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Abstract 

Oxytocin (OT) and vasopressin (AVP), peptides synthesised in the hypothalamic 

supraoptic and paraventricular nuclei, are released in response to social stimuli, 

especially those related to familiar conspecifics. Very little is known, however, 

about a link between OT/AVP and exposure to familiar versus novel non-social 

stimulation. Therefore, the current project examined whether the activity of 

neurons synthesising OT and AVP differs when animals are exposed to a novel 

versus familiar object introduced to the animal’s environment.  Mice were 

subjected to a short-term presence of a novel or familiar, distinctively shaped 

plastic object in a previously encountered arena and activation of OT and AVP 

neurons was subsequently assessed by the immunohistochemical analysis of co-

localization between an immediate-early gene product, c-Fos, and OT/AVP.  

Exposure to a familiar object caused a significantly greater activation of OT and 

AVP neurons in the paraventricular nucleus of the hypothalamus, and an 

increasing trend approaching significance in the number of activated OT and AVP 

neurons in the supraoptic nucleus.  In a follow-up in vivo pharmacology 

experiment, mice that received an intraperitoneal injection of a blood-brain 

barrier-penetrant OT receptor antagonist, L-368,899, prior to being exposed 

simultaneously to a familiar versus a novel object showed a significant increase in 

the amount of time spent with a familiar object and a decrease in time spent with a 

novel object. I conclude that introduction to novelty results in a decrease in OT 

neuronal activity as well as changes in AVP neuronal activity in the 

paraventricular nucleus of the hypothalamus. 
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1 Chapter 1 

Introduction 

  

 

Oxytocin (OT) and arginine vasopressin (AVP), neuropeptides of the arginine 

vasotocin family, are evolutionarily conserved peptides that have important 

physiological and behavioural functions across the periphery and central nervous 

system (CNS) in mammals (Acher, Chauvet, & Chauvet, 1995; Lukas & 

Neumann, 2013).  These behavioural functions include social interactions such as 

maternal care, aggression, pair bonding and sexual behaviour(Inga D Neumann, 

Burg, Neumann, & Burg., 2013).  OT and AVP are also important mediators of 

the stress response, whereby expression of OT leads to the down regulation of the 

stress response while expression of AVP promotes anxiogenesis (Robinson et al., 

2002).   

 

The focus of this thesis is on novelty versus familiarity in relation to inanimate 

objects.  As the vast majority of current data comes from studies focusing on 

social interactions in the context of novel versus familiar conspecifics, the 

introduction to this thesis initially focuses on the social behavioural aspects of OT 

and AVP function but finally discusses the relatively scarce evidence that 

investigates OT and AVP’s function in response to object novelty versus 

familiarity. 
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1.1   Oxytocin 

 

OT has been most extensively described in its involvement in parturition and 

lactation.  Extensive research in these areas and the resulting significance of OT 

lead to the exploration of OT’s roles in other physiological and behavioural 

functions.   

 

The uterus of a pregnant female is one of the primary targets of OT.  OT acts on 

the pregnant uterus by increasing the rate of contraction, leading to parturition 

(Fuchs, Fields, Freidman, Shemesh, & Ivell, 1995).  OT antagonists are used to 

prevent preterm labour. Synthetic OT can be used to induce labour (P. D. 

Williams, Bock, Evans, Freidinger, & Pettibone, 1998).  Uterine sensitivity to OT 

increases significantly around the time of labour.  There is an upregulation of 

oxytocin receptors (OTR) which reaches its peak at the stage of early labour.  The 

number of OTRs in a pregnant rat and a pregnant human are up to 200x that of a 

non-pregnant rat or human (Fuchs et al., 1995).   

 

The milk ejection reflex is another physiological function related to reproduction 

in which OT is an essential component.  The milk ejection reflex is the process in 

which milk is moved from the ducts to the nipple to allow food consumption by 

the infant.  The suckling by the infant stimulates the PVN and SON to release OT 

into the bloodstream via the pituitary gland.  OT then binds to the OTR located on 

the myoepithelial cells of the alveoli.  The alveoli contract, this increased pressure 

pushes the milk into the ducts and is finally released through the nipple for 

feeding (Ramsay, Kent, Hartmann, & Hartmann, 2005).   
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1.1.1 Neurobiology of oxytocin 

 

The OT gene is located on chromosome 2 in mice and on chromosome 20 in 

humans.  The gene contains three exons and two introns, with intergenic regions 

that vary between species.  The intergenic regions of the genes contain regulatory 

DNA sequences that control expression of OT (Gainer, Fields, & House, 2001).  

OT is a neurohypophysial nonapeptide hormone with a disulphide bridge linking 

Cys 1 and 6.  The peptide consists of a six amino acid cyclic COOH-terminal 

alpha-amidated three-residue tail, resulting in the neutral OT amino acid 

isoleucine (Gimpl & Fahrenholz, 2001; Lee, Macbeth, Pagani, & Young, 2009).   

This neutrality of the amino acid isoleucine is essential in the recognition and 

binding of OT receptors (Gimpl & Fahrenholz, 2001).  Figure 1.1.1 depicts the 

arrangement of the OT gene and its enhancers (Gimpl & Fahrenholz, 2001).   
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Figure 1.1.1. The structural organisation of the oxytocin (OT) and vasopressin 

(AVP) genes.  These genes are transcribed (as shown by arrows) in opposite 

directions perhaps supporting the theory that these genes may have arisen from 

duplication of an ancestral gene.  Enhancers of OT and AVP genes are shown as 

well as the composite hormone response element that is located upstream to the 

OT gene promoter which is conserved across species (Gimpl & Fahrenholz, 2001). 

 

Primary synthesis of OT occurs in the magnocellular neurons of the 

paraventricular nucleus (PVN) and the supraoptic nuclei (SON) of the 

hypothalamus (I. Neumann, Koehler, Landgraf, & Summy-Long, 1994).  The 

peptide is then transported from these regions to the posterior pituitary where it is 

stored and released into the periphery (Inga D Neumann et al., 2013). This 

pathway is known as the hypothalamic-hypophysial axis.  OT is also synthesized 

in parvocellular neurons whose target terminals are within the CNS. (Caldwell, 

Lee, Macbeth, & Young, 2008).  OT can be individually released into the 

periphery and CNS but can also be released simultaneously with AVP (I. 

Neumann et al., 1994).   

 

Transgenic rodent models are a beneficial tool for visualising OT originating cells, 

pathways, and their terminal targets.  Fluorescent visualisation in transgenic rats 

has been used to examine OT expression in the PVN, SON and dorsal horn of the 

spinal cord following adjuvant arthritis chronic inflammation.  The transgenic rats 

were used to express the OT and the monomeric red fluorescent protein 1 (mRFP1) 

fusion gene.  The magnocellular and parvocellular OT pathways were visualized 

and it was concluded that OT-mRFP1 was more highly expressed in OT cells with 

OTR targets within the brain and periphery following periods of chronic 
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inflammation.  Using fluorescence, this study showed that chronic inflammation  

activated OT neurons within the magnocellular and parvocellular divisions of the 

PVN which suggest that OT expression may also have a role in sensory 

modulation within the body (Matsuura et al., 2015). 

 

OT is currently known to have one receptor.  The OTR is a member of the G 

protein-coupled receptor family (Barberis, Mouillac, & Durroux, 1998),(Caldwell 

et al., 2008).  G protein-coupled receptors are receptors that pass through the cell 

membrane and bind to receptor agonists which activate a transduction signalling 

pathway and results in targeted cellular responses that are a direct effect of the 

binding of the ligand, i.e. OT or AVP. (Trzaskowski et al., 2012),(Lee et al., 

2009).   

 

OTRs are widely distributed throughout the CNS.  In most species OTRs within 

the CNS are commonly found in the olfactory bulb, hippocampal formation, 

central amygdala (CeA), lateral amygdala, nucleus accuments (NAcc), neocortex 

and the hypothalamus (Insel, Gelhard, & Shapiro, 1991).   In humans, OTRs 

within the CNS are found within the nucleus of the vertical limb of the diagonal 

band of Broca, the substantia nigra pars compacta, the ventral part of the lateral 

septal nucleus, the preoptic/anterior hypothalamic area, the posterior 

hypothalamic area, and the substantia gelatinosae of the caudal spinal trigeminal 

nucleus and of the dorsal horn of the upper spinal cord, the basal nucleus of 

Meynert, as well as in the medio-dorsal region of the nucleus of the solitary tract 

(Loup, Tribollet, Dubois-Dauphin, & Dreifuss, 1991).   These differences in the 

distribution of OTRs within the CNS, is a possible explanation of the differences 

in social behaviours observed between species (Lee et al., 2009).  Figure 1.1.2, 
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taken from Gimpl et al. (Gimpl & Fahrenholz, 2001), show the receptor gene and 

a schematic of the OT receptor with specific amino acid residues involved in 

ligand binding. 

 

  

Figure 1.1.2.  The human oxytocin receptor gene.  (A) The organization of the 

human oxytocin (OT) receptor gene.  (B) A schematic representation of the human 

OT receptor.  This image shows the amino acid residues involved in ligand 

binding and the intracellular transduction events that happen after OT binding. 

 

The OTR gene is expressed differently in various tissues. In the uterus and the 

hypothalamus, the amount of OTR gene expression is heavily dependent on sex 

steroids, especially estradiol.  One study, using estrogen receptor knock out mice, 

showed that while the basal level of OTR expression was not dependent on the 

amount of estrogen present in the brain, it was necessary for the binding of the OT 

receptor within the CNS (L. J. Young, Wang, Donaldson, & Rissman, 1998).  

Although estrogen is thought to be important in the gene expression of the OTR, it 

is unclear whether OTR expression is predominantly regulated by the presence of 

estrogen (Gimpl & Fahrenholz, 2001).  OT and AVP receptors show a high 

degree of sequence identity.  Therefore, OT agonists/antagonists have been shown 

to have some affinity for AVP receptors (Barberis et al., 1998).  

A B 
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1.1.2 Oxytocin and the regulation of social behaviour in rodents 

 

The ability to recognise a conspecific is important for survival of self and species 

(Francis et al., 2014).  Upon recognition of a conspecific, the ability to elicit an 

appropriate response and form a social memory of an individual is also important 

in order to survive within a social group.  OT is a neuropeptide that has regulatory 

roles in a variety of these social processes including social behaviour, social 

memory and social recognition.   Using OTR knock out mice,  OT  and its 

receptors has been been shown to be involved in reacting to stressful stimuli and 

regulating social behaviour (Ferguson et al., 2000; Francis et al., 2014). OT 

influences the formation of social memory by affecting the processing of olfactory 

cues (Sanchez-Andrade & Kendrick, 2009).  The formation of social memories is 

imperative for behaviour that fulfils an animal’s need to live in a social group to 

be displayed (Sanchez-Andrade & Kendrick, 2009).   

 

1.1.2.1 Oxytocin and aggression 

 

Aggressive behaviour is usually a response to novel aspects of the animal’s 

environment and is a means of survival.  Aggression can be seen between same 

sex individuals, individuals of the opposite sex, as a defensive act of territory, or 

following capture of prey.  Aggression can loosely be defined as inflicting harm 

or injury on another who is motivated to avoid this harm or injury (Takahashi & 

Miczek, 2014).   
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Maternal aggression is an important protective mechanism to ensure that offspring 

are not under threat from a novel social stimulus (Bosch & Neumann, 2012).  

These threats (in the laboratory) usually include conspecifics, these conspecifics 

can include adult male intruders or novel, female individuals (Bosch & Neumann, 

2012).  An initial study used to determine any link between OT and aggression 

showed that OT knock out mice are less aggressive than their wild type 

conspecifics (W. S. Young, 3rd et al., 1998).  These initial findings suggest that in 

wild type mice, OT plays a role in aggressive behaviour.  Maternal aggression has 

been shown to be linked with the emotionality of the species being studied.  This 

emotionality correlates with the amount of OT released within the brain at the 

time of stress and perceived aggression (Bosch, Meddle, Beiderbeck, Douglas, & 

Neumann, 2005). High anxiety-related behaviour (HAB) rats have been bred in 

the laboratory to be model organisms for high anxiety behaviour.  In contrast, low 

anxiety-related behaviour rats (LAB) have been bred in the laboratory to exhibit 

low levels of anxiety.  HAB lactating rats were more aggressive than LAB 

lactating rats when exposed to the maternal defense test.  The HAB rats displayed 

more raised back defensive postures and an increased anxiety level upon intruders.  

OT release in the PVN and CeA also increased in the HAB rats and only 

minimally increased or did not increase at all in the LAB rats (Bosch et al., 2005).  

LAB rats that were infused with OT into the PVN or CeA also showed an 

increased level of aggressive behaviour when faced with an intruder.  These 

findings suggest that OT release in the PVN and CeA were critical for the 

regulation of aggression in maternal care of offspring (Bosch et al., 2005). Rodent 

models with lesions of the PVN also show a decrease in aggression and maternal 

like behaviours.  Lactating rats with PVN lesion showed a decrease in the 

frequency of attack and the duration of attack on an imposing male compared to 
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the control with an intact PVN (Consiglio & Lucion, 1996). This finding indicates 

that the aggressive behaviours seen in nursing rats towards intruders may be 

linked to the PVN, the main source of OT. OT injected into the BNST was also 

shown to reduce maternal aggression by reducing the frequency of biting by the 

Wistar rat dam (Bosch, 2011).   

 

 

1.1.2.2 Oxytocin and anxiety 

 

OT also has regulatory roles in anxiety and stress-coping.  OT has been shown to 

be an anxiolytic neuropeptide (Lukas & Neumann, 2013).  Following the 

introduction to a stressful stimulus, the OT system is activated. This has been 

shown through increased OT gene expression within the SON, increased 

electrophysiological activity of OT neurons, and peripheral and intracerebral OT 

release (Gibbs, 1984; Lang et al., 1983; I. D. Neumann & Slattery, 2016; Onaka & 

Yagi, 1993).  In male rats exposed to novelty or social defeat, there is a rapid 

increase in OT release into the periphery as well as the SON (I. D. Neumann, 

2007).  An increased release of OT into the periphery and PVN has also been seen 

in female rats who are defeated by an aggressive lactating dam (I. D. Neumann, 

Toschi, Ohl, Torner, & Kromer, 2001).  It is reasonable to conclude that anxiety 

inducing stimuli activate the OT system, release peripheral and central OT and 

provide an analgesic effect.  This analgesia reduces stress levels in the affected 

individual and allows an appropriate behavioural response to the novel or stress 

inducing stimulus (I. D. Neumann, Torner, & Wigger, 2000). Following the 

release of OT in the brain, OT acts as a modulator of behavioural activities related 

to anxiety.  These anxiolytic effects are particularly increased during sexual 
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activity and lactation (I. D. Neumann et al., 2000).  Female OT knock out mice 

show greater levels of anxiety behaviour than wild type mice during maze tests 

(Amico, Mantella, Vollmer, & Li, 2004).  OT and its anxiolytic effects are 

important in an individual’s response to social environments. In stress free 

environments, the OT system is at a low level of activity and has not been shown 

to have an effect on anxiety maintenance.  This suggests that the OT system has a 

specific role in response to novel, stressful environments (I. D. Neumann & 

Slattery, 2016).  An anxiolytic effect has been seen in female HAB rats after 

chronic intracerebroventricular (icv) injection of OT.  When LAB female rats 

were given OTR antagonists they displayed an increased level of anxiety 

behaviours compared to LAB rats who were not treated with OTR antagonists 

(Slattery & Neumann, 2010). 

 

 

1.1.2.3 Oxytocin’s role in social cognition: social approach, social recognition, 

and social memory 

 

In order for social interactions to occur, an individual must be willing to approach 

another and/or be approached by another while displaying a minimal agonistic 

behavioral response.  This desire for social interaction is involved in the ability to 

live in social groups and to aide in social memory (Lukas, Toth, Veenema, & 

Neumann, 2013).   In order for any type of social interaction to occur, the 

individual must overcome social avoidance behaviours and initiate social 

approach (I. D. Neumann & Landgraf, 2012).  The social preference test paradigm 

measures an individual’s time spent with a social stimulus such as a conspecific 

compared with the time spent with a non-social stimulus, such as an inanimate 
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object.  This choice is defined as a social preference (I. D. Neumann & Landgraf, 

2012).  OT has been shown to facilitate social approach and to prevent social 

avoidance in both rats and mice (Anacker & Beery, 2013; Ben-Ami Bartal, 

Decety, & Mason, 2011).  OT neurons are active in the CNS during social 

preference behaviours.  When this activity was simulated using administration of 

an OTR antagonist, the antagonist impaired social approach and increased social 

avoidance.  This increase in avoidance was reversed when mice and rats were 

given synthetic OT following a ten minute episode of social defeat (Lukas et al., 

2011).  Another social paradigm used for establishing and measuring social 

approach has also been used to show OT’s importance in social approach.  This 

paradigm uses electric foot shocks during the investigation of a conspecific.  This 

paradigm results in social fear conditioning which reduces social investigation and 

social preference of the conspecific for a short and prolonged period of time (Toth, 

Neumann, & Slattery, 2012).  This avoidance of social approach due to the social 

fear conditioning has been shown to be reversed by the central administration of 

OT (Lukas & Neumann, 2013).   

 

As well as social approach, the recognition of individuals and the discrimination 

between individuals is also an important part of the social process.  In laboratory 

animals, social memory can be measured using social discrimination tests.  These 

tests expose an experimental rodent to a conspecific for a period of time, the 

conspecific is then removed for a period of time, from 30 minutes up to days (I. D. 

Neumann & Landgraf, 2012).  The familiar conspecific is then replaced alongside 

a novel conspecific.  Social memory results in the experimental rodent spending 

less time investigating the familiar rodent, and more time investigating the novel 

conspecific (Engelmann, Landgraf, & Wotjak, 2004).  This social investigation 
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includes using olfactory systems to investigate the anogenital region of 

conspecifics (I. D. Neumann & Landgraf, 2012).  Studies investigating both OT 

and OT receptor knock out mice have shown the importance of the neuropeptide 

OT in the regulation of social recognition and memory (Lukas et al., 2013).  Rats 

examined for their abilities to discriminate between known and novel conspecifics 

have shown that exposure to a previously introduced conspecific within 180 

minutes of the pre-exposure are able to discriminate between a pre-exposed 

conspecific and a novel conspecific.  These rats were then given icv 

administration of OT.  This administration showed an effect on conspecific 

recognition.  OT receptor antagonists have been shown to have an effect on social 

memory.  When administered immediately after the introduction of the 

experimental rodent to a conspecific, the OT receptor antagonist interfered with 

the rat’s ability to establish a memory of, and therefore recognize, a conspecific 

(Engelmann, Ebner, Wotjak, & Landgraf, 1998).  This suggests that OT and/or its 

receptors are involved in the process of forming short and long term memory of 

conspecifics (Engelmann et al., 1998).   

 

 

 

1.1.2.4 Affiliative behaviours: maternal behaviours and pair bonding 

 

OT and AVP play roles at various stages.  These roles include inducing delivery 

as well as working after the delivery to initiate and maintain nursing and maternal 

behaviours. This physiological adaptation to reproduction is seen as an increased 

amount of the neuropeptides OT and AVP being produced as well as an increase 

in the number of receptors produced at this time (Bosch & Neumann, 2012).   
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Maternal care and maternal aggression, which characterise maternal behaviour, 

allows a female animal to ensure her offspring’s survival.  Maternal care involves 

providing the infant with food, warmth, and adequate social stimuli.  Maternal 

aggression constitutes the protection of the infant upon a potential threat (Bosch & 

Neumann, 2012).  Arched back nursing is a posture of feeding that has a direct 

correlation with maternal care.  Rats who spent more time in the arched back 

feeding position showed a higher level of maternal care including licking, 

grooming, and feeding.  When OT receptors were blocked, the time mothers spent 

arched back nursing decreased along with other forms of maternal care given to 

the infants (Pedersen & Boccia, 2003).  Lesion of the PVN as well as the use of 

OT antisense techniques result in increased maternal aggression in rats allowing 

us to conclude that projections of OT neurons from the PVN have a role in 

modulating maternal aggression (Giovenardi, Padoin, Cadore, & Lucion, 1998).  

Studies done on maternal aggression have shown that changes in maternal OT 

levels in the CNS increase in the days before parturition and increases to a 

maximum level in the early lactation phases.  OT levels then drop off at the time 

of weaning (Caughey et al., 2011).  These neuropeptide fluctuations are likely the 

cause of behavioural changes seen in mother rats when presented with an intruder.  

When lactating females were presented with male intruders, 84.5 percent reacted 

with fighting behaviours in order to protect their young (Erskine, Denenberg, & 

Goldman, 1978).  Studies in rats have shown that the blockade of the OT receptor 

with an OT antagonist following parturition leads to a reduction in the onset of 

maternal behaviour.  This reduction of maternal behaviour consisted of time spent 

grouping pups, time spent on the nest with pups, time grooming pups and time 

feeding pups (van Leengoed, Kerker, & Swanson, 1987).  OT knock out mice 
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showed a reduction in the maternal care provided to foster pups compared to wild 

type mice.  OT knock out mice that were placed with foster pups showed 

significantly less maternal behaviour such as retrieving pups, pup-licking 

frequency, and time spent crouching over pups on the nest.  This suggests that OT 

may play a role in the motivation to retrieve pups and to take them to a safe 

location (Pedersen, Vadlamudi, Boccia, & Amico, 2006). 

 

Pair bonding is a reproductive social behaviour that is important in reproduction 

and care of offspring.  Pair bonding is facilitated by OT and has been extensively 

studied in the prairie vole which exhibits life-long monogamous relationships 

(Lukas & Neumann, 2013).  Pair bonding is defined and assessed by the partner 

preference paradigm in which an increased amount of time is spent in close 

proximity to the pair bonded partner than in close proximity to a novel conspecific 

(L. J. Young & Wang, 2004). Pair bonding in females is facilitated by the release 

of OT.  In female prairie voles, icv injection of synthetic OT induces pair – 

bonding between a female and male prairie vole without previous mating.  Pair – 

bonding prior to mating has also shown to be prevented when pre-treatment of icv 

OTR antagonist is used (L. J. Young & Wang, 2004).  OTR binding in the NAcc 

has also been shown to be increased in a prairie vole in comparison to a non-

monogamous female montane vole.  This difference in OTR binding further 

supports the specific role of OT and pair-bonding in prairie voles (Insel & Shapiro, 

1992).   

 

When OT’s neuronal contributions in pair bonding were studied, it was found that 

no matter the species studied or its monogamous or non-monogamous lifestyle, 

OT’s immunoreactivity of neurons was consistent in a number of locations across 
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numerous brain regions including the PVN, SON, and the BNST (K. A. Young, 

Gobrogge, Liu, & Wang, 2011).  Further studies found that while OT neurons 

were not significantly different in monogamous and non-monogamous species, 

the number and patterns of OT receptors did differ between monogamous and 

non-monogamous species (Hammock & Young, 2002).  Therefore, OT receptors 

may be responsible for these differences in reproductive strategies between 

monogamous and non-monogamous species of rodents. 

 

1.1.3 OT has been linked to social abnormality 

 

The OT receptor gene has been shown to have a haploinsufficiency effect(Sala et 

al., 2013) on the phenotype of an individual. SIM1 haploinsufficiency results in 

the reduction of the bHLH-PAS transcript.  The SIM1 transcript is needed for the 

correct formation and development of the neurons within the PVN and SON.   

Because the neurons that extend from the PVN and SON play a critical role in 

homeostatic processes and the secretion of OT and AVP, the SIM1 gene is an 

effective method for analysing the effects of gene deletion of haploinsufficiency 

(Swanson & Sawchenko, 1983).  Mice born with the full deletion of the SIM1 

gene die shortly after birth while mice born with SIM1 haploinsufficiency display 

a phenotype with a reduction in the number of OT and AVP neurons (Duplan, 

Boucher, Alexandrov, & Michaud, 2009).  Mice who are heterozygous for the 

OTR gene (OTR +/-) are shown to have a gene dosage effect on behavioural 

phenotype (Sala et al., 2013).  Sala et al found that (OTR +/-) mice had 50% less 

OT receptors in the brain than homozygous (OTR +/+) mice.  OTR null mice (OTR 

-/-) have increased aggression, impaired cognition, impaired sociability and a 

preference for social novelty while (OTR +/-) have normal social functioning in 
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aggression and cognition (Sala et al., 2013).  This suggest that the OTR has a 

haplosufficiency effect with gene dosage affecting the severity of social 

abnormality depending on the transcription of the gene.   

 

OT dysregulation has been investigated in Autism Spectrum Disorder (ASD), 

Prader-Willi Syndrome (PWS), and Williams Syndrome (WS).  These 

neurodevelopmental disorders are linked with behavioural and social deficits in 

individuals in which they effect (Francis et al., 2014). ASD arises from 

interactions between genetic predisposition and environmental factors (Bailey et 

al., 1995).  Currently there is no treatment for ASD but there are several current 

studies using intravenous OT or intranasal OT to treat the core symptoms of ASD.  

Andari et al. found that ASD individuals treated with IN-OT interacted in a social 

partner game more than the control and had enhanced feelings of trust with that 

person.  These same persons were then studied for gazing time at a face following 

IN-OT administration and the gazing time was increased.  This study found that 

when patients were administered OT, they had more appropriate social behaviours 

and responded more strongly to others (Andari et al., 2010).  PWS is characterised 

by behavioural difficulties, stubbornness, difficulty reading facial expressions, 

compulsive behaviours, difficulties in language development and eating 

abnormalities (Francis et al., 2014).   People with PWS have a decreased number 

of neurons that produce OT in the PVN along with a decrease in the amount of 

OT found in the CSF (Martin et al., 1998; Swaab, Purba, & Hofman, 1995).  

Dombret et al. showed that mice with a loss of the Maged1 gene, used as a model 

for PWS, treated with OT were shown to have increased social interactions and an 

increased level of OT in the hypothalamus (Dombret et al., 2012).  Human 

individuals affected by PWS who were treated with IN-OT showed a decrease in 
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disruptive behaviours and an increase of trust in others (Tauber et al., 2011).  WS 

has a behavioural phenotype of being socially fearless with poor judgement and a 

high drive to have social interactions.  These individuals also have high anxiety 

levels (Francis et al., 2014).  WS seems to be the reciprocal of ASD as people 

with WS have an increase in OT levels compared to controls and display an 

increase in approach to strangers and a decrease in the ability to recognise and 

adapt to social behaviours (Dai et al., 2012). These finding suggest that OT may 

have a dosage effect with high doses of OT possibly leading to WS and low doses 

possibly leading to ASD. As there seems to be disruptions in the OT system, and 

resulting behavioural disorders, OT is a good candidate for treatment research in 

these genetic diseases. 

 

 

1.2  Vasopressin 

 

The main focus of studies on physiological roles of AVP has revolved around 

osmolality regulation (including downstream consequences for cardiovascular 

parameters) as well as circadian rhythmicity. Circulating levels of AVP control 

the regulation of water re-absorption.  As blood osmolality increases, 

hypothalamic neurons release AVP mostly targeting AVPR2s in the kidney where 

permeability of water is increased.  This causes an increase in water conservation 

and a decrease in blood osmolality(Caldwell et al., 2008). AVP and AVPR1a, but 

not OT, have been found in the suprachiasmatic nucleus (SCN) where they are 

involved in regulating circadian rhythmicity (Li, Burton, Zhang, Hu, & Zhou, 

2009; Moore, 1983).  Each animals’ behaviour and physiology is influenced by 
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this circadian rhythm or clock within the brain.  AVP is found to be 

approximately five times higher in the cerebral spinal fluid (CSF) during the 

morning hours than during the hours of the night (Reppert, Artman, Swaminathan, 

& Fisher, 1981).  An AVPR1a reporter has been used to show that a deficiency in 

this reporter can lead to a decrease in the circadian rhythmicity of V1aR deficient 

(V1a−/−) mice.  This finding links VP to important social behaviour in rodents 

such as sleep – wake cycles (Li et al., 2009). 

 

Fewer studies have investigated AVP and its importance in social behaviours 

compared to the vast amount of studies that have been performed on the 

importance of OT in social and physiological functions (Insel & Shapiro, 1992; 

Lukas et al., 2011; Sala et al., 2013).  Since OT and AVP are so genetically and 

structurally similar, even exhibiting affinity for the other’s receptor (Gimpl & 

Fahrenholz, 2001), it is important to understand AVP’s roles and effects within 

the periphery and CNS in relation to behaviour and novelty.  Specifically, any 

effects AVP may have on an individual’s preference for a familiar versus a novel 

conspecific or object. 

 

1.2.1 Neurobiology of vasopressin 

 

The AVP gene is located on chromosome 2 in mice and on chromosome 20 in 

humans.  The gene contains three exons and two introns with intergenic regions 

that vary between the species.  The intergenic regions of the genes contain 

regulatory DNA sequences that control expression of AVP (Gainer et al., 2001).  

AVP differs from OT by only two amino acids at positions 3 and 8 (Lee et al., 

2009).  While the AVP gene is on the same chromosome as the OT gene, AVP is 
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orientated in an opposite transcriptional direction, suggesting that it evolved from 

a duplication of the same gene (Caldwell et al., 2008) (see Figure 1.4).  AVP is 

also a neurohypophyseal nonapeptide hormone but because of the change in 

amino acids, it results in a basic amino acid (lysine, arginine) instead of the 

neutral amino acid found in OT (Gimpl & Fahrenholz, 2001).  This Lys, Arg 

change in the AVP compound is essential in the recognition of AVP by the AVP 

receptors (Gimpl & Fahrenholz, 2001).  See Figure 1.1.1 for the structural 

organisation of the AVP gene and it transcriptional direction.  

 

Alongside OT, the primary synthesis of AVP occurs in the magnocellular neurons 

of the PVN and the SON of the hypothalamus (I. Neumann et al., 1994).  The 

peptide is then transported from these regions to the posterior pituitary where it is 

stored and released into the periphery (Inga D Neumann et al., 2013). This 

pathway is known as the hypothalamic-hypophyseal axis.  As well as in 

magnocellular neurons, AVP is synthesized in parvocellular neurons whose axons 

remain within the CNS. The release of AVP from these projections allows the 

peptide to act within the CNS at its target receptors (Caldwell et al., 2008). AVP 

can be released individually into the periphery and CNS but can also be released 

simultaneously with OT (I. Neumann et al., 1994).   
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Figure 1.2.2.  Localization of vasopressin (AVP) cells within the 

paraventricular nucleus of the hypothalamus (PVN) and the supraoptic nucleus 

(SON) in a cross section of the mouse brain stained for AVP.  (A) depicts a 

bilateral image of AVP neurons stained within the PVN.  (B) depicts AVP neurons 

stained within the SON.  3v: third ventricle. 

 

AVP receptors are members of the G protein-coupled receptor family (Barberis et 

al., 1998).  AVP has three receptors, AVPR1a, AVPR1b, and AVPR2 (Caldwell 

et al., 2008).  AVPR1a and AVPR1b bind to GTP binding proteins and act 

through the phospholipase C activity while AVPR2 couple to G’s and act through 

the cyclic AMP system (Bankir, 2001).  AVP receptor binding in the brain is 

found in the bed nucleus of the stria terminalis, the amygdala, the NAcc, the 

diagonal band of Broca, the dorsal hippocampus, and the caudate nucleus 

(Dumais & Veenema, 2016).  The AVPR1a is found in the liver, kidney and 

vasculature (Caldwell et al., 2008).  The AVPR1b is found in the anterior pituitary 

but is detected in many other tissues throughout the body (Caldwell et al., 2008).  

AVPR2 is also found in the kidney (Caldwell et al., 2008). Again, AVP receptors 

show a high degree of sequence identity with OT receptors, therefore AVP 

agonists/antagonists have been shown to have affinity for OT receptors (Barberis 

et al., 1998).  This alternate binding may have interaction consequences or 

physiological effects on the organism (Francis et al., 2014).  The following image 

 PVN 

 SON 
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depicts the AVPR1a and its ligands for binding (Thibonnier, Coles, Thibonnier, & 

Shoham, 2001). 

 

Figure 1.2.3. Vasopressin 1a receptor and its ligands for binding. This image 

shows the amino acid residues that are involved in ligand binding and the 

intracellular transduction events that happen after vasopressin binding. 

 

Enhanced green fluorescent protein (eGFP) transgenic rats are used to track AVP 

expression and its targets.  The VP-eGFP fusion gene has been used to study AVP 

release in response to nociceptive stimulation (Suzuki et al., 2009).  Suzuki et al. 

measured AVP-eGFP fusion gene expression following subcutaneous injection of 

saline or formalin into the paws of rats.  This study, using the visualisation of the 

eGFP, showed that AVP levels in plasma were increased 15 min after formalin 

injection.  AVP levels in the PVN were also increased, especially in the 

parvocellular division of formalin injected rats (Suzuki et al., 2009).   
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1.2.2 Vasopressin and the regulation of social behaviour in rodents 

 

Although fewer studies have focused on the importance of AVP in response to 

social stimuli, AVP has regulatory roles in a variety of social processes including 

social behaviour, social memory and social recognition.  AVP has receptors in the 

PVN and SON that are important for regulating social behaviour and reacting to 

stimuli which may be stressful (Francis et al., 2014).  

 

1.2.2.1 Vasopressin and anxiety 

 

AVP also has regulatory roles in anxiety and stress-coping.  While OT has been 

shown to be an anxiolytic neuropeptide (Lukas & Neumann, 2013), AVP has been 

shown to have anxiogenic effects (Heinrichs, von Dawans, & Domes, 2009).  

Studies exploring AVP’s link with anxiety have shown that anxiety in rats is 

increased by AVPR1a agonists while AVPR1a antagonists reduce anxiety (Mak, 

Broussard, Vacy, & Broadbear, 2012), (Appenrodt, Schnabel, & Schwarzberg, 

1998).  Transgenic mice that lack the AVPR1a and genetically mutated rats that 

do not produce AVP show lower levels of anxiety than wild type rats (Zelena et 

al., 2008).  As well as anxiogenic effects, the release of AVP from the PVN and 

SON following stress and anxiety triggers the release of adrenocorticotropin from 

the anterior pituitary and glucocorticoids from the adrenal glands. The release of 

these glucocorticoids produces an array of effects in response to the stressful 

stimulus.  These responses include mobilising energy, increasing cardiovascular 

tone and delaying processes in the body that are not critical and controlling 

osmolality (Fodor et al., 2016).   
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1.2.2.2 Vasopressin and aggression 

 

AVP is co-released with OT within the brain and has been shown to increase 

aggression in lactating rats protecting their offspring.  Following the infusion of 

AVPR1a antagonist, the time of initiation of first attack in Wistar rats was 

reduced.   There was also a reduction in the overall aggressive behaviour of 

female, lactating Wistar rats (Bosch, 2011).  AVP has been used in HAB and 

LAB dams to show changes in levels of maternal aggression as a result of AVP 

release in the brain.  As discussed previously, HAB rats show more maternal care 

and aggression than LAB female rats.  In more aggressive HAB female rats, a 

single injection of an icv AVPR1a antagonist decreases the frequency of 

aggressive behaviours while an icv infusion of synthetic AVP in LAB female rats 

increases the frequency of aggressive behaviours following intrusion by a 

conspecific (Bosch, 2011).  The release of AVP has been shown to rise in the CeA 

of HAB rats, but not LAB rats, when rats are exposed to the maternal defense test.  

This rise in AVP within the CeA correlated with the observation of increased 

maternal aggression in the HAB rats, and not the LAB rats, when the rats were 

exposed to novel conspecifics (Bosch & Neumann, 2010).   

 

1.2.2.3 Vasopressin and affiliative behaviours: maternal behaviours and pair 

bonding 

 

AVP levels in the CNS increase in the days before parturition, finally increasing 

to a maximum level in the early lactation phases.  AVP levels then drop at the 

time of weaning (Caughey et al., 2011). When lactating females were presented 
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with male intruders, over 80 % initiated aggressive behaviours in order to protect 

their young (Erskine et al., 1978).   

 

A role of male prairie voles, facilitated by pair bonding, is to guard nests from 

intruders (K. A. Young et al., 2011). There is a difference in importance of OT 

and AVP between the sexes in relation to pair bonding.  In male prairie-voles, 

AVP is the neuropeptide associated with pair-bonding.  Centrally administered 

AVP in male prairie-voles increases partner preference without prior mating.  

During mating, male prairie-voles have an increased release of AVP in the ventral 

pallidum.  This region also has an increased number of AVPR1a receptors in 

comparison to non-monogamous montane voles (Insel & Shapiro, 1992).  

 

1.2.2.4 Vasopressin’s role in social cognition: social approach, social 

recognition, and social memory 

 

The importance of AVP in social approach has not been studied in as much detail 

as OT.  One investigation in the role of AVP in social approach showed that an 

AVPR1a antagonist had no effect on the social approach behaviour of male 

Wistar rats (Lukas et al., 2011).  Another study showed that the use of an 

AVPR1b antagonist reduced social avoidance as a result of social defeat in mice 

(Litvin, Murakami, & Pfaff, 2011).  Icv injection of AVP into male rats has been 

shown to result in prolonged social memory formation.  Rats exposed to an icv 

AVP injection following exposure to a conspecific were able to increase their 

conspecific social recognition time by 120 minutes.  These studies have shown 

that AVP injected into the central nervous system can increase the rat’s ability to 

form and consolidate social memories (Bielsky & Young, 2004).   



 

25 

 

 

1.3 Oxytocin and vasopressin: empathy and pro-social behaviour 

 

There is strong support that empathy has significant evolutionary underpinnings 

and is thought to have evolved alongside parental care as it is important for a 

mother care such as nurturing and feeding.  This initial maternal empathy is 

thought to have evolved over time into the ability to recognise and respond to the 

behaviours of others (Gonzalez-Liencres, Shamay-Tsoory, & Brune, 2013).  The 

ability to recognize another individual’s situation was of an evolutionary 

advantage to a species (McEwen & Akil, 2011).  The experience of empathy 

allows individuals to live in social groups and allows bonding between individuals 

such as pair bonding and parent-offspring bonding.  The definition of empathy is 

broad, and ranges from having feelings of concern for others to having feelings 

and emotions that mimic another individual’s feelings and emotions (McEwen & 

Akil, 2011). The experience of empathy and empathetic motivation leads into pro-

social behaviour.  Pro-social behaviour is defined as an action or actions that are 

intended to benefit another individual (Ben-Ami Bartal et al., 2011).  Rats have 

been shown to be capable of empathetic and pro-social behaviour.  Rats that were 

previously housed together showed empathy and pro-social behaviour when their 

familiar conspecific was placed in a restrainer.  The free rat would, quickly and 

intentionally, open the restrainer and free the familiar conspecific even when other 

rewards were offered such as chocolate.  These rats showed that an individual acts 

pro-socially, via helping behaviours, when the individual detects and responds to 

a familiar conspecific’s distress.  The rats did not open the door to the restrainer 

when the restrainer was empty or when it housed a toy (Ben-Ami Bartal et al., 

2011).  A second example of rats showing empathy and pro-social behaviour can 
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be seen when known conspecifics were soaked with water.  A rat that witnessed a 

soaked, familiar conspecific inside a water area rapidly showed door opening 

behaviour.  When the same rats were put in the arena and a conspecific was not 

inside the water area, the rats showed no interest in opening the water area door.  

Rats that had previously experiences the soaking water area opened the door for a 

familiar conspecific more quickly than rats who had not previously experienced 

soaking.  This study also showed that rats would help a familiar conspecific 

escape the soaking water area before they would obtain a food reward.  The 

results show, especially following the increased release time by rats who had 

previously experienced the water area, that rats can behave pro-socially and may 

be experiencing feelings of empathy towards their familiar conspecifics (Sato, 

Tan, Tate, & Okada, 2015). 

 

As OT and AVP have been affiliated with a wide range of social behaviours, OT 

and AVP may also be involved in the regulation of empathy and pro-social 

behaviours that are shown above. One experiment analysed a single polymorphic 

region (SNP) within the OTR and a polymorphic repeat allele within the AVPR1a. 

The experiment selected regions that have been previously shown to contribute to 

empathetic and prosocial behaviour (Uzefovsky et al., 2015).  The OTR SNP 

rs53576 has been shown to increase behaviours of empathy in both clinical and 

non-clinical test subjects (Bryan et al., 2009) and the AVPR1a-327 repeat allele 

has been associated with lower amounts of altruistic giving and autism (Avinun et 

al., 2011), (Kim et al., 2002).  The presence of these two polymorphisms, the 

OTR SNP rs53576 or the AVPR1a-327 repeat allele, in individuals resulted in a 

lower level of empathy when the individuals were assessed using questionnaires 
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that reported levels of empathy (Uzefovsky et al., 2015).  This experiment showed 

a link between OT, AVP, and empathy. 

 

1.4 Oxytocin, vasopressin and Novelty: focus on responsiveness to objects 

 

An individual’s preference for familiar versus novel conspecifics has been shown 

to be effected by OT (Madularu, Athanassiou, Yee, Kenkel, et al., 2014).  Social 

discrimination tests, as described previously, showed that without an experimental 

variant, an individual would spend more time exploring a novel conspecific than a 

familiar conspecific, these individuals are able to discriminate between a 

previously explored conspecific and a new one (Engelmann et al., 2004).  OT has 

effects preference for familiar versus novel conspecifics in prairie voles.  OT 

administered to female prairie voles increased time spent with a familiar 

conspecific versus a novel conspecific. These familiar conspecific preferences are 

diminished using OTR antagonists in the same animals (Madularu, Athanassiou, 

Yee, & Mumby, 2014).   

 

Familiarity and novelty are characteristics that apply not only to individuals, but 

also to inanimate to objects.  Novelty is a change from the expected event or 

stimulus based on previous experience and internal estimates of outcome of the 

new stimulus (Antunes & Biala, 2012).  The drive to explore novel objects is 

thought to simultaneously create conflict within rodents by evoking avoidance and 

approach behaviours.  Approach behaviours reflect an animal’s willingness to 

explore a novel object while  avoidance behaviours reflect the animal’s fear of  

novelty (Dulawa, Grandy, Low, Paulus, & Geyer, 1999).  Animals tend to explore 

novelty because of their natural drive to do so, this allows us to assume it is 
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beneficial to the individual.  Although, this natural drive can be observed, the 

exact physiological changes leading to this drive are still unknown (Baxter, 2010).   

Two papers, one using rats and one using non-human primates, suggest that 

preference for novelty may stem from incest avoidance and preference for 

unfamiliar individuals (Carter, DeVries, & Getz, 1995; Parr, Heintz, Lonsdorf, & 

Wroblewski, 2010). In contrast to exploring novelty, when individuals are in safe, 

familiar environments, they have lower anxiety levels (Anacker & Beery, 2013).  

The exploration of a novel environment or stimulus can be a risky behaviour as it 

may increase the level of exposure one experiences in relation to predators or 

sources of infection.  Therefore, in order to approach a novel stimulus, one not 

only needs to not only have the curiosity to explore but also needs to suppress risk 

avoidance (Smith, Wilkins, Mogavero, & Veenema, 2015).  While individuals 

explore novelty, there are also avoidance behaviours because there is safety in 

familiarity.  Although it is clear that OT facilitates preference for familiar 

conspecifics, it is unclear if OT, or its closely related neuropeptide AVP, 

facilitates preference for inanimate, or novel, non-social objects.  

 

One study using calves to investigate the serum levels of OT and the resulting 

investigative nature of the calf showed that an increased level of serum OT 

concentration resulted in an increased amount of time investigating novel objects 

(Chen, Tanaka, Ogura, Roh, & Sato, 2015).  A 1993 experiment showed that rats 

put in a novel environment of a painted black box coupled with an auditory 

stimulus had decreased plasma levels of AVP compared to a control and had no 

change in OT expression (Onaka & Yagi, 1993).  Another study using prairie 

voles to assess object preferences found that saline treated controls displayed 

preference for novel objects opposed to familiar objects, OT treated voles did not 
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demonstrate an object preference, and OTR antagonist treated voles showed 

preference for the novel object (Madularu, Athanassiou, Yee, Kenkel, et al., 2014).  

A similar study using rats to assess object preference injected OT into the left 

ventricle.  After 30 minutes, injected rats showed a preference for the familiar 

object while saline injected rats showed preference for novel objects.  Four hours 

after injection, both the OT injected rats and the saline injected rats showed a 

preference for novel objects (Madularu, Athanassiou, Yee, & Mumby, 2014).  

Together, these studies suggest that OT either has no effect or increases and 

individual’s exploration of a familiar object while AVP levels decrease in 

response to novelty.  While these studies have interesting conclusions about the 

importance of OT and preference for novelty, they have not analysed the neuronal 

activity of OT in response to novel versus familiar exposure to objects. 

 

Effects of a novel environment or stimulus on the expression of OT and AVP may 

be helpful in determining whether these neuropeptides are important in the brain’s 

regulation of the response to novel stimuli. As discussed previously, OT and AVP 

have been implicated in the stress response.  Central and peripheral levels of OT 

increase in response to stressful stimuli including novel environments, 

conditioned fear and noxious stimuli (I. Neumann et al., 1994; Onaka, 2004).  A 

novel object compared to a familiar one may be stressful to an individual.  OT and 

AVP’s roles in stressful responses as well as their roles in familiar versus novel 

preference suggest that they may be good candidates for studying neuronal 

changes within the brain as a response to novelty.  As we are aware that OT and 

AVP are highly expressed in the PVN and SON (W. S. Young, 3rd & Gainer, 

2003), it is reasonable to explore these areas in relation to neuronal activity in 

mice exposed to a familiar versus a novel stimulus.  
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1.5 Specific Aims 

 

While current literature is successful in identifying many of the physiological and 

behavioural responses associated with OT, AVP and their receptors, there is still 

little evidence to confirm if there are any changes of OT and/or AVP neuronal 

activity within the paraventricular nucleus and supraoptic nucleus of the 

hypothalamus in response to a novel versus a familiar stimulus.  It is expected that 

activity of OT and AVP neurons will be suppressed in animals exposed to a novel 

(thus, anxiety inducing) object stimulus.  Therefore, the current set of studies will 

determine (a) OT-R blockade’s effects on the amount of time spent with a novel 

object (b) the PVN/SON OT neuronal activity changes in response to exposure to 

a novel object (c) the PVN/SON AVP neuronal activity changes in response to 

exposure to a novel object.  These findings will lead to a better understanding of 

neuroendocrine responses to novelty, underpinning further research on health 

pathologies that are associated with abnormal behaviours in novel social and 

inanimate environments, e.g., as seen in individuals with social abnormalities.  
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2 Chapter 2 

Methods 

2.1 Animals 

 

All experiments were approved by the University of Waikato’s Ethics Committee 

and adhered to all policies put in place by the Animal Welfare Act 1999.   

Female mice, strain C57BL/6, were housed in a 12 hour light/dark cycle (lights on 

at 07:00) and were 12 weeks old. The mice were housed with two other females in 

a 23°C room.  The animals weighed an average of 25 g.  Mice were provided with 

ad libitum access to standard rodent chow (Teklad) and tap water until the 

beginning of the experiment.  Experiments were performed between 9am and 

12pm.   

 

2.2 Experimental Arena 

 

The experimental arena consisted of a large, transparent plexiglass container, 

which was separated into three compartments.  The compartments were equally 

sized and were separated by two plexiglass walls.  The mice were not able to 

move between compartments.  In the left and right compartments, not in the 

middle neutral zone, a mouse was placed with either a familiar blue bottle lid or a 

novel yellow plastic brick.  These objects were taped to the floor of the 

compartment to ensure the object was not moved by the individual.  This 

experimental area is shown in Fig 2.1. 
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Figure 2.1.1 Experimental set up of the arena for the novel vs familiar 

exposure of an object.  This experimental arena consists of three plexiglass 

compartments.  The middle compartment remained neutral, or without an 

individual placed in it while the right (compartment B) and left (compartment A) 

compartments were used for the study.  The novel brick was placed in 

compartment A and the familiar object was placed in compartment B. 

 

2.3 Experiment 1: OT receptor antagonist L-368,899 and its effect 

on time spent exploring familiar and novel objects 

 

Each animal was subjected to habituation, familiarization and testing sessions. 

Two habituation sessions (10 min each) in which animals were placed in the 

testing apparatus (60x60 cm arena; grey floor, camera placed 90 cm above) were 

administered 1 and 2 days before the familiarization session. In the familiarization 

session (5 min), mice were allowed to investigate two identical objects in the 

apparatus; the two objects presented at that time were not used in subsequent 

testing.  

Familiar object 
Novel 

object 

Closed 

compartment A 

Closed 

compartment B 
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The test objects were glued to the bottoms of the arena at opposing corners. The 

test objects were blocks varied in height and width (6x3x2 and 10x3x2 cm). The 

objects were attached onto the flooring at 5 cm from opposing corners. Familiar 

objects were placed for 24 h before the test in the cage.  

Injections: Each mouse was accustomed to receiving intraperitoneal (IP) 

injections.  IP drug administration was performed 5-10 minutes prior to the 

beginning of each test.  L-368,899 (Tocris) was dissolved in isotonic saline just 

prior to use and injected at the dose of 1mg/kg body weight. 

Novel object preference was assessed 30 min after the familiarization session. All 

mice received both treatments (saline or L-368,899), but on different testing days. 

As such, each mouse was subjected to two testing sessions. Each session was 

recorded and object preference was determined as time investigating the novel 

object divided by total time investigating both objects. A mouse was considered to 

be investigating an object when its head was oriented within 45° and 1 cm from 

the object. Rearing with the head oriented upward was also considered, if at least 

one paw was placed on the object. Climbing on the object or sitting on it was 

excluded.  A t-test was used to test for significance. Results were significant with 

a p value less than or equal to 0.05. 
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2.4  Experiment 2: Activation of OT and AVP neurons in the PVN 

and SON following exposure to a familiar or novel object in a 

familiar environment. 

 

Mice were group housed in cages.  The groups consisted of five mice.  Cage 1 

housed the five mice exposed to a familiar stimulus (blue lid) and cage 2 housed 

the five mice exposed to a novel stimulus (yellow plastic brick).  Each day for 

three days prior to the experiment, all experimental mice were individually placed 

in the arena for 30 minutes  to ensure a reduction in any change of neuronal 

activity that may result from exposure to the new arena.  The order of the pre-

experimental exposure was random. 

Five mice, from cage 1,  were individually placed in the left compartment of the 

arena with a familiar blue bottle lid.  This lid was taken from their cage.  The lid 

had been left in their cage for three days prior to the experiment to maximise 

exposure.  Five mice, from cage 2,  were individually placed in the right 

compartment of the experimental arena with a novel yellow plastic brick. Both 

sets of mice, the familiar and the novel exposure mice,  were left in the arena for 

30 minutes with their test object.  The test subject was then removed, their tail 

was marked and they were put back in their cage for 30 minutes.   

30 minutes after exposure to the test stimulus, to allow time for neuronal activity 

response, animals were deeply anesthetized with pentobarbital and perfused 

through the aorta with 5 ml of 0.9% saline followed by 50 ml of 4% 

paraformaldehyde (PFA)  in 0.1 m phosphate buffer (pH 7.4). Brains were 

dissected out and post-fixed overnight in the same PFA fixative at 4°C.  
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2.4.1 Sectioning and staining 

 

Coronal 50-µm brain coronal sections were then cut using a Vibrotome (Leica).  

Sections were then processed for single and double immunohistochemistry. Every 

fourth brain section was used in the single c-Fos staining, and every fourth one 

containing the PVN was stained for c-Fos and OT. There were equal distances 

between sections used in the immunohistochemistry experiments. 

Sections were treated for 10 min in 3% H2O2 and 10% methanol [diluted in Tris-

buffered saline (TBS), pH 7.2] and incubated for 48 h at 4°C in primary goat anti-

Fos antibody (1:1100; Santa Cruz Biotechnology, Santa Cruz, CA). Subsequently, 

tissue was incubated for 1 h in rabbit antigoat antibody (1:400; Vector 

Laboratories, Burlingame, CA). After a 1-h incubation in avidin-biotin complex 

(ABC, 1:800; Vector), peroxidase was visualized with 0.05% 3,3′-

diaminobenzidine tetrahydrochloride (Sigma Diagnostics, St. Louis, MO), 0.01% 

H2O2, and 0.3% nickel sulfate. All incubations in antibodies were performed in 

the TBS-based mixture of 0.5% Triton X-100 (Sigma Diagnostics) and 0.25% 

gelatin (Sigma Diagnostics). Intermediate rinsing steps were done in TBS. 

After the completion of c-Fos staining, PVN and SON sections were further 

processed for double staining and the visualization of OT and AVP. The 

procedure was similar to that described above. However, rabbit anti-OT or goat 

anti-AVP was used as the primary antibody (1:17,000; Millipore, Temecula, CA), 

and nickel sulfate was not added to the 3,3′-diaminobenzidine tetrahydrochloride 

solution to obtain the brown instead of black color.   

Sections were then mounted on gelatin-coated slides and dried in a fume hood.  

After 24 h of drying, sections were  dehydrated in ascending concentrations of 
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alcohol, soaked in xylene, and embedded in DPX (Fluka, Steinheim, Germany) 

and analyzed using light microscopy. 

In the double staining, the following estimates were assessed per section and then 

per PVN and SON: the total number of OT or AVP positive neurons and the total 

number of neurons positive for c-Fos. Cells were counted bilaterally, and the 

percentage of neurons containing c-Fos-positive nuclei was tabulated.   

Statistical analysis was done using an unpaired Student’s t-test and values were 

considered significantly different when P < 0.05. 
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3 Chapter 3 

Results 

Experiment 1: OT receptor antagonist L-368,899 and its effect on 

time spent exploring familiar and novel objects 

 

Table 3.1  Novel versus familiar object investigation following oxytocin 

receptor (OTR) antagonist intraperitoneal injection.   

 Novel object 

investigation 

Familiar object 

investigation 

Novel/familiar 

object investigation 

ratio 

saline 61.5 ± 5.0 45.2 ± 5.2 1.33 ± 0.14 

L-368,899 40.6 ± 4.8* 73.1 ± 5.7* 0.55 ± 0.06* 

 

Following injection, mice were exposed to a familiar and a novel object in a 

familiar environment.  The amount of time spent investigating the novel vs 

familiar object was determined. *P<0.05. 

 

Experiment 2: Activation of OT and AVP neurons in the PVN and 

SON following exposure to a familiar or novel object in a familiar 

environment 

 

Exposure to a familiar object in a familiar environment significantly increased the 

density of c-Fos positive-OT positive neurons in the PVN compared to the 

percentage of OT neurons activated following exposure to a novel object in the 

same familiar environment (Figure 3.1). An example of c-Fos positive-OT 
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positive and c-Fos negative-OT positive immunoreactivity in the PVN is provided 

in Figure 3.2.   

 

Figure 3.1.  Effect of exposure to a familiar versus novel object on the 

activation of oxytocin (OT) neurons within the paraventricular nucleus of the 

hypothalamus (PVN).  The activation of OT neurons within the PVN was 

analysed following the introduction of the individual to a novel object for 30 min 

in a familiar environment.  **P<0.01. 

 

 

  

Figure 3.2. Photomicrograph showing c-Fos positive-oxytocin (OT) cells 

stained in the paraventricular nucleus of the hypothalamus (PVN).  These 
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cells were stained following exposure to a novel object (L) versus c-Fos positive 

OT cells stained following exposure to a familiar object (R).  Narrow arrows 

indicate Fos-positive OT neurons and wide arrows indicate Fos-negative OT 

neurons.  

 

Exposure to a familiar object in a familiar environment significantly increased the 

density of c-Fos positive-AVP positive neurons in a familiar environment in 

comparison to the density of c-Fos positive-AVP positive neurons following 

exposure to a novel object in a familiar environment (Figure 3.3). An example of 

c-Fos negative-AVP positive and c-Fos positive-AVP positive immunoreactivity 

in the PVN is provided in Figure 3.4.   

 

Figure 3.3. The effect of exposure to a familiar versus novel object on the 

activation of vasopressin (AVP) neurons within the paraventricular nucleus 

of the hypothalamus (PVN).  The activation of AVP neurons within the PVN 

was determined following the introduction of the individual to a novel object for 

30 min in a familiar environment.  *P<0.05. 

 

* 
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Figure 3.4.  Photomicrograph showing c-Fos positive vasopressin (AVP) cells 

stained in the paraventricular nucleus of the hypothalamus (PVN).  These 

cells were stained following exposure to a novel object (L) and c-Fos positive 

stained AVP cells following exposure to a familiar object (R).  Narrow arrows 

indicate Fos-positive AVP neurons and wide arrows indicate Fos-negative AVP 

neurons.  

 

Interestingly, exposure to a known object in a familiar environment decreased the 

density of OT-c-Fos positive neurons in the SON compared to the density of OT 

neurons activated following exposure to a novel object in a familiar environment 

(Figure 3.5).  An example of c-Fos negative-OT positive and c-Fos positive-OT 

positive immunoreactivity in the SON is provided in Figure 3.6.   
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Figure 3.5.  The effect of exposure to a familiar versus novel object on the 

activation of oxytocin (OT) neurons within the supraoptic nucleus of the 

hypothalamus (SON).  The activation of OT neurons within the SON was 

determined following the introduction of the individual to a novel object for 30 

minutes in a familiar environment.  

 

  

Figure 3.6.  Photomicrograph showing c-Fos positive oxytocin (OT) stained 

cells in the supraoptic nucleus of the hypothalamus (SON). These cells were 

stained following exposure to a novel object (L) and c-Fos positive stained OT 

cells following exposure to a familiar object (R).  Narrow arrows indicate Fos-

positive OT neurons and wide arrows indicate Fos-negative OT neurons.  
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Exposure to a known object in a familiar environment also decreased the 

percentage of AVP positive neurons in a familiar environment in comparison to 

the number of AVP positive neurons when exposed to a novel object (Figure 3.7).  

An example of c-Fos positive-AVP positve and c-Fos negative-AVP positive 

immunoreactivity in the SON is provided in Figure 3.8.   

 

 

Figure 3.7.  The effect of exposure to a familiar versus novel object on the 

activation of vasopressin (AVP) neurons within the supraoptic nucleus of the 

hypothalamus (SON).  The activation of AVP neurons within the SON was 

determined following the introduction of the individual to a novel object for 30 

minutes in a familiar environment.  
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Figure 3.8. Photomicrograph showing c-Fos positive vasopressin (AVP) cells 

stained in the supraoptic nucleus of the hypothalamus (SON).  These cells 

were stained following exposure to a novel object (L) and c-Fos positive stained 

AVP cells following exposure to a familiar object (R).  Narrow arrows indicate 

Fos-positive AVP neurons and wide arrows indicate Fos-negative AVP neurons. 
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Discussion and Conclusions 

 

 

The current set of experiments was performed to determine whether changes in 

OT and AVP neuronal activity are associated with the introduction of an 

individual to a novel versus a familiar stimulus.  I wished to determine whether an 

injection of an OTR antagonist (thus, a blockade of the OT receptor) would have 

an effect on the amount of time spent with a novel object, whether OT neuronal 

activity would be changed in the PVN or SON of the hypothalamus upon 

introduction of an individual to a novel versus a familiar object, and finally 

whether there would be any change in the neuronal activity of AVP cells within 

the PVN or SON upon introduction of an individual to a novel object.   

 

These investigations showed that an OTR antagonist does, in fact, change the 

amount of time an individual spends with a novel object.  When the OTR 

antagonist is injected IP, the individual spends less time with a novel object and 

more time with a familiar object.  We also found that the activity of OT and AVP 

neuronal cells is increased when an individual is exposed to a familiar object 

versus a novel object.  Trends in the neuronal activity of OT and AVP neuronal 

cells in the SON were seen when an individual was exposed to a novel versus a 

familiar object.  These trends showed that OT and AVP neuronal activity in the 

SON were increased when an individual was exposed to a novel object instead of 

when exposed to a familiar object.  
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The OTR antagonist, L-368,899, was injected IP to investigate changes in the 

amount of time spent with a familiar versus a novel object after OT receptor 

blockade. L-368,899 is a unique, high affinity,  non-peptide OTR antagonist that 

is able to cross the blood brain barrier (BBB) (Olszewski et al., 2010).  It was 

originally developed for the treatment, via blockade of uterine OTRs (Boccia, 

Goursaud, Bachevalier, Anderson, & Pedersen, 2007), of premature labour but 

failed in clinical development trials (Manning et al., 2012).  While L-368,899’s 

effects on preterm labour were being studied, the ability of the  OTR antagonist to 

cross the BBB was observed (Pettibone & Freidinger, 1997).  One study 

conducted on rhesus monkeys given an intravenous (iv) injection of the OTR 

agonist L-368,899 found that L-368,899 was present in cerebral spinal fluid (CSF) 

40 min after injection with the antagonist.  This study also found that the 

antagonist accumulated in the hypothalamus, septum, orbitofrontal cortex, 

amygdala and hippocampus, but was not found in other areas of the brain (Boccia 

et al., 2007).  Based on L-368,899’s ability to penetrate the BBB and its high 

affinity for the OTR (Vrachnis, Malamas, Sifakis, Deligeoroglou, & Iliodromiti, 

2011), I can conclude that the antagonist was in fact targeting the receptors within 

the CNS.   

 

When investigating the amount of time spent with a novel versus a familiar object 

following the IP injection of the OTR antagonist L-368,899, we found that time 

spent with the novel object was decreased using the L-368,899 OTR antagonist.  

When an individual was injected IP with saline, the individual spent an increased 

amount of time with the novel object.  These findings suggest that the blockade of 
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OT ligand binding may result in changes to exploratory behaviour in relation to 

the novel stimulus.  The findings are supported by a study using male prairie voles 

and the OTR antagonist L-368,899.  This study also found that when an individual 

was injected IP with the OTR antagonist, it spent a reduced amount of time 

exploring the novel inanimate object, in this case a toy (Madularu, Athanassiou, 

Yee, Kenkel, et al., 2014). The preferences for novel objects following IP saline 

injections was also supported in a study using female rats (Madularu, 

Athanassiou, Yee, Kenkel, et al., 2014).  As discussed previously, OT has an 

anxiolytic effect when an individual is exposed to a novel or stress inducing 

stimulus (Gibbs, 1984; Lukas & Neumann, 2013).  As a result of the stress 

experienced by encountering a novel object, coupled with the reduced anxiolytic 

effects of OT due to the OTR antagonist, the novel object may seem increasingly 

stressful to the individual (Tops et al., 2013).  This increased stress results in the 

individual spending much less time with the novel object than it would if it had 

normal neuronal activity of its OT circuit.  In a situation without the use of the 

OTR antagonist, it is assumed that the stress response produced as a result of 

novelty would induce the anxiolytic effects of the OT circuit (I. D. Neumann & 

Slattery, 2016; Sutherland & Tops, 2014).  This increased OT neuronal activity 

would allow the individual to be calmed by the anxiolytic effects of OT and 

approach the novel and stressful stimulus in order to assess its risk potential.  This 

stressful stimulus approach is an important hurtle to overcome as it has important 

implications in an individual’s ability to approach novel conspecifics and novel 

objects.  The ability to approach novel social conspecifics is imperative in 

forming social groups and also forming social memories (Lukas & Neumann, 

2013).  This ability for OT to aid social approach and form social memories may 

also be important in the approach and memory formation of a novel object.  There 
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are also studies that suggest the OT antagonist may affect locomotion and hence 

may have resulted in  my finding of a decreased amount of time spent with the 

novel object.  One study using female and male voles found that when OT was 

administered there were no changes in total locomotion but when the OTR 

antagonist was used, locomotion was reduced (Yu, Zhang, & Tai, 2016).  A 

similar study using rats and icv injection of OT and OTR antagonist showed that 

OT injection increased the amount of locomotion in the rat while the OTR 

antagonist decreased locomotion (Yan et al., 2014).  In light of these studies, it is 

possible that the effect of time spent with the novel versus familiar object could 

have been due to the OTR antagonist and its effects of decreased locomotion. 

 

When analysing the amount of time spent with a familiar object versus a novel 

object following the injection of an OTR antagonist, we found that time spent 

with the familiar object is increased following the injection of the L-368,899 OTR 

antagonist suggests that the individual may no longer view the object as familiar.  

As explained previously, OT plays a significant role in an individual’s ability to 

recall prior exposure to objects and/or conspecifics.  Abolishing or attenuating 

these abilities via an OTR antagonist may effect an individual’s ability to recall 

prior exposure to the object.  An experiment using rats and an OTR antagonist 

showed that the antagonist diminished the rat’s ability to establish and therefore 

recognise a conspecific (Engelmann et al., 1998).  Although this study was 

performed using social recognition of conspecifics, we can infer that the same OT 

system would be needed to recall prior exposure to a novel object.  In the current 

experiment using a familiar object, the data would suggest that the object is not 

remembered and therefore is seen as novel.  Similar studies used in social 

situations supported these findings. Both OT and AVP are known to be involved 
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in social memory and social recognition (Albers, 2012). OT knock out mice have 

impairments in their ability to recognize other individuals (Ferguson et al., 2000) 

while centrally and peripherally injected OT and AVP increase social memory in 

rats (Le Moal, Dantzer, Michaud, & Koob, 1987; Song, Larkin, Malley, & Albers, 

2016).  It is possible that because the OTR antagonist reduces the familiarity of 

the object by reducing the individual’s ability to recall prior experience (Song et 

al., 2016) and makes the individual see the familiar object as novel, the individual 

spends an increased (compared to the saline group) amount of time investigating 

the familiar object.  

 

The neuronal activity of OT and AVP in the PVN and SON were investigated 

following the introduction of an individual to a novel or a familiar object.  In four 

sets of experiments, individuals were exposed to a novel or a familiar object and 

immunohistochemical data were analysed in order to find any changes in OT or 

AVP activity within these areas of the brain. Immunohistochemistry was used to 

visualise changes in OT and AVP neuronal activity.  Using double staining 

techniques allowed us to see how many OT and AVP neurons were in the PVN or 

SON, and how many of these OT and AVP neurons were positively stained for c-

Fos; and therefore “activated”.  The current set of experiments was a follow-up 

for a previous Master of Science thesis project completed by Ron Blaza, which 

found that the OT neuronal activity is very low in a familiar empty arena (in the 

absence of any additional objects – familiar or non-familiar that constitute the 

enrichment of the environment to which an animal is exposed) (Blaza, 2015).  

This evidence allowed us to proceed with the studies described herein, in which 

an individual was exposed to a novel versus familiar object introduced to such a 

familiar arena. Thus, instead of a “social enrichment” of a familiar experimental 
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apparatus, the current set of experiments focused on object enrichment and a 

potential effect it might have on the activation of the hypothalamic OT/VP 

neurons (and, consequently, the neuroendocrine balance imposed upon the release 

of these neuropeptides within the brain as well as into the general circulation).  

 

OT neuronal activity within the PVN was analysed following the exposure of an 

individual to a novel or a familiar object. We found that there was a significant 

increase in the activity of OT neurons within the PVN when an individual was 

exposed to a familiar object opposed to a novel one.  Similar studies assessing 

OT’s activity in the PVN following exposure to a familiar conspecific have shown 

that OT is necessary in recognising a familiar conspecific  (Lukas et al., 2013; I. D. 

Neumann & Landgraf, 2012).  Rats examined for their discrimination between 

known and novel conspecifics have shown that exposure to a previously 

introduced conspecific results in discrimination between a familiar conspecific 

and a novel conspecific.  Following icv administration of OT, the amount of time 

an individual was able to recognise a conspecific increased (I. D. Neumann & 

Landgraf, 2012).  OT receptor antagonists have also been shown to effect social 

memory.  When administered immediately after the introduction of the 

experimental rodent to a conspecific, the OT receptor antagonist interfered with 

the rat’s ability to establish a memory of, and therefore recognize, a conspecific 

(Engelmann et al., 1998). 

 

The injection of OT into OT knockout mice restored the ability for the individual 

to recognise a familiar conspecific (Lukas & Neumann, 2013).  These findings 

suggest that social recognition of a familiar conspecific is related to OT neuronal 

activity.  Experiments investigating how an individual reacts to, and recognises, a 
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familiar object have not yet been thoroughly explored but one study found that 

female prairie voles prefer anesthetized conspecifics as opposed to novel 

conspecifics.  This finding suggests that OT facilitates a preference for familiarity 

is the absence of social stimuli (J. R. Williams, Catania, & Carter, 1992).  This 

may allow us to link OT with general familiarity or familiarity in objects instead 

of in social settings alone.  One study examining behaviour in response to objects 

showed that when rats were injected with OT, they exhibited increased preference 

for familiar objects (Madularu, Athanassiou, Yee, & Mumby, 2014).  No studies, 

to my knowledge, have been done assessing the specific changes of OT neuronal 

activity within the PVN.  In the current study, we found that OT neuronal activity 

significantly increased in response to a familiar object opposed to a novel one.  

This suggests that recognition of a previously explored object may involve 

activation of OT neurons within the PVN. 

 

Experiments investigating AVP’s neuronal activity within the PVN during 

investigation of a familiar versus novel object found that AVP neuronal activity 

significantly increased when an individual was presented with a familiar object 

opposed to a novel one.  Studies performed on AVP’s importance in social 

recognition have shown that AVP administration prolongs social memory in both 

males and females (Bielsky & Young, 2004).  AVPR1b has been shown to reduce 

social avoidance following periods of social defeat (Litvin et al., 2011).  As these 

studies show that AVP is active in forming or recalling social memories, and our 

current study shows that when an individual is exposed to a familiar object the 

activity of AVP neurons within the PVN increases, it may be that AVP within the 

PVN is involved in the recognition and memory processing of a familiar object 

opposed to a novel one as well as social familiarity (Albers, 2012).   
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In this set of experiments, we explored OT’s activity within the SON upon the 

introduction of an individual to a novel or a familiar object.  

Immunohistochemical analysis showed that there was a decrease in OT neuronal 

activity when an individual was coupled with a familiar stimulus versus a novel 

one but these findings were not significant. As well as the PVN, the SON is a 

known site of excretion of OT (I. Neumann et al., 1994), but it is possible that the 

SON is more heavily involved in social recognition and less involved in inanimate 

object recognition.  As OT within the SON has been shown to be important in 

processing and recognising olfactory cues (Sanchez-Andrade & Kendrick, 2009) 

to form social memories, it is possible that because the inanimate object does not 

possess these olfactory cues, the OT neuronal systems within the SON is activated 

less when an individual is recalling an inanimate object as opposed to a social 

conspecific.  It is also possible that the study should be repeated with a larger 

number of individuals as during the immunohistochemical analysis, both sets of 

samples (familiar and novel object exposure) of the SON had very few positive 

neurons to count.  This led to a high standard error which suggests the 

experiments may need to be repeated using a larger sample set. 

 

Finally, AVP neuronal activity was assessed in the SON following the 

introduction of an individual to a novel versus a familiar object.  These studies 

were not significantly supported but trends in the activity of AVP neurons within 

the SON showed that the number of active AVP neurons decreased when an 

individual was exposed to a familiar object opposed to a novel one. The P value 

for this data was 0.08 which is not quite significant but does show that there is a 

trend in the activity of AVP neurons when exposed to a familiar object opposed to 
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a novel one. The trend seen in these results allows us to consider that, as well as 

being important in the recognition of social familiarity (Albers, 2012; Le Moal et 

al., 1987), AVP may also be important in the SON when recognising a familiar 

object. A second explanation for this trend may be a link to AVP’s role in stress.  

It is known that the PVN and SON, during times of stress, release AVP.  This 

AVP release triggers the release of adrenocorticotropin from the anterior pituitary 

and glucocorticoids from the adrenal gland (Engelmann et al., 2004). The release 

of these glucocorticoids produces an array of effects in response to the stressful 

stimulus.  These responses include mobilising energy, increasing cardiovascular 

tone and delaying processes in the body that are not critical and controlling 

osmolality (Fodor et al., 2016).  One study using male AVP-deficient rats showed 

a decrease in anxiety-like behaviours (Balazsfi et al., 2015), another study using 

female AVP-deficient rats also showed a decrease in anxiety like behaviours 

(Fodor et al., 2016).  The use of AVP deficient rats also showed that the lack of 

AVP did not reduce the individual’s ability to form social memories (Fodor et al., 

2016).  This suggests that while AVP may be important in the regulation of stress 

involved with a novel stimulus, it may not be essential in memory formation.  In 

our experiments, the increase in AVP activity in the SON following an 

introduction to a novel stimulus may be a result of AVP’s regulation of the stress 

response.  More investigation is needed in order to obtain significant data and to 

investigate further links between AVP neuronal activity and neuronal responses to 

familiar versus novel objects. 

 

The previously described studies targeted OT and AVP neuronal populations 

within the parvocellular neuronal cells of the PVN and SON. The magnocellular 

neurons involved in OT and AVP synthesis and transport to the pituitary were not 
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targeted as my thesis is not focusing on neuronal activity in the periphery, for 

example the uterus.  I am interested in investigating the parvocellular OT neurons 

as these neurons synthesise and transport OT and AVP which acts within the CNS 

to control behaviour; such as maternal care, social approach, or behaviours related 

to novelty (Onaka & Yagi, 1993; Pedersen & Prange, 1979).  Although changes in 

peripheral levels of OT and AVP were not investigated in this thesis, changes in 

peripheral levels of OT and AVP may be useful in determining  total changes in 

these neuropeptides in response to novelty.  Studies investigating combined 

emotional and physical stressors such as forced swimming have found a changes 

in both peripheral and central levels of OT and AVP (Wotjak et al., 1998; Wotjak 

et al., 2001). 

 

The prairie vole is an effective model for investigating the importance of brain 

regions and their responsiveness to social and innanimate novelty and familiarity.  

Because some species of the prairie vole are monogamous and form stronger 

social bonds with regards to familiar conspecifics and novel ones, the patterns in 

OT and AVP neuronal activity could mediate the development of certain types of 

affiliation, either with conspecifics or objects.  One study investigating differences 

between the OTRs in the monogamous prairie vole and the polygamous montane 

vole found that in the prairie vole, the density of OTRs was highest in the 

prelimbic cortex, bed nucleus of the stria terminals, NAcc, midline nuclei of the 

thalamus, lateral septum, and the lateral aspects of the amygdala.  The montane 

vole showed little OTR binding in these regions and OTRs in this species were 

localised to the ventromedial nucleus of the hypothalamus, and cortical nucleus of 

the amygdala.  These findings suggest that the difference in expression of the 

OTR in these areas of the CNS may be a link to the differences seen in affiliation 
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to familiar versus novel conspecifics.  Furthermore, AVP infusion directly into the 

lateral septum improves social memory over time while the use of an AVPR1a 

antagonist in the lateral septum results in a decrease or complete deficiency in 

social memory (Lukas & Neumann, 2013).  The amygdala is also thought to be 

important in the mediation of OT and social behaviour. Parvocellular and 

magnocellular OT neuronal cells project from the hypothalamus to the amygdala 

(Debiec, 2007). Both OT and OTRs are present in the amygdala of the mouse 

(Takayanagi et al., 2005).  In the mouse, OTR binding in the amygdala is 

necessary for social bonding.  Injection of OT directly into the medial amygdala 

has been shown to restore the ability of OT knockout mice to develop social 

recognition behaviours.  OT antagonist injection directly to the medial amygdala 

prevented social recognition behaviours (Ferguson, Aldag, Insel, & Young, 2001).     

 

The mice used in the current studies were females.  Although male and female 

mice naturally display differences in behaviour, mostly involved with sexual 

responses, scientists have not yet been able to link these differences to unique 

structures or circuits within the female or male brain (Segovia & Guillamon, 1993; 

Simerly, 2002).   Although brain structures are not yet proven to be different, the 

brain can be effected by sex steroids leading to differences in behaviour.  The 

number of OTRs expressed in the hypothalamus may be dependent on levels of 

sex steroids, including estradiol (L. J. Young, Wang, Donaldson, & Rissman, 

1998, Gimpl & Fahrenholz, 2001).  One study using estrogen receptor knock out 

mice concluded that without estrogen , OT was not able to bind to the OTR (L. J. 

Young et al., 1998).  The mice used in the current experiments were anoestrous.  

In mice, circulating levels of estrogen peak just before ovulation between 

proestrous and estrous and then drop to basal levels (Walmer, Wrona, Hughes, & 
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Nelson, 1992).  Because the animals used in these studies were anoestrous, we can 

be confident that estradiol had minimal effect on OT binding.  Because the 

structures within the brain of males and females have not been proven to be 

different, and my mice were in anoestrous, we can be confident that the sex of the 

mice used in the current studies were not a contributing factor in determining 

differences in OT and AVP neuronal activity. 

 

Future studies may examine the effects of different doses on the OT antagonist L-

368,899 on familiar versus novel object preference.  IP injection of OT may also 

be a useful study to carry out to examine any differential affects an increase in OT 

levels may have on behaviour of an individual in response to a novel or familiar 

object.  Immunohistochemical assessment of OT and AVP neuronal activity in the 

amygdala and NAcc may also be helpful in determining OT and AVP’s roles in 

behavioural responses to familiar versus novel stimuli.   

 

The use of AVP agonists/antagonists would be useful in determining effects on 

time spent with a novel versus a familiar object.  As discussed previously, AVP is 

associated with social memory (Landgraf & Neumann, 2004).  One study showed 

that social memory is prolonged in male and female rats following icv AVP 

administration and the use of an AVPR1a antagonist diminishes this prolonged 

social memory (Inga D Neumann et al., 2013).  Using an AVP agonist/antagonist 

may allow the researcher to make conclusions about any differential findings that 

may be associated with the two peptides and their antagonists. 
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Another interesting future study may be to investigate the neuronal activity of OT 

and AVP in relation to affiliation for objects.  Affiliative bonds are enduring 

attachments that allow an individual to function within a social group.  These 

bonds have been described using the term “love” the define the way in which 

individuals have used affiliative behaviour to evolve into social beings (Feldman, 

2012).  The first link made between affiliation and OT was as a result of maternal 

care and the OT mediated affiliation between a mother and her young (F. 

Champagne, Diorio, Sharma, & Meaney, 2001).  Rat mothers who showed higher 

degrees of maternal care including licking and grooming showed had higher 

levels of serum OT and showed higher levels of affiliative bonding to young (F. A. 

Champagne, 2011).  OT’s role in affiliative bonding between individuals is linked 

with the mesolimbic dopamine system and the concurrent release of dopamine in 

the NAcc (Cameron, Pomerantz, Layden, & Amico, 1992).  As well as the ability 

to become affiliated or attached to social stimuli, individuals can also become 

affiliated with non-social, inanimate stimuli.  Like social familiarity/novelty and 

object familiarity/novelty, fewer studies have been performed on the neurological 

aspects affecting an individual’s willingness to bond with an inanimate object 

than have been performed on social bonding. 
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Conclusion 

 

In conclusion, differences in OT and AVP neuronal circuits are seen in the PVN 

in response to familiar versus novel objects. In this set of experiments, there is 

greater activation of OT and AVP neurons in the PVN of the hypothalamus when 

an individual is exposed to a familiar versus a novel object.  These findings are 

supported by the use of OTR antagonist L-368,899.  These behavioural 

pharmacology studies showed that following injection of the antagonist, time 

spent with a novel object decreased and time spent with a familiar object 

increased.   Combined, the two experiments show that OT neuronal activity is 

varied depending on the familiarity of an object.  These studies also showed 

supporting evidence that AVP, a closely related neuropeptide to OT, neuronal 

activity is varied depending on the familiarity of an object.  These findings are 

important in better understanding neuroendocrine responses to familiar versus 

novel stimuli.  An increased understanding in these responses will assist further 

research on health pathologies associated with abnormal behaviours in novel 

social environments and environments with novel inanimate objects. 
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