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Abstract 

This paper describes the background and development of PICSIL1 a visual language for specifying parallel 
algorithms using structured decomposition. PICSIL1 draws upon graphical and textual specification techniques; 
the first for high level structure of an algorithm, the second for more detailed functional specification. 

The graphical specification techniques used in PICSILl are based on Data Flow Diagrams (DFDs) and are well 
suited to the assembly and interconnection of abstract modules. Minor modifications to DFDs have however had to 
be made to make them suitable for describing parallel algorithms, These include the ability to dynamically replicate 
sections of a diagram and change the structure of parts of a diagram dependent on data being processed. 

Work is proceeding on the development of an editor to allow the direct capture and editing of PICSILJ descriptions, 
In the near future development of compiler and visual debugging tools are planned. 

Introduction 

As the theoretical limits to processor speeds 
that can be obtained from technology changes 
impend, new approaches are going to be 
required to allow the long trend of a doubling 
in CPU speed every two years to be continue 
(Dillinger88). One approach showing 
promise is that of paraJlel processing. 

While new architectures are continually 
being developed for parallel processing , the 
development of algorithms to take advantage 
of this parallelism has been more 
challenging. The use of parallelising 
compilers to extract parallelism from 
sequential code have produced disappointing 
results in terms of speedup produced 
(Pancake90). On the other hand, hand coded 
parallelism (using specialised parallel 
programming languages) has proved to be 
very difficult and time consuming. Two main 
reasons have been identified for this 
difficulty (Socha89). First, management of 
data and control may be difficult as parallel 
architectures are more complicated than 
their sequential counterparts. Second there is 
often a very large conceptual gap between a 
programmers mental conception of a problem 
and the realisation of an efficient parallel 
program that solves the problem. 

This paper discusses how a parallel 
programming paradigm based on a mixture of 
graphical and textual notations can reduce 
this conceptual gap, and introduces a new 

parallel programming language, called 
PICSILJ, based on this paradigm. 

Expression of Parallel Algorithms using 
Graphics and Text 

Almost all existing parallel programming 
languages represent a parallel algorithm 
using a single dimensional text based 
description. These textual descriptions make 
it extremely difficult for the programmer to 
visualise the program's overall structure. In 
fact, most programmers working in the 
parallel domain have to resort to a 
graphical (or multi-dimensional) 
representations of their code (Suhler90). In 
most cases these diagrams do not form part of 
the formal specification for the program, so 
the diagrams have to be recreated when 
changes are to be made to the code. Where 
these diagrams do form part of the formal 
documentation it is difficult to enforce a 
mechanism to ensure the diagrams and text 
remain consistent during their maintenance. 

While the use of graphics has proved to be 
good at allowing programmers to visualise 
the overall structure of a problem, they have 
been less successful at representing the more 
detailed aspects of a problem (Myers90), 
(Grundy93). In this domain a text based 
notation has the complementary ability to 
represent these more detailed aspects (Tse91). 
This led to the assumption that an ideal 
parallel programming language should 



contain a mixture of graphical and textual 
representations. 

A number of parallel programming 
environments do make use of text and 
graphics have appeared recently (Zabala93), 
(Socha89), (Beguelin93), (Suhler90). Most of 
these environments, however, make use of 
visual representations to visualise the 
execution of a program defined using a textual 
programming language. Two languages, 
CODE (Browne89) and Hence (Beguelin93) do, 
however, make use of graphics and text in the 
specification of a problem. Both of these 
languages develop a parallel program as a 
computational graph where nodes represent 
the computations to be performed and arcs 
represen t dependencies between the 
computations. While both of these languages 
help to reduce the conceptual gap between a 
programmer's mental model of a problem and 
its specification in a programming language, 
further abstractions in the graphical 
language can help to further reduce this 
conceptual gap. For example, in Hence each 
node is numbered which does limits the 
expressive power of the language. As the only 
labelling on each node is a number, it is not 
possible to determine the overall structure of 
the system w ithout reading lower level 
descriptions. In the CODE language, 
however, each of the nodes is given a name 
(which should indicate the processing carried 
out by the node) allowing the reader to get an 
overview of the algorithm without having to 
read lower level descriptions. 

Other work in the area of para Ile! 
programming draws a resemblance between 
the domains of parallel programming and 
hardware (Thomas93). A notation resulting 
from this work, called the circuit model, 
represents a paralJel algorithm as circuit. 
While this notation demonstrates a uscf ul 
correspondence between parallel algorithms 
and hardware, the resulting descriptions tend 
to be at a low level of abstraction, and the 
language does not take advantage of the 
benefits provided by graphical notations to 
represent the overall structure of a problem. 

As the number of components that can be 
p laced on a single integrated circuit (IC) 
continues to increase chip designers have also 
been experiencing problems with a widening 
conceptual gap be tween the designers 
conceptual model of a problem and its 
realisation as a piece of hardware. To help 
reduce this gap, a large number of CAD tools 
have been developed which support IC 
design. 

The principle input to these CAD tools is a 
representation of the IC device under design, 
using a hardware description language 
(HDL). The HDLs generally allow an IC to be 
described either structurally as an 
interconnected set of components, or 
behaviourally as a mapping of inputs onto 
outputs, or as a mixture of both. The levels of 
abstraction that these HDLs support vary 
widely from the logic level, where a system 
is described as a set of logic gates, to high­
Jcvel behavioural languages, where the 
behaviour of a system is described using 
constructs similar to those found in 
programming languages. For the same reasons 
that programmers working in a parallel 
domain require diagrams to reason about their 
programs, so hardware designers need them to 
reason about their hardware descriptions. 
Several HDLs which recognise this weakness 
have been developed which support 
hardware design at high levels of abstraction 
and allow these diagrams to be incorporated 
as an integral part of the hardware 
description. These indudc PICSIL (Pcarson92) 
and Envision-VHDL (Toomajanian92). 

The PICSTL HDL has been identified as being 
su itable to base a parallel programming 
language on because of the useful mix of 
graphical and textual constructs. Graphical 
constructs arc used to represent the high level 
structure of an algorithm, while text is used 
for more detailed functional specification. 

PICSIL as a Parallel Programming 
Language 

The PICSTL hardware description language is 
a hierarch ical specification language fo r 
digital systems combining graphical (data 
flow diagrams (DeMarco78)) and textua l 
(hardwareC (Ku90) ) notations to allow the 
capture of specifications, and subsequent 
synthesis of IC layouts. 

PICSJL allows the control of data processing 
functions to be specified separately from the 
functions themselves. The data processing 
functions of a system are defined using 
functional specifications, including data flow 
diagrams and data dictionary entries. A data 
flow diagram allows a system to be broken 
into component functions (processes) which 
are interconnected by a network of data flows. 
The data dictionary in PICSTL is used to 
define the textual components of a PICS[L 
design, including the definitions of processes 
and the definitions of the data carried on the 
data flows. The control of the data processing 
functions is defined using a controller 
specification, including state transition 



diagrams and process activation tables 
(Ha tley87). 
Although the PICSIL HDL has been 
identified as a suitable basis for a parallel 
programming language, there are some 
differences in the notation required to 
describe a parallel algorithm than to that to 
describe a hardware system. 

An HDL needs constructs to define general 
purpose communications protocols so that a 
system under design can interface to any 
external device, no matter what the required 
protocol. In the case of the parallel 
algorithm the interface to the 1/0 
components (e.g. disk drives and VDUs) are 
dependent on the system the program is to run 
on, and can be determined at compile time. 

Hardware is inherently static in that once a 
hardware system has been created it is not 
possible to dynamically create and delete 
components in the system as required. In the 
parallel programming case, however, new 
processes can be created and deleted 
dynamically as required. 

The rest of this paper describes the PICSIL 1 
parallel language which is heavily based on 
the PICSIL HDL. 

The PICSIL 1 Language 

To illustrate the definition of PICSIL1, the 
design of an image processing system for an 
underwater robot will be used. The robot 
scanning a deep sea bed sees different objects 
that it has to recognise in order to distinguish 
among fish, rocks, algae and so on. Typically 
the membership of a class is determined by 

Input 
Image 

Image 
File 

comparing attributes of a filtered version of 
the image to those stored in a data base 
containing attributes of all of the possible 
attribute types. As the class of an object is 
required in close to real time, comparison of an 
image to each of the possible object classes is 
to be performed in parallel. When the 
program is started up the image database 
must be loaded from a disk file into memory. 
Figure 1 shows the top level PICSIL1 diagram 
for a under water robot. This example is used 
in the following sections to illustrate the four 
basic components of a PICSIL1 diagram. 
Other components wiU be introduced later. 

Processes 

rp,oo:ss n•mbci A process transforms incoming 
process name flows into outgoing flows. In figure 

1 there are three processes 

(SetuplmageClasses, Filterlnputlmage and 
DetermineFilteredlmagesCJass) which each accept 
various sorts of data from earlier in the 
system, alter it, then pass it on. 

Each of the processes on this diagram is then 
decomposed and defined in more detail. If the 
level of abstraction of a process is low enough 
for its functionality to be defined briefly and 
concisely, it is defined in the data dictionary. 
Otherwise the process is defined as a lower 
level (or child) data flow diagram. Processes 
that are defined in the data dictionary are 
called primitive processes while processes 
that are defined as data flow diagrams are 
known as non-primitive processes. 

Class 
Details 

Filtered 

1. 
Setup 
Image 
Classes 

Camera 
Interface 

Filterlnput 
t----...~ Image 

Image Determine 
+------1~1 Filtered Terminal 

Interface lmagesClass 

Figure 1 Top level PICSILl description for image processing example 



Process Refinement 

Figure 2 shows the deco~P?sition of the non­
primitive process DetermmeF1lterlmagesClass. The 
process has been decomposed into three sub­
processes which in tum can be decor:nposed. 
This decomposition of data flow diagrams 
into increasingly detailed diagrams is called 
hierarchical decomposition (Cox90). 

It is important to note that decomposition of a 
process does not make new statements about 
the system, only more detailed ones. As a 
parent process and its decomposition represent 
the same information at different levels of 
abstraction, their inputs and outputs should 
be identical. 

Import and Export Links 

When the designer first decomposes 
lei a non primitive process, the editor 
L.:J will automatically show all the 
rv71 flows into and out of the parent 

~ process as import, ~, export, IZJ, 
~ and bidirectional, © links. The 

automatic incorporation of these symbols mto 
the child diagram ensures that the inputs and 
outputs of the child diagram match those of 
the parent process. During the editing of a 
diagram the programmer can see 
immediately that the diagram is not 
balanced if links do not have flows attached 
to them. 

3: DetermineFliteredlmagesClass 

Every process in a tree of PICSIL1 dat~ .flow 
diagrams is identified by a label compnsmg a 
tree address (automatically assigned) 
followed by the name of the parent process. In 
the top level diagram the processes are 
numbered 1, 2, 3, and so on (in the order of 
their creation). Processes at lower levels 
have a correspondingly longer prefix, the 
children of process 2, for example, being 
numbered 2.1, 2.2, and so on. 
As all processes within a particular diagram 
have the same prefix to their tree address 
(the address of the parent process), this is 
shown at the top left corner of the diagram, 
and the processes contain only their own 
unique extension of the prefix. 

The actual information processing behaviour 
of a system is specified in the textual data 
dictionary entries of its primitive processes. 
All primitive processes in a system execute 
concurrently and, unless prevented from doing 
so by a controller (see section on con~rol 
extensions), restart themselves on completion. 
Figure 3 shows the data dictionary entry for 
the primitive process ReadylmageForParallelSearch. 

Data Stores 

I store name I A data store is a randorn­
access repository for data. Its 

contents may be accessed (i.e. read or writ~en 
by multiple processes). The. readout operatio.n 
is non-destructive. That 1s when data 1s 
written to a store it may be read any number of 
times until new data is written to the same 

Filtered 
Image 

Num f ........................... ' ......................... ~ 
---- Classes 

-- .... :,. 2 : Class .1 
Readylmage 

• 1---~ ForParallel 
Search 

Compare l Found 
'--1m_a_g-ef-l -+----I~ Image With 

Image Classes 

t---:::.3'-------1 Image 
Notifylmage Class 
Found 

i m = 1 .. NumClasses ; 
1 I ~....................................................... I 

I I 

L __ StartSearch ___ -+-___ Fin!h2•~~ __ J 

Figure 2 The refinement of the process DetermineFilteredlmagesClass 



process ReadyimageForParal lelSearch ; 
Imports Filteredimage; 

Exports Image[ ) , NumClasses , Startsearch; 

begin 

set NumClasses = Filteredimage . NumCl asses; 
par for count= 1 to Filteredi mage . NumClasses do 

Image [count ) = Fi l teredimage . i mage; 
report (Startsearch) ; 

end 

Figure 3 Data Dictionary entry for the primitive process ReadyTmageForPara llelSearch 

location in the store. 

The name of a data store should reflect the 
data that is stored within it. In addition, 
every data store must have an entry in the 
data dictionary which defines the contents to 
be stored within it. 

If a process wishes to read data from a data­
store, process it and write the result back, and 
another process wishes to read the same data, 
a potential consistency problem arises. To 
prevent this, data stores enforce data locking. 
When a process reads data from a store in 
read/write mode, the store/location becomes 
locked, and no other processes may access it. 
The store/location remains locked until 
either the process finishes its current 
execution . Any other process trying to access a 
store/location while it is locked is suspended 
until the store/location becomes available 
again. 

Data Flows 

A data flow is a communication channel 
carrying data packets between the 
components in the system. The flow arcs show 
the names, types and directions of data that 
flow between the various components of a 
design. Three types of flow exist in PICSJL 1 ; 
discrete, store and control. Apart from store 
flows, each flow in a PICSJLl description 
contains an entry in the data dictionary 

which d escribes the format of the 
information it carries. 

Discrete Flows 

-------....;>~ Discrete flows such as 
Filleredlmage (see figure 1) are used to move data 
between objects (processes or external entities) 
within a DFD. An information transfer takes 
place when both the sending (exporting) 
object has data available and the receiving 
(importing) object is ready to accept the data. 

Every discrete data flow must have an entry 
in the data dictionary which defines exactly 
the type of data the flow will carry. Figure 4 
shows the data dictionary entry for the 
discrete flow lnputlmage and the record 
definition of a pixel. 

Store Flows ------11~• Store fl ows allow 
~ ~ processes to access the 

contents of a data store. In addition to data 
that flows between a process and data store, 
the store flow also represents any addressing 
and locking information necessary for the 
data transfers to take place. 

Control Flows 

- - - - - > A control flow is used to 
either report a change in state to a controller 
(see the control extensions section), or to 
indicate the necessary con trol flow associated 

Flow discrete Input i mage (l .. 255 , 1 . 255) o f pixel 

record pixel 

end; 

short int red; 
short int green ; 
short int b l ue ; 

Figure 4 Data Dictionary entry for the discrete flow lnputlmage and the definition of a pixel 



with the dynamic allocation of replicated 
sections of a diagram (see sections on elements 
and replicators) 

External Entities 

~ 
t..::J 

External Entities represent the 
J/0 devices that a PICSILI 
program uses. For example the 
external entity Cameralnterface 

represents the 1/0 device associated with the 
camera. To ensure that the top level diagram 
is a complete description of the algorithm, 
and that new concepts are not introduced in 
lower level diagrams, external entities may 
only appear in a top level diagram. 

Elements 

In the specification of some types of parallel 
algorithm it is desirable to partition some 
data sets into a set of smaller blocks and 
process each of these blocks simultaneously. 
For example in the robot example, once an 
image has been received from the camera it is 
necessary to identify the image as quickly as 
possible. One way to do this in parallel is to 
compare the input image with each of the 
possible classes in parallel. Rather than 
having to show a process for each of the 
classes, the PICSILl language provides the 
element (shown as a dashed box in figure 2) 
which aJJows the replicated parts of a 
diagram to be shown once, and a statement 
indicating the number of replications is shown 
in the box. For example if ten replications 
were required then the statement m=1 .. 10 would 
cause ten instances of the process to be created. 

In a number of cases the number of replications 
of a process will depend on the current set of 
data being processed. For example in the robot 
example as part of the initial filtering of the 
image it might be possible to determine that 
only a subset of classes needs to be searched. In 
this case a control flow (i.e. the control flow 
named NumClasses in figure 2) from the process 
which sends data into the element to the 
element can be used to indicate that the 
process can dynamica11y decide how many 
replications are required for each set of data. 
In this case the statement m=1..NumClasses is 
enclosed inside the element. 

The Control Extensions 

Although functional specifications make it 
possible to illustrate the functions a system is 
to perform, they contain no provision for 
enabling or disabling a subset of those 
functions under particular conditions. The 

decisions that can be represented within a 
functional specification are restricted to the 
lowest level, with statements such as if-else 
and while. In the robot example shown in 
figure 1 when the system is first turned on we 
do not want the process Filterlnputlmage and 
DeterminefFilteredlmagesClass to start processing 
until the process StepuplmageClasses has finished 
setting up the lmagesClasses data store. Another 
situation where higher level control is 
required arises in figure 2 when an image class 
has been found for an input image. Assuming 
that each of the ComparelmageWithlmageClasses 
processes takes a different length of time to 
execute then it is a waste of processing power 
to leave all unfinished processes executing 
once the image class has been identified. 

This is a higher level of control than can be 
naturally specified in a functional 
specification, so a controller which allows 
this higher level control to be specified has 
been devised. The controlle r detects major 
changes in the systems operating mode and 
may turn on and off large groups of processes. 
It also receives information about the status 
of other components, both internally and 
externaJJy, and transmits similar information 
about itself. The controller used in the 
PICSILJ notation is based on extended DFD 
methodologies of (Hatlcy87) and (Ward86). 

Two extra symbols are required in the PICSJL 
data flow diagram notation to allow control 
to be specified: control flows and control 
processes .. 

Control Processes 

I Control processes explicitly activate 
and deactivate data processes, and 
coordinate events within the system. 

The refinement of a control process takes the 
form of a state transition diagram (see figure 
5 (a)) and a process activation table (figure 
S(b)). Events are represented in the state 
transition diagram (STD) as labels before the 
slash on the arrows between the states. They 
are status information reported to the Control 
Process along control flows (see below) and 
they cause state transitions when they be­
come true and their arrow originates from the 
current state (states are represented by 
rectangular boxes in figure 5 (a)). The Process 
Activation Table defines the status of each 
process in that state. The types of process 
status are: I • I for a deactivated process on 

entering a state, ~ for an activated 
continuously process and ~ for a process 



I • Readylmage Compare Image Notify Image 

I WaitFor I 
For Parallel With Image Found 

Image Search Classes[] 

FinishSearch StartSearch WaitFor ~ ,., ~ I ' 
Image 

I Finding Image! 
Class 

Finding Image 
Class ~ ~ 

(a) (b) 

Figure 5 The refinement of a control process (a) state transition diagram and (b) process activation 
table 

activated once on entering the state activated 
process. Cells with no entry ind icate that 
there is no change in status of the process 
caused by the transition into that state 

If a particular DFD requires no high level 
control, the controller is omitted and all 
processes in the diagram remain switched on 
(activated) all the time. 

The Replicator 

During the specification of some 
ReplicalOr parallel a lgorithms it is 

necessary to be able to 
dynamically define the structure 

of a algorithm dependent on the each set of 

.1 .. - • --i Fundion 
hem1 

hem1 

Fund ion 
ltem2 ltem2 

array 
.3 

Function 
ltem3 

.4 

Function .__,.--! ltem4 

ltem3 

ltem4 

data. For example consider the specification 
of an algorithm which perform an arbitrarily 
complex function on each element in an array 
and then sums the results of each of the 
computations. The programmer of this 
algorithm may wish to represent the overall 
structure using a tree as shown in figure 6. If 
the size of the array can vary between sets of 
data, the number of leaf nodes and hence the 
depth of the tree also vary. 

The replicator is provided as a means to 
allow the programmer to specify a structure 
which can adapt to each set of data. The 
replicator is like a non-primitive process in 
that it is defined using a child DFD. It may, 
however, contain constructs which 
dynamically select parts of the diagram 

.5 

Sum Partia1Sum1 First2 

+ .7 
Result 

Sum ~ 

PartialSum? 
Sum 
Seoond2 

Figure 6 PICSILl algorithm to perform an arbitrarily complex function on an array of four numbers 
then sum the results 
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Figure 7 (a) Example use of a replicator and (b) its refinement 

dependent on the data, and contain instances 
of itself. Figure 7(a) shows the use of a 
replicator to perform an arbitrarily complex 
function on the items in the array defined by 
the flow bounds (which contains sub 
components UwerBound and lowerBound) and output 
the results on the flow sum. The refinement of 
the AddSequence replicator is shown in figure 
7(b). When a set of data on the bounds flow is 
received by the SplitSequence process, either the 
element leafNode or the element ReplNode is 
instantiated. If the UpperBound is greater than 
the LowerBound the ReplNode element is selected 
causing two more instances of the AddSequence 
child diagram to be created. The new sets of 
bounds computed in the SplitSequence process are 
then sent to their respective child diagrams. 
The results returned from the child diagrams 
are then added by the AddSums process and the 
result being returned to the parent diagram. 

When the upperbound is equal to the LowerBound 
the SplitSequence process will select the LeafNode 
element. This causes the function to be 
performed on the element in the array given 
by data on the flow ltemlocation. The result 
being passed back to the parent diagram. 

Conclusions 

We have described PTCSTL 1, a visual 
Parallel programming language which 
provides a more natural representation of 
parallel algorithms than conventional 
textual languages. Using PICSILl the overall 
s tructure of a parallel Algorithm is 
represented in a graphical notation based on 
Data Flow Diagrams. The more detailed 
aspect of the algorithm are however 



described using a text based language. A 
number of example systems represented using 
PICSIL1 have shown that the language 
contains a useful mix of graphical and textual 
constructs, providing a more natural 
representation of parallel algorithms. 

To support programming using PICSILl it is 
necessary to create an environment to support 
the capture, compilation and debugging of a 
parallel algorithm. 

Work is proceeding on the development of an 
editor to capture PICSILl designs. 

Once the editor has been completed the 
development of a set of tools to support the 
compilation of PICSILl programs to one or 
more parallel architectures is planned. 
Initially it is expected that the PICSIL1 
programmer will be required to guide the 
compilation process so that efficient code to 
run on the desired architecture can be 
produced. The ultimate goal however is to 
have the compilation process completely 
automated. 

Due to the large amounts of data generated 
and the distributed nature of parallel 
programs debugging them can be extremely 
difficult. It has been shown, however, that 
the use of graphics, colour and sound can 
effectively portray the execution of a 
program and allow problems and bottle necks 
to be identified more easily than with 
traditional debugging techniques.(Zabala93). 
The development of tools to support debugging 
are also planned in the future. 
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