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Chars and Carbonised Chars

* Mostly (sp?) carbon in aromatic (and/or graphene-like) structures. Most
of the major chemical changes and mass loss occur early (HTT < 400°C).

* Product properties change drastically when the heat treatment
temperature (HTT) used in the production process is increased.

Nanostructural development of carbonaceous material (from hydrogen-rich
amorphous carbon towards tangled network of graphene-like sheets).

Chars d at 300-400°C a Well-carbonised Chars
prepared at 300- prepared at 700-1000°C
= 6 orders of magnitude increase in electrical conductivity

= 1-2 orders of magnitude increase in specific surface area (N,, BET)

= 1 order of magnitude increase in hardness and modulus

(Antal and Grgnli 2003) (Rhim et. al. 2010) (Keiluweit et. al. 2010) (Zickler et. al. 2006) (Franklin 1951) (Jenkins & Kawamura 1976) (Rouzaud and
Oberlin 1989) (McBeath and Smernik 2011)(McDonald-Wharry et. al. 2013)
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Aims of Raman Analysis

* Develop a method for reliably measuring the extent of
chemical/nanostructural changes which have occurred during
the carbonisation of biomass. Be able to use this method to
rapidly estimate the heat treatment temperatures (HTTs)
employed in the production of a given char sample. (Quality
control, product consistency after scale-up).

* Continue testing a hypothesis about carbonised charcoals
being more chemically and nanostructurally similar to
thermally-reduced graphene oxide(s) than to other proposed
structural analogues such as fullerenes and graphite.

e Start correlating Raman measurements to other values and
properties considered important (such H/C atom ratios from
IBI Guidelines).

(International Biochar Initiative 2012) (McDonald-Wharry et. al. 2013)
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Heating under
aninert or

oxygen-poor
atmosphere

500°C to
1000°C

(Franklin. 1951)
(Jenkins &
Kawamura. 1976)
(Oberlin. 1989)

1500°C to
3000°C

Precursors poor in oxygen
Pitch, coking coals, PAHs, heavy
petroleum fractions.

Graphites

Precursors rich in oxygen
Carbohydrates, lignocellulosic
biomass, low-rank coals, lignite,
phenolic and furan-based resins.

Glassy carbons




Raman Spectroscopy of graphite
and graphene-like materials

* Raman spectrometer excites an area of the sample with
a laser (785 nm), then collects and records Raman

scattering as a spectrum.

e Bands and signals on the Raman spectrum usually relate
to the stretching of various bonds and lattice vibrations.

G band

Stretching of b

carbon-carbon
sp? bonds

(Robertson 2002)(Ado et. al. 2010)(Gupta et. al. 2008)
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Raman Spectroscopy of graphite
and graphene-like materials

* Raman spectrometer excites an area of the sample with
a laser (785 nm), then collects and records Raman

scattering as a spectrum.

e Bands and signals on the Raman spectrum usually relate
to the stretching of various bonds and lattice vibrations.

D band

Breathing b

mode of Only seen in Raman

h | spectrum if ring is close
€xagona (<10 nm) to sheet edge

rings or other defect

(Robertson 2002)(Ado et. al. 2010)(Gupta et. al. 2008)
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Order, Disorder and the D band

Order Disorder
Minimal D ini
. Small-grain Minimal D
band S|gnal polycrystalline Glassy | Soots and carbon blacks band signal
graphites carbon
Large pristine Commercial carbon fibres Synthetic “diamond-like”
graphene sheets |Long single- amorphous carbons and
walled carbon - other types of amorphous
Large perfect nanotubes Reduced graphene oxides T
graphite crystals Short single-
walled carbon Well-carbonised chars E Amorphous chars
nanotubes (HTT > 700°C) (HTT < 400°C)
Damaged or smaller graphene sheets

e Maximum intensity of the D band relative to the G band
occurs when nanostructure has ordered graphene-like
domains where each hexagonal ring is within about 4
nanometres of an edge or other defect.

(Robertson 2002)(Ado et. al. 2010) (Gupta et. al. 2008)
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Sample Production and Precursors

* Some precursors (harakeke leaf fibres, sucrose sugar crystals)
were carbonised in electric furnaces under low oxygen
conditions (N, purged or vacuum evacuated quartz vessels).

* Radiata pine wood derived chars produced in Massey’s gas-
fired drum pyrolyser. Other Radiata pine wood and pyrolysis
tars were also carbonised in an electric furnace.

* Samples were heated to a range of HTTs between 300°C and
1000°C (usually 20 min dwell time at max temperature and
HTTs were calculated from average thermocouple reading
over 12 min where they were highest).

e Samples were analysed using the Raman spectrometer after
they had cooled to room temperature.
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Raman Methodology: Overview

* Developed method which will obtain adequate spectra
from a wide range of different carbonaceous samples.

* Analysed a wide range of carbonaceous materials using
the same excitation laser wavelength, the same data
processing method, and similar instrument settings.
(Goal of fair comparisons).

* Chars, carbonised chars, graphene oxides, and thermally-
reduced graphene oxides all were analysed.

* Purchased, borrowed, and scavenged samples of various
graphites, fullerenes, single-walled carbon nanotubes,
glassy carbons, and PAN-derived carbon fibres for analysis
and comparison.

(McDonald-Wharry et. al. 2013)
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Sucrose Chars and Carbonised Chars

Amorphous carbon
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(McDonald-Wharry et. al. 2013)
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Radiata Pine Chars and Carbonised Chars
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Regular Fullerenes and Single-walled Carbon Nanotubes
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Graphites, Glassy Carbon, & PAN-derived Carbon Fibre
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(McDonald-Wharry et. al. 2013)
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Data Processing and Spectral Parameters
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Map of D band and G band positions
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G band positions and heat treatment temperatures
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(McDonald-Wharry et. al. 2013)
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(Valley height) / (G band height) ratio and heat treatment temperatures
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(McDonald-Wharry et. al. 2013)
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(Photoluminescence slope) / (G band height) ratio and H/C ratios
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Similar trend and scatter to synthetic hydrogenated amorphous carbon films
(Casiraghi et. al. 2005)
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Photoluminescence slopes and/or fluorescence slopes
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Amorphous chars generate positive slopes, but tars and unpyrolysed biomass
generate negative slopes in Raman spectra (when using 785 nm excitation)
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(Valley height) / (G band height) ratio and H/C ratios
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Raman |, /I ratios correlates to the H/C ratios obtained from elemental analysis of
these Radiata pine derived chars.
Interpretation: Removal of hydrogen-rich amorphous carbon with increasing HTT
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(D band height) / (G band height) ratio and H/C ratios
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Raman I/l ratios also correlates to the H/C ratios obtained from elemental analysis
of these Radiata pine derived chars.
Interpretation: Growth of hydrogen-poor graphene-like structures with increasing HTT)

© THE UNIVERSITY OF WAIKATO » TE WHARE WANANGA O WAIKATO 1July 2013 22



Conclusions

A number of Raman parameters can be used to monitor the
extent of carbonisation in chars. G band position correlates well
and is measurable over the widest range of precursors and
temperatures.

|/ and I/l height ratios also useful for evaluating lower HTT
chars and the conversion of amorphous carbon into
polyaromatic/graphene-like carbon. So far I,/1; (and I/l )
values correlate well with H/C atom ratios for Radiata pine
derived chars, indicating that Raman analysis could be used to

estimate H/C,, values.

Carbon nanostructure appears to become independent of
precursor as HTT increases towards 700-1000°C

Positive slopes which occur in Raman spectra of low HTT chars
are different to the negative slopes which occur in Raman
spectra obtained from pyrolysis tars and biomass precursors.
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