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Metrization of spaces having
éech dimension zero

K.A. Broughan

A metrizable topological space has a metric taking values in &
closed subset of the real numbers having fech dimension zero if
and only if the space itself has fech dimension zero. We call a

development 0 = (Dn) for a topological space (X, T} a sieve
for X if the sets in each Dn are pairwise disjoint. Then a

Hausdorff topological space (X, T} has a compatible metric
taking values in a closed subset of the real numbers having Gech

dimension zero if and only if there exists a sieve for X .

Introduction

In this paper we prove that a necessary and sufficient condition for a
topological space to have a compatible metric taking values in a closed
zero dimensional subset of the real numbers is that the space be metrizable
and have Cech dimension zero. We also prove that the two topological
properties fech dimension zero and metrizable, when taken together, are
equivalent to a single topological property - namely, having a development
consisting of families of open sets which partition the space. These
theorems are an extension of the theorem given in [1]: a metrizable space
has Cech dimension zero if and only if there exists a metric for the space,
compatible with the topology, taking values in some subset of the real
numbers with zero as its only cluster point. The proofs of the theorems

depend on this characterization.

THEOREM 1. Let (X, T) be a metrizable topological space with a

Received 27 March 1973.
161



162 K.A. Broughan

compatible metric taking values in a closed subset of the real nwnbers

having dimension zero. Then (X, T) has lech dimension zero.

Proof. Regard (X, T) as a metric space with the given metric teaking
values in a subset F of the real numbers having dimension zero. We may
assume that F 1is contained in a closed bounded interval of the real
numbers. Embed X isometrically in a Banach space (B, [|*l|]) in such a
way that if we identify X with its image in B , then 0 € X (see [4]).

Then if = and y are in X , [lx-y| is in F .

Now let H = {0} u {1/n | n € N} , N being the natural numbers.
Because F has dimension zero and is a subset of R , the real numbers, ve
can find & metric p which is compatible with the topology F inherits as
a subspace of R , and which takes values in H . Then, if z and Yy are
in X , let

d(z, y) = nax p(llz-all, lly-al) .
acX
It is clear that d satisfies the triangle law, is symmetric, takes values
in H and satisfies d(x, x) =0 forall x in X . If d(z,y) =0
then po(llz-all, lly-all) = 0 for all a in X . Let a=y . Then,
p(llz=yll, 0) = 0 and thus |lz-yll= 0 which means x =y .

To prove d generates the original topology on X assume firstly

that {xn} and & are points in X with the property d(xn, z) >0 .
Then for each a in X , p(ll:cn-all, lz-all) +0 . Let a =2 . This
implies p(llxn-xll, 0) + 0 and hence, because p generates the subspace
topology on F , II:r:n-xII + 0 in R . Conversely assume len-xll +0 . We
know that

[l -al-llz-all| = lle -2l for 11 a in X .
Now regard p as a map from F X F to H with F and H having the
standard metric inherited from the real numbers. Because F 1is compact it

follows that p is uniformly continuous. In particular we may say that
given € >0 there is a §_ > 0 such that if |-y | < §. then

plx, y) <€ for all x and y in F . 1If Il:cn~:z:|| <(Se then

p(llxn—xll, ix-all) < € for all a in X and thus d[a:n, x) >0 . Thus d
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and |[*]] generate the same topology on X .

The metric d has values in H and thus X has Cech dimension zero.

This completes the proof.
From the fact that H# 1is closed and has dimension zero we deduce:

COROLLARY 2. A metrizable space has a compatible metric taking
values in a closed subset of R having dimension zero if and only if the

space has Cech dimension zero.

The proof used in Theorem 1 can be used to prove a more general fact.
Let us call a topological space (X, T) S-metrizable if there is a metric
on X , compatible with 7T , taking values in S € R . Suppose further
that there exists a continuous metric on S +taking values in a subset T
of the real numbers and generating a uniform structure on S coarser than
that generated by the standard metric inherited from the real numbers.
Then if we let

S(T) = {supd | ¢ #4cT},

the method of proof used in Theorem 1 shows that (X, T) is S(T)-

metrizable.

EXAMPLE 3. On the uniform structures induced by continuous

pseudometrics on the rational numbers which take values in # .

It is interesting to note that the proof for Theorem 1 does not work
for spaces having metrics in dense subsets of the real numbers which have
dimension zero (dense at least in a neighbourhood of zero). To see why
this is so we will examine the set of all continuous H-pseudometrics (that

is, having values in H ) on the rational numbers for example.
Let @ denote the rational numbers and let
R(@) = {p | p is an H-metric on § generating the usual topology}

4
and R(Qr)\=/{p | p is a continuous #-pseudometric on @} . If p and T
are in R(Q) let

D(p, 1) = sup _ |o(z, y)-t(z, y)| .
(x,y)eQ?

Then D is a metric and (R(@), D) a complete metric space. Suppose that
R(@) has the metric topology.
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Y/
If p and T are in R(J) we willsay p =1 if plz, y) = t(z, y)

2 ) mJ/
for all (x, y) in Q° . Thenif p € R(¢) and 7T € R(Q) and T=2p ,
T generates a topology on & finer than that generated by p , and thus

T € R(Q) as it is also continuous.

~J
For each n in N , and each p in R{(Q) let
(%, y) = min{p(x, y), 1/n} . Then if p 1lies in R(Q) so does p  and

P, = P . We see that for this choice of p the D-limit of {°n}ne1v
exists and is the zero pseudometric on @ . Thus R(Q) is not closed in
~J ) ~
R(Q) . We will show that in fact R(Q) is dense in R(Q)

m/
To this end let T € R(Q) and let p be any fixed element of R(&Q)
(Such an element exists by [7].) Then p = p V T where
(pv1)(z, y) = max{p(x, y), T(x, y)} end hence p V T is in R(Q) as is

an'r for all n in N . We have

T = D-1imit P, vV T

— TN\ ™/
showing that R(Q) = R(Q) and that R(Q) is the completion of R(Q) .

mJ
Now suppose that p € R(Q) generates a uniform structure on @ for

) =4, (&, p) is not uniformly continuous.

which the identity (@,

This means there exists an Ep >0 such that for all n € N there exists

(:cn, yn) € satisfying |:cn-yn| <1/n ana plz,, yn] Z2€,>0 . Let

o\
k = {p € R(Q) | there is an £ satisfying the above condition
and € = 1/n} .

N\
Then KlCKZC...CR(Q). Also if p €K and T Zp then TGKn.

As n increases the elements in Kn\Kn— become closer to being uniformly

1
continuous. Indeed the set of pseudometrics on & generating a uniform
structure coarser than that generated by the standard metric on @ is
given by (UKn]' = U say, vwhere denotes complementation.

Each K is closed: to see this let p € K’;, . Then there is a
6m > 0 such that if |a}-y| < Gm then p(x, ¥) < 1/m . Let

§ =1/m - 1/(m+*1) and let T € B{p, 8) . This means that for all (z, y)
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in Q2 s
lp(x, y)-t(x, y)| < 1/m - 1/(m1) .

Suppose that T € Km . Then VYn € N there exists (a:n, yn) € Q2 with

- < > <

|z, -y,| <1/n and t(x,, Y,) = 1/m . Choose 1/n = §, - Then

Unm =z, y,) <1/m-1/(m1) + plz,s y,) =1/m as plz,, y,) = 1/(ma) .
This implies 1/m < 1/m , a contradiction. Thus T € Kn'r and K”; is open.

The set Km is also open: let 1T € Km and let 68 = 1/m - 1/(m+1) .
We will show that B(t, §) ck,. If p¢€ B(t, §) then
sup|p(x, y)-t(x, y)| < 1/m - 1/(m¥1) . For all n in N there exists

(xn, yn] in @° such that Ixn—yn[ <1/n and T(xn, yn) z 1/m . Then
1m=t(z,, y ) <elz, ¥, +1/m- 1/(m1) .

s plz,, y,) > 1/(m+1) which means plx,, Y,) z1/m . Thus p €K

and K is open.
m

It follows that U= (UKm)' is closed. Certainly U # § as 0 €U,
0 being the zero pseudometric on & . We will show that U = {0} .
let p € U . Then for all € > 0 there is & ¢ > 0 such that if

) ~id, (€, p) is uniformly

|z-y| < & then p{z, y) <e . Then (Q,

continuous as is the composite (@%@, o,) Ldxid, (QXQ, op) £,y , where
ou((a, B), (=, ) = |az| + |b-y|
and
o l(a, b), (z, ) = ola, 2) + o(b, ¥) .

Because (4, I'l) is & compact and hence complete uniform space we may
extend the map p o (Zdxid) to a continuous map from R x R to H . But
then connectedness shows that we must have p =0 . Thus U = {0} as

claimed.
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Therefore U nR(Q) = @ and we may not extend Theorem 1 to metric
spaces with metries teking values in € or for that matter any dense Cech
dimension zero subset of the real numbers.

~ © ©

Thus R(Q) = {fo}u U X and R(Q c U X . If p €R(Q) then

n=1 " n=1 "

P, € R(Q) n Krl't-l and therefore R(Q) is not contained in any finite union

of the KX 's.
m

To conclude this example we see that the metric D has values in the
subset

- i <
{l/nl LL/n2 | nys n €N with n n

2 1° Vi,

o}

of the real numbers. It is easy to sere_\t}lat this set is closed and has
dimension zero. Thus, by Theorem 1, R(Q) has Cech dimension zero.

Let (X, T) be a topological space and let D = (D )

wnen be a

development for T . 1If the sets in each open cover Dn are disjoint we

say that (X, T) is sievable and call the family P a compatible sieve
for X .

THEOREM 4. Let (X, T) be a Hausdorff topological space. Then
(X, T) is sievable if and only if it is metrizable and has Cech dimension
zero.

Proof. Let (X, T) have a compatible sieve D = U)n) . For each

pair (x, y) in £ with x #y let

o(x, y) = minfa/n | =, y €D €D}

If x=y set p{z,y) =0 . Then p is an H-metric on X generating
the topology T . Therefore (X, T) is metrizable and, by [/], has Cech
dimension zero. Conversely let (X, T) be metrizable and have Gech

dimension zero. Then we msy embed X in a countable product of discrete
spaces, B(m) , where T has weight m . Because the property "sievable"
is hereditary we need only show that B(m) has this property. To do this

we will define a compatible sieve on B{(m) .

For each n in N 1let An be a space of cardinality m having the
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discrete topology. Then
«©
B(m) =T | An .
n=1

Let vo=B(m) and for n=1, 2, ... let

(=]
Dn = {I I Bj | Bj = Aj for all but # subscripts J in which case
J=1

B.=1{b. ith b. i A } .
f { ,7} wi ; in A
Then = DO u [Dn)neN is a compatible sieve for B(m) . This completes

the proof of the theorem. The reader might note that this result follows
also from the results of Morita [5].

EXAMPLE 5. The example of Roy [6] of & metrizeble space with small

inductive dimension zero and Oech dimension 1 dis an example of a

metrizable space with small inductive dimension zero which is not sievable.

COROLLARY 6. Sievable spaces are clopen-parazompact [3] and thus
admit harmonic partitions of wnity [2].
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