
Working Paper Series
ISSN l l 70-487X

Parallel Programming
With PICSILl

Murray Pearson
Matthew Melchert

Working Paper 93 I 11

October, 1993

© 1993 by Murray Pearson & Matthew Melchert
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton. New Zealand

Parallel Programming With PICSIL 1
Murray Pearson (m.pearson@waikato.ac.nz)

Matt Melchert (matt@waikato.ac.nz)

Department of Computer Science
University of Waikato

Hamilton
NEW ZEALAND

Abstract

This paper describes the background and development of PICSIL1 a visual language for specifying parallel
algorithms using structured decomposition. PICSIL1 draws upon graphical and textual specification techniques;
the first for high level structure of an algorithm, the second for more detailed functional specification.

The graphical specification techniques used in PICSILl are based on Data Flow Diagrams (DFDs) and are well
suited to the assembly and interconnection of abstract modules. Minor modifications to DFDs have however had to
be made to make them suitable for describing parallel algorithms, These include the ability to dynamically replicate
sections of a diagram and change the structure of parts of a diagram dependent on data being processed.

Work is proceeding on the development of an editor to allow the direct capture and editing of PICSILJ descriptions,
In the near future development of compiler and visual debugging tools are planned.

Introduction

As the theoretical limits to processor speeds
that can be obtained from technology changes
impend, new approaches are going to be
required to allow the long trend of a doubling
in CPU speed every two years to be continue
(Dillinger88). One approach showing
promise is that of paraJlel processing.

While new architectures are continually
being developed for parallel processing , the
development of algorithms to take advantage
of this parallelism has been more
challenging. The use of parallelising
compilers to extract parallelism from
sequential code have produced disappointing
results in terms of speedup produced
(Pancake90). On the other hand, hand coded
parallelism (using specialised parallel
programming languages) has proved to be
very difficult and time consuming. Two main
reasons have been identified for this
difficulty (Socha89). First, management of
data and control may be difficult as parallel
architectures are more complicated than
their sequential counterparts. Second there is
often a very large conceptual gap between a
programmers mental conception of a problem
and the realisation of an efficient parallel
program that solves the problem.

This paper discusses how a parallel
programming paradigm based on a mixture of
graphical and textual notations can reduce
this conceptual gap, and introduces a new

parallel programming language, called
PICSILJ, based on this paradigm.

Expression of Parallel Algorithms using
Graphics and Text

Almost all existing parallel programming
languages represent a parallel algorithm
using a single dimensional text based
description. These textual descriptions make
it extremely difficult for the programmer to
visualise the program's overall structure. In
fact, most programmers working in the
parallel domain have to resort to a
graphical (or multi-dimensional)
representations of their code (Suhler90). In
most cases these diagrams do not form part of
the formal specification for the program, so
the diagrams have to be recreated when
changes are to be made to the code. Where
these diagrams do form part of the formal
documentation it is difficult to enforce a
mechanism to ensure the diagrams and text
remain consistent during their maintenance.

While the use of graphics has proved to be
good at allowing programmers to visualise
the overall structure of a problem, they have
been less successful at representing the more
detailed aspects of a problem (Myers90),
(Grundy93). In this domain a text based
notation has the complementary ability to
represent these more detailed aspects (Tse91).
This led to the assumption that an ideal
parallel programming language should

contain a mixture of graphical and textual
representations.

A number of parallel programming
environments do make use of text and
graphics have appeared recently (Zabala93),
(Socha89), (Beguelin93), (Suhler90). Most of
these environments, however, make use of
visual representations to visualise the
execution of a program defined using a textual
programming language. Two languages,
CODE (Browne89) and Hence (Beguelin93) do,
however, make use of graphics and text in the
specification of a problem. Both of these
languages develop a parallel program as a
computational graph where nodes represent
the computations to be performed and arcs
represen t dependencies between the
computations. While both of these languages
help to reduce the conceptual gap between a
programmer's mental model of a problem and
its specification in a programming language,
further abstractions in the graphical
language can help to further reduce this
conceptual gap. For example, in Hence each
node is numbered which does limits the
expressive power of the language. As the only
labelling on each node is a number, it is not
possible to determine the overall structure of
the system w ithout reading lower level
descriptions. In the CODE language,
however, each of the nodes is given a name
(which should indicate the processing carried
out by the node) allowing the reader to get an
overview of the algorithm without having to
read lower level descriptions.

Other work in the area of para Ile!
programming draws a resemblance between
the domains of parallel programming and
hardware (Thomas93). A notation resulting
from this work, called the circuit model,
represents a paralJel algorithm as circuit.
While this notation demonstrates a uscf ul
correspondence between parallel algorithms
and hardware, the resulting descriptions tend
to be at a low level of abstraction, and the
language does not take advantage of the
benefits provided by graphical notations to
represent the overall structure of a problem.

As the number of components that can be
p laced on a single integrated circuit (IC)
continues to increase chip designers have also
been experiencing problems with a widening
conceptual gap be tween the designers
conceptual model of a problem and its
realisation as a piece of hardware. To help
reduce this gap, a large number of CAD tools
have been developed which support IC
design.

The principle input to these CAD tools is a
representation of the IC device under design,
using a hardware description language
(HDL). The HDLs generally allow an IC to be
described either structurally as an
interconnected set of components, or
behaviourally as a mapping of inputs onto
outputs, or as a mixture of both. The levels of
abstraction that these HDLs support vary
widely from the logic level, where a system
is described as a set of logic gates, to high­
Jcvel behavioural languages, where the
behaviour of a system is described using
constructs similar to those found in
programming languages. For the same reasons
that programmers working in a parallel
domain require diagrams to reason about their
programs, so hardware designers need them to
reason about their hardware descriptions.
Several HDLs which recognise this weakness
have been developed which support
hardware design at high levels of abstraction
and allow these diagrams to be incorporated
as an integral part of the hardware
description. These indudc PICSIL (Pcarson92)
and Envision-VHDL (Toomajanian92).

The PICSTL HDL has been identified as being
su itable to base a parallel programming
language on because of the useful mix of
graphical and textual constructs. Graphical
constructs arc used to represent the high level
structure of an algorithm, while text is used
for more detailed functional specification.

PICSIL as a Parallel Programming
Language

The PICSTL hardware description language is
a hierarch ical specification language fo r
digital systems combining graphical (data
flow diagrams (DeMarco78)) and textua l
(hardwareC (Ku90)) notations to allow the
capture of specifications, and subsequent
synthesis of IC layouts.

PICSJL allows the control of data processing
functions to be specified separately from the
functions themselves. The data processing
functions of a system are defined using
functional specifications, including data flow
diagrams and data dictionary entries. A data
flow diagram allows a system to be broken
into component functions (processes) which
are interconnected by a network of data flows.
The data dictionary in PICSTL is used to
define the textual components of a PICS[L
design, including the definitions of processes
and the definitions of the data carried on the
data flows. The control of the data processing
functions is defined using a controller
specification, including state transition

diagrams and process activation tables
(Ha tley87).
Although the PICSIL HDL has been
identified as a suitable basis for a parallel
programming language, there are some
differences in the notation required to
describe a parallel algorithm than to that to
describe a hardware system.

An HDL needs constructs to define general
purpose communications protocols so that a
system under design can interface to any
external device, no matter what the required
protocol. In the case of the parallel
algorithm the interface to the 1/0
components (e.g. disk drives and VDUs) are
dependent on the system the program is to run
on, and can be determined at compile time.

Hardware is inherently static in that once a
hardware system has been created it is not
possible to dynamically create and delete
components in the system as required. In the
parallel programming case, however, new
processes can be created and deleted
dynamically as required.

The rest of this paper describes the PICSIL 1
parallel language which is heavily based on
the PICSIL HDL.

The PICSIL 1 Language

To illustrate the definition of PICSIL1, the
design of an image processing system for an
underwater robot will be used. The robot
scanning a deep sea bed sees different objects
that it has to recognise in order to distinguish
among fish, rocks, algae and so on. Typically
the membership of a class is determined by

Input
Image

Image
File

comparing attributes of a filtered version of
the image to those stored in a data base
containing attributes of all of the possible
attribute types. As the class of an object is
required in close to real time, comparison of an
image to each of the possible object classes is
to be performed in parallel. When the
program is started up the image database
must be loaded from a disk file into memory.
Figure 1 shows the top level PICSIL1 diagram
for a under water robot. This example is used
in the following sections to illustrate the four
basic components of a PICSIL1 diagram.
Other components wiU be introduced later.

Processes

rp,oo:ss n•mbci A process transforms incoming
process name flows into outgoing flows. In figure

1 there are three processes

(SetuplmageClasses, Filterlnputlmage and
DetermineFilteredlmagesCJass) which each accept
various sorts of data from earlier in the
system, alter it, then pass it on.

Each of the processes on this diagram is then
decomposed and defined in more detail. If the
level of abstraction of a process is low enough
for its functionality to be defined briefly and
concisely, it is defined in the data dictionary.
Otherwise the process is defined as a lower
level (or child) data flow diagram. Processes
that are defined in the data dictionary are
called primitive processes while processes
that are defined as data flow diagrams are
known as non-primitive processes.

Class
Details

Filtered

1.
Setup
Image
Classes

Camera
Interface

Filterlnput
t----...~ Image

Image Determine
+------1~1 Filtered Terminal

Interface lmagesClass

Figure 1 Top level PICSILl description for image processing example

Process Refinement

Figure 2 shows the deco~P?sition of the non­
primitive process DetermmeF1lterlmagesClass. The
process has been decomposed into three sub­
processes which in tum can be decor:nposed.
This decomposition of data flow diagrams
into increasingly detailed diagrams is called
hierarchical decomposition (Cox90).

It is important to note that decomposition of a
process does not make new statements about
the system, only more detailed ones. As a
parent process and its decomposition represent
the same information at different levels of
abstraction, their inputs and outputs should
be identical.

Import and Export Links

When the designer first decomposes
lei a non primitive process, the editor
L.:J will automatically show all the
rv71 flows into and out of the parent

~ process as import, ~, export, IZJ,
~ and bidirectional, © links. The

automatic incorporation of these symbols mto
the child diagram ensures that the inputs and
outputs of the child diagram match those of
the parent process. During the editing of a
diagram the programmer can see
immediately that the diagram is not
balanced if links do not have flows attached
to them.

3: DetermineFliteredlmagesClass

Every process in a tree of PICSIL1 dat~ .flow
diagrams is identified by a label compnsmg a
tree address (automatically assigned)
followed by the name of the parent process. In
the top level diagram the processes are
numbered 1, 2, 3, and so on (in the order of
their creation). Processes at lower levels
have a correspondingly longer prefix, the
children of process 2, for example, being
numbered 2.1, 2.2, and so on.
As all processes within a particular diagram
have the same prefix to their tree address
(the address of the parent process), this is
shown at the top left corner of the diagram,
and the processes contain only their own
unique extension of the prefix.

The actual information processing behaviour
of a system is specified in the textual data
dictionary entries of its primitive processes.
All primitive processes in a system execute
concurrently and, unless prevented from doing
so by a controller (see section on con~rol
extensions), restart themselves on completion.
Figure 3 shows the data dictionary entry for
the primitive process ReadylmageForParallelSearch.

Data Stores

I store name I A data store is a randorn­
access repository for data. Its

contents may be accessed (i.e. read or writ~en
by multiple processes). The. readout operatio.n
is non-destructive. That 1s when data 1s
written to a store it may be read any number of
times until new data is written to the same

Filtered
Image

Num f ' ~
---- Classes

-- :,. 2 : Class .1
Readylmage

• 1---~ ForParallel
Search

Compare l Found
'--1m_a_g-ef-l -+----I~ Image With

Image Classes

t---:::.3'-------1 Image
Notifylmage Class
Found

i m = 1 .. NumClasses ;
1 I ~... I

I I

L __ StartSearch ___ -+-___ Fin!h2•~~ __ J

Figure 2 The refinement of the process DetermineFilteredlmagesClass

process ReadyimageForParal lelSearch ;
Imports Filteredimage;

Exports Image[) , NumClasses , Startsearch;

begin

set NumClasses = Filteredimage . NumCl asses;
par for count= 1 to Filteredi mage . NumClasses do

Image [count) = Fi l teredimage . i mage;
report (Startsearch) ;

end

Figure 3 Data Dictionary entry for the primitive process ReadyTmageForPara llelSearch

location in the store.

The name of a data store should reflect the
data that is stored within it. In addition,
every data store must have an entry in the
data dictionary which defines the contents to
be stored within it.

If a process wishes to read data from a data­
store, process it and write the result back, and
another process wishes to read the same data,
a potential consistency problem arises. To
prevent this, data stores enforce data locking.
When a process reads data from a store in
read/write mode, the store/location becomes
locked, and no other processes may access it.
The store/location remains locked until
either the process finishes its current
execution . Any other process trying to access a
store/location while it is locked is suspended
until the store/location becomes available
again.

Data Flows

A data flow is a communication channel
carrying data packets between the
components in the system. The flow arcs show
the names, types and directions of data that
flow between the various components of a
design. Three types of flow exist in PICSJL 1 ;
discrete, store and control. Apart from store
flows, each flow in a PICSJLl description
contains an entry in the data dictionary

which d escribes the format of the
information it carries.

Discrete Flows

-------....;>~ Discrete flows such as
Filleredlmage (see figure 1) are used to move data
between objects (processes or external entities)
within a DFD. An information transfer takes
place when both the sending (exporting)
object has data available and the receiving
(importing) object is ready to accept the data.

Every discrete data flow must have an entry
in the data dictionary which defines exactly
the type of data the flow will carry. Figure 4
shows the data dictionary entry for the
discrete flow lnputlmage and the record
definition of a pixel.

Store Flows ------11~• Store fl ows allow
~ ~ processes to access the

contents of a data store. In addition to data
that flows between a process and data store,
the store flow also represents any addressing
and locking information necessary for the
data transfers to take place.

Control Flows

- - - - - > A control flow is used to
either report a change in state to a controller
(see the control extensions section), or to
indicate the necessary con trol flow associated

Flow discrete Input i mage (l .. 255 , 1 . 255) o f pixel

record pixel

end;

short int red;
short int green ;
short int b l ue ;

Figure 4 Data Dictionary entry for the discrete flow lnputlmage and the definition of a pixel

with the dynamic allocation of replicated
sections of a diagram (see sections on elements
and replicators)

External Entities

~
t..::J

External Entities represent the
J/0 devices that a PICSILI
program uses. For example the
external entity Cameralnterface

represents the 1/0 device associated with the
camera. To ensure that the top level diagram
is a complete description of the algorithm,
and that new concepts are not introduced in
lower level diagrams, external entities may
only appear in a top level diagram.

Elements

In the specification of some types of parallel
algorithm it is desirable to partition some
data sets into a set of smaller blocks and
process each of these blocks simultaneously.
For example in the robot example, once an
image has been received from the camera it is
necessary to identify the image as quickly as
possible. One way to do this in parallel is to
compare the input image with each of the
possible classes in parallel. Rather than
having to show a process for each of the
classes, the PICSILl language provides the
element (shown as a dashed box in figure 2)
which aJJows the replicated parts of a
diagram to be shown once, and a statement
indicating the number of replications is shown
in the box. For example if ten replications
were required then the statement m=1 .. 10 would
cause ten instances of the process to be created.

In a number of cases the number of replications
of a process will depend on the current set of
data being processed. For example in the robot
example as part of the initial filtering of the
image it might be possible to determine that
only a subset of classes needs to be searched. In
this case a control flow (i.e. the control flow
named NumClasses in figure 2) from the process
which sends data into the element to the
element can be used to indicate that the
process can dynamica11y decide how many
replications are required for each set of data.
In this case the statement m=1..NumClasses is
enclosed inside the element.

The Control Extensions

Although functional specifications make it
possible to illustrate the functions a system is
to perform, they contain no provision for
enabling or disabling a subset of those
functions under particular conditions. The

decisions that can be represented within a
functional specification are restricted to the
lowest level, with statements such as if-else
and while. In the robot example shown in
figure 1 when the system is first turned on we
do not want the process Filterlnputlmage and
DeterminefFilteredlmagesClass to start processing
until the process StepuplmageClasses has finished
setting up the lmagesClasses data store. Another
situation where higher level control is
required arises in figure 2 when an image class
has been found for an input image. Assuming
that each of the ComparelmageWithlmageClasses
processes takes a different length of time to
execute then it is a waste of processing power
to leave all unfinished processes executing
once the image class has been identified.

This is a higher level of control than can be
naturally specified in a functional
specification, so a controller which allows
this higher level control to be specified has
been devised. The controlle r detects major
changes in the systems operating mode and
may turn on and off large groups of processes.
It also receives information about the status
of other components, both internally and
externaJJy, and transmits similar information
about itself. The controller used in the
PICSILJ notation is based on extended DFD
methodologies of (Hatlcy87) and (Ward86).

Two extra symbols are required in the PICSJL
data flow diagram notation to allow control
to be specified: control flows and control
processes ..

Control Processes

I Control processes explicitly activate
and deactivate data processes, and
coordinate events within the system.

The refinement of a control process takes the
form of a state transition diagram (see figure
5 (a)) and a process activation table (figure
S(b)). Events are represented in the state
transition diagram (STD) as labels before the
slash on the arrows between the states. They
are status information reported to the Control
Process along control flows (see below) and
they cause state transitions when they be­
come true and their arrow originates from the
current state (states are represented by
rectangular boxes in figure 5 (a)). The Process
Activation Table defines the status of each
process in that state. The types of process
status are: I • I for a deactivated process on

entering a state, ~ for an activated
continuously process and ~ for a process

I • Readylmage Compare Image Notify Image

I WaitFor I
For Parallel With Image Found

Image Search Classes[]

FinishSearch StartSearch WaitFor ~ ,., ~ I '
Image

I Finding Image!
Class

Finding Image
Class ~ ~

(a) (b)

Figure 5 The refinement of a control process (a) state transition diagram and (b) process activation
table

activated once on entering the state activated
process. Cells with no entry ind icate that
there is no change in status of the process
caused by the transition into that state

If a particular DFD requires no high level
control, the controller is omitted and all
processes in the diagram remain switched on
(activated) all the time.

The Replicator

During the specification of some
ReplicalOr parallel a lgorithms it is

necessary to be able to
dynamically define the structure

of a algorithm dependent on the each set of

.1 .. - • --i Fundion
hem1

hem1

Fund ion
ltem2 ltem2

array
.3

Function
ltem3

.4

Function .__,.--! ltem4

ltem3

ltem4

data. For example consider the specification
of an algorithm which perform an arbitrarily
complex function on each element in an array
and then sums the results of each of the
computations. The programmer of this
algorithm may wish to represent the overall
structure using a tree as shown in figure 6. If
the size of the array can vary between sets of
data, the number of leaf nodes and hence the
depth of the tree also vary.

The replicator is provided as a means to
allow the programmer to specify a structure
which can adapt to each set of data. The
replicator is like a non-primitive process in
that it is defined using a child DFD. It may,
however, contain constructs which
dynamically select parts of the diagram

.5

Sum Partia1Sum1 First2

+ .7
Result

Sum ~

PartialSum?
Sum
Seoond2

Figure 6 PICSILl algorithm to perform an arbitrarily complex function on an array of four numbers
then sum the results

bounds

1: AddSequence

ltemlocation

upper.lower

(a)

Function
ltemN

sum

r- -1
I ,_____......,.~--+~~~~~~~~~-----.2

• bounds Spit
Sequenca

• array
-<(· · · ·

.__ __ Bou_n_ds-low-e:-~->low-er_,.i __ 1-· .. ···~····· ··· ·························:: A ····················· 1

BoondsUpper

Upper
Sum

Add
Sums

ReplNode
·

(b)

Figure 7 (a) Example use of a replicator and (b) its refinement

dependent on the data, and contain instances
of itself. Figure 7(a) shows the use of a
replicator to perform an arbitrarily complex
function on the items in the array defined by
the flow bounds (which contains sub
components UwerBound and lowerBound) and output
the results on the flow sum. The refinement of
the AddSequence replicator is shown in figure
7(b). When a set of data on the bounds flow is
received by the SplitSequence process, either the
element leafNode or the element ReplNode is
instantiated. If the UpperBound is greater than
the LowerBound the ReplNode element is selected
causing two more instances of the AddSequence
child diagram to be created. The new sets of
bounds computed in the SplitSequence process are
then sent to their respective child diagrams.
The results returned from the child diagrams
are then added by the AddSums process and the
result being returned to the parent diagram.

When the upperbound is equal to the LowerBound
the SplitSequence process will select the LeafNode
element. This causes the function to be
performed on the element in the array given
by data on the flow ltemlocation. The result
being passed back to the parent diagram.

Conclusions

We have described PTCSTL 1, a visual
Parallel programming language which
provides a more natural representation of
parallel algorithms than conventional
textual languages. Using PICSILl the overall
s tructure of a parallel Algorithm is
represented in a graphical notation based on
Data Flow Diagrams. The more detailed
aspect of the algorithm are however

described using a text based language. A
number of example systems represented using
PICSIL1 have shown that the language
contains a useful mix of graphical and textual
constructs, providing a more natural
representation of parallel algorithms.

To support programming using PICSILl it is
necessary to create an environment to support
the capture, compilation and debugging of a
parallel algorithm.

Work is proceeding on the development of an
editor to capture PICSILl designs.

Once the editor has been completed the
development of a set of tools to support the
compilation of PICSILl programs to one or
more parallel architectures is planned.
Initially it is expected that the PICSIL1
programmer will be required to guide the
compilation process so that efficient code to
run on the desired architecture can be
produced. The ultimate goal however is to
have the compilation process completely
automated.

Due to the large amounts of data generated
and the distributed nature of parallel
programs debugging them can be extremely
difficult. It has been shown, however, that
the use of graphics, colour and sound can
effectively portray the execution of a
program and allow problems and bottle necks
to be identified more easily than with
traditional debugging techniques.(Zabala93).
The development of tools to support debugging
are also planned in the future.

References
Beguelin, A., Dongarra,J., Geist, A., and Sunderam,

V. (1993): Visualization and Debugging in a
Heterogenous Environment, IEEE Computer
26, 6, pp. 88-95.

BROWNE, J.C., AZAM, M., AND SOBEK, S. (1989):
CODE: A Unified approach to parallel
programming, IEEE Software, pp. 10 - l7.

COX, P.T., GILES, F.R., AND PIETRZYKOWSKI, T.
(1990): PrograP-h: a step towards liberating
programming from textual conditioning. Tn
Proc. of IEEE Symposium of Visual Languages ,
pp. 150-156

DEMARCO, T. (1978): Structured Analysis and
System Specification, Prentice-Hall.

DILLINGER, T.E. (1988): VLSI Engineering,
Prentice Hall.

GRUNDY, J.C. AND HOSKING, J.G. (1993):
Constructing Multi-View Editing
Environments Using MViews. To appear in
Proc. of IEEE Symposium on Visual Languages,

HATLEY, D.J. AND PIRBHAI, I.A . (1987):
Strategies for Real-Time System Specification,
Dorset House .

KU, D. AND DE MICHELI, G. (1990): "HardwareC
- A Language for Hardware Design Version
2.0", Computer Systems Laboratory, Stanford
University , no. CSL-TR-90-419 .

MYERS, B.A. (1990): Taxonomies of Visual
Programming and Program Visualisation,
Journal of Visual Languages and Computing 1,
1 , pp. 91- 123.

PANCAKE, C.M. AND BERGMARK, D. (1990): Do
Parallel Languages Respond to the Needs of
Scientific Programmers, IEEE Computer 23, 12
, PP· 13-23.

PEARSON, M.W. (1992): PICSTL: Design and
Synthesis of Digital !Cs from Data Flow
Diagrams, Ph.D. dissertation, Department of
Computer Science, Massey University,
Palmerston North, New Zealand.

SOCHA, D., 13AILEY, M.L., AND NOTKI, D. (1989):
VOYEUR: Graphical Views of Parallel
Programs, STGPLAN Notices 24, 1 , pp. 206-
215.

SUHLER, P.A., BISWAS, J., KORNER, K.M., AND
13ROWNE, J.C. (1990): TDFL: A Task-Level
Dataflow Language, Journal of Parallel and
Distributed Computing 9, 2, pp. 103-115.

THOMAS, I. (1993): The Circuit Model of Parallel
Programming, Master's thesis, Department of
Computer Science, Auckland University,
Auckland, New Zealand, .

TOOMAJANlAN, G. (1992): Graphical Behaviour
Capture to VHDL, Personal Communication.

TSE, T.H. AND PONG, L. (1991): An Examination of
Requirements Specification Languages, The
Computer Journal 34, 2, pp. 143 - 152.

WARD, P.T. (1986): The Transformation Schema: An
Extension of the Data Flow Diagram to
Represent Control and Timing, IEEE
Transactions on Software Engineering SE12, 2 ,
pp. 198 - 210.

ZABALA, E. AND TAYLOR, R. (1993): "Process
and Processor Interaction : Architecture
Independent Visualisation Schema", Computer
Systems Engineering Group, Deet. of
Electronics, University of York , Technical
Report, York Y01 5DD, United Kingdom.

