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Chars and Carbonised Chars 
• Mostly (sp2) carbon in aromatic (and/or graphene-like) structures. Most 

of the major chemical changes and mass loss occur early (HTT < 400°C). 

• Product properties change drastically when the heat treatment 
temperature (HTT) used in the production process is increased. 
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 Chars 
 prepared at 300-400°C 

 Well-carbonised Chars  
prepared at 700-1000°C 

≈ 6 orders of magnitude increase in electrical conductivity 

≈ 1-2 orders of magnitude increase in specific surface area (N2, BET) 

≈ 1 order of magnitude increase in hardness and modulus 
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(Antal and Grønli 2003) (Rhim et. al. 2010) (Keiluweit et. al. 2010) (Zickler et. al. 2006) (Franklin 1951) (Jenkins  & Kawamura 1976) (Rouzaud and 
Oberlin 1989) (McBeath and Smernik 2011)(McDonald-Wharry et. al. 2013) 
 

Nanostructural development of carbonaceous material (from hydrogen-rich 
amorphous carbon towards tangled network of graphene-like sheets). 



Aims of Raman Analysis 
 
• Develop a method for reliably measuring the extent of 

chemical/nanostructural changes  which have occurred during 
the carbonisation of biomass.  Be able to use this method to 
rapidly estimate the heat treatment temperatures (HTTs) 
employed in the production of a given char sample. (Quality 
control, product consistency after scale-up). 

 
• Continue testing a hypothesis about carbonised charcoals 

being more chemically and nanostructurally similar to 
thermally-reduced graphene oxide(s) than to other proposed 
structural analogues such as  fullerenes and graphite. 
 

• Start correlating Raman measurements to other values and 
properties considered important (such H/C atom ratios from 
IBI Guidelines).   
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(International Biochar Initiative 2012) (McDonald-Wharry et. al. 2013) 

1500°C to 
3000°C 

 500°C to 
1000°C 

Precursors poor in oxygen 
Pitch, coking coals, PAHs, heavy 
petroleum fractions. 

Precursors rich in oxygen 
Carbohydrates, lignocellulosic 
biomass, low-rank coals, lignite, 
phenolic and furan-based resins. 

Graphites Glassy carbons 

Cokes Chars 

Heating under 
an inert or 
oxygen-poor 
atmosphere 

(Franklin. 1951) 
(Jenkins  & 
Kawamura. 1976) 
(Oberlin.  1989) 
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Raman Spectroscopy of graphite 
and graphene-like materials 
• Raman spectrometer excites an area of the sample with 

a laser (785 nm), then collects and records Raman 
scattering as a spectrum.  

• Bands and signals on the Raman spectrum usually relate 
to the stretching of various bonds and lattice vibrations. 
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G band 
Stretching of 
carbon-carbon 
sp2 bonds 
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(Robertson 2002)(Ado et. al. 2010)(Gupta et. al. 2008) 

Raman Spectroscopy of graphite 
and graphene-like materials 
• Raman spectrometer excites an area of the sample with 

a laser (785 nm), then collects and records Raman 
scattering as a spectrum.  

• Bands and signals on the Raman spectrum usually relate 
to the stretching of various bonds and lattice vibrations. 
 
 

D band 
Breathing 
mode of 
hexagonal 
rings 

Only seen in Raman 
spectrum if ring is close 
(< 10 nm) to sheet edge 
or other defect 
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(Robertson 2002)(Ado et. al. 2010)(Gupta et. al. 2008) 



Order, Disorder and the D band 

• Maximum intensity of the D band relative to the G band 
occurs when nanostructure has ordered graphene-like 
domains where each hexagonal ring is within about 4 
nanometres of an edge or other defect.  
 
 

Minimal D 
band signal 

Long single-
walled carbon 
nanotubes 

1 July 2013 © THE UNIVERSITY OF WAIKATO  •  TE WHARE WANANGA O WAIKATO 7 

 
(Robertson 2002)(Ado et. al. 2010) (Gupta et. al. 2008) 

Order Disorder 
Minimal D 
band signal 

Abundant  
D band signal  

s
Short single-
walled carbon 
nanotubes 

Glassy 
carbon 

Reduced graphene oxides 

Well-carbonised chars 
(HTT > 700°C) 

Amorphous  chars 
(HTT < 400°C) 

L
w

Large pristine 
graphene sheets 

n
w

Large perfect 
graphite crystals 

Synthetic “diamond-like” 
amorphous carbons and 
other types of amorphous 
carbon 

Small-grain 
polycrystalline 
graphites 

Commercial carbon fibres 

Damaged or smaller graphene sheets 

Soots and carbon blacks 

Sample Production and Precursors 
• Some precursors (harakeke leaf fibres, sucrose sugar crystals) 

were carbonised in electric furnaces under low oxygen 
conditions (N2 purged or vacuum evacuated quartz vessels).  
 

• Radiata pine wood derived chars produced in Massey’s gas-
fired drum pyrolyser. Other Radiata pine wood and pyrolysis 
tars were also  carbonised in an electric furnace. 

 
• Samples were heated to a range of HTTs between 300°C and 

1000°C (usually 20 min dwell time at max temperature and 
HTTs were calculated from average thermocouple reading 
over 12 min where they were highest). 

 
• Samples were analysed using the Raman spectrometer after 

they had cooled to room temperature. 
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Raman Methodology: Overview 
• Developed method which will obtain adequate spectra 

from a wide range of different carbonaceous samples. 
 

• Analysed a wide range of carbonaceous materials using 
the same excitation laser wavelength, the same data 
processing method, and similar instrument settings.  

     (Goal of fair comparisons).   
 

• Chars, carbonised chars,  graphene oxides, and thermally-
reduced graphene oxides all were analysed. 
 

• Purchased, borrowed, and scavenged  samples of various 
graphites, fullerenes, single-walled carbon nanotubes, 
glassy carbons, and PAN-derived carbon fibres for analysis 
and comparison.  
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(McDonald-Wharry et. al. 2013) 
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Sucrose Chars and Carbonised Chars 
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(McDonald-Wharry et. al. 2013) 



1 July 2013 © THE UNIVERSITY OF WAIKATO  •  TE WHARE WANANGA O WAIKATO 11 

Radiata Pine Chars and Carbonised Chars 

80000

180000

280000

380000

480000

150 650 1150 1650 2150 2650 3150

Ra
m

an
 in

te
ns

ity
 

Raman shift (cm-1) 

8000

28000

48000

68000

88000

150 650 1150 1650 2150 2650 3150

Ra
m

an
 in

te
ns

ity
 

Raman shift (cm-1) 

-300

4700

9700

150 650 1150 1650 2150 2650 3150Ra
m

an
 in

te
ns

ity
 

Raman shift (cm-1) 

-500
500

1500
2500
3500

150 650 1150 1650 2150 2650 3150

Ra
m

an
 in

te
ns

ity
 

Raman shift (cm-1) 

HTT ≈ 340 C 

HTT ≈ 470 C 

HTT ≈ 700 C 

HTT ≈ 1000 C 

 

 
(McDonald-Wharry et. al. 2013) 
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Regular Fullerenes and Single-walled Carbon Nanotubes 
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C60 fullerenes 

C70 fullerenes 

Single-walled carbon nanotubes 

Single-walled carbon nanotubes 
(Air oxidised at 550°C) 

? ? 

 ≈ 
0.

7 
nm

 

 ≈ 
1.

4 
nm

 

 
(McDonald-Wharry et. al. 2013) 
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Graphites, Glassy Carbon, & PAN-derived Carbon Fibre 
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Colloidal graphite  

Synthetic graphite 

Glassy carbon 

PAN-derived carbon fibre  

G band 

D band 

 
(McDonald-Wharry et. al. 2013) 

Data Processing and Spectral Parameters 

D band position G band position 

Baseline value 

IG (G band height) 

IV (Valley height) 

ID (D band height) 
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y = -1.2999x + 3386.7 
R² = 0.9504 
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G band positions and heat treatment temperatures 

y = 0.0694x + 1544.1 
R² = 0.986 
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(McDonald-Wharry et. al. 2013) 

(Valley height) / (G band height) ratio and heat treatment temperatures 
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(McDonald-Wharry et. al. 2013) 



y = 174.27x3.3508 
R² = 0.8767 
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Similar trend and scatter to synthetic hydrogenated amorphous carbon films 

HTT ≈ 700°C 

HTT ≈ 340°C 

 
(Casiraghi et. al. 2005) 
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Precursor biomass (Radiata pine sawdust) 

Tar-derived char (HTT ≈ 318°C) 

Pyrolysis tar 

Amorphous chars generate positive slopes, but tars and unpyrolysed biomass 
generate negative slopes in Raman spectra (when using 785 nm excitation) 



(Valley height) / (G band height) ratio and H/C ratios 
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Raman IV/IG ratios  correlates to the H/C ratios obtained from elemental analysis of 
these Radiata pine derived chars.  
Interpretation: Removal of hydrogen-rich amorphous carbon with increasing HTT 
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Raman ID/IG ratios  also correlates to the H/C ratios obtained from elemental analysis 
of these Radiata pine derived chars. 
Interpretation: Growth of hydrogen-poor graphene-like structures with increasing HTT) 

HTT ≈ 700°C 

HTT ≈ 340°C 

D band G band 



 Conclusions 
• A number of Raman parameters can be used to monitor the 

extent of carbonisation in chars. G band position correlates well 
and is measurable over the widest range of precursors and 
temperatures.   

• IV/IG and ID/IG height ratios also useful for evaluating lower HTT 
chars and the conversion of amorphous carbon into 
polyaromatic/graphene-like carbon. So far IV/IG (and ID/IG ) 
values correlate well with H/C atom ratios for Radiata pine 
derived chars, indicating that Raman analysis could be used to 
estimate H/Corg values. 

• Carbon nanostructure appears to become independent of 
precursor as HTT increases towards 700-1000°C   

• Positive slopes which occur in Raman spectra of low HTT chars 
are different to the negative slopes which occur in Raman 
spectra obtained from pyrolysis tars and biomass precursors.  
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