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Abstract 
 

In New Zealand, the Resource Management Act 1991 (RMA) is the guiding 
legislation that sets out how the environment is managed. The territorial 
authorities are charged with regulating how the environment is managed in 
their jurisdiction. In order to effectively manage any resource, good and 
robust planning processes are required. Population change is the factor that 
has the greatest impact on the environment, and is one of the most 
challenging to regulate, thus for the territorial authority planners, knowing 
where and when infrastructure investment is most likely required is key to 
fulfilling their statutory requirement. 

 

This line of investigation has been driven by an ever increasing need for 
more spatially detailed projections of where and when changes are most 
likely to take place. The investigation and subsequent development of 
spatially detailed household projections transcends three territorial 
authorities in the lower Waikato river catchment situated in New Zealand.  

 

An agent-based model was developed in which the individual agents were 
households. The aim of the model was to produce a simplified simulation of 
the location choices made by the members of a household in a housing 
market that is governed by councils’ infrastructure provision, household 
rents, transport costs and the benefit derived from the neighbourhood 
amenities and the environment. This model simulates the distribution of 
households over a twelve year period from 2013 to 2025. In the model the 
households were programmed to move to vacant properties in order to 
minimise their residential costs. Each time an agent moves this provides 
new potential options for all other households; thus the simulation runs and 
the households move until all households settle in their least cost locations, 
representing the distribution of households in 2025. The incorporation of 
multiple territorial authorities provides a more holistic approach than the 
prevailing approach which is based on disaggregating top level projection 
with the no further account of population movement outside the top-level 
migration assumption.  

 

The results of the model calibration indicate the model performs well with a 
16.6% RMSE at the smallest spatial unit. The projected results produce 
growth patterns that fall within the expectations of planning staff of the 
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councils. These staff members have affirmed the model’s and input 
assumptions, and indicate the outcomes to be both useful and plausible. 

 

The results demonstrate the relationship between the councils and their 
respective growth plan strategies. The scenarios were developed to, 
demonstrate the relationship between the availability of vacant land and the 
cost to occupy a property, which ultimately impacts the flux of residents to 
or away from the city. 

 

With some broad assumptions and limitations, this model is distinctive in its 
approach as it is developed with the intention of being an applied tool to be 
used by the three councils. It has the further distinction as modelling the 
behaviours of individual households rather than the behaviours of an entire 
population, which is the unique in New Zealand and amongst a few applied 
models of this nature wide (Triantakonstantis & Mountrakis, 2012). 
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1 Introduction 
 

Population and household projections are a key component of planning for 
the future and managing the environment. In New Zealand, the Local 
Government Act 2002 legislates local authorities play a broad role in 
meeting the current and future needs of their communities for good-quality 
local infrastructure, local public services, and performance of regulatory 
functions (Department of Internal Affairs, 2013). To effectively fulfil these 
legislative requirements, the local authorities require effective methods to 
project both household and population growth at the local level. Worldwide 
the need for local level population projections and distribution is recognised 
by a number of authors (Cai, 2007; Jenner, 2002; Rayer & Smith, 2010; 
Rees et al., 2004; S. Smith & Cody, 2013; Yang, 2011; Zhan, Tapia Silva, 
& Santillana, 2010). 

 

The developments in computing and processing (Benenson, 1998; Santé, 
García, Miranda, & Crecente, 2010) have resulted in the coupling of 
demographic modelling and urban growth models (Santé et al., 2010; 
Torrens & Benenson, 2005). This has resulted in an ever-expanding range 
of methods to simulate changes or events under a wide range of inputs and 
variables (Triantakonstantis & Mountrakis, 2012). This research 
investigates the development of a computer simulation that demonstrates 
the likely household distribution over time at the neighbourhood level. 

 

A number of authors have investigated the accuracy of subnational 
population projections (Rayer & Smith, 2010; Rees et al., 2004; Statistics 
New Zealand, 2008; S. K. Smith, Tayman, & Swanson, 2001). They report 
decreasing accuracy as the population and geographic areas get smaller. 
There are two main reasons for potentially high error in small populations 
and or geographic areas. Migration is often a major determinant of growth 
and is more variable over space and time (S. K. Smith et al., 2001). In small 
communities, isolated events can alter the trajectory of growth whereas in 
large populations the effects of a multitude of events tend to offset each 
other (S. K. Smith et al., 2001). Consequently, population change is more 
unpredictable and more variable as population and geographic size become 
smaller.A number of authors have investigated the accuracy of subnational 
population projections, (Rayer & Smith, 2010; Rees et al., 2004; Statistics 
New Zealand, 2008; S. K. Smith, Tayman, & Swanson, 2001). They report 
decreasing accuracy as the population and geographic areas get smaller. 
There are two main reasons for potentially high error in small populations 
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and or geographic areas. Migration is often a major determinant of growth 
and is more variable over space and time (S. K. Smith et al., 2001). In small 
communities, isolated events can alter the trajectory of growth whereas in 
large populations the effects of a multitude of events tend to offset each 
other (S. K. Smith et al., 2001). Consequently, population change is more 
unpredictable and more variable as population and geographic size become 
smaller. 

 

The field of urban growth modelling comes into consideration at the sub-
regional scale. Various forms of Cellular Automata models are the most 
frequently used algorithms in urban growth models (Triantakonstantis & 
Mountrakis, 2012) and have been used in areas as small as 
neighbourhoods or up to whole countries. Agent-based models are another 
method that is gaining popularity (Axtell, 2000). In the agent-based model 
an agent represents an individual entity, such as a person or household, 
and these entities interact with their environment. They are programmed 
(Macal & North, 2005) such that their collective behaviours result in a 
change to the environment(s) and it is these emerging trends (Torrens & 
Benenson, 2005) that provide the valuable insight(s) to the system.  Four 
agent-based models were reviewed in detail and these provided contextual 
similarities to this New Zealand study and were used in the formulation of a 
bespoke agent-based model suited to the study area. 

 

The agent-based model that has been developed, simulates residential 
households’ location choices. The household agents primarily use 
economic based cost assignments and they exhibit the rational behaviour 
of minimising the cost associated with their residential location. The 
modelled environment contains a central city with a number of satellite 
towns. There are three planning authorities and their respective aspirations 
have impacts on the overall distribution of new household development.  

 

Although collaborative planning is developing between the Territorial 
Authorities (TA), the existing methods are based on disaggregation of the 
population at the TA level. Each TA disaggregates their population 
projection and plans accordingly. From a planning perspective, this 
approach is certainly a lot easier as it is a closed system. If the population 
is projected to grow by a certain amount then calculating how much land 
needs to be zoned and how much infrastructure is required is more straight-
forward. The complication arises when a nearby town also has residential 
land available, possibly at a lower cost. The residents are not constrained 
by a TA boundary and they can choose where to relocate, this system is 
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open. Holistic planning is significantly more difficult and requires more 
sophisticated tools. Models, such as this can help to demonstrate the 
relative benefit citizens receive from living in different areas. 

 

The results of this work demonstrate that even under broad assumptions 
that there are strong interdependencies between the city and the different 
towns and villages in the study area. The effects of one authority’s 
regulations have an impact on their neighbours, and this model can be used 
to identify some of the key drivers, thresholds and impacts of different 
scenarios. This model has a strong emphasis on the intended housing 
density in different areas and how much this capacity is utilised in the model 
time frames. 

 

The research question is “what will the likely household distribution be for 
Hamilton, Waikato and Waipa in 2025?” The model functions under two 
broad factors that can be considered to be known; 1) the population growth 
for the study area, this area has a large enough population for reliable (M. 
Cameron, Cochrane, & Poot, 2007) cohort component population 
projections and is accepted as sufficiently accurate by Statistics New 
Zealand the Territorial Authorities; and  2) Due to the Resource 
Management Act 1991, land use (zoning) management and planning are 
relatively stable, as such the quantity of land available for development. The 
unknown factors are; 1) across the broader geographic study area, which 
areas are most likely to attract growth; and 2) in what order will residential 
land use changes take place across the study area. Up to 2025, it is 
projected that approximately 31,400 new houses will be required to house 
a growing population (M. Cameron & Cochrane, 2015b) and the purpose of 
the model is to determine, under given planning objectives, where these 
houses are most likely to be constructed. 

 

To determine this the model utilises individual households as the primary 
agent. Each household is attributed with a unique combination of costs 
associated with their current residential location and cost to travel to their 
place of employment. The household agents are programmed to simulate 
rational behaviour with the objective of moving to a different location if their 
costs can be minimised. The movement of households to a different location 
has a localised inflationary effect which creates increasing cost in popular 
areas and a corresponding decrease in costs at the origin. This results in 
excessive positive and negative growth being arrested and allows the 
neighbourhoods to have more cyclical trends. 
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The results are presented in a series of maps showing the overall changes 
taking place between 2013 and 2025. The results are presented at the 
neighbourhood level. The model is tested using two planning scenarios. 
One scenario represents the current planning objectives in which each of 
the councils has a development plan scheduled up to and beyond 2025. 
The other scenario represents the same planning objective, however, all the 
land is available and there are no timing constraints on land development. 
The household projections of the model are compared with the nationally 
prepared Statistics New Zealand and a regionally prepared projection series 
produced by National Institute of Demographic and Economic Analysis 
(NIDEA). The outcomes of this model demonstrate the relationship between 
the availability of housing and the impact this has on the relative housing 
costs and optimum economic locations for citizens. 

 

2 Literature Review 
 

The manner in which urban centres grow (in order to accommodate people 
and industry), although complex, is a field researched by a wide range of 
authors. This topic covers research transcending the fields of demography, 
urban planning, mathematics, statistics, computer science and geospatial 
science. This breadth has resulted in a wide range of techniques and 
methods to project populations and likely population change.  

 

In New Zealand, the predominant method used to project populations is the 
cohort component method (Bascand, 2012; Bell, Blick, Parkyn, Rodway, & 
Vowles, 2010). The bases of a cohort projection are, a known base 
population, fertility rates, mortality rates and migration assumptions 
(Bascand, 2012; Bell et al., 2010). In any case where the starting population 
is not known, the first steps are to produce a method of estimating a base 
population. In terms of cohort component methods, once the base 
population is known the next limitations centre on the availability of other 
parameters such as age structures and birth, death and migration rates. 
When a base population is not known then a range of population estimation 
methods have been devised by various authors and authorities in different 
disciplines, for example (Baker et al., 2008; Jenner, 2002; Wang & 
Cardenas, 2011; Zhan et al., 2010). 

 

There is an identified need for monitoring and planning for population 
change, right down to the community level (Baker et al., 2008; English, 
2015). There is, however, a range of methods used to quantify populations 
in smaller areas (Santé et al., 2010; Triantakonstantis & Mountrakis, 2012). 
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There are however few methods that are widely accepted or adopted by the 
planning fraternities (Triantakonstantis & Mountrakis, 2012).  New 
Zealand’s Area Unit projections are among the smallest in population and 
geographic size anywhere in the world.  

 

There are two main elements in quantifying populations, the first is 
estimating population size and the second is estimating a population’s size 
at some point in the future. From the perspective of developing any model, 
the important criteria are input data quality and suitability for use in the 
intended context. Basal information can be gathered in a number of different 
ways. Primary sources are available from censuses, regulatory authorities 
or commercial data. Secondary data can be derived from the integration of 
different datasets. Geographically structured data is particularly useful when 
integrating and interrogating data from different sources and developing 
derived datasets. Remote sensing is a particular field used to derive new 
datasets that can be utilised in estimating population sizes. Lizhong Hua, 
Wang Man, Qiong Wang, & Xiaofeng Zhao, (2012), Yang  (2011) and Zhan 
(2010) describe methods utilising remote sensing to derive new datasets. 

 

2.1 Spatially explicit algorithms used to model population 

or land use changes 

 

The inhabitants of an area are subject to a range of motivations for changing 
their residential status or location. Such motivations could be ‘life stage’ 
(Fontaine & Rounsevell, 2009; Gaube & Remesch, 2013), cultural 
(Benenson, 1998), economic (Gaube & Remesch, 2013), interactions with 
natural environment or proximity to infrastructure (Jjumba & Dragićević, 
2012). Various algorithms and methods have been developed to simulate 
population and urban growth. In a comprehensive review, Triantakonstantis 
and Mountrakis (2012) investigated the main types of models used in urban 
growth simulation. Models and methods reviewed included: 

· housing unit methods,  

· cohort component, 

· artificial neural network, 

· fractal, 

· linear and logistic regression, 

· decision tree, 

· cellular automata, and 
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· agent-based models. 

  

Housing Unit methodologies bridge the delineation between demographics 
and urban planning and predominantly apportion population growth based 
on changes in numbers of housing units or dwelling structures. Static 
housing units can be quantified more easily than transitory objects such as 
people. Population estimates can be made by counting households and 
applying person per household ratios and adding the known population in 
institutions (Cai, 2007; S. K. Smith & Cody, 2013). Demographic data on 
household composition provides a way to estimate the number of people 
per household (Cai, 2007; S. K. Smith & Cody, 2013). Among others, 
remote sensing disciplines (Yang, 2011), (Zhan et al., 2010), (Jenner, 2002) 
(Wu & Martin, 2002), building permits (Roskruge, Cameron, & Cochrane, 
2010; S. K. Smith & Cody, 2013) or water connections (Jenner, 2002) 
provide a range of ways in which housing units numbers can be estimated. 
These methods can in some cases, be utilised to provide time series 
housing unit counts. When such data are available, methods to establish 
trends can be developed, for example, both Roskruge et al. (2010) and S. 
Smith & Cody, (2013) use building permit trends to project changes in 
housing unit development. 

 

Housing Unit methodologies highlight the intrinsic relationship between 
infrastructure and residential growth. Residential growth takes place where 
infrastructure is both available (M. Cameron & Cochrane, 2015a) and most 
affordable. However, planners look to projections to identify where to 
establish infrastructure (M. Cameron & Cochrane, 2015a). Urban planning 
processes provide the location(s) and capacity for housing and urban 
modelling techniques provide tools to forecast the location of growth and 
demographics project how much growth is likely to occur. For example, 
Waikato District Council's 2012 and 2015 Long Term Plan (LTP) population 
projections are based on a housing unit model (Roskruge et al., 2010). The 
Housing unit method is used to establish the number of dwellings in each 
geographical area. The geographic areas are AUs further decomposed into 
urban and rural components where some portions of the AU are of urban or 
rural character. This is a further example of an instance where the census 
tract does not meet the planner’s requirement and the planner has devised 
a method of proportioning growth projections. The annual increment in 
dwelling numbers is exogenously determined for the region as a whole. The 
number of new households is proportionally distributed across the AU’s 
based on the number of building consents issued per geographic area. The 
council has also provided their land and infrastructure plans so the 
maximum number of households per AU is known. When an AU reaches 
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this limit the growth is proportionally redistributed to the next fastest growing 
AU. The first projections developed in 2012 were based on the 2006 census 
data. These projections provided suitable outcomes for 2013 such that the 
2015 LTP projections required minor adjustments to update the model using 
2013 actual census figures. 

 

The cohort component method (CCM) is internationally recognised 
(Bascand, 2012)  and can be used in both deterministically or 
probabilistically. The cohort component method has been utilised by the 
three councils in the study area since 2009,  (M. Cameron & Cochrane, 
2015b; M. Cameron, Cochrane, & Poot, 2008). The US Bureau succinctly 
describes the CCM as “In the cohort-component method, the components 
of population change (fertility, mortality, and net migration) are projected 
separately for each birth cohort (persons born in a given year). The base 
population is advanced each year by using projected survival rates and net 
international migration. Each year, a new birth cohort is added to the 
population by applying the projected fertility rates to the female population.” 
(US Census Bureau, 2014). 

 

Artificial Neural Networks (ANN) are algorithms based on networks. A 
complex system is decomposed into simpler interconnected components, 
referred to as neurons, as in neural networks (Triantakonstantis & 
Mountrakis, 2012). Data is input at input neurons (or units as described by 
(Tayyebi, Pijanowski, & Tayyebi, 2011) and transfers to intermediate 
neurons, sometimes referred to as hidden neurons, the transition from 
neuron to neuron is measured as a weight. The output, or response, is 
dependent on the sum of the weights resulting from each transaction course 
through the network of neurons (Triantakonstantis & Mountrakis, 2012). 
“Each input unit receives a signal and broadcasts this signal to each of the 
hidden units while hidden unit sums the signal with different weights, then 
applies what is called an activation function to compute its output signal and 
sends this signal to the unit in the output layer. The output unit receives a 
signal from each hidden layer and sums the signals with corresponding 
weights and computes the output value which is typically between 0 and 1 
(Tayyebi et al., 2011). In development, the ANN must be taught the 
characteristics of the dataset being processed (Maithani, 2009). A subset of 
the data is used in the training process, and the weight values of the hidden 
neurons are adjusted through feedback mechanisms until the error falls 
below a predefined threshold value (Maithani, 2009).  
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In this literature review, it appears ANN are suited to identifying where 
population expansion is likely to take place more so than how much 
population change is taking place. Maithani (2009) utilised an ANN to 
identify land suitable for urban development in Saharanpur city India. In this 
model, the output neuron identifies a 20m sized cell as suitable for urban 
development or not. Urban growth is a function of distances from major and 
minor road, nearest built up area, city centre and infrastructure existing in 
the neighbourhood (Maithani, 2009). Similarly, Tayyebi et al. (2011) 
investigate the extension of an urban growth boundary. The expansion of 
the city limits are modelled utilising the evaluation criteria of distance from; 
roads; built-up areas; service centres; green space; elevation; and aspect 
and slope.  

 

Fractal models are algorithms that measure repetitive, scale independent 
patterns (Triantakonstantis & Mountrakis, 2012). Cities can be considered 
fractal objects conforming to non-linear and self-organising patterns. At 
each iteration step, the pattern replicates under parameters that promote or 
inhibit extension of the pattern (Triantakonstantis & Mountrakis, 2012). For 
example, replication is promoted along the transportation network or 
inhibited by natural features such as a steep slope or even distance from 
the transportation network. Internal fluctuations and noise result in variance 
within the internal self-organisation and result in variance in the output 
pattern (Triantakonstantis & Mountrakis, 2012). 

 

Fractals’ strength in measuring patterns has led to their use being 
predominantly centred on the analysis of the urban form. Thomas and 
Frankhauser (2013) compare the fractal dimension measured on built-up 
spaces with the fractal dimension measured on the street network in an 
urban environment. They conclude that the indices give a good indication of 
how regularly buildings are spread along the roads and how well roads 
serve buildings. Utilising such indices enables urban growth analysis.  

 

Linear and Logistic Regression models estimate the relationship between 
dependent and independent variables. In urban growth model context, 
population numbers or land use would be the independent variable. Given 
particular input variable(s) the population can be projected. Models range 
from trend extrapolation to more complex modelling techniques 
(Triantakonstantis & Mountrakis, 2012).  

 

Linear and logistic regression models have been widely used in urban 
growth modelling, accommodating socio-economic and environmental 
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independent variables (Triantakonstantis & Mountrakis, 2012), with many in 
particular investigating land use change. A different approach is used by 
(Bouveyron & Jacques, 2010) who use a linear regression in housing 
market. Another approach is taken by (Dubovyk, Sliuzas, & Flacke, 2011), 
who analyse of the driving forces of informal urban development and 
prediction of probable locations of new informal settlements. 

 

A Decision Tree Model is a top-down classification algorithm 
(Triantakonstantis & Mountrakis, 2012). The modeller derives a hierarchy of 
partition rules that are used to split data into sequential segments in a 
branch like structure (Triantakonstantis & Mountrakis, 2012). These can be 
represented as rules, for example, if field value x then outcome A, if field 
value Y then outcome B. In each iteration the decision maker is guided 
through a series of tests and guided to one of many predetermined 
outcomes (Triantakonstantis & Mountrakis, 2012). The simulation includes 
weighting and probability based on observed data at each decision branch. 
A given input range yields an outcome spectrum (Triantakonstantis & 
Mountrakis, 2012). In a decision tree, Al-sharif & Pradhan (2015) investigate 
the factors contributing urban expansion and with these factors, provide a 
future urban probability map. They identified a series of 12 independent 
factors, of which two are; distance from coast and distance from the urban 
centre. In the simulation the study area is described as a cellular network 
and the state of each cell is run through the set of rules with the dependent 
outcome being expansion or no expansion.  

 

Decision Tree methods are more frequently used in the realm of data mining 
and useful in data classification (Kim, Kang, Hong, & Park, 2006). As such 
this method has been used in remote sensing to classify urban features from 
satellite data (Lizhong Hua et al., 2012). Kim et al., (2006) applied a decision 
tree method to extract spatial rules and applied these in a cellular automata 
model in order to simulate urban changes.  

 

Cellular automata (CA) models are the most popular choice of urban growth 
model (Triantakonstantis & Mountrakis, 2012). Santé et al., (2010) attributes 
CA models’ popularity to their simplicity, flexibility and intuitiveness, and 
particularly their ability to incorporate the spatial and temporal dimensions 
of the processes.  

 

A CA comprises discrete cells, with each cell characterised by a ‘state’ 
(Macal & North, 2005; Santé et al., 2010) that changes over time based on 
internal characteristics, rules and external inputs (Castle & Crooks, 2006). 
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Cells have strong relationships with their neighbourhood in which local 
action leads, in many circumstances, to emergent structure (M Batty, 2005). 
Due to the limitations of the possible statuses of the cell and the 
relationships with its neighbours the simplicity of CA models may also be 
one of the main weaknesses (Santé et al., 2010). Santé et al.Santé et al. 
(2010) look into the advantages and disadvantages of CA in some detail. 
Relaxations and modifications of CA methods have led to more complexity 
in the models and hybrid models are evolving using a number of varying 
algorithms (Santé et al., 2010; Torrens & Benenson, 2005; Wu & Martin, 
2002). The lists of identified adaptions to CA models are in Table 2.1. These 
adaptions increase the complexity of models as a means to overcome the 
limitations of a pure CA method. There is a wide range of variations and 
sub-methods used in CA and Santé et al. (2010) described 20 applied 
models and identified 8 major modifications to CA, as shown in Table 2.1. 

 

Table 2.1. Types of Cellular Automata and relaxations of CA rules 

 

Source: adapted from Sante et al. (2010) 

 

In a CA, defining an appropriate cell size is critically important. Cells are 
usually defined as being homogenous. As cell size increases the 
representation of the real heterogeneous world becomes distorted. For 

Analysis of urban 
CA models

i)  binary values (urban,non-urban)

ii)  qualitative values that represent 
different land use

iii) quantitative values that 
represent, for example, population 
density (value of buildings (urban))

(iv) a vector of several attriubutes

Relaxations of CA 
for urban 
simulation

1) Irregular cell space

2) Non-unifom cell space

3) Extended neighborhood

4) Non-stationary neighborhood

5) More complex transition rules

6) Non-stationary transition rules

7) Growth constraints

8) Irregular time steps
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smaller cell sizes the granularity of the input data becomes problematic. Cell 
size is limited by the spatial resolution of input data. For example, a 10m 
grid could be smaller than a regular sized house. Santé et al. (2010) 
identified models with different cell sizes ranging from 10m x 10m up to 1km 
x 1km. Although Jenner (2002) found no clear benefit of using a 100m and 
200m cell in a grid within urban areas, he suggested that larger grids are 
required as the population becomes sparser. Model outcomes are sensitive 
to cell size and outcomes vary according to both cell size and 
neighbourhood configuration (Moreno, Wang, & Marceau, 2009).  

 

One relaxation of CA identified in Santé et al. (2010) is abandoning regular 
cell size and opting for irregular cells. For example, Moreno et al. (2009) 
utilise land parcels to define space. The interactions between land parcels 
are governed by a buffer around each land parcel, defining the 
neighbourhood of each parcel. Moreno et al. (2009) cover the transition 
calculations and differing buffer size for two regions, Southern Quebec and 
Southern Alberta, Canada. They conclude irregular cell space adequately 
represents the dynamics occurring in both regions. 

 

Further to the identified relaxations, in some applications of CA, limitations 
may become apparent. Torrens and Benenson (2005) identify the limitation, 
that the automata (cells) diffuse information through the neighbouring cells, 
thus limiting the transfer of state information. They also note that the 
automata have fixed locations within the cellular construct, thus automata 
have no ability to move, and i.e. they are confined to a change in state. Batty 
(2005) notes that the automata will usually be limited in the number of states 
which they can take on, which are most frequently binary states. Beneneson 
(1998) indicates that although CA utilise bottom-up characteristics they still 
display the inherent restriction of the top-down approach by using a 
predetermined set of cell states. 

 

Computational agent models are described in the literature under various 
terms and acronyms. Commonly, and used in this document, they are 
termed agent-based models (ABM). Other variations include Agent-Based 
Computational Modelling (ABCM), Agent-Based Social Simulation 
(ABSS), Agent Based Computation Simulation (ABCS), Agent-Based 
Modelling and Simulation (ABMS), Multi-agent Modelling (MA) and 
Individual-Based Modelling (IBM) (Michael Batty & Torrens, 2005; M. de 
Smith, Goodchild, & Longley, 2013). Despite a wide range of names and 
uses in a range of fields, there is no general agreement on the definition of 
agent-based models (M. de Smith et al., 2013; Macal & North, 2005; Yang, 
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2011). Even the definition of an agent itself is a topic of debate (Macal & 
North, 2005). Most authors tend to describe agents by their characteristics, 
more so, than precisely what an agent is.  For example, Fountaine and 
Rounsevell (2009, p.1238) note: “Agent classes can be natural (plants, 
animals, etc.), people (individual, households, etc.) or more abstract entities 
(institution, market stocks, etc.). Agent interactions can be simple queries 
or complex activities with conditional reactions and feedback mechanisms.” 

 

ABMs are suited to examining human behaviours (Castle & Crooks, 2006), 
social system and networks (Axtell, 2000; Lei, Pijanowski, Alexandridis, & 
Olson, 2005) in complex systems or environments (Michael Batty & Torrens, 
2005). ABMs are scale independent (Castle & Crooks, 2006; Crooks, Castle, 
& Batty, 2008; Yang, 2011), and range from micro-scale models of 
pedestrian movements in a street (M Batty, 2005) to urban simulations of 
large cities (M Batty, 2005; Yang, 2011). Scale independence extends to 
agents having the ability to respond to both local and global stimuli. Agents 
are highly mobile and can be programmed to comprehend distance and 
direction (Castle & Crooks, 2006). Flexibility in the design of models is 
improving as higher resolution data become available (Macal & North, 2005).    

 

In developing an ABM the modeller assigns characteristics to the agent(s) 
which determines how they behave in a simulation. An agent is an 
identifiable individual with a set of characteristics and rules governing its 
behaviours (Macal & North, 2005). In the simulation, agents exhibit decision 
making capability or adaptive behaviour. For example, Fontaine & 
Rounsevell (2009) define an agent as a household, characterised by the life 
stage of the household members, and the location choices at different life 
stages. Agents can assess the traits of the other agents. In Fontaine and 
Rounsevells (2009) study, household agents seek a desirable location base 
on proximity to the coast. For example, in their East Anglia study area, 
retirees prefer coastal areas. Agents interact with each other, these 
interaction(s) have the capability to induce a response action; often studied 
are cultural associations (Schelling, 1971). Agents are goal-directed, for 
example, Fontaine and Rousevells’ (2009) agents evaluate all property 
location options upon a change in life stage and choose the highest 
preference location from the properties available. Agents behave 
autonomously and in a self-directed manner (Macal & North, 2005). Agents 
are adaptive and may even develop skills. For example, Fontaine and 
Rousevells’ (2009) agents evolve through demographic life stages 
accordingly.  
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Agent-based models have some positive characteristics that make them 
suited to urban growth modelling. Importantly, these models are visually 
orientated and people are good at pattern recognition. Presenting results 
visually can be very effective. This is especially relevant for demonstrating 
technical results to policy-makers and decision-makers (Axtell, 2000). 
Nevertheless, the results must be interpreted appropriately (Castle & 
Crooks, 2006). As Triantakonstantis & Mountrakis (2012) report, in bridging 
the gap between theoretical and applied models it is important for the 
audience to be able to grasp the principles of the model, which is easier 
when the model is represented visually.  

 

There are some limitations associated with ABMs. Most of the limitations or 
disadvantages are related to computer modelling in general. In relation to 
agent-based models, the primary criticism is directed at the underlying 
complexity theory upon which ABMs are based  (Couclelis, 2002). Complex 
psychology, subjective choices and potentially irrational behaviour are 
human traits that are difficult to account for and complicate the development 
and implementation of models, and the interpretation of results (Castle & 
Crooks, 2006).  Complex systems such as ABMs are very sensitive to initial 
conditions and to small variations in the interaction rules (Couclelis, 2002). 
Consequently, the line between decidedly different outcomes may be very 
thin (Foss & Couclelis, 2009). As an example of this sensitivity, due to 
variance in outcomes of model calibration, Fontaine & Rounsevell (2009) 
conclude that they would require further testing of the input weighting to 
explore the effect on the results.  

 

Couclelis (2009) cautions that local interaction rules are seldom as simple 
as the models would have it. Models may reinforce positive feedback loops, 
thus overemphasising emergence. In contrast, there is more stability in the 
real world than complexity theory would have us think. Foss & Couclelis 
(2009) describe agent-based models as metaphors that cannot reproduce 
reality or pass any statistical tests: “The results of agent-based simulations 
are thus worth examining carefully not for quantifiable evidence but for the 
suggestion of interesting patterns, the generation of testable hypotheses, 
and generally for the exploration of ideas.” (Foss & Couclelis, 2009, p. 139). 

 

It is important that the purpose of the ABM is clearly stated (Crooks et al., 
2008; Grimm et al., 2006). Broadly, models can be grouped into either 
explanatory (where processes within the model are under investigation) or 
predictive (where the model outcomes are the focus). Management of time 
should be carefully considered. Agents could operate in synchronous mode, 



 

14 
 

i.e. simultaneously, in which case conflicts can arise when agents compete 
for limited resources (Torrens & Benenson, 2005). Resolution of conflicts 
should be handled carefully. Time could be managed asynchronously, 
whereby agents respond in turn and conflict can be avoided. However, the 
sequence of actions becomes more important (Torrens & Benenson, 2005). 

 

Another of the key challenges identified by Crooks et al. (2008) is making 
models operational i.e. running them as configurable simulations. Models 
may be developed but unable to be replicated in other situations or locations. 
Although generic software is being developed, the extent to which these 
products can be configured is variable and they will always be limited in their 
applicability (Crooks et al., 2008).  This could also perhaps be one of the 
factors behind the findings of Triantakonstantis & Mountrakis (2012), who 
found that ABMs have experienced limited operational adoption. Software 
model building applications that supply templates and user graphical user 
interfaces are available. These facilitate easier model development and 
research rather than producing coding software (Crooks et al., 2008). 

 

3 Review of applied agent-based models 
 

This chapter reviews four agent-based models in detail. Each of the models 
covers different aspects of urban expansion in small geographic areas of 
similar size to the study area of the Waikato. These models are based on 
households as the primary agent, share similarities in the types of data and 
function at the land parcel level. Each of these studies incorporates a 
household that evaluates the environment in different ways, each providing 
alternative methods that could be adapted to the study area situated in the 
Northern area of the Waikato, New Zealand.   

 

Agent-based models can be cumbersome and difficult to explain (Grimm et 
al., 2006, p. 116). If models are not well presented and not properly 
understood there is a natural resistance to their adoption into practice. 
Crooks et al. (2008) express concern that the theoretical implications of 
many agent-based models remain implicit and hidden. In 2006, Grimm et al. 
(2006) first proposed the development of a standard protocol (ODD - 
‘Overview’, ‘Design concepts’, and ‘Details’) for describing ABMs. A 
standard protocol helps both researchers and model audience to 
understand the approach of the modeller. In further addressing the concerns 
that the underlying theory is not well described, Müller et al. (2013) 
suggested the ODD protocol would be enhanced by more extensively 
describing the underlying theory under the design concepts (ODD+). A 
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Clear understanding of the underlying theory ensures that models and 
outcomes can be more easily understood and compared to results from 
other models. The following reviews have been described using the ODD+ 
to facilitate comparison and contrast. 

 

 

3.1 Multi-agent simulations of residential dynamics in the 

city (Benenson, 1998). 

 

Overview 

 

Benenson’s (1998) approach is based on both the economic and cultural 
attributes of the individual agents. This model is exploratory, investigating 
the processes of economic and cultural self-organization in the city, with the 
intention of answering the questions “What are number and the level(s) of 
[economic and cultural] segregation of the emerging groups, if any?”, “Are 
they fixed or do they [the emerging groups] vanish with time? and What is 
their [the emerging groups’] ‘life-history’?” (Benenson, 1998).  

 

The simulation is run on a theoretical population. The size of the population 
is not stated in the study. However, based on the grid size the number of 
agents is 1600. The model investigates individual citizens’ economic status, 
which is uni-dimensional and quantitative, and cultural identity, which is 
multidimensional and qualitative.  

 

The intended user of the model is not stated. The patterns of sociocultural 
emergence could be useful for planners, particularly in places where cultural 
diversity or tensions are high. In the discussion, Benenson questions 
whether such models can be used in real world situations and concludes 
that the advances in GIS software, improvements in high resolution data 
and improvements in computational power allow for the development of 
multi agent models. 

 

The model time steps (t) are not given any time units. The research 
questions are based on observation of events at periods in the model. 
Observations are made and discussed at t= 10 and t=400. Overall the model 
is run for 2500 time steps.   
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Description 

 

The agents in Benenson’s model are individuals, and the theoretical city 
comprises a grid. Each of the 40x40 grid cells can hold one agent. The 
model is initiated with a small number of agents at the centre of the grid, 
while all other cells are vacant. 

 

At each time step, each agent decides whether to stay at the current location 
or move, based on a ‘tension’ resulting from an economic status or a 
‘cognitive dissonance’ resulting from differences in cultural identity.  

 

The agents’ economic status is a function of a fixed growth rate, mortgage 
repayment, house value, neighbouring house values and the average city-
wide house value. The growth rate is randomly assigned from a normal 
distribution. Economic tension develops when the economic status of the 
agent differs from their neighbours. Tension thresholds define the action to 
move to a suitable vacant cell. Under certain circumstances, the agents can 
leave the grid (i.e. the city). 

 

Agents are attributed with a multi-dimensional cultural identity, described by 
a K-dimensional Boolean cultural code comprising n vectors and k 
dimensions. This identity can give rise to a “cognitive dissonance” as agents 
seek to associate with agents of a similar identity. In this situation, cognitive 
dissonance refers to the agent’s processes of weighing up the pros and 
cons of residing in neighbourhoods that share their cultural identity or a 
different cultural identity. The cognitive dissonance is defined as an average 
of the differences between an agent’s cultural identity and the identities of 
its neighbours. 

 

The agent’s cultural response is influenced by the number of cultural identity 
dimensions (k) and the global cultural information. The number of 
dimensions influences the resolution of the cultural identity, and the global 
cultural information influences the cultural sensitivity to neighbours of 
different identity. The global cultural information is determined in the model 
by the value of Lieberson's segregation index (Lieberson, 1981). The higher 
this index value, the greater the propensity for cultural segregation to persist 
and for agents to preserve their cultural identity.  
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Agents move when there is an increase either their economic tension or 
their local cognitive dissonance. When agents are restricted and no suitable 
vacant locations are available, the agent can alter their cultural identity in 
order to reduce the dissonance. 

 

Initialisation 

 

The model is run as two versions, the economic and the cultural version of 
the model. At every cycle, a constant number of individuals try to enter the 
city and occupy a house (Benenson, 1998). In the economic model, the new 
agents are randomly and independently assigned an economic status and 
growth rate. In the cultural version, the identity of the immigrants is assigned 
at random, in proportion to the current proportions of cultural identities.  

 

Results and discussion 

 

The author does not explicitly state other exogenous factors. However, 
housing supply, ability to migrate and proximity to infrastructure are some 
factors that could be assumed to be exogenous. 

 

In terms of spatial and temporal resolution, each step in the model 
represents a ‘cycle’, which is not explicitly related to a measure of time. The 
model is run up to t=2500 so it would be highly useful to know how fast the 
economic and cultural transitions take, it could be months or years. Spatial 
resolution is not stated, based on a grid where each cell represents a 
household. The ‘city’ is only represented as 40 x40 cells so this bears no 
relationship to a real city.  

 

The results of the economic status version of the model “…converge 
towards a smooth, slowly varying spatial pattern.” (Benenson, 1998, p. 39). 
In the short and medium term the domains, occupied by individuals of low 
and high status, can be foreseen. 

 

The cultural identity version shows that from the cultural perspective the 
distribution can only be foreseen in the short-term. The city can only sustain 
a limited number of cultural identities, cultural groups can emerge and 
disappear and overall the city preserves cultural instability.  
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This study highlights the relative complexity inherent in modelling more 
complex relationships such as cultural identity and association. Cultural 
association is recognised as a determining factor in household location 
choices and urban growth patterns (Schelling, 1971). This work also 
highlights different approaches using quantitative or qualitative data. The 
adaptive qualities of the agents provide a good representation of the real 
world. In the economic model, the agents have an economic growth status 
which changes over time as the fixed growth factor. On the cultural side, the 
agents can alter behaviours and reduce dissonance by altering cultural 
identity.  

 

3.2 An agent-based approach to model future residential 

pressure on a regional landscape (Fontaine and 

Rounsevell, 2009) 

 

Overview 

 

This model is a case study, simulating future demand for residential housing 
in the Norwich region in the East of England. The number of agents is not 
stated however, it is indicated that the model will simulate in excess of 
700,000 household agents derived from a population of about two million 
citizens. 

 

The model simulates land-use patterns at the regional scale by integrating 
qualitative knowledge of agent location preferences with quantitative 
analysis of urban growth dynamics. The primary driver of residential mobility 
is a change in the life stage of households. 

 

This model produces results that will inform end users of the land use 
pressures as increasing quantities of residential land is required to support 
a growing population. The nature of the life stage approach also provides 
strong indications as to the types of households that are driving the demand. 
For example, areas close to the coast experience high demand, primarily 
driven by retirees. 

 

The intended user of the model is not stated. The outcomes could be used 
for strategic planning, particularly housing forecast/demand management 
and environmental impacts of different scenarios. 



 

19 
 

 

Each time step represents one year, and the model is simulated for a 25 
year period, from the baseline year 2000. 

 

Description 

 

There are two agents; members of a household and land units represented 
in a 250m grid. The household is mobile and chooses to occupy a suitable 
land unit. The household comprises individuals and is characterised by the 
numbers and ages of children, adults and family. The land unit, a cell in the 
grid, is considered to be homogenous and immobile. The land unit’s 
‘potential attractiveness’ is assessed by the households on three sets of 
criteria namely: land tenure, land unit accessibility, and environmental 
criteria 

 

There is a fixed housing stock (supply) both in quantity and house physical 
size and household choice indicates the size preference and the preferred 
location. The agents compete for locations most desirable for their life stage. 
The model tracks demand for residential properties in land units. Each land 
unit’s residential property count is compared with a hypothetical total 
property count to produce a ‘demand ratio’. A high ratio indicates a greater 
change in the urban landscape.  

 

Base assumptions stipulated for the modelled environment are that 
household behaviours don’t change over time, demographic trends 
continue, and no more residential properties are built. Rents and income 
are kept constant through the model. 

 

Initialisation 

 

When a household agent changes from one life cycle stage to another they 
can change location. The household evaluates the region for a location with 
their new, preferred characteristics. Each life stage has different 
‘attractiveness’ criteria. Land units’ ‘potential attractiveness’ are classed as 
‘optimal locations’, ‘second-best locations’ and ‘suboptimal locations’. Each 
household chooses the highest attractiveness class where a vacant land 
unit exists. If there are no suitable land units available, the household: 

- does not relocate but remains unsatisfied (if it already has a land unit); 
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- chooses any available land unit (if it is new to the region); or 

- leaves the region (if it has no land unit and none are available to 

choose from). 

 

Results and discussion 

 

The authors report a low correlation coefficient (<0.5) between the observed 
and the simulated spatial distributions, although they consider the result to 
be adequate given the qualitative nature of the exercise. “A better match 
between data and model would have been surprising as the model is a 
stylised representation of reality.” (Fontaine & Rounsevell, 2009, p. 1249). 

 

To more comprehensively model the impacts of future growth patterns and 
the potential environmental impacts agent-based models need to: 

- improve on calibration methods that are appropriate to spatial urban 

data; 

- include other agents with a role in urban development and planning; 

- adapt the approach to better simulate scenarios of future urban 

change; and 

- consider measures of ecosystem services to better integrate the 

environmental impacts of residential development. 

 

Fontaine and Rounsevell highlight the role life stage has in the location 
choice of residential location, particularly in a polycentric region. Their 
approach to establishing the demand for house types manages the 
uncertainty of what types of houses would be constructed by developers. 

 

The life stage aspect of this approach could be beneficial in the Waikato 
region, as broadly speaking there is not a great diversity in the types of 
houses. The structure of the planning facilitates free standing houses and 
profit driven maximisation of the floor area. One could rightfully question 
whether low diversity in house types is beneficial to the future efficiency of 
a region, particularly when household size is projected to decrease and the 
composition of households is likely to become more diverse. Fontaine and 
Rounsevell’s work could be utilised to help guide planners to ensure the 
right type of houses are built in the right places. It would be very interesting 
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to know if the demand is driving the house type in East Anglia or conversely 
if planners and developers are driving the house types being constructed.  

 

3.3 High Resolution Urban Land-use Change Modelling: 

Agent iCity Approach (Jjumba and Dragicevic, 2012) 

 

Overview 

 

This is a case study and implementation of a software called Agent iCity, in 
which the process of urban land-use change is simulated using irregular 
spatial units at a cadastral scale. This model simulates the subdivision of 
land and production of new land parcels. The model is applied in a rapidly 
developing suburb of the City of Chilliwack, Canada. The study area is 
approximately 14 km2 covering about 1500 land parcels, many of them 
undeveloped. 

 

The model was developed for urban planners and this case study 
demonstrates the outcomes of two policy scenarios. 

 

The different components of the model run using differing time steps: 

- the household agents operate on a monthly clock; 

- the developer agent operates on a six-monthly clock; and 

- the planning agent operates on a yearly clock. 

Overall the model runs five years into the future. 

 

Description 

 

This model incorporates interactions between five types of agents; the 
urban planner, housing developers, households, retailers, and industrial 
manufacturers. 

 

One urban planner agent represents the planning body, with a primary goal 
to identify the cadastral parcels upon which subdivision can take place. For 
large enough land parcels the planner agent initiates a subdivision module 
which simulates the subdivision process. The model user stipulates the 
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planning policies and the planning agent operates within the determined 
framework. 

 

The housing developer agent searches for land parcels that have been 
identified by the planning agent. The most profitable parcels have the 
highest potential land value and are surrounded by desirable land use 
activities, based on a calculated proximity score. The proximity score is 
dynamic and is recalculated when new subdivisions occur. The developer 
introduces new residential units, which are assigned a property value 
randomly selected from a normal distribution whose mean and standard 
deviation is specified by the user before the model is initialised. 

 

The household agent is motivated to move when their household income 
becomes greater than the neighbourhood average income. The household 
will move to a vacant parcel in a neighbourhood that has an average income 
and average property value equal or greater than that of their last residence. 
A household cannot move more than once in 12 months. 

 

Employment is directed by the retailer and industrial manufacturer agents. 
As the number of households increase, the number of employers increases 
as do the number of retail and industrial employment locations. Jjumba & 
Dragićević recognise this representation of the city’s retailers and 
industrialist is over simplified. In this model, employment is responsive to 
population growth and this too is recognised that employment is a growth 
driver. The location of employment sites and selection process of the retail 
and industrialist agents is not elaborated on. 

 

The number of new agents is set by the user. Average income is a fixed 
input variable. The property value range and normal distribution are set by 
the user.  

 

Initialisation 

 

A neighbourhood is defined as parcels that fall within a specified buffer 
distance from the boundary of the central parcel. The result is each land 
parcel has its own unique neighbourhood and the characteristics of this 
neighbourhood can be determined.  
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The planning agent is initiated and identifies parcels available for future 
development. The land subdivision module is used to subdivide land 
parcels. The initial large land parcels are first subdivided into city blocks 
which are transected by roads. The final division of the city blocks into new 
land parcels is done in accordance with predetermined minimum area and 
frontage rules.  

 

The developer agent follows and adds residential units to the most suited 
locations and in the final step the household agents evaluate the merits of 
available vacant residential units and relocate if beneficial. With a number 
of modules and differing time cycles, an agent module is responsible for 
coordinating the timing of actions.  

 

Results and discussion 

 

The results of this model provide insights into the land use change driven 
by stakeholder relationships, land value and household income. The 
interactions of the key stakeholders are a valuable component in providing 
suitable subdivision and therefore the new options to the household agents. 

The authors conclude that the results represent the land use change and 
subdivisions well, however, more detail could be incorporated into the 
interactions of the agents as well as the influence of economic factors such 
as land market dynamics and employment opportunities among others. 

 

The inclusion of a developer agent is particularly relevant and could be a 
great addition to the Waikato agent-based model. The developers have key 
drivers that can be in conflict with the planners, thus provide a set of criteria 
that separate the planners from house owners. Morgan (2010) also 
identifies a varied approach taken by land developers. 

 

This study also highlights that the complexity of the model increases as a 
greater number of agents are included and yet there is still a range of very 
broad assumptions that need to be accounted for. 

 

The approach to the agents that can subdivide the land parcels is 
particularly interesting and could be a very useful tool to help planners 
understand the capacity for subdivision in an area or how much impact 
design standards (e.g. road and sidewalk width) and setback rules have on 
how many houses can be constructed. 
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The operation of different time clocks is an interesting feature. In reality, 
events take place asynchronously, however, the models reviewed treat 
events synchronously. Castle & Crooks, (2006) discuss managing 
synchronous and asynchronous time.  When time managed synchronously, 
the agent’s behaviour is scheduled in discrete time steps, in which case the 
order of event needs to be planned carefully. In the real world, behaviour is 
more commonly asynchronous and events occur on different time 
schedules. In such cases managing any feedback mechanism require 
careful planning. 

 

3.4 Impact of urban planning on household’s residential 

decisions: An agent-based simulation model for Vienna 

(Gaube and Remesch, 2013) 

 

Overview 

 

This is a model based on the city of Vienna, with roughly 770 000 household 
agents represented in 59 small city areas. The model simulates the 
residential patterns of different household types based on migration and 
demographic life stage progression. One of the focal points centres on 
sustainability and the implications for energy consumption under different 
city development scenarios. The scenarios are tabulated as conventional 
urban planning, sustainable urban planning, expensive centre and no green 
area. 

 

It is not stated for whom the model is intended. It could very well be used by 
strategic planners, policy makers or planners interested in energy 
distribution, including transport energy. 

 

The specific research question is not stated. However, the model outputs 
firstly demonstrate the distribution of household types depending on the age 
class and income class to which they belong under different scenarios. 
Further to this, energy consumption per capita and per household are 
investigated, highlighting the long-term implications for the city. The four 
scenarios are conventional urban planning, sustainable urban planning, 
expensive centre, and no green area preference. 
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In the model, one time step represents one year and the model runs for 50 
time steps. 

 

Description 

 

Gaube and Remesch describe the main interaction as that taking place 
between households and spatial units. The main intention is to investigate 
energy consumption patterns in response to different city planning policies. 
Each household agent is classified according to household types, defined 
by age and family structure. Each household type displays different 
preferences for residential locations. The residential location characteristics 
of the spatial units are classified according to environmental amenities, 
accessibility of high-level public transport, infrastructure, centrality, dwelling 
cost, dwelling size and social prestige.  

 

This model simulates a synthetic population and utilises a demographic sub-
model to simulate biological event, a residential mobility sub-model that 
calculates a satisfaction/stress factor and an urban development and vacant 
dwelling sub-model that accounts for changes in the urban cityscape. 

 

Initialisation 

 

In the simulation, households transition through different household types 
(i.e. life stages), which influences their space requirements, income and 
residential preferences. At each change in household type, the agents 
assess the residential locations. The residential sub-model establishes the 
satisfaction of each household and when a stress level is reached, a 
relocation is triggered. The residential location characteristics are weighted, 
and scenarios can be run by adjusting the relative weighting.  

 

The city environment is dynamic and the urban development and vacant 
dwelling sub-model controls the rent, income and the allocation of new 
residential locations. Once the household type distributions are established, 
further analysis based on per capita energy consumption is undertaken to 
demonstrate how different policies have different social impacts which 
influence energy consumption. 

 

The spatial resolution is at the small city area. The core model has a 
household type seeking a house (dwelling). There are seven such 
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household type classes establishing the synthetic population. The initial 
population figures are taken from the Austrian 2001 census and micro-
census 2006 and 2008. 

 

Exogenous to the model are the property rents and the urban development 
scenarios. The scenarios specify the number of newly constructed dwellings 
per cell and model year and are based on projects already planned or under 
construction. Expert knowledge provides information for the scenarios 
identifying suitable areas for large urban projects. 

 

Results and discussion 

 

The model successfully presents outcomes for each of the scenarios and 
demonstrates the effects of different policies on the distribution of 
households and household types, which in turn affect energy consumption. 

 

In the conclusion, Gaube and Remesch briefly discuss the continuum from 
simple to complex models. This is relevant in the context of the Waikato 
study area, as the possible users of this model need to easily understand 
the model workings and assumptions. “Nevertheless, efforts should aim at 
developing models [that are] (1) simple in terms of degree of details and 
technical implications and at the same time (2) complex enough to address 
socio-ecological issues. In our opinion, this is one of the challenges in using 
agent-based models for analysing socio-ecological systems.” (Gaube & 
Remesch, 2013, p. 102). 

 

As with the previous studies that include aspects of the life stage 
progressions, the inclusion of a demographic component provides an 
important link into the long-term (50 years) projection, as the population 
structure is changing in accordance with the other components of the model.   

 

The method of weighting input criteria demonstrates an easily adaptable 
platform from which scenario testing can take place. 

 

In a similar fashion to Fontaine and Rounsevell (2009), the model projects 
an outcome of the housing types required. However, there is uncertainty as 
to whether these housing types actually get constructed. In this particular 
study, it would be very interesting to know what the implications of a 
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mismatch between households and housing types are in terms of energy 
consumption. Gaube and Remesch refer to a socioeconomic structure, 
energy consumption is optimised when the number of occupants’ matches 
the types of houses, i.e. a good socioeconomic structure. Inefficiencies arise 
when there is a mismatch between the number of occupants and the types 
of houses, i.e. a poor socioeconomic structure. 

 

4 Method and assumptions 
 

4.1 Purpose 

 

The purpose of this Waikato agent-based household distribution model is to 
provide strategic and infrastructure planners with household and population 
projections that are: i) spatially explicit, independent of predetermined 
statistical boundaries similarly to Jenner (2002); ii) not necessarily based on 
the disaggregation of territorial authority population projections; and iii) 
independent of territorial authority jurisdictions, providing a holistic 
approach to the study area. Although the model traces individual 
households, these are not the subjects of the investigation. It is the 
emergent patterns that are reported and discussed. Figure 4.1 shows the 
sequence of events undertaken by each individual which determines how 
(if) they move to different neighbourhoods.  

 

The research question is “what will the likely household distribution be for 
Hamilton, Waikato and Waipa in 2025?” Up to 2025, it is projected that 
approximately 31,474 new houses will be required to house a growing 
population (M. Cameron & Cochrane, 2015b) and the question is, under 
given planning objectives where are these most likely to be constructed? 

 

The outputs of the model are: a time series of the number of occupied 
residential households in each meshblock and a series of maps showing 
net change in occupied residential households. The output data series will 
include spatial data attributed with the residential household counts that will 
enable planners to interrogate the projected changes within a meshblock or 
Area Unit. 
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4.2 Overview 

 

The Waikato agent-based model spatially allocates households within the 
study area. In the model, each household is an independent agent. Each 
household agent (HA) pays rent for their current house and incurs an 
amenity benefit from the neighbourhood they are living in. Each household 
agent has a single job and incurs a travel cost based on the distance from 
their home to their job. In each annual time step, agents move such that 
they minimise their total costs relative to the neighbourhood amenity benefit 
they receive and the costs of relocating. At each time step, additional land 
units, HAs and new employment opportunities become available.  

 

 

Figure 4.1. Flow Chart of the time cycles and internal process steps. 

 

Measures of cost or satisfaction have been used by authors such as 
(Benenson, 1998; Fontaine & Rounsevell, 2009; Jjumba & Dragićević, 2012) 
to model agent responses to residential location choice. HA costs are 
predominantly based on economic criteria. Social, cultural and other factors 
such as amenities are collectively accounted for as part of the 
neighbourhood amenity benefit (NAB). These factors remain constant as 
the NAB does not change for the duration of the model. 
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New household agents, employment and land units are added to the 
modelled environment at the start of each time step, as shown on the right 
hand side of Figure 4.1. Each cycle represents the annual change. The 
agents’ assessments are represented in Figure 4.1, on the left hand side. 
The HA’s total costs are expressed as residential cost (RC). Agents will 
initiate a move if their residential cost (RC1) is greater than the residential 
cost at an alternative location (RC2). The HA with the highest reduction in 
cost will relocate first. A new cycle is initiated when agents have reached 
their goal, RC1≤ RC2, and no further cost reductions can occur. The outline 
of each step in the SQL (Structure Query Language) code, as commented, 
is provided in appendix 1 for reference. 

 

4.3 Overall assumptions 

 

The most significant assumption in this model is that all HAs have the same 
household composition, which is the same number and age structure of 
people in the household. Each household has one person employed, five 
days a week and travelling to a place of employment. In addition, residences 
within a neighbourhood have the same capital value and thus all HAs have 
the same imputed rent for each particular neighbourhood.  

 

While there are many motivations for a household to relocate, some authors 
consider the economic aspects of the household to be more significant 
(Jjumba & Dragićević, 2012), while some consider life stage of the 
household and cultural affiliation to be significant (Benenson, 1998; Gaube 
& Remesch, 2013; Schelling, 1971). 

 

In this model, the primary reason for focusing on the economic aspects is 
related to the known variables; i.e. population growth rate, planned growth 
and subdivision, and relevant employment information. In the Waikato study 
area, whilst cultural and social differentiation does exist, in a national or 
international context, the dissimilarities are not so great. Any differentiation 
is accounted for in two ways. The capital value of properties reflects the 
social status of each neighbourhood and the neighbourhood amenity value 
will reflect a wide range of other factors, such as landscape, natural features, 
transportation links, schools or shops, which established the settlement 
patterns over the period of model calibration (2006 to 2013). In this way, 
non-economic factors are indirectly taken into account.  
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It is recognised that it would be ideal to have heterogeneous households. 
However, the HAs’ ability to relocate then requires assessment of housing 
stock, for which the future provision is required. Forecasting future housing 
stock is not undertaken by the local authorities and is left to the speculation 
of developers and likely to be short term focused (Morgan, 2010). From the 
model development and data requirement point of view, forecasting of 
housing values, size and residential type is a challenge, and will significantly 
increase the complexity of the model (Benenson, 1998; Fontaine & 
Rounsevell, 2009; Morgan, 2010), particularly the calibration, which is 
already recognised as a challenge in agent-based modelling (Crooks et al., 
2008).   

 

The household agent’s residential cost (RC) comprises three components, 
situation costs, relocation costs (RL) and income. The situation costs are 
imputed rent (LuCost) plus neighbourhood amenity benefit (NAB) plus travel 
costs (TDC). Net income is calculated as Income (I) subtracting the situation 
costs; imputed rent (Rent), NAB and travel costs (TC), i.e.: 

 

Net Income = I – rent – NAB - TC    (1) 

 

The comparative Net Income is calculated for all vacant land units and when 
the change in Net Income is greater than the relocation cost the agent could 
relocate. Each agent will move in order to achieve the greatest gain in Net 
Income. The sequence of moves is ordered by the HA with the highest net 
income differential, moving first. 

 

Δ Net income > RL      (2) 

  

Relocation costs (RL) comprises a fixed value of $2,000 and an amount that 
varies according to the distance moved. Relocating incurs a cost, this cost 
ensures that some incentive is required to undertake a move, and it also 
limits the model from iterating through movements with low-cost change. 

 

RL =  2000 + (0.77 X td)     (3) 

  

The relocation cost comprises a fixed cost of $2000 and a variable distance 
cost. The distance (td) is added at a cost of 77c per km. The fixed cost of 
moving is highly variable depending on the service offered by a removal 
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company. A range of values from $500 to $2500 was tested and $2000 was 
selected as it permitted a high number of agents to relocate as this allowed 
a sufficient differential between the origin and destination residential costs. 
The distance component was selected to represent a higher cost of 
relocating a greater distance. In reality, people are likely to be more 
amenable to relocate within a town rather more so than relocate to a new 
town. 

  

Travel costs are based on travel from the place of residence to the place of 
employment. The TC formula is calculated as: 

 

TC = 41.6 X ((0.53 X tt) + (0.77 X td))   (4) 

 

Where 41.6 is the average number of journeys to work per month. Each trip 
is calculated as the distance to work and back home again on 5 days a week 
on an average of 4.16 weeks per month. 0.53 is the average wage per 
minute multiplied by the travel time (tt) and 0.77c is the travel cost per km 
(td). The average wage is sourced from Statistics New Zealand household 
income data (Statistics New Zealand, 2013c) and the travel costs are 
obtained from Inland Revenue employee reimbursements (Inland Revenue, 
2014). 

 

The primary reason one employment unit per household is utilised is 
because the travel to work information is provided at the area unit level. For 
this study, the data is proportionally disaggregated to meshblocks. 
Disaggregating travel to work based on households potentially travelling to 
more than one destination introduces a complexity that could potentially 
make calibration of the model more difficult. 

 

The distance to the nearest school travel cost was also investigated but it 
was not included in the final analysis. The school travel cost resulted in a 
high number of HAs leaving the rural areas and this out-flux of agents 
reduced the number of HAs to levels lower than the observed 2013 
household count. In contrast, the urban areas filled up to maximum levels 
quickly and in the latter stages of the model the new agents had no choices 
but to start filling the rural areas. When the school travel is not included the 
rural areas are more stable and the new HAs steadily fill the urban area and 
some growth spills over to the rural areas. Calculating independent school 
and work travel may not reflect travel patterns accurately as alternative 
transport options are available for rural schools and many households will 
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route via a school on the way to work. Travel to school would be more 
applicable in a model incorporating life-stage where agents require (or don’t) 
certain types of schools or other educational facilities. 

 

The imputed rent is calculated as 5% of average property capital value, of 
properties in each land unit and divided by 12 into a monthly dollar value. 
HAs rent increases when an agent moves into a land unit – popular land 
units have increasing costs and rents decline where agents have left. This 
recalculation is represented in Figure 4.1 by the centre box with the dashed 
outline. The rate of change in rent is 1% of the LuCost, this rate diminishes 
by 1% on each HA’s move. The first agent causes a 1% change, the 
subsequent move results in a 0.99% change (relative to the original LuCost), 
the next a 0.98% change, this creates a diminishing influence on the LuCost. 
Similarly, the rents increase is larger on the first move and subsequently 
becomes smaller with each move. Altering the rent by a diminishing amount 
is necessary in areas such as major subdivisions or growth areas, where 
high levels of growth are anticipated if the rent changes are not multiplicative 
the rents can quickly become 0. 

 

4.4 Land Units 

 

Land units are selected to represent the smallest geographic area possible 
and are non-mobile. They could be representative of a census tract, a 
property or a regular cell. The characteristics of the land unit define how 
many household agents can reside in the land unit at any one time. Each 
land unit has a maximum capacity, i.e. the maximum number of household 
agents that can reside in the land unit. An alternative viewpoint is that the 
land unit contains a number of dwellings, which could be occupied by 
household agents. This capacity can change over time as per the town 
planning rules. Property subdivision or Greenfield developments can result 
in an increase in the capacity. In this model, land units are represented by 
the meshblock which typically range in size from 1 to 350 residences. In the 
study area, the mean number of residences per land unit (meshblock) is 
39.4. 

 

The purpose of the land unit is to hold the record of how many HAs occupy 
properties and how many vacant properties exist. At each time step new 
vacant properties (subdivisions) are added to each land unit. In addition, the 
land unit holds the rent and the number of employment opportunities. 
Employment opportunities are the determinant of travel cost 
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Imputed rent is a characteristic of each land unit thus a HA assumes rent 
based on location. In some models, the rent cost is associated with the 
economic status of the occupier, for example, Benenson (1998) and Gaube 
& Remesch (2013), whilst in others, such as Jjumba & Dragićević, (2012), 
the rent is attributed to locations. This model is based on the location holding 
the rent value. The primary reason for this is that the capital values of all 
properties are known and in a meshblock, properties are assumed to be 
identical. Household income data are only available at area unit level. This 
would not provide sufficient differentiation among the household agents for 
them to respond individually. Rent associated with the economic status of 
the household agent or mobile agent is more suited to investigating the 
selection based on affordability and residential change through life stages, 
as for example in Benenson (1998) and Gaube & Remesch (2013).  

 

Other than council influenced infrastructure (i.e. major services such as 
roads, water and sewerage), no account is taken of any restrictions in land 
supply. If land is required to be developed into residential land parcels they 
are immediately available, as long as council growth strategies are planning 
or zoning the release of that land. This contrasts with Fontaine & Rounsevell 
(2009), who use a fixed number of residences and the model is used to 
identify where there are pressures for additional residence and the housing 
type dependent on the life stage of the agents. Jjumba & Dragićević, (2012) 
and Morgan (2010) use developer agents to manage the supply of 
residences according to the demand. 

 

4.5 Neighbourhood 

 

The number of neighbourhoods is fixed through the duration of the model 
so in effect, a neighbourhood cannot grow in physical size but may become 
more densely populated.  

 

Each neighbourhood has its own value (NAB) associated with its 
characteristics such as; access to amenities, infrastructure, transportation 
links, natural environment and school zoning. Attractive neighbourhoods 
have a low value, thus household agents seek to occupy these following 
their goal of minimising costs. The NAB is derived through the calibration 
process refer to 4.8. The NAB associated with each neighbourhood does 
not change over time.  
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The starting neighbourhood NAB is a predetermined cost. At the 
commencement of the calibration process, this is arbitrarily set at $2,500 
and adjusted accordingly through the calibration. The value $2,500 was 
selected as being more than the average rent of $1,984. At the starting point 
of the model neighbourhood NAB has slightly higher weighing as a 
component of the residential cost. However, rents increase due to the 
increase in the number of HAs, thus the relative weighting of the NAB 
decreases as the model progresses. A NAB slightly higher than the average 
rent allows the neighbourhood amenity value to have a slightly higher 
proportion of the RC during calibration. This provides slightly more 
emphasis on the amenity during calibration. When running the model the 
NAB is fixed and as more agents are added the rent component increases 
and becomes more significant in the HAs RC. 

 

4.6 Data sources 

 

4.6.1 Geographical classification 

 

The meshblock is the smallest geographic unit for which statistical data is 
collected and processed by Statistics New Zealand. A meshblock is 
a defined geographic area, varying in size from part of a city block to large 
areas of rural land  (Statistics New Zealand, 2013e). Meshblocks contain 
between 0 and 300 dwellings, with an average of 40 dwellings. There are 
2302 meshblocks in the study area. Meshblock spatial extents and unique 
identification numbers form the basis of land units and neighbourhoods, 
refer to Map 2.  

 

Area Units (AU) are aggregations of meshblocks. They are non–
administrative areas that fall between meshblocks and territorial authorities 
in size (Statistics New Zealand, 2013a). There are 108 AUs in the study 
area. AU unique identification numbers have been coded against 
meshblocks so results may be aggregated at a higher level. Area Units are 
represented on Map 1 
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Map 1.Statistics New Zealand Area Units and meshblocks  

Note 1. Area Units and meshblocks obtained from Statistics New Zealand Digital 

Boundaries 2013 

 

A Territorial authority (TA) is defined under the Local Government Act 2002 
as an area administered by a city council, district council, or unitary authority 
(Statistics New Zealand, 2013f). Meshblock and AU unique identification 
numbers have been coded against TAs so results may be aggregated to a 
higher level, refer to Map 1. Map 1 shows the relative size of Area Units, 
meshblocks and property boundaries. Note the relative size difference 
between the rural areas and the city. 

 

4.6.2 Other data classification 

 

Household Agents (HA) are derived from census dwelling count 2006 and 
2013 (Statistics New Zealand, 2013b). Refer to map 5 which shows the 
location of dwelling distribution as at 2013. Each HA has a unique identifier 
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and is assigned a location in a land unit based on the census dwelling count. 
HAs are assigned a relative income, obtained from one of fifteen income 
ranges (Statistics New Zealand, 2013e).  

 

The National Institute of Demographic and Economic Analysis (NIDEA) 
produced regional population and household projections. The household 
projections are the basis from which household agents are added to the 
model (M. P. Cameron & Cochrane, 2015).  

 

Employment numbers and projections were obtained and adapted from 
employment projections developed by Market Economics (McDonald, 2015). 
Employment was projected at the level of AUs and required converting to 
household employment number at the meshblock level. The employment 
projection dataset requires disaggregating from larger AU geographic areas 
to smaller meshblock geographic area. The disaggregation is done on a 
proportional basis. This is done, based on the proportion of modified 
employment count (MEC) per AU to employed people per meshblock 
(Statistics New Zealand, 2013d). The number of MEC is known for each AU. 
Each AU contains a number of meshblocks and the utilising the number of 
people employed in each meshblock, as recorded in the census, the number 
of MEC can be proportioned to each meshblock. The projections of MEC 
assumes these proportions remains the same into the future.   

 

The travel and distance matrix was adapted from the Waikato Regional 
Transport Model (G. Smith & Bevan, 2011). Transport matrix zones are very 
similar to meshblocks in extent, thus the travel distance between 
meshblocks can be tabulated. Off peak, 2013 travel distance (td) and travel 
time (tt) are provided.  

 

Land Units contain a number of land parcels situated in a meshblock. The 
initial property data are obtained from (Waikato Regional Council, 2013). 
The number of dwellings (Statistics New Zealand, 2013b) per land unit are 
calculated as the starting capacity. Each land unit has a maximum capacity 
regulated by planning policies. Changes in land unit capacity are outputs 
recorded at each time step. 

 

Land unit cost (rent) is an imputed rent calculated from property value data 
from the Waikato Shared Valuation Data Service, SVDS (a Local Authority 
Shared Services Limited (LASS) Council Controlled Organisation CCO) 
(Shared Valuation Database Service (SVDS), 2014).  
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The location and number of new land parcels (i.e. land subdivision) that are 
introduced at each cycle is determined by the respective Councils’ long-
term growth and development plans. In Waipa District, the sequence of new 
land units is outlined in the Growth Strategy and Proposed District Plan 
(Waipa District Council, 2014). Staging schedules and various snippets of 
local knowledge have been supplied by Gary Knighton, Planning Manager 
Waipa District Council (Knighton, 2015). Growth cells are spatially split by 
meshblock boundaries and property counts are used to apportion future 
growth. 

 

Hamilton City Council provided spatial files detailing the location of 
brownfield lots (i.e.Hamilton City Council provided spatial files detailing the 
location of brownfield lots (i.e. land parcels in existing neighbourhoods with 
potential for further subdivision) within the City as of June 2013 (Hamilton 
City Council, 2013). Staging schedules,  various insights and items of local 
knowledge have been supplied by Michael Spurr, Senior Strategic Advisor 
Hamilton City Council (Spurr, 2014). Structure plans outline the 
development plan for Peacocke (Hamilton City Council, 2014b), Rototuna 
(Hamilton City Council, 2014d), Rotokauri (Hamilton City Council, 2014c) 
and Ruakura (Hamilton City Council, 2014e) were accessed from the 
Hamilton City Council website. Growth cells were spatially split by 
meshblock boundaries and property counts are used to apportion future 
growth. 

 

Growth and development nodes in the Waikato District were sourced from 
structure plans (Waikato District Council, Territorial Authority, 2014a) and 
growth strategies (Roskruge et al., 2010) published on the Council’s website. 
Staging schedules, various insights and items of local knowledge have been 
supplied by Vishal Ramduny, Planning and Strategy Manager, Waikato 
District Council (Ramduny, 2014). Growth cells were spatially split by 
meshblock boundaries and property counts are used to apportion future 
growth. a 

 

4.7 Verification & Validation 

 

A primary component of verification can be described as debugging (Castle 
& Crooks, 2006), to ensure there are no errors in the code that could be 
producing an incorrect result.  Verification of this model takes place in two 
stages. The first stage was during the code development. A sample area 
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covering the town of Ngaruawahia with 1,440 HA was selected. Each 
variable was independently tested, and prior to running the model the 
predicted outcome was calculated using Excel. These tests on each 
variable were run to ensure that the model produced the expected outcome. 
As a result of these tests, some code amendments were required to ensure 
that the model data and SQL code was suitable for upscaling.  

 

The upscaling of the data being modelled introduced significant and 
undesirable increases in the time taken to run the simulation. The main 
issue encountered was the step in the process where the agent with the 
highest possible gain is selected to move. This process requires the whole 
population of HA to complete the residential cost calculation prior to 
relocating. The initial model was written in GAMA  (Gama-platform, 2014) 
with data stored in a Microsoft SQL Server Database (Microsoft Corporation, 
2012). Upon upscaling it was decided that the model should be exclusively 
contained in MS SQL. This subsequently reduced cycle run times to less 
than 45 min per cycle, which is viable for running the model for 13 time steps, 
or even repeatedly running the model and including a process to automate 
the calibration (refer to Section 4.8). Following the redevelopment of the 
code in MS SQL, the calibration model was run using an automated 
calibration process. 

 

Validating the model means checking against other models or other known 
or expected data or results (Castle & Crooks, 2006). This model is validated 
against both Statistics New Zealand and NIDEA household projections, 
(refer to Section 6). Both of these projections are based on top down 
population projections. This agent-based model’s outputs are aggregated 
up from the meshblock to the territorial authority level and when compared 
the outcomes are consistent through the modelled time period. 

 

4.8 Calibration  

 

The NAB is a hypothetical cost, thus its value can be used to influence the 
HA’s overall costs. Calibration is based on the period starting with 2006 
census and finishes at the 2013 census (New Zealand’s scheduled 2011 
census was postponed due to Canterbury Earthquakes). In the first run, the 
model was initiated with all neighbourhoods having the same NAB. Model 
outputs were compared with the census 2013 results and all 
neighbourhoods with too many HAs had their NAB increased. Conversely, 
neighbourhoods with too few agents had a NAB reduced to make them 
more attractive on the subsequent model runs. The root means square error 



 

39 
 

(RMSE) was recorded and the adjustment of NAB continued until the RMSE 
no longer changed significantly. 

  

Localities with the largest differences were amended by the largest quantum, 
and as the difference between the model output and expected result 
decreased the alterations to the NAB become smaller. If the auto-calibration 
overshot the optimal value then the process brought it back to close to the 
optimal value. 

 

4.9  Model scenarios 

 

Two scenarios have been established to demonstrate the effect of council 
planning strategies on the distribution of households. Each of the councils 
has a different approach to the location and timing of the new areas for 
urban expansion and development. Waipa has the most stringent strategy 
with defined development cells based on a sequential utilisation of these 
areas and little scope for any subdivision outside these defined cells (Waipa 
District Council, 2014). Hamilton has five principal development cells as well 
as development potential within existing areas (Hamilton City Council, 
2014a). Due the significantly larger size of the development cells, the 
infrastructure investment is accordingly more significant. Hamilton has a 
higher dependency on the role of developers. Waikato district predominantly 
has a high degree of subdivision potential within its existing land zoning, 
and it has a less structured or predefined development framework (Waikato 
District Council, 2014b). 

 

The purpose of these two scenarios is to demonstrate the impact of a 
relaxation of the growth strategies and to show the inter-relationship 
between the areas identified as development cells. A relaxation of 
constraints could also be viewed as increasing infrastructure investment to 
make more land available. Another interpretation of this scenario is all of the 
councils are fully providing infrastructure at the same time in all of the 
planned development areas. 

 

4.9.1 Constrained development plan (CDP) 

 

The first scenario is defined as a constrained development plan (CDP). This 
is the realistic scenario following the councils’ respective development plans 
and constraints imposed by their infrastructure investment. This is termed a 
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constrained scenario because the councils have set investment resources 
and plans which determine their long-term plans and growth strategies.  

 

Table 4.1. Hamilton, additional residential locations in Land Units 
considered to be development cells. 

 
 

Additional residential locations by  
(year)   

Area Unit Meshblock 2013 2014 2015 2016 2020 Total 

Horsham 
Downs 
Rototuna 

951911   150 400 200   750

951912 91     60 70 221

sub-total 91 150 400 260 70 971

Huntington 
Rototuna 

951802       82   82

952201 152       25 177

sub-total 152     82 25 259

Sylvester 
Rototuna 

951706 525 169 89     783

951709   68 82     150

sub-total 525 237 171     933

Newstead 
Ruakura 

954211       
1,96

0   1,960

sub-total       
1,96

0   1,960

Burbush 
Rotokauri 

976801   
1,40

0       1,400

sub-total   
1,40

0       1,400

Rotokauri 

976701         82 82

976702         330 330

976802   
1,09

9       1,099

sub-total   
1,09

9     412 1,511

Peacocke 
984506   700       700

sub-total   700       700

Temple View 

978900   100       100

979000   70       70

979101   0       0

979102   0       0



 

41 
 

979400   0       0

sub-total   170       170

Hamilton City 
Total 768

3,75
6 571

2,30
2 507 7,904

Note 1. Adapted from Hamilton City growth strategy, (Hamilton City Council, 2014a) 

Note 2. Land Units are small geographic areas that have an estimated capacity for 
residential locations, Hamilton City’s strategic plans identify development cells for    
residential growth. 

 

Table 4.1 shows the timing and quantum of land available and potentially 
developed up to 2025 for Hamilton City. There are a number of residential 
locations developed on previously undeveloped land. Hamilton has a further 
2,825 sites with development potential within existing residential 
neighbourhoods. The timing of the development of this model coincided with 
the start of the ten-year planning cycle thus a large quantity of land is 
available from 2013 and 2014. The development cell of Newstead and 
Ruakura, are examples of a development led by a private developer with a 
large quantity of land becoming available from 2016.  

 

Table 4.2. Waikato, additional residential locations in Land Units considered 
to be development cells. 

 
 

Additional residential locations by 
(year)  

Area Unit Meshblock 2013 2014 2015 2016 2017 Total 

Buckland 
South 
Tuakau 

828400     240     240

828503 22         22

828504 29         29

828505 11   123     134

sub-total 62   363     425

Opuawhanga 
Tuakau 

828602       66   66

828900     16     16

829000         26 26

sub-total     16 66 26 108

Redoubt 
Tuakau 

828501       82   82

828604       18   18

842700   710       710

842800       70   70
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829200     682     682

sub-total     682     682

Tuakau 

838102 1         1

838200 1         1

838900 205         205

840102 11         11

840200 29         29

840300   61       61

840400     17     17

840500         41 41

sub-total 247 61 17   41 366

Te Kauwhata 

937900 265         265

938000 587         587

938100 530         530

sub-total 
1,38

2         1,382

Waikato 
District Total 

1,69
1 771

1,07
8 236 67 3,843

Note 1. Adapted from Waikato district structure plans, (Waikato District Council, 

2014b). 

Note 2. Land Units are small geographic areas that have an estimated capacity for 
residential locations, Waikato’s strategic plans identify development cells for    
residential growth. 

  

Waikato district has less distinctive planned development cells (Table 4.2). 
Similar to Hamilton, most of the new development land has been serviced 
with infrastructure and is in a state ready for residential development to take 
place starting in 2013. The development cells in Te Kauwhata are based on 
a planned policy intervention designed to accommodate and attract growth 
into this town. Within the existing neighbourhoods, Waikato has a further 
7,700 additional residential locations that could be created through 
subdividing land in existing neighbourhoods. 

 

 

 



 

43 
 

Table 4.3. Waipa, additional residential locations in Land Units considered 
to be development cells 

 
 

Additional residential 
locations by (year)   

Area Unit Meshblock 2013 2014 2016 2020 Total 

Cambridge 
West 

960007       145 145 

sub-total       145 145 

Swayne 

Cambridge 

959002   272     272 

 sub-total   272     272 

Hautapu 

Cambridge 

960003       550 550 

960004       274 274 

960005       887 887 

sub-total       1,711 1,711 

Kihikihi Flat 

Te Awamutu 

989304 210       210 

989306 150       150 

989309   180     180 

sub-total 360 180     540 

Te Awamutu 
West 

970900     100   100 

sub-total     100   100 

Waipa District   360 452 100 1,856 2,768 

Note 1. Adapted from Waipa growth strategy, (Waipa District Council, 2014).  

Note 2. Land Units are small geographic areas that have an estimated capacity for 
residential locations, Waipa’s strategic plans identify development cells for    
residential growth. 

 

In contrast, Waipa has 16 residential locations that can be created outside 
the development cells. Waipa (Table 4.3) has a large number of residential 
sites developed prior to 2013. The development cells that have had 
subdivision initiated prior to the start point of the model will have the land 
unit capacity calculated as the number of existing properties and the total 
planned capacity. The table above only reflects development cells that are 
in land units with no prior development. Waipa’s strategy is clearly set out 
in sequence and each development cell is initiated upon achieving 
development thresholds.  
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Table 4.4 Summary of additional residential locations by territorial authority 
and year 

 Additional residential locations by (year) 

Territorial 
Authority 

2013 2014 2015 2016 2017 2020 Total 

Hamilton 768 3,756 571 2,302   507 7,904 

Waikato 1,691 771 1,078 236 67   3,843 

Waipa 360 452   100   1,856 2,768 

Grand 
Total 2,819 4,979 1,649 2,638 67 2,363 14,515 

Note 1. The number of residential locations are adapted from each councils’ growth 

plans. 

Note 2. Land units are small geographic areas that have an estimated capacity for 
residential locations, each territorial authority’s strategic plans identify 
development cells for residential growth. 

 

Table 4.4 demonstrates that the overall the release of land is not smoothed 
and under constrained conditions the competition between development 
cells can limit the option for HAs particular in periods when fewer new Land 
Units are available, for example, 2017 to 2020 and then again between 2020 
and 2025. When the options in locations close to employment are limited 
the HAs will need to move further from the employment centres.  

 

4.9.2 Unconstrained development plan (UDP) 

 

The unconstrained development plan is far more hypothetical and assumes 
the councils have unlimited capacity to provide infrastructure to support the 
development cells. In this scenario, all new land units are available for HAs 
to occupy from the first cycle of the model. In this scenario, the HAs have a 
higher number of residential location options. When development cells start 
to fill, the rents increase, however, there are still alternative development 
cells close to the employment centres.  

 

This scenario is still limited by the quantity of land that the councils plan to 
develop over the next 10 years. The effect of this scenario would be more 
significant if 20 years’ worth of land supply were introduced into the model 
instead of only ten years. 
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5 Calibration results 
 

5.1 Overview of Area units and Meshblocks 

 

The geographical size of meshblocks and area units varies greatly across 
the study area, with meshblocks ranging in size from a few hectares to 
several thousand hectares. Representing the model results graphically 
becomes a challenge. Showing the extent of the catchment requires a small 
scale. This thesis displays the results in one of two ways. Comparative and 
change over time maps are represented by maps that represent each 
meshblock as an equal size cell. This distorts the geographic relationships 
between a meshblock and its neighbours. However, care has been taken to 
represent these in the best possible approximate location as possible. It 
should be noted that these meshblocks of equal area are not used in the 
model itself and are only used to present the results. Alternatively, some 
results are best represented using the unmodified meshblocks and AUs. 
Map 2 shows the AUs in their unmodified state. At this scale, AUs within 
urban areas are indistinguishable from each other. When the meshblocks 
are modified and represented in equal area cells, such as in Map 3, the size 
of each area unit depends on the number of meshblocks it contains and 
individual meshblocks become identifiable. Consequently, the size of 
Hamilton City in Map 3 is larger than the rural Waikato and Waipa councils. 
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Map 2.Statistics New Zealand Area Units (2013). 

Note. Area Units sourced from Statistics New Zealand geographic boundary files. 
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Map 2. Modified Area Units. 

Note. Area Unit data sourced from Statistics New Zealand and modified for the 

purpose of result presentation.   
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5.2 Calibration results 

 

The model was calibrated using the 2006 census dwelling counts and run 
for seven time steps to 2013. On the first run of the calibration model, the 
Root Mean Square Error (RMSE) at the meshblock level was 9.71. This 
could be interpreted as the average difference between the number of 
households in each meshblock from the model, and the actual number of 
households observed in 2013 before the model is run. Adjusting the NAB 
resulted in the RMSE steadily decreasing to 6.47 after 20 model runs. In 
2013, the average number of dwellings per neighbourhood (meshblock) is 
37. The resultant meshblock error as a proportion of the average number of 
households in a meshblock is 16.6%.The error can also be calculated at the 
Area Unit level, where the AU RMSE is 90.36 with an average of 855.5 
dwellings per AU, leading to a 10.56% average error at the AU level. 

 

The land unit with the highest difference had 114 too few HAs. This land 
unit is located in the AU of Swayne, Cambridge, in Waipa District. In 2006 
this land unit had 18 existing dwellings. It had the capacity to hold 213 
dwellings for HAs to occupy. In 2013 the census result was 168 households; 
however, the modelled outcome was 54 HAs. Swayne corresponds to one 
of Waipa’s identified growth areas and is one of the AUs that experienced a 
high growth rate between 2006 and 2013 (refer to Map 4). On Map 4, the 
ten AUs with the highest growth rate between the 2006 and 2013 censuses 
are labelled and shown in green dotted outline. 
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Map 3. Calibration results, 2006 - 2013. 

Note. Statistics New Zealand meshblock numbers are rounded to base 3. 
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It is reported that population or household projection accuracy decreases 
as population and geographic areas decline (Rayer & Smith, 2010; Statistics 
New Zealand, 2008). Rapid increase or decrease in populations in the base 
period are also shown to have a negative association with accuracy (Rayer 
& Smith, 2010). The meshblocks with highest absolute error are shown on 
Map 4 as black cells.  This shows that areas with high errors are associated 
with high growth in the basal years 2006 to 2013. The calibration period also 
coincides with some significant amenity and infrastructure changes taking 
place, in North Hamilton in particular. This is a challenge as the model is 
calibrated using an amenity value, yet over the calibration period, the real 
amenity is likely to be changing. Huntington and Horsham Downs AUs 
experienced retail growth, significant suburban expansion and the opening 
of a new primary school. The area with the highest amenity change is to the 
West of Huntington and Horsham Downs in the form of a large retail 
complex, light industrial expansion and new employment opportunities. 

 

One of the unique attributes of agent-based models is that outputs are non-
linear (Michael Batty & Torrens, 2005; Castle & Crooks, 2006). This is 
particularly useful when dealing with small areas that experience marginal 
or negative growth. In the cases of negative growth, linear household 
projections have the potential to continue decreasing household numbers. 
In such cases, in reality, we can expect that property prices would decrease 
and the rate of decrease can be arrested or even reversed as 
neighbourhood perceptions can change quite readily. In the calibration 
process, it is of interest to know how the agent-based model has managed 
the case of negative growth. 
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Map 4. Meshblocks with household decline, in the calibration period 2006 
to 2013. 
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In the census period, 2006 to 2013, 105 meshblocks experienced a decline 
in household numbers. The meshblock that experienced the largest decline 
had a total of 735 fewer households in 2013 than 2006. The model results 
showed declines in 122 meshblocks with a total reduction of 868 
households. The model is accounting for household declines in 
approximately the right quantities, however, the spatial distribution of the 
declines differ from the observed distribution. There are 45 meshblocks 
where both the model and the census count declined, as shown in Map 5. 
The meshblocks that had declined in both the model and the census are 
shown as black cells. The black cells are distributed across all three councils. 
However, there are more meshblocks with declines in the Western Waikato. 
These are remote areas with geographically large meshblocks and small 
populations. The meshblocks with a decline recorded in the model only, 
shown as yellow cells, are more prevalent in the rural areas. The 
meshblocks with declines recorded in the census, but not by the model are 
shown as light blue cells, are predominantly distributed across Hamilton City. 

 

Although the average error is 16.6% at the meshblock level, the distribution 
of the errors indicates that the areas of high growth are more difficult to 
calibrate, resulting in clusters of meshblocks with high error (Map 4). This 
is, however, consistent with other studies (Rayer & Smith, 2010; Statistics 
New Zealand, 2008). Areas of high growth are likely to be associated with 
changes in the neighbourhood amenity value. High growth areas could be 
the new and fashionable places to live and move to, or in contrast could be 
lower cost, mass housing developments with an appeal to lower income 
families. The resultant change in amenity value from 2006 to 2013 cannot 
be calculated and thus is not incorporated in the calibration process. The 
change in property values can be considered an indication of the change in 
neighbourhood appeal, with areas of higher gain in property value 
associated with positive amenity changes. Property value change was not 
taken into account in the calibration process. 

 

In this study, it is noticeable that the areas of high growth and highest error 
are in close proximity to areas that have experienced development in the 
employment and retail sectors in the northern part of Hamilton. The other 
areas of high growth are situated to the South East of Hamilton in Tamahere, 
Waikato and Swayne, North Cambridge. These are characterised by good 
access to the city, large properties with semi-rural outlook and are some of 
the most sought after residential areas in the region. 
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The calibration could be improved through analysis of the amount that each 
locality’s NAB was adjusted. The absolute differences between the model 
result and the census result have a few outlier values and there is potential 
to reduce the error by investigating and manually adjusting the NAB of the 
outliers. It is likely that the automated adjustment is too coarse and a few 
particular localities consistently overshoot and then undershoot the optimal 
value on each subsequent run of the auto-calibration calculation. 
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Map 5. Neighbourhood amenity benefit, at the end of calibration, 2013. 

Note. Colour ranges are based on quantile (equal count) classification. 

 

On Map 6 and Map 7, the calibration sequence resulted in increasing the 
NAB values in areas where more household agents located than were 
counted in the census. Relative to the initial starting value of 2500, the red 
areas have an increased NAB, and are mostly situated in or adjacent to the 
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major urban areas. The calibration sequence did not alter any areas shown 
as white, as in each run of the calibration the ‘correct’ number of household 
agents relocated to these areas. The areas indicated in blue colour are 
areas with NAB values that were reduced during calibration. These are 
areas that required decreasing NAB value in order to ‘attract’ the correct 
number of household agents. The blue areas are predominantly in the rural 
areas. It is interesting to note that the darker blue areas, with higher NAB, 
tend to be in the areas surrounding the main towns.  

    

 

Map 6. Neighbourhood amenity benefit for Hamilton City, at the end of the 
calibration. 

Note. Colour ranges are based on quantile (equal count) classification. 
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6 Results 
 

The model produces a file holding the record of each HAs location at each 
time step of the model. This file is used to calculate how many HAs are 
located in each meshblock. Net changes and differences between input 
variations have been analysed below. 

 

 

Map 7. Household distribution in 2013 and location of main towns prior to 
initiating the model. 

Note. Starting households locations are derived from property information supplied 

by Waikato Regional Council 2013. 
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Map 9 and Map 10 are used to present results of this agent-based model 
and illustrate the distribution of households in 2013 and 2025 respectively, 
with map 9 showing results of the CDP scenario. Map 8 shows the starting 
point of the model (2013) and all existing households are shown as red 
coloured dots. The distribution pattern shows a concentration of households 
in Hamilton City, a number of towns and numerous small settlements. The 
inter-relationships of these satellite towns are visible through the linkages 
and developments along the key transport networks, looking like threads 
interconnecting the towns. The main towns are circled in blue. 
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Map 8. Distribution of new household agents in 2025 under the constrained 
development plan scenario.  

Note. The precise location of the new HAs is not known. In urban areas, each HA’s 

pseudo location is a randomly calculated point within the meshblock. In the rural 

areas, the pseudo HA locations are randomly located within the meshblock and 

within 100m of a road. 

Note 2. The yellow dots are not indicating net change, it is possible that a new 

agent takes the place of an existing agent and as such, there is no net gain. 

 

Inset 

Map 9 
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Map 9. New household agents located in Hamilton and surrounds in 2025 
under the constrained development plan scenario. 

Note. This map is an inset of Map 9. 

Note 2. The precise location of the new HAs is not known. In urban areas, each 

HA’s pseudo location is a randomly calculated point within the meshblock. In the 

rural areas, the pseudo HA locations are randomly located within the meshblock 

and within 100m of a road. 

Note 3. The yellow dots are not indicating net change, it is possible that a new 

agent takes the place of an existing agent and as such, there is no net gain. 
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Map 9 and Map 10 show the end-point results of the constrained 
development plan scenario (in 2025). The location of all the new HAs are 
shown as the yellow dots, shown superimposed on top of the red existing 
HAs from Map 8. The intensity of development in this scenario can be clearly 
seen on Map 9 as bright yellow areas particularly in the Hamilton area 
highlighted in the Map 10 inset. The areas of most intense settlement are 
located in the areas identified by the councils as development cells. The 
development cells are all located on the margins of the urban areas and 
allow for the expansion of the residential areas. This is an expected 
outcome as these areas will present the household agents with good 
neighbourhood values, comparatively low rent and good transport routes to 
the places of employment which are predominantly located in Hamilton and 
the larger towns. The development cells are also particularly noticeable in 
the towns of Te Awamutu and Cambridge in the South.  

 

Intensification within existing urban areas can be identified as a mixture of 
existing (red) and new (yellow) HAs, more distinctly noticeable on the larger 
scale Map 10. Ngaruawahia and the northeastern suburbs of Hamilton 
display this pattern of intensification. This follows an expected suburban 
development life cycle where initially a lot of development takes place in a 
suburb and the development rate progressively slows. Intensification can 
also occur where the initial development results in large residential sections 
following which these can be progressively subdivided and a more intensive 
urban form develops. Ngaruawahia is a good example of this intensification 
process. 

 

The increase in HA numbers in the rural areas is more widespread. There 
are distinguishable settlement areas in the area between Tuakau, Pokeno 
and Te Kauwhata as well as south east of Hamilton through the Cambridge 
area. These are expected development patterns as they are close to both 
employment centres and transport. These areas also correspond to 
productive agricultural areas. These areas in the north and surrounding 
Cambridge have more intensive agriculture on smaller farms.  

   

The scenario based on unconstrained development plans produces a 
variation in the overall settlement pattern, Map 11 and Map 12.  
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Map 10. Distribution of household agents in 2015 under the unconstrained 
development plan scenario. 

Note 1. The precise location of the new HAs is not known. In urban areas, each 

HA’s pseudo location is a randomly calculated point within the meshblock. In the 

rural areas, the pseudo HA locations are randomly located within the meshblock 

and within 100m of a road. 

Note 2. The yellow dots are not indicating net change, it is possible that a new 

agent takes the place of an existing agent and as such, there is no net gain. 

 

Inset 

Map 11 
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Map 11. New household agent located in Hamilton and surrounds in 2025 
under the unconstrained development plan scenario. 

Note1. This map is an inset of Map 11. 

Note 2. The precise location of the new HAs is not known. In urban areas, each 

HA’s pseudo location is a randomly calculated point within the meshblock. In the 

rural areas, the pseudo HA locations are randomly located within the meshblock 

and within 100m of a road. 

Note 3. The yellow dots are not indicating net change, it is possible that a new 

agent takes the place of an existing agent and as such, there is no net gain. 

 

As the predominant areas of employment are situated in Hamilton, the 
motivations are for HAs to minimise costs and seek residential locations in 
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or near to Hamilton. Providing more residential locations from the start of 
the model allows agents greater number of choices of residential location. 
Locations in the development cells and close to areas of employment offer 
opportunities for HAs to reduce costs. The result of this is a higher 
concentration of HA in the development cells and lower concentrations in 
the outer rural areas. 

 

Choropleth Maps 14 and 15 accentuate the differences between the CDP 
and UDP results. The blue shaded meshblocks are the locations with higher 
numbers of HAs in the CDP scenario. Light blue indicates a difference of 
fewer than 50 HAs. Mid blue areas have between 50 and 100 more HAs 
than the UDP. The dark areas have a difference between the CDP and UDP 
of more than 100 HAs. The difference in population distribution is 
predominant in the North. Under the UDP scenario, the development cells 
of Hamilton have a higher number of HAs than the CDP. These areas are 
shaded light yellow to a darker yellow/orange indicating an increasing range 
of 0 – 50, 50 – 100 and over 100 HA. 
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Map 12. Difference between CDP and UDP, choropleth map showing the 
difference in the number of HA in each scenario. 

 

Inset Map 13 
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Map 13. Hamilton area CDP vs UDP, choropleth map showing the 
difference in number of HA in each scenario 

Note. This map is an inset of Map 13   

 

Maps 10 through to 15 show the differences in the distribution patterns 
associated with different planning strategies. In the following section table, 
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10.1 and figures 10.1 through to 10.3 outline the numerical difference 
between the CDP and UDP scenarios. 

 

Table 6.1. Number of household agents in 2025 under CDP and UDP 
scenarios. 

Note. Total household projection sourced from NIDEA 

 

Table 6.1 shows that the relative movement of HAs is more towards 
Hamilton City under the UDP scenario than under the CDP scenario. 
Conversely, in the CDP scenario, the net change in HA distribution is mostly 
towards the Waikato District and a lesser extent to Waipa. It should be noted 
that, relative to the existing population size and expected growth, the impact 
of an additional four to five thousand households is substantial for the 
Waikato District. 

 

For results validation, the model output results were compared against both 
Statistics New Zealand and NIDEA 2015 base household projections. 
NIDEA published household projections in April 2015. Statistics New 
Zealand released household projections in December 2015. There is 
uncertainty as to why the Statistics New Zealand starting household counts 
are higher than the projections produced by both NIDEA and this model. 
Statistics New Zealand produces household projections for the whole of 
New Zealand. In doing so, there is limited scope to consider potential policy 
interventions or council infrastructure investment into account (Statistics 
New Zealand, 2008). As such both private and council development plans 
could avert population growth (Statistics New Zealand, 2008). NIDEA 
household projections are produced at a regional level and have a 
significantly higher degree of input from the council planning departments. 
This agent-based model also has a high degree of input based on different 
planning policies. In all three councils, Figures 10.1 to 10.3, the Statistics 
New Zealand household projection starts at a higher number in 2013 with a 
slower growth rate and a lower household count in 2025 than the NIDEA 
household projection. 

 

 Number of HAs in 2025 

 Waikato Hamilton Waipa 

CDP 36,042 64,752 21,370 

UDP 31,170 70,259 20,735 

Difference 4,872 -5,507 635 
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Figure 6.1. Household agent counts for CDP and UDP scenarios for the 
Waikato District, from 2013 to 2025.  

Note 1. NIDEA projections sourced from Cameron (2015) 

Note 2. Stats NZ household projection sourced from Statistics New Zealand 2015 

 

Figure 6.1 charts the model results based on the CDP and UDP scenarios 
against the NIDEA and Statistics New Zealand household projection for the 
Waikato District. From 2013 to 2017 the outputs from the model are very 
similar under both of the scenarios. From 2017 onward the CDP scenario 
has a higher growth rate. The CDP growth rate is lower than both the 
Statistics New Zealand and NIDEA projections up until 2020. After 2020 the 
CDP growth rate increases and by 2025 there are about 7000 more 
households in the Waikato District than projected by either Statistics New 
Zealand or NIDEA.   

 

The UDP scenario shows a similar increase in the growth rate to the CDP 
scenario, however, this increase does not occur until after 2023. What these 
results indicate is that under the CDP, the residential cost for HAs increases 
in Hamilton City and the HAs relocate predominantly to the Waikato and to 
a lesser degree Waipa.  
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Figure 6.2. Household agent counts for CDP and UDP scenarios for 
Hamilton City, from 2013 to 2025. 

Note 1. NIDEA projections sourced from Cameron (2015) 

Note 2. Stats NZ household projection sourced from Statistics New Zealand 2015 

 

Figure 6.2 charts the model results based on CDP and the UDP scenarios 
against the NIDEA and Statistics New Zealand household projections for 
Hamilton City. Hamilton initially tracks between the NIDEA and StatsNZ 
growth rates. 2017 marks the year when the effects of constraints become 
effective and the growth rate starts to slow down for the CDP. Under the 
UDP scenario, more household locations are available within the city from 
the starting point in the model, and a sustained growth rate is maintained 
up to 2025. Under the UDP scenario, around 5,500 more household agents 
locate in Hamilton than under the CDP scenario. The UDP scenario has 
about 2,300 more households than the NIDEA projection. 

 

The CDP scenario has a growth rate marginally lower than the Statistics 
New Zealand household projection.  When the constraints are imposed in 
the city, the HA can reduce cost by locating in areas of the Waikato. When 
there are fewer constraints the HAs will locate in the city development cells.  
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Figure 6.3. Household agent counts for CDP and UDP scenarios for Waipa 
district from 2013 to 2025. 

Note 1. NIDEA projections sourced from Cameron (2015) 

Note 2. Stats NZ household projection sourced from Statistics New Zealand 2015 

 

Waipa, Figure 6.3, tracks at a growth rate substantially lower than the 
NIDEA household projection. The growth rate, i.e. the slope of the line, is 
similar to that of Statistics New Zealand’s projection, however as noted 
above the two projections are not originating at the same household count. 
There is only a difference of 635 HA between the CDP and UDP scenarios 
by 2025. This indicates that Waipa’s constrained development plan is not 
actually restrictive and does not result in HA having any cost benefit 
elsewhere. Further scenario testing could be useful for the Waipa planners 
to see if there are significant impacts if a greater number of HAs are 
introduced into the early time steps, particularly with constrained land supply 
in Hamilton City.   

 

Two mechanisms are operating in the model to result in divergence of 
growth from the Hamilton centre. The unconstrained development plan 
results in a higher number of neighbourhoods from which the agents can 
choose residential locations. As the HAs start to move into these 
neighbourhoods the result is an increase in rent. If there are alternative 
lower cost neighbourhoods still within the city, then HAs remain near to the 
city. The relationship between neighbourhood capacity and the change in 
rent determines the flow into or away from the city. 
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Constraints develop as the supply of vacant land diminishes and the rents 
increase. The agents display a tendency to follow the path of least 
resistance or lowest constraints, i.e. costs. Waikato has both a high amount 
of vacant land and a less stringent growth planning, thus there is relatively 
little difference for the Waikato between CDP and UDP. Under both 
scenarios, Waikato can be seen as having low constraints. When Hamilton 
has greater constraints the HAs seek lower constraints and re-locate to 
Waikato District. When constraints reduce in Hamilton, the balance shifts 
away from Waikato District.  

 

Overall there is a stronger relationship between Hamilton and Waikato than 
between either of these areas and Waipa. The differences in results 
between the scenarios are nearly equal and opposite for Hamilton and 
Waikato. Waipa has a much more slight variation between CDP and UDP. 
Waipa’s more stringent growth strategy retains a relatively high level of 
constraint under either scenario and the growth rate is not greatly affected 
until such point as Hamilton’s constraints are low enough to create a 
differential. A hypothetical example of this might be Hamilton providing 20 
years’ worth of land supply in the model time frame with Waipa not making 
any changes. 

 

6.1 CDP change analysis 

 

Map 8 and Map 9 suitably present the overall distribution trends for the CDP 
scenario. However, one purpose of this model is to drill down to the changes 
taking place at the neighbourhood and meshblock level. 
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Map 14. Short-term Difference in the number of HAs between 2013 and 
2015, in the CDP scenario. 

Note 1. White areas have small or no change. 

Note 2. Meshblocks are modified and represented as equal area cells in order to 

ensure all meshblocks are visible and to ease change over time comparisons.  

Note 3. Area units are constructed from the modified meshblocks, large AUs have 

a higher number of meshblocks. 

 

In the period 2013 through to 2015, Hamilton experiences a net gain in HA 
numbers and these areas are presented as grey and yellow cells in Map 15. 
These yellow and grey cells are fairly evenly distributed. There are a few 
key meshblocks that have the highest growth (dark green). A number of 
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these changes correspond to the top 10 AUs for growth between the 2006 
and 2013 census. Most of the districts’ growth over the period 2006 to 2013 
took place in Sylvester, North Hamilton, and Map 10 shows a continuation 
of this growth up to 2015. The model outputs also indicate growth in other 
key areas, including Pokeno to the east of Tuakau, Ngaruawahia just to the 
north of Sylvester, Swayne and Leamington (neighbourhoods of Cambridge) 
and Kihikihi Flat (Te Awamutu). 

 

Up to 2015, some areas show marginal declines. These are not showing 
signs of significant clustering and most of the light blue cells are located in 
areas some distance from employment centres. Thus it is likely that the HAs 
have opportunities closer to the centres, as at this point in the model there 
are a high number of vacant locations for the HAs to reduce their costs.  
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Map 15. Long-term difference in the number of HA between 2013 and 2025, 
in the CDP scenario. 

 

Map 12 shows the change in HAs for each meshblock over the period 2013 
to 2025. On Map 16 the general settlement is to the north of the study 
catchment. The meshblocks with a gain of more than 500 HA are located in 
Tuakau, Pokeno, Rotokauri, Newstead (Ruakura), and Peacocke, which are 
all areas of planned development. As previously noted, the overall net gain 
of agents is higher than expected in Waikato District, as seen in the 
difference between the CDP and the UDP. The quantity of available 
residential land and new houses in Hamilton is driving this growth pattern. 
In the Waikato, the areas of greatest gain are mostly in close proximity to 
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the Hamilton boundary or the two fast growing towns of Tuakau and Pokeno 
in the North.  

 

6.2 Detailed investigation of growth areas 

 

Under the constrained development plan most of the meshblocks in the 
councils’ development cells fill to more than 90% capacity. The following 
series of maps will outline areas that did not reach capacity. Appendix 2 
shows the remaining development cells in more detail. Throughout Waikato 
and Hamilton, many of the existing neighbourhoods have the potential to 
subdivide and create new land units. The subdivision of land can take place, 
either in older neighbourhoods that historically have larger land parcels that 
can be subdivided into smaller properties or in other places where some 
land parcels are not fully utilised. Over the model time period, these areas 
are in demand from the agents and they become occupied. Waipa’s 
subdivision and planning rules allow for much less intensification and 
subdivision. 

 

6.2.1 Waikato 

 

 

Map 16. Te Kauwhata, meshblock percentage utilised by 2025 in the CDP scenario. 
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Note 1. When the meshblocks are less than 90% filled, then the number in brackets 

indicated the actual percentage filled. 

 

Te Kauwhata (Map 17) is one of the areas with the most unexpected results. 
This is a pleasant country town, bordering a Ramsar site wetland. The town 
has a relatively high level of amenities with a library, fully serviced water 
networks and schools. The proximity of the town to the state highway also 
places the town on good access routes to employment centres to the north.  
The employment projection for Te Kauwhata is for 122 future employment 
opportunities by 2025. This may account for the limited movement of HAs 
into this village. Employment projections (McDonald, 2015) show an 
increase between 2021 and 2031 indicating this capacity is more likely to 
be utilised after 2025.  

 

 

Map 17. Raglan, meshblock percentage utilised by 2025 in the CDP 
scenario. 

Note 1. When the meshblocks are less than 90% filled, then the number in brackets 

indicated the actual percentage filled. 

 

Raglan (Map 18) shows a number of meshblocks in the 40% to 60% fill. The 
Waikato council has provided estimates of the potential number of new land 
parcels. From observations using aerial photos, a number of the properties 
in these meshblocks are larger properties which the model interprets as 
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having potential to subdivide. However, many of these are either on steep 
slopes or holiday homes in this coastal town and as such, they are actually 
less likely to be subdivided. It is possible that the capacity for subdivision is 
overestimated in Raglan. If the capacity is overestimated the model results 
could actually have a much higher percentage of the total capacity utilised. 
Raglan provides a challenge in projecting household and population 
changes, as do many of New Zealand’s coastal towns, because of the 
seasonal nature of the inhabitants and the distortion in the ratio between 
dwellings and the number of people who are usually resident. 

 

6.2.2 Hamilton 

 

 

Map 18. North Hamilton, meshblock percentage utilised by 2025 in the CDP 
scenario. 

 

Map 19 of North Hamilton shows the highest number of HAs settling in the 
development cells and filling both the development cells and the existing 
neighbourhoods to capacity. The two largest are the cells in the far north, 
Sylvester and across towards the east, in Ruakura with 1,795 and 1,963 
HAs respectively. The grey area between Horsham Downs Road and 
Borman Road is planned to develop between 2014 and 2020, and it is 
expected that this area is likely to have filled by 2025. The areas in and 
adjacent to this grey coloured meshblock will experience a significant shift 
in neighbourhood amenity benefit as a new village centre and sports and 
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education precincts are being developed between 2015 and 2016. The 
remaining development cells of Ruakura, Rotokauri and Peacocke fill to the 
planned capacity by 2025 (refer to Appendix 2). 

 

6.2.3 Waipa 

 

Map 19. Cambridge, meshblock percentage utilised by 2025 in the CDP 
scenario. 

 

In a similar fashion to Te Kauwhata, the model outputs for Cambridge (Map 
20) reflect an unexpected outcome. Cambridge is an area that showed a 
high error on the calibration output. Employment is projected to increase by 
slightly over 700 jobs up to 2025. Relative to the size of Cambridge, this 
amount of new employment should provide the potential for new agents to 
relocate to the development cells.  

 

The development cells to the west are in the Cambridge West AU. These 
cells had 54 new dwellings between 2006 and 2013. The calibration only 
altered the NAB marginally, the starting NAB was 2500 and after calibration, 
the average NAB for land units in Cambridge West was 2558. With a 
possibly incorrect NAB a lower than anticipated number of HA located in 
these development cells. Further manual NAB adjustment is likely to resolve 
this inaccuracy. The development cells located south of the Waikato River 
have all filled to 100% of the planned capacity. Cambridge will experience 
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a change in both NAB and travel cost as in 2016 an expressway bypass 
was opened. 

 

7 Discussion 
 

The key strength of this Waikato agent-based model is in its design that 
allows interactions that are independent of TA jurisdiction. Each of the 
council's strategic planning is centred on accommodating their own 
projected growth. There are, however, no tools to test the impacts of policy 
decisions and possible outward or inward impact of these policies or the 
spill overs of planning decisions in one TA on the surrounding TAs. Although 
in a simplified manner, this model has highlighted the relationship between 
how much land is available for development and the impact this has on rent, 
which influences the intra-regional household distribution.  

 

The results show that even under broad assumptions there are intricate 
interdependencies between the city, the satellite towns and rural areas. In 
a complex world these inter-relationships are exponentially more complex 
and beyond the possibility of models to adequately replicate. The behaviour 
of the HAs clearly reflects the rational behaviour to minimise costs, as 
embedded in the agent-based model. The different planning approaches 
and different constraints imposed by the planning authorities have varied 
impacts which influence the neighbours to a greater or lesser degree. 

 

The results show that constraints in land availability are detrimental to the 
city’s growth. The complex relationship between council policy and land 
developers underlie the supply of residential land parcels. As Morgan’s 
(2010) research shows, land developers play a central role in the provision 
of new properties to support residential developments. This is an area that 
is of particular interest to council policy planners as they decide on the areas 
of residential and business zoning and the funding of the support 
infrastructure. The councils collectively need to act conservatively and not 
over-invest in infrastructure. Similarly, the developers will seek the areas 
where they can return the highest margins. They may not develop land 
where a council intends for development to take place or through their profit 
motivations may slow down the supply of land to drive higher prices. These 
are some of the actions that constitute the parameters of the land availability 
constraint. 
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This model produces results at a meshblock level. An important question to 
ask is “Can the change in households for an individual meshblock be used 
in a planning context?” The model reflected the changes between 2006 and 
2013 well with a relatively low error. This indicates that the projected 
changes at the meshblock do carry value. In order to really utilise and the 
output at the individual meshblock level, the model should be run and tested 
with a range of input values. Some areas are sensitive to variance in the 
input values and others are less sensitive. Two examples are represented 
in Cambridge West (Map 20) and the western side of Te Kauwhata Map 17. 
It has proved to be more difficult to establish the optimal calibration value 
for the NAB in areas that experienced high growth rates or those that start 
with sparse populations.  Testing scenarios will help to establish if these 
areas are sensitive to the calibration NAB or other development cells that 
are directly ‘competing’ with these areas.  

 

Although not prevalent in this catchment, declining population was captured 
well and the calibration results show that this model provides a good job of 
accounting for past population decline in this study area. Dealing with 
declining growth in other household projection methods can be challenging. 
The challenge is greater for top down approaches that disaggregate the 
number of projected households from larger to smaller areas, especially 
where households are disaggregated proportionally and areas with 
declining household counts can’t be adequately accounted for. This model 
lends itself well to a polycentric environment with agents being able to move 
between centres and capitalises on the highly mobile nature of the 
household agents in this agent-based model. The model also currently 
allows HAs to lose a job and become unemployed. This feature is not 
specifically required in this study area as both employment and population 
projections increase. The model’s calibration results have been tested for 
meshblocks that experience decline and further studies in areas with 
declines in employment will be useful for further development and 
improvement of the method. 

 

The spatial distribution of the error was of interest. That is, would an agent-
based model provide a consistent outcome and would the outliers in error 
be evenly distributed? Mapping the error showed a relatively even 
distribution of error (see Map 4). The meshblocks with higher error could 
distinctly be identified in areas of high growth over the calibration period. 
Some of the low-density areas situated in the North also showed error in the 
medium to high range. These types of error have been experienced by a 
range of authors such as Benenson (1998), Rayer & Smith (2010), and 
Statistics New Zealand (2008). Fontaine & Rounsevell (2009) produced 
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similar maps highlighting the spatial distribution of error, although they only 
displayed a map showing model results alongside a map showing known 
results. 

 

As recognised by Axtell (2000), people are good at pattern recognition and 
analogical reasoning, and frequently agent-based models can represent 
complex relationships in visual formats that are much easier to interpret. 
The visual outputs of this agent-based model present well and the results 
are not overly complex for a general audience to interpret. The pseudo 
representation of individual households provides a clearer picture of how 
property development and household locations might change in the real 
world. Presenting results in such a manner will hopefully be clearer for 
planners, senior management and politicians. Choropleth mapping is 
frequently used to show household or population distribution and can be 
misleading in the visual presentation of outcomes. First, it can mislead in 
terms of distortion due to the relative size of the feature being represented, 
where a less significant outcome can dominate the map due to its 
geographical size. For example, in this study area, some of the meshblocks 
with the highest household counts are too small to distinguish on small scale 
printed maps, while some with minimal populations are geographically cover 
a large area. Second, features such as houses will not have an even 
distribution over the mapped areas, so presenting these areas as uniform 
colour misdirects the attention of the reader. This model addresses these 
issues by representing the meshblocks as equal area cells and presenting 
a pseudo location of households within the meshblock. 

 

The calibration of the model produced better than expected results with a 
Root Mean Squared Error of 16.6% at the meshblock level. By international 
standards, meshblocks are very small and represent the census data at a 
high resolution. Achieving this level of error at this spatial resolution is 
positive. The error reduces to 10.56% at the area unit level, which reflects 
reducing error with an increase in the geographic size of an area and is 
consistent with findings in other studies (Rayer & Smith, 2010; S. K. Smith 
& Cody, 2013; Statistics New Zealand, 2008). The areas with the highest 
measured error correspond with the fastest growing areas. A number of 
other investigations have also found the faster growing areas are subject to 
poorer calibration results (Rayer & Smith, 2010; Statistics New Zealand, 
2008).  

 

A further method of validation of the model was to compare the outputs 
against other regionally and nationally recognised household projections. 
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Overall the model outputs do not have any significant or unexplainable 
difference from either Statistics New Zealand or NIDEA projections. The 
model results show a more irregular projection than the smooth lines of 
either the Statistics New Zealand or the NIDEA household projections. The 
more irregular pattern of the agent-based model reflects emergent 
behaviour and the dynamics between the TAs. Statistics New Zealand 
projections have some discrepancy and the starting household counts are 
not consistent with the census household and dwelling counts, which 
unfortunately diminishes some of the comparative value of this dataset.  

 

The differences between the model outputs under the two scenarios were 
greater than expected. The disproportional impact of the scenarios is also 
unexpected. Under both scenarios Waikato district is projected to 
accommodate significantly more households than the NIDEA and Statistics 
New Zealand models show. Being smaller than Hamilton City but covering 
a much larger geographic area, an additional four to five thousand additional 
houses represents about 50% more growth than planned. Potentially, 
having this much additional growth will put a lot of pressure on the existing 
resources and infrastructure, particularly if it is spread over a wide area. 
Waikato District will have little influence over this growth as the policies of 
Hamilton are a major contributing factor. Waikato District faces the same 
pressure from Auckland City located on its northern boundary, with 
Auckland being an order of magnitude larger than Hamilton.  

 

Waipa HA change is relatively insensitive to the supply of new land parcels 
in Hamilton. An interesting exercise would be finding the thresholds where 
HAs begin to move towards or away from Waipa towns. If development cells 
in Hamilton become more constrained there may be a point at which the 
movement shifts to Waipa. One example might be a high influx of new HAs 
into the region. If more land was to become available in Hamilton, would this 
impact Waipa? 

 

As identified by authors such as Castle & Crooks (2006), Couclelis (2005), 
Fontaine and Rounsevell (2009),  and Foss and Couclelis (2009), ABMs are 
sensitive to small variations in input. This model also displays sensitivity to 
variance in the input values. Some monitoring of sensitivity was undertaken. 
However, further work in this area would be beneficial, particularly as 
varying input values can provide planners with valuable information about 
the relationships between different meshblocks.  
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The results of the Waikato Agent-based Model have been specifically 
compared against the 2015 household projections of NIDEA and Statistics 
New Zealand. The most notable difference in the results is the Waikato 
Agent-based Model graphed growth rate is not a smooth line and each TA 
has ‘bumps’ and ‘dips’. This is due to the movement of households between 
different areas and the changes induced in the establishment of new 
subdivision developments. The models differ in that the Waikato Agent-
based model has an increasing growth rate for the Waikato district. For 
NIDEA and Statistics New Zealand projections the disaggregation of each 
set of TA data are treated independently, thus cross boundary effects are 
not taken into account in the disaggregation procedure. The Waikato Agent-
based model procedures are independent of the TA boundaries and reflect 
internal migration effects based on zoning capacity and economic drivers. 
This study demonstrates a changing growth rate whereas the NIDEA and 
Statistics New Zealand have a more constant rate and produce smooth 
growth projections.  

 

The Waikato Agent-based Model sums household numbers to meshblock 
and then again up to the Area Unit. The NIDEA and Statistics New Zealand 
models are based on a disaggregation of TA projections down to the area 
unit. Overall the two approaches converge and produce similar results at 
the area unit.  

 

Improving models such as this one pivot on achieving the right level of 
complexity. The complexity is a composite of the number of agents that 
operate in the environment and how complex their decision making needs 
to be. The more complex the model is the more challenging the calibration 
process becomes (Castle & Crooks, 2006). Further to this, increasing the 
complexity, in either the number of variables or the decision-making process, 
could result in quite different model outcomes, as outlined by Couclelis 
(2002) and Foss and Couclelis (2009). The last consequence of complexity 
depends on the purpose of the model. If the model is to be used by non-
technical users then it needs to be easily explainable (Grimm et al., 2010) 
and justifiable. 

 

There are a few areas where this model can be improved. The calibration 
process can be improved and the recorded RMSE could potentially be 
reduced further, especially if a few of the outliers can be optimised. 
Improving the calibrating was also suggested by Fontaine and Rounsevell 
(2009) for their model. Calibrating the model over a longer period of time 
might result in a reduction in the calibration errors. However this model 
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specifically uses the neighbourhood amenity benefit, and this in itself can 
be quite dynamic over even a short period of time. A good example of this 
is between 2006 and 2013 significant developments in the retail and schools 
has taken place in North Hamilton and consequently the focus of the city 
has changed due to this amenity change. A longer calibration period will 
expose more of these types of change. 

 

As outlined in the literature review, and highlighted by a number of authors, 
for example, Fontaine and Rounsevell (2009), life stage is a significant 
driver for relocating to a new house. An area of complexity for a model 
designer is to project household types into the future. Incorporating what 
type and size of houses will be constructed in the future would be 
challenging to provide a model and potentially highly speculative.  

 

Having a demographic module in the model, such as Fontaine and 
Rounsevell (2009) Jjumba and Dragicevic (2012), and Gaube and Remesch 
(2013), has some distinct advantages. These advantages are centred 
around simulating population growth, with data on ages as well as 
household composition. Household data from the model could be used to 
differentiate household travel patterns. For example households with school 
age children can incur costs to travel to a school. The neighbourhood 
amenity benefit could be calculated differently for different life stages of the 
household, in a manner similar to Fontaine and Rounsevell (2009) and 
Gaube and Remesch (2013). 

 

This model runs in synchronous time and runs until spatial equilibrium is 
reached when the agents can no longer reduce costs. A potential step to 
bring the model closer to reality would be to run in asynchronous time. No 
point of equilibrium would be achieved and time could be managed on 
multiple time clocks such as used by Jjumba and Dragićević (2012). In this 
case, asynchronous time would represent the real world better as generally 
households choose when they would move. At this point in time there a 
significantly fewer location options than in synchronous time, where all 
options are available at the start of the time step. 

 

An area of further consideration is based on other parameters of the model’s 
data limitations. The data suitability and applicable data scales must be 
considered for appropriate data quality and assessment of ‘fit for purpose’ 
for use in the intended model (Castle & Crooks, 2006). This model utilises 
datasets that are constructed at a scale (AU) that is greater than the scale 
at which the results are presented (meshblock). The data have been 
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reviewed and data handling has been outlined in 4.6. The datasets that have 
been downscaled have been identified. Input data, specifically Statistics 
New Zealand census data, are subject to inherent collection error, rounding 
error and in some cases data are censored and not presented. Such 
variations in the input data have the potential to generate variable outputs 
as cautioned by (Foss & Couclelis, 2009; Couclelis, 2002).  

 

Employment location provides a significant component of the travel cost 
calculation for each HA. The model, therefore, has a high level of 
dependency in the temporal, spatial and quantitative accuracy of 
employment projections produced by Market Economics (McDonald, 2015). 
In this model, the employment projections proceed at a slightly higher 
growth rate than the household projections. As such there are no constraints 
for HAs in terms of future employment opportunities. In reality, there are 
likely to be constraints within industry sectors, but these have not been 
considered in this model. When new HAs are introduced, they are randomly 
assigned an employment location. This introduces a small amount of 
random variation which results in different employment opportunities being 
taken up on each model run. Some limited testing on this variation has taken 
place. At the TA level there is not much variation; however, the spatial 
variation at the meshblock level has not been fully investigated and requires 
further analysis. 

 

Through the duration of running this Waikato Agent-based Model, many 
thousands of households are relocated and this would be many times more 
than the relocations that take place in reality. Foss and Couclelis (2009) 
highlight that agent-based models may have a tendency to over-emphasise 
emergent behaviour. In the model used here, the agent is free to relocate in 
the subsequent cycle. There are instances where a land unit steadily gains 
household agents and then suddenly a high number of HAs leave. Creating 
a lag in this behaviour may buffer spontaneous relocations and address 
potential over-emphasis of household relocations. Jjumba & Dragićević 
(2012) have a 12 month lag preventing and household from moving again. 
An example is found in Pokeno. In the CDP, the land unit containing 
meshblock number 842200 is projected to have 1,168 HAs in 2019, but only 
9 in the following year. Overall the Pokeno AU declines by 881 HAs in this 
time step. This indicates these are not local shifts taking place. Another 
example is Huntington, which declines by 213 HAs in one time step. 

 

A key reaction that the HA induces when they move is the change in rent. 
This was set to have a diminishing increment and respective decrement in 
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order to prevent rent values exceeding reasonable values. The amount that 
rents change was not based on any observed price changes and having this 
as an observed value could provide valuable analysis of the future value of 
land and return on infrastructure investment. In the study areas, property 
owners pay proportional council tax based on land and capital value. It is 
also recognised that property value inflation is not uniform and higher value 
properties are more inclined to have higher inflation rates and vice versa. 
This model does not address any of these complex housing market issues. 
For that matter, this issue was not addressed in any of the research 
reviewed as these considerations would require modelling a housing market 
which is not straightforward by any means. 

 

The total capacity of land units is defined as the maximum number of HAs 
that can reside in the land unit. This capacity can increase, either through 
subdivision of existing land parcels (brownfield development), or new land 
parcels introduced in development cells (greenfield development). It is very 
difficult to make assumptions about the rate at which brownfield land will 
develop. In this model the quantities of brownfield land are estimated by the 
councils and in the first ten years this land is completely utilised by the HAs. 
A significant component of Morgan’s (2010) model is devoted to the land 
developers’ actions. The timing and release of brownfield infill has an impact 
on the time based results of the model. The uncertainties associated with 
brownfield development should be considered in areas where the brownfield 
development constitutes a meaningful portion of the land unit capacity.   

 

Household projections are an exogenous input to this model. The household 
projections determine how many HAs are introduced in each time step. The 
model’s temporal outputs, therefore, have a high dependency on the 
temporal certainty of the input employment and household projections. 
Interpreting the outcomes of the model should, therefore, have careful 
consideration of the temporal constraints of both of these input projection 
series. The further out in time the results are produced the higher the 
uncertainty of the specific time related event becomes. As discussed earlier, 
there is well-documented evidence that accuracy of population and 
household projections decreases as geographic size decreases (Rayer & 
Smith, 2010; Rees et al., 2004; S. K. Smith et al., 2001; Statistics New 
Zealand, 2008) . This concurs with this model that has higher calibration 
error when results are measured at smaller area i.e. meshblocks than at the 
larger area unit. Following from this, the results should be interpreted with a 
greater consideration of higher error relating to the timing of events at 
smaller geographic and or population size. 

 



 

86 
 

One of the issues relating to the relationship between model producers and 
planners is endogeneity (Cameron & Cochrane, 2015; Statistics New 
Zealand, 2008). Cameron and Cochrane (2015) identify the self-fulfilling 
nature of planning in that planners seek population projection to identify 
where to provide infrastructure, development most likely takes place in the 
areas where planners provide infrastructure.  This Waikato Agent-based 
Model allows testing of how residents are likely to respond to the 
development plans and location of infrastructure. Waipa is providing 
infrastructure to two primary areas, Hamilton to five and Waikato more than 
six. As constraints exist in delivering this infrastructure, it is a serious 
question that the council are collectively trying to address, “what is the 
optimum infrastructure investment plan?” This is further compounded by 
relatively low population densities spread over a high number of towns and 
settlements resulting in a per capita high cost for services such as piped 
water, public transport, libraries and other amenities. 

 

The location and timing of new development cells and associated 
infrastructure is a primary input to the model. From the model designers 
perspective, they have to ensure they are not reinforcing such behaviour 
through feedback loops, as identified by Foss and Couclelis (2009) as 
potential negative aspects of agent-based models. Similarly, the model 
designer has to ensure the model results are not individually adopted as the 
answer to infrastructure development. Utilisation of models similar to this 
one can feasibly provide planners with the context to support their 
development planning and as such reinforce the intrinsic relationship 
between model outcomes and the planner’s response. 

 

The model itself and its usage can, however, be used as a tool to mitigate 
these types of endogenous relationships. As demonstrated, this model can 
be used to test more than one scenario. Running a range of scenarios will 
enable the emergent trends to be identified and explored, and it is 
foreseeable that analysing the model's outputs will show areas that have a 
consistent outcome and other areas with higher variance. Identifying which 
variable causes the variance can, in turn, helps planners with their policy 
objectives. Varying the neighbourhood amenity benefit, rent or travel time 
would show that above or below certain thresholds HAs will start to populate 
an area. As identified in the results, both Te Kauwhata and Cambridge West 
don’t experience as much growth as anticipated, thus altering the costs and 
NAB could indicate the criteria required to influence more growth. Planners 
could identify possible policy measures to influence growth patterns. In 
conjunction, it is valuable to identify where the opposite reaction is taking 
place. Planners would need to ensure that the opposite effect is widespread 
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and not a direct depletion of HAs from a single or a small number of sources. 
For example in Te Kauwhata and Cambridge, measures might be taken to 
make these destinations more cost beneficial, but in doing so attract the HA 
neighbouring towns such as Huntly or Te Awamutu.  

 

8 Conclusion 
 

The cohort component method is one of the most widely used methods used 
for projecting population change, (Bascand, 2012, p. 9; Bell et al., 2010, p. 
17) and is generally well accepted as a robust method. The challenge for 
demographers is to not only project how much a population is going to 
change but also where changes most likely to occur. This becomes 
increasingly difficult as population and or geographic size decrease (Jenner, 
2002; Rayer & Smith, 2010; Statistics New Zealand, 2008). Urban planners, 
on the other hand, have a range of tools used to simulate land use change 
and city growth. This research presents an agent-based model that uses 
the household projections obtained from conventional methods (NIDEA 
2015) and applies an urban growth model to investigate changes in the 
geographic distribution of households. 

 

A wide range of urban growth models may be coupled with demographic 
methods in a wide range of ways (Triantakonstantis & Mountrakis, 2012). 
The literature review established CA and agent-based models (ABM) as the 
most likely candidate algorithms to use in the Waikato study. Both of these 
methods have previously been utilised in describing actions of households 
and how their location is affected by various influences. Households and/or 
individual citizens have clear links with demographic processes which can 
be utilised in simulating change in demographic and locations over time. 

 

The study area can be described as poly-centric with a central city and a 
number of satellite towns, villages and small settlements. This agent-based 
model’s results are a detail map series of the household distributions over 
a 12 year period, showing the effects of two different scenarios. This model 
adequately addresses the question as to “What will the likely population 
distribution be for Hamilton City and the Waikato and Waipa districts in 
2025?” Over this time period, around 31,000 houses need to be constructed 
and this model produces a detailed picture of what household distribution 
might look like. Furthermore, the model demonstrates the complexities of 
the relationship between the three councils and their development 
aspirations.  
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The results have been presented to staff at each of the councils. The 
assumptions, method and selection of primary inputs have been 
acknowledged and recognised as appropriate in this context. The three 
councils are working together closely and there is a far greater alignment of 
strategic planning than there has been in the past. Further development of 
this tool would enable more in-depth scenario testing. In conjunction with 
other tools such as Waikato Integrated Scenario Explorer (WISE) (Waikato 
Regional Council, 2014), Statistics New Zealand and NIDEA household and 
population projections, this tool could help in developing a better 
understanding of how sensitive different areas are to variations in the 
external environment. Along with having projections of households, 
population and land use, future planning is equally reliant on gauging 
certainty. Some areas will develop under most circumstances whilst under 
certain constraints, some areas will be more unpredictable and pose a 
higher risk for councils. 
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10 Appendix 1 
 

10.1 SQL Sequence 

 

The following is a description of the code sequence taking place. The code 
is run in a Microsoft SQL Server database with a series of stored procedure 
initiated in sequence. 

 

Procedure 1 - all base tables are generated from the source files, enabling 
the model to be repopulated. 

 

Procedure 2 - the modeller sets the required number of cycles for which to 
run the model. 

 

Procedure 3 - the base tables are replicated into a set of working tables 
which are updated as the simulation progresses. Base tables hold starting 
values and working tables hold values at each time step. 

 

Procedure 4 - the input cost of travel is set by the modeller (time cost and 
distance cost), the time and distance costs are calculated in the travel matrix. 

 

Procedure 5 - the total cost for all HAs is calculated and the cost field is 
updated for the HAs at their current location and current employment. 

  

Procedure 6 – new employment, new land units and new employment 
locations are added to the respective working tables. 

 

Procedure 7 – if any land units have a decrease in employment a 
corresponding number of randomly selected HAs from that land unit lose 
their employment. (In the next cycle unemployed Household Agents are 
randomly selected and may acquire new employment location).  

 

Procedure 8 – New HAs are added and randomly assigned employment. All 
new HAs are assumed to start with a residential cost of $99999. This 
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ensures that the new HAs will be first to occupy a suitable vacant location 
with the lowest possible residential cost. 

 

Procedure 9 – a SQL cursor runs in which the HA with the highest residential 
cost is selected.  

 

The vacant location with the lowest residential cost for that agent is 
identified and the HA’s land unit identifier is updated. The originator land 
unit capacity decreases by 1 and the rent reduction calculated. The 
destination land unit capacity is increased by 1 and the rent inflates 
accordingly. All agents in the originator and destination land unit have their 
residential cost recalculated for the change in rent. 

  

This cursor runs until there are no longer agents that can reduce their 
residential cost by relocating. 

 

Procedure 10 – all agent movements are logged. 

 

The simulation then enters the next cycle and procedures 5 to 11 are 
repeated for the number of cycles stipulated in procedure 2. 
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11 Appendix 2 
 

Meshblock Capacity in development cells 

 

11.1 Details of towns with 90% or more capacity 

 

 

Map 21. Tuakau, meshblock percentage utilised, 2025 

Note 1. Meshblocks coloured white are more than 90% fill and the number 
in the cell is the number of HAs.  

Note 2. When the meshblocks are less than 90% filled, then the number in 
brackets indicated the actual percentage filled. 

 

On Map 22, the development cells, both to the north and the south of the 
town centre each fill up to around 900 households. The meshblock to the 
south east fills to 86%, this is not unexpected as this is a rural block with 
intensive agricultural land use. The light grey meshblock in the North is 
outside of the town boundary and is in the longer term growth plan. Two 
small meshblocks in the centre of the town don’t fill, one of these is filled 
with commercial buildings. 
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Map 20. Pokeno, meshblock percentage utilised, 2025 

 

Pokeno (Map 22), is a primary growth area in this catchment, and all areas 
fill to planned capacity within the 2025 timeframe. 
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Map 21. Huntly, meshblock percentage utilised, 2025 

 

 

 

Map 22. Ngaruawahia, meshblock percentage utilised, 2025 

 

Map 23 and Map 24, for Huntly and Ngaruawahia, show the same trend of 
all available residential locations being utilised. These two towns do not 
have development cells and their capacity is based on existing properties 
and their potential to subdivide. This is particularly challenging in modelling 
as it is not possible to know when the land owner decides to subdivide. The 
outputs from this model show that all the landowners have chosen to 
subdivide within the 2025 timeframe.  
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11.1.1 Hamilton 

 

 

Map 23. Hamilton West, meshblock percentage utilised, 2025 

 

Map 25, the Rotokauri development cells to the west of Hamilton fill to the 
planned capacity. The two main development cells are to the west of 
Mangaharakeke Drive, and part of the services and infrastructure 
investment is planned within the model time period. These two meshblocks 
have 1,430 and 1,192 household agents locating by 2025. There is further 
planned development that will nearly double the capacity in timeframes 
beyond the model time period.  

 

Map 26, Southern part of Hamilton, has a very large development cell with 
potential for about 8,500 residential properties. A small portion of this area 
has infrastructure in place and is utilised 797 HAs. Further infrastructure 
investment and development is planned beyond the time period of the 
model 
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Map 24. Hamilton South, meshblock percentage utilised, 2025 

 

11.1.2 Waipa 

 

Map 25. Cambridge, meshblock percentage utilised, 2025 

 


