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fluca@matmor.unam.mx

V. Janitzio Mej́ıa Huguet
Departamento de Ciencias Básicas, Universidad Autónoma

Metropolitana-Azcapotzalco, Azcapotzalco, México
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Abstract
Here, we show that no Fibonacci number (larger than 1) divides the sum of its
divisors.

– To Professor Carl Pomerance on his 65th birthday
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1. Introduction

For a positive integer n we put σ(n) for the sum of its divisors. Given an integer
k, the number n is said to be multiperfect, multiply-perfect, or k-fold perfect if
σ(n) = kn. Of course, ordinary perfect numbers are 2-fold perfect. The single 1-fold
perfect is the trivial case n = 1. The 3-fold perfect numbers are also called triperfect,
and only six of them are known: they are 120, 672, 523776, 459818240, 1476304896,
51001180160. All of them were already known by the seventeenth century. Several
multiperfect numbers are also known for every k ≤ 11. Their number varies from
thousands for k = 8, 9, 10, to only one for k = 11 which has more than a thousand
decimal digits and was discovered in 2001. Descartes discovered the first 4-fold
number, and Fermat the first 5-fold number, respectively. Dickson’s History of the

Theory of Numbers [5, p. 33–38] records a long interest in such numbers. See also [7,
Section B2], or the web page [23] for more details and references.

Except for the well-known Euclid-Euler rule for k = 2, no formula to generate
multiperfect numbers is known. Lehmer [8] proved that if n is odd, then n is perfect
just if 2n is 3-fold perfect. Moreover, no odd multiperfect number is known. There
are several conjectures on the size of k in what relates to the size of n. For example,
from the maximal order of the sum of divisors function, it is known that there
exists a positive constant c such that the inequality σ(n)/n > c log log n holds for
infinitely many positive integers n, where here and from now on we use log for the
natural logarithm. Contrary to this inequality, Erdős conjectured that if there were
infinitely many multiperfect numbers, then k = o(log log n) as n → ∞ through
multiperfect numbers. It has even been suggested there may be only finitely many
k-fold perfect numbers altogether with k ≥ 3, and it is further believed that all
multiperfect numbers with k = 3, 4, 5, 6, and 7 are known.

There are several results in the literature addressing perfect and multiperfect
numbers of various shapes. For example, Pomerance [20] proposed as a problem to
find all positive integers such that n! is multiperfect. In the solution [6] to the above
problem, it is shown that this happens only for n = 1, 3, 5. In [10], it is shown that
there is no Fibonacci number which is perfect and in [11] it was shown that there
are at most finitely many Fibonacci numbers which are multiperfect. In [9], it is
shown that no Fermat number; i.e., number of the form 22n

+1 for some non-negative
integer n, is perfect, and the method of proof shows easily that such numbers are not
multiperfect either. Whether binomial coefficients can be multiply-perfect numbers
is a problem which was studied in [13], where it is shown that any fixed line through
the Pascal triangle contains at most finitely many multiply-perfect numbers.

In this paper, we look at multiply-perfect numbers in the Fibonacci sequence.
Recall that the Fibonacci sequence (Fn)n≥0 is given by F0 = 0, F1 = 1 and Fn+2 =
Fn+1 + Fn for all n ≥ 0. As we have mentioned before, in [10], it was shown that
there is no perfect Fibonacci number, while the main result in [11] is that there are
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at most finitely many Fibonacci numbers which are multiply-perfect and, at least
in theory, they are all effectively computable.

Here, we prove the following result.

Theorem 1. No Fibonacci number (larger than 1) is multiply-perfect.

En route to the proof of Theorem 1, we prove certain results concerning the
number of odd prime factors appearing at odd exponents in the factorization of Fn,
as well as some estimates involving the primitive prime factors of Fn. Such results
might have some interest in their own and could be useful for other Diophantine
questions involving Fibonacci numbers.

2. Notation

For a positive integer a and a prime p we write νp(a) for the exact exponent of p in
the factorization of a. We write

n = 2tm, m = p1 · · · pβ , where p1 ≥ p2 ≥ · · · ≥ pβ ≥ 3

are primes not necessarily distinct. We also put s := ν2(Fn). In particular, we have:

(i) if 3 � n then s = 0;

(ii) if 3 | n but 2 � n then s = 1;

(iii) if 6 | n then s = t + 2.

We write (Ln)n≥0 for the companion Lucas sequence of the Fibonacci sequence given
by L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for all n ≥ 0. There are many formulas
relating the Fibonacci and Lucas numbers and which are valid for all n ≥ 0, such
as F2n = FnLn and L2

n − 5F 2
n = 4(−1)n. Throughout the paper, we shall make use

of several of such formulas. They can all be proved immediately using the Binet
formulas

Fn =
γn − δn

γ − δ
and Ln = γn + δn for n = 0, 1, . . . , (1)

where (γ, δ) = ((1+
√

5)/2, (1−
√

5)/2). Throughout, we shall also use several well-
known divisibility properties of the Fibonacci numbers. For example, Fa divides Fb

if a divides b. Furthermore, if a | b and p is a prime, then p | gcd(Fa, Fb/Fa) if and
only if p | b/a. These divisibility properties will be used in Section 3.

We also write φ(n), ω(n), Ω(n), τ(n), and P (n) for the Euler function of n, the
number of distinct prime factors of n, the total number of prime factors of n, the
number of divisors of n, and the largest prime factor of n respectively. In particular,
with our notations, we have that Ω(n) = t + β, P (n) = p1, and τ(n) ≤ (t + 1)2β .
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3. The Exponent of 2 in σ(Fn)

If Fn > 1 is multiply-perfect, then

σ(Fn) = kFn (2)

holds for some positive integer k > 1. The case k = 2 is impossible by the result
from [10]. A short computation with MAPLE [14] reveals that there is no such n
in [3, 200]. We write α = ν2(k). Clearly, ν2(kFn) = α + s. To proceed further, we
need a lower bound for ν2(σ(Fn)). This is achieved by giving a lower bound on the
number of distinct prime factors appearing at odd exponents in the factorization of
Fn. This is the aim of the current section.

Before stating the main result of this section, let us make some remarks. If
ν2(σ(Fn)) = 0, then Fn = �, or 2�. The only possibilities are n ∈ {1, 2, 3, 6, 12}
(see [3] for a more general result). If ν2(σ(Fn)) = 1, then Fn = p�, or 2p�, where
p is some odd prime. In the former case, either n ∈ {4, 25}, or n is prime. Indeed,
this is a result of Robbins from [21]. Observe that the case n = 4 is not convenient
for us, since F4 = 3, so ν2(σ(F4)) > 1. In the latter case, suppose first that p = 3.
We then get Fn = 6�, and since L2

n − 5F 2
n = ±4, we are led to an integer point

(X,Y ) with positive coordinates, where Y := Ln, on one of the two curves

Y 2 − 180X4 = ±4. (3)

A short computation with MAGMA [2] reveals that the Diophantine equation (3)
has no solution with X �= 0. Assume next that still Fn = 2p�, but that p > 3.
Clearly, 3 | n, so we can write n = 3n0. Since F3n0 = Fn0(5F 2

n0
+ 3(−1)n0) and the

greatest common divisor of the two factors above is 1 or 3, we get that either

Fn0 = �, 2�, 3�, 6�, or 5F 2
n0

+ 3(−1)n0 = �, 2�, 3�, 6�.

If one of the equalities from the first set of equalities holds, then by the results from
[3] and [21] we get that n0 ∈ {1, 2, 3, 4, 6, 12}, so n ∈ {3, 6, 9, 12, 18, 36}, and the
only such n for which Fn is of the form 2p� with some odd prime p is n = 9 for
which F9 = 2 · 17. If one of the equalities from the second set of equalities holds,
then since 5F 2

n0
−4(−1)n0 = L2

n0
, we are led to an integer point (X,Y ) with positive

coordinates, where X := Fn0 , on one of the curves

(5X2 + 3ε)(5X2 − 4ε) = Y 2, 2Y 2, 3Y 2, 6Y 2, ε = (−1)n0 ∈ {±1}. (4)

With MAGMA, we get that the totality of the above 8 Diophantine equations (4)
lead only to n0 ∈ {1, 5}, so that n ∈ {3, 15}. However, since F15 = 610 = 2 · 5 · 61,
we get that ν2(σ(F15)) = 4, which is not convenient for us.

So far, we have seen that if ν2(σ(Fn)) = 0, then n ∈ {1, 2, 3, 6, 12}, while if
ν2(σ(Fn)) = 1, then n = 9, 25, or n is prime. In the following result, we prove a
lower bound for ν2(σ(Fn)) in terms of the number of prime factors of n.
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Lemma 2. Let n = 2tp1 · · · pβ, where p1 ≥ p2 ≥ · · · ≥ pβ ≥ 3 are primes. The

following inequalities hold:

(i) If t = 0, 1, 2, then

ν2(σ(Fn)) ≥ (t + 1)(β − 1).

(ii) If t ≥ 3, then

ν2(σ(Fn)) ≥ 3(β − 1) + (β + 1) + 3(t− 3).

In both instances, the factor (or term) β − 1 can be replaced by β if p1 > 5.

Proof. Write
Fn = FmLmL2m · · ·L2t−1m. (5)

It is clear that the greatest common divisor of any two of the above numbers is in
{1, 2}. Indeed, for κ ≥ 0, we have that Fm | F2κm and

L2
2κm − 5F 2

2κm = ±4, (6)

where the sign on the right depends on whether κ = 0 or κ > 0. Formula (6) shows
that gcd(Fm, L2κm) = 1, 2. It is 2 exactly when 3 | m, otherwise it is 1. Similarly,
if λ < κ, then L2λm | F2λ+1m | F2κm, and by the above formula we get again that
gcd(L2λm, L2κm) = 1, 2. Again, it is 2 exactly when 3 | m.

Let us deal with Fm. We assume that β ≥ 1. Write

Fm = Fp1

�
Fp1p2

Fp1

�
· · ·

�
Fp1···pi

Fp1···pi−1

�
· · ·

�
Fp1···pβ

Fp1···pβ−1

�
.

We put
Fp1···pi

Fp1···pi−1

= di� for i = 1, . . . ,β,

where di is squarefree. Here, and in subsequent occasions, we put p0 := 1. Since
p1, . . . , pβ are all odd, it follows that all the numbers di are odd except if 3 | m.
In this last case, with i being the smallest index such that pi = 3, we have that di

is even and that dj is odd for all j �= i. Next, we show that di always has an odd
prime factor except when m = 3u is a power of 3. Indeed, for if not, then either
di = 1, or di = 2. In the first case, we get that

Fpτ

Fτ
= �,

where p = pi, and τ = p1 · · · pi−1. This is not possible by the results of McDaniel
and Ribenboim [16]. When di = 2, we have that

F3τ

Fτ
= 2�,
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where τ = p1 · · · pi−1, pi−1 > 3, and pi = 3. Since τ is odd, we have that F3τ/Fτ =
L2

τ + 1. Thus, putting x := Lτ and y := Fτ , we are led to the simultaneous Pell
equations

x2 − 2v2 = −1,
x2 − 5y2 = −4.

In turn, any solution of the above system of simultaneous Pell equations leads to
an integer point (X,Y ) := (x, vy) with positive coordinates, on the curve

(X2 + 1)(X2 + 4) = 10Y 2. (7)

With MAGMA, we get that the only solutions are (X,Y ) = (1, 1), (2, 2). However,
the equation Lτ = x = 2 has no positive integer solution τ ; therefore only (X,Y ) =
(1, 1) is a convenient integer solution for our equation. This leads to τ = 1 and
therefore m = 3.

Next, we study when some odd prime p can divide two of the numbers di and dj

for i < j. In this case,

p | Fp1···pi | Fp1···pj−1 , and p
���

Fp1···pj

Fp1···pj−1

,

so
p

��� gcd
�

Fp1···pj−1 ,
Fp1···pj

Fp1···pj−1

�
.

It is well-known that the last greatest common divisor above is 1 unless p = pj , in
which case it is pj (see the comments at the end of Section 2).

Thus, p = pj , and p | Fp1···pi . However, p1 ≥ · · · ≥ pi ≥ · · · ≥ pj = p. If p > 5,
then p | Fp−ε, where ε = (5|p) = ±1. Here, we use (a|p) for the Legendre symbol
of a with respect to the odd prime p. Thus, if p > 5, then

p | gcd(Fp1···pi , Fp−ε) = Fgcd(p1···pi,p−ε) = F1 = 1,

as the numbers pj − 1 and pj + 1 are coprime to p1 · · · pi−1 because pj ≤ pi−1.
So, p ≤ 5. The case p = 3 is not possible, because 3 | Fτ if and only if τ is a
multiple of 4, and our number p1 · · · pi is odd. Thus, p = 5, and 5 | Fp1···pi with
p1 ≥ · · · ≥ pi ≥ 5, and this is possible only when pi = 5. Since j > i and 5 divides
both di and dj , it follows that pi = pi+1 = · · · = pj = 5. Let � ∈ {i, . . . , j}. Putting
τ = p1 · · · p�, we have that

Fp1···pi

Fp1···p�−1

=
F5τ

Fτ
= d��,

and 5 | d�. We now show that d� is divisible by some other prime unless τ = 1,
which is possible only when i = � = 1. Indeed, assuming that this is not so, we
would get the equation

F5τ

Fτ
= 5v2,
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with some positive integers τ and v such that τ is odd. Since τ is odd, we have
F5τ/Fτ = L4

τ + 3L2
τ + 1. Thus, we get an integer point (X,Y ) := (Lτ , v) with

positive coordinates on the curve

X4 + 3X2 + 1 = 5Y 2. (8)

With MAGMA, we get that the only convenient solution is (X,Y ) = (1, 1), leading
to τ = 1, so � = i = 1, and p1 = 5. This last case is possible only when m = 3u5v

and v > 0.
To summarize, we have proved the following result.

Lemma 3. If m = p1 · · · pβ, where p1 ≥ · · · ≥ pβ ≥ 3 are primes, then

ν2(σ(Fm)) ≥ β − 1.

The above inequality is strict unless P (m) = p1 ≤ 5.

Now we go on and study L2κm for κ ≥ 0. We use the same method. Namely, we
write

L2κm = L2κ

�
L2κp1

L2κ

��
L2κp1p2

L2κp1

�
· · ·

�
L2κp1···pi

L2κp1···pi−1

�
· · ·

�
L2κp1···pβ

L2κp1···pβ−1

�
.

We also write

L2κ = dκ,0�, and
L2κp1···pi

L2κp1···pi−1

= dκ,i� for i = 1, . . . ,β,

where the numbers dκ,i are all squarefree. As in the previous cases, all dκ,i are odd
unless m is a multiple of 3. If m is a multiple of 3 and κ = 0, then again all dκ,i

are odd. Finally, if m is a multiple of 3 and κ > 0, then the only i such that dκ,i is
even is the smallest i such that pi = 3.

We treat first the case when κ = 0. We again assume that β ≥ 1. Here d0,i is
odd for i = 0, . . . ,β, and d0,0 = 1. If d0,i = 1 for some i ≥ 1, then with p = pi and
τ = p1 · · · pi−1 we would get that

Lpτ

Lτ
= �.

By the results from [16], this is possible only if p = 3 and τ = 1, so m = 3u for
some u ≥ 1. Assume next that there is some prime p such that p divides both d0,i

and d0,j for some i < j. Then

p | Lp1···pi | Lp1···pj−1 , and p
���

Lp1···pj

Lp1···pj−1

,

so that
p

��� gcd
�

Lp1···pi ,
Lp1···pj

Lp1···pj−1

�
.
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Again this is possible only when p = pj , pi = pi+1 = · · · = pj , and p | Lp1···pi−1 .
However, since p1 ≥ · · · ≥ pi−1 ≥ p, this is not possible.

To summarize, we have proved the following result.

Lemma 4. If m = p1 · · · pβ, where p1 ≥ · · · ≥ pβ ≥ 3 are primes, then

ν2(σ(Lm)) ≥ β − 1.

The above inequality is strict unless p1 ≤ 3.

We now move on to the case κ = 1. We assume again that β ≥ 1. By the results
from [16], d1,i is never 1. Observe that d1,0 = 3. If 3 | d1,i for some i ≥ 1, we then
get that

3
���

L2p1···pi

L2p1···pi−1

,

and this is possible only if pi = 3. If d1,i has no other odd primes than 3, then with
τ = 2p1 · · · pi−1 we are led to the equations

L3τ

Lτ
= 3�, or 6�. (9)

Since τ is even, we have that L3τ/Lτ = L2
τ − 3. Thus, we get L2

τ − 3 = 3v2, or 6v2

for some positive integers t and v with t even. Since we also have L2
τ − 4 = 5F 2

τ , we
get that (X,Y ) := (Lτ , vFτ ) is a point with positive integer coordinates on one of
the curves

(X2 − 3)(X2 − 4) = 15Y 2, or 30Y 2. (10)

With MAGMA, we get that the only convenient solution is X = 3, leading to τ = 2;
therefore i = 1, and p1 = 3, so m is a power of 3.

Next, suppose that some odd prime p divides both d1,i and d1,j for 0 < i < j.
We then get, again as in the previous analysis, that pi = pi+1 = · · · = pj = p, and
p | L2. Thus, p = 3. If d1,i has no other odd prime factor than 3, we are led again
to the equations (9) giving τ = 1, and p1 = 3, so again m is a power of 3.

Observe that in fact if m is coprime to 3, then not only does d1,i have an odd
prime factor not dividing d1,j for all 0 ≤ i < j ≤ β, but 3�L2m and σ(3) = 22.

Of course, this was all when β ≥ 1. If β = 0, then m = 1, L2m = 3, so
ν2(σ(L2m)) = 2.

To summarize, we have proved the following result.

Lemma 5. If m = p1 · · · pβ and p1 ≥ · · · pβ ≥ 3 are primes, then

ν2(σ(L2m)) ≥ β − 1.

The inequality is strict unless p1 ≤ 3. If m is coprime to 3, then the right hand side

can be replaced by β + 2.
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Next, assume that κ = 2. We write L4 = d2,0 = 7, and

L4p1···pi

L4p1···pi−1

= d2,i� for i = 1, . . . ,β.

We assume again that β ≥ 1. All numbers d2,i are odd except if i is the smallest
index such that pi = 3. By the results from [16], d2,i is never 1. If d2,i = 2, then
with τ = 4p1 · · · pi−1 we are led to

L3τ

Lτ
= 2�.

Since L3τ/Lτ = L2
τ − 3, and L2

τ − 5F 2
τ = 4, we are led to an integer point with

positive coordinates (X,Y ) with X := Lτ on the curve

(X2 − 3)(X2 − 4) = 10Y 2. (11)

With MAGMA, this does not give us any convenient solution τ . Suppose next that
7 | d2,i for some i > 0. We then get, by arguments similar to the previous ones, that
this is possible only when pi = 7. Finally, assume that there is some odd prime p
such that p | d2,i and d2,j for two indices 1 ≤ i < j ≤ β. Then an argument similar
to the previous ones shows that this is possible only if pi = pi+1 = · · · pj = 7.
If d2,i has no any other odd prime distinct than 7 in its factorization, then with
τ = 4p1 · · · pi−1 we are led to the equation

L7τ

Lτ
= 7�.

Since τ is even, we have that

L7τ

Lτ
= L3

2τ − L2
2τ − 2L2τ + 1.

Thus, with X := L2τ , we are led to a point of positive integer coordinates (X,Y )
on the curve

X3 −X2 − 2X + 1 = 7Y 2. (12)

With MAGMA, we get no solutions.
This all was when β ≥ 1. When β = 0, we simply get that m = 1, L4m = 7, and

ν2(σ(L4m)) = 3.
To summarize, we have the following result.

Lemma 6. We have

ν2(σ(L4m)) ≥ β + 1.

Next, we give a general result when κ ≥ 2.
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Lemma 7. We have

ν2(σ(L2κm)) ≥ 3

for all κ ≥ 2 and all odd m ≥ 1.

Proof. Write L2κm = d�, where d is squarefree. If m is coprime to 3, then L2κm ≡ 7
(mod 8), so d ≡ 7 (mod 8). Then d is odd and either d has at least three prime
factors, or two of them one of which is 3 (mod 4), or d itself is a prime which is
congruent to 7 (mod 8). In all instances, σ(L2κm) is a multiple of 8.

We now proceed by induction on m, the case m = 1 being covered by the above
argument. Assume next that m is a multiple of 3, and write 2κm = 12m0. Then

L12m0 = L4m0(L
2
4m0

− 3),

and since 3 cannot divide L4m0 (because if 3 | Lτ , then τ ≡ 2 (mod 4)), it follows
that the above factors are coprime. By induction, σ(L4m0) is already a multiple of
8, and by the multiplicativity of the function σ we conclude that σ(L2κm) is also a
multiple of 8.

It is now easy to see that Lemma 2 follows from Lemmas 3–7.

4. Bounds for Sums of Reciprocals of Primitive Divisors

Using the inequality σ(a)/a < a/φ(a), where φ(a) is the Euler function of a, together
with the fact that 1 + x < ex holds for all x > 0, we get that if equation (2) holds,
then

k =
σ(Fn)

Fn
<

Fn

φ(Fn)
=

�

p|Fn

�
1 +

1
p− 1

�
< exp




�

p|Fn

1
p− 1



 , (13)

or, equivalently,

log k <
�

p|Fn

1
p− 1

. (14)

The first inequality in (13) is well-known. An immediate proof of it follows from
the fact that both functions m �→ σ(m)/m and m �→ m/φ(m) are multiplicative,
and when m = pa is a prime power then

σ(m)
m

=
σ(pa)

pa
= 1 +

1
p

+ · · ·+ 1
pa

<
�

b≥0

1
pb

=
p

p− 1
=

m

φ(m)
.

For each prime p let z(p) be its order of apparition in the Fibonacci sequence, namely
the smallest positive integer k such that p | Fk. For a fixed d, let Pd = {p : z(p) = d}.
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By the well-known Primitive Divisor Theorem (see [4], or the more modern paper
[1]), we have that Pd is empty only when d ∈ {1, 2, 6, 12}. It is also well-known
that p ≡ (p|5) (mod d) whenever p ∈ Pd, except when d = 5 for which P5 = {5}.
Hence, writing �d = #Pd, we have that

(d− 1)�d ≤ Fd < γd−1.

The fact that the inequality Fn < γn−1 holds for all n > 1 can be proved either by
induction on n, or by using the Binet formula (1). Hence,

�d <
(d− 1) log γ

log(d− 1)
. (15)

We now rewrite inequality (14) as

log k <
�

d|n

�

p∈Pd

1
p− 1

. (16)

Since inequality (16) is one of our workhorses, we will spend some time dissecting
it. Let

Sd :=
�

p∈Pd

1
p− 1

. (17)

When d ≤ 15, Pd has at most one element which is ≥ d− 1. So, the inequality

Sd ≤
1

d− 2

holds for all d ∈ [3, 15]. Assume now that d ≥ 16. We split Sd as

Sd =
�

p∈Pd
p≤6d

1
p− 1

+
�

p∈Pd
p>6d

1
p− 1

.

We first take the sum in the smaller range. The only numbers which are congruent
to ±1 modulo d and which are < 6d are

d− 1, d + 1, 2d− 1, 2d + 1, 3d− 1, 3d + 1, 4d− 1, 4d + 1, 5d− 1, 5d + 1, 6d− 1.

We claim that for all d ≥ 16 at most 5 of the numbers from the above list can be
members of Pd.

For example, if d ≡ 0 (mod 5), then all the above numbers are ±1 modulo 5.
Since such p ≡ ±1 (mod 5) must also satisfy p ≡ 1 (mod d), it follows that only
d + 1, 2d + 1, 3d + 1, 4d + 1, 5d + 1 can be members of Pd.

Next, assume that d ≡ 1 (mod 5). Then the numbers d − 1, 4d + 1, 6d − 1
are all divisible by 5, so they cannot be primes. The numbers d + 1, 2d + 1 are
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nonquadratic residues modulo 5 yet are congruent to 1 modulo d, so they cannot
be members of Pd, while the numbers 2d− 1, 5d− 1 are quadratic residues modulo
5 yet are congruent to −1 modulo d so they cannot be elements of Pd either. Thus,
Pd can contain at most the four elements 3d− 1, 3d + 1, 4d− 1, 5d + 1.

In the same way one can deal with the cases d ≡ 2, 3, 4 modulo 5. Thus,

�

p∈Pd
p≤6d

1
p− 1

≤ 5
d− 2

<
6
d
.

For the next sum, we replace 1/(p− 1) by 1/p getting

�

p∈Pd
p>6d

1
p− 1

<
�

p∈Pd
p>6d

1
p

+
�

�≥6d+1

1
�(�− 1)

=
�

p∈Pd
p>6d

1
p

+
1
6d

.

Thus,

Sd <
37
6d

+
�

p∈Pd
p>6d

1
p
.

We next split the last sum above at d3. We get, using inequality (15), that

Sd <
37
6d

+




�

p∈Pd

6d<p<d3

1
p



 +
�d

d3
≤ 37

6d
+




�

p∈Pd

6d<p<d3

1
p



 +
log γ

d2 log(d− 1)
.

Next, we estimate the last sum in the expression above. For this, we use the
Montgomery-Vaughan inequality

π(τ ; a, b) ≤ 2τ
φ(b) log(τ/b)

, (18)

valid for all τ > b > a ≥ 1, where a and b are coprime integers and π(τ ; a, b) stands
for the number of primes p ≤ τ which are congruent to a (mod b) (see [18]). Assume
first that 5 | d. Then the numbers p ∈ Pd are also congruent to 1 modulo d. Thus,
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using inequality (18), we get

�

p∈Pd

6d<p<d3

1
p

≤
�

6d<p<d3

p≡1 (mod d)

1
p

=
� d3

6d

dπ(τ ; 1, d)
τ

≤
���
π(τ ; 1, d)

t

���
τ=d3

τ=6d

��� +
� d3

6d

π(τ ; 1, d)
τ2

dτ

≤ 2
φ(d) log(d2)

+
2

φ(d)

� d3

6d

dτ

τ log(τ/d)

≤ 1
φ(d) log d

+
2

φ(d)

� d2

6

du

u log u
(u := τ/d)

=
1

φ(d) log d
+

2
φ(d)

log log u
���
u=d2

u=6

=
�

2 log
�

2
log 6

�
+

1
log d

�
1

φ(d)
+

2 log log d

φ(d)
. (19)

Assume next that 5 � d. Then each one of the four residue classes i (mod 5) with
i ∈ {±1,±2} for a prime p in Pd also implies only one of the two congruence classes
±1 (mod d) for p; namely, if p ≡ ±1 (mod 5), then p ≡ 1 (mod d), and if p ≡ ±2
(mod 5), then p ≡ −1 (mod d). By the Chinese Remainder Lemma, we get four
classes a1, a2, a3, a4 modulo 5d all coprime to 5d. Thus,

�

p∈Pd

6d<p<d3

1
p
≤

4�

i=1

�

p≡ai (mod 5d)
6d<p<d3

1
p
.

For a fixed i ∈ {1, 2, 3, 4}, the previous argument based on inequality (18) yields

�

p≡ai (mod 5d)
6d<p<d3

1
p

≤
� d3

6d

dπ(τ ; ai, 5d)
τ

≤
���
π(τ ; ai, 5d)

τ

���
τ=d3

τ=6d

��� +
� d3

6d

π(τ ; ai, 5d)
τ2

dτ

≤ 2
φ(5d) log(d2/5)

+
2

φ(5d)

� d3

6d

dτ

τ log(τ/(5d))

≤ 1
2φ(d) log(d2/5)

+
1

2φ(d)

� d2/5

6/5

du

u log u
(u := τ/(5d))

=
1

2φ(d) log(d2/5)
+

1
2φ(d)

log log u
���
u=d2/5

u=6/5

≤
�

1
2

log
�

2
log(6/5)

�
+

1
2 log(d2/5)

�
1

φ(d)
+

log log d

2φ(d)
.
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Thus, summing the above inequality up for i = 1, 2, 3, 4, we get

�

p∈Pd

6d<p<d3

1
p

<

�
2 log

�
2

log(6/5)

�
+

2
log(d2/5)

�
1

φ(d)
+

2 log log d

φ(d)
, (20)

and comparing it with (19) which is valid only for those d which are multiples of 5,
we conclude that the above inequality (20) holds regardless of whether d is coprime
to 5 or not. Using also the fact that φ(d) < d, as well as the fact that d ≥ 16 and

2 log
�

2
log(6/5)

�
+

2
log(162/5)

+
37
6

+
log γ

16 log 15
< 12,

we get that

Sd <
12 + 2 log log d

φ(d)
.

This is an important relation so we record it.

Lemma 8. The inequality

Sd =
�

p∈Pd

1
p− 1

<
12 + 2 log log d

φ(d)
, (21)

holds for all d ≥ 2.

Weaker versions of inequality (21) have appeared before in [11] and [12].

5. The Case When P (n) ≤ 5

Here, we prove that there is no solution to the equation (2) when n > 2 has P (n) ≤
5.

Lemma 9. If Fn is multiply-perfect and n > 2, then p1 > 5.

Proof. If d is made up only of 2, 3 and/or 5, then φ(d)/d ≥ 4/15, so that inequality
(21) becomes

Sd ≤
45 + 7.5 log log d

d
.

For d ≥ 16, we have that e log log d < log d, so that

7.5 log log d <
7.5
e

log d < 2.76 log d.

Thus,

Sd <
45 + 2.76 log d

d
. (22)
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The above inequality also holds for d ∈ [3, 15]. Next, we look at the counting
function of the set

A := {2u3v5w}.

Let x > 1 be a real number and A(x) = A ∩ [1, x]. Clearly, since the inequality
2u3v5w ≤ x implies that

u ≤ log x

log 2
, v ≤ log x

log 3
, and w ≤ log x

log 5
,

we have that

#A(x) ≤
�

log x

log 2
+ 1

��
log x

log 3
+ 1

��
log x

log 5
+ 1

�

≤ a0(log x)3 + a1(log x)2 + a2 log x + a3, (23)

where we can take a0 := 0.82, a1 := 2.78, a2 := 2.98, and a3 := 1. Let D0 be some
number to be computed later. Observe that

�

d∈A
d≥D0

1
d

≤
� ∞

D0

d#A(τ)
τ

=
#A(τ)

τ

���
τ=∞

τ=D0
+

� ∞

D0

#A(τ)
τ2

dτ

≤ a0I3 + a1I2 + a2I1 + a3I0, (24)

where we put

In :=
� ∞

D0

(log τ)n

τ2
dτ for n = 0, 1, 2, . . .

Similarly,

�

d∈A
d≥D0

log d

d
≤

� ∞

D0

log τ d#A(τ)
τ

=
log τ #A(τ)

τ

���
τ=∞

τ=D0
+

� ∞

D0

(log τ − 1)#A(τ)
τ2

dτ

≤ a0I4 + (a1 − a0)I3 + (a2 − a1)I2 + (a3 − a2)I1 − a3I0. (25)

Thus, using estimates (22), (24) and (25), we get
�

d∈A
d≥D0

Sd ≤ 2.76a0I4 + (2.76a1 + 42.24a0)I3 + (2.76a2 + 42.24a1)I2

+ (2.76a3 + 42.24a2)I1 + 42.24I0

≤ b0I4 + b1I3 + b2I2 + b3I1 + b4I0,

where b0 := 2.27, b1 := 42.31, b2 := 125.66, b3 := 128.64, and b4 := 42.24. Now
I0 = 1/D0, and by integration by parts we have that

In = −(log τ)n

τ

���
τ=∞

τ=D0
+ nIn−1 =

(log D0)n

D0
+ nIn−1,
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for n = 1, 2, 3, 4, so one computes easily that:

I0 =
1

D0
;

I1 =
1

D0
(log D0 + 1);

I2 =
1

D0
((log D0)2 + 2 log D0 + 2);

I3 =
1

D0
((log D0)3 + 3(log D0)2 + 6 log D0 + 6);

I4 =
1

D0
((log D0)4 + 4(log D0)3 + 12(log D0)2 + 24 log D0 + 24).

Thus,
�

d∈A
d≥D0

Sd <
1

D0
(c0(log D0)4 + c1(log D0)3 + c2(log D0)2 + c3 log D0 + c4),

where c0 := 2.27, c1 := 51.40, c2 := 279.84, c3 := 688.31, and c4 := 730.54. Asking
of the right hand side of the above inequality to be less than 0.1, we get that this
is so for D0 > 3.73 · 106. Thus, taking D0 := 4 · 106, we have that

�

d∈A
d≥D0

Sd < 0.1.

We now look again at the relation

log k <
�

d∈A
Sd.

To bound the expression on the right, we split the above sum at various locations.
Let 2 = q1 < q2 < · · · be the sequence of all prime numbers. Let D1 := q10000 =
104729. A MAPLE code confirmed that there are only 117 primes p ≤ D1 such
that z(p) ∈ A. They are

2, 3, 5, 7, 11, 17, 19, 23, 31, 41, 47, . . . , 90001, 96001, 103681.

The sum of the reciprocals 1/(p− 1) over such primes p is
�

p≤D1
z(p)∈A

1
p− 1

< 2.39. (26)

For primes p > D1, we replace 1/(p− 1) by 1/p creating an error of

≤
�

p>D1

1
p(p− 1)

<
1

D1 − 1
< 10−5. (27)



INTEGERS 11A (2011): Proceedings of Integers Conference 2009 17

Since D4
1 > 1.2 · 1020 > D3

0, we have

�

D1<p<D3
0

z(p)∈A

1
p

<
�

D1<p<D4
1

1
p

< log 4 +
1

2 log2(D1)
+

1
2 log2(D4

1)
< 1.40, (28)

where for the last inequality above we used Theorem 5 in [22]. It remains to deal
with primes p such that z(p) ∈ A and which exceed D3

0. If p < z(p)3, then p ∈ Pd

for some d > D0. Thus the total contribution of the sum of their reciprocals is

≤
�

d∈A
d≥D0

Sd < 0.1, (29)

by the preceding arguments. Finally, assume that p ∈ Pd and p > d3. For a fixed
d, by an argument used previously (see (15)), the sum of the reciprocals of such
primes is

≤ log γ

d2 log(d− 1)
.

Observe that F91 < 5 · 1018 < D3
0, and since all primes up to D3

0 have already been
accounted for, it follows that d > 91. Thus, the contribution of such primes to the
sum we are after is

≤
�

d>91

log γ

d2 log(d− 1)
≤ log γ

90 log(90)
< 0.002. (30)

For the last inequality above, we observed that log(d− 1) ≥ log(90) for all d ≥ 91,
and that 1/d2 < 1/(d(d− 1)). Hence,

≤
�

d>91

log γ

d2 log(d− 1)
≤ log γ

log(90)

�

d≥91

1
d(d− 1)

=
log γ

log(90)

�

d≥91

�
1

d− 1
− 1

d

�

=
log γ

90 log(90)
,

as desired. Collecting inequalities (26)–(30), we get that

log k <
�

d∈A
Sd < 2.39 + 10−5 + 1.40 + 0.1 + 0.002 = 3.89201;

therefore k ≤ 49.
We are now ready to bound n. Recall that P (n) = p1 ≤ 5.
Assume that 52 | n. Now F25 = 52 ·3001, and so 3001�Fn. Thus, 3002 = 2 ·19 ·79

divides σ(Fn) = kFn. Since 79 > k, it follows that 79 | Fn, which implies that 13 | n,
which is a contradiction.
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Assume next that 34 | n. Then

F81 = 2 · 17 · 53 · 109 · 2269 · 4373 · 19441.

So, 2269�Fn and therefore 2270 = 2 · 5 · 227 | σ(Fn). Hence, 227 | kFn and since
227 > k, we get that 227 | Fn which implies that 19 | n, which is a contradiction.

Assume next that 26 | n. Since

F64 = 3 · 7 · 47 · 1087 · 2207 · 4481,

we get, as in the preceding case, that 4482 = 2 · 33 · 83 is a divisor of kFn. Since
83 > k, we get that 83 | Fn, so that 7 | n, which is a contradiction.

Thus, n | 25 · 33 · 5. We showed numerically that there is no such n > 2 with the
property that Fn is multiply-perfect. For example, say that 48 | n. Then Fn is a
multiple of the following primes:

7, 23, 47, 1103.

Furthermore, all the above four primes divide Fn at exponent 1. In fact, if p is any
prime less that 1014, then p�Fz(p) by a recent calculation from [17]. Thus, σ(Fn) is
a multiple of

8× 24× 48× 1104,

which in turn is a multiple of 214. Now since n divides 25 · 33 · 7, it follows that
the exponent of 2 in the factorization of Fn is at most 7. Thus, 27 | k, therefore
k ≥ 27 = 128, which is false since k ≤ 49.

6. Bounding k

6.1. The First Bound on k

Recall α = ν2(k). Furthermore, Ω(n) = β + t. Now that we know that if n > 2
satisfies relation (2) then P (n) = p1 > 5, we use Lemma 2 and the well known order
of divisibility by 2 of Fn to conclude the following inequalities:

(i) if t = 0, then Ω(n) ≤ α + 1;

(ii) If t = 1, then Ω(n) ≤ (α + 5)/2;

(iii) If t = 2, then Ω(n) ≤ (α + 10)/3;

(iv) If t ≥ 3, then Ω(n) ≤ (α + 8)/2.
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Since α ≤ (log k)/ log 2, the above inequalities hold with α replaced by (log k)/ log 2.
Assuming first that k ≥ 64, the worst bound is when t = 0, and so

ω(n) ≤ Ω(n) ≤
�

log 2k
log 2

�
:= K if k ≥ 64.

We now return to inequality (21) to get

log k <
�

d|n

12 + 2 log log d

φ(d)
,

and observe that since the function log log d/d is decreasing for d ≥ 6 and since the
function d/φ(d) decreases when the prime factors of d are replaced by larger primes,
we conclude that if n has the structure

n = rδ1
1 · · · rδ�

� ,

where r1 < · · · < r� are distinct primes and δ1, . . . , δ� are positive exponents, it
follows that if we replace n by

n� = qδ1
1 · · · qδ�

� ,

where we recall that qi is the ith prime, then the inequality

log k <
�

d|n�

12 + 2 log log d

φ(d)
(31)

also holds. Clearly, the largest possible value that such numbers d can take is

d ≤
Ω(n)�

i=1

qi ≤
�

q≤qK

q < exp(1.01624qK), and qK < K(log K + log log K), (32)

where the above estimates follow from the Corollary to Theorem 3 and Theorem 9,
both in [22], respectively. Thus,

log k < (12 + 2 log(1.01624qK))
�

d|n�

1
φ(d)

. (33)

Extending the last sum above to all numbers the prime factors of which are in the
set {q1, . . . , qK}, we get that

�

d|n�

1
φ(d)

≤
K�

i=1

�
1 +

qi

(qi − 1)2

�
< ζ

K�

i=1

�
1 +

1
qi − 1

�
, (34)



INTEGERS 11A (2011): Proceedings of Integers Conference 2009 20

where ζ is the infinite product over primes q, i.e.,

ζ =
�

q≥2

�
1 +

1
q2 − q

�
< 2. (35)

Now Corollary 1 to Theorem 8 on page 70 in [22] asserts that the inequality

K�

i=1

�
1 +

1
qi − 1

�
< 1.79 log qK

�
1 +

1
log2 qK

�
(36)

holds in our range for K. Putting together all the above inequalities (32)–(36), we
get that

log k < 3.58(12 + 2 log(1.01624qK)) log qK

�
1 +

1
log2 qK

�
, (37)

where qK satisfies the second inequality in (32). Since K > 6, qK > 13, so using
the fact that

7.16 +
3.58(12 + 2 log(1.01624))

log 13
< 23.9539,

we get that

log k < 3.58(12 + 2 log(1.01624qK)) log qK + 23.9539,

giving K < 1594, so k ≤ 21594.

6.2. The Second Bound on k

Now α ≤ 1594, therefore Ω(n) < 1600. Take D2 := 251,000. We first separate the
primes p ≤ D2. Their contribution is

�

p≤D2

1
p− 1

≤
�

p≤D2

1
p

+
�

p≥2

1
p(p− 1)

.

The second sum is < 0.78. The first sum is, by Theorem 5 in [22], smaller than

log log D2 + 0.27 +
1

2 log2 D2

< 10.75.

Thus, �

p≤D2

1
p− 1

< 11.53. (38)

We now look at the remaining primes p. They all satisfy p > D2 > F90, so that
p ∈ Pd for some d ≥ 91. If p > d3, then by an argument already used previously
(see inequality (30)), their contribution to the sum is

<
�

d≥91

log γ

d2 log(d− 1)
<

log γ

90 log 90
< 0.002. (39)
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Assume now that p < d3. Then d > D1/3
2 = 217000. For such d, we have by equation

(21) that
�

p∈Pd

1
p− 1

= Sd ≤
12 + 2 log log d

φ(d)
.

Since Ω(d) ≤ 1600, we have that

d

φ(d)
≤

1600�

i=1

�
1 +

1
qi − 1

�
< 17,

and therefore

Sd ≤
17(12 + 2 log log d)

d
≤ 17(12 + 2 log log(217000))

217000
<

523
217000

.

Since τ(n) ≤ 2Ω(n) ≤ 216000, it follows that
�

d|n
d>217000

Sd <
523
21000

< 0.001. (40)

Observing that we have accounted for all the possible prime factors p of Fn, we get
that

log k < 11.53 + 0.002 + 0.001 = 11.533,

and therefore k < 1.03 · 105.

6.3. The Third Bound on k

Now α ≤ 16, so Ω(n) ≤ 17. Thus, τ(n) ≤ 217. Take D3 := 1024. Again we cut the
sum of the reciprocals of 1/(p− 1) at D3. We then have

�

p≤D3

1
p− 1

< log log D3 + 0.27 + 0.78 +
1

2 log2 D3

< 5.07.

Assume now that p > D3. Since D3 > F90, it follows, by an argument used
previously, that the contributions of all p such that p > z(p)3 to the total sum is
< 0.002. Assume next that p ∈ Pd, where d > p1/3. Then d > 108. Since Ω(d) ≤ 17,
it follows that d/φ(d) < 7.5, so

Sd ≤
7.5(12 + 2 log log d)

d
≤ 7.5(12 + 2 log log 108)

108
<

134
108

.

Since there are at most 217 divisors d of n, we get that the total contribution of
such primes is

<
134 · 217

108
< 0.18.

Thus, we get
log k < 5.07 + 0.002 + 0.18 = 5.252,

therefore k ≤ 190.
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6.4. The Fourth Bound on k

Now α ≤ 7, so Ω(n) ≤ 8. Thus, τ(n) ≤ 28. Take D4 := 1015. Again, we cut the
sum of the reciprocals of 1/(p− 1) at D4. We then have

�

p≤D4

1
p− 1

< log log D4 + 0.27 + 0.78 +
1

2 log2 D4

< 4.593.

Assume now that p > D4. Since D4 > F73, it follows, by an argument used
previously, that the contributions of all p such that p > z(p)3 to the total sum is

<
log γ

73 log 73
< 0.002.

Assume next that p ∈ Pd, where d > p1/3. Then d > D1/3
4 = 105. Since Ω(d) ≤ 8,

it follows that d/φ(d) < 5.9, so

Sd ≤
5.9(12 + 2 log log d)

d
≤ 5.9(12 + 2 log log 105)

105
<

1
103

.

Since there are at most 28 divisors d of n, we get that the total contribution of such
primes is

<
28

103
= 0.256.

Thus, we get
log k < 4.593 + 0.002 + 0.256 < 4.851,

therefore k ≤ 127.
Thus, having assumed that k ≥ 64, we concluded that k ≤ 127. Hence, α ≤ 6,

so Ω(n) ≤ 7.

7. The Final Descent

Here, we treat various cases according to the size of t. The plan of attack is as
follows. First we deal with the cases t ∈ {2, 3, 4}. Then, we bound β and n in the
case t ∈ {0, 1}. Then we show that in fact there is no such n.

7.1. The Case t ≥ 4

If 3 � n, then ν2(kFn) = ν2(k) = α ≤ 6, while by Lemma 2 we have that ν2(σ(Fn) ≥
4β+3t−8. Hence, 4β+3t ≤ 14 and t ≥ 4, therefore β = 0, which is impossible since
n cannot be a power of 2 (in fact, p1 > 5 by the results from Section 5). If 3 | n,
then ν2(kFn) = α+ t+2, whereas ν2(σ(Fn)) ≥ 4β+3t−8. Hence, 4β+2t ≤ α+10,



INTEGERS 11A (2011): Proceedings of Integers Conference 2009 23

and since t ≥ 4, n is a multiple of 3, and n has a prime factor larger than 5, it
follows that t = 4, β = 2 and α = 6.

Thus, n = 48p1, where p1 > 5 is prime. Observe that since α = 6 and k < 127,
it follows that k = 64. Now 26�F48 and 2 � Fn/F48, so 26�Fn and therefore 127 =
27 − 1 | σ(Fn). Thus, 127 | kFn, and since k = 64, we get that 127 | Fn, which,
since z(127) = 27, implies that 27 | n, which is false.

7.2. The Case t = 3

If 3 � n, then ν2(kFn) = α, while ν2(σ(Fn)) ≥ 4β + 1. Hence, 4β ≤ α − 1, so that
β = 1 and α ∈ {5, 6}.

If 3 | n, then ν2(kFn) = α+5, while again ν2(σ(Fn)) ≥ 4β+1. Hence, 4β ≤ α+4,
and since 3 divides n but n is divisible by some prime p1 > 5, it follows that β = 2
and α ∈ {4, 5, 6}.

Thus, either n = 8p1, or n = 24p1 for some prime p1 > 5. Furthermore, α ∈
{4, 5, 6}, therefore k = 16k0, where k0 ≤ 7.

When n = 8p1, we have F8 = 3 · 7. One checks directly that p1 = 7 is not
possible. Also gcd(F8, Fn/F8) | p1, so F8 is a unitary divisor of Fn and therefore,
σ(F8) = 25 divides σ(Fn) = kFn, and since Fn is odd, we get that 32 | k. We now
return to inequality (21) and get, since S1 = S2 = 0 and P4 = {3}, P8 = {7},

log 32 ≤ log k <
1
2

+
1
6

+
�

d|8p1
d≡0 (mod p1)

12 + 2 log log d

φ(d)
.

Now 8p1 has 4 divisors d which are multiples of p1. Since such d also have d/φ(d) ≤
2 · (7/6) < 2.5, it follows that

3.46 < log 32 < 0.7 +
4 · 2.5(12 + 2 log log p1)

p1
,

leading to p1 ≤ 19. A direct check shows that there are no such solutions.
When n = 24p1, then

F24 = 25 · 32 · 7 · 23.

One checks directly that p1 �∈ {7, 23}. Thus,

σ(F24) = 26 · 33 · 7 · 13

divides kFn = kF24p1 . The exponent of 2 in F24p1 is 5, therefore 2 | k. Since
gcd(F24, Fn/F24) = 1, we have σ(F24) | σ(Fn) = kFn, so 26 · 33 · 7 · 13 | kFn. Now
z(13) = 7 but p1 = 13 is not possible, so 7 | k. Also z(13) = 7 �= p1 implies 13 | k.
Hence, 2 · 7 · 13 | k, so 182 ≤ k ≤ 127 which is false.
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7.3. The Case t = 2

If 3 � n, then ν2(kFn) = α and, by Lemma 2 (i), ν2(σ(Fn)) ≥ 3β. Thus, 3β ≤ α ≤ 6,
which shows that either β = 1 and α ≥ 3, or β = 2 and α = 6.

If 3 | n, then, again by Lemma 2 (i), 3β ≤ α + 4, and since β ≥ 2, we get that
either β = 2 and α ∈ {2, . . . , 6}, or β = 3 and α ∈ {5, 6}.

Assume again that 3 � n. Then n = 4p1, or n = 4p1p2 with p1 ≥ p2 > 3. In both
cases, α ≥ 3, so k ≥ 8. Observe that F4 = 3. Thus, assuming that pβ ≥ 17, using
inequality (16) and the fact that n has at most 9 divisors d > 4 all of which satisfy
d/φ(d) ≤ 35/12 < 3, we get

2.07 < log 8 ≤ log k < 0.5 +
�

d|n
d>4

12 + 2 log log d

φ(d)
< 0.5 +

9 · 3(12 + 2 log log pβ)
pβ

,

yielding pβ ≤ 263. Thus, if β = 1, then n = 4p1 and p1 ≤ 263. A numerical check
using PARI/GP [19] confirmed that

�

p|F4p1

1
p− 1

< 1 for all p1 ∈ [5, 263]. (41)

In particular, if β = 1, then k < exp(1), and therefore k ≤ 2, which is impossible
since we already know that there are no perfect Fibonacci numbers.

We use a similar argument for β = 2. Since α = 6 in this case, we get, by an
argument similar to the ones used before, that

log 64 ≤ log k <
�

p|F4p2

1
p− 1

+
6 · 3(12 + 2 log log p1)

p1

< 2 +
18(12 + 2 log log p1)

p1
,

yielding p1 ≤ 113. Thus, n = 4p1p2 with 5 ≤ p2 < p1 ≤ 113. Now

F4p1p2 = Fp1p2Lp1p2L2p1p2 = 3Fp1

�
Fp1p2

Fp1

�
Lp1

�
Lp1p2

Lp1

��
L2

p1p2
+ 2

3

�
.

The above 6 factors are all odd, any two are coprime, and none of them is a square
by the results from [16]. Since σ(3) = 4, we get that

27 | σ(3)σ(Fp1)σ
�

Fp1p2

Fp1

�
σ(Lp1)σ

�
Lp1p2

Lp1

�
σ

�
L2p1p2

L2

�
= σ(F4p1p2) = kF4p1p2 ,

so 27 | k, so that α ≥ 7, which is false.
Assume next that 3 | n. Then either n = 12p1 and α ≥ 2, or n = 12p1p2

and α ≥ 5. Assume first that n = 12p1. One checks that p1 �∈ {13, 31}. Then
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σ(F12) = 13 · 31 divides kFn and not both primes 13 and 31 can divide k. Thus,
either 13, or 31 divides Fn, leading to the conclusion that either p1 = 7, or p1 = 5.
None of these possibilities leads to a solution. Assume next that n = 12p1p2.
Assume first that neither 13 nor 31 divides n. Then again σ(F12) = 13 · 31 divides
kFn, but since 32 | k, it follows that both 13 and 31 divide Fn, and therefore p2 = 5
and p1 = 7. One checks that this does not lead to a solution.

Assume next that 13 divides n, so n = 22 · 3 · 13 · p. Observe that

F4·13 = 3 · 233 · 521 · 90481.

Then either 233 or 521 does not divide n. Since 234 = 2 ·32 ·13 and 522 = 2 ·32 ·29,
it follows that either 13 or 29 divides kFn. Since 32 | k, we get that either 13, or
29 divides Fn, so n is divisible by 7. This value for n does not lead to a solution.

Assume next that 31 divides n. Then n = 22 · 3 · 31 · p. Since

F4·31 = 3 · 557 · 2417 · 3010349 · 3020733700601,

if follows that either 557 or 2417 do not divide n. Thus, either 558 = 2 · 32 · 31,
or 2418 = 2 · 3 · 13 · 31 divides σ(Fn). Hence, at any rate 31 | kFn, so 31 | Fn, so
5 | n. One checks (using say the process described at the end of Section 5), that
n = 22 · 3 · 5 · 31 is not a solution to our problem.

7.4. The Case t = 1

Assume first that 3 � n so Fn is odd. We can also assume p1 > 5 and α ≤ 6.
Therefore by Lemma 2(i), 2β ≤ α so β ≤ 3. Assume that β = 1, so n = 2p1. Then
τ(n) = 4, n/φ(n) ≤ 7/3, α ≥ 2, so k ≥ 4, and therefore

log 4 ≤ log k <
3 · (7/3)(12 + 2 log log p1)

p1
,

leading to p1 ≤ 73. So, n = 2p1, where p1 ≤ 73. Assume next that β = 2. Then
τ(n) ≤ 8, n/φ(n) ≤ 35/12, α ≥ 4, so k ≥ 16, and therefore

log 16 ≤ log k <
7 · (35/12)(12 + 2 log log p2)

p2
,

yielding p2 ≤ 109. Using inequality (41), we get, by a similar argument, that

log 16 < 2 +
6 · (35/12)(12 + 2 log log p1)

p1
,

so that p1 ≤ 349. Thus, n = 2p1p2, with p2 ≤ 109 and p1 ≤ 349. Assume next that
β = 3. Then τ(n) ≤ 16, n/φ(n) ≤ 77/24, and α ≥ 6, and therefore k = 64, so we
get

log 64 = log k <
15 · (77/24)(12 + 2 log log p3)

p3
,
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yielding p3 ≤ 173. Using now relation (41), we get that

log 64 < 2 +
14 · (77/24)(12 + 2 log log p2)

p2
,

and therefore p2 ≤ 317. A quick check reveals that
�

p|Fp2p3

1
p− 1

< 2 for all 5 ≤ p3 ≤ p2 ≤ 317, (42)

which in turn implies, via (41), that

log 64 < 2 +
13 · (77/24)(12 + 2 log log p1)

p1
,

showing that p1 ≤ 293. Thus, n = 2p1p2p3, where 5 ≤ p3 ≤ 173 and p3 ≤ p2 ≤
p1 ≤ 293.

Assume next that 3 | n, so Fn is even. Then 2β ≤ α + 3, and therefore β ∈
{2, 3, 4}. Thus, n = 6p1, 6p1p2, or 6p1p2p3. Now assume that n = 6p1, so β = 2.
Then F6 = 8, so σ(8) = 3 · 5 divides kFn. If 5 divides Fn, then p1 = 5 which is
impossible. Thus, 5 | k. Since also α + 3 ≥ 2β = 4, we get that α ≥ 1. Thus,
k ≥ 10. Since P2 = P6 = ∅, we get

log 10 ≤ log k < 1 +
4 · (7/2)(12 + 2 log log p1)

p1
,

so p1 ≤ 163. Thus, n = 6p1, with p1 ≤ 163. Assume next that n = 6p1p2, so β = 3.
Again 5 | k and now α + 3 ≥ 2β = 6, and therefore α ≥ 3. Thus, k ≥ 40. Also,
since n/φ(n) ≤ 35/8, we have

log 40 ≤ log k <
16 · (35/8)(12 + 2 log log p2)

p2
,

so that p2 ≤ 293. Using relation (41), we get that

log 40 < 2 +
8 · (35/8)(12 + 2 log log p1)

p1
,

leading to p1 ≤ 317. Hence, n = 6p1p2, with 3 ≤ p2 ≤ 293 and p2 ≤ p1 ≤ 317.
Assume finally that n = 6p1p2p3. Then 8�Fn and therefore 15 | σ(Fn) = kFn.

Since 3 � Fn, it follows that 3 | k. Since α ≥ 5, we have that 25 · 3 | k, and therefore
k = 96. Since also 5 | kFn and 5 � k, we get that 5 | n. If 5�n, then 8 · 5 is a
unitary divisor of Fn, and therefore 15 · 6 = σ(8 · 5) | kFn. In particular, 9 | 96Fn,
so that 3 | Fn, which is impossible. Thus, 52|n, showing, since F25 = 52 · 3001, that
p2 = p3 = 5 and p1 > 5. Now 11 | F10 = 11 · 15 and unless p1 = 11, we have that
11�Fn. Thus, 8 · 11 is a unitary divisor of Fn, and therefore 15 · 12 = σ(8 · 11) is a
divisor of 96Fn. Thus, 32 | 96Fn, so that 3 | Fn, which is again impossible. Hence,
n = 2 · 3 · 52 · 11. In this case since 89 = F11 we have 89�Fn. Hence, 8 · 89 is a
unitary divisor of Fn, and therefore 33 | σ(8 · 89) is a divisor of 96Fn. We again get
that 3 | Fn, which is impossible.
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7.5. The Case t = 0

Here, we first show that k ≤ 17. Indeed, the trick is to note that if p | Fn, then
z(p) is odd. Now D5 := q1230 = 10007 > 104. Among the first 1230 primes, there
are exactly 407 of them which are odd and whose z(p) is also odd, and the sum of
the reciprocals 1/(p− 1) over such primes is

�

5≤p≤D5
z(p)≡1 (mod 2)

1
p− 1

< 0.723.

For the primes p > D5, we replace the sum 1/(p− 1) by 1/p creating an error

≤
�

p>D5

1
p(p− 1)

< 10−4.

For the sum of the reciprocals of the primes in the range D5 < p < 1012 := D6, we
use again the Theorem 5 in [22] getting

�

D5<p<D6

1
p

< log 3 +
1

2 log2(D5)
+

1
2 log2 D6

< 1.106.

When p > D6, then either z(p) < d3 or not. In the former case, d > 104. Also,
since Ω(n) ≤ 7, but n is odd, we have d/φ(d) < 3. Thus,

Sd <
3(12 + 2 log log 104)

104
<

50
104

.

Since there are at most τ(n) ≤ 27 such divisors d, the contribution from such primes
p > D6 to the sum of 1/p is at most

<
27 · 50
104

< 0.64.

Finally, since D6 > F59, it follows that the contribution to the sum we are after of
those p such that z(p) > d3 is, by an argument used previously,

<
log γ

59 log 59
< 0.003.

Putting together the above inequalities and accounting also directly for the contri-
bution of the prime 2 which has property that 2 might divide Fn but 4 does not
divide Fn; hence, the contribution of the prime 2 in k = σ(Fn)/Fn is a factor of at
most 3/2, we get

log k < log(3/2) + 0.723 + 10−4 + 1.106 + 0.64 + 0.003 < 2.878,
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so k < exp(2.878) < 18. Hence, α ≤ 4.

Assume now that n is not a multiple of 3, so n is odd and Fn is odd. Then
ν2(kFn) = α and ν2(σ(Fn)) ≥ β. Thus, β ≤ α and therefore β ≤ 4. Assume first
that β = 1. Then n = p1. Since k > 2 and is even, we get that k ≥ 4. Thus,

log 4 ≤ log k <
12 + 2 log log p1

p1 − 1
,

giving p1 ≤ 11, which gives no solution. Assume now that β = 2. Then again k ≥ 4,
d/φ(d) ≤ 7/4, so

log 4 <
3 · (35/24)(12 + 2 log log p2)

p2
,

leading to p2 ≤ 43. We checked with MAPLE that

�

p|Fp2

1
p− 1

< 0.375 holds for all p2 ∈ [5, 43]. (43)

Thus,

log 4 < 0.375 +
2 · (7/4)(12 + 2 log log p1)

p1
,

leading to p1 ≤ 47. Hence, n = p1p2 with 5 ≤ p2 ≤ p1 ≤ 47 in this case. Assume
now that β = 3. Then, since k ≤ 17 and β ≤ α, k = 8, or k = 16. Moreover,

log 8 ≤ log k <
7 · (77/48)(12 + 2 log log p3)

p3
,

so p3 ≤ 79. Now since

�

p|Fp3

1
p− 1

< 0.361 holds for all p3 ∈ [5, 79], (44)

we get that

log 8 < 0.361 +
6 · (77/48)(12 + 2 log log p2)

p2
,

so that p2 ≤ 83. Finally, we checked with MAPLE that

�

p|Fp2p3

1
p− 1

< 0.443 holds for all 5 ≤ p3 ≤ p2 ≤ 83,

so that
log 8 < 0.886 +

4 · (77/48)(12 + 2 log log p1)
p1

.
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Hence, also p1 ≤ 79. Thus, n = p1p2p3, where 5 ≤ p3 ≤ p2 ≤ p1 ≤ 79 in this case.
Finally for this part of the search tree, let β = 4. Then, since k ≤ 17 and 4 = β ≤ α,
we have k = 16. Moreover, because n = p1p2p3p4 with p4 > 3 and p1 > 5

log 16 = log k <
15 · (1001/576)(12 + 2 log log p4)

p4
,

so p4 ≤ 139. Now since

�

p|Fp4

1
p− 1

< 0.35 holds for all p4 ∈ [5, 139], (45)

we get that

log 16 < 0.35 +
14 · (1001/576)(12 + 2 log log p3)

p3
,

so that p3 ≤ 151. Now since

�

p|Fp3p4

1
p− 1

< 0.43 holds for all p3, p4 with 5 ≤ p4 ≤ p3 ≤ 151, (46)

and also since p2 is the smallest remaining divisor of n, we get that

log 16 < 0.43 +
13 · (1001/576)(12 + 2 log log p2)

p2
,

so that p2 ≤ 139. Now since

�

p|Fp2p3p4

1
p− 1

< 0.469 holds for all p2, p3, p4 with 5 ≤ p4 ≤ p3 ≤ p2 ≤ 139,

(47)
we get that

log 16 < 0.938 +
11 · (1001/576)(12 + 2 log log p1)

p1
,

so that p1 ≤ 157. Note that we have doubled the leading constant on the right hand
side of this inequality to cover the divisors when p2p4 < p1.

Thus, n = p1p2p3p4, with 5 ≤ p4 ≤ p3 ≤ p2 ≤ p1 ≤ 157 in this case.

Assume next that 3 | n, so n is odd, Fn even and 2�Fn. Then α ≥ β − 1 and
α ≤ 4 implies β ≤ 5. Since n = 3 is not a solution, assume first that β = 2. Then
n = 3p1, and since α ≥ 1, k is even. Now p1 = 3 is not convenient, so 2 = F3

divides Fn, therefore 3 divides σ(Fn). Since 3 cannot divide Fn, we get that 3 | k.
Since also k is even, we get that k ≥ 6. Thus,

log 6 ≤ log k <
3 · (7/4)(12 + 2 log log p1)

p1
,
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yielding p1 ≤ 41. A quick check with MAPLE gives no solution. Assume now that
β = 3. Since p1 ≤ 5, n = 33 is not admissible. If p2 = 3, then either p1 = 17, which
is not admissible, or, since F9 = 34, both 3 and 17 appear with exponent 1 in the
factorization of Fn. In this case, 23 · 32 divides σ(Fn), and therefore 22 · 32 divides
k, which is impossible. Thus, p2 > 3. Now since α ≥ 2 and 3 divides k, we get that
k = 12. Hence, since P3 = {2},

log 12 < 1 +
6 · (35/16)(12 + 2 log log p2)

p2
,

leading to p2 ≤ 131. Finally, upon checking with MAPLE that
�

p|F3p2

1
p− 1

< 0.37

holds for all p2 ∈ [5, 131], we get that

log 12 < 1 + 0.37 +
5 · (35/16)(12 + 2 log log p1)

p1
,

yielding p1 ≤ 149. Hence, n = 3p1p2, where 3 ≤ p2 ≤ p1 ≤ 149 in this case. Finally,
if β = 4, or β = 5, then 3 | k and also 8 | k, and therefore k ≥ 24, which is
impossible.

7.6. The End of the Proof of Theorem 1

After Sections 7.4 and 7.5, we arrived at the conclusion that if there exists some n
contradicting the conclusion of Theorem 1, then t ∈ {0, 1} and β ≤ 3.

In addition, an examination of the bounds on the pi’s in each of the cases covered
by Sections 7.4 and 7.5 shows that n < 109.

Assume now that we have such a value for n. Let p < 1014 be an odd prime
factor of Fn, not dividing n. Then z(p) | n, and since p does not divide n, we have
that νp(Fn) = νp(Fz(p)) = 1, where the very last equality follows from a calculation
from [16]. Thus, we have that




�

p|Fn; p�n
p<1014

(p + 1)



 | σ(Fn) = kFn.

Since ν2(kFn) = ν2(k) + ν2(Fn) ≤ α + 3 ≤ 9, we get that Fn can have at most 9
odd primes factors which do not divide n and which are smaller that 1014. Since
n has at most 4 odd prime factors smaller than 1014, we get that Fn can have at
most 13 odd prime factors p < 1014. Thus,

log k = log
�

σ(Fn)
Fn

�
<

�

p|Fn

p<1014

1
p− 1

+
�

p|Fn

p>1014

1
p− 1

:= S1 + S2.
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Let us bound the sum S2. If p > 1014, then p ∈ Pd for some divisor d of n. Suppose
first that d > p1/3. Then d > 1014/3. The calculations from Sections 7.4 and 7.5
show that τ(n) ≤ 24 and that

√
n < 1014/3. Thus, there can be at most 8 divisors

d of n with the above property. Since ω(n) ≤ 4, it follows that d/φ(d) ≤ 4.4. Thus,
the contribution of such p to S2 is

�

d|n
d≥1014/3

Sd ≤
8 · 4.4(12 + 2 log log 1014/3)

1014/3
< 0.013.

Suppose now that d < p1/3. Since p > 1014, it follows that d ≥ 81, so that by an
argument used previously we have

�

p|Fn

p>d3

1
p− 1

≤
�

d≥81

log γ

d2 log(d− 1)
≤ log γ

80 log 80
< 0.0014.

Thus, S2 < 0.015.
Suppose now that Fn is coprime to 6. Then, recalling that qi is the i’th prime,

we have

S1 ≤
15�

i=3

1
qi − 1

< 0.9309.

Hence, S1 +S2 < 0.946, giving k ≤ exp(0.946) < 2.58. Thus, k = 2, but this is false
since we know that there are no perfect Fibonacci numbers.

Thus, Fn cannot be coprime to 6. If 3 | Fn, we get t ≥ 2, which is what we
wanted. So, let us assume that Fn is coprime to 3 but it is even. Then 3 | n and
t ∈ {0, 1}. Now

S1 ≤ 1 +
15�

i=3

1
qi − 1

< 1.9309.

Thus, S1 + S2 < 1.9459, so that k < exp(1.9459) = 6.99993 . . . < 7. Thus, k ∈
{3, 4, 5, 6}.

In particular, ν2(k) ≤ 2. Now ν2(Fn) = 1 or 3, according to whether t = 0 or
t = 1.

Assume first that t = 0. Then 2�Fn and therefore 3 | σ(Fn) = kFn. Since Fn

is coprime to 3, it follows that 3 | k. Hence, k = 3, 6. Thus, ν2(σ(Fn)) = 1 or 2,
according to whether k = 3 or 6. However, 3 | n, and by Lemma 9 we must have
p1 > 5. Thus, β ≥ 2, and by Lemma 3, we have ν2(σ(Fn)) ≥ β ≥ 2, and therefore
k = 6. The preceding argument based on the result from [16] shows that Fn can
have at most 2 + 2 = 4 odd prime factors < 1014. Thus,

S1 ≤ 1 +
6�

i=3

1
qi − 1

= 1.6.



INTEGERS 11A (2011): Proceedings of Integers Conference 2009 32

Hence, 6 = k < exp(1.6 + 0.015) < 5.1, a contradiction.
Thus, we must have t = 1, so 6 | n. Since 4 � n, it follows that 23�Fn. Hence,

15 = σ(23) divides σ(Fn) = kFn. Since Fn is coprime to 3, we get that k = 3 or
k = 6.

In particular, 5 | Fn. Since also 3 | n, it follows, by Lemma 9, that β ≥ 3. Now
ν2(σ(Fn)) = 3 or 4, according to whether k = 3 or k = 6. By Lemma 2, we have
that 4 ≥ ν2(σ(Fn)) ≥ 2β ≥ 6, which is a contradiction.

Thus, indeed t ≥ 2, but we have seen from Sections 7.1, 7.2 and 7.3 that there
are no such values of n either. The theorem is therefore proved.

8. A Note on Some of the Computations

Most of the computations in the last sections of the paper were not done directly.
To find an upper bound for the sums over primes p dividing Fn, i.e.

�

p|Fn

1
p− 1

for n < x, note that Fn < γn so the number of odd primes p > x dividing Fn is less
than n log γ/ log x. Hence,

�

p|Fn

1
p− 1

=
�

p|Fn
p≤x

1
p− 1

+
�

p|Fn
p>x

1
p− 1

<
�

p|Fn
p≤x

1
p− 1

+
log γ

log x
,

and the second term is less than 0.11 for say x ≥ 100. So to compute the upper
bound for the sum all we need calculate is the first sum.
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