machines are
in a state where the event is enabled, and if executed,
then all these state machines change their state together.
EFSMs are also synchronised based on shared events,
and in addition guards and actions are treated as logical
formulas and combined by conjunction.

Internally, the simulator is based on ordinary FSMs, as
are most analysis algorithms in Supremica. EFSMs are
translated into an equivalent groups of FSMs for com-
putation and simulation. As there are different seman-
tics (Skoldstam et al., 2007; Mohajerani et al., 2016) for
transforming EFSMs into ordinary automata, a few user-
settable alternatives are available in Supremica.

One problem with the translation from EFSM into FSM
models is the possibly exponential blow-up in the number

of events, which can cause performance problems for large
models. This problem has been recognised, and recent
algorithms (Miremadi et al., 2011; Mohajerani et al., 2016)
bypass the translation into FSMs and work directly on the
EFSM model.

3.8 Analyser

The Supremica analyser provides access to a wide range of
FSM analysis and simplification algorithms. It is used as
a workbench to experiment with FSMs and the settings of
the various verification and synthesis algorithms available.

8.4 Verification

Both the editor and analyser include verification func-
tionality to check the model automatically and detect
possible errors. Supremica supports the standard discrete
event system properties of controllability and nonblock-
ing (Ramadge and Wonham, 1989). It is also possible to
check whether the model contains control loops (Malik
and Malik, 2006). These are universal properties that can
be checked automatically for every model without further
user interaction. Their verification is invoked conveniently
from the menu, and in many cases quickly returns an
answer whether or not the model passes the check.

Supremica also allows for the verification of application
specific safety properties. These properties are specified
by finite-state machines designed by the user to describe a
maximum allowable behaviour, and checked by means of
a language inclusion check (Brandin et al., 2004). This
makes it possible to ask specific questions about the
application at hand.

If verification fails, Supremica also computes a counterez-
ample, which is a trace of events that takes the system
to a problematic state. The counterexample trace can
be displayed and explored interactively in the simulator.
Fig. 1 shows an example of this. The user can replay the
counterexample step-by-step and inspect the states of all
components at each stage. This feature helps the user to
understand the cause of a problem and fix it.

3.5 Synthesis

The Supremica analyser includes the functionality to syn-
thesise a least restrictive controllable and nonblocking
supervisor for a collection of plant and specification FSMs
(Ramadge and Wonham, 1989). The synthesised super-
visor can take the form of a single FSM, or it can be
a modular supervisor, consisting of several components,
obtained by compositional synthesis (Mohajerani et al.,
2014) or supervisor localisation (Cai and Wonham, 2015).
It can also be simplified using supervisor reduction (Su and
Wonham, 2004). Small supervisor FSMs can be displayed
and edited in the graphical user interface. If a supervisor
component has too many states to be displayed, it can still
be stored in files or interacted with through the simulator.

As an alternative, the Supremica editor includes the seam-
less synthesis feature, which performs a symbolic synthesis
based on Binary Decision Diagrams (BDDs) (Miremadi
et al., 2011; Fei et al., 2014). In this case, the synthesised
supervisor is added to the graphical plant model in the
form of EFSM transition guards. This gives the user the
possibility to implement only the guards representing the
supervisor in a controller, such as a PLC.

4. PERFORMANCE

Verifying or synthesising a supervisor generally entails
enumerating the state-space of the controlled system,
the size of which typically grows exponentially with the
number of state machines in the model. To deal with the
large state numbers, Supremica includes highly optimised
explicit verification algorithms, programmed in C++4, that
can explore more than 100 million states on contemporary
computers (Malik, 2016). This is still insufficient for many
practical control problems. Several groups have conducted
research to improve the performance of discrete event
systems algorithms.

One approach to mitigate the state-space explosion prob-
lem uses ideas from symbolic model checking (Baier and
Katoen, 2008), in particular BDDs (Akers, 1978; Bryant,
1986). BDDs can efficiently store and manipulate Boolean
functions representing for example supervisory control
problems. BDD-based algorithms can handle huge state-
spaces while using little memory, and have been applied
successfully to large discrete event systems (Vahidi, 2004;
Song, 2006).

Another approach to handle large discrete event systems is
to exploit the inherent modularity common in these mod-
els. Well-designed discrete event system models typically
consist of a large number of small state machines. This
makes it possible to perform synthesis and verification by
considering only parts of the model at a time, without
ever constructing the full synchronous composition. Safety

properties such as controllability can be analysed using
incremental or modular verification, where the system
is split into groups of state machines that are analysed
separately (Akesson et al., 2002; Brandin et al., 2004).
Nonblocking verification and synthesis can be addressed
through the compositional approach, where the state ma-
chines are composed gradually and simplified after each
step (Flordal and Malik, 2009; Su et al., 2010; Mohajerani
et al., 2014).

Supremica includes explicit, modular, BDD, composi-
tional, and other verification and synthesis algorithms for
solving controllability and nonblocking verification, and
synthesis problems. Table 1 shows the results of some
benchmark computations. The table shows the runtimes
and memory usage for synthesis, nonblocking verification,
and controllability verification using different algorithms.
The test cases include complex industrial models and case
studies from different application areas such as manufac-
turing systems and automotive body electronics, most of
which are also used as benchmarks by Mohajerani et al.
(2014). The “Aut” column shows the number of state
machines in the model, and “State-space” is the number of
reachable states of the uncontrolled system. These exper-
iments were run on a standard desktop PC using a single
3.3 GHz microprocessor and not more than 2 GiB of RAM.

The data for “Comp. Syn.” refers to the compositional
synthesis algorithm (Mohajerani et al., 2014). This algo-
rithm calculates a least restrictive, controllable, and non-
blocking supervisor for the given plants and specification,
in the form of a set of synchronised FSMs. The data
for “Comp. Nbl.” refers to compositional nonblocking
verification with special events (Pilbrow and Malik, 2015),
which is an improved version of the earlier algorithm
(Flordal and Malik, 2009). “Mod. Cont.” is incremental
controllability verification (Brandin et al., 2004), which
uses counterexamples to identify suitable subsystems to
verify controllability. The timeout for the tbed_uncont
model occurred after 20 minutes. Finally, “BDD Nbl.”
and “BDD Cont.” are BDD-based nonblocking and con-
trollability verification. They are based on a BDD search
algorithm with improvements for better performance on
discrete event systems models. They use a variable order-
ing based on the FORCE heuristics (Aloul et al., 2003)
and a disjunctive partitioning and search strategy (Song,
2006).

The experiments show that Supremica can handle the
verification and synthesis of discrete event systems with up
to 10%7 states within a few seconds, in some cases minutes.
All the algorithms can be tuned with various parameters
for better performance, however this data was obtained
with default settings to give a general impression of the
performance of Supremica.

5. APPLICATIONS

Supremica is used at Chalmers and other universities to
communicate the ideas of supervisory control to students.
In addition, Supremica has been used in several research
projects with industrial partners to verify and synthesise
supervisors and controllers in various applications. This
section describes four of these projects.

Table 1. Benchmark examples from Supremica.

Model Comp. Syn. | Comp. Nbl. | BDD Nbl. | Mod. Cont. | BDD Cont.

State- Time | Mem. | Time | Mem. | Time | Mem. | Time | Mem. | Time | Mem.

Name Aut space [s] [MiB] [s] [MiB] [s] | [MiB] [s] [MiB] [s] [MiB]
agv 16 2.57-107 0.8 37.6 0.2 | 108.7 0.1 32.0 0.0 31.5 0.1 31.4
agvb 17 2.29-107 0.6 38.2 0.2 | 107.6 0.1 314 0.0 314 0.0 32.0
aipOalps 35 3.00-108 0.4 57.3 0.2 | 101.3 0.2 11.7 0.0 11.7 0.1 11.6
fencaiwon09b 31 8.93-107 0.4 46.5 04| 1294 0.9 9.4 0.1 8.9 0.3 8.8
fencaiwon09s 29 3.00-108 0.4 37.8 0.3 38.1 0.1 31.4 0.0 31.4 0.0 32.0
psl_big 37 3.87-107 0.5 45.9 0.3 39.2 1.3 31.6 0.0 28.2 0.0 28.9
psl_partleft 39 7.69-107 | 1014.0 | 878.7 0.2 38.3 0.1 35.9 0.0 33.0 0.0 32.7
psl_restart 37 3.87.107 550.2 | 396.4 0.4 39.9 0.9 32.9 0.0 29.9 0.0 30.1
tbed_hiscl 184 2.87-1017 11.1 | 662.7 0.2 38.1 | 469.3 28.4 0.1 15.8 | 436.5 27.7
tbed_noderailb 84 3.20-1012 5.2 | 419.3 3.2 | 140.6 | 91.8 38.2 9.7 32.9 | 102.2 28.5
tbed_uncont 84 3.66-1012 5.5 | 528.0 3.3 | 260.0 | 166.2 27.7 Timeout 7.0 33.5
verriegel3b 52 1.32-10° 1.2 83.4 0.3 39.0 2.3 14.6 0.1 13.2 1.2 15.0
verriegeldb 64 6.26- 1010 1.6 | 128.1 0.3| 384 85| 18.1 01| 157 45| 18.2
6linka 53 2.45-101% 2.8 | 154.7 0.3 38.4 4.0 30.8 0.0 31.4 0.5 30.8
6linki 53 2.75-101% 1.8 63.9 0.2 37.7 4.6 31.5 0.0 314 2.0 314
6linkp 48 4.43 .10 2.7 | 249.7 0.2 38.2 1.5| 30.8 00| 314 05| 315
6linkre 59 6.21-1018 0.6 56.5 0.3 39.2 2.3 31.4 0.0 32.0 1.7 31.4

5.1 Industrial Robot Interlocking

In a modern car factory, several industrial robots work
concurrently in a shared space to complete their tasks,
for example welding together the frame of a car. In this
setting, there is a risk for collisions between the robots.
Manually programming the coordination logic to avoid
collisions is both time-consuming and error prone due to
the number of possible situations that must be taken into
account. Using 3D-simulation models of the robots, it is
possible to automatically extract finite-state models of the
tasks and of the mutual exclusion zones where only a single
robot is allowed to be at a time. This approach has been
implemented as an add-on for a commercial robot pro-
gramming and simulation environment, the coordination
logic synthesis part is done using the Supremica kernel.
The approach is presented by Flordal et al. (2007).

5.2 Virtual Manufacturing

The development and validation of a manufacturing sys-
tems against a simulation model is attracting increasing
interest in industry. The main motivation is that the
systems can be integrated and tested before constructing
any physical system. In addition to this, the ability to
continuously test leads to increased reliability and enables
better coping with late changes. Having a computable
model has the added benefit that it can be used as a base
for preparation and implementation assisted by formal
methods. In a case study (Bengtsson et al., 2012; Dahl
et al., 2016), Supremica was used as an aid in generat-
ing operation sequences for validation during production
preparation. The result showed significant promise, and
currently this approach is further developed together with
a European manufacturing company.

5.8 Restart in Manufacturing Systems

In manufacturing systems, restart after an unforeseen error
is typically a complicated task, where the operator has
to manually position the devices in known poses before
production can continue. This is further complicated by

a need to use the devices to help remove heavy work
pieces. Bergagard and Fabian (2013) describe an approach
based on the supervisory control theory to calculate restart
states in a manufacturing control system. This supports
the operator to position the devices in a state from where
it is guaranteed that nominal production can continue.
As shown by Bergagard and Fabian (2013), this can be
formulated as a supervisor synthesis problem, solved off-
line, where re-execution specifications can be included
in the calculation to obtain a correct behaviour for the
restarted system.

5.4 Autonomous Vehicles

In collaboration with a European car manufacturer,
Supremica was used to formally verify a part of the code
for an autonomous vehicle (Petersson and Zita, 2016). This
code manages the lateral state of the vehicle, effectuating
lane change and related tasks. The manually written code
implements a state machine, which was modelled as an
EFSM in Supremica. Specifications were then modelled
and some of these were verified not to be fulfilled; one
serious bug was revealed. Verification with Supremica’s
abstraction-based compositional conflict check examined
601168 states in 0.45 seconds and produced a 38-event
long counterexample. The error was then through a unit
test confirmed to also exist in the actual code.

6. CONCLUSIONS

A tool, Supremica, for the modelling and analysis of dis-
crete event supervisors according to the supervisory con-
trol theory was presented. Extended Finite-State Machines
are used as modelling formalism. The tool implements
current state-of-the-art algorithms to handle systems of
industrially interesting sizes. Supremica is currently used
in a number of research projects together with industrial
partners to facilitate the development of control functions.
The use of formal methods for synthesising control func-
tions that are correct by construction, addresses an impor-
tant problem with implications for both how software and
hardware control functions are developed.

ACKNOWLEDGEMENTS

Supremica has been developed by many people over many
years and with support from several national and interna-
tional projects, all too numerous to mention here.

REFERENCES

Akers, S.B. (1978). Binary decision diagrams. IEEE Trans.
Comput., 27(6), 509-516.

Akesson, K., Fabian, M., Flordal, H., and Malik, R. (2006).
Supremica—an integrated environment for verification,
synthesis and simulation of discrete event systems. In
8th Int. Workshop on Discrete Event Systems, 384-385.
IEEE.

Akesson, K., Fabian, M., Flordal, H., and Vahidi, A.
(2003). Supremica—a tool for verification and synthesis
of discrete event supervisors. In 11th Mediterranean
Conf. Control and Automation.

Akesson, K., Flordal, H., and Fabian, M. (2002). Exploit-
ing modularity for synthesis and verification of supervi-
sors. In 15th IFAC World Congress. Barcelona, Spain.

Aloul, F.A., Markov, I.L., and Sakallah, K.A. (2003).
FORCE: A fast & easy-to-implement variable-ordering
heuristic. In 18th ACM Great Lakes Symp. VLSI, 116—
119.

Baier, C. and Katoen, J.P. (2008). Principles of Model
Checking. MIT Press.

Bengtsson, K., Bergagard, P., Thorstensson, C., Lennart-
son, B., Akesson, K., Yuan, C., Miremadi, S., and
Falkman, P. (2012). Sequence planning using multiple
and coordinated sequences of operations. IFEE Trans.
Autom. Sci. Eng., 9(2), 308-319.

Bergagard, P. and Fabian, M. (2013). Calculating restart
states for systems modeled by operations using supervi-
sory control theory. Machines, 1(3), 116-141.

Brandin, B.A., Malik, R., and Malik, P. (2004). Incremen-
tal verification and synthesis of discrete-event systems
guided by counter-examples. IEEE Trans. Control Syst.
Technol., 12(3), 387-401.

Bryant, R.E. (1986). Graph-based algorithms for boolean
function manipulation. IEEE Trans. Comput., 35(8),
677-691.

Cai, K. and Wonham, W.M. (2015). New results on
supervisor localization, with case studies. Discrete Fvent
Dyn. Syst., 25(1), 203-226.

Chen, Y. and Lin, F. (2000). Modeling of discrete event
systems using finite state machines with parameters. In
IEEE Int. Conf. Control Applications, 941-946.

Dahl, M., Bengtsson, K., Bergagard, P., Fabian, M., and
Falkman, P. (2016). Integrated virtual preparation
and commissioning: supporting formal methods during
automation systems development. IFAC-PapersOnlLine,
49(12), 1939-1944.

Fei, Z., Miremadi, S., Akesson, K., and Lennartson, B.
(2014). Efficient symbolic supervisor synthesis for ex-
tended finite automata. IEEE Trans. Control Syst.
Technol., 22, 2368-2375.

Feng, L. and Wonham, W.M. (2006). TCT: A computation
tool for supervisory control synthesis. In &th Int.
Workshop on Discrete Event Systems, 388-389. IEEE.

Flordal, H., Fabian, M., Akesson, K., and Spensieri, D.
(2007). Automatic model generation and PLC-code
implementation for interlocking policies in industrial

robot cells. Control Engineering Practice, 15(11), 1416
1426.

Flordal, H. and Malik, R. (2009). Compositional verifica-
tion in supervisory control. SIAM J. Control Optim.,
48(3), 1914-1938.

Hoare, C.A.R. (1985). Communicating Sequential Pro-
cesses. Prentice Hall International.

Malik, P. and Malik, R. (2006). Modular control-loop
detection. In 8th Int. Workshop on Discrete Event
Systems, 119-124. TEEE.

Malik, R. (2016). Programming a fast explicit conflict
checker. 1In 13th Int. Workshop on Discrete Event
Systems, 464—469. IEEE.

Malik, R., Fabian, M., and Akesson, K. (2011). Mod-
elling large-scale discrete-event systems using modules,
aliases, and extended finite-state automata. In 18th
IFAC World Congress, 7000-7005. Milano, Italy.

Miremadi, S., Akesson, K., and Lennartson, B. (2011).
Symbolic computation of reduced guards in supervisory
control. IEEE Trans. Autom. Sci. Eng., 8(4), 754-765.

Mohajerani, S., Malik, R., and Fabian, M. (2014). A
framework for compositional synthesis of modular non-
blocking supervisors. IEEE Trans. Autom. Control,
59(1), 150-162.

Mohajerani, S., Malik, R., and Fabian, M. (2016). A
framework for compositional nonblocking verification of
extended finite-state machines. Discrete Fvent Dyn.
Syst., 26(1), 33-84.

Moor, T., Schmidt, K., and Perk, S. (2008). libFaudes —
an open source C++ library for discrete event systems.
In 9th Int. Workshop on Discrete FEvent Systems, 125—
130. IEEE.

Petersson, P. and Zita, A. (2016). Logical modelling and
formal wverification of decision and control functions
for autonomous wvehicles. Master’s thesis, Chalmers
University of Technology, Goteborg, Sweden.

Pilbrow, C. and Malik, R. (2015). An algorithm for com-
positional nonblocking verification using special events.
Sci. Comput. Programming, 113(2), 119-148.

Ramadge, P.J.G. and Wonham, W.M. (1989). The control
of discrete event systems. Proc. IEEE, 77(1), 81-98.

Rudie, K. (2006). The integrated discrete-event systems
tool. In 8th Int. Workshop on Discrete Fvent Systems,
394-395. IEEE.

Skoldstam, M., Akesson, K., and Fabian, M. (2007). Mod-
eling of discrete event systems using finite automata
with variables. 46th IEEE Conf. Decision and Control,
3387-3392.

Song, R. (2006). Symbolic Synthesis and Verification of
Hierarchical Interface-based Supervisory Control. Mas-
ter’s thesis, Department of Computing and Software,
McMaster University, Hamilton, ON, Canada.

Su, R. and Wonham, W.M. (2004). Supervisor reduction
for discrete-event systems. Discrete Fvent Dyn. Syst.,
14(1), 31-53.

Su, R., van Schuppen, J.H., Rooda, J.E., and Hofkamp,
A.T. (2010). Nonconflict check by using sequential au-
tomaton abstractions based on weak observation equiv-
alence. Automatica, 46(6), 968-978.

Vahidi, A. (2004). Efficient Analysis of Discrete Event
Systems—Supervisor Synthesis with Binary Decision
Diagrams. Ph.D. thesis, Chalmers University of Tech-
nology, Goteborg, Sweden.

