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A list of orthogonal coordinate systems which permit R-separation of the wave equation s, — A,y = 0 is
presented. All such coordinate systems whose coordinate curves are cyclides or their degenerate forms are
given. In each case the coordinates and separation equations are computed. The two basis operators
associated with each coordinate system are also presented as symmetric second order operators in the

enveloping algebra of the conformal group O(3,2).

INTRODUCTION

In this article we complement the contents of our
previous article! (hereafter referred to as I) by giving
a detailed treatment of the orthogonal coordinate sys-
tems for which the two-dimensional wave equation

2, 0=24,9 (*)

admits an R-separable solution.? We recall that an R-
separable solution of (*) can be written in the form
exp[Q(i, p, v)JA(W)B(P)C(v). Here u, p, v are curvilinear
coordinates and @ is a function such that either

0%Q

40,

Y
AN A

NN =u,p,v,

for at least two distinct pairs A, A’ or @ =0. The latter
case is the familiar one of separation of variables. In
searching for R-separable solutions of (*) we restrict
our attention in this article to orthogonal curvilinear
coordinate systems. These are systems of coordinates
i, p, v such that the differential form

ds? = df? - dx? = dy? (0.1)
can be written
ds?=F dp?+G dp? + H dv?, (0.2)

with F, G, and H real functions of ,p, v. In a subse-
quent article we shall give a systematic treatment of
the nonorthogonal systems for which (*) admits a
separation of variables.

The methods necessary for systematically finding all
such orthogonal R-separable coordinate systems have
been developed in some detail in the book by Bécher.?
These methods can be readily adapted to the problem
of interest in this article. There are however a num-
ber of new developments occurring in the case of (*).
These developments stem from the fact that (*) is in-

herently more complicated than Laplace’s equation
(8 +0,,+9,,)9=0, (0.3)

which Bocher treated in detail. The contents of the
article are arranged as follows.

In Sec. I we give the basic ideas necessary to con-
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struct the coordinates which allow an R-separation of
(*). This involves a treatment of pentaspherical space,
relevant properties of cyclides, and the method of
finding the pentaspherical coordinates (and hence the
coordinates £, x, y) in terms of the various curvilinear
coordinates. Enough detail is presented in this section
so as to make the article reasonably self-contained.

In Sec. II the connection between the wave equation (*)
and pentaspherical coordinates is discussed.

Section II contains the classification of orthogonal
R-separable coordinates of (*). In addition the separa-
tion equations are given and identified as much as
possible. We also give the two symmetric second order
operators whose eigenvalues are the separation con-
stants. These operators are expressed in terms of the
symmetry group of (*) discussed in detail in 1.

The best-known coordinate systems which permit
separation of variables in the wave, Laplace, and
Helmholtz equations have the property that the coordi-
nate surfaces are orthogonal families of confocal

quadrics

2 2

x? y

A—a, + A-a,
or their limits.* Thus the coordinate surfaces are
ellipsoids, hyperboloids, spheres, planes, etc. The
Helmholtz equation separates only in coordinate sys-
tems of this type, but the wave and Laplace equations
admit more general separable systems. This fact is
related to the greater symmetry of the latter differen-
tial equations. Indeed, the wave equation admits an
inversion symmetry which transforms the coordinates
%y, Eto x/X X, ¥/X-%x, 1/X-X, where x-x=1[% ~ 52 — 2,
Under inversion and space—time translations the
orthogonal coordinate surfaces (0.4) are transformed
into orthogonal surfaces, each of the form

z
=1, a, const

= (0.4)

a(l? = x%2 = 922+ ax® + by + cf?
+dx+ev+fi+h=0, (0.5)

The fourth-order surfaces (0.5) are cyclides®'5'¢ and
the coordinate surfaces are orthogonal families of con-
focal cyclides. The set of all cyclides is invariant
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under the conformal symmetry group of the wave equa-
tion. Moreover, one can show by explicit construction
that certain confocal families of cyclides define
orthogonal coordinate systems which permit separa-
tion of variables in the wave equation. No separable
systems other than these are known. Two families of
confocal cyclides define equivalent coordinate systems
if one can be obtained from the other by a transforma-
tion belonging to the conformal symmetry group

S0(3, 2) of the wave equation. Certain special families
of cyclides can be mapped to the form (0.5) with a =0
by a conformal symmetry, and these families lead to
the special coordinate surfaces (0. 4) and their limits.

To determine all distinet cyclidic separable co-
ordinate systems, we clearly need to classify the dis-
tinct equivalence classes of cyclides under the action of
the conformal group.

However, as shown explicitly in I, the action of this
group on x, v,  (Minkowski) space is rather complicated.
To simplify the computation of equivalence classes, one
sets up a correspondence between three-dimensional
Minkowski space and five-dimensional pentaspherical
space as defined in Sec. I. In pentaspherical space the
general cyclide takes the simple form (1.9) and the
action of the conformal group SO(3, 2) reduces to
matrix multiplication. Thus the classification of cy-
clides into SO(3, 2) symmetry classes can be carried
out in a straightforward manner, and the results
mapped back to Minkowski space to yield R-separable
coordinate systems for the wave equation.

I. PENTASPHERICAL COORDINATES AND
ORTHOGONAL FAMILIES OF CONFOCAL CYCLIDES

In this section we will outline the use of pentaspheri-
cal coordinates in classifying orthogonal families of
confocal cyclides. Such orthogonal families, each pro-
vide an R-separable coordinate system for (*). The re-
sults presented here summarize those aspects of the
work of Bocher that are relevant for this article.
Further details can be found in Bécher’s book and also
the book by Coolidge. ®

Any set of objects that can be put into one to one
correspondence with sets of five homogeneous coordi-
nates xy :x,: %51 X, : X5 not all simultaneously zero but
connected by the relation

e+l aZ+adi+x2=0 (1.1
are called points in pentaspherical space. It is clear
that in general the quantities x; are complex numbers.
For our purposes the subset of pentaspherical coordi-
nates of interest for the wave equation (*) can be ob-
tained from the coordinates ¢, x, v as follows. Instead of
considering the usual Cartesian coordinates £, x, v in
three-dimensional Minkowski space, consider the
Cartesian coordinates defined by

Z=1, X=ix, Y=iy. (1.2)

The correspondence between a point (¢, x, ¥) in Min-
kowski space and a point in five-dimensional space is
then achieved as follows. The stereographic projection
of the Cartesian coordinates with respect to the four-
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dimensional unit sphere embeds the point (Z,X, ¥) in a
four-dimensional space. The homogeneous or projec-
tive coordinates of the corresponding four-vector are

V=72 pP =P+ $%, =1 —pP g - s?,

Vo= 2ips, y,=2igs, v,=2s, (.3)
where the coordinates ¢, x, y are given by
t=v/s, x=p/s, v=gq/s. (1.4)

If we adopt entirely real coordinates by writing z,=1,,
1=1,2,5, and z,=-1iy,, i{=3,4, we see that these co-
ordinates satisfy

25— 22+ 22+2%-22=0 (z;all real). (1.5)

The subset of pentaspherical space of interest then con-
sists of those points whose pentaspherical coordinates
are

Xy =i(r2—p2—q?+s?), x,=rP-pPogP -2,

(1.6)

Xy =2ips, x,=2igs, x5=2¥S.

In this work we are concerned only with these points in
pentaspherical space which correspond to the real co-
ordinates z, satisfying (1.5) (i.e., having the same
signature as this equation). An alternative equation to
(1.8) can be obtained via the substitutions p —~ - ip,

qg—~ —-1iq, ¥ = —ir. From the form of (1.1) it can be seen
that to transform one set of pentaspherical coordinates
¥, into another set x; via a linear transformation

=V, %, (1.7)
which preserves
Q=x+x2+x2+x2+ 2
is only possible if V=(V,;) is an orthogonal matrix:
vVT=1 [VT=(V,), V,,eC]. (1.8)

In particular for the case of interest here the orthogonal
transformations V corresponding to points in penta-
spherical space of the form (1.6) are isomorphic to
elements of the group O(3, 2). This is the symmetry
group of (*).

A cyclide is defined to be the locus of points x; in
pentaspherical space lying on the quadric surface

5
d= 2 a;xx;=0 (1.9)
2 J=1

i, =
with a;;=a,; and det(a,;)# 0. The problem of classifying
types of cyclides under the group of orthogonal trans-
formations V as in (1.7) and (1. 8) is then the problem
of classifying the intersections of two quadric forms in
five-dimensional projective space, where one form is
required to be equivalent to €, (1.5). This is performed
by the method of elementary divisors applied to the two
quadratic forms. ® If we take the quadratic forms to be
® as in (1.9) and Q=733 ;., b;;%,;%;, each class of
quadratic forms &, § is then specified by the corre-
sponding invariant factors. The invariant factors form
a complete set of invariants for each class of pairs
©, ®. This means that if @', &’ have the same in-
variant factors as @, &, the two systems are related
by a linear substitution

B ’_._.
Xi=CyiX;5

det(c;;)#0.
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The invariant factors of a given pair of quadratic
forms are obtained as follows. Suppose D=det|Aa;; - b,|
contains the factor (X —u)*0. A second index , is de-
fined to be the highest power of (A ~u) which divides all
the first minors of D. Proceeding in this manner we
obtain the terminating set of indices e, =1,-1,, e,

, €,=1..;. The powers (A —u)%,

(A =u)?,...,(x~u)° are called the invariant factors

to the base A —u of the determinant D of the family of
forms. All possible invariant factors of D then deter-
mine a complete set of invariants. The standard nota-
tion for the inequivalent classes of pairs Q, & of
quadratic forms is to display the indices e, for each of
the roots of D=0 within a square bracket. Those in-
dices belonging to the same base or root of D=0 are
enclosed in conventional brackets. As an example con-
sider the invariant factors (x - a)?, (A-d), (A ~¢),

(A — d) the corresponding notation is [2111]. If the in-
variant factors are (A ~a)?, (A—-a), (A -¢), (A -4d),

then there is more than one invariant factor to the base
a. Such a cyclide is then called a degenerate form of
the corresponding cyclide in which there is only one
invariant factor to each different base. For this second
example we have a degenerate case of the cyclide
[2111] and write this as [(21)11]. If the set of invariant
factors are (A —a)?, (x=5), (A=5), (A—c), then the
notation would be [2(11)1]} and so on. The list of pairs of
quadratic forms in five variables which are inequivalent
are (this does not include the singular cases, which we
do not need here, see, for instance, Bromwich®):

=l =1y ...

1. [11111] Q=2+ 22+ x5+ x2+ xZ,

@ = A x2 + Na2 + Ax2 + A+ Axd; (1.10)
2. [2111] Q=2xx,+ x5+ x2+ %2,
& =20 x,%, + X2+ A2+ A2+ A xZ; (1.11)
3. [311]  Q=2xx,+xZ+xZ+xZ,
@ = A, (22, %, + X22) + 2%, %, + A %2+ A xZ; (1.12)
4. [221]  Q=2xyx, + 2x5x, + &2,
P = 2h 5,5, + 22 + A a0 x, + 42+ AxE; (1.13)
5. [41] Q= 2x,x, + 2%,%, + 22,
@ = 20, (2,5, + X,%,) + 2%, %5 + X5+ AgxE; (1.14)
6. [32] Q= 2% %, + 2x,%, + %2,
& = A, (22,0, + x2) + 2x,%, + 2N X %, + 42 (1.15)
7. [5] Q=2x,%, + 20,%, + xZ,
(1.186)

@ =2, (20, %, + 2x,x, + A2} + 20, %, + 2%,%5.

The pairs of forms for a degenerate cyclide can be ob-
tained from these formulas, e.g., the quadratic forms
2, ® corresponding to the configuration [(11)111] are
obtained from (1. 10) by putting A, =2,, and so on. Each
type of cyclide is then associated with one of the seven
types listed or one of the corresponding degenerate
forms, The corresponding equations defining the cyclide
are =0 and $=0. The types of cyclides of particular
interest here are those belonging to a confocal family.
The most general such family is associated with the
configuration [11111] and is given by the pair of
equations,
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Qu=xitaZ+x2+x2+42=0,
(1.17)
% + }\x@ 0

% 2 x2
Ly 2 8 =
.-e5

&=
A-e, Xr-e, A-e,

3

A-e,

where X is the parameter specifying the family. For
the subset of pentaspherical space of interest to us
Egs. (1.17) may correspond to a number of different
real nondegenerate coordinate curves in £, ¥,y space.
These possibilities are,

(i) The coordinates x, are in fact the pentaspherical
coordinates and are given by (1.6) [or the substitution
p~—ip, g— ~iq, r— —ir applied to (1.6)]. To give a
real curve all the ¢; must then be real. Bécher in-
troduces a diagramatic notation for such a confocal
family of cyclides as follows. In the complex X plane

(1.17) is represented by N
imaginary fles e 18 & &
1 7

real axis

axis

(ii) Two of the quantities ¢, are mutually complex
conjugate, say e,, e,. The corresponding choice of
variables for x; is

R R et il
x,=V2(r+ip)s, x,=V2(r-ip)s, x,=2igs. (1.18)
Another associated choice is obtained by taking p — —ip,
q— —iq, v— —ir in these formulas. The notation for
such a family of cyclides is {11111] and the correspond-
ing diagrammatic representation is

kS

(iit) Two pairs of the quantities e; are mutually com-
plex conjugate, say e¢,, e, and e,, e,. The correspond-
ing choice of variables for x; is

x,=Vi (P =p2— @ +is%), x,=V—i(r2-p?-q°-is?
(1.19)
x,=V2(r+ip)s, x,=vV2(r—ip)s, x,=2igs.

Another associated choice is obtained by taking p — - ip,
q—=-igq, 7 ——7\1‘3:. The notation for such a family of
cyclides is [11111] with the corresponding diagram-
matic representation

le; e

s

I

The equations for a family of cyclides correspond-
ing to the configuration [(11)111] are readily obtained
from Egs. (1.17) by putting ¢, = ¢,. The corresponding
diagrammatic representation of this configuration is

Jes les s N
]

The equations of the remaining configurations 2—7 are
obtained as limiting cases of the general configuration
(1.17). This leads to equations which are more con-
venient than those found in Egs. (1.11)~(1.16). The
method is illustrated here for the [2111] configuration
and is explained in detail in Bbcher’s book. As an illu-
stration of the procedure we subject (1.1%7) to the

e, e,
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transformation x; ~ v a; x; {a; real) and take

€;=e; 1€ X=X+ ex,, (1.20)
where € is a first order quantity. Then by choosing qa,

such that

a,+a,=0, a,=1, a,=a,=a,=1, (1.21)
Egs. (1.17) become
Q=2x,%, +x2+ x5 +x2=0,
o %3 2%, x2 N x4 x% :0(1'22)
(A=—e)? X-e, Ar-—e; A-e, r-eg '

These are then the equations of cyclides of type [2111].
The coordinates x; in (1.22) have two interpretations:

(i) The e, are all real. The corresponding diagram-
matic representation is

o les e e

Tl

Here the two close parallel lines at e, signify the in-
variant factor index 2 in the [2111] configuration. The
choice of variables x; in this case is

x1:_282’ Xz:/y-Z_pZ_q2, (1.23)

X, =2ips, x,=2iqs, xg=27s.

The variables x; are in this case a complex linear com-
bination of the pentaspherical coordinates given in
(1.6). An associated set of variables is given by the
transformation p — -ip, ¢ ~ —iq, vy~ —iv.

(ii) Two of the quantities e;, say e,, e,, are mutually
compler}‘c conjugate. This corresponds to the configura-
tion [2111] and has the diagrammatic representation

e 1% Jles

H
1

1€,

The choice of variables x; is given by

¥, =282, X,=1 - PP (1.24)

x,=V2r+ip)s, x,=V2r-ip)s, x,=2igs.

An associated set of variables is given by the trans-
formation p— —ip, q— —ig, vr——ir.

As we have mentioned, the expressions for all con-
focal families of cyclides can be derived from the gen-
eral system (1.17) by methods similar to those illu-
strated here to pass to the configuration [2111]. We
now list the equations for these families of curves and
their associated diagrams. In the case of the configura-
tion [221] we give the coordinates x; in terms of the
homogeneous coordinates p, g, 7 and s.

1. [11111], [{1111], and [{1111]

— A2 2 2 2 2 __
Q=xZ+x2+xi+x5+x:=0,

2 (1.25%)
b= xi n x§ + x§ + x§ + X% —0:
A—-e A-e, x-e, X - e, ?\—es :
@] % J‘% les l‘ez l‘el
334 J. Math. Phys., Vol. 17, No. 3, March 1976

~ 1€y
Gy [firn] les e f ,
| ’ I ie,
~A ‘e 165 :;el
(iii) [11111] s | ]
| ie, le,
9. [2111] and [2111]:
Q=2x,%,+ 2+ x5+ x2=0, (1. 26)
_ bat 2x,%, x5 XZ x2
é_(X—el)Z 7&—61 )L—23+)t—e4+)\—- 5:0.
(i) [2111] %35 164 e ||
e,
(i) [2111] Jes !
| .
3. [311] and [311]
Q=2x,x, +x2+x2+x2=0, (1.27)
P x2 2x1 %y 2x, %, + X2 x2 4 x _o:
Tr=e)? A-e)? r-g A—e, A-—e,
@ [311] {94 {es {Hel ’
(i) [313] i [es
le, H
4. [221]
Q= 2y %, + 20450, T X2 =0,
x5 2% % x2 25%,% x3 (1.28)
&= 1 142 4 3 374 475 ()
X=e)? X-e (A=) X=eg A-eg
(i) (221] les e

J {es l t
1
The corresponding expressions for the coordinates x;
in this case are

xy==~28%  x,=r-pPog?

xgz\/i(’i’—p)s, x4_—__—\/-§(7’+p)s, x5:ZiqS. (129)
The associated set of coordinates being given as usual
by p ——ip, q—~—-iq, v—=ir, From Egs. (1.10)—(1.16)
it is seen that 2 is always one of the types found in sys-
tems corresponding to the configurations t11111),
[2111], or [221]. The correspondence between the X;’s
in this list with p, g, ¥, and s has now been determined

in all cases.
5. [41]

=205, + 2,00, +xE=10,

&= x% 2wyx, | 2xyx, Tl 26X, F 20,5
et (A=) (x=e)? A-e
2
+)\x5e =0 (1.30)
- €
(1) [41] le5 H{ l\el
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6. [32]
Q= 2x; X, + 2x,%5 +X5=0, (1.31)
&= xf 21X, 2x1x3+x§+ x —
T=e)? (-l r-g (X —ey)
2X0%5 _ o
o
(1) [32] He4 H }el
7. [5]
0= 20,005 + 2x,%, +x2=0, (1.32)
o XL 2 x4+ 2xy%, | 2%p%5 +2%1%,
<)l D)l (r-e)  (A-e)
+2x1x5+2x2x4+x§ =0:
7\—61 ’
(1) (5]

|||||el
11

In the expression for ¢ in this last case the final term
is identically zero as it is proportional to 2.

As was mentioned earlier, the coordinate curves for
the cases in which brackets are inserted inside the
square brackets can be obtained from this list by the
appropriate substitution, e.g., [(32)] corresponds to
curves (1.31) with ¢; = ¢,.

Any two confocal families of the same type and con-
figuration are equivalent under the action of linear trans-
formations of the x; which preserve the form £ if their
parameters e,-', A and e;, A are related by the equations

BT _a)'+8
P ye[+57 T T AT +6

a,B,7, 0 R, (1.33)
with ad - By #0. This equivalence is with respect to
transformations which are isomorphic to the orthogonal
transformations V which in our case are elements of
0(3,2).

We now turn our attention to the problem of relating
the coordinates x; in Egs. (1.25)—(1.28), (1.30)—(1.32)
to the parameters which specify an orthogonal family
of such surfaces. These latter quantities are the curvi-
linear coordinates whose coordinate curves are mutual-
ly orthogonal at the common point of intersection. The
problem of the ranges of variation of the parameters
and the number of inequivalent types of parametrization
for the real subset (1.6) are the subject of Sec. III.
Here we just give the form of the coordinates x; cor-
responding to each of the cases 1—7 outlined above when
the coordinate curves are all of this type. The corre-
sponding curvilinear coordinates are denoted by A
=H,p, V. For a coordinate system generated by cyclides
of the type [11111] the coordinate curves are given by
the equations

Qa=xi+ad+xl+xt+xi=0,

(1.34)
4
A—e

2
X2
A-ey

2
X3 X

2
+ *s =0,
A—e; A-g

$= =
x—eg
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with A=, p or ¥. The corresponding expression for
the coordinates x; is:
1. [11111]

oxi=a(e)/f(e), i=1,..

., 5, (1.35)

where
—1/0=1ex%+ext+ex% + e +egxt

and

FN == ) (A= e)(X =) (A= e) (A - &),
N =(=-M-Dp-».

The coordinates in Minkowski space can be found from
these expressions via the relations

_xs

_ ixy
s 3
Xy +ixg

_ X,
. ?
X, + 1%,

y_xz-i-ix1

(1. 386)

if the x, are given as in (1.6). We will see in Sec. III
that this need not always be the case, and we may be
required to permute the expressions on the right-hand
side of equations (1.6) so as to correspond to the cor-
rect signature as in (1.5). We now give the expressions
for the coordinates x; for the remaining six types of
families of cyclides. These can be deduced by the same
methods as used to deduce the form of the cyclides
[2111] from the general case [11111]. We again refer to
Bocher’s book for details. (Bocher has given the for-
mulas required to pass the configurations [2111] and
[311]. The authors have extended this to include all re-
maining cases. Only the results are presented here.)

2. [2111]

(h-—e)-e)lp-e)
e;— el)(e4— 81)(35 -e)’

(L-e)(V-e)p--e) ]
) H

0
56—1 [(63 - 31)(94" el)(es— 21

2o (p—e)v—e)lp—e)

axf:(

20%1 %, =

L N o o (1.37
ox? = (L=e)(v-e)(p~e,)

t T (e - e)¥e,—ees— e’
oxzz (H - es)(ll - es)(P— 25)

S ey~ eg)¥(e; - e5)(ey - e5)’

where

- 1/0=2ex,%, + 5} + ex2 + e,x} + e 5,

2 _ (“ - 61)(V - 61)(0 - 31)
M CREN | RN

_2 == ep- o]
zgx‘xz_a_el[ = eles—en ) (1.38)
1 2 [(k-e)v—e)p-e )]

O(2x1x3+x§)_2%12[ (94'— 91)(95— 61; !

2_(M-e)v—e)(p=-e,)
= (e, -e)(es—e) '
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2
o =B e =)o e5) 200, =5~ [(L - &) (v~ ) (p - e1)],
(ey = e5)(ey - €5) ' ( )
1 2 1.42
where o(2x1x3+x§):§ﬁlz[(u- e (v —-e)p—-e)],
_ 20(Xp% +xyxy) =~ 1
=1 €1 (2164 + x3) + 22,2, + €4xF + egx? . o ,
o where ¢ is given by the last equation in this case.
4. [221] These are the basic formulas for the pentaspherical
coordinates expressed in terms of the curvilinear co-
2. (- el)gzz_ e)(p—e) ’ ordinates ¢, p, and ¥ for all nondegenerate cyclides.
(e5 - e1)%(eg — €5) The expressions for the coordinates in the case of a
2 [(u—e)v—e)o—e) degenerate configuration are directly derivable from
205,20, = 5o ez e(e, - &) , (1.39)  these formulas, The explicit methods for doing this will

be discussed in Sec., III, where we evaluate all the pos-
ol (1 —e)v—e;)(p~-ey) sible inequivalent systems 1—7 and the associated de-
3T (ey-e)Hey—e) generate forms. Finally in this section we give the for-

3 [(p=e)d(v=-edlp-e,) mula expressing the line element ds? in terms of the
20%3%y == 5— e 1, curvilinear coordinates K, p, v and the pentaspherical
el (e3-e)%(e5—ey) ;
coordinates x;,
—e)v-e)p-e
axgz(’(‘e _5;(7% 5_)(5 2 ), ds?m ((u—V)(u—p)d“2+(V— M@ =0) 1z
1= €5) (63— ¢ 4082 S V)
where
- -V
+(p—%)—e——)dp2) (1.43)
- 1/0=2e,%,%, + X} + 2e,x,%, + X5 + egxl.
with f(\) =15, (A= ¢;) as in (1.35). In each case 0 is the
5. [41] quantity in the above list given for each configuration.
(L —e)(v—e)p-e) The quantity s is the homogeneous coordinate that was
ox? = H=—e O . ? .
1= (e, — ;) ’ introduced in (1.3) and can be expressed in terms of the
x,; depending on the configuration in question. This for-
20%,X, :__a__[(“ -e)(v—e)(p- 61)] , mula is basic to the classification of coordinate systems
dey (e, - es5) which are inequivalent under the action of the under-
o(22,0, +53) :l_fz[(“ —e)v-eallp- 61)] ’ (1. 40) lying transformation group O(3, 2).
2def (ey - es) We summarize what has been done to this point. We

1% [(p-e)w-e)p-e) have given the equations required to pass to a subspace
(2% + 24,%5) YL (e, - e5) ’ of pentaspherical space having definite real signature
as in (1.5). The associated group of transformations

ot = (b—es)(v =~ esZ(P— ¢s) , which preserve this subspace is isomorphic to O(3, 2)
(e5—e1) the local symmetry group of (*). The corresponding
where second order curves or cyclides in these coordinates

. . can then be classified into equivalence classes under
= 1/0= 26y (x4 +xy%,) + 200X + X5+ e5X5, the action of this group of transformations. Those
curves of special interest are the families of confocal

6. [32] cyclides and the coordinate systems to which they cor-
s (B—e)(v— e)p —e) respond. An important feature here is that all families
o= (ey— e1)* ’ of confocal orthogonal cyclides can be obtained as speci-
fied limits of the most general case corresponding to
20%,%, :_8[(“ —e)(v- el)z(p - 61)] ’ the configuration [11111].
de (ey—e1)
o2 +x2) 1 3% [(n-e)v-e)lp-e) Il. THE TWO-DIMENSIONAL WAVE EQUATION AND
MXs TN To%e (es- &) ’ R-SEPARABLE COORDINATES GENERATED FROM

(bm e = €0 = €2 (1.41)  ORTHOGONAL FAMILIES OF CONFOCAL CYCLIDES
- ©4 ~ ©4 — “4

2_
o (eg—er)® ’ In this section we summarize the results that enable
9 [(n=-e)(v—e)lp-e,) (*) to have an R-separable solution. For more details
2ox x5 = 8_e4[ (ei— &) ’ we refer to Bocher’s book® and also to Morse and
Feshbach.? The central result with which we will be
where concerned is the form of the equation (*) when written
— 1/0= e (2x,x5 +x3) + 2%, %, + 2eyXy X5 + X5, in terms of the cyclidic coordinates discussed in the
previous section. Of central interest is the case of cy-
clidic coordinates corresponding to the configuration
7. [5] [11111]. The result is the following. If ¥ is a solution of
oxi=(n-e)(v-e)lo~-e), d¢: 0= 8,0 and if we write
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ZIJZ‘/?O"“S(P(LL,V,P), (2.1

where i, v, p are cyclidic coordinates of the type [11111]
and

= 1/o=ex} + epxd + egx2 + ex2 + egx?

with S as in (1. 3), then ¢ satisfies the differential

equation
o%¢ % 9%
- +(p - -
(p V)g;z (1 P)W +(v H)W (2.2)
_5\
+ (k=) =)o - u)(%(u +vep) - %Lef) =0,
i=1
where
0 ad il
a—u':z'f(“’;_a—ﬁv av =2 fV
and
a2 3
3= fp Y
Here f(A) is as usual given by
FO) = (A= e (X = ) (A = eg) (X = e} (X - g5).
Equation (2. 2) admits a separable solution
9= B, (1)E,(v) Ey(p) (2.3)

with each of the separated functions satisfying an equa-

tion of the form
dE, | 3 /5 \ ., A B
- ——A=~—|E
R )dxvfm [16 6 (,Z:le‘) M- 4] :
(2.4)

=0,

With this result all the separation equations for the co-
ordinate systems given in the previous section can be
obtained by taking appropriate limits in the above equa-
tions. Equation (2. 4) is an equation of the Lamé type
with six elementary singularities.” The quantities A
and B are separation constants.

l1l. CLASSIFICATION OF ORTHOGONAL R-SEPARABLE
COORDINATE SYSTEMS FOR THE WAVE EQUATION

In this section a systematic treatment is given of the
orthogonal R-separable coordinates of (*), which can be
constructed as limiting cases of general cyclidic co-
ordinates with configurations [11111], [11111], and
[11111]. For each coordinate system we give the ex-
pression for the corresponding pentaspherical coordi-
nates x; and the Cartesian coordinates f, x, and y. The
operators whose eigenvalues are the separation con-
stants are also given in each case and expressed in
terms of the generators of the symmetry group of (*)
which were derived in I. We also say what we can about
the solutions of the separated equations. Our procedure
is the following. For the completely cyclidic coordinates
listed in Eqs. (1.35)—(1.42) we must choose ranges for
the curvilinear coordinates in such a way that the dif-
ferential form (1. 43) when expressed as in (0. 2) must

satisfy
sgnF = sgnG = — sgnH. (3.1)

This ensures that the space is three-dimensional
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Minkowski space. The classification of all such param-
etrizations into equivalence classes under the relation
(1. 33) then gives the inequivalent coordinate systems
we need. For the general configuration [11111] the equi-
valence relation (1.33) allows us to interchange all the
e; in the way specified by these formulas. However, for
the remaining configurations such as [2111] only the
three unit indices can change under the relation (1. 33)
when classifying equivalence classes of this type. In
addition for each class of coordinate systems we choose
a standardized representative which has a simple form.
In most cases this will involve taking one of the indices
e; to be =,

The method of connecting the operators whose eigen-
values are the separation constants with the generators
of the symmetry group G=0(3, 2) is achieved by noting
that the generators I';; as defined in I are related to the
generators of the underlying O(3, 2) group which pre-
serves the pentaspherical space identity (1.1) with the
choice of coordinates (1.6). The relations are

Pia=Lyy, LUp=Ly, Log= Ly,

Pys=Lgp, Liy=-ilyy, Uyy=-ily;, (3.2)

Ugg=1Lgy, I's3=iLly, Ly=-iLg,

where
Ly=x;8;,-%,9;, i,j=1,2,...,5,
with the x; as in (1.6). By means of the relations (see I)

My =14, My =1y, My="r4, D=1y,

Po=D1 40, Ky=Ly=Ly, Pi=I;+1,,

Ky=Dyp= Ugs, Pa=1'3+ Lg5, K= 115~ Ly, (3.3)

the operators whose eigenvalues are the separation con-
stants in a given R-separable coordinate system can be
expressed as second order symmetric operators in the
generators of the O(3, 2) symmetry group of (*). In the
subsequent classification of R-separable orthogonal
solutions of (*) we will have occasion to introduce a
number of modifications of Bocher's diagramatic nota-
tion as well as some of the limiting procedures of in-
terest for the various degenerate configurations being
considered.

A further comment is in order here. In order to give
all the coordinate systems that are potentially of inter-~
est, we give in the subsequent listing, with the excep-
tion of systems of the type [11111], all the separable
systems of (*) which are inequivalent under the under-
lying £(2, 1) group. This gives a more thorough treat-
ment of these coordinate systems already considered
in an earlier article.® In the concluding remarks we
indicate which of these systems, which are not equi-
valent under E(2, 1), are equivalent under the symmetry
group O(3, 2) of (*),

We now proceed to the classification of the coordinate
systems of interest.

A. The configurations [11111], [11 111], [1" B 1] and their
degenerate forms

~

1. The configurations (11111], [7’;777] and [ﬁ777]

Here we give those configurations of the form (1111 1]
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which are inequivalent under the procedure outlined in
the introductory paragraphs of this section. For confi-
gurations of this type we can transform the quantities
e, via (1. 33) to be

e =2, e;=a, e;=b, e=1, e;=0.

In addition to Bocher’s diagrammatic notation for such
a configuration, as given in Sec. I, we put the sign of
the expression ox? at the bottom of the vertical line in
the diagram of the [11111] configuration. From the for-
mulas (1. 6) the arrangement of these signs indicates
how the choice of pentaspherical coordinates should be
made. This involves a permutation of the quantities on
the right-hand side of (1.6). In each of the inequivalent
parametrizations for the configuration [11111] a specific
choice of the x; is made to within a permutation of those
x; whose squares have the same sign. This is sufficient
for our purposes as all coordinate systems that are re-
lated by such permutations will be equivalent and re-
lated by a group transformation. The two additional op-
erators A, B whose eigenvalues are A and 5, respec-
tively, as in (2.4), have the form

_ _(w+p)  * (b+p)  2°
T(w=pp-v) ot v-pv-p) aF
+ (p+v) 2%
b-p- 1w au*
(3.4)
B vp a2 + Lo 3
“wop (- ad v -plv - 3t

+ uv 22
lo-v)p- 1) 8u?

when acting on the functions ¢{u, ¥, p) as in (2.1). The
part of the solution of (*) that gives the R-separation
(called hereafter the modulation factor following Morse
and Feshbach) is from (2.1), v2o'/%s. Corresponding to
the configuration [11111] being considered in this sub-
section we have the following inequivalent possibilities.

(a) [11111]

b |a
p | |
+

| | -
-!_vl H‘_

For such a configuration the pentaspherical coordinates
are

(L-a)v-a)lp=-a)

of=—1, og=- (a-bYa=Da ’
o (p=0)v=0)(p=-0)
ng—- B=a)(b-1)b , (3.5)
(b-D¥=-D{p-1) _ kvp
=TI De-n 0 T

The coordinates in three-dimensional Minkowski space
are given by the formulas

-x, 1 ((u—a)(V—a)(p—a)> 1/2
(a=b)(a-Da ’

"0, +ix,) R

iy 1 (ut--l)(p--l)(l—V)>”2
xi(x1+4ix5)-§< (a-1D(B=-1 ’ (3.6)
o ixg J((u-b)(p—b)(v-b))”z
V=G, +ixyg R\ (a-0(@-1b ’
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where R=1i(1 +V gvp/ab). The modulation factor is
V2ot/ts = (1 +V pvp/ab)t /2,

The operators A, B defining the eigenvalues of the sep-
aration constants (we refer to these as basis operators
subsequently) are

A=bM2y = M2, — aM, - H(a + 1)(P, + K,)?
+50+ )P+ KD +5(a+b)(Py +K)?,

4B=b(P +K)? - a(Py+K,)? + ab(P, + K,)? (3.7
and the separation equations have the form
d dE; 4 .,
Vhixinghmd—)\'_(mx +AX+B)E, =0 (3.8)

with () =x(A=1)(A=b)(A=a) and A=,V or p for i

=1, 2, or 3 respectively just as in (2.3). Equation
(3.10) is a standard form of an equation with five ele-
mentary singularities (see, for instance, Ince, Ref. 7,
p. 500). It should be noted here that the form of the pen-
taspherical coordinates (1.6) when subjected to the
transformation p = #p, q¢ - —ig, v ——1iv gives no new
information, i.e., exactly the same coordinate system
results.

(b) [11111]
o1 o o |=
| | v ] o]
+ - + + -
The pentaspherical coordinates are as in (3. 6) with the
three-dimensional Minkowski space coordinates given
by

t=wx,y/(xy Fixg), x=ix,/(x, +ixg),

v =ixy/(xy +ix5). (3.9
The modulation factor v2o!/S is the same as in (a).
The basis operators are
A=aM, +0ME, - ME,+5(a+1)(Fy +Kp)°
+§'(b+1)(PU—-K0)2+;;-(a +b)(P1—K1)2, (3.10)

—4B=b(F, +K)? + a(Py— Kp)% + ab(Py+ K ()2,
and the separation equations have the form (3.10).

(¢) [11111)

g Jo b p o |e
P T

g o b o Ja |-
S LT I

The pentaspherical coordinates are as in (3. 6) with the
three space coordinates given by

t=—xy/(xy Hixg), x=ixg/(xy +ixg),

(3.11)
vy =ix,/(x, Tixg).
The modulation factor is the same as in (a). The basis
operators are
A= aM? —~ bMZy = M3y — 5 (a+ V(P + K)?
FHO 1) (P, +K,y)% = S a+ D) Py + KR, (3.12)
4B =b(P, + K, — a(P,+K)? — ab(Py + Ky)?,
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and the separation equations have the form (3. 10).

(@ [11111)

_ N
(1) ” —
P H
+ ’+ b l
(i) 0 1 ]
vou | i |
+ + -

The pentaspherical coordinates are as in (3. 6) with a
=a+if, b=a-iB, a,B< R. The three space coordi-
nates are given by

(x5 +x5)

t:\_/Z(xl +ixg)’

o P = Xy) o ix
IV ixg) YT G i)

{3.13)
The basis operators are
24 = (M2 = M2,) + B(My M,y + My,M,,)
+ {a+ D(P, +Kp)? = (Py+ K]+ a(P, +K,)?
- B+ DP,+K)(Py+ K + (P + K )P, +Kp)],
(3.19)
4B =o[(Py+K))? = (P, + K;)*] + (a® + 89) (P, +K,)?
+ 8Py + K)(Py+ Ky) + Py + K (P +K ).

The modulation factor is

\/EO'I /4s :{1 + [uvp/(az + BZ)]I /2}1 /2,

and the separation equations have the form (3. 10).
~ A

(e) [11111]

c a

[0

b

1 i
[} t
] -+
14 : el 1
! .

d b

The pentaspherical coordinates are given by
. (B-av-ap-a

8T T (a=bMa-0)a-ad)’

 (u=b)w=b)(p-b)
S el o s Y e

_ (k=)v=-0op=-0) _
oy =~ (c—a)c=D)c~-ad), oxf=

(2 —
oxy=-1, ox

(3.15)

(b =d)v-d)(p-d)
T d-o)d-a)d-b)’

where a=o +iB, b=a~iB, c=y+ib, d=y-1id with
a, B, 7, 6c R. The three space coordinates are given by

t= = (xy +2x5)/[(wg + xg) +iV2x, ),
x = (g = xp) /iy +2) = V21,
v = (g = xg) /iy, +xg) = V2x,],

(3.186)

and the modulation factor is
V20l /4s = [(= xp = x5) V2 = ix, 12,

The basis operators are

A=2B[(Py = K)My +My(Py= K)] +B[(Py = K)(P, - K;)
Py = Kp)(Py— Ko) |~ 4v(My Moy + My My,)
- 29 My, (P, — K,) + (Py = Ko)M,,)
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+2(r-« [%(Pl - K1)2 - M%Z]a
B=2[(a+ 060+ (8 +0)2][M%, +5(Py— Ky)?

M+ 1Py K2 +3My(Fy— K,) + 3(P,— K)My ]
- 236[(P0 - Ko)Mm + MIZ(P0 - KO)]
+aav[(Py - K))P - aMB,] +[1/(a + 1]

{2(a+ (67 - aB) + (B~ 0)(a®+ 72 - B2~ 5%}

*{[(Myp +3(Py - K3 (K, - Py) = My ]

+ (5K, = Py) = My [My, +5(Po - K ]

+{2(a + 90y + ap) - (B+5)(aP+ ¥~ B 63}
{[3(Ky= Py) = My, J[3(P, - Kp) + M)+ [5(Pp— K,) + My)
X[3(K o= Po) = My, ]} + 20(¥* - 89[5(Py — Ky)? = ME,] .

(3.17)

2. The configurations [(11)111], [11(11)1]

Here we must digress briefly to explain how the pen-
taspherical coordinates for the configuration [(11)111]
can be obtained from the formulas (1. 35) for the general
configuration. To find the pentaspherical coordinates
for the configuration [(11)111] for which say e; =e,, we
proceed as follows, putting

ey=e,+€, r=e,+eN,

where for definiteness we take A=p. The resulting ex-
pression for the pentaspherical coordinates is

2 (1~ 31)(1/- )

T ey Tenes— enles —ep P
2_ (I—L— 61)(1/— 61) ’
P g eles - e)les—e)
ox? (1~ e v —ey) (3.18)

3 (€1~ e3)(ey - eg)(es — &)’

(b=~ 64)(V - eq)
(e1 - eg){e;— e)(e5 - ey)’

(4= el (v—e5)
(e - e5)(e5~ es)(ey - e5)

2_
oxi=

The coordinate curves corresponding to the new cur-
s1s . !
vilinear coordinate p° are

%3 /p"+x3p = ) =0. (3.19)

This defines a family of real curves for 0<p’ <1 if
sgn(x§/x3) = - 1. Otherwise for a real curve we must
have sgn(xf/x%)=1. The diagrammatic notation for the
family of degenerate cyclides specified by the curvilin-
ear coordinates U and ¥ is

/ &

!

les 194 |e3

! f
The method of obtaining other degenerate forms cor-
responding to a configuration [(11)111] is to generalize
the procedure outlined here to the case of two adjacent

parameters ¢;, ¢;,, becoming equal. The diagram re-
presenting the curve (3.19) is

N
o | »
where p' may be in one of the regions indicated accord-

ing as the relative sign of x? and x% is + 1, as we have
discussed above. The separation equations for the func-
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tion zl)’(u, v, p’) are given by (2. 4) with ep=e,and A= [, v,
For p we obtain

(e, — ey}ey — e) (e, — eV 1p' o = 1)1 d—cf)—,\/!p'(p T .W%%,

=[L e3(e, + 3¢, + e, + 3e;) +LAe, +1BE,.

For all the classes of inequivalent coordinate systems

of the type [(11)111] the quantities e, will be standardized
tobe 0,1, 2, and =, This greatly simplifies all the cal-
culations. For instance, in the example we have pre-
sented here this standardization can be achieved by
taking

e =%, ey=a, e¢=1, e=0,

The resulting standardized form then gives the following
expressions for the pentaspherical coordinates:

- V-
Uxfzp’_l, o-xg:_pl’ o-xgz(i_i)(—a)

ala-1)
s (B=DE-1 _, w 3.20)
S o R
The separqtion equations are
d dE;
vpixiﬁ\/p()\)ﬁ_(Ax+B)Ei:oo (3.21)

A=u, v and i=1, 2 respectively, and

T d 7 @ 1 —
Vip(p —1)1%—7\[|p (o —ﬂldp,—(ﬁA)Ea—o.

Here p(A) =A(x = 1)(A - a). Equation (3.21) is a form of
Lamé’s equation (see, for instance, Ince, Ref. 7,

p. 502). The basis operators A, B whose eigenvalues

are the separation constants A and B respectively are
in this case

- d d
A=—i=Y 10" -1 gm0 0" - Vg7

1 d 9 d 2
(V A -87;‘/?(#55;— MVP(V)ﬁ‘/P(V)g;)-

(v-un)

(3.22)

B=

acting on ¢,

We now proceed to the evaluation of the inequivalent
types of coordinate systems of type [(11)111] and
[11(11].

(a) [(11)111]

0 1 la NS ,
N 3
+ + - —-u -

0 t i

w !

The pentaspherical coordinates are obtained from (3. 19)
subjected to the transformation

p'=u', vev, un-p.
The three space Minkowski coordinates are given by

== xg/lix, +x,) = (1/RWvp/a,

x =1x,/(ixy +x,) = (1/R) cos¢,

v=1xy/(ixy +x,) = (1/R) sing,

(3.23)
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where

o s (e

and we have put ¥’ =sin’¢. The modulation factor is

V2ollig=Rl/2 (3.24)
and the basis operators are
4B= (P, +K)? = a(P)~K)?, A=-1_M, (3.25)
(c)T[(ll)lll]
0 (i1) [1 la @) ®
p,v |p,U ’
T -
0 1 %0
!
I

The pentaspherical coordinates are as in (a), The three
space coordinates are given by

b=y /iy +x5), x=ix /(ix, +x3),
(3.26)
v =1ix,/(ix, + x5)

The modulation factor is

Bt/ = [<%)1/2+ (W'(‘lz)f"l; 1))1/2]1/2 3.27)

and the basis operators are,

4B=- (P -K)*+4aD?, A=_%- M, (3.28)
(@ [T1(11)1]
0 a o ,
VAN
M/
0 1 /=
u ZON
The pentaspherical coordinates are given by
2oy’ sy =P d-a)
OXy=H ‘1, sz*"“a st— a(a-b) H
2 (p=0)(v-b) 2 PV (3.29)
=T 0 5w
The three space coordinates are given by
t=V2xs/R, x=iV2x /R, y=iV2x,/R, (3.30)

where R=1i(x; - x,) - (¥; +x,). The modulation factor is

\/501/452\/2_'{21{8 [(i(p_;(;)_(—p.b_';i)>1/2]}l/z (3.31)

and the basis operators are
B=a(P K, +KP,) +28(P} - KD,
A=_% - M, (3.32)

Hereasusual a=a+i8, b=a-iB, a,BcR. The sep-
aration equations have the form (3.20) and (3.21) with
p(N) =12 -a)(x-b) and a is replaced in (3.21) by ab.

3. The configuration [(171)(11)1]

There is only one such coordinate system of interest
here. The diagrams of this system are
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0 N1 -,
[V ZN
+ +p + —u'-

0 1

K—
0 I o
o ;<

p

The pentaspherical coordinates are given by

of=p'-1, od=-u', of=1-v(1-p),
(3.33)
2

oxi=(1-v)p’, oxi=v,
The three space coordinates are given by
t=ix,/(ixy +x5), x=2x,/(ix; +x;), (3.34)
y =x3/(ixy +x5),
and the modulation factor is
VZollts= (V1= I +Vv)H/2,

If we write 1’ =cos®¢p, v =cos®, p'=cos?6, then

t=cos¢/(sing + cosy),

(3.35)

x = siny cosf/(sin¢ + cosy), (3. 36)
y = siny sine/(sintb + cosy).

The separation equations for this system of coordinates
are given by

d dE, B
”’(”)EE plu E-(AMB)EI—O,
where Vp(p) = u(p - 1).

Equation (3.37) is a form of the Legendres equation
with spherical harmonic solution,

(3.37)

d°E, @E,

—gt T BE:= 0, W+AE3:0. (3.38)
The basis defining operators are
4A=(P,-K)? B=M, (3.39)

This completes the classification of inequivalent coordi-
nate systems of type [11111] and its degenerate forms.
These are the only coordinate systems which will prove
to be strictly R separable in the classification presented
in this article.

B. THE CONFIGURATIONS [2111], [21’31 1] and their
degenerate forms

1. The configurations [2111] and [2111]

Here we give the configurations of the form [2111]
and [2111], which are inequivalent under the equivalence
relation discussed in the begining of this section. By
applying a transformation of the type (1. 33) to the indices
e; for the configuration [2111] it is always possible to
choose these numbers in the standard form

e =% e,=a, e=1 e=0 (3. 40)

with e; the number associated with the invariant factor
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index 2. The two operators whose eigenvalues are the
separation constants are given as in (3. 5) with f(»)
=xA=-1(r-a).

The separation equations with the choice of ¢; given
above are

x/fzx)%\/fhji—l;i"— (AX+B)E, =0

with f(A) =A(A-=1)(XA~a) and A=y, v, or p for i=1, 2,

or 3 respectively. This is Lamé’s equation with four
elementary singularities. For the configuration [2{11]
the separation equations are as in (3. 41) with f(})
=MA=a)(x-b), wherea=a+ifandb=a-i8, a,BcR.
We now give the inequivalent coordinate systems.

(3.41)

For the choice of ¢; given in (3. 40) there is no modu-
lation factor in the R-separated solutions. The solutions
of (*) of the type [2111] are therefore separable.

(a) [2111]

o0

e ||
A

The pentaspherical coordinates for this configuration
are given by

oxd=—1, 20xx,=p+v+p+a+l,
2 (=a)v-a)(p-a)
e , (3.42)
(L-DE-1(p-1) Hvp
ox{= El—a)(p ! oxézT ’

The three space variables are given by

B=_xi/xt=(u-a)(v-a)p-a)ala-1),

P=xf/xf=(p-1D-Dp-1)/(a=1), (3.43)
yi=x2/xt=— uvp/a,
and the basis operators are
A=P%_ (a+1)Pi- aP?+ M2y - M2 — M2,
(3.44)

B=aP}+aM}, - M3,.

For the remaining inequivalent systems of type [2111]
we give the corresponding diagrams and the transforma-
tion which relates the three space coordinates given in
(3.43) to each system. The expressions for the opera-
tors A, B can be obtained from (3. 44) via this substi-
tution. In each case the pentaspherical coordinates are
given by (3. 42).

(v) (2111]
|0 |1 |a e
v | [ o ] ko
- + + -
(@)~(), t-x, x~iy, v~t.
() [2111] | ‘
. 0 1 ‘a ||°°
6] !
[ Y v ]
+ - - +
(i1) |0 |1 |a =
| IEX [
+ - - +
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(@)~ (c), t—ix, x—y, y—it.

(d) [2111]
W __[o |1 la |
| [ vp| &
+ - -
(iii) lo | 1 |a © ,
l [ v,0, 1l
+ - + -
(a)“(d): t—~x, x=1t, y—iy.
e) [2111]
[0 |1 | @ 1 ,
v I on ] 1
- + - -
(@) ~(e), t—ix, x~it, y—-y.

In all the above systems the choice of pentaspherical
coordinates is made in two ways. If the net signature of
the terms ox? from (1.37) for i=1, 2, 3, 4, 5 is plus, then
the form of the x;’s is as in (1. 23). If the net signature
is minus, then the required form of the x; is obtained
from (1. 23) via the transformation

p-’—ipy q-'_iqv Y——ir.

(@ [2111]

@ |0 N |l :
| vi ok
+ b -
(ii lo e oo
v, 0| i P
+ b -

The pentaspherical coordinates are given by

oxf=o1, 200x,=H+v+pta+d
2 (W=a)v-a)p-a)
3= ala <= b) ’
2 (M=D)¥~blp=b) P
oxé= ) , OXg=T, (3. 45)

where a=a +i8, b=a—-i8, aB < R. The three space
coordinates are given by

(3. 46)

this follows from the use of formula (1. 24) relating the
x;’s to p,q, 7, and s. [More exactly the coordinates ob-
tained from (1. 24) via the transformation p — ~ ip,

q —-1q, ¥——1ir.] The basis operators are

A= a(P%- PE~P% +28P P, + M, _

fHix=iV2x3/%y, ¥=1ix5/%;

M%)l - M%z,
(3,47

I;:._ (a2+BZ)P§+ oz(Mfz— — B(My oMy + MpM,,).

The term a(P} - P} - P) is included in the above expres-
sion for A so as to correspond to the correct operator
derived from equations (3. 5).

(e) [2111]

o ia =
v o Tl
b
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O ~(g), t=x, x~t, y—iy.

2. Configurations having a radjal coordinate in three
space derivable from configurations of the form
[2111] and [2111]

Such coordinates can be derived in a straightforward
manner, which we illustrate in detail for the first sys-
tem of this section.

(a) (1) | H
a
v [ oo 1 1 ﬁl
- - +

For this diagram write y =e, + [I in formulas (1. 37) and
then take e; ~=. The resulting pentaspherical coordi-
nates have the form

= 2 _(v—alp-a)

2

oxy =i, 20xx,=1, oxj= ,
ala=1) (3.48)
(v-1p-1) vp
e
and the three space coordinates are given by

S (ZY VRN

Xy ala=1) (3. 49)

%__ (V—l)(p-—l))l/z _i_xé__ —-vp 1/2
X kv( (a-1) ’ y—xl*r a ) ’

where ¥ =1/, The basis operators are given by

- 4 d
A:m (\/Piv)E;vP(v) vPipi v P(p) d)
=5 -D? (3.50)
and
- d d
(p <DVPZV P(v) —VVP(P)d—pVP(p;;I—é>
=My - aMy,,

where P(A) =A(A - 1)(x - @). The separation equations
have the form

d dE;
L+ (AN+ B
P )d7\ P(r) =+ Py (AXx )E; =0, (3.51)
r=v,pand =1, 2, respectively, and A=j(j +1),
d°E, E,
’}’27+27 —](]+1 =0, (352)

Equation (3.51) is a form of the Lamé equation and the
solutions of (3.52) are » and !,
(i) lo 1 | a ||

N B Y
+ +

=l

+
(1)~ (i1), t—-it, x =ix, v ~iy.

(d) (1) | o j1 | a
v [ »l I
+

- + +

(@) (-0 @),
E:M%1 +“M%z-

=

t_'xs X =iy, v~1,
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(b) (1) — (b} (i1),

t—it, x =ix, y—iy,

(c) (0 : |0

[
p || E
Here as usuwal a=«a +i3, b=a~iB, &, < R. The pen-
taspherical coordinates are given by

oxi=p, 2o4,x,=1, (3.53)
2_(v-a)(p-a) 2_(-0)(p-0) 2_Vp
K= ala-b) ’ Xy = bb-a) ’ Xs=ab’
and the three space coordinates are given by
v-ap-a _ixs__Vp
t+ix)= =v2¥ et y_x1 _yab
(8.54)

with #®=1/p. The basis operators are as in (3. 50) with

P(0)=Mx=a)(x~b). In particular
B= (Mg, ~ = B(M My, + MypMy,), (3.55)

and the separation equations are as in (3.51), (3.52)
with appropriate changes in P(}) as above.
W p -
ib [ vl

78
(c) (1) ~(c)

The three space parametrizations corresponding to
(a), (b), and (c) in this subsection are recognized as
the three possible Lamé bases for the group O(2, 1),
These bases have been discussed by the authors® and
Macfadyen and Winternitz.!® The results presented in
this subsection give the parametrization of these bases
inside and outside the cone t* - x>~ y?=0,

(i), t—~it, x—~ix, y—~iy.

3. Degenerate systems of the type [21(11)]

The coordinate systems of this type are chosen in such
a way that the parameters ¢; are e; =, with the re-
maining free parameters 1 and 0

(@) [21(11)]

- +p + -
[0 |1 o
]
The pentaspherical coordinates are given by
O'Xlz:— 1$ nglxzz— [.L—L/+1, (3 56)
of=—(u- 1 -11-p),
== (-1 -1p', oxi=uv.
The three space coordinates are given by
t:ixs/xis x:xa/xl, y:x4/x1° (357)
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With 4 =cosh?4, v=- sinh®B, p’=sin%¢, the three space
coordinates assume the form

t=coshA sinhB, x=sinh4 coshb coso,

(3.58)
v = sinhA coshB sin¢.
The separation equations have the form
1 d m2
coshA dA °°% hA (c SheA K) Ey =0, (3.59)
1 4 dE,
+ =
sinhB dB dB (smhz K) 2=0, (3. 60)
and
a2 E3 2
+ =
o2 T E=0, (3.61)

where (*) has the solution E,(A)E,(B)E;(¢). The basis
operators A and B whose eigenvalues are — m? - K and
~ m? respectively are

A=My + M, +p} +p}
:P%-é(POKO_‘—KOPO-‘-l)’
B=2M2,.

(3.62)

The separation equations (3.59), and (3. 60) can be
identified with Legendré’s equation. The linearly in-
dependent solutions of (3.60) are PJ'(coshB), Q[(coshB),
where K=~ j(j +1). The solutions of (3.59) can be ob-
tained from those of (3. 60) by putting B—~A +in/2,

() [21(11)]

(i) o (i) \ 1 @ =,
e PEN S “
+ -V -
|0 [

There are three cases to consider here as indicated
in the above diagram. We put

(i) L =cosh®A, p=cosh®B,

(ii) u=cos’a, p=cos?B,

(iii) p=- sinh®4, p=- sinh?s,
with v'=cos?¢ in all cases. The resulting three space
variables are in these cases:

(i) t=coshAcoshB, x=sinhd sinhB cos¢,

¥y = sinhA sinhB sing,

(ii) ¢=cosacosB, ¥=sinasingcose,

i a s (3.63)
¥ =sina sing sing,
sinh4 ginhB,

vy = coshA coshs sing.

(iii) ¢ = X = coshA coshB coso,

The basis defining operators are

AIM(Z)x'*'M%z-Pf-Pg
== P{-3(PKy+KPy+ 1),
B=12,.

(3.64)
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i

by putting K =cosh?4, v=_cos?a, p’=- sinh?B, this
system gives the three space coordinates
= sina sinhA sinhB, x =cosa coshd,

(3.65)
y = sin sinhA coshB,

(ii) N\ 0
AN P kol

—F—K
|
With p=cosh?4, p=cos®a, and v’ = - sinh?B the three
space coordinates are

t=sina coshA sinhB, x =cosa sinhA,

(3.66)
y = sina coshA coshB.

The basis defining operators for these coordinate
systems are

A=Mj - M}, + P§— P, B=Ms,.
() [21(11)]

(3.67)

10 N/ 1 I=_

N2 N

o 1 N\
ol IEZAN

With 1 =cosh?4, v =- sinh?B and p’ = - sinh®C the three
space coordinates become

= sinhA coshb coshC, x=coshA sinhB,

(3.68)
v = sinhA coshB sinhC.
The basis defining operators of this system are
A=M; - M}, +Pi-P% B=M,. (3.69)

(e) [21(11)]

(iii) |[0 (1) N\ 1 (1) Hw ,

P,k oy v P, 1

-

There are three possible cases to consider here:

(i) w=cosh?4, p=cosh?B,

(ii) u=-cos?a, p=cos?8,

(iii) 4= - sinh?4, p=- sinh?B,
where in all cases ¥’ =— sinh?C. The resulting coordi-
nate systems in three space are

(i) t = sinhA sinhB coshC, x =coshA coshb,
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¥ = sinhA sinhB sinhC,

(ii) #=cosa cosB coshC, x=sina sinB,

vy =cosa cosB sinhC, (3.70)
(iii) = coshA coshB coshC, x=sinhA sinhB,
vy = coshA coshB sinhC
and the basis operators are
A=Méy - M3, P2+P: B=M, (3.71)

4. Coordinate systems containing a radial coordinate in
three space and derivable from the configuration

[21(11)]

These systems are derivable in exactly the same
manner as those of subsection 2.

WO N0 p e

The pentaspherical coordinates are given by

Oxf: ‘_J" 20’961)62: - 17 O'X%Z (1 - V),

3.72
oi=v(1-p), oxf=vp’, (8.72)
With v = - sinh?4 and p’ = sin%e, §=1/7° these formulas
give the three space coordinates

t=x,/%, =7 coshd, x=ix,/x, =7 sinhA cosa,

Yy = — ix5/x; =7 sinh4 sina. (3.73)
These are just the familiar polar coordinates inside the
cone t* - x2—92=0. The basis operators are

A=L_D? B=M:, (3.74)

The separation equations are

@E, 1 G+ g _o
Pl T B

___.1 d . dEz m? .
A = (=g HiG+ D) Ep= )
STnbA A Sinh4 7 (SmhA 36 1)) ,=0, (3.75)

d*E.
7(1—)2 + szS = 0,

where Ey(v)E,(A)E,(¢) is a solution of (*). The second

of these equations is just a form of the Legendre equa-
tion with solutions P}(cosh4), @]'(coshA). The other two
equations have the elementary solutions Ey =7, r,
and E; = exp(xime¢)

(ii) 0 1 fe
AN I
-p - + +
K
Y

The three space coordinates for this second configura-
tion are obtained from (3.73) via the transformation
coshA == sinhA,
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The system given by diagram (i) yields the three space
coordinates

t=v7sinhA coshB, x=vsinhA sinhB, y=7coshA,

(3.176)
where
v=- sinh®4, p’'=sinh®B, and p=1/7%
The defining operators are
A=i_p? B=M,. (3.77)

The coordinates (3. 76) are the familiar hyperbolic co-
ordinates inside the cone t® - x%~ y?=0. For diagram
(ii) the only change is in the three space variables sub-
jected to the transformation sinh4 ==coshA.

5. Coordinate systems corresponding to the configuration
[((21) 11]

To obtain the expression for the pentaspherical co-
ordinates corresponding to [(21)11] requires the
substitution

e,=e +€, A=g +e+ein (3.78)

into (1.37). Here ¢ is a first order quantity and for de-
finiteness we may take A= u. The resulting expression
for the pentaspherical coordinates is
(p-e)(v-e)
o-xa e ——— 2
! (es~e)(es—er) '’
i[ (o-e)(v~e) -
(

3ey | (eq - e5)(es~ &)

o-—e)v-e) .
(es - e)(es - e)
(3.79)
2 (p—eg)(v -e,)
ey - ey)*(e5~ ey)

20x1x2:— ’

{o-e)v- &)
(ey—er)(es—¢) "’

2 (p-edlv—-e)
5Ty~ eg)(es— e9)

oxZ=

The resulting coordinate curve for the coordinate p'is
xE+x2/u'=0, (3. 80)
The diagram corresponding to such a curve is
0 N/
3l LN

while the diagram representing the coordinate curves
of the curvilinear coordinates p and V is

les les I e.

| i

’

I
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The inequivalent classes of coordinates of this type are
now given. In each case the ¢; can be standardized as
usual to be

31 = 00’ (3. 81)
(a) [(21)11]

0 1|
T,
0 N

EZN
From formulas (3.79) the pentaspherical coordinates
for the coordinate system are given by

ey=1, e;=0,

i/ © ,

ox¥=1, 200x,=1-v-p-p', (3.82)
ox2=p', oxi=(1-p)(v-1), oxi=vp, '

With v = - sinh®4 and p =sin®«a this gives the three space
coordinates

t=ixy/x =K, x=x,/%=coshAcosa,

¥ =x5/%; = sinh4 sina. 3. 83)

.Here K =V'i’. The separation equations have the form

2
%’}1 +(= T sinh?A + V)E, =0, (3. 84)
d*E 2gin?
—{;;%(— sin“a ~ V)E, =0, (3.85)
2
%éh 2E,=0, (3. 86)

and the basis operators /i, B whose eigenvalues are the

separation constants V, - 7° respectively are
A=M,- P}, B=PL (3.87)

Equations (3. 84) and (3. 85) are easily seen to be forms
of Mathieu’s equation, Here as usual
=E | (A)E,(@)E,4(K) is a solution of (*).

(b) [(21)11]
i) o Gy |1 (i)
v,p l v,p v,p

K N

There are three cases to consider here, If we choose
(i) p=cosh?4, v=cosh’B,
v=cos?B,

V= - sinh’B,

(ii) p=cos’a,
(iii) p = sinh%4,

with u’=K? in all cases, then the resulting three space
coordinates are

(i) ?=sinhAsinhB, x=K, y=coshAcoshB,
(i) t=sina sing, x=K, y=cosacoss, (3. 88)
(iii) £ =coshA coshB, x=K, y =sinhA sinhB,
The basis operators in this case are
A=M% P, B=P. (3. 89)
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(e) [(@1)11]

lo |1 L .
U |

o N
IR
If we put p=cosh’4, v=-sinh®B, and p’=K?, then the
three space coordinates are

t =sinhA coshB, x=K, y=coshdsinhB (3.90)
with basis operators
A=)2,+ P}, B=Pl. (3.91)
6. Coordinate systems corresponding to the
configuration [(21)(11)] and [(21) 11]
@) [ena1)]
0 | A
v pr /J-l
|0 |t =,
T
lo NS
| /N
The pentaspherical coordinates are given by
ox3==1, 20xx,=p" -,
(3.92)
oxi=—pu’, oxi=v(l-p'), oxi=wvp’.

Set
y==7? p’=sin2¢, and p’=- K°,

The corresponding three space coordinates are given
by

t=xy/x1=K, x=ixy/xy=7cos¢,

y =ixg/x; =7 sing. {3.93)
The separation equations are
1d é_EJ) (m2 z) _
rdv(y e }7+S E;=0, (3.94)
dE, o, dEy op. _
d—d)%wn E,=0, —EE%SE;;—O. (3.95)

The corresponding basis defining operators /i, B with
eigenvalues — m®, — §? respectively are

A=M, B=P. (3.96)
Equation (3. 94) is a form of Bessel’ s equation.

(b) [(21)(11)]

N,

@) o @ NI .
)l N

I m
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2

1

For the case (i) with u’=K?, p’=—sinh®4, and v=—7»
the three space coordinates are
t=rsinhA, x=K, y=7coshA, (3.97)

For (ii) the three space coordinates are as in (3. 97) with
coshA =sinhA, The basis operators for this system are

A=My, B=P (3. 98)
() [eD11]

ia |/

Eb v,p 4“

lo N

|
This is the only coordinate system of this type. The
pentaspherical coordinates are given by

oxi=—1, 20x,=b+a-v-p-p’,

Oxézu', (3.99)

This corresponds to a choice of three space coordinates:
(x+it) =V xy %y, v=ixy/x;=K, (3.100)

where K=V p’, The separation equations have the form
(3. 51) with PQ)) =(x~a)(x~ b) and

LE; pp,-o (3.101)
dK + 3 =Y. .
The basis operators /i, B are

A=- MY+ a(Pi- P)- PPy, B=P (3.102)

7. Coordinate systems on the cone t* - x* - y%=Q that can be
obtained from the configuration [2111] and its
degenerate forms

The method for obtaining coordinate systems on the
cone is similar to that for obtaining the coordinate sys-
tems with a radial coordinate in three space. The meth-
od is illustrated for the first coordinate system of this
subsection.

@ o J1 de |l -
l | v es

+ - + +

The pentaspherical coordinates for such a diagram are
obtained from (1.37) by putting u=e,+g, p=e;+p and
making the substitutions x; —~e;x; (£=3,4,5) and x
—elx,, x; = x,. Then the pentaspherical coordinates
assume the form

oxf=1p, 20%%,=0, axi=-a)/ala-1),

(3.103)
axi=(1-v)/{a=1), oxi=v/a.

The corresponding choice of three space variables is
t=ryv-1)/{a=-1), x=rvv/a,
v=ry({v=a)/ala-1),

where ¥2=1/1ip. The separation equations here are
given by (3. 41) for the variable v and

(3.104)
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®E, dE,

72_?_+»r—._](7+1)E =0, (3.105)

The basis defining operators A, B corresponding to the
separation constants j(j +1) and B are

A=L1_D? B=M?%-aMs, (3.108)
() lo 1 |a | =
r, | l 123
+ + - +

The properties of this system are obtained from those
of (a) via

(a) ~(b), t—ix, x~y, y—~it,
(C) ﬁ;a ‘[0 J .

ib

v TEp
The pentaspherical coordinates are

)/a(a - b},
(3.107)

oxf=pp, 20%x,=0, oxi=(v-a

o= (v - b)/b(b - a),

The corresponding three space coordinates are

0'%?2 v/ab.
(x+it) =iV2x, /%y, v=i%5/%. (3.108)

The separation equations are given by (3.41) with P(3)
=x(A-a)(x=b) and (3.105), where as usual ¥*=1/up.
The basis defining operators A, B are

B = Ol(Mfa - Mﬁz) - B(MOZMIZ +M12Moz)-
(3.109)

~

A:%—Dz,

(d) 0 [1 =,
5

o0

The pentaspherical coordinates are

oxf=[p, Zowyx,=0, oxi=-1,

oxi=(1-v") oxi=v", (3.110)
The three space coordinates on the cone are
t=v, x=7cos¢, y=7sing,

where 1/Gp =7 v’ =cos?¢. The separation equations
are (3.105) and the third equation of (3.75). The basic
defining operators are clearly

A=i-D? (3.111)

The three space coordinates are
t=7coshA, x=vsinhd4, y=z7

with the basis defining operators
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A=i_D% B=M,. (3.112)
C. The configurations [311], [371], and their
degenerate forms

Here we give the configurations of the form [311] and
[31 1] which are inequivalent with respect to the by now
familiar equivalence relation. It is possible to standard-
ize the parameters ¢; such that

=2, =1, ¢=0, (3.113)

where, of course, ¢; is the parameter associated with
the invariant factor index 3. The two operators whose
eigenvalues are the separation constants are given as
in (3.5) with fAX) =x(A-1). The separation equations
with the above choice of the ¢, are

77 o (L) - (ar+ BIE, =0

with f(A) as above and E;(u)E,(v)E4(p) as the separable
solution of (*). For the configuration [311] the separa-
tion equations are as in (3.114) with AN = - a)(X - b),
where as usual a=b*=q +i3, o,8cR. We now list the
inequivalent systems of this type.

(3.114)

(a) [311]
@ |0 |1 Il =
l p’ V, /J' i m
+ + -
(i1) |0 |1 W=,
o —
+ + -
(iii) 10 |1 )} =
+ + -

The pentaspherical coordinates are given by

oxf=-1, 20x%,=u+V+p,
of2xyx, +xd) =v+u+p—(ur+pup+vp)-1,  (3.115)
oi=—(u-1D(F-1(p-1), oxi=pvp,
The three space coordinates are given by
2U=2%,/% == [L—V=p, (3.116)

The basis operators are

y=x5/%y=v uvp.

X =1%x,/%,

A:P0M20+Mzopo-PMoz' 02P1+P§+Pf,
:—Mfz +PE+P,My, +My,P,. (3.117)
(b) [311]
W __|o | 1 ||
l ol
+ - -
(i) _ |0 | 1 [
L o
+ —_ .
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The properties of this system can be deduced from
those of (a) via the transformation

(a)-’(b)> t-’y) X ~ix, y~t.
() [311]

|
vl I ol

(a)~(b), t~it, x —ix, y—~iy,

(d) [3ﬁ] a

| Il
| oo p
b
The pentaspherical coordinates are given by
oxf=-1, 20%%,=p+v+p,
o(2x,%, +x3) = pp+rvp+vi - (a+ b} +v+p)
+a? + ab + b2,
o =(u-a)p-a)(v=a)/(b-a),
oxt= (1 - b){p—b)(v-Db)/(a=D),

where a=a+if, b=a-iB, a,Bc R. The three space
coordinates are given by

(3.118)

(x +it)=iV2x,/%,, y=-%/% (3.119)
with the basis operators given by
A=MypPy +P \Myy + MpPy + P Mg, + 20P5
+ a(P%- P} - 28P,P,, (3.120)

B = a(MP) + P\My, + MyP o+ P Mg,) + B(Mu,Py +P,M,
= MypPy = PoMy,) + (0 + 38PE - My
+ (a? - B%)(P% - P2) - 4aBPP;,.

1. Degenerate systems of type [3(11)]

The coordinate systems of this type are chosen such
that the free parameters ¢; and ¢; are © and 0
respectively.

() [3(11)]

The pentaspherical coordinates are given by

oxi=_1, Z2oxx,=—p-p~1, (3. 121)

o2x, %5 + 48 =~ up, oxf=pp(1-v),
oxd= v’

The three space coordinates are given by the formulas
t=2x,/%), x=ix,/%;, ¥=ixs/%,, (3.122)

Translating f by =3 and putting 1= &2, p=17%, and v’
=sin®a. We obtain the more familiar form,
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t=+3(8+17), ¥x=Encosa, y=ENsina. (3.123)

The separation equations for this system assume the
form

&#E, 1dE, mé
Saatent 3N =
T N (q V)E* o (3.124)
where A= §,mand i=1, 2 respectively, and
% +m2E, =0,

Equation (3. 124) is Bessel’s equations with linearly in-
dependent solutions J,(g»), Y,{(qg)\). The solutions of the
third equation are E,=exp(+ima). The basis operators
A, B whose eigenvalues are ¢ and — m?, respectively,
are
A=M01P1 TP\ My + MpP, +P;My,=P,D+DP,,
B :M122~
( [3(11)]

2

(3.125)

The three space coordinates in this case are
y= (xz/xl "é—) = f%(gz + 772), t:ix4/x1 =£n COShA,
(3.126)

where pu=£2%, p=7%, and v’ =- sinh®*A. The resulting
basis operators are

A=M02P0+P0M02+M12P1 + P My,

fj’:M%,. (3.127)

(c)
N/ O I
7aN —

X =%5/%y = EN sinhA.

This system corresponds to the choice of three space
coordinates
t=ixg/x; = EnsinhA, x=(r,/x)-3)=3(E*~1F)
v =x,/%, = Encoshd, (3.128)

p=£, p=—1%, and ¥ =~ sinhd. The basis operators
are

A=M,P,+P,My, + MyP,+P My, B=M2,. (3.129)

2. Degenerate systemns of type ((31)1]

The formulas for the pentaspherical coordinates cor-
responding to the degenerate configuration [(31)1] are

obtained from these of (1. 38) via the substitution
e,=e te, r=e +e+eN, (3.130)

where for definiteness we can take A=v, The resulting
expression for the pentaspherical coordinates is
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I CLN LYY ZOxlxz:é%((u-el)(p—ex)),

(es- &) (e5-e)
(3.131)

Jp-alo-e) .
(es—¢)

o(2xy x4 +x2) = za—e’ ((#—(%)(_Pe—l)%))

ax
(es- )

The coordinate curve for thecoordinate ¥’ is

x2+x3/v' =0, (3.132)

and the diagram corresponding to such a curve is

|0 * ,
v v’

while the diagram representing the coordinate curves
of the curvilinear coordinates p, p is

€5 4

| A

14

The inequivalent classes of this type are now given. In
each case ¢, and ¢; can be taken to be < and 0,
respectively.

(@) [(31)1] 0

o0

4
Al

4

i

v, p
(ii) 0 (1)

[-e]
! !
n I : :(

The pentaspherical coordinates are given by

oxi=~1, 20%X,=-V-p-1, (3.133)
o2y +x) =—u'—vp, oxf=p’, ox=vp,
The corresponding three space coordinates are
(D) t=ixg/x,=&n, x=ix,/x, =k,
y=(xy/% —3) =2 3(E +1P),
(3.134)

) =+3(E+1P),
x:x4/xl=k) y=’ix5/x1=577;
where p=¢%, v=17, and k=(Iu’1)!’2,

(i) t=23(x,/%, — 3

The separation

equations are

&PE

T (Q@-T)E =0 (3.1352)
for A=§,mand i=1, 2 respectively, and

&2E

_dTe'za*'TzEs: (3. 135h)

Equation (3. 135a) is well known to have solutions ex-
pressed as parabolic cylinder functions. The basis op-
erators 4, B whose eigenvalues are the separation con-
stants @ and — 72, respectively, are

‘&=M02P0+P0Moz, E=Pf- (3.136)
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o0

(b) 0

||
y Al
l—i’

0 AV
A

m

In this case the three space coordinates are given by

x:(xz/xl _%):%(gz_ le),

Yy =1ix;/% = £n

t=ix,/x%, =k,
(3.137)

with v=¢8, p=—17?% and k=(u")!/%. The basis operators

are

A=M,,P,+P,M,, B=PZ (3.138)

D. The configuration [221] and its degenerate forms
1. Systems of the type [221]

The inequivalent coordinate systems of type [221] are
given in the following list. In each case the three free
parameters €;, e;, and ¢; are standardized to be =, 1,
and 0, respectively.

(a) [221]
(1) 0 |1 1> .
o N L
+ + -
(ii) 0 | 1 | =
| vo |
+ + -

The pentaspherical coordinates are given by

oxZ=_1, 200X, =—p=V-p+2,
(3.139)
oxi=(u-1)E-1)(p-1),
2065 =L +V+p— uvp-2, oxZ=puvp,
A suitable choice of three space coordinates is
(t+xP=-22/x2=(u-1)(r - o= 1),
A= xR =V Hp - urp =2, (3. 140)

£V uvp,

Y =xix;/%; =

The separation equations have the form (3.51) with
PN =Ax~1)? i.e., the associated Legendre equation.
The defining operators are

AZZ(P&"'Pg'PIPO)+Mfz‘M%1-Mgz,

5 3.141
B=P} - 2M3, — MM, ~ MM, ,. ( )
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@ ]o [] 1 | =
V,pl L f
+ - -—

(ii) 0 || 1 =
Y N p’ﬂll
=+ - -—

(iii) |0 111 [|

i v, o, l 1l
+ - -

This system is related to (a) via the transformation
(a) = (b), t—ix, x—it, y =y,

(c) [221] o 1 e

v p,u” I

(@) ~(c), t—it, x—~ix, y—~iy,

@b oy |

|
s,

3

(@)y—~(d), t-x, x~t, y~—=iy.

2 Coordinate systems corresponding to the
configuration [2(21)]

Here the two free parameters ¢, and ¢; may be taken
as 0 and © (not necessarily respectively, as will be
seen).

(a) [2(21)]

0l | )
V0 }
()] o0 BN -

o] VAN
The pentaspherical coordinates are given by
oxi=-1, 20oxx,=-V-p, oxt=-vp,

(3.142)
20x0, =V +p~pn'vp, oxE=2vpu’,

350 J. Math. Phys., Vol. 17, No. 3, March 1976

A suitable choice of three space coordinates is

(t-x)2=x%/xE=vp,

(2~ x®) =2x,x, /x}=p'vp-v —p, (3.143)
y=xix;/V2x, =2V 'vp.

The separation equations for this system are of the

form (3.51) with p(A) =A% for the variables v and p.

This equation can be related to Bessel’s equation. The
separation equation in the variable u' is

ull /z_fi___ (“’1 /ziE—:;)‘FBEa:O.

ar m (3.144)
The basis operators fi, B are
A=ME - (P, +P)%, B=(My,~My)?. (8. 145)

For (ii) the results follow from (i) via the transformation
(D) = (i), t=x, x—~t, y—iy.

This does not change the operators A and B but gives
new expressions for the three space coordinates.

(b) [2(21)] % e,

Al ) Il

i

(i} 0 (1) o
u;l ? %

(o) (1) and (b) (ii) are obtained from (a) (i) and (a) (i1,
respectively, via the transformation

t=it, x=—ix, y—1iy.
2(2
(C)[ ( 1)] HO \“ o
H v,p
“/
(i) |0 (1) \/\é o
W Iy

The pentaspherical coordinates in this case are given
by

oxd=vp, 20xx,=v+p, oxi=-1,

3.146

2050, = —v-p, ox=pu’. ( )

For (i) a suitable choice of three space coordinates is

(t—x)Z:—xf/xgz vp, (3.147)

(2= =— 2xy%,/xE=v+p, ¥ :iixs/xazi(u')‘/z.

The separation equations for this system are of the
form (3.51) with p(A) =28, A=v, p. This is a form of
Bessel’s equation. For the variable u' the equation has
the form (3. 144) and the basis defining operators 4, B
are

A=M3 —(P,+P))?, B=Pi (3.148)
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The corresponding properties for (ii) are obtained from
those of (i) via the transformation

t=-x, x=t, y-—=1iy.
(@) [2(21)] o N
1 ) K
“.I
(i 10 &Y >'< ©
ul I ul

(d) (1) and (d) (ii) are obtained from (c) (i} and (c) {(ii),
respectively, via the transformation

t=it, x=~ix, y~—iy.

3. Coordinate systems having a radial coordinate in
three space and derivable from the configurations
[221] and [2(21)]

(a) (1 |0 1|1 =,
IV R
+ -
@ |0 B = .
MR P
- + +

The pentaspherical coordinates are given by

of=i, 20m%,=1, od=@-1(p-1),

(3.149)

200y, ==1=vp, oxi=vp,

For the case (i) a suitable choice of three space coordi-

nates is given by the equations
(t+x)P=x2/x¥=»3(v-1)(1-p),

=2x,/x, = 7%,

where 7 =1/1.. The separation equations have the form

(3.51) with p(M)=(X-1)2x and A=p, v and the first of

equations (3. 75) for the radial coordinate. The equations

in p and ¥ are associated Legendre function equations.
The basis def1n1ng operators 4, B are

A=i-Dp%, B= 2MFy + MypMyy + MMy,

(3.150)

Vi=x/x2=yp, xP4y2o R

(3.151)

System (ii) is related to (i} via the transformation

E~1it, x~ix, y-—=iy.
(b) (1) ']0 |!1 | =,
v, p -
+ + +
(ii) | 0 ||1 | =
o 5

The coordinate systems (b) (i) and (b) (ii)} are related
to (a) (i) and (a) (ii), respectively, via the transformation

t—ix, x—=it, y—-y.

351 J. Math. Phys., Vol. 17, No. 3, March 1976

[0 it
I o
The pentaspherical coordinates are given by
oxZ=[, 20xx,=1, oxi=p,

(3.152)

z
2oxyxy,=-v'p~1, oxi=v'p,

A suitable choice of three space coordinates for system

(1) is
X=t=%x3/%,=ve,
=731 +s%%), y=x/x%,=

where s=vv", Vp=e°, and 1/u =72, This system cor-
responds to horospherical coordinates on the unit hyper-
boloid. The separation equations are

2_j2_ 2
X2 1= = 2%, /X,

rset, (3.153)

lciizfl ‘jii (e*B+A)E, =0,

{3.154)
d*E,
s 2+ BE, =0,

the equation for E,(r) being identical with'(3.105). The
basis operators A, B are
A=5-D% B=(My-My,?>. (3.155)
System (ii) is related to (i) via the transformation
t—~it,

xX—=1ix, y-—~iy,

4. Coordinate systems on the cone t? -x? -y? =
obtainable from [221] and its degenerate forms

The method of obtaining such coordinates follows along

‘the lines outlined previously. Consider the diagram

10 -

| 1 |

The pentaspherical coordinates are given by

oxf=[p, 204x,=0, oxi=v_1,
2oxgxy==-v, oxl=v, (3.156)
A suitable choice of three space coordinates is
(t+x2:—xz/x1=7’2(1—"), Vi =xE/xk =,
(3.157)

x2+y —tz sz/xl

where 1//I5=72. The separation equations are given by
(3.51) with P(1)= (x» — 1)® for the coordinate » = v and
for the radial coordinate the equation is (3.105). The
basis operators are
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A=y -D? BZZMfz*'Mleao‘*'MzoMm (3.158)
G |0 B e
| E—

This system is related to (a) via the transformation
(@) =), t—ix, x—~it, y =y
(c)

o0

| =

Hop

K
|

The pentaspherical coordinates are given by

| ©

g !

v

2 . 11n - — —
oxd=pp, 20%%,=0, oxi=-1,

206, =-v', oxi=v', (3.159)
A suitable choice of three space coordinates is
tmx=ixy/% =7, 2-xP=-2x%,/x3=7,
(3.160)

v =2x5/%, = r(v)/2,

The separation equations have the form (3.51) with
P(N)=2%. The equation in the radial coordinate is
(3.105), and the basis defining operators A, B are

A=L_D% B=(My-M,? (3.161)
E. The configuration [41] and the degenerate form
[(41)]
1. The configuration [41]

The inequivalent coordinate systems of type [41] are
given in the following list. In each case the two free
parameters e; and e; can be chosen to be © and 0,
respectively.

(a) [41]
(1 |0 ©
V | p’ IJ'
(ii) 10 o
v, p, 4

The corresponding pentaspherical coordinates are
o=-1, 200%,=-(L+V+p+2),

o(2x,x, +x2) == (vp+ pr+pp+p+u+r+1), (3.162)

20(x, 5, + X%5) = pvp, oxi=— uvp,

A suitable choice of three space coordinates is
2(t +x) = dxy/xy = pv + up +vp — 3 (UE + 2+ p?),

2x =) =20xy/x, - D =p +v+p, (3.163)

yzz_xg/x%:_ uvp.

Here the second equation has been subjected to a transla-
tion. This is merely a convenience, The separation
equations for this coordinate system have the form

(8.51) with p(A) =x. The solutions are expressible in
terms of Bessel functions, The corresponding basis
operators are

3562 J. Math. Phys., Vol. 17, No. 3, March 1976

A=(Py+P)M;o+Mo(Py +P) = 2Py(My, - Myy)
- Z(M12 - Mzo)Pz" (P1 - PO)Z, (3.164)
B= (M1z - Mao)2 - Pz(Mlz +M20) - (Mlz +M20)Pz-

(b)
(i) 0 o

V,p, 1

(ii) 0 w0

v,p i

This system is related to (a) via the transformation

(@) =(b), t—x, x~t, yv—~ivy,

2. The degenerate case with configuration [(41)]

The pentaspherical coordinates corresponding to such

a system are obtained by making substitutions
e;=e +e€, A= +e+et), (3.165)

where A=y, say. The resulting expression for the pen-
taspherical coordinates is
ox¥=—(v-e)p-e), 200x,==(-¢)-(0-2¢),
o(2xy0, + 23 =1, 20(xxy +x,05) = 'V = e)p- &),
oxZ=p'v=e)(p-e). (3.166)

If we further specialize to the case ¢, ==, these equa-
tions simplify to

oxd=o1, 20%x,=p+v, o(2xx, +x3)=pv,

2003, +¥px,) =~ p, oxd=p’. (3.167)

The one coordinate system of this type corresponds to
the diagrams

||L|ﬁ° |

[4

v, p i

o N/ =
| L /N

A suitable choice of three space coordinates is
(v—t)=—4xz/x1=2(P+V), (y+t):2ix3/x1,
X=ixg/x, =k. (3.168)

The separation equations have the form (3.51) for the
variables v, p with p(}) = const and (3. 135b) in the vari-
able #. The basis operators A, B are

A:MUZ(P0+P2) +(P0+P2)Moz+(P0"Pz)2»
(3.169)

oo

=P,

Ll

F. The configuration [32] and associated coordinate
systems
1. The configuration [32]

As usual in the classification of inequivalent coordi-
nate systems the two free parameters ¢; and ¢, can be
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standardized to be 0 and © (not necessarily respectively).

(a) [32]

f

, M b, 1

The pentaspherical coordinates are given by
oxf=pvp, 20%,X,=— (v + up +vp), (3.170)
026X, ¥ ¥ =~ p—v-p, oxi=-1, 2ox,=u+v+p.

The suitable choice of three space coordinates is

(t=x)2=x}/x2=—pvp, 2y(x—1t)=2x;%,/xf=pv+vp+pp,
o yi=_x/x,=p+v+p, (3.171)

The separation equations are given by (3.51) with p(A)
=23, The corresponding basis defining operators are

A :M%Z" M%l - M%Z - ZPZ(PO +P1)J
B=My(My, = M) + (Myp — Moa)My = (P +Py).
() [32]

(3.172)

e e
v, ol M

This system is related to (a) via the transformation
(a) ~(b), t—~it, x~ix, y—~iy.

(c) [32]
(1) 0 o=
vV, p, 1 I
(11) |
v,p p !

The pentaspherical coordinates are given by

=1, 20%0,== (L+v+p),

3.173)
o205y + ¥8) = — pv — pp - vp, (

-2 __

OX; == UVp, 20Xyx5= UV + Lup+Vp.

The suitable choice of three space coordinates is
{t=xP=x3/x2=pvp, 12—xf=-2xx;/x2=pv+pup+vp,
2y =2x,/x,=p+V+p (3.174)

with the pentaspherical coordinates chosen as in (3. 173).
The separation equations are (3. 41) with f(A) =2 and
the basis operators are

‘[1: (P0+P1)(M12 +M02) + (M1z +Moz)(Po +P1)
+3(P0+P1)2 (3.175)
B= 2Py + P (M, — M) + 2(Myy — M) (Py +Py) + M2,

(@)

P, 1

(e) ~(d), t—~ix, x=it, y—y.
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2 Coordinate systems of type [32] corresponding to a
radial coordinate in three space

(a) (1)

0 % )
v P m
(ii) 0 el
v, p b

The pentaspherical coordinates are given by
oxt=vp, 20%x,=~V-p,

o(2xyx, +xD) =1, oxd=[1, 20%%5=2. (3.176)

For (i) this corresponds to a choice of three space
coordinates
(t=xP=cx/xi=—vpr? 20(x =8 =2xx,/%%= (v +p)r?,

2y = x/x,, (3.177)

The separation equations are given by (3.51) with p(2)
=A% for A=V, p and the equation in the variable 7 is
(3.105). The basis operators A, B are

A=i_D?
B =My (My; — My) + (Myp = M) My, (3.178)
The corresponding results for (ii) follow via the trans-
formation ¢ —it, x —ix, y =iy,
3. Coordinates on the cone arising from the
configuration [32]

There is one case to consider here.

(a) }

|| 0 ||
Il v 11

m

ol

The pentaspherical coordinates are given by
o=y, 20 %,=-1, o(2x,x, +x3 =0,
oxd=0p, 20x05=0, (3.179)

The associated choice of three space variables is
(=2 =xf/xf=vr?, 2y(x=1)=2xx,/x== 42,
o x? _y? =/, = 0. (3.180)

The separation equations are (3.51) with p(A) =28
for A= and (3. 105) for the variable ». The basis
operators are

A =3 -D?
B= My (Mg = M) + (M5 = Mop)Mg. (3.181)

G. The configuration [5)

There is only one coordinate system for such a con-
figuration and it has the diagram

o0

v, P,

The pentaspherical coordinates are given by
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=1, 2owyx,=—(L+v+p), (3.182)
o(x3 +201%65) = v + up +vp,  o(2x,x, +2x,%,) = pvp,
This gives the three space variables
2t —x)==2x,/%,=u+v+p,
2(t+x) == 2xy/x; == puvp +1{V¥(p + p) + p¥(u +v)]
+pE@ +p) - (P + 03+ p%)], (3.183)

4y =4y /%, = uv + up +vp ~ (Ut + 2% +p?),

The separation equations are (3.41) with f{A)=1. This
gives the product of three solutions of Airy’s equation.
The resulting basis operators are

A=8[2(P, - Py)%+ (P, +P)) (M, + M,
+ (My + My)(Py + Py) = PoMy o~ My P,), (3.184)
B=My(Py+Py) +(Py+P)My +4P,(My, - My, Py +P))
+4(Myy ~ My, — Py +P)P,.

H. Cartesian coordinates

The defining coordinates £, x, ¥y can be incorporated
into the scheme we have used here in the same way
that Bocher has done for the Laplace equation in three
space. The diagrams for such a coordinate system are

0 N
- ZN

0 ANV ,
v’ 2N
0 AN

AN

P

The expressions for the pentaspherical coordinates are

of=-1, 200x,=-pu'-v'=p,

o=p', oxi=v', oxk=p’, (3.185)

where the x; are as in (1. 26). The separation equations

are obviously of the form
aE,;

——2-” +KiEi =0

i) (3.186)

with basis defining operators any two of the operators
P?(i=0,1,2).

IV. CONCLUDING REMARKS

In this paper we have made a detailed study of the
orthogonal coordinate systems in three-dimensional
Minkowski space for which the two-dimensional wave
equation (*) admits an R-separable solution. The method
for doing this is due to Bocher and involves the use of
pentaspherical coordinates. The direct relation between
pentaspherical coordinates and the symmetry group of
(*) was clearly demonstrated. The utility of the method
over alternate ways of finding separable solutions of
differential equations such as the classification of dif-
ferential forms'! is clear. Not only can the coordinates
be found, but the separation equations and modulation
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factor can be determined from the key formulas in Sec,
II.

As mentioned in the introductory comments of Sec.
III, we have given a list of coordinate systems, some
of which are equivalent under the action of the O(3, 2)
symmetry group of (*) but not under the action of the
E(2,1) subgroup. The coordinate systems corresponding
to the configurations [21(11)], [(21)(11)], and [3(11)], in
which the coordinate curve for a contracted variable 2’
has a diagram

|0 11

AN
(A ! !

(ii)a’ N

are equivalent under the O(3, 2) group action to one of
the nine classes of coordinate systems which have a
radial coordinate. This reflects the fact that the oper-
ator B as in (3. 21) with X" =p’ can always be chosen to
be — 1 + D2, Further, for the systems corresponding to
the configuration [32], those which have ¢ ==, ¢,=0
and ¢, =0, ¢,=% are equivalent under the action of
O(3, 2) but not under the E(2, 1) subgroup. Similar com-
ments apply to the systems with configuration [2(21)].

No attempt has been made to firmly establish that all
inequivalent classes of orthogonal R separable solutions
of (*) have been found. This topic will be the subject
of subsequent work. Taking into account the equivalent
systems as indicated in the preceding comments, we
have presented 53 coordinate systems inequivalent un-
der the O(3, 2) group action. In addition all the coordi-
nate systems except those belonging to the configuration
[11111] give separable solutions of the Helmholtz equa-
tion 8,9~ A, =K%P. There are 53 such systems. All
the coordinate systems in Secs. 1—4, 6 of I are re-
presented here. In particular the nine coordinate sys-
tems of the Euler—Poincaré—Darboux (EPD) equation.
In subsequent articles it is our intention to look at the
EPD equation in detail and to examine solutions of (*)
which are R-separable but not orthogonal.

*Present address: Mathematics Department, University of
Waikato, Hamilton, New Zealand.
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T(b) [(11)111]

The pentaspherical coordinates are given as in (3. 20)., The

three space coordinates are given by
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t=ixy /(x5 +ixy), x=xy/(x5+1x,),

y=x3/(xg5+1ix,).

The modulation factor is
V2ollds=(Sipfa+Vi=p V2,
The basis operators are

4Ja=a(P2 +K2)2 + (Pj +K1)2,

A

4B=_1"(P0—K0)2o

E.G. Kalnins and W. Miller, Jr.

(P1)

(P2)

355

Downloaded 02 Nov 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



