* THE UNIVERSITY OF

\EEJ WAIKATO Research Commons

?}gt’; Te Whare Wananga o Waikato

http://waikato.researchgateway.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act
and the following conditions of use:

e Any use you make of these documents or images must be for research or private
study purposes only, and you may not make them available to any other person.

e Authors control the copyright of their thesis. You will recognise the author’s right to
be identified as the author of the thesis, and due acknowledgement will be made to
the author where appropriate.

e You will obtain the author’s permission before publishing any material from the
thesis.

http://waikato.researchgateway.ac.nz/

Efficient Internet Topology Discovery

Techniques

A thesis
submitted in partial fulfilment
of the requirements for the degree
of
Master of Science
at

The University of Waikato
by

Alistair King

THE UNIVERSITY OF

WAIKATO

Te Whare Wananga o Waikato

February 3, 2010

(© 2010 Alistair King
All Rights Reserved

Abstract

Current macroscopic Internet topology discovery projastslarge numbers of van-
tage points to conduct traceroute surveys of Internet pdthsse projects send bil-
lions of unsolicited packets to millions of routers withimetinternet. Due to the
structure of the Internet, many of these packets are sehbutitgaining any new
topology information. In this thesis, we implement and asteely test a large-
scale doubletree system designed to increase the efficantopology mapping

projects and reduce the load that they place on the Interso, for all of the

effort that current projects put into gathering data, thehoes used do not dis-
cover, with confidence, the entire set of paths. We propagglement and critique
a novel algorithm, economical MDA traceroute, which is desd to discover a
comprehensive topology in a manner which is more efficiean tthe current state
of the art. We show that, compared to current methods, well 8% link coverage
can be obtained while reducing the number of probes used &yGbo. We also
evaluate alternate methods for making large scale topalsgppvery projects more

efficient and comprehensive; such as using BGP routing dagaitle probing.

Acknowledgements

The author would like to thank the following people for theamtribu-

tions to this project:

Dr Matthew Luckie - for supervising and providing invalualdontri-

butions and oversight to the project.

WAND Group - for providing all sorts of miscellaneous helgBlas

feedback and advice on drafts and support WitpL

CAIDA - for providing helpful advice and access to their Agdlago
measurement infrastructure to conduct testing with (DHS &8/ber-
security Contract N66001-08-C-2029 and NSF grant CRI-682]

The Waikato University Masters Research Scholarship Heir fund-

ing contribution.

New Zealand Foundation for Research Science and Techn(H&4yT)

contract UOWXO0705 - for their funding contribution.

Thanks also to friends and family who have provided suppatulti-

tude of ways, without which, this project would not have bpessible.

Contents

1

Introduction 1
1.1 TheProblem. 1
1.2 ThesisOverview i 3
1.3 Contributions 4
Background 6
2.1 Introduction 6
2.2 Traceroute 7
2.3 Efficient Topology Discovery 8
2.4 Comprehensive Topology Discovery 11
2.5 Macroscopic Internet Topology Discovery 13
2.5.1 CoordinationMethods 14
2.6 AliasResolution. 14
2.7 SUMMANY e e e e e e 17
Economical MDA Traceroute 18
3.1 Introduction 18
3.2 Motivation. 19
3.3 OVerview e 19
3.31 GlobalStopSet. 20
3.3.2 AdaptiveLocalStopSet 21
3.4 Algorithm 23
3.4.1 EconomicalProbing 25
3.4.2 Transitioning e 26

3.4.3 CollectingALSS State

344 GlobalStopSet.,
3.45 Timeouts
3.5 Implementation
351 Scamper. e
3.5.2 Marinda based Coordination Mechanism
3.6 Summary e e
Method Comparisons 34
4.1 Introduction
4.2 EfficiencyMetrics
421 ProbeCount
4.2.2 TopologyCoverage v o i v it
4.2.3 Stop Set Effectiveness o L.
4.3 Large-Scale Cooperative Testing 46
4.3.1 Methodology
432 Results

4.4 Per-source/destination Load Balancing 55

45 Summary e e e
Challenges In Cooperative Probing 60
5.1 Introduction
5.2 Motivation.
5.3 OptimisationMethod
54 Results.
541 Ark ...
5.4.2 Varied ProbingRates
5.5 Summary
Stop Set Considerations 72
6.1 Introduction
6.2 StopSetClearingiIntervals

Vi

6.2.1 GlobalStopSet. 73

6.2.2 LocalStopSet 73
6.3 SimulationDesign e 74
6.4 Results. 74
6.5 DISCUSSION 78

7 BGP Guided Probing 80
7.1 Introduction 80
7.2 OVEIVIEW e e e e 80
7.3 SimulationDesign 81
74 Results. e 83
7.5 SummMary ... e e e e e 86

8 Conclusion 87
8.1 Contributions 87
8.2 FutureWork 88

Bibliography 90

vii

List of Acronyms

AS Autonomous System

ALSS Adaptive Local Stop Set

BGP Border Gateway Protocol

CAIDA the Cooperative Association for Internet Data Analysis
DNS Domain Name Service

ICMP Internet Control Measurement Protocol
IP Internet Protocol

IPID Internet Protocol Identifier

IPv4 Internet Protocol version 4

ISP Internet Service Provider

MDA Multipath Detection Algorithm

TCP Transmission Control Protocol

TOS Type Of Service

TTL Time To Live

UDP User Datagram Protocol

WAND Waikato Applied Network Dynamics

viii

Chapter 1

Introduction

1.1 The Problem

Data collected by macroscopic Internet topology discoyenjects is used in a
number of ways by Internet researchers. For example, Fseltal. use traceroute
data to determine that the Internet structure exhibits jpdave characteristics [12].
RadarGun uses traceroute to produce router-level Intespetogies [6]. Leskovec
et al.use topology data to observe graph densification occumitigg Internet [21].
Due to the commercial nature of the majority of the netwohket tomprise the In-
ternet, topology details are considered sensitive anddheisiot readily available.
The Internet’s topology must therefore be inferred by pngbProbing, in the con-
text of this thesis refers to the process of sending spgaedfted packets, known as
probes, into the Internet to elicit responses from the irsutes forwarding path. Be-
cause Internet routing differs depending on geographiatios, mapping projects
use a large number of geographically distributatitage point$o generate com-
prehensive data. This combined with the sheer scale of tieenket Protocol (IP)
address space means that inferring accurate, complet®tipois a difficult task.
There has however, been significant criticism of the metthydshich data is cur-
rently collected. Lakhin&t al. show that the power-law observations made in [12]
are perhaps an artifact of the measurement process, ra#irethte underlying topol-
ogy [20]. Others have also investigated the effects of saenpling the edges of the
Internet [2, 13, 28, 34]. It is therefore vital for colleationethods to be improved

so the underlying topology is represented more accurately.

_)
/ . @\4 actual paths between
—> d t o
\ source and destinatic
.*./

Figure 1.1: An example topology caused by load balancingerdlare two paths
that can be observed to the destination; A-B-D-F and A-C-E-F

‘src H A H B H D H F HdSt’ path discovered b
traceroute

Figure 1.2: An example path discovered by traceroute whemirtg the topology
shown in Figure 1.1. Note that only one of the paths are dm®al; the interfaces
C and E are missed by this trace.

Macroscopic topology discovery projects such as CAIDAgt8k[14] and Ark
[7], DIMES [31] and iPlane [24] use a specialised versionh# traceroute algo-
rithm which allows them to discover the IP paths to large neralof destination
IP addresses from many vantage points. Traceroute is anthlgahat exploits a
feature of the Internet Protocol. It works by sending paskehich are designed
to expire at a known distance into the network. When a packates in the In-
ternet, RFC 792 [29] says the router should send an Interoetr@ Measurement
Protocol (ICMP) time exceeded message to the sender. Byncgilese packets to
expire at successive routers, a path can be incrementatigwred using the source
address of the time exceeded messages.

There are two major flaws to this approach which this thesisesses. When
tracing a large number of destinations from a single vangaget, a tree, rooted
at the vantage point, is observed. The effect of this is thatnodes toward the
root of the tree are traversed repeatedly. For a set of @étiis traced, there
are a substantial number of probes that are sent withoutnggamy new informa-
tion. The doubletree [9, 10, 11] algorithm proposed by Déomhal. addresses this
problem by remembering encountered topology to reducendaht probing. This
thesis investigates several issues surrounding thisigigom macroscopic Internet
topology discovery projects.

The other major problem that macroscopic topology discopeojects face is

due to conventional traceroute algorithms not discoveaimpmprehensive topol-

ogy. This is because there is rarely only one path betweerptias in the In-
ternet [5]. To provide redundancy in case of network fasunmeetwork operators
will often provision alternate links. In order to distrileutraffic over these alternate
links, network operators use a technique known as load biaignLoad balancing
routers forward packets out over two or more outgoing linkise implications of
this is that because regular traceroute only discovers attelgetween the source
and destination, it will miss any alternate paths. For eXamipigure 1.1 shows
a hypothetical set of paths between a source and destinafitren traceroute is
used to conduct a trace to the destination, it only discaversingle path shown in
Figure 1.2, missing the alternate path.

These two problems efficiency and comprehensiveness, feemmajor thrust of
this thesis. The goal is to create algorithms which allow@pgeehensive topology
to be reliably discovered while minimising the number oflpge sent. There is an
inherent tension between these two goals however: in makmgppology discov-
ery more comprehensive, we must send more probes to enstialtthe potential
paths have been seen. However, in making the topology desgamore efficient,
we make assumptions about how the networks are structuredian to avoid re-
probing sections of the path which have been previouslyods®d. This creates
the potential for topology to be missed. There is no perfekiteon to this problem;
however the algorithms we present make improvements toutrert state of the
art. We also investigate alternate sources of informatidh which we can guide
probing, such as Border Gateway Protocol (BGP) routing ttateeduce probes

sent.

1.2 Thesis Overview

This chapter outlines the problems that the thesis addsessthow the thesis has
made contributions to the field of macroscopic Internet togy discovery. The
next chapter provides some background information whitdwal the thesis to be
read in the right context.

In Chapter 3 we present the economical Multipath DetectigoAthm (MDA)

traceroute algorithm that we have developed. This algoréhows high-confidence
topology discovery like MDA traceroute [4] but remembers thterfaces previ-
ously observed by other vantage points so that it can mieithis number of probes
that it sends. We discuss the motivations behind the desidnihee details of the al-
gorithm. Chapter 4 presents an in-depth comparison of watli@rge scale probing
methods. We have carried out several experiments usingtivars of traceroute,
doubletree, MDA traceroute and economical MDA tracerouté&e results from
these experiments are presented, and the various methogsmed and discussed.
Chapter 5 addresses the issues that arise when conductagtale measurements
using a cooperative probing scheme as with doubletree. A&ept a method and
implementation which is able to cope with vantage pointsciviirobe at different
speeds to one another, thus improving the overall efficiefidhe system. Chap-
ter 6 is a discussion about the local stop set in doubletree. heve conducted
extensive experimentation and simulation regarding thiarap lifetime of the lo-
cal stop set. In Chapter 7 we discuss using BGP routing datdlte@nce probing.
We investigate using BGP routing information to infer pahdths such that tracing
can specifically target sections of paths which have notgehiprobed thoroughly.

Chapter 8 concludes the thesis and outlines areas whiclpareto further research.

1.3 Contributions

This thesis provides a number of contributions to the fieldhatroscopic Internet
topology discovery.

The most notable of these is the conception, developmeninaplémentation
of an algorithm which provides confidence that a completeltgy has been dis-
covered whilst reducing the number of probes that must bieveeen compared to
the algorithm proposed in [5] by Augustet al.. This algorithm collects informa-
tion regarding the destinations to which a node has beenisdére path to. This
allows MDA traceroute to remain in an economical tracing madhile it can de-
termine that a section of path has been probed enough to gnfelence that all of

the topology has been discovered. Testing of this algorthra production topol-

ogy discovery platform (Archipelago) found that it was aldemaintain around

90% link coverage while reducing the number of probes serd4% compared

with MDA traceroute. Thus significantly reducing both theéi used and amount
of unsolicited traffic generated. We also investigate thesea of the undiscov-
ered topology. We discover that a previously unidentifigaetpf load balancing,

per-source/destination is responsible for a large podfdhis topology loss.

In addition to this, the existing topology discovery algiom, doubletree [11, 9,
10] has been implemented within scamper [22], the activesoreanent software
used by the Cooperative Association for Internet Data Asial{CAIDA) on their
Archipelago platform. Doubletree improves the efficien€yhe regular traceroute
algorithm by collecting information about previously disered topology which al-
lows it to stop probing when a known path is encountered. Alth doubletree has
been previously tested in simulation, it has never beeneamphted in a way such
that it can be used in a real-world topology discovery projébis thesis describes
the challenges involved in implementing a distributed esystvhich allows large-
scale collection of data using the doubletree method. &unbat analysis has been
conducted on this system and on the data that it producel,asibow often the
information held should be cleared and how to deal with wpdeforming vantage
points.

Another area of research that the thesis describes is thefuB&P routing
data to influence and guide active measurement algorithn@P Bata provides
information about the Autonomous System (AS) path to a goestination. We
investigate how to best use the AS path information to bul@éstimated width of
each AS. We propose and simulate an method which is able rto tlease widths
and use them to infer at the IP level, the sections of the paibhwhave not been

previously traced.

Chapter 2

Background

2.1 Introduction

This chapter introduces three active probing techniqudashwive leverage to im-
prove the efficiency and coverage of macroscopic Intermpetitmyy discovery projects.
The first of these - traceroute - is the method currently usedacroscopic topol-
ogy discovery projects, however it is inefficient and doesgather a comprehen-
sive topology. The other two algorithms - doubletree and MD#im to improve
the efficiency and coverage respectively, of traceroute.

This chapter also discusses the topic of macroscopic letéspology discovery
and defines two coordination methods - team probing and catye probing -
which are used to coordinate large sets of vantage pointamT&obing divides
the work amongst participating vantage points such that @aatage point only
traces a fraction of the overall destination list. Howewath cooperative probing,
all vantage points trace all destinations, but share in&bion about topology they
have discovered to help reduce the work that the other vamqtamts must do.

Finally, we introduce techniques for alias resolution.a&lresolution involves
reducing the interface-level data obtained by traceroutere each node represents
an interface on a router, to a router-level graph such thett eade represents a

router.

TTL 1 :
~ : :

Figure 2.1: an example of how the ICMP time exceeded messagebe used to
infer a path. A packet is sent with a TTL of one so that it expatA. A replies with
an ICMP time exceeded message, the source address (A) oedsage is used to
identify the router. This process is continued for TTLs twal dhree, discovering
routers B and C. The links are inferred between the discoveterfaces, to give a
path of A-B-C.

Y

2.2 Traceroute

Traceroute [18] is perhaps the most ubiquitous per-hoprirteneasurement tech-
nique. Traceroute works by exploiting an IP feature whidbves a response to be
elicited from a router at a known distance into the netwotkisTs achieved by ma-
nipulating the Time To Live (TTL) field in the IP header of a gatwhich is then
sent toward the destination of a path to be inferred. The T@ld fs supposed to be
used to prevent a packet from never exiting a routing looghEauter that a packet
visits on a path decrements the field by one. When the valobesane, the packet
expires; the router at which it expires sends an ICMiAe Exceedegacket back
to the source telling the source that the packet did not ntakehe destination.
Traceroute uses the TTL field to elicit a response from a raita defined dis-
tance (in hops) into the network. The response containsdtieeas of an interface
at the router at which the packet expired. To build up a viewhefpath between
a source and a given destination, traceroute starts byregadprobe packet with
a TTL of one, records the address of the responding routetrerdsends a probe
with a TTL of two and so on until a response is received fromatdress that it
was probing toward as shown in Figure 2.1. There are also otralitions which
traceroute stops on depending on the implementation. Famplbe, if a routing
loop is detected or a series of hops do not respond to probasy bfobes must be
sent into the network because traceroute needs to sendtofeaprobe per hop in

order to discover a complete path.

|

|

|

(P) (i vy o
| 192.107.171.130 R e 203.167.234.85 (>
| [\
\

Figure 2.2: A real-world example of outgoing links from thiz-hz Ark vantage
point. The majority of destinations traced will traverse tommercial path, with a
small number being routed over KAREN. These six routersepeatedly traversed
by Ark.

2.3 Efficient Topology Discovery

As the number of vantage points in a macroscopic Interneblogy discovery
project are scaled up - from a single vantage point tracingth f a single des-
tination - to a set of vantage points all tracing the paths itbans of destinations,
the amount of time and resources used is also scaled up. @oveistopology,
traceroute must actively generate packets and send thesfiaites! to destinations
in the Internet. When a large-scale system is being usedte @ large number
of destinations, these unsolicited packets can appeagttwork operators, to be
an attack on their infrastructure. This could result in céamts, or modification of
firewall rules to prevent their routers from responding. rEfigre it is in the interests
of all parties involved to minimise the number of probes used

Due to the tree-like structure of the Internet, traces t@s®\wdestinations must
repeatedly traverse the same outgoing links over and overexample, the path
out of The University of Waikato’s network and then the lotaPs, as seen in
Figure 2.2, is such that the first four hops in almost everyeti@e the same, with
many traces having much longer sequences of hops in comnieneffect of this
is a large number of wasted probes; the first time a path isgorolew topology is
discovered, but with subsequent traces some probes arevébaut gaining any
new information.

This effect can also be observed when several vantage @ostsacing toward

a single destination. As the paths converge toward therdgsin, probes are sent

8

dstl ‘srcl
o >-
dst2 src2
< dst3 src3 \
dst4 g
(a) monitor-rooted tree (b) destination—-rooted tree

Figure 2.3: Internet path trees. (a) is an example of thewt@deh is seen when
probing multiple destinations from a single vantage pdibj.is an example of the
tree seen when probing a single destination from multiptéage points.

without any new topology being discovered. Figure 2.3a ismpkfied example of
a tree of paths which are rooted at a single vantage point. tPeces multiple desti-
nations, the paths diverge. Figure 2.3b demonstratesdbedoted at a destination
which has been traced by multiple vantage points.

Doubletree [9, 10, 11], a variation on the regular tracex@lgorithm, addresses
this problem and thus increases the efficiency of macrosdotgrnet topology dis-
covery. Doubletree assumes that Internet paths form twndigdrees; one rooted
at the vantage point when probing multiple destinationd,the other rooted at the
destination when multiple vantage points are being usedrdar to reduce redun-
dant probing, doubletree begins a trace by sending proleemid-point in the path
to the destination. The mid-point is chosen to avoid the prsbe reaching the
destination most of the time. The authors of doubletree ssigg value for which
the destination is not reached between 80% and 95% of the fiime maximises
the efficiency while reducing the probability of appearinigela distributed denial
of service attack on the destination which could occur ifvalitage points send a
probe which reaches the destination [11]. From the mid4pdive doubletree al-
gorithm then proceeds to follow the algorithm of regulacé&mute, increasing the
TTL value of the probe packets, and enumerating each of teeages in the path.

The difference between doubletree and traceroute is thae \whobing, dou-

bletree keeps a record of the interfaces encountered. Tbwgsat to halt probing

d a \. forwards mode
N

/ N

backwards mode’
/

~

,/'/ - .\\\>
Y At N S

- =L
local stop set \ — —/ global stop seﬁ
: f, e i — : b, ¢ |
1 2 3 4 5 6

Figure 2.4: An example doubletree trace. Tracing beginsTat4. Assuming that
the interface$ andc are in the global stop set, forwards probing will discower
and therp, at which point it will switch to backward probing ass in the global
stop set. Once in the backward probing madjll be discovered, followed by,
which, because it is in the local stop set, will cause prolbanigalt.

when a reply is received from an interface which has beerodesed by another
vantage point which has probed the same destination. THection of previously
encountered interfaces is known as thebal stop set The assumption is that the
sequence of hops from an observed interface to the destiniatthe same for all
vantage points. Once doubletree has found a stop conduiofofward probing,
whether that be by reaching the destination, discoveringdaiiess in the global
stop set, or one of the other stop conditions that tracerobserves, it switches
into a backward probing mode where it begins probing at a Tudt pefore the
mid-point it started at. While in backward probing mode, ectements the TTL
by one with each probe, thus allowing it to effectively trdo@ekward towards the
vantage point. Tracing is halted when an interface is dismvwhich is a part of
the local stop set The local stop set is a record of all of the interfaces seea by
particular vantage point while probing. The assumptiorhwiite local stop set is
that the sequence of hops from an interface back to a vantageip the same for
every trace from that vantage point.

Figure 2.4 gives an example of this process. In this exantpenid-point used
is four. Probing begins in the forward probing mode, whickcdiversa at TTL
four. Asa is not in the global stop set, the TTL will then be incremenidgdone
andb discovered. Becaugeis in the global stop set, forwards probing will halt

and backwards probing begins at TTL three. The reply from Tirke will reveal

10

d. Becausel is not in the local stop set, the probe TTL will be decremerstede
discovered. Ag is in the local stop set, probing will halt.

The doubletree authors claim that the algorithm allows actdn in measure-
ment load of approximately 76% whilst maintaining link coage of over 90% [11].
It should be noted that these results are based on simwdatgang skitter [14] data.
This is revisited with data collected by our implementatidrdoubletree in Chap-

ter 4.

2.4 Comprehensive Topology Discovery

The topology discovery algorithms and techniques desd ifvgs far have one com-
mon failing: they all operate on the assumption that theeesimgle path between a
source and a destination. Internet network operators msedefua routing technol-
ogy known as load balancing which allows routers to distetitaffic over multiple
outgoing links. The result of this is the potential for theyée a number of different
valid paths to any given destination which traceroute maydiszover.

To understand the impact of this fully, we first need to déstine three methods
that routers use to manage load balancing. Augustin [3]ritescthese as per-
flow, per-destination, and per-packet. Per-flow load batentorward packets in
such a way that a flow of packets is forwarded out over the sarke A flow is
based on several fields in the IP and either Transmissionr@dptotocol (TCP)
or User Datagram Protocol (UDP) headers. These are the &aunctDestination
Addresses and Ports, Protocol and also a varying combmatfithe IP Type Of
Service (TOS), ICMP Code and Checksum fields. Per-destiméiad balancing is
a coarser version of per-flow load balancing where only thetiDation Address in
the IP header is used for load balancing. Per-packet loahbialg is focused solely
on distributing traffic evenly over outgoing links. Thus fparcket load balancing
pays no attention to the information in the packet headarsrder to enumerate all
paths between a source and a destination, the traceroatetlahy must be able to
manipulate probe packets so that it can accurately prols gie branches in the

path caused by load balancing routers.

11

n 2 3 4 5 6 7 8 9 10

95% 6 11 16 21 27 33 38 44 51
9% 8 15 21 28 36 43 51 58 66

n 11 12 13 14 15 16 17 18 19

95% 57 63 70 76 83 90 96 103 110
99% 74 82 90 98 106 115 123 132 140

Table 2.1: The number of probes that must be sent to a giventdTlle outn

interfaces
(oo }-{ oo e o e
traceroute probes 1 1 1 1 1 =5
MDA probes 1 6 6 6 1 =20

Figure 2.5: A simple path. Traceroute would use five probesfer the topology
whereas the MDA would uses twenty to find all interfaces. Wauaee that the
source does not have any load balanced outgoing paths, anthéhrouter with
interface D will always choose a directly connected paththad only one probe is
required.

The MDA proposed by Augustin [4] is able to enumerate loadubedd paths
by varying theflow identifier(the fields a router consults when making a forwarding
decision) of probe packets in a controlled manner such Heaetcan be statistical
confidence that the returned topology contains all of thesibtes paths. A large
portion of our work is derived from the MDA. The MDA begins bgsaiming that
at any given TTL there are two interfaces (that is, the roatéhe TTL before this
has two outgoing links) and sends enough probes to test ypisthesis assuming
even load balancing. If a second interface is indeed disedy¢he algorithm then
proceeds to test the hypothesis that there are three icéstfand so on until the
final hypothesis has been disproved at the specified congiderel. A portion of
the look-up table used to determine the appropriate nunfig@robes can be seen
in Table 2.1. For example, to rule out that there are two fatess at a TTL to
95% confidence, six probes must be sent, with the same ioteréaurned for each
probe.

The MDA must therefore send many more probes than regulegrate. Fig-

ure 2.5 shows an example path in which there are five hopsefate would send

12

120
100 R R 5 e U
BO - - P

(10] ‘.‘.“’.'

cumulative probe count

P e R - :,‘.'.’ ...

trace

Figure 2.6: A best-case example of cumulative probe usag@abgroute and MDA
traceroute for a path with 15 hops. The MDA traceroute isgigi®9% confidence
level and so must send at least eight probes to most TTLs.

five probes whereas the MDA would have to send at least 30 priubdiscover
the same path to 95% confidence. Figure 2.6 illustrates hogklguhe number
of probes used increases with longer path lengths. By the &éimh5 hop path is
reached, traceroute has sent 15 probes whereas MDA traedras sent at least
106 probes to rule out any alternate paths. This matter esigsed further in Chap-
ter 3 where we present a version of this algorithm which isgiesl to be more

economical than the original MDA specified by Augusgiral.[4].

2.5 Macroscopic Internet Topology Discovery

Having accurate knowledge about the structure at the IP ¢d¥be Internet is use-
ful to researchers who can use it to model and analyse Irteyngng. Collecting
the data is a non-trivial task however. Most of the netwohet tomprise the In-
ternet are maintained by private organisations, so therdeav organisations that
publish detailed information regarding the structure @iitimetworks. Because of
this, the structure must be inferred using tools such agfoade. Since traceroute
determines a single path from a source to a destination, anconway to gather

an Internet-wide topology is to use a globally distributetiaf vantage points [30],

13

each of which carries out traces to a representative sampli af the end points

in the Internet [7, 14, 24, 25, 31].

2.5.1 Coordination Methods

There are two main types of coordination methaesm probingandcooperative
probing Team probing works by splitting the destinations to beddaamongst the
vantage points such that each vantage point only tracediamof the overall list.

CAIDA's Ark infrastructure, for example, makes use of twarnes of thirteen
vantage points. Each team traces one random address in rexgeg /24 BGP
prefix. The addresses to be probed are divided up amongsathage points. Thus
the time required to trace the entire address space is apptety divided by the
number of vantage points involved. It takes approximat8ifdurs for a team of 13
vantage points to trace one destination in each routed t24nket Protocol version
4 (IPv4) prefix. Once this is completed, the process begiasamith a fresh set of
addresses generated from the prefix list. Ark has been rgraniice 2007 and has,
as of December 2009, collected over 5.18 billion trace®[i8].

Cooperative probing, on the other hand, is designed so thetrtage points
trace all destinations. The advantage of cooperative pgpisi that vantage points
are able to share information regarding topology that hasadl been discovered,

thus reducing the burden on other vantage points and thenetWweing examined.

2.6 Alias Resolution

Routers have more than one interface, as by definition, @rootst be connected
to more than one network. Each interface has at least onedfesslassigned to
it. This causes problems when discovering paths with tcater because traceroute
discovers interfaces. In other words, maps derived frooet@ute data may contain
more nodes than actually exist in the Internéfias resolutionis the process of
folding the multiple IP addresses of a router into a singlédenia the map. Figure 2.7
shows how traceroute can infer a path which has more rotanstctually exist, but

once alias resolution is performed, interfaces can be esgditp the router topology.

14

E E
- [=,
F \ F
= O
G / G
src2}—>‘ B ’)‘ D ’<_ src2 —
H H
(a) before alias resolution (b) after alias resolution

Figure 2.7: Alias resolution example. C and D are both iat=$ on a single router.
What appears to be two distinct networks before alias résolturns out to be one
interconnected network.

oGy

‘ src ’—" A ’—" B] x2,y1,x1,y2
_____ S ﬁ-vl /

Figure 2.8: IPID usage. The packets identified by IPIDs x aateyfragmented by
the router at A into x1, X2, y1 and y2. The load balancing roatd3 then forwards
the fragments out links which have different speeds causieafragmented packets
to arrive at G out of order. The IPID allows the fragments tabguely identified
and reassembled correctly into the original packets.

Alias Resolution Methods

There are several methods for performing alias resoluép@6, 32, 33]. The Mer-
cator [26] method relies on routers using the IP addresseobtligoing interface
as the source address for ICMP port-unreachable messagissn&ans that when
two potential aliases are determined, packets can be saacto of them, and if
the source address of the replies is the same, then an afiaseka found. This
method is problematic as it assumes that there is only aesdahinant route from
all of the router’s interfaces to a given destination, arat tbuters respond in this
manner [33].

Another alias resolution method, Ally [33], takes advaetaghow the Internet
Protocol Identifier (IPID) field is implemented in routershelIPID field is used in
IP packets to uniquely identify a packet for re-assemblyiastrated in Figure 2.8.

15

Most router implementations use a single shared countéirtb@ments the IPID
field for each packet they create. Using this knowledge, waeair of potential
alias addresses are identified, packets can be sent to bothyacomparing the
IPIDs of the packets received back from each. If the IPIDgivexd back are se-
guential (or close to each other) and in the correct orderait be assumed that
the two IP addresses are aliases for the same router. Thiwdistfairly reliable,
provided that routers increment the IPID counter in a setiglenanner. Some sys-
tems, the Linux kernel for example, set the IPID of all pasketzero. This makes
itimpossible to determine whether the addresses are sloasemply routers which
do not follow the convention of a single shared counter.

One other method for resolving aliases is to perform somsimpguof the Do-
main Name Service (DNS) names assigned to a router intef32¢¢o extract in-
formation about the router that they belong to. This metla@$ advantage of the
tendency for Internet Service Provider (ISP)s to name tlogiters in a way which
identifies where they are located geographically withinrtevork. For example,
sl-bb21-lon-14-0.sprintlink.netndsl-bb21-lon-8-0.sprintlink.netre aliases for the
same backbone router [32]. This technique has limited egipility as the software
needs to be trained for each ISP’s naming system. Also, s&mg ¢lo not use a
systematic naming system, do not name their routers witlenDONS, or do not
keep DNS records up to date, leading to false inferences [19]

Another method suggested by Spriegal. [32] is to use the maps generated
from the traceroutes and two inference rules which allowsakddresses to be
folded together. The first rule is that two adjacent addiessthe map are likely to
represent adjacent routers rather than the same routes.isSTbecause if these ad-
dresses were in fact aliases, there would be a routing lome sine alias is forward-
ing to another alias on the same router. The other rule spectiat IP addresses
immediately before a point where links merge are likely tas#s if the links are
point-to-point, as there would not be one address connégt®eb different routers
with a point-to-point link.

RadarGun [6] is an improvement on the Ally method, whichraties to model

the IPID counter of a router by observing how it changes awes tand thus can cal-

16

culate the rate at which it is increasing (the velocity).sSTtalculation is performed
for each of the candidate interfaces. The velocity of a m&ait@€ID is usually a

straight line and so radargun computes the distance betalegairs of lines. Pairs
which are close together represent IPIDs which were clagether and so the inter-
faces are classified as aliases. Because RadarGun useslafiibddPID counter,

it is able to resolve aliases with far fewer probes than Adly large graphs. We
use RadarGun to resolve aliases on a set of interfacesfiddrtl our large-scale

testing described in Chapter 4 in order to classify the caosenissed topology.

2.7 Summary

Because network operators rarely publish detailed inftionaegarding the struc-
ture of their networks, considerable effort must be put geithering this informa-
tion using alternate methods. Traceroute is currently tbetiwidely used method
for actively gathering information about the Internet & tR level. Traceroute has
two major drawbacks, it does not discover a comprehensp@agy and it probes
inefficiently, wasting resources. Doubletree attemptsriprove the efficiency of
traceroute by retaining information about previously disered paths. MDA tracer-
oute allows all load balanced paths to be discovered, impgdhe coverage of the
tracing process. In the next chapter we present the ecoabiMiDA traceroute

which attempts to discover all load balanced paths in anieffiecnanner.

17

Chapter 3

Economical MDA Traceroute

3.1 Introduction

This chapter describes enhancements to the MDA tracereakmigue to make it
more economical. The economical MDA aims to discover a cetmgnsive topol-
ogy while minimizing the number of probes that it uses to das@rder to do this,
we build on two existing algorithms, doubletree and the MDA.

By sending multiple probes per hop like the MDA, we are abldiscover load
balanced paths. We also make use of stop sets and coopdratiseen vantage
points in a similar fashion to doubletree in order to reduwe amount of probes
needed. The assumptions made in the design of the doubddge@&hm are not ap-
plicable when considering load balanced paths. We therefadify the local stop
set so that it attempts to trace a path enough times to disemyeper-destination
load balancers before using an economical probing mode. |S8araplement the
global stop set part of doubletree to reduce the amount ofh@ahcy between van-
tage points.

In addition to describing the economical MDA that we havedadeped, we dis-
cuss an implementation of this algorithm which uses CAIDARK infrastructure
to conduct topology discovery. The implementation is alde a dynamic set of
vantage points which it uses to probe a set of destinatiomlBsooperative man-
ner. Our system shares global stop set data between vardege and ensures that
destinations are traced in a round-robin manner, where @estnation is probed

by a series of vantage points.

18

3.2 Motivation

Due to the manner in which MDA traceroute enumerates loadngald paths, a
load balanced traceroute must send many more probes thajularéraceroute.
While this is an inconvenience when tracing a single destinaif one wishes to
use MDA traceroute in a macroscopic Internet topology discp project such as
Ark, the number of probes needed is almost prohibitive. Beedoad balanced
traces use more probes, they therefore take more time te &ach destination.
It takes an Ark team of vantage points approximately 48 hewrsilly probe the
routed /24 IPv4 address space. If MDA traceroute were to bd testrace the same
destinations to 99% confidence, it would take approximé&élgays. A run time of
this magnitude is impractical as routing changes coulccaffee topology. That is,
a path traversed to a destination at the beginning of themary, have changed by
the end. If we then merge the traces to give a snapshot graple tPv4 topology,
we run the risk of inferring invalid links because data inéerearly in the process
may no longer be valid due to routing changes. It is therefoportant to reduce
the amount of time MDA traceroute takes to run. Also, becadB& traceroute
sends multiple probes for each hop, the number of unsaligeekets being sent
into the Internet is far higher than with traceroute. This tiee potential to look like
a hostile act to network operators.

Thus, in order to be able to gather a comprehensive larde-smaology that
we can have confidence in, a new method has been developell wipooves the
efficiency of the MDA traceroute process. We call this newhndtthe Economical

MDA Traceroute.

3.3 Overview

Economical MDA traceroute is based on the MDA discussedezaiWe have made
two notable additions to this algorithm. These are the aajlstop set based stop-
ping criteria - similar to that which doubletree uses - andadaptive local stop
set which is able to reduce the number of probes needed whéaweeconfidence

about the initial section of the path.

19

Figure 3.1: If X is a per-destination load balancer, the ik will be missed by
a trace to B. However, when tracing A, the link will be discae as X is only
recorded in the global stop set for B.

3.3.1 Global Stop Set

We make use of a global stop set for economical MDA traceriouteuch the same
way as doubletree does. It is a set of interface-destingams that are used to halt
probing when a known section of a path is encountered. Whe&s@onse is re-
ceived from a node in the path, the global stop set is corgtdtdetermine whether
this interface has been encountered by another vantagetpatralso probed this
destination. If there is no corresponding entry in the glebap set, an entry is cre-
ated and probing carries on as usual. If there is an entryeiglitbal stop set, then
tracing along theurrent branchis halted. This is a slightly different behaviour than
doubletree as it is possible for there to be other branchéshwieed to be traced
further. When the trace is completed, the global stop sebmsneunicated to the
other vantage points so that they can incorporate it intio giebal stop set.

Using a global stop set like this assumes that given a nodehwias been seen
by another vantage point whilst tracing this destinatiom have seeall pathsfrom
the node to the destination. We hypothesise that while ddwdd has the potential
to miss topology due to load balancing which occurs withmdhea hidden by the
global stop set, economical MDA traceroute should not bect#d if the types of
load balancing (per-flow, per-packet, per-destinationeh@een adequately defined
by Augustin [3]. This is because when tracing with MDA tram#te, we will see
all links caused by per-flow load balancing with only a singéee - it takes regular
traceroute many traces to approach this sort of coverage.

Because a global stop set entry is tied to a specific desimagtier-destination
load balancers should not affect the discovered topoldggeiFigure 3.1 shows the

paths to two hypothetical destinations, the router at X lafi@ng packets on a per-

20

Figure 3.2: If A, B, D and F have been seen with previous prghihe local stop
set can cause C and E to be missed if F is seen first.

destination basis. If MDA traceroutes are carried out tdl#oand B, then the two
links X-Y and X-Z will be discovered. If we assume that X hashseen in the path
to B by another vantage point, then when this vantage poadhes it, it will halt
probing of this branch. However, when B is traced, X has nenlseen in the path
to B and so tracing will continue, leading to the discover¥Xet. Thus, no topology
is missed due to either per-flow or per-destination loadrizatey. The only type of
load balancing that could cause topology to be missed dukeetglbbal stop set
is per-packet. Per-packet load balancers cannot be nelégibtovered by MDA
traceroute as they pay no attention to the probe headersusfindghowever, states
that per-packet load balancers affect only 2.1% of all pfhsnd so therefore
should have a minimal impact on the link coverage of econahMDA traceroute.

We investigate this further in Chapter 4.

3.3.2 Adaptive Local Stop Set

The assumption central to doubletree’s use of a local stbig fgat from any node
in the tree of paths rooted at a vantage point there is onlypoasible path that leads
back to the root. When we take load balancing into accouatsitiuation becomes
more complicated. If we assume that whenever we see andoéettie remainder of
the path back to the source is known, there is the potentidbfmlogy to be missed
as illustrated in Figure 3.2. If probing were to begin at FewlE is found, the
conventional local stop set would cause us to assume thegtiainder of the path
is known and halt probing. This assumption will cause thera#te path which
traverses D to be missed. When tracing with MDA traceroullepea-flow load
balancers can be discovered with a single trace from onegargoint, however,

per-destination load balancers can only be seen when ¢rauirttiple destinations.

21

Figure 3.3: The paths A-B-C and X-Y-Z have been seen multipies with pre-
vious probing, however a rare link between A and Y could besadsf back-links
are not checked.

We therefore have re-designed the manner in which the lt@alset is used so that
it takes per-destination load balancers into considerdiioensuring that topology
has been seen in the paths to multiple destinations befeuersg that it does not
need to be exhaustively probed.

To do this, we begin probing with a regular traceroute at TThssuming that
we have seen this interface with prior probing. That is, wedsenly one probe per
TTL to begin with. With each response, we check that there tillehave reason
to believe that all per-destination load balancers have Iseen, and as such are
not missing any topology. When we reach a point where a lirkkri@t been tra-
versed enough to have confidence that there are not othelep@nation links to
be discovered, the algorithm switches into the full MDA &Bmute mode, sending
multiple probes per TTL and discovering all links. To enabie check to be made,
we keep a record of the destinations that an interface hasd®sn in the path to
and also which interfaces it forwards packets to.

We also keep information regarding thack-linksfrom an interface. That is,
the interfaces which forward packets to this interface. Bgping a record of the
destination count, we are able to ensure that we have conédeat we have seen
all of the per-destination links out of an interface. Thelbhiks allow us to be
sure that we have seen this specific link with previous pmbichecking that the
interface which we traversed before discovering the ctiirgerface is present in
the back links list. We therefore reduce the chance of ngsisane per-destination
links between two sets of previously seen topologies astithtied in Figure 3.3.

Figure 3.4 is a hypothetical set of paths that have beenrgesieby the algo-

rithm. The information kept for interface B says that B hasrbeeen in the path to

22

C = F (= dstl

/
‘srcHAHB}—»D—»G—»dstZ
3 3 1 1
AN

E = H (= dst3

Figure 3.4: An example of a series of paths which have a commerface. B
would have a destination count of three and a forward linkd ftentaining refer-
encesto C,DandE

three destinations. The forward links list would contaiferences to the informa-
tion held for interfaces C, D and E.
We call the information kept the Adaptive Local Stop Set (A)$o differentiate

it from the local stop set which doubletree uses.

3.4 Algorithm

The economical MDA algorithm works by attempting to redube humber of
probes that must be sent by the MDA algorithm to discover &.péts demon-
strated in Figure 3.5, the algorithm moves through two msjates before using
the original MDA algorithm to comprehensively trace the eander of the path.
These are the economical probing mode and the transitioemod

The economical probing mode is designed to use a minimal euoflprobes to
traverse the initial hops in a path which have been seen jpdties to many previous
destinations. Once the economical mode determines thagp dd®not been seen
in enough prior paths, the transition mode is used to detesraisuitable starting
TTL for the MDA. It does this by iteratively probing back towithe vantage point,
looking for a TTL at which only one interface responds. Oncéhe MDA mode,
probing continues as with the original MDA except we add adgiteahal stopping
condition. If an interface is discovered which is in the glbstop set, then probing
is halted. Upon completion of a trace, the discovered tgpple then parsed and
the ALSS is updated.

When an economical MDA traceroute run is started, the vanpagnt has no

state information. To attempt to use the adaptive local sebpart of the algorithm

23

send probe
(const. flow id)

probe new
TTL

confidence
regarding
interface

uncertainty
regarding
interface]

increment TTL]

Economical Mode

send probe
(varied flow ids)

probe new
TTL

|
|

|

|

|

|

: same
| reply
|

|

|

|

|

|

|

|

new

reply
interface

interface

decrement TTL]

Transition Mode

threshold
exceeded

Y
MDA

(w. global stop set)

Figure 3.5: State diagram illustrating the operation ofebenomical MDA tracer-
oute. When a trace is started in economical mode, each psadent with an in-
variant flow identifier. For each reply that is received, ér# is uncertainty as to
whether the discovered interface has been seen in enoulgh foahave observed
all possible interfaces at the next hop, then the algorithowes into the transition
mode. Otherwise, the TTL is incremented and another profe €nce in transi-
tion mode, probes are repeatedly sent using the same TTEk ‘aluvarying flow
identifiers in an attempt to elicit a response from a differenter at this TTL. If
one is seen, then the TTL is decremented and another probe Rmvided that
no alternate reply interfaces are observed, probes araisghthe hypothesis that
there are two interfaces at a TTL has been disproved (8 ptot#396 confidence).
At this point, the regular MDA algorithm is used to trace teenainder of the path.

24

in this case is actually counter-productive as severalgsatould be used to de-
termine that economical mode needed to be switched off atdrd. Thus, when
there is no state in the ALSS, traces are started with theomsimal mode already
switched off. The effect of this is that there will be sevdrakes, depending on
how many traces a vantage point can conduct in paralleledbélginning of a run

which are essentially regular load balancer traces.

3.4.1 Economical Probing

Once state from at least one trace has been accumulatedAh 8% new traces are
started in the economical mode. The job of the economicalen®do efficiently
probe a single path from the vantage point until it reachemmface at which it
no longer has confidence that all per-destination load lbalgrhas been observed.
It begins by sending a single probe to TTL 1. The ALSS is caesuand the
information associated with the discovered interface isewed. As mentioned
earlier, an ALSS entry for an interface contains a set ofriates which represent
the outgoing links, and a count of the number of destinattbasit has been seen
in the path to.

To be confident that continuing with economical probing widk cause topol-
ogy to be missed, several criteria must be met. First, we hmast already seen the
back-link that discovering this interface creates. Thisinsthat the ALSS state for
the previous interface must have this interface in its isboward links. Having this
check reduces the chance of missing alternate routes wheckean infrequently.
Second, givem forward links, to disprove the hypothesis that there israre 1
forward links, the destination count must be greater thamtimber of samples re-
quired for n+ 1. For example, an interface with three interfaces in its foohlinks
list needs to have been seen in the path to at least 21 difféestinations to have
99% confidence that there is no more per-destination loaghbadg at this router.
Several other checks are made at this stage also, such asgrtkat there are no
loops in the path and that we have not reached the destindti@ALSS entries are

not modified at any point during the economical probing moelealise we are not

1See Table 2.1 for these values.

25

I

o

src H A ’—»‘ B BK:,:::: 2 i
P e

o s==x

L 1 2 3 , dst8,

Figure 3.6: An example path where the per-destination agaptober can switch
to an economical probing mode for TTL 3. The dashed linescatdi information
contained in the stop set state (forward links and destinaibunt).

exhaustively probing each hop and so do not have comprefeksbwledge of the
path. That is, there may be alternate links previously disced, but which are not
re-encountered while in economical mode. If all of theseddttons are met, then
the algorithm records the current interface in a list of ifatees discovered during
the economical mode. This is used for both the loop checknugoack-link verifi-
cation portions of the algorithm. If any of these checks tagkn we must transition
back into the regular MDA traceroute algorithm in such a wagt twe can have
confidence the topology being inferred is accurate.

Figure 3.6 is an example of how this process works. The iterfabeled B
has 2 forward links (B-C, B-D) and has been seen in the patigtd destinations.
According to Table 2.1, B must have been seen in the path éaat fifteen destina-
tions to rule out a third forward link. The destination cotortB is eight, therefore

we must transition out of the economical probing mode.

3.4.2 Transitioning

When we encounter an interface where we have not yet proleetutimber of des-
tinations required to rule out per-destination load balagcthe economical mode
is switched off and algorithm moves back into regular MDAcewoute. Before it
does this, it first determines where in the path to begin. Ehitependant on what
has caused the economical mode to be terminated.

If there is not a back-link from the discovered interface® previous interface,

then we attempt to start the load balancer algorithm fromTihke at which the

26

eco path: A-B-C-E /Iast eco hop

S E

TTL 1 2 3 4 5 5

Figure 3.7: Alternate interface check. The economical megwitched off at TTL
5 after discovering F. To be able to start the regular MDArgheust be no alternate
interfaces. At most eight probes are sentto TTL 5 (assunm®8g)90ne probe will
discover G, at this point the TTL is decremented by one and 2T _probed up to
eight times. The alternate interface D is discovered antisdTL is decremented
to 3. After re-probing TTL 3 eight times and only seeing C,MI2A can be started.

previous interface was discovered. We do this to allow tle¥ipusly unseen link
to be properly discovered.

To be sure that this can be done safely, the algorithm checkké existence of
any alternate interfaces at this TTL. This is done to enswakewe can be sure that
a probe with any flow identifier will end up traversing thisarfce. If this is not
done, then the topology inferred later in the path could kealid.

To ensure there are no alternate interfaces, we sgndbes to the chosen TTL
with varying flow identifiers, where n is the value which is ded to rule out two
interfaces at a hop (5 for 95% and 8 for 99%). Provided thgpralbes return the
same (original) interface, we set the MDA traceroute athamigoing. If alternate
interfaces are discovered as demonstrated in Figure &7, Tth is decremented by
one and the check is carried out again. This process of angthe previous hop is
continued until TTL three is reached. At this point, there ao gains in reducing
the number of probes required to be made by continuing backarad so tracing is
simply started from TTL one. This is because stepping baokw@aTTL two will
cost as many probes to establish that there is only as simgidace as it would to
simply revert to the regular forward probing algorithm aed&the usual one probe
to TTL one and moving on to TTL two.

If the discovered interface has not been seen in the pathoiegéndestinations,
then tracing may be able to start from the current TTL. Weragheck for alternate

interfaces before tracing continues.

27

If a loop is discovered, we attempt to salvage the trace lsttiag to TTL one
and switching the economical mode off. We do this because¢haomical mode
only probes down one path, so itis possible for there to bdétamate path (already
seen with previous tracing) that does not have a loop. The MDQArithm probes
both branches until it identifies the loop at which point ituka halt probing the

branch with the loop and only continue probing any other tnas.

3.4.3 Collecting ALSS State

The ALSS is not modified during the economical phase of tigadimerefore it must
be populated with data whilst in the regular MDA traceroutedes. Because the
paths that can be discovered by MDA traceroute can contaltipiebranches, our
algorithm populates the ALSS once the trace has been cosdpéetd all of the
links between branches inferred. The tree of links discedes traversed and the
ALSS state for each interface encountered is updated wétmétv information. A
disadvantage to this method is if traces are being condustpdrallel, there are

likely to be several traces started in parallel before th&8&lis populated.

3.4.4 Global Stop Set

Once the economical mode has been disabled and probing thgeimggular MDA
commences, each interface that is discovered is checkedsagaglobal stop set
which contains all of the interfaces that have been seenthmsgaward this desti-
nation by each of the vantage points which have previoustypteted traces to it.
If a discovered interface is in the global stop set, then wwemme that the rest of the
path has also already been seen and we halt probing on tinishora

This is a safe assumption provided that the majority of lcadrcing observed
is per-flow or per-destination. MDA traceroute can, with drace, discover all
alternate paths caused by per-flow load balancing, thersfaccessive traces from
different vantage points should not discover any new tagpldracing continues
down other branches of the path until a stop condition is hmeetalso. This allows

alternate paths which were not discovered by other vantagesio be seen.

28

3.4.5 Timeouts

Due to the unreliable nature of the Internet, replies areahotys received for
probes. The algorithm deals with probes that were not redgubmo in different
ways depending on why the probe was sent.

If a probe times out while in the economical mode, we use a gap fea-
ture similar to that found in the traceroute used by macnoisdopology discovery
projects. When a probe times out, we check that the numbeiobies which have
timed out is less than the specified gap limit. If it is, thensiraply increment the
TTL by one and probe the next hop. Once the gap limit is regclveddecide the
trace is not viable and terminate.

If a probe times out while checking for alternate interfacgs simply treat it
as a response which doesn’t match the original interfaceeasannot be sure that
there is only one interface at this hop. That is, we decrerienT TL by one each
time a timeout is received until we reach TTL 3, at which pewetrevert to regular

MDA traceroute at TTL 1.

3.5 Implementation

This algorithm has been implemented as an optional parteoMDA traceroute

implementation currently available in scamper [22]. Scamip an open-source
prober, written in C, which implements several well-knowstige measurement
techniques. As scamper itself contains no mechanism fadaaating a set of van-
tage points, we also implement a coordination system,ewritt Ruby, to distribute

global stop set data using Marinda [7].

3.5.1 Scamper

We implement economical MDA traceroute as two optional peaters to the MDA
traceroute already implemented in scamper. These are tB&Akd the global stop
set.

The ALSS portion of the algorithm is enabled by specifyingaene for the

29

stop set. This allows concurrent but distinct experimemtset run without the stop
sets overlapping. The stop set is implemented as a splayfree nodes in the
stop set are structures which contain the IP address of te, tbhe number of
destinations it has been seen in the path to, and a list oksttogntries to which this
node forwards packets to (forward links). We are able to ntakdack-link check
without explicitly storing any additional data. Given thelk x—y, where we want
to check thaty has a back-link tac, we retrieve the ALSS record af and verify
thaty appears in the forward links array of

The global stop set part of the algorithm is enabled by pgssim list of inter-
faces which are to be used as the global stop set for this. tfduge list is managed
by the control mechanism and passed to scamper as commaandgiars. The
global stop set is implemented as an array of IP addressehwhe specific to a
single trace. These are not shared between traces.

When a trace is started, if the ALSS is enabled, the ALSS islateeto ensure
that there are nodes in it. If there are not, then there isimgtio be gained by using
the economical mode and so the original MDA is used. Whenttace completes,
because the ALSS is enabled, the topology discovered bydbe ts parsed and
converted into ALSS nodes and inserted into the splaytreew that there are
nodes in the stop set, proceeding traces are started indhemical mode.

Scamper makes use of call-back functions to handle remlipsobes sent. This
is implemented using modes; the code that is executed wheplyis received is
dependent on the current mode. We therefore implementgaritim as a series of
modes. To begin with, we are in the economical mode. Whenlg iepeceived in
the economical mode, the interface that the reply is reddneem is looked up in the
ALSS. The ALSS record retrieved is then consulted and thditions described in
Section 3.4.1 are checked. If they are met and economichimy@an proceed, the
TTL is incremented and another probe sent. Otherwise, thraensochanged to the
transition mode in order to check for alternate interfadedifferent flow identifier
is used and another probe sent. When a reply to this probenistee transition
code deals with checking that the probe is received from #meesaddress every

time. If the addresses match then a different flow identifeused and another

30

probe sent. This process continues until the required nuwibgrobes have been
sent or a reply is received from a different address. If d#fifé reply addresses are
seen then the TTL is decremented and another probe is saafprblcess continues
until a suitable TTL is found or the trace is terminated asdbed in Section 3.4.2.
Provided a TTL is found for which there is only one addressisé®e mode is
changed to the first mode that the original MDA uses. A prolbleas sent such that
when the reply is received, the code for the original MDA Haadt.

We have altered the code for the MDA to allow the use of a glehap set.
Each reply address that is received is looked up in the glstogl set. If there is
a corresponding entry, then probing along the current brafi¢che path is halted;
other active branches continue to be probed however. Waadtdcode to populate
the ALSS with the new information gained with each trace. Whadrace is com-
pletely finished, we traverse the links discovered and fohealdress, retrieve the
relevant ALSS entry, update the destination count, and la€ldarward links from

this address.

3.5.2 Marinda based Coordination Mechanism

Because scamper runs independently on a vantage point, plenmant our coordi-
nation mechanism using the shared memory implementatiannda, that CAIDA
uses to coordinate its Ark infrastructure [7]. Marinda atoa high-level approach
to be taken to coordination. It is written in Ruby and abssa@evay issues such as
race conditions and loss of connectivity between the vanpaints and the control
server. This is useful as it allows different projects toin@lemented and deployed
with a minimum of repeated effort.

Marinda uses tuples to share data. A tuple is an ordered sabjetts, im-
plemented as an array in marinda. Arbitrary tuples can b#esmrinto a region
of shared memory, auple spacewithin marinda, and then retrieved using basic

pattern matching. For example, the tuple

TEST,iteml,item?2

31

could be retrieved by requesting a tuple which matches ttterpa

TEST, *, %

where * is a wildcard.

We implement our coordination system as a set of clientsingron the vantage
points, responsible for driving scamper and returning glabop set information,
and a central control server which sends tasks to the vaptages. All of the van-
tage points, along with the control server, connect to nainrhe control server
inserts a tuple for each destination to be traced into thie teipace. These tuples
are considered low-priority and so are only taken if theeerar high-priority tuples
available. We separate the tuples into high-priority amwd jpwiority so that once
and address is traced by one vantage point, the others tituarily after. The van-
tage points then each retrieve enough of these tuples tpppsmamper. Because
scamper is a parallelised tracer, it requires many task® tméximally efficient.
Once scamper completes a trace, the tuple is updated witlalgltop set informa-
tion returned by scamper and inserted back into the tupleespsa a ‘done’ tuple.
The control server, watching for these done tuples, redgat; determines which
vantage point should probe it next by using an alphabeyicatiered list of vantage
points that are yet to trace it, and inserts it back into th@etispace as a high-
priority tuple. Vantage points retrieve high-priority tep using pattern matching
so that they only receive tuples designated for them. Fanel& the vie-at vantage

point would request a tuple the matched the following patter

TASK_HP,x,*, vie_at

This request could retrieve the tuple:

TASK_HP,130.217.230.17, trace, vie_at

This tuple instructs the vantage point to issue a task to peanequesting a classic

traceroute (‘trace’) to 130.217.230.15.

32

Once a destination has been traced by all vantage pointsptiieol server re-
moves it from the tuple space. After all destinations hawentteaced, the control
server sends a notification tuple to each of the vantage wifarming them that
the run has completed.

To reduce load on marinda, the trace data collected is stocatly on the vari-

ous vantage points and manually collected upon complefitimeaun.

3.6 Summary

In this chapter we present economical MDA traceroute, ouratian on MDA

traceroute which is designed to reduce the number of prasgsred to discover
load balanced paths with confidence. We also outline oura@mphtation of this
algorithm and a control mechanism which allows it to be wste the Ark infras-
tructure. We evaluate the economical MDA traceroute in @rap and discuss

potential shortcomings and improvements.

33

Chapter 4

Method Comparisons

4.1 Introduction

Because the main objective of this thesis is contribute thingareal-world macro-
scopic Internet topology discovery systems more efficiedt@mprehensive, it is
important that the techniques devised are tested in a mavineh closely reflects
an actual implementation. We test the implementation ofet@nomical MDA
traceroute algorithm presented in Chapter 3 alongside gletenimplementation
of the doubletree algorithm. We test these in concert widssit traceroute and
MDA traceroute to give a benchmark against which we can coene doubletree
and economical MDA traceroute methods.

This chapter begins by discussing the metrics used to cantparperformance
of the topology discovery methods tested. We describe twimicse probe count
and link count - which we use for overall performance congmaribetween meth-
ods. We also describe several metrics for evaluating thimqmeance of the stop
sets used by both doubletree and economical MDA traceroute.

Once the evaluation metrics have been discussed, we pthsersults obtained
from conducting a large-scale coordinated experimentgu€iAIDA’s Ark infras-
tructure. We investigate variances in discovered topolmgween the methods and
explain why some methods perform better than others. Ingdse@ we observe
a type of load balancing - per-source/destination - whicls wat considered by
Augustinet al.[3]. Per-source/destination load balancers take bothdbece and

destination addresses into consideration when forwardipgcket. In addition to

34

this, it appears that the assumptions behind doubletree@mbmical MDA tracer-
oute’s use of a global stop set may be flawed. The global stois see cause of
a large fraction of the links which these algorithms fail teabver. We investigate
the causes of this and determine that aliases and per-sdestieation load bal-
ancers form the majority of the cases where topology is remaliered. We suggest

altering the global stop set to consider per-source/datsbim load balancing.

4.2 Efficiency Metrics

Because the various techniques that we are dealing withisrttiesis have differ-
ent goals and so gather topology in different ways, someghibonust be given to
establishing a set of efficiency metrics that allow for rdtarsd unbiased compar-
ison of both variations of methods (classic and doubleti@eetoutes) and indeed
between different methods (MDA and classic traceroute) ugéetwo basic metrics
to compare the overall performance of each method. Thedimbbe count, which
gives measures the relative efficiency of the method. Thangkis link count which
we use to give an indication of the amount of topology thaheaethod is able to
discover. In addition to this, we also investigate the eifeness of the stop sets
that both doubletree and economical MDA traceroute userdardo do this we de-
termine the topology that doubletree has failed to discamdrattempt to determine
the cause of this. For the ALSS, we use the length of pathhleat¢onomical mode
was able to remain on for. We use this metric as, for each Tatighprobed using
the economical mode, several fewer probes are sent whenazethto the original
MDA.

4.2.1 Probe Count

The most basic indicator of an algorithm’s efficiency is thenter of probes that
it uses. A probe being a packet sent into the Internet in cieliscover some
information. Probe count is a particularly good indicatbefiiciency as a probe
is of finite size and so takes a finite amount of time to send.r&fbee, the more

probes that are used, the longer the method will take to ruaddition to time, the

35

amount of data sent into the network also increases prapaity with the probe
count.

Probe count by itself however is not enough to robustly compaethods. To
be able to use probe count alone to compare methods, all aftiee variables
must be the same. The methods must have traced the same mfrdbstinations
from the same number of vantage points, using the same grsbuncture (team or
cooperative probing). In order to reliably compare methbds conduct probing in
different manners, the probe count metric must be enhamcenlder to do this, we
impose a set of conditions which allow different methodséa@bmpared using the
probe count value.

The first condition we impose on this comparison is that allrods have traced
the same set of destinations. We impose this condition Isedaaces to two differ-
ent destinations can have completely different charastiesi For example, one of
the destinations may be located closer to the vantage gwntthe other in terms
of hops and so will take cost fewer probes. The only way to mise this problem
is to have all methods tracing identical destination lisSike second condition is
that either both methods used team probing or both meth@dsamoperative prob-
ing. If team probing is used, each vantage point should haged the same set
of addresses with both methods. If a cooperative probingtre is used, then all
vantage points must conduct traces using all methods te@sfirdhtions.

With these conditions in mind, we can then measure the effigieof each
method by calculating the number of probes used per destimdy using a cumu-
lative probe total, we can look at the probe count for thetlaste for each method
and see the total number of probes which were sent duringdhese of the ex-
periment. Figure 4.1 shows an example graph of this metrichik example, we
can see that the MDA traceroute uses many times more proaesehular tracer-
oute. Also, the increase in probes is linear because naitltee methods make any

attempt to be efficient.

36

T T
45+ MDA - probe cnt .
trace — probe cnt-----
40 - N

35 I

25 I

20 N

cumulative probes sent (millions)

10 N

o

5000 10000 15000 20000 25000 30000 35000 40000 45000
trace number

Figure 4.1: An example probe count graph showing probe uaagee experiment
is run. The data is a sample from the large scale experimsntided in Section 4.3

o)L e

interfaces: A, B, D, E links: src-A, A-B, D-E

Figure 4.2: An example path from which we can extract 4 iaieet (A, B, D and
E) and 3 links (src-A, A-B, D-E)

37

I I
MDA - link cnt
trace — link cnt------

200000

150000

100000

50000

cumulative new links discovered

0 | | | | | | | | |
0 5000 10000 15000 20000 25000 30000 35000 40000 45000
trace number

Figure 4.3: An example link count graph showing link disagvas the experiment
is run.

4.2.2 Topology Coverage

While the probe count goes a long way in determining how effica method is,
there is little point in using a method which uses very fewa® but also misses
large amounts of topology. We therefore need to view thegoalint in the context
of another metric which can give an indication of the coverafthe method. There
are two statistics that can be used to measure the amourgadgy that a method
discovers. These are interface and link counts. The nunildetesfaces discovered
by a trace is the number of unique IP addresses that are skerink count value
is the number of links that can be inferred from the interfadescovered. For
example, given the path discovered in Figure 4.2, the ia¢ercount would be 4
(A, B, D and E). The interface labelled with a **’ was unrespe during probing
and so we cannot infer any topology from it. The link count Vdolie 3 (src-A,
A-B, D-E). Again, as we did not discover the interface betwBeand D, we cannot
infer any links between the two nodes. Because we are onkyrigat net gains in
topology, we count only the globally unique links or intexéa in each trace. That
IS, the links in trace: + 1 that are also in tracelsto n are only counted once.

As with the probe count we use a cumulative count per tracéotctipe topol-

ogy discovery over time. Figure 4.3 is an example link couapy for the same

38

set of traces that Figure 4.1 was generated from. By lookitigese two graphs in
the context of each other, we can see that although the MD®toate uses nine
times more probes than regular traceroute in this situati@ngain in topology dis-
covered is relatively small. However, as we have mentioned,of the failings of
current macroscopic traceroute projects is that they saarple the edges of the
Internet closest to the vantage points [20, 2, 28, 34, 13as€it traceroute is ap-
proaching the coverage of MDA coverage because it re-prifteesodes close to
the vantage points over and over, thus inadvertently deswog load balanced links.
We therefore argue that the majority of the extra links th&Atraceroute discov-
ers are located toward the end of the paths traced, thusingdiln® sampling bias
prevalent in current macroscopic traceroute data. Sow@gfinthe gain in topology
is relatively small, we argue that the gains are in the aréasibs that traceroute
has been criticised for under-sampling. We thus provide ancomprehensive

topology which is less influenced by sampling bias.

4.2.3 Stop Set Effectiveness

Because both of the efficient methods (doubletree and ecdoabMDA) use stop
sets, it is necessary to have a way to identify which of thp s#&ds (local or global)
are reducing the probes used and also identify the situmtdnch cause missed

topology.

Doubletree

We begin by looking at the stop sets used by doubletree. Ifomgpare doubletree
and traceroute using only the probe and link count metriea thie are unable to
determine where the increase in efficiency is coming from bene topology is
being missed. We therefore must separate the trace into &nse, fihe interfaces
discovered by backward probing and the interfaces diseoMay forward probing.
This is done by simply taking the value that was used as thialimiop distance
(first hop) for the vantage point in question and splitting tlace at that point. The
interfaces up to, but not including, the interface at the ficgp TTL are assumed to

have been discovered by backward probing, the remaindesriasafd probing.

39

ttl traceroute doubletree diff

1 128.223.157.3 X (in Iss)

2 128.223.3.8 x (in Iss)

3 128.223.3.9 X (in Iss)

4 207.98.68.181 X (in Iss)

5 207.98.64.162 X (in Iss)

6 207.98.64.10 X (in Iss)

7 207.98.64.137 X (in Iss)

8 63.211.200.245 63.211.200.245 + (exact match)
9 4.68.105.12 4.68.105.12 + (exact match)
10 4.59.232.54 4.59.232.54 + (exact match)
11 207.88.13.142 207.88.13.142 + (exact match)
12 65.106.1.45 65.106.1.45 + (exact match)
13 65.106.0.174 X (in gss, san-us)
14 207.88.83.194 X (in gss, san-us)
15 66.239.36.10 X (in gss, san-us)
16 * X (star)

17 * X (star)

18 * X (star)

Figure 4.4: difference between doubletree and tracercates to 12.172.35.5 from
eug-us. An ‘X’ indicates an implicit match (the interfacséen elsewhere), a ‘+’ in-
dicates an exact match. In this trace doubletree is ablstoder the same topology
as traceroute.

40

Because doubletree is designed to be a more efficient vev§ibaceroute, we
compare the interfaces discovered by doubletree to thesewkred by traceroute.
We do this in a hop-by-hop manner. For each hop doubletregesian interface
at, we attempt to locate the missing interface elsewheredrnrace data. For inter-
faces missed during backward probing, we look only at thebtitree data for the
vantage point in question. For interfaces missed duringdod probing, we look
at the doubletree data for all of the vantage points. It isids for an interface
which is determined to be missed by backward probing to beouered coinciden-
tally by another vantage point and so not contribute to treral/missed interface
count. However, with this metric we are testing the assuongtbehind the local
stop set and so do not include these coincidental matchegiré=4.4 is a repre-
sentative ‘diff’ between doubletree and traceroute traceme destination. In this
case, doubletree starts with a first hop value of 9 and protungard, discovers
4.68.105.12, 4.59.232.54 and 207.88.13.142 which werertbe global stop set.
It then discovers 65.106.1.45at TTL 12, causing forwardprgto be halted as itis
in the global stop set. In this case we can see that the intsthat doubletree does
not discover due to the global stop set stopping probingratead already discov-
ered by the san-us vantage point. It then switches to backprabing, discovering
63.211.200.245 at TTL 8 which has been seen by this vantagegreviously and
so is in the local stop set. The trace is then halted compledgjain, the interfaces
not explicitly discovered by doubletree are able to be fomrmther traces from this
vantage point.

Perhaps more important than identifying which interfacagehbeen missed is
identifying the reason that doubletree has not discovdrecht We do this by us-
ing MDA traceroute data which was collected in parallel wtitle traceroute and
doubletree data. We use the MDA traceroute data as a ‘groutid from which
we can make inferences about the causes of missed interf&®sn an inter-
face which has been missed by doubletree, we look up theargl®¥DA traceroute
traces and attempt to determine whether the miss was caysegidbalancing, and
if it was, the type of load balancing in place. We attempt ti&enthis determination

based on heuristics about how the different types of loadruahg work. If we

41

ttl traceroute doubletree diff

1 128.223.157.3 X (in Iss)

2 128.223.3.8 X (inIss)

3 128.223.3.9 X (in Iss)

4 207.98.68.181 X (in Iss)

5 207.98.64.162 X (in Iss)

6 207.98.64.10 X (in Iss)

7 207.98.64.137 X (in Iss)

8 63.211.200.245 63.211.200.245 + (exact match)
9 4.68.105.30 4.68.105.30 + (exact match)
10 4.69.132.18 4.69.132.18 + (exact match)
11 4.69.132.54 4.69.132.54 + (exact match)
12 4.68.107.104 4.68.107.104 + (exact match)
13 4.71.40.2 4.71.40.2 + (exact match)
14 64.78.230.215 0 (gss miss)

15 64.78.193.134 X (in gss (scl-cl))
16 * X (star)

17 * X (star)

18 * X (star)

Figure 4.5: difference between doubletree and traceroates to 216.17.122.184
from eug-us. An ‘X’ indicates an implicit match (the inteséais seen elsewhere), a
‘+’ indicates an exact match and an ‘0’ indicates a misseerfate. In this trace,
the doubletree global stop set assumptions have not helddigeaused the interface
64.78.230.215 to be missed.

4.71.40.2

[64.78.230.194][64.78.230.20}[64.78.230.2}{5 64.78.230H11 64.78.23}[212 64.78.2]

Figure 4.6: The interfaces that MDA traceroute discoveisiks from 4.71.40.2

42

consider the trace shown in Figure 4.5, doubletree has thibseinterface at hop
14 (64.78.230.215). By not discovering this interface, \#® @o not discover the
link 4.71.40.2-64.78.230.215. We hypothesise that if there is a link 40.2-4 z,
wherex is not 64.78.230.215, then it is likely thatis the interface discovered
by doubletree from another vantage point, thus causingrnkene observe in this
trace to be missed. Figure 4.6 shows the links from 4.7 1 #@&@2MDA traceroute
discovered.

In order to classify the type of load balancing that is cagigims link to be
missed, we first need to perform alias resolution on the setfiaces to ensure that
we are dealing with distinct routers. As routers have moae thne interface associ-
ated with them, it is common to see multiple interfaces inkh®pology discovered
by traceroute which in reality, all belong to the one roulerresolve these aliases,
we use the RadarGun [6] technique discussed in Section 2.éngriemented in
scamper.

Once we are confident that there a six distinct routers ataheedop that dou-
bletree missed the interface at, we attempt to classifyyipe of load balancing in
effect by considering which vantage points discovered Wwimterfaces. If every
vantage point discovers all of the possible links, then wetkat there is per-flow
load balancing. Because the MDA traceroute algorithm campuodate probes such
that it discovers per-flow load balancing, it follows thatleaantage point is able
to discover the complete topology.

Per-flow load balancing is not in effect in the example casdlugtrate in Fig-
ure 4.5 as each vantage point only discovers one outgoiagace from 4.71.40.2.
Because of this, we suggest that there is a type of load batamdich is based on
the source and destination address tuple. We believe tisas tihe type of load bal-
ancing that Augustirt al.[3] classify as per-destination. Taken from one vantage
point where the source address is constant, it would appatitis solely the des-
tination address that the router is using to vary the pathvever, as we see with
Six vantage points, it appears that by varying the sourceeaddand keeping the
destination address constant, we also see these varianibespath. To classify an

interface as missed due to per-source/destination we usersstic that if each van-

43

per packet load balancer
“ 7
_>i i _>
A @
~a

path inferred: B —> (C, D) —> E

Figure 4.7: The result of probing past a per-packet loadnaala We cannot have
confidence about which flow identifiers are forwarded to C obiit,because the
paths re-converge at E, we can group C and D into a clump aatitr&s a single
node for probing past.

tage point discovers only one interface and there is moredha unique interface
discovered by the various vantage points then there isqexs/destination load
balancing. For a link—y to have been missed due to per-source/destination load
balancing, wherg is the interface that doubletree has missed, the MDA tratero
data from each vantage point must show only one link whictioaites atr. Also,
at least one other vantage point must discover a differekt liVe only require two
unique interfaces rather than one per vantage point as dssilple to see routers
which have only two outgoing interfaces towards a destimafi his case we would
see the two interfaces repeated across the set of vantagts pai still with each
vantage point only discovering one of the two interfacest \Were per-flow load
balancing, all of the vantage points would see both of therfates.

The other type of load balancing that could cause doubletreet discover
some topology is per-packet. As our implementations oftraute and doubletree
only send one probe per hop provided a response is recetvisdyossible that a
per-packet load balancer will cause traceroute to see eréliff path to doubletree.
To classify an interface as being a per-packet load balan@once again use the
MDA traceroute data. In our implementation of the MDA tramge algorithm, if
a potential per-packet load balancer is identified in théa,gae algorithm attempts
to probe past it by treating the ambiguous links as a clumgurei 4.7 shows a
hypothetical per-packet load balancer. If the paths wheetd lup to the load bal-
ancer are symmetrical, then the algorithm is able to probeipdowever, it cannot
accurately enumerate the links out of the load balancerfsonts a clump. These

clumps can indicate whether a router is doing per-packef th@dancing.

44

Once we have processed all of the missed interfaces in theletoee data, we
can determine the relative impact each cause has on theadmédtiata and develop

methods to mitigate their effects.

Economical MDA Traceroute

As with doubletree, we are interested in quantifying howi wed economical MDA
traceroute algorithm is performing by checking if, and howatm, topology being
missed. If there is missed topology, we attempt to deterrthieeportion of the
algorithm causing the topology loss.

Because the ALSS has not been previously tested, we enstri¢ igireducing
the number of probes used. We do this by checking the TTL athifie econom-
ical mode is switched off. Because the economical mode gépenly sends one
probe per TTL, compared to at least eight with regular MDAgraute to 99% con-
fidence, the further that the economical mode can get intpaiie the less probes
that are sent overall. We use these TTL values to plot a grapthwllustrates the
number of hops the economical mode is used for, on a per-basis. We expect
this length to increase over time as the ALSS grows and mordemce about the
topology is gained.

In addition to this, we also plot the number of probes usedé&dconomical
mode. A probe count which is similar to the number of hops thateconomical
mode is switched on for indicates that the algorithm doesofigin need to step
backward to find a hop at which there are symmetrical pathdingao it as dis-
cussed in Chapter 3.4.2. For example, a trace which reachie4Tin economical
mode, but then must step back to TTL 4 before switching the@tical mode off
will use up to 66 probes, compared to only 18 for a trace wisdbie to switch the
economical mode off immediately at TTL 10.

As we did with doubletree, we analyse the topology generbyedconomical
MDA traceroute to determine which links are missed. We dhadch trace into the
links discovered while using the ALSS to guide probing arabthdiscovered while
using the global stop set. This allows us to see where theritya@d topology is

being missed.

45

name location organization type doubletree

firsthop
hiz-nz Hamilton, NZ university 12
eug-us Eugene, USA university 9
nap-it Napoli, Italy university 13
san-us San Diego, USA research 8
scl-cl Santiago, Chile network infrastruc/

ture
vie-at Vienna, Austria community network 6

Table 4.1: The Ark vantage points used in our large-scatetes

4.3 Large-Scale Cooperative Testing

4.3.1 Methodology

In order to carry out our large-scale experiments using th@perative probing
methodology that doubletree requires, we make use of CAdB4Chipelago (Ark)
measurement infrastructure. Ark is a set of over thirty glhbdistributed vantage
points which are used to collect the IPv4 Routed /24 Topologiaset. For our ex-
periments we use a subset of these vantage points. Tablst4.the vantage points
that we use, along with their location and organisation typee Ark platform is
well-suited to carry out these experiments as it has beeigrks$ to allow new
measurement types to be deployed and tested with a minimwffiavf. Ark uses
a tuple space coordination system, marinda [7], which altve vantage points to
communicate at a high level.

Marinda is a coordination mechanism which allows arbittapies to be stored
and retrieved with ease. We use marinda to issue tracing tagke vantage points
and to pass stop set data on to successive vantage poistis thitlined in Chap-
ter 3.5.2. Marinda inherently prevents one tuple from begtgeved simultane-
ously from two vantage points, so doubletree always prabesround-robin fash-
ion, ensuring that only one vantage point will trace a desitm with an empty stop
set. The original doubletree authors used windows of datstin addresses to keep
vantage points busy [11]. We eliminate the need for vantagetpto manage win-

dows of addresses by dividing tasks into two categoriesy argl low priority. The

46

vie—at

0.25
0.2
0.15
0.1
0.05

cumulative mass of destinations

| | |
30 40 50 6
path length (hops)

Figure 4.8: The cumulative mass of path lengths for each Arkage point used
in the large-scale experiments. The horizontal ling at 0.2 indicates the first hop
values selected for doubletree tracing. These values nhaathie destination will,
with 20% of traces, be reached by the first probe.

low priority destinations are those which have not yet beaoetd by any vantage
point. A vantage point first checks for any high-priority tleations assigned to it,
if there are none, it takes a low priority destination andcpeals to trace according
to the method described in the tuple. Once the trace has etedpkhe tuple is up-
dated with the vantage point’'s name and new stop set infeomdt is then inserted
back into marinda as a done record. The control server ¢sitaese done records
and determines which vantage point should probe it next.réberd is inserted as
a high-priority tuple directed at the next vantage pointha tist. Because high-
priority tuples are taken first, destinations are probedlbyaatage points in quick
succession. This minimises the effect of routing changdso,Aecause we pass
the global stop set on a per-destination basis, the needifmows of destination
addresses is removed.

The tunable parameter to doubletree is the first hop value fifdt hop value is
the distance into the path at which doubletree begins it8dads probing. The first
hop value is chosen individually for each vantage point $halh80% of the time,
the destination is not reached with the first probe [11]. Tioudate this value, we

use existing trace data from each vantage point and plot alledire mass graph

47

of observed path lengths as seen in Figure 4.8. From this weletermine the
appropriate first hop value for each vantage point by readihghe path length
where the cumulative mass is 0.2. These values are showibia 4.

We carry out traces to 46,000 destinations for each of théoakstbeing tested.
This number was derived from prior knowledge about the tint&kies, on average,
to carry out MDA traceroutes. We decided on an estimatecettey run time.
Three days provides a compromise between keeping the ¢gréiome short, so that
the effects of routing changes are minimised, and gatheriogmprehensive data
set. The addresses we select are generated randomly frooteMrews BGP prefix
table. We select 46,000 prefixes at random, and for each gefigrate a random
IP address covered by it.

For each destination in the list, we conduct four traces. fliisé is regular
traceroute. We use ICMP-echo request packets as these danesbown to have
the highest response rate [23]. We also set the maximum ruoflmresponsive
hops (gap limit) to three, as this helps to speed up tracewtiah the destination
Is unreachable. The second method we use is doubletreeduéee We use the
same parameters as for regular traceroute. Third is MDAetmate, for which we
use a 99% confidence level, a gap limit of three and a minimuer-packet time
of 150ms. The fourth method is the economical MDA tracerouging the same

parameters as the MDA traceroute.

4.3.2 Results

We began our experiments on December 30, 2009. The run tqkxmately 72
hours, with almost 74 million packets sent in total.

Before we can analyse the data gathered, we first must mexgegblogy from
each vantage point as both the doubletree and economical tkédéroute methods
attempt to not re-probe topology which has already beerodesed by another
vantage point. We do this by extracting all of the links thetle method discovers
in the path to a destination and removing any duplicates. M @onsider links
from one interface to another, that is, links which havessfanresponsive hops) in

them are discarded. If one vantage point discowerd—c and another discovers

48

vantage traceroute doubletree MDA eco MDA
point

eug-us 910614 429611 7387756 2971282
hlz-nz 1028975 294221 8436059 2403428
nap-it 1038420 298587 8635434 2596954
san-us 853177 372781 7200280 2975541
scl-cl 773296 327035 6948846 2845561
vie-at 871827 411568 7433549 2684581
total 5476309 2133803 46041924 16477347

Table 4.2: The number of probes sent from each vantage point.

vantage traceroute doubletree MDA eco MDA
point

eug-us 93171 51469 99535 58975
hlz-nz 97590 33079 104344 41231
nap-it 94582 30923 100181 38012
san-us 97590 53899 103318 59932
scl-cl 98170 50229 104825 57908
vie-at 103735 47438 112050 55356

Table 4.3: The number of links discovered by each vantaget poi

c—d—e, our final link list will containa—b, b—c¢, c—d, andd—e. For the probe
count metric, we simply sum the number of probes that eactagarpoint used for
the given method. Table 4.2 contains a list of these raw pcobet values for each

method and vantage point. Table 4.3 shows the number of diiskevered.

Link Coverage

We use a per-trace link count to allow us to determine peréoiee over time of each
method tested. Figure 4.9 shows the cumulative number glerlinks discovered
by each trace. These results are unexpected as we see tléstokery of regular
traceroute is a close second to MDA traceroute. One possht®n for traceroute
almost matching the link coverage of MDA traceroute is tdag to having several
vantage points, each tracing the same destination, wetigécsend six probes
to every hop with traceroute. Thus potentially discoverftgrnate paths without

explicitly re-probing each hop.

49

T T T

I\{IDA - lilr']kkcmt ”
race — link cnt------

200000~ eco MDA - link cnt----- - 7]

doubletree - link cnt - - - -

150000

100000

cumulative new links discovered

50000

0 | | | | | | | | |
0 5000 10000 15000 20000 25000 30000 35000 40000 45000
trace number

Figure 4.9: Per-trace cumulative link discovery. 46,008Xiations.

Missed Topology

The difference between the number of links discovered lmetiaute and doubletree
is larger than expected, as is the difference between MDéetoaute and econom-
ical MDA traceroute. We attempt to determine the cause sfdhp by classifying
links missed by economical MDA traceroute into links misded to the ALSS and
links missed due to the global stop set as this indicates sumgstion has not held
up. Figure 4.10 shows the number of links missed by a reptasen sample of
vantage points. It appears that it is the global stop setlwisicausing the majority
of links to be missed. For example, the global stop set caBs&$6 links to be
missed by hlz-nz whereas the ALSS only causes 877 links toiégech Given that
the links missed by the ALSS only represent 1.49% of the totks discovered
by eug-us, we focus our attention on determining why the @lsbop set missed
11.4% of links.

In order to do this, we turn to the doubletree data which aihimuch the
same missed-link characteristics as we saw with the ecaradWiDA traceroute.
Figure 4.11 shows the results of our attempts to classifytissed interfaces based
on the type of routing which immediately precedes them.

By far the most biggest cause of missed topology are aligdeses comprise

around 45% of the causes of missed doubletree topology iexpariment. When

50

8000 T T T T T T T T T

7000 7 N
o P
$ 6000 - -
@ -
E -
o 5000 P N
4 Vs
= /// -7
© 4000 L T |
= - -
© g 7
= 3000 e - i
o 2000 Pt e —

1000} e N

0 o ‘:"""""'4“""'5'F'E'E'E'E'F’E'E'E'E'E'E'E'E’E'f': E || ;
0 5000 10000 15000 20000 25000 30000 35000 40000 45000
trace
vie-at — gss—— eug-us - gss---- hlz-nz - gss— — -
vie—at — alss----- eug-us —alss - - - hlz-nz — alss- - -

Figure 4.10: The number of links economical MDA tracerouiesed on a repre-
sentative sample of vantage points. The links have beematepanto the stop set
which caused the miss.

percentage of missed interfaces

aliases per—flow per—packet per—src/dst unclassified
cause of missed interfaces

Figure 4.11: Path characteristics which cause doubletoeeniss interfaces
while probing. The majority of missed interfaces are due ltasas and per-
source/destination load balancers. Aliases and per-sfstination load bal-
ancers can only be discovered by re-probing the path witaréifit vantage points.

51

one router replies with more than one address, a path cafledgth traceroute could
see a different topology to one collected with doubletreedroute. In fact, two
consecutive doubletree traces might see a different tggolWwhether or not this is
a cause for concern is entirely dependent on the end goaédbpiology mapping
project. This is because two traces where there is a differeaused by aliases
are describing the same router-level path. If the topoldgha interface level is
important, then doubletree would benefit from sending mpldtprobes per TTL,
however, this impacts the efficiency of the algorithm.

The next largest cause of missed topology are per-soustaidgon load bal-
ancers, making up 40% of the missed interfaces. These Ineks\ssed because a
global stop set entry from another vantage point has causeidg to halt. Because
the other vantage point has a different source address,ethgopirce/destination
load balancer has routed the probe packets on an alterrthtehpss invalidating the
doubletree assumption that paths form trees convergingdasination from mul-
tiple vantage points. This a concern for doubletree as aedrdceroute mitigates
this effect somewhat by repeatedly probing each hop frontiphelsources. Each
source will potentially see a different outgoing link andishmprove the overall
coverage. As doubletree only requires one vantage poirge@s interface before
it is used in the global stop set, the alternate paths areephis& possible way to
improve doubletree’s coverage with respect to per-sodestihation load balancers
would be to alter the global stop set such that an interfaee$ & be seen from a
certain number of vantage points before it is to halt futumbmg.

With around 10% of misses, per-packet load balancers aneetktenost preva-
lent. Because per-packet load balancers pay no attentithretd® header fields, a
different interface can be seen with each probe sent. Ircdss, we miss topology
for much the same reason as we do with aliases. For exampesamtage points
A and B trace toward the same destination, B stops after desow an interface
previously seen by A. However, there is a per-packet loaadrualr later in the path
which causes the path seen by traceroute to differ from thieqizserved by A. As
with other types of load balancing, the only way to see theradte paths caused

by per-packet load balancers is send multiple probes. Agfawe ensure that a

52

T T T
45 MDA - probe cnt -
eco MDA - probe cnt-----
trace — probe cnt ----
40 - doubletree - probe cnt - - -

35 N
30 N
25 N

20 I

of e e .]

o e T :

cumulative probes sent (millions)

o k£
0 5000 10000 15000 20000 25000 30000 35000 40000 45000
trace number

Figure 4.12: Per-trace cumulative probe usage. 46,00thdésns

number of vantage points have seen an interface in the patlléstination before
allowing a trace to be halted, we should discover more ofehes-packet load
balanced links.

Per-flow load balancers make up less than 5% of the missesseevaal. This is
most likely due to the Paris traceroute implementation useloth traceroute and
doubletree in these experiments. Paris traceroute masméaconstant flow identi-
fier such that per-flow load balancers always forward prolmketa out the same
interface. The remainder of the interfaces for which we hawd/DA traceroute
data are labelled as unclassified.

One of the most significant causes of missed interfaces ildbee is also
applicable to economical load balancer traceroute. Renesfdestination load bal-
ancers are not affected by repeated probing, we see onlyudgeing interface for
each vantage point which probes them. Therefore if ecoradl®A traceroute

stops earlier in the path, the alternate interfaces aresahiss

Probe Usage

Once we have checked the topology gathered and determisa@dkons for any
shortcomings, the next step is to ensure that the efficigotighms have indeed re-

sulted in a reduction in the number of probes sent. We plottimeulative number

53

T
4 MDA - probe cnt -
eco MDA - probe cnt-----

i trace — probe cnt ----
S 35 doubletree — probe cnt- - - i
E af 1
E L
)
o 251]
%]
[0}
Qo
o 2r]
[oF
[
2 15F -
R
>
E 1r i
o

05 ___________________ _

0 __._,,.,__-.—.—f.-—.:-.-.-T'.'.‘.'.‘"T‘.'f.' ------ T ‘
0 1000 2000 3000 4000 501

trace number

Figure 4.13: Per-trace cumulative probe usage. The gldbplset was disabled in
both doubletree and economical MDA traceroute.

of probes used to trace each destination in Figure 4.12. @thection in probes
between the standard methods and their efficient countsrpam be seen. The top
line, MDA traceroute, sends over 46 million probes, whereesnomical MDA
traceroute only sends around 16.5 million. This represangl% reduction in
probes. We see a similar reduction in probes used betwedrielme and tracer-
oute. Traceroute sends nearly 5.5 million probes, whereabldtree only sends
just over 2 million; a 61% reduction in the number of probesdis

To empirically determine the extent to which the global stepis causes links
to be missed, we re-run the experiment to a 5,000 destinatibset of the original
list. We choose 5,000 addresses to decrease the run-tinteaadse in the original
graph we can see that the lines are already cleared sepématbe 5,000 trace
mark. For this run, we disable the global stop set featurdsotf doubletree and
economical MDA traceroute. Figure 4.13 shows much the saisteldition of
probe counts as seen in the first experiment, with doubleindeeconomical MDA
traceroute both using slightly more probes as is expecte#figure 4.14 however,
we can see the improvement in link discovery by both methads coverage by
economical MDA traceroute has increased to over 95%, agamodstrating the

need to re-think the way that the global stop set is used.

54

I
MDA - link cnt

50000 eco MDA - linkent------ e
° trace - link cnt----- T e
o doubletree - link cnt - - -
(O]
>
8 40000 _ .
© -
(9]
x -
£ 30000F .
=
(0]
[
(O]
2 20000 -
I
> -
S -
=}
© 10000f .

0 - | | | |
0 1000 2000 3000 4000 50

trace number

Figure 4.14: Per-trace cumulative link usage. The glolm skt was disabled in
both doubletree and economical MDA traceroute. Note thateito MDA line is
much closer to the MDA line than in the graph where the glotig set was used.

ALSS Performance

To check the performance of the ALSS in economical MDA traasz, we plot

both the number of probes used by the economical mode andrihatiwhich the

regular MDA was engaged. Figures 4.15 and 4.16 are a the pedige results
from san-us and vie-at vantage points which are represemtattthe others. The
slightincrease in probes over time is expected as the edeabmode gathers more
knowledge of the topology and is thus is engaged for longegtles. This is seen in
Figures 4.17 and 4.18, which show the TTL at which the econalmode finished.
As anticipated, the TTL increases over time, with the peaktles being reached

after approximately 20,000 traces.

4.4 Per-source/destination Load Balancing

It is worth noting our discovery of a type of load balancerntthagustinet al. did
not explicitly consider in [3]. We see evidence of routerschiforward packets
based solely on their source and destination addressede YWhbbing with MDA
traceroute from a single vantage point, only one outgoink i seen from a per-

source/destination load balancer, however, when we carthmdata from multi-

95

35 T T T T T T T T T
30+ =

25 I

il ¥ alala|=]u|s(s/alu/s AN/ R AR TN

10 -

number of eco probes sent

0 | | | | | | | |
0 5000 10000 15000 20000 25000 30000 35000 40000 45000
trace number

Figure 4.15: san-us. Box and whisker plots showing the miminlower quar-
tile, median, upper quartile and maximum number of probes Isg san-us while
in economical probing mode. Traces are grouped into 2,G@@thins. The num-
ber of probes used by the economical mode increases oveirdiwating that the
economical mode is remaining enabled further into the path.

40 T T T T T T T T T
35+ 1

30 N

P

0 I I I I I
5000 10000 15000 20000 25000 30000 35000 40000 45000

trace number

number of eco probes sent

o

Figure 4.16: vie-at. Box and whisker plots showing the mumm lower quartile,
median, upper quartile and maximum number of probes seniebgtwhile in eco-
nomical probing mode. Traces are grouped into 2,000 trate Bihe number of
probes used by the economical mode increases over timeatmjcthat the eco-
nomical mode is remaining enabled further into the path.

56

25 T T T T T T T T T
20 =

15 I

ot | | L eon0HHHRB0HHEHHHIEY -

ttl

0 | | | | | | | | |
0 5000 10000 15000 20000 25000 30000 35000 40000 45000
trace number

Figure 4.17: TTL at which the economical mode is switchedfoffthe san-us
vantage point. A higher TTL indicates that the economicatlenwas able to get
further into the path, thus conserving more probes.

25 T T T T T T T T T

20

15

ttl

10

(¢)]
T
1

0 I I I I I I I I I
0 5000 10000 15000 20000 25000 30000 35000 40000 45000

trace number

Figure 4.18: TTL at which the economical mode is switchedafthe vie-at van-
tage point. A higher TTL indicates that the economical mods able to get further
into the path, thus conserving more probes.

57

ple vantage points, we see multiple unique outgoing linkss inknown whether
these are a type of load balancer not encountered by Augastaamore accurate
classification of the load balancing that they refer to asdestination. A per-
source/destination load balancer would appear to be agsirdtion load balancer
if data from a single vantage point is considered. It app#aas because these
routers forward based on the source address as well as ttieadies address, the
only way to be confident that all forward links have been disted is to conduct
probing from several vantage points.

Because per-source/destination load balancers are ohe tdading causes of
missed topology when using a global stop set, we propose afinatithn to the
global stop set and associated forward probing algorithiicwvould allow these
alternate links to be discovered. We suggest that when pgobith a large set of
vantage points, an interface must be seen by a number of ¥hessge points be-
fore it is included in the global stop set. This is similar ke tmethod that MDA
traceroute uses to enumerate per-flow load balancers, teke¢pve are using mul-
tiple source addresses to vary the fields consulted by theerethen making a
forwarding decision. We suggest using a table of valuesthekeMDA does which
increase depending on how many outgoing links are seen. »anm@e, a per-
source/destination load balancer with two outgoing linksuld need to be probed

by 15 vantage points to rule out a third link.

4.5 Summary

We have presented our results from comparing four macrostaernet topology
discovery methods, classic traceroute, doubletree, MBeetroute and economical
MDA traceroute.

In real-world testing, while the local stop set portion ofutitetree performs
well and discovers upward of 99% of the topology that clagsiceroute does, the
global stop set is causing around 10% of topology to be mis¥del see similar
results from testing of economical MDA traceroute. The AlLiS8erforming well,

while the global stop set causes large numbers of links toibsed.

58

We classify the interfaces that the global stop set is cgudirubletree to miss.
We conclude that in order to better discover interfaceserlyy aliases and per-
source/destination load balancers, the behaviour of thigaglstop set needs to be
modified. We suggest that the global stop set is extendedtkathn interface must
been seen in the path to a destination by a number of vantages jpefore it can
be used to halt tracing. This will allow other vantage pototsliscover interfaces

which the first vantage point to trace the destination may maissed.

59

Chapter 5

Challenges In Cooperative Probing

5.1 Introduction

Following our experiences with the large-scale testingcdieed in Chapter 4, we
discovered that due to several contributing factors, thimua vantage points used
were not able to work at even rates. We observed that vantigespwhich had
low memory and slow CPUs would cause the coordination mesimto become
saturated with tasks that the slow vantage points couldatatmon fast enough. To
begin with we mitigated this effect by improving the efficogrof the coordination
code itself, but we also considered a more scalable appwrelaici involves manip-
ulating the order in which vantage points are allocatedesach that the slower
vantage points are given tasks with larger global stop set$reerefore more chance
of being able to stop probing earlier in the path. We dematesthat marginal gains
can be made when using our optimisations on a dedicated neeasnt platform
such as Ark. Also, we show that there is the potential for nsigaificant gains to
be had when using these optimisations in a system which hazavaried set of

vantage points, such as a end-user based tracing project.

5.2 Motivation

The cooperative probing methodology which we use for ddwdxeand economical
MDA traceroute is useful because it allows the vantage pdmtolved to share

information about topology they have discovered, redud¢he amount of work

60

each has to do. However, for maximum efficiency, two vantagetp cannot trace
the same destination simultaneously. Because of this, tnd#sn is probed in a
round-robin fashion, such that once a vantage point prolukestination, the stop
set is then passed to the next vantage point in the sequencle prbceeds to trace
it.

This causes a problem when not all vantage points are ablemplete traces
at the same rate. If there is even one vantage point whichrmesomplete traces
at the same rate as the others, all other vantage pointscavedsdown while they
wait for the slow vantage point to complete traces that tlieyaaiting for. Hence,
toward the end of a cycle, the faster vantage points will loel®#d, waiting on the
slower vantage points to complete traces.

A slow vantage point can be caused by a number of factors. Byevof being
in geographically distinct locations, the vantage poietsdtto have varying path
lengths. For example, the hlz-nz vantage point located imiki@an, New Zealand,
has a median path length of twenty hops, whereas sjc-uselbacaSan Jose, Cali-
fornia, has a median path length of fifteen [8]. This meanshltzanz takes longer
to complete traces than sjc-us because, in general, edthhaathlz-nz traces has
more hops in it, thus taking longer to reach each destination

If we consider the six vantage points used in our testingJféid.1 shows the
distribution of the number of hops in each path when traciily vanilla traceroute.
We use a count of observed hops to enable comparison to daéjlas doubletree
does not necessarily trace the entire path to each destin&ihop count will give
an indication of the amount of work that each vantage poistbalo relative to the
others. We can see that there is variation between the vaptagts, as described
earlier.

Along with path lengths, another cause of difference initigspeed between
vantage points is resource limitations. Several vantagetpm the Ark infras-
tructure are several years old and have relatively slow Citdislimited memory
as shown in Table 5.1. Early versions of the cooperativeipgpimechanism were
significantly affected by inefficient memory usage and tbmeg implementations

in Ruby. This resulted in vantage points with limited res@gsr struggling to keep

61

45

40 -

35

30

25

hops

20

15

10

HHHHH _

eug-us hlz-nz nap-it san-us scl-cl vie—at
vantage point

Figure 5.1: The minimum, lower quartile, median, upper gleaand maximum
hop counts for traces using classic traceroute. Note tleabliinz and nap-it van-
tage points have longer paths than, for example san-us &etl 3this means that,
overall, traces from hlz-nz will take longer to completerttisom scl-cl.

name CPU RAM (ON

hlz-nz Pentium Il (400MHz) 362MB FreeBSD 7.1

eug-us Celeron (2.4GHz) 108MB FreeBSD 6.2

nap-it Dual Pentium 1985MB FreeBSD 6.4
(2.0GHz)

san-us Dual Pentium1926MB FreeBSD 7.1
(2.5GHz)

scl-cl Pentium Il (1.4GHz) 993MB FreeBSD 6.2

vie-at Core 2 (2.4GHz) 256MB Ubuntu 4.1

Table 5.1: Specifications for the Ark vantage points usedes€hare significantly
different in terms of CPU power, memory available and OS used

62

up with the others. hlz-nz, for example was slowed down ehdbgt Marinda,
the shared memory system which allows communication betwaatage points,
became overloaded and caused the entire experiment to fail.

Also, doubletree is suited well to a system which utilisesstoner machines
such as traceroute@home [10]. It would be advantageousdbrassystem to allow
end-users, who are taking part voluntarily to specify howehndata the tracing can
use. For example, in New Zealand, DSL users have a cappednamiodata, so a
participant on a small data plan may set the rate at whicheppalckets are sent at
a much smaller amount than a research organisation. Thihbaadfect of altering
the amount of time that each trace takes to complete, thdaster members would

be waiting for the slower ones to complete traces.

5.3 Optimisation Method

In order to counter this, a system must be devised so that\@mtage points can
still make the most of the advantages allowed by doublelatedio not force other
vantage points to sit idle whilst they complete traces. Tstesn that we propose
uses logic on the control server such that it keeps track wflbag each vantage
point is taking to complete traces. It can then use this médron to control the
order in which destinations are allocated to vantages point

For example, if we have four vantage points, A, B, C and D. ARrde able to
complete 10 traces a second. C, 5 traces a second, and De p&nasecond. In this
situation, when A, B and C are finished with all of the avakafsesh destinations,
D will still have a large number locked. To overcome this, toatrol server must
keep watch and ensure that D never takes addresses thatdideen traced by all
of the other vantage points. Similarly, C must only be giveraddress once both
A and B have traced it. A and B should be free to request fredreades whenever
they run out of work as they will complete traces before ther.

Our control mechanism uses two different priority levelsdestinations. Des-
tinations which have not been traced previously are detegres low-priority and

can be selected by any vantage point which has run out of piighity jobs. The

63

high-priority jobs are designated for a specific vantagapdio optimise the order-
ing, we keep track of the time between making a destinati@ailae for tracing

and receiving a completion notification. We then use thigttmupdate a rolling
mean value for the vantage point which just completed it.sTlowver time, we gain
an estimate of the various speeds at which the vantage @wantompleting traces.
When a trace is to be allocated to a specific vantage poihgr#tan simply using
a round-robin process, we select the next fastest vantage pae effect of this is

that by the time a slower vantage point receives the degimat trace, the global
stop set will be larger, and so the slow vantage point shoale o do less work,

thus increasing its speed.

5.4 Results

541 Ark

We begin by testing our optimisation methods using the sax&rk vantage points

that we use for the large scale testing described in Chapi&®e4un two doubletree
experiments, each to the same 46,000 destination list. T$teefiperiment we run
is regular doubletree with no additional optimisationsaflis, when a destination
has been traced, it is passed the next vantage point in apbalorder.

Figure 5.2 shows the number of probes that each vantage p&ack to trace
the destination list. When compared to Figure 5.3, we carttssethere is only
a marginal improvement in terms of even distribution of dffoetween vantage
points. We can see that scl-cl and vie-at have sent more ptolteecome marginally
more even with the other vantage points. We also see thait m&s-had a slight
reduction in probes used to fall into line with hlz-nz and-s&sn

Figures 5.4 and 5.5 illustrate the over time that each expati took. We again,
see a negligible improvement; scl-cl takes slightly lonigecomplete. Overall, the
experiment completes around three minutes quicker witimogdtion turned on (a
1% improvement).

Figure 5.6 helps explain why we see only minimal differernfoetsveen the van-

tage points in terms of probes and time. We can see that thédigon of hops

64

probes used

800000 T T T T T
700000
600000
500000
400000
300000
200000
100000
0

eug-us hlz-nz nap-it san-us scl—cl vie-at
vantage point

Figure 5.2: The number of probes that each vantage pointasesduct doubletree
traces to 46,000 destinations. The order in which vantagegtiace a destination
has not been optimised for these results. Note that thehiison of probes is
similar to the distribution of hop counts in Figure 5.6.

probes used

800000 T T T T T
700000
600000
500000
400000
300000
200000
100000
0

eug-us hlz-nz nap-it san-us scl—cl vie-at
vantage point

Figure 5.3: The number of probes that each vantage pointasesduct doubletree
traces to 46,000 destinations with the ordering of vantametp optimised. There
is a marginal gain, the overall probes used is reduced bycadraof a percent. The
number of probes used by hlz-nz, nap-it and san-us has beswttsaa slightly so

that each is using almost the same number of probes.

65

duration (seconds)

T T
eug-us hiz-nz nap-it san-us scl-cl vie-at
vantage point

Figure 5.4: Without optimised ordering. The overall amooiitime taken to con-
duct doubletree traces to 46,000 destinations. All vanfaets take roughly the

same amount of time to complete their traces.
T T

eug-us hlz-nz nap-it san-us scl-cl vie-at
vantage point

duration (seconds)

Figure 5.5: Optimised vantage point ordering. The ovenalbant of time taken
to conduct doubletree traces to 46,000 destinations. Qga#tron has, as with the
probe usage, reduced the differences between vantages puanginally.

66

40
35 N

30 N

20 N

all H H . |

eug-us hlz-nz nap-it san-us scl-cl vie—at
vantage point

hops

Figure 5.6: The minimum, lower quartile, median, upper glgeand maximum hop
counts for traces using doubletree traceroute. Compareigitwe 5.1, the variation
in hop counts is much smaller. This impacts the extent to wbijatimisation of
vantage point ordering is effective.

observed by doubletree is much less varied than those azsbgvvanilla tracer-
oute in Figure 5.1. Many of the hops which cause some vantaggspto have
longer paths are seen in the majority of traces from thatagenpoint. Therefore
we see less variance in the number of hops visited by eachgapbint when using
doubletree because these common nodes are not re-visgeduge there is only a
small variance in hops visited, there is less to be gainedpltiynising the order in

which vantage points are assigned traces.

5.4.2 Varied Probing Rates

In order to test the optimisation method on a system that aatage points which
probe at varying rates, we limit the rate at which three of vamtage points can
send probes. We reduce the probes per-second rate on miapiit,and scl-cl from
50, to 25, effectively halving the speed at which they canglete traces. We then
re-run the two experiments using a 10,000 destination stlofsthe original list.
We use a smaller list because the optimisations are done endeptination basis,
and therefore is independent of the number of destinatracsd.

Both Figure 5.7 and Figure 5.8 show much the same distribatigprobes used

67

probes used

160000 T T T T T
140000
120000
100000
80000
60000
40000
20000
0

eug-us hlz-nz nap-it san-us scl—cl vie-at
vantage point

Figure 5.7: No optimisation. The number of probes used talgonhdoubletree
traces to 10,000 destinations. hlz-nz, nap-it and sclet ieeen artificially slowed
to 25 probes per second, half the speed of the other vantaigs po

probes used

160000— T T T T T
140000
120000
100000
80000
60000
40000
20000
0

eug-us hlz-nz nap-it san-us scl—cl vie-at
vantage point

Figure 5.8: With optimisation. The number of probes usedatadeict doubletree
traces to 10,000 destinations. hlz-nz, nap-it and sclat ieeen artificially slowed
to 25 probes per second, half the speed of the other vantagespdhere is no
significant difference in probe usage between optimisedhandoptimised traces.

68

7000

6000

5000

4000

3000

duration (seconds)

2000

1000

T T
eug-us hlz-nz nap-it san-us scl—cl vie-at
vantage point

Figure 5.9: No optimisation. The overall time taken for esahtage point to con-
duct doubletree traces to 10,000 destinations. hlz-nzjtreap scl-cl have been ar-
tificially slowed to 25 probes per second, half the speed@bther vantage points.
This is evident in their longer trace times.

as we saw with all the vantage points running at equal spe&tiss is because
although the vantage points are tracing at differing spetbéy must still trace all
destinations and so the number of probes used will not vargtty

When we look at the amount of time taken by each vantage poineber, we
can see the advantages of optimising the ordering of thedraggure 5.9 shows the
duration for each vantage point when optimisation is notlu3dne vantage points
which have been slowed down are clearly visible. The anonsalye-at which
also has a longer run time. This is most likely due to the sdigEng assigned in
alphabetical order such that it has to wait for traces frohofathe slow vantage
points. Figure 5.10 shows that optimisation has indeed beasficial. Both scl-cl
and vie-at have had their durations significantly reduceédha expense of eug-
us and san-us, thus bringing all the durations closer to edwr. We also see a

cumulative reduction in run-time of around 8%.

69

7000

6000

5000

4000

3000

duration (seconds)

2000

1000

T T
eug-us hlz-nz nap-it san-us scl—cl vie-at
vantage point

Figure 5.10: With optimisation. The overall time taken fack vantage point to
conduct doubletree traces to 10,000 destinations. hlziag;it and scl-cl have
been artificially slowed to 25 probes per second, half thedpé the other vantage
points. The advantage of optimising the ordering of the ag@tpoints can be seen.
Overall time is reduced by almost 10% and the time taken bly eantage point is
smoothed in relation to the other vantage points.

5.5 Summary

Because we see less variance between vantage points ofittieenaf hops visited,
there is limited scope for optimisations to be advantag@osguations where all
vantage points are able to conduct traces at the same rateevidg even though
we observe minimal improvements when using optimisationhenstandard Ark
vantage points, the only cost for such optimisations, gledithe assumptions made
by doubletree about the paths forming trees hold up, is ioutating and storing
a mean trace time for each vantage point. We therefore reemuimsing taking
vantage point speed into consideration even when using afse&intage points
which are able to trace at similar rates.

We demonstrate that there are gains to be had by using optiomsn a system
where there are vantage points with varied tracing speeds.b@th of these ex-
periments, better results may be observed by making useanfjarlset of vantage
points. This would allow the differences between assigtiages to vantage points

in alphabetical order and in speed order to be more cleagly.se

70

Also, it may be beneficial to consider a different method atking vantage
point speeds. For example, a weighted rolling mean sinuldrédt used by TCP [17]

could be used to favour newer data points.

71

Chapter 6

Stop Set Considerations

6.1 Introduction

In implementing doubletree in a large-scale topology discp system which is de-
signed to repeatedly trace a representative portion ofritieedPv4 address space,
we must be careful that the state that is collected withinldkeal and global stop
sets remains accurate. For example, when routing changes, dhe state held
in the stop set may not match the actual topology and as swde coubletree to
halt probing erroneously. To counter this, we consider tlostrappropriate time
to empty the stop sets, thus removing potentially stalelagpoinformation. We
briefly consider the global stop set, but determine thatricigahe global stop set
at the end of a cycle is sufficient. We then consider the log set, for which
there is no clearly defined interval to clear it. We conductigations to attempt to
empirically determine an optimum interval. Although we sesmall decrease in
topology discovery with longer clearing intervals, thisnamost cases around 2%

over a month of data.

6.2 Stop Set Clearing Intervals

The local stop set is a per-vantage point set of all the iatex$ which have been dis-
covered while in the backward probing phase, whereas thmgktop set contains
a set of interface-destination pairs which describe theriates seen in the paths to

a destination. As these sets are used to decide where in &opaditt probing, it is

72

important that the information contained is up-to-date aoclrate. If there is data
about topologies that have since changed, this can causdeti@e to halt probing

prematurely and therefore not discover topology. The métendhat the stop sets
are cleared, the less effective doubletree becomes atingpile number of probes
sent. On the other hand, clear the state too infrequentlychadges in topology

will be hidden by data in the stop sets.

6.2.1 Global Stop Set

Because the two sets hold different information, it makeseehat they are con-
sidered separately and cleared independently of each dfherglobal stop set is
the simplest to consider; the global stop set holds the aole knowledge about
the interfaces that comprise the paths that converge ondestimation. Therefore
it makes sense that when a dynamically generated destiregias being used for
probing, this knowledge is discarded at the end of a cycle.chtances of an identi-
cal destination being randomly generated again within atg€mwugh window such

that there has been no major routing changes is fairly saajl [

6.2.2 Local Stop Set

The local stop set on the other hand, has no clear cut poinhiahwt should be
cleared. Because the local stop set is specific to a vantageipshould be kept
for as long as the paths closest to the vantage point remabiestWhile the paths
leading away from a vantage point are stable, there is &ittdnce of the doubletree
algorithm stopping backward probing and therefore misswpglogy. This chapter
reports on a study into the amount of topology which is missest time by dou-
bletree based on how long the local stop set is kept for. Uskgjing data from the
IPv4 Routed /24 Topology Dataset [16] we have simulated #ekward probing

phase of the doubletree algorithm running on each vantaige ipdeam one.

73

6.3 Simulation Design

In this simulation, we take existing Internet topology dartal use this to simulate
the backward probing phase of the doubletree algorithm. Mga tompare the
results from the doubletree probing to the original datarioleoto see the extent
of any missed topology. We repeat this experiment 30 timash ¢éime with a
different local stop set life-time. We have chosen to sinauthis scenario as the
length of time necessary to conduct such an experiment iretdewvorld would be
prohibitively long (nearly three years) and changes inrlrgerouting would mean
comparisons would be flawed.

The topology data we use is sourced from the CAIDA IPv4 Roldd opology
Dataset [16]. We use the data collected by the 13 team onag@pbints during the
month of June, 2009. This amounts to over 104 million trandstal. As a starting
point for doubletree, we use firsthop values tuned to theviddal vantage point.
These are the same firsthop values that we use in our readhdotlbletree runs.
See Section 4.3.1 for a description of how these values weeerned. For each run
through the data, we record the links that doubletree desoso that they can be
compared to the trace data. We use stop set-lifetimes tbiadae exponentially to
give a fine-grained coverage of the smaller intervals and i rmmarse coverage of
the longer intervals. The formula we usews+ 60 wheren is the run number. We
begin with an interval of 60 seconds*(x 60 = 60). That is, the local stop set is
emptied every minute. The next interval is 240 secoids (0 = 240) and so on
up to 54,000 seconds (15 hours). Along with generating dadaitethe links that

doubletree discovers, we also extract the links that trésmoders.

6.4 Results

Figure 6.1 shows the number of interfaces which were misgéudwvarious vantage
points used in the simulation when the local stop set is @atreld for the duration of
the simulation. This simulates the base case where we nigagrtbe local stop set.
It appears that some vantage points are missing a far higheber of interfaces

than others. When we look at Figure 6.2 however, we see tleatotlal size of

74

3500 ———————F——F——r——"—" """ T

3000

2500

2000

1500

1000

cumulative interfaces missed

500 -

0 .
05/30 06/06 06/13 06/20 06/27 07/
date

lej—de n_r_t—lj<p S laf-us — — hlz-nz - - san-us——
hel-fi ------ cjj-kr — — mnl-ph - - amw-us——
bcn-es----- syd-au- - - yto—-ca— - dub-ie-

Figure 6.1: Cumulative count of interfaces that are missezitd doubletree’s local
stop set path assumptions. Simulated using Ark Team 1 tatedata from June
20009.

70000

60000

50000

40000

30000

Iss size (addresses)

20000

10000

0
05/30 06/06 06/13 06/20 06/27 07/(

date

lej—de syd-au- - - - laf-us— — dub-ie- - san-us——
hel-fi ------ Cjj-kr — — - mnl-ph- - nrt-jp —
bcn-es----- amw-us- - - yto-ca— - hiz-nz - -

Figure 6.2: Number of interfaces held by the local stop setamh vantage point
over time.

75

Interfaces hidden by LSS proportlonal to LSS size - Team1, June 2009

0.12

0.1

0.08

0.06

fraction of Iss missed

0.04 t&;‘;:‘:‘a,ﬁn, e A m T TR TR e

002 ‘o e e T .

0 e
05/30 06/06 06/13 06/20 06/27 07/
date

nrt—lj< lej—de - - syd-au— — yto-ca- - dub-ie —
cjj-kr ------ hiz-nz— — - mnl-ph- - San-us—
hel-fi ----- laf-us - - - bcn-es— - amw-us-

Figure 6.3: The proportion of interfaces missed in relatothe total number of
interfaces held in the local stop set for each vantage point.

each vantage point’s local stop set also varies. This is prosably due to varying
amounts of diversity in the paths prior to the first-hop valised by doubletree.
That is, some vantage points a higher out-degree for nodéswthe firstn hops,
wheren is the doubletree first-hop value. If we take this variande account by
plotting the number of interfaces missed by each vantag& poproportion to its
local stop set size, we get Figure 6.3. From this graph we earttsat all of the
vantage points in the simulation discover well over 90% efititerfaces with some
discovering over 98%. There does not appear to be an incnedke proportion
being missed over time. Thus implying that not clearing theal stop set may
not cause the topology loss feared. These results are sadpuy results from our
large scale testing outlined in Chapter 4. We discuss thitidu and suggest an
appropriate interval at which the local stop set should bareld in Section 6.5.
Figure 6.4 shows the proportion of links that doubletreeaisrs when com-
pared to traceroute for each of the clearing intervals irsthulation. We see that
with the exception of nrt-jp, there is not a large varianceveen the different clear-
ing intervals. This is again the case in when we consider tineber of probes used
in Figure 6.5. We can see that the probe count is virtuallyfaoted by the changes

in clearing intervals.

76

proportion of trace links discovered by doubletree

0 10000 20000 30000 40000 50000 60
Iss clearing interval (seconds)

nrt-jp —— amw-us-->-- hlz—-nz - - san-use- - mnl—ph o=

Figure 6.4: The proportion of links discovered by doubletlaring backward prob-
ing compared to traceroute for a representative selecfioarttage points. Only
hops up to the doubletree first hop value are considered.

0.8

O-G%ﬁéﬁana-n-a -6 o-6-6-0-0-8-08- 6 -6- @ -6- 8- & -5
B Y Y Y=Y e YGRS YR e Yo G Y Y Y R R g 2 e S

proportion of trace probes sent by doubletre

0.4
0.2
0 | | | | |
0 10000 20000 30000 40000 50000 60
Iss clearing interval (seconds)
nrt—jp —— amw-us-->-- hlz—nz -* - san—-us®- - mnl-ph =

Figure 6.5: The proportion of probes used by doubletree @vetpto traceroute for
a representative selection of vantage points.

77

6.5 Discussion

When we consider the base case where we never clear the topadet, we see
that with the exception of a couple of vantage points (lepdé hel-fi), the number
of interfaces missed does not rise quickly as seen in FigureFor most vantage
points, interfaces are missed regularly at the beginningHas rate drops off over
time. Once we take into consideration the total size of eacitage point’s stop set
as in Figure 6.3, we see this trend more clearly. The numbaneffaces missed
drops quickly in the first few hours/days and then stabilizes

When we look at the data from the entire simulation, we sektfigenumber of
links missed by doubletree generally increases over ting(€ 6.4). This growth
is very slow however, and after a month of tracing, the sittashows that in
most cases less than 1,000 interfaces are missed. Thisesrtplat the effect of
routing changes on doubletree’s topology discover is mahiamd leaving the stop
set uncleared for an entire month would not affect the dati@eged too much.

The effect of varying the interval at which the local stopisetleared has even
less of an effect on the number of probes used. When we lookbavé&see almost
no decrease in the number of probes used when the stop seaisalevery 54,000
seconds (15 hours) compared to when it is cleared hourly.ohheeffect seen is
when the stop set is cleared very quickly such that douldetoes not have enough
knowledge about the topology to probe efficiently.

From these results, we see that the interval at which the $top set is cleared
has little effect on both the topology discovered and the lbemof probes used.
Another aspect to be considered is the memory requireméthts mcal stop set. As
the size of the stop set increases, so will the memory usatie gdrobing process.
If it is running on machines with limited resources, this lkcbpresent a problem,
S0 some care must be taken such that the stop set is clearddrigg@nough to
prevent the probing process from exhausting the avail@deurces. As with the
global stop set, we decide that the most appropriate tim#hélocal stop set to be
cleared is at the end of a tracing cycle. This allows the datheyed to be used as
a discrete set. Again, care must be taken if the cycle is gmingke a sufficiently

long amount of time that routing changes or memory usageaftdct the results.

78

An unexpected result from this simulation is that we see reaidy better link
coverage by doubletree in simulation than we see in thewedH experiments de-
scribed in Chapter 4. The cause for this is presumably lo&hbeng routers. In
this simulation, we are treating the traceroute data as angrtruth regarding the
topology. However, the traceroute data is incomplete duestmability to com-
pletely discover load balanced paths. Due to the low numbanerfaces missed
by this simulation, we conclude that the majority of missaeifaces in real-world

doubletree runs are caused by load balancing and not bygpcitianges.

79

Chapter 7
BGP Guided Probing

7.1 Introduction

The various methods for increasing the efficiency of a mawois traceroute project
discussed thus far have all attempted to reduce the numipeobés sent by main-
taining state at an interface level about paths that have blegerved with previous
probing. Another potential way to reduce the number of psateguired to trace
a path is to use BGP routing information specific to each \gmnfaoint [11]. We
firstly use simulations to determine whether it is feasibleise BGP routing data
coupled with existing traceroute to accurately estimagde¢hgth of an IP path to a
destination by learning the mean width of the ASes in the.patinthen use another
simulation to determine how many times an AS should be tesekbefore the width
learned can be used to direct further probing. This is anogapdry examination
of the area and we leave running a full simulation to deteentimk coverage for

future work.

7.2 Overview

If a vantage point has access to the routing informationipéa its location within

the Internet, it is able to determine, with no probes, the A grom it to a des-
tination. With this information, the algorithm is able toteemine the ASs in the
path which have not been traced previously and can diretigsrto them. We can

use this ability to create a prober which specifically tasgetctions of paths which

80

vantage bgp source date file name

point
ams-nl RIPE RIS 01/06/2009 bview.20090601.0759.9z
nrt-jp Route-Views 01/06/2009 rib.20090601.0000.bz2

Table 7.1: Sources of BGP routing data used in our simulation

have not been traced previously. We would see similar bertefdloubletree at the
edges of paths, but we would also be able to skip path segmedtpath, which
doubletree can not do. This would mean that topology which Inaae been hidden
by doubletree’s stop sets is discovered.

In order to be able to probe a specific AS in a path, the algoritiust be able
to determine the widths of each of the preceding ASes in tkie e use the term
AS width to describe the number of interfaces that are seartriawversal of an AS.
If the width of each AS in the BGP path can be determined, theraghm can then
effectively skip sections of the path which have been sedm pvior probing.

To establish whether we can use BGP data to estimate patth&enge take
existing Ark trace data and use it to learn the average witidii of the ASes in the
paths. From these widths, we then attempt to predict theatilength of the path
to each destination by taking the sum of the widths of eachrAté advertised
BGP path.

7.3 Simulation Design

We test our algorithms in simulation by using a month of datenftwo vantage
points in CAIDA’s Ark infrastructure. We use the ams-nl antijp vantage points
as they both have publicly available BGP routing data, andéfin Table 7.1.

We run two simulations. The first is to determine whetherirgutlata can be
used to accurately predict path lengths and the second et¢ondine the appropri-
ate number of times that an AS must be traversed before usencpiculated width
to influence future tracing.

Our first simulation involves using the real-world tracead&d learn average

widths for the various ASes which are then used to estimatéattal lengths of the

81

IP Path: '\A—»B —»> C—» D> E—+»> F—» G—» Hr>
ASN: 23 499 3425
Width: 2 3 3

IP-AS Table
(IPs ASN)
A, 23
334
499
3160
3425

w

~
—

L | L)

C,
X,
F

<0
INmMm

Figure 7.1: An example of how the simulator determines ASkgdrom an IP path
and routing data. Each interface is looked up in the routatg ¢b determine which
AS it belongs to. Adjacent IP addresses which belong to theesaS are counted
and a width for that AS is determined. In this example, theeskks C,D and E alll
belong to the AS 499, thus making our first width estimate f8r499 three hops.

paths to each of the destinations in the data set. We firsecbtie trace data into a
series of IP paths. Using these paths, we attempt to leariSheidths. To do this,
we traverse each path and, by using the routing data, lodkaup$ number of each
interface in the path. When we cross an AS boundary, we ugbateidth value
held for the AS. An example of this is demonstrated in Figude Each IP in the
path is converted to its respective AS number and a widthdoh @S is calculated.
In this example, the IP addresses represented by A and B letthdto AS 23,
so the width estimate for AS 23 would be two hops. Because ttthwf an AS
may vary slightly from trace to trace we have our algoritharihethe mean width.
Once all of the paths have been parsed, we have a look-upabA& numbers and
their respective widths. Again using the destinations ftbenArk data, we look up
the corresponding BGP route using the longest matchingxprefom this we get
a sequence of AS hops. For each AS in the path, we look up ol&r eéélvidths.
We take the sum of each AS in the path, up to, but not includiedinal AS, for
which we add half of the recorded width. This is because weexpn average, to
only traverse half of the final AS before reaching the desitina\We then compare
these estimated lengths to the actual path lengths to deetmw accurately we
can predict the width of each AS.

We then attempt to empirically determine the number of tiare&S should be

82

25
ams-nl
nrt-jp ------
m
c
S
.g
>
(8]
c
[}
g i
oy
g
0 \ N e
0 5 10 15 2

difference between estimated and actual path lengths

Figure 7.2: The frequency of differences between estimaedactual path lengths
when simulated with a month of ark trace data from the amsntage point.

traversed before using the calculated width to influenceréutracing. We run a
simulation which varies the number of times that an AS mustréeesrsed before
using its width information to skip over it in future traces.

For each trace that was used in the simulation, we look up thedth from
the routing information. We then iterate through each ASwepgath and determine
whether we have traversed the AS enough times to 1) have arsaéeavidth value
and 2) reduce the chance of an alternate path through an Ag§ bessed. If we
do have an accurate width value, the TTL that traceroutege@bincreased by the
sum of the determined AS widths. If there is not enough dataake an accu-
rate width determination, the TTL is left unchanged andifigcontinues as with
normal traceroute until the next AS in the path is reachedthedest is performed

again.

7.4 Results

The results from initial testing using BGP data to predidhgangths is encourag-
ing. Figure 7.2 shows over 1 million path estimated pregis&lso, the majority of

estimates are less than five hops different to the actuall@agjth.

83

12

10_“”“”“”“”“”“”“”“”“”“”“,"):-l‘:‘

frequency (x100,000)

0 | | |
0 5 10 15 2(
path length

estimates within 2—— all paths ----

Figure 7.3: The number of paths where the difference betweeestimated path

length and the actual path length is less than two. Simulasety data from the
ams-nl Ark vantage point

10 .

frequency (x100,000)

0 _—_”_._____," | |

0 5 10 15 2
path length

estimates within 2—— all paths ----
Figure 7.4: The number of paths where the difference betweeestimated path

length and the actual path length is less than two. Simulasety data from the
nrt-jp Ark vantage point.

84

30

2517, * st
- e
s -
S 201 18
E 3
= [0}
§ 15 18
Y 3}
S 10t 4 £
=1

5 — —

0 | | | | | | | | |

0 20 40 60 80 100 120 140 160 180 z

AS traversal threshold

ams-nl — unique interfaces—— nrt—jp — unique interfaces----
ams-nl — probes used ---- nrt—jp — probes used - - -

Figure 7.5: Results of using BGP data to skip previouslyt@isiASes. The AS
traversal count is the number of times that an AS must be risadebefore it can
be skipped in tracing. Varying the confidence value has gigdi impact on the
number of interfaces discovered (the ams-nl interfaceiBnabscured by the nrt-
jp interface line). A confidence value of approximately 2@egxs to be best for
reducing the number of probes.

Figures 7.3 and 7.4 shows the results when we plot the nunilberces where
the estimated path length was within two hops of the actutll |[gagth. We can
see that the distribution closely follows that of the acpath lengths. We see that,
especially for the ams-nl data, short paths (up to five hagsaecurately estimated.
Also, for the majority of path lengths, the estimated lesgihe within two hops of
the actual path length.

If we look at the data from the simulation of the AS traversaeshold, illus-
trated in Figure 7.5, we can see the effect that varying thestiold has on both
the probes used and the interfaces discovered. Foremosteavéhat the effect
on the number of interfaces discovered is negligible suel ¢ this graph, the
interface count is a horizontal line. Both vantage pointgchaterface discovery
counts which are within 20,000 of each other. Given thatrfate discovery is
not impacted, the coverage of this algorithm is not in questiThe other factor
to consider is the number of probes used. The probe countfdr eantage point
is shown toward the top of the graph. For very low traversadgholds, there is a

larger number of probes used. This is likely due to the ihg&h length estimates

85

being markedly different to the actual AS widths resultingggular traceroute must
be used more frequently, thus not probing as efficientlyoAss the threshold in-
creases, the number of probes used also increases. This i® diaving to use
the regular traceroute algorithm more before the travéhsatshold is reached. We
determine that 20 traversals ensures maximum efficiencyptsHigher and lower

traversal thresholds result in higher probe usages.

7.5 Summary

This chapter demonstrates that by using BGP routing daapissible to predict
the IP path length to a given destination accurately. Thisseful in active mea-
surement projects as this data is essentially free. Thabtajning this knowledge
requires no active probing, thus if we can reduce the numb&aceroute probes
we send by making use of this data, we can reduce the impdauhansolicited

traffic has on the Internet. Also, because this data can gliydre obtained far
quicker than traceroute data can, we can improve the spebawvich we can trace
large numbers of destinations.

We also determine approximately 20 traversals to be a redt®mumber of
times to observe an AS before using its width in future trgcR0 traversals ensures
maximum probe efficiency as demonstrated in Figure 7.5.

The limitation of this method for improving traceroute eiffiecy is that each
vantage point must have access to the BGP data for its routiaging access to
local routing data means that the routes used to select vgbittions of the path to
trace will be more accurate than those gathered from otheces. Future work
should look at the effect that using routes gathered fromip@ources such as
RouteViews [1] in place of local routing information has dretaccuracy of data
gathered and on the number of probes used. There would ndsedinwestigation
into which route was the best to use. This would allow vanfagets which do not

have access to local BGP data to use this technique also.

86

Chapter 8

Conclusion

8.1 Contributions

This thesis provides several contributions to the field ofrmscopic Internet topol-
ogy discovery. We present a variation on the MDA, economidBIA traceroute

which is designed to discover comprehensive topologietawhinimising the num-
ber of probes used. We find that in real-world testing, we bte #@ maintain over
90% link coverage while reducing the number of probes usearbynd 60%. We
are able to show that the ALSS is causing a reduction in pratdgst maintaining

link coverage of over 95%.

We discover that the assumptions behind the global stopeséitaed and cause
our doubletree implementation to miss around 10% of inéex$a Upon classifying
these missed interfaces, we discover that the topologyiddasgely due to aliases
and per-source/destination load balancing. Per-sowgstfction load balancing is
a type of load balancing not explicitly considered by August al.in [3]. We de-
termine that per-source/destination load balancers draffezted by manipulating
the flow identifier as per-flow load balancers are. Alterniateslin a path to a single
destination are only seen from differing sources.

Our investigation into optimising the order in which tasks given to vantage
points shows that, in the Ark infrastructure, we are able &kenminimal gains at
no extra cost. However, in an environment where the vantagegare probing
at significantly different rates, we reduce the overall titaken by nearly 10%.

This will be useful in a massively distributed environmeritere the probers are

87

end-users with varying link speeds and data plans.

We also investigate the impact that the doubletree local s¢b has on discov-
ered links. We simulate clearing the local stop set at variatervals and observe
the number of links doubletree misses. We determine thag isaminimal differ-
ence in link discovery across the clearing intervals andleate that the decision as
to when to clear the local stop set should be made based orcaptable memory
overhead for storing the stop set on the probers.

Our work with BGP data shows that IP path lengths can be esttngsing AS
paths obtained from routing information. Based on this waevk simulate using
BGP data to guide traceroute probes to previously undisedvgections of paths.
We simulate using different AS traversal thresholds tomeitge that an AS should
be traversed approximately 20 before using the width eséineeguide future traces

in order to gain maximum efficiency.

8.2 Future Work

There are a number of areas of our work which we believe degarther research.
The results from the global stop set investigation we havelaoted, indicate that
the assumptions Donnet al. originally made do not hold up in today’s Internet.
We suggest that the global stop set be extended so that keaetage points must
discover a link before it can be used to halt probing to a dastn. This would
allow better coverage of aliases and per-source/desimbtad balancers, the most
prevalent causes of topology loss when considering theagkibp set.

Another improvement which could be made to the economicaAMDto re-
enable the economical probing mode mid-path when confidertbe path segment
is regained. This would allow a further reduction in the nemdif probes sent. This
would need to be analysed as to whether the potential topdtss is worth the
efficiency gain.

To extend the preliminary work we have done using BGP datssuggest that
a BGP aware MDA is developed such that probes can be direz#®8¢s in which

have not been comprehensively probed with previous tracifige system would

88

need to peer with a local BGP router and obtain routing infram with which
it could learn AS widths as we have described. From therentaralyse the AS
path to a destination and determine the sections which reelee probed using the
MDA. Using the MDA would require fewer traces to target each @& most of the
load balanced links could be discovered with one trace.

To further improve on our work into optimising the orderinigvantage points,
we suggest using a large set of vantage points which ardesitoa consumer ma-
chines. This will allow a more accurate experiment to be cotet, and the impacts
of optimisations better observed. We also suggest resedoch more sophisticated
method for tracking the speed of each vantage point. For pbeara weighted mov-

ing mean may help by favouring newer data points.

89

Bibliography

[1]

[2]

[3]

[4]

[5]

University of Oregon route views projectatt p: / / www. r out evi ews.

org/.

Dimitris Achlioptas, Aaron Clauset, David Kempe, andstopher Moore. On
the bias of traceroute sampling: or, power-law degreeidigions in regular
graphs. InProceedings of the thirty-seventh annual ACM Symposiurrhen T
ory of Computing (STOCpages 694—-703, 2005.

Brice Augustin, Xavier Cuvellier, Benjamin Orgogozoalsten Viger, Timur
Friedman, Matthieu Latapy, Clemence Magnien, and Renaiteifa. Avoid-
ing traceroute anomalies with Paris tracerouteé?doceedings of the 6th ACM

SIGCOMM conference on Internet measurement (INV@yes 153158, 2006.

Brice Augustin, Timur Friedman, and Renata Teixeira. ag@ing load-
balanced paths in the Internet. Rroceedings of the 7th ACM SIGCOMM

conference on Internet measurement (IMg3ges 149-160, 2007.

Brice Augustin, Timur Friedman, and Renata Teixeira.ltipath tracing with
Paris traceroute. Iorkshop on End-to-End Monitoring Techniques and Ser-
vices (E2ZEMON)pages 1-8, 2007.

[6] Adam Bender, Rob Sherwood, and Neil Spring. Fixing Adlgrowing pains

[7]

with velocity modeling. InProceedings of the 8th ACM SIGCOMM confer-
ence on Internet measurement (IM@ages 337-342, 2008.

CAIDA. Archipelago measurement infrastructuret t p: / / ww. cai da.

org/ proj ects/ark/.

90

[8] CAIDA. Summary statistics for all archipelago monitorkt t p: / / www.

cai da.org/projects/ark/statistics/all_nonitors. xnm .

[9] Benoit Donnet, Timur Friedman, and Mark Crovellamproved Algorithms
for Network Topology Discoverpages 149-162. Lecture Notes in Computer
Science. 2005.

[10] Benoit Donnet, Bradley Huffaker, Timur Friedman, araddkaffy. Implemen-
tation and deployment of a distributed network topologygdiery algorithm.
Technical report, CAIDA, 2006.

[11] Benoit Donnet, Philippe Raoult, Timur Friedman, andrk&rovella. Effi-
cient algorithms for large-scale topology discoveryPhoceedings of the 2005
ACM SIGMETRICS International conference on Measuremedtnaodeling
of computer systempages 327-338, 2005.

[12] Michalis Faloutsos, Petros Faloutsos, and Christdgutsos. On power-law
relationships of the Internet topology. Rroceedings of the conference on
Applications, technologies, architectures, and protsdot computer commu-
nication, pages 251-262, 1999.

[13] Abraham D. Flaxman and Juan Vera. Bias reduction inet@ate sampling
- towards a more accurate map of the Internet. Pmceedings of the 5th
International Workshop on Algorithms and models for the \@eaph (WAW)
pages 1-15, 2007.

[14] Bradley Huffaker, Daniel Plummer, David Moore, and Kaffy. Topology
discovery by active probing. I8Bymposium on applications and the Internet
(SAINT) pages 90-96, 2002.

[15] Young Hyun. Personal communication, 2009.

[16] Young Hyun, Bradley Huffaker, Dan Andersen, Emile Abemand
Matthew Luckie. The CAIDA IPv4 routed /24 topology dataset —
20090601 to 20090630.htt p: // ww. cai da. or g/ dat a/ acti ve/

i pv4_routed 24 topol ogy dataset.xnl .

91

[17] Information Sciences Institute. Transmission conpmtocol. RFC 793,

1981.

[18] Van Jacobson. traceroutef.tp://ftp.ee. |l bl.gov/traceroute.

tar.gz.

[19] Ken Keys. Internet-scale IP alias resolution techegjuinACM SIGCOMM
Computer Comunication Review (CCRPO09.

[20] Anukool Lakhina, John W. Byers, Mark Crovella, and Pefig. Sampling
biases in IP topology measurements.Pimceedings of IEEE Conference on
Computer Communications (INFOCOMjages 332-341, 2003.

[21] Jure Leskovec, Jon Kleinberg, and Christos Falouts@saphs over time:
Densification laws, shrinking diameters and possible exgilans. InACM

SIGKDD, pages 177-187, 2005.
[22] M. Luckie. scamperhtt p: // ww. wand. net . nz/ scanper.

[23] Matthew Luckie, Young Hyun, and Brad Huffaker. Traoat® probe method
and forward IP path inference. IMC, pages 311-324, 2008.

[24] Harsha Madhyastha, Tomas Isdal, Michael Piatek, 0dikon, Thomas An-
derson, Arvind Krishnamurthy, and Arun Venkataramaniaifé: an informa-
tion plane for distributed services. Rroceedings of the 7th USENIX Sympo-
sium on Operating Systems Design and Implementation (QpBdes 367—
380, 2006.

[25] A. McGregor, H-W. Braun, and J. Brown. The NLANR netwazkalysis
infrastructure JEEE Communications Magazing@8(5):122-128, 2000.

[26] Jean-Jacques Pansiot and Dominique Grad. On routesnaiittast trees
in the Internet. ACM SIGCOMM Computer Communication Review (CCR)
28(1), 1998.

[27] Vern Paxson. End-to-end routing behavior in the Inten$IGCOMM Com-
puter Communication Review (CCR)p(4):25-38, 1996.

92

[28] Pedram Pedarsani, Daniel R. Figueiredo, and Matthiams<glauser. Den-
sification arising from sampling fixed graphs. Rroceedings of the 2008
ACM SIGMETRICS international conference on Measuremedtraodeling
of computer systempages 205216, 2008.

[29] John Postel. Internet control message protocol. REX [M@ernet Engineering
Task Force, 1981.

[30] Y. Shavitt and U. Weinsberg. Quantifying the importaraf vantage points
distribution in Internet topology. IRroceedings of IEEE Conference on Com-
puter Communications (INFOCOM2009.

[31] Yuval Shavitt and Eran Shir. Dimes: let the Internet swea itself SIGCOMM
Computer Communication Review (CCB%(5):71-74, 2005.

[32] N. Spring, M. Dontcheva, M. Rodrig, and D. Wetherall. wito resolve IP

aliases. Technical report, University of Washington, 2004

[33] Neil Spring, Ratul Mahajan, David Wetherall, and Tha@w®anderson. Measur-
ing ISP topologies with rocketfuelEEE/ACM Transactions on Networking
12(1):2-16, 2004.

[34] Guogiang Zhang. Measuring the impacts of sampling brasternet as-level
topology inference. IProceedings of the 2009 WRI International Conference

on Communications and Mobile Computing (CM@ages 181-188, 2009.

93

