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 Abstract 
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Abstract 

The addition of reactive nitrogen (Nr) to agricultural systems has helped crop 

production match human population growth. However, the addition of Nr comes 

at a cost to environment in the form of ozone destruction, habitat degradation and 

biodiversity loss. Denitrification beds represent an effective method for the 

removal of Nr from a range of wastewaters and groundwater with high nitrate 

(NO3¯) concentrations. Beds are lined containers filled with a carbon (C) source to 

enhance denitrification: the conversion of NO3¯ to unreactive dinitrogen (N2).  

In general, the rate of NO3¯ removal in denitrification beds increases with 

increasing temperature. However, the temperature response of NO3¯ removal in 

beds is poorly constrained as other controlling factors (e.g. NO3¯ concentration 

and C source availability) can obscure the effect of temperature. The objective of 

this study was to measure the rates of NO3¯ removal in three denitrification beds 

as temperature changed seasonally. The beds were located in the North Island of 

New Zealand and were loaded with NO3¯ from wastewater from a hydroponic 

glasshouse (Karaka), domestic effluent from a campground (Motutere) and 

wastewater and domestic effluent from a research station (Newstead). Water 

samples were collected from wells installed along the length of each bed every 

month and were analysed for NO3¯ concentration by ion chromatography. Rates of 

NO3¯ removal were calculated using the change in NO3¯ concentration and the 

flow rate. The temperatures of the beds were also measured at each sampling. 

Nitrate concentrations declined along the length of each denitrification bed 

and rates of NO3¯ removal were calculated to average 3.6, 4.3 and 1.7 g N m-3 

day-1 for Karaka, Motutere and Newstead, respectively. The rates of removal 

increased with increasing temperature at Karaka and Motutere and the Q10 values 

(the factor by which the rate of removal increased for a 10 °C increase in 
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temperature) were calculated as 4.1 and 2.2 for Karaka and Motutere, respectively. 

The rates of NO3¯ removal and Q10 values were similar to those reported in 

previous studies of denitrification beds both in New Zealand and overseas. 

However, the rate of NO3¯ removal at Karaka was less than the rate of removal of 

7.6 g N m-3 day-1 previously measured at Karaka in a study 5 years ago. Similarly, 

the temperature response at Karaka was higher than the Q10 of 2 reported in this 

previous study at Karaka.  The decrease in removal and increase in Q10 may have 

been due to a decline in C source quality. 

There was no evidence of an increase in the rate of NO3¯ removal with 

temperature at Newstead, with a Q10 calculated as 1.0. The denitrification bed had 

been recently installed and was in a start-up phase. It was likely that the pre-

treatment system, in particular the nitrifying component responsible for 

converting ammonium (NH4
+) in the effluent to NO3¯, was not functioning 

effectively which resulted in low NO3¯ concentrations entering the bed at 

Newstead. Nitrate was depleted within the beds at Motutere and Newstead which 

indicated that the rates of removal were NO3¯ limited and that the temperature 

response may not have been adequately measured.  

This study confirmed that the rate of NO3¯ removal increased with 

increasing temperature in the denitrification beds at Karaka and Motutere. The 

temperature response of NO3¯ removal was similar to the response reported in 

previous studies of denitrification beds. However, additional research is required 

to further constrain the range of Q10 values from which future denitrification beds 

can be designed to optimise NO3¯ removal. Whether Q10 values increase as wood 

chips age and C quality decreases also requires further investigation. 
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Chapter 1 Introduction 

1.1 Background 

As a fundamental component of proteins, nitrogen (N) is an essential element to 

living organisms. The atmosphere represents a large reservoir of N in the 

biosphere, comprising of approximately 79% dinitrogen (N2) (Delwiche, 1970; 

Robertson and Vitousek, 2009). However, the strength of the bonds which bind 

N2 are such that large inputs of energy are required to break them, rendering N2 

unreactive and unavailable to the majority of living organisms (Davidson and 

Seitzinger, 2006; Robertson and Vitousek, 2009). Two natural processes which 

possess the energy required to break the bonds and convert N2 to biologically-

available ammonia (NH3) are lightning and biological N fixation (BNF) 

undertaken by N2-fixing microbes (Vitousek et al., 1997; Galloway et al., 2003). 

Subsequent processes convert NH3 to other forms of reactive N (Nr) which 

include ammonium (NH4
+), nitrite (NO2¯), nitrate (NO3¯), nitric oxide (NO), 

nitrous oxide (N2O) and organic N (Galloway et al., 2003). However, the supply 

of Nr remains limited in the majority of unmanaged terrestrial ecosystems, 

restraining productivity and influencing structure and function (Vitousek et al., 

1997; Galloway et al., 2003; Robertson and Vitousek, 2009).  

Prior to industrial times the addition of Nr through N fixation was roughly 

equivalent to the loss of Nr through denitrification (Galloway et al., 2003); 

meaning there was sufficient Nr available to maintain ecosystem productivity but 

insufficient Nr available to support the increase in crop productivity required by 

the increasing human population. As such, the addition of anthropogenic Nr to 

agricultural systems through the use of synthetic N fertilisers and the cultivation 

of N-fixing species has been fundamental in sustaining the increasing global 

population through increasing crop production (Robertson and Vitousek, 2009). 



Introduction  Chapter 1 

2 

However, the increase in anthropogenic Nr production has exceeded the increase 

in population with increases of 120% and 78%, respectively, since 1970 

(Galloway et al., 2008). 

The presence of Nr in excess of plant and animal requirements in 

agricultural systems is of concern due to the ability of a single nitrogen molecule 

to ‘cascade’ through the environment and impact detrimentally on the atmosphere 

and terrestrial and aquatic ecosystems (Galloway et al., 2003). The environmental 

impacts are thus widespread and include ozone depletion, acidification, 

eutrophication, hypoxia, habitat degradation and loss of biodiversity (Vitousek et 

al., 1997; Rabalais et al., 2002; Galloway et al., 2003). Management of N in 

agricultural systems aims to supply sufficient Nr to support crop and animal 

requirements without supplying Nr in excess to impact detrimentally on other 

ecosystems (Robertson and Vitousek, 2009). As such, a range of strategies exist 

which aim to improve the management of Nr at the farm scale including crop 

rotations to increase the N-use efficiency of crops, soil testing to predict crop N 

fertiliser and water requirements and watershed management to remove N before 

it is transported to other ecosystems (Dinnes et al., 2002). 

The nitrogen cascade ends with the conversion of Nr back to unreactive 

and biologically unavailable N2. Heterotrophic denitrification is perhaps the most 

important process of N removal in terrestrial systems and is the conversion of 

NO3¯ to N2
 undertaken by microorganisms (Davidson and Seitzinger, 2006). 

Several environmental conditions are known to regulate the rate denitrification, 

including oxygen (O2), NO3¯ and C concentration (Barton et al., 1999; Davidson 

and Seitzinger, 2006). The available C concentration regulates denitrification is 

systems where the NO3¯ concentration is in excess, such as in agricultural systems 

(Barton et al., 1999). Denitrifying microorganisms are facultative and use O2 as 
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an electron acceptor in the oxidation of organic compounds until O2 is depleted 

and replaced by NO3¯ as an electron acceptor in oxidation (Zumft, 1997). In 

addition, temperature is known to regulate the rate of denitrification. As is the 

case with the majority of biological processes, the rate of denitrification increases 

with increasing temperature although the exact nature of this relationship is poorly 

understood (Knowles, 1982; Davidson and Seitzinger, 2006). Denitrification 

occurs in almost all terrestrial and aquatic environments where the prerequisites of 

low O2, high NO3¯ and high C concentrations are met (Seitzinger et al., 2006). 

However, denitrification is limited in agricultural systems by the lack of available 

C and anaerobic microsites (Parkin, 1987). 

Various strategies exist to enhance denitrification, including buffers or 

riparian zones, wetlands, controlled drainage systems and wastewater treatment 

systems (Dinnes et al., 2002). Denitrifying bioreactors represent one such strategy 

and utilise a C source to enhance denitrification to remove NO3¯ from a range of 

wastewaters (Schipper et al., 2010b). Designs of bioreactor differ in terms of the 

hydrological connection between the wastewater and the C source and can be 

divided into three main types: (a) denitrification walls, in which the C source is 

incorporated perpendicularly to groundwater flow; (b) denitrification layers, in 

which the C source is incorporated horizontally under tile-drained fields; and (c) 

denitrification beds, in which the C source is incorporated into a containerised 

system (Robertson and Cherry, 1995; Schipper et al., 2010b). 

Further research is required in various areas to ensure the improved 

functioning of denitrifying bioreactors, specifically in regards to the temperature 

dependency of denitrification. An increase in the rate of NO3¯ removal with 

increasing temperature has been reported in previous studies on denitrifying 

bioreactors (Robertson et al., 2000; van Driel et al., 2006; Robertson et al., 2008; 
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Robertson and Merkley, 2009). For the purpose of comparisons, some previous 

studies have reported a Q10 value, which is the factor by which the rate of 

denitrification increases with a 10 °C increase in temperature (Davidson and 

Janssens, 2006; Davidson et al., 2006). For the majority of biological processes, a 

Q10 of 2 is commonly observed (Kirschbaum, 2000). However, Q10 values for the 

rate of NO3¯ in previous studies on denitrifying bioreactors have been reported to 

range from 0.18 – 5.7 (Christianson et al., 2012). 

Denitrifying bioreactors have been and continue to be implemented across the 

world in a range of different environments which experience different temperature 

regimes. Temperature influences the rate of NO3¯ removal and further research is 

required to determine the nature of the influence of temperature on the 

performance of denitrifying bioreactors (Christianson et al., 2012). The 

implication of a significant influence of temperature is on the design of 

denitrifying bioreactors, as bioreactors constructed in environments experiencing 

warmer regimes may be more efficient and designed smaller than those 

constructed in environments experiencing cooler regimes.  

 

1.2 Objectives 

The aim of this study was to further understanding of the temperature response of 

NO3 ̄ removal in denitrification beds. 

The specific objective was: 

 To determine the temperature response of denitrification in three field 

scale denitrification beds operating at Karaka, Motutere and Newstead as 

temperature changed seasonally. 

Previous studies have reported an increase in the rate of denitrification with an 

increase in temperature. This study investigates three field scale denitrification 
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beds operating at Karaka, Motutere and Newstead to determine the temperature 

dependency of the rate of NO3¯ removal and takes advantage of a previous study 

in the denitrification bed at Karaka by Warneke et al. (2011a). 

 Warneke et al. (2011a) investigated the controls influencing the rate of 

NO3¯ removal and GHG production in the denitrification bed at Karaka and 

reported a Q10 of 2 for the temperature response of denitrification. I hypothesise 

that the temperature dependency of the rate of NO3¯ removal in the denitrification 

beds at Karaka, Motutere and Newstead will provide a Q10 of ~ 2.  

 

1.3 Thesis layout 

Chapter 2 provides a literature review of the N cycle, N as an environmental 

pollutant and N removal through denitrification. The temperature response of 

denitrification in denitrifying bioreactors is reviewed. 

Chapter 3 provides the data and discussion on the temperature response of 

denitrification in three field scale denitrification beds as temperature changed 

seasonally. It is intended that Chapter 3 will be written up as a paper for 

submission to a peer reviewed journal. As such, there is some repetition of 

material previously covered in the abstract and also the introductory and literature 

review chapters. 

Chapter 4 provides the conclusions drawn from the data and discussion on 

the temperature response of denitrification in the denitrification beds and provides 

recommendations for further research. 
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Chapter 2 Literature Review 

2.1 Introduction 

As a fundamental component of proteins, nitrogen (N) is essential to living 

organisms (Canfield et al., 2010). N is abundant in the atmosphere, biosphere and 

hydrosphere on Earth yet the majority of N occurs as dinitrogen gas (N2) which is 

unreactive and biologically unavailable to the majority of living organisms 

(Galloway et al., 2004; Davidson and Seitzinger, 2006). As a result, biologically 

available N is limited in the majority of terrestrial ecosystems, restricting 

ecosystem productivity and influencing ecosystem dynamics (Vitousek et al., 

1997; Robertson and Vitousek, 2009; Canfield et al., 2010). The addition of 

anthropogenic reactive nitrogen (Nr) to agricultural systems through fertiliser 

addition and biological N fixation (BNF) is one of the key reasons that crop 

production has been able to meet the requirements of the growing human 

population (Robertson and Vitousek, 2009). However, the addition of Nr in excess 

of crop and animal requirements in agricultural systems has had detrimental 

impacts on atmospheric, terrestrial and aquatic ecosystems (Dinnes et al., 2002). 

Denitrification is process which ultimately returns Nr back to the atmosphere as 

unreactive and unavailable N2 and there is considerable interest in identifying 

ways to utilise this process to reduce excess Nr reaching non-target ecosystems 

(Knowles, 1982; Dinnes et al., 2002). Denitrifying bioreactors represent a strategy 

which is being implemented to enhance denitrification and remove Nr from a 

range of wastewaters (Schipper et al., 2010b). However, denitrification is 

controlled by a number of environmental conditions, some of which require 

further understanding to ensure maximum Nr reduction and associated uptake of 

the strategy. 
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2.2 Structure of literature review 

This literature review looks at the role of N within the environment and is divided 

in to three sections: (i) N cycling, (ii) N as an environmental pollutant and (iii) N 

removal through denitrification. The first section reviews the N cycle and the 

processes in which N is fixed from the atmosphere, is transformed in terrestrial 

and aquatic systems and is ultimately returned to the atmosphere. The influence of 

humans on the N cycle is reviewed. The second section reviews the beneficial and 

detrimental impacts on atmospheric, terrestrial and aquatic ecosystems associated 

with N in excess of ecosystem requirements. The third section reviews the 

denitrification process including the influence of environmental controls and, in 

particular, the influence of temperature. The methods for N removal through 

denitrification are briefly reviewed, with a focus on denitrifying bioreactors. 

Lastly, the influence of temperature on the performance of denitrifying bioreactors 

is reviewed. 

 

2.3 The nitrogen cycle 

Despite being abundant in the atmosphere, biosphere and hydrosphere, the 

majority of N on Earth is biologically unavailable to the majority of the living 

organisms (Galloway et al., 1995; Davidson and Seitzinger, 2006). Biologically 

available N limits primary production and in doing so influences structure and 

function within an ecosystem (Vitousek and Howarth, 1991; Robertson and 

Vitousek, 2009; Canfield et al., 2010). Understanding the cycling of N through 

ecosystems is imperative to ensure sustainable management of agricultural 

systems and to avoid adverse impact on the environment and has resulted in 

considerable research on the N cycle (Figure  2.1) (Robertson and Vitousek, 2009).  
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Figure  2.1: A simplified diagram of the nitrogen cycle (Image: M. Oulton, the 

University of Waikato). 

 

Comprising approximately 79% of the atmosphere, N2 represents the 

largest reservoir of N on Earth (Robertson and Vitousek, 2009). However, the 

stability provided by the strength of the triple bond binding the two N atoms 

renders N2 unreactive and biologically unavailable to the majority of living 

organisms (Galloway et al., 2004; Davidson and Seitzinger, 2006). Few processes 

in nature have the necessary energy required convert N2 into reactive and 

biologically available forms of N, such as ammonia (NH3) (Vitousek et al., 1997). 

Natural processes of nitrogen fixation include BNF undertaken by 

microorganisms and, to a lesser extent, lightning (Vitousek et al., 1997; Robertson 

and Vitousek, 2009). BNF undertaken by microorganisms is either symbiotic, 

involving microorganisms interacting with other organisms, or non-symbiotic, 

involving free-living microorganisms (Vitousek et al., 1997). Bacteria of the 

genus Rhizobium form a symbiotic relationship with (mainly) legume species, 

fixing N2 to NH3 inside root nodules in exchange for carbohydrates (Long, 1989; 
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Vitousek et al., 1997). In contrast, non-symbiotic cyanobacteria of the genus 

Anabaena fix N2 to NH3 inside specialised cells known as heterocysts during N 

limiting conditions in exchange for carbohydrates from photosynthetic cells (Fay, 

1992). The source of fixed N, whether natural or anthropogenic, is not 

discriminable by organisms and as such the response of ecosystems to additions of 

N is the same (Robertson and Vitousek, 2009). 

Assimilation is the process of uptake of NH3 by organisms and the 

conversion to organically-bound N, which is unavailable to other organisms 

(Myrold, 2005). However, following the death of the organism or the expulsion of 

waste, organically-bound N is available for microorganisms to convert into 

biologically available ammonium (NH4
+) and nitrate (NO3¯) through 

mineralisation and nitrification, respectively (Canfield et al., 2010). Whether 

assimilation or mineralisation dominates depends on the availability of N within 

the soil; with N limiting conditions being conducive to assimilation and non-

limiting conditions being conducive to mineralisation (Myrold, 2005). The 

conversion of organic N to NH4
+

 through mineralisation is susceptible to oxidation 

to NO3¯ by microorganisms in a two-step process known as nitrification (Canfield 

et al., 2010). The first step of nitrification involves the oxidation of NH4 to nitrite 

(NO2
-), generally by bacteria of the ‘Nitroso-’ genera, and the second step of 

nitrification involves the oxidation of NO2¯ to NO3¯, generally by bacteria of the 

‘Nitro-’ genera (Myrold, 2005). 

There are multiple fates of NO3¯ in soil (Dinnes et al., 2002); NO3¯ is 

biologically available but is preferentially assimilated under conditions of limited 

NH4
+ and excess energy, as the assimilation of NO3¯ involves the energetic 

conversion to NH4
+

 which is less efficient than the assimilation of NH4
+ directly 

(Myrold, 2005). The conversion of NO3¯ to NH4
+ for assimilation is known as 
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assimilatory NO3¯ reduction (Canfield et al., 2010). NO3¯ not assimilated is 

susceptible to leaching through soil, as the negatively-charged NO3¯
 is repelled by 

the negatively-charged cation exchange capacity of soil. Leaching along with soil 

erosion results in a loss of N to other ecosystems, where the addition of N can 

impact on the cycling of N and other nutrients (Vitousek et al., 1997; Smil, 1999). 

In the absence of oxygen, NO3¯ is available for reduction processes 

including dissimilatory NO3¯ reduction to NH4
+ (DNRA), anaerobic ammonium 

oxidation (anammox) and denitrification (Myrold, 2005). The process of 

reduction of NO3¯ to NH4
+ for oxidisation of an electron donor as opposed to for 

assimilation is known as DNRA (Canfield et al., 2010). Anammox is the process 

of reduction of NO3¯ and NH4
+ to N2 and, despite the importance of the process in 

the marine environment, is poorly understood in terrestrial ecosystems (Kuypers 

et al., 2003; Canfield et al., 2010). In contrast, denitrification is the process of 

reduction of NO3¯, NO2¯, nitric oxide (NO) and nitrous oxide (N2O) to N2 and is 

important in terrestrial ecosystems (Knowles, 1982; Myrold, 2005). The release of 

N2 back to the atmosphere through denitrification represents the termination of the 

N cycle (Davidson and Seitzinger, 2006). 

 

2.3.1  Human alteration of the nitrogen cycle 

Prior to industrial times, the rate of natural N fixation was largely balanced by the 

rate of denitrification (Galloway et al., 1995); N was efficiently cycled within 

ecosystems and prevented from accumulating within the environment (Galloway 

et al., 2003). The productivity of many terrestrial ecosystems is still limited by 

biologically available N (Robertson and Vitousek, 2009; Canfield et al., 2010). 

However, the demand for increased productivity to sustain human population 

growth has led to anthropogenic N fixation, the rate of which now doubles that of 
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natural N fixation (Smil, 1999). Although N fixation (from both natural and 

anthropogenic sources) remains largely balanced with denitrification (Canfield et 

al., 2010), N is no longer efficiently cycled within ecosystems and accumulates 

within the environment (Rabalais, 2002; Galloway et al., 2003). 

The anthropogenic production of Nr is driven by agriculture and, to a 

lesser extent, fossil fuel energy (Vitousek et al., 1997; Galloway et al., 2008). In 

agriculture, the production of Nr involves both the Haber-Bosch process, which 

forms fertiliser NH3 by reacting methane (CH4) with N2 under intense pressure 

and heat (Robertson and Vitousek, 2009), and crop cultivation, which forms 

organic by enhancing BNF in N-fixing crops such as legumes (Galloway et al., 

2003). In fossil fuel energy, the production of Nr involves the combustion of fossil 

fuels, which form reactive N oxides (NOx) from N2 and fossil N (Galloway et al., 

2003; Galloway et al., 2008). 

The anthropogenic production of Nr continues to increase annually on a global 

scale, with the majority of this Nr being applied to agricultural systems (Galloway 

et al., 2008). The addition of Nr to agriculture has enabled crop production to 

sustain human population growth with an estimated 40% population sustained as a 

direct result (Smil, 1999). However, accompanying the benefits of the addition of 

Nr to agriculture are substantial costs (Robertson and Vitousek, 2009); Nr is easily 

transferred by atmospheric and hydrologic processes and a substantial proportion 

of added Nr is transferred to other ecosystems before it can be efficiently used 

within the agricultural system (Galloway et al., 2003). Even Nr that is efficiently 

used within the agricultural system is ultimately transferred to other ecosystems, 

such as is generally the case with harvests (Robertson and Vitousek, 2009). 

Transferred Nr accumulates within the environment which is a concern as Nr has 

the potential to act as an environmental pollutant; a single molecule can ‘cascade’ 
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through atmospheric, terrestrial and aquatic ecosystems and impact detrimentally 

on the environment (Figure  2.2) (Galloway et al., 2003). 

 

Figure  2.2: A diagram of the nitrogen cascade showing the sequential transfer of 

nitrogen through ecosystems and the associated effects (Modified from Galloway 

et al. (2003)). 

 

2.4 Nitrogen as an environmental pollutant 

The importance of N to ecosystems is well recognised; on an individual scale, N 

is a fundamental component of amino acids (Canfield et al., 2010). On an 

ecosystem scale, N regulates productivity and dynamics (Robertson and Vitousek, 

2009). However, Nr is limited in the majority of terrestrial and aquatic ecosystems, 

with primary producers in these systems adapted to function in N-limited 

conditions (Galloway et al., 1995).  In the short term, the addition of Nr to these 

ecosystems results in an increase in productivity and organic matter (Vitousek and 

Howarth, 1991). The addition of Nr is accompanied by a change in species 

composition and loss of biodiversity within the ecosystem, as N-demanding 
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species outcompete N-fixing species (Robertson and Vitousek, 2009). Changes to 

the cycling of Nr within the ecosystem are compounded by changes to the cycling 

of carbon (C), which impact on the atmospheric carbon dioxide (CO2) 

concentrations and the ecosystem response to CO2 concentrations (Falkowski, 

1997; Vitousek et al., 1997). In the long term, the addition of Nr to these 

ecosystems results in a decreasing response in productivity as the ecosystem 

becomes N-saturated accompanied by an increasing loss of Nr to other ecosystems 

(Aber et al., 1998). As such, there are three outcomes for Nr in ecosystems: 

accumulation within the ecosystem, loss to the atmosphere following conversion 

to N2 and loss to other ecosystems (Galloway et al., 2003). The N cascade (Figure 

2.2) refers to the sequential transfer of Nr through ecosystems and the associated 

changes to the atmospheric, terrestrial and aquatic environments (Galloway, 1998; 

Galloway et al., 2003). 

 

2.4.1 The atmospheric environment 

The atmosphere receives Nr as emissions of NOx, NH3 and N2O from terrestrial 

and aquatic environments (Vitousek et al., 1997). NOx and NHx (NH3 and NH4
+) 

have short residence times within the atmosphere and tend to be returned to the 

Earth’s surface within hours to days, representing a short lag in the N cascade 

(Galloway et al., 2003). However, internal cycling within the atmosphere can 

occur before NOx and NHx are returned to the surface. NOx enters the atmosphere 

largely as an emission from the combustion of fossil fuels (Galloway et al., 2008). 

Increased concentrations of NOx along with volatile organic C compounds can 

contribute to increased concentrations of ozone and photochemical oxidants 

(Vitousek et al., 1997; Galloway et al., 2003). The majority of the NOx within the 

atmosphere is converted to HNO3, which is then either converted to an aerosol or 
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deposited on the Earth’s surface (Galloway et al., 2003). Similarly, the majority of 

NH3 within the atmosphere is either converted to an aerosol or deposited on the 

surface (Schlesinger and Hartley, 1992).  

Detrimental impacts are associated with NOx and NH3 in the atmosphere; 

increasing ozone concentrations contribute to the greenhouse potential (Galloway 

et al., 2003). In addition, ozone has been found to have detrimental impacts on 

human health, with links to respiratory illness (Bell et al., 2004). Aerosols 

contribute to radiative forcing – directly through the interaction of radiation with 

aerosols and indirectly through the interactions of radiation with clouds modified 

by aerosols – and in turn contribute to climate change (Galloway et al., 2003). 

Aerosols contribute to fine particulate matter which decreases visibility within the 

atmosphere. In addition, fine particulate matter has been found to have 

detrimental impacts on human health with links to lung cancer and 

cardiopulmonary mortality (Pope et al., 1995). In terms of deposition, ozone 

contributes to decreased productivity and NOx (except N2O), NH3 and organic Nr 

contribute to fertilisation, eutrophication and acidification in terrestrial 

ecosystems (Vitousek et al., 1997; Bouwman et al., 2002; Galloway et al., 2003) 

The atmosphere receives N2O as an emission from nitrification and 

denitrification from the addition of Nr to agriculture (Bouwman et al., 2002). 

Unlike NOx and NH3 which have a residence time of hours to days, N2O has a 

residence time of 100 years (Galloway et al., 2003). Within the troposphere, N2O 

is a greenhouse gas (GHG) with a global warming potential much higher than that 

of CO2 and within the stratosphere, N2O contributes to the destruction of ozone 

(Vitousek et al., 1997; Bouwman et al., 2002). 

To summarise, Nr (except N2O) has limited potential to accumulate in the 

atmosphere and no potential to be denitrified. However, internal cycling of Nr 
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within the atmosphere contributes to detrimental impacts on the atmospheric 

environment and atmospheric transport processes readily transfer Nr to terrestrial 

and aquatic ecosystems. 

 

2.4.2  The terrestrial environment 

The terrestrial environment encompasses both managed and unmanaged systems 

including agricultural systems, grasslands and forests. The anthropogenic 

production of Nr is driven by the demands of agriculture, with an estimated 75% 

of all anthropogenically produced Nr applied to agricultural systems (Galloway et 

al., 2003). Agricultural systems consist of crop and animal production systems; 

crop systems producing grains, fruit, vegetables and fibers from inorganic Nr and 

animal systems producing milk and meat from the products of crop systems (Smil, 

1999, 2002; Galloway et al., 2003). The residence time of Nr in agricultural 

systems is years to decades as Nr is bound within soil organic matter (SOM) and 

requires mineralisation to be available for uptake by crops (Robertson and 

Vitousek, 2009). As Nr is bound within SOM, the majority of original Nr is 

unavailable for uptake for seasonal crop production (Dinnes et al., 2002). Added 

(or new) Nr is available for uptake and as such determines crop production 

(Galloway et al., 2003). However, when the rate of uptake does not match the rate 

of addition of Nr the added Nr can be lost from the agricultural system (Robertson 

and Vitousek, 2009). 

Smil (2001) estimated that about 170 Tg of Nr is added to crop systems 

annually, consisting of 120 Tg of new Nr (from fertiliser and enhanced BNF) and 

50 Tg of reused Nr (from residues or manure). Of the 170 Tg of Nr applied to crop 

systems, about 33 Tg is consumed by animal systems to produce edible protein 

and 16 Tg is consumed by humans. However, animal systems vary in the 
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efficiency by which Nr from crop systems is converted into edible protein with N-

use efficiency (NUE) ranging from 40-50% in poultry systems, 35-40% in dairy 

systems and 15-30% in beef systems (Galloway et al., 2003; Canfield et al., 2010). 

As such, of the 33 Tg consumed by animal systems to produce edible protein, 

about 5 Tg is consumed by humans (Galloway et al., 2003). Of the remaining 121 

Tg of Nr that is not consumed by animal systems or humans, 4 Tg is recycled in 

the crop system through residues and manure and 117 Tg is transported to the 

atmospheric environment as emissions of NOx, NH3, N2O and N2 and to the 

aquatic environment as dissolved and particulate Nr (Vitousek et al., 1997; 

Galloway et al., 2003). The potential for denitrification exists in agricultural 

systems where the prerequisites of low or absent oxygen concentration, high 

available C concentrations high NO3¯ concentrations are met (Barton et al., 1999). 

However, denitrification is considered counterproductive in agricultural systems 

despite the limited occurrence of these prerequisites (Barton et al., 1999; 

Davidson and Seitzinger, 2006). 

Unlike agricultural systems, the main source of Nr to unmanaged grassland 

systems is though BNF and atmospheric deposition (Galloway et al., 2003). The 

residence time of Nr in grassland systems is decades to centuries as Nr is bound 

within organic matter stored underground of which the mineralisation or turnover 

is slow; representing a lag within the N cascade (Blair et al., 1998). Grassland 

systems typically experience little precipitation and as such little Nr is leached to 

the aquatic environment (Groffman et al., 1993; Galloway et al., 2003). 

Atmospheric emissions transport Nr to the atmospheric environment, with fires 

causing emissions of Nr which can equal deposition of Nr to grassland systems 

(Blair et al., 1998). However, emissions caused by fire largely consist of N2 which, 

unlike Nr, is unreactive in the atmospheric environment (Kuhlbusch and Crutzen, 
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1995; Blair et al., 1998). Similar to agricultural systems, there is the potential for 

denitrification in grassland systems although it is limited due to the typically well-

aerated soils (Galloway et al., 2003) 

Similarly to grassland systems, the main source of Nr to unmanaged forest 

systems is though BNF and atmospheric deposition (Vitousek and Howarth, 1991). 

The residence time of Nr in forest systems is centuries as Nr is bound within 

organic matter of which the turnover is slow; representing a substantial lag within 

the N cascade (Galloway et al., 2003). The response of forest systems to Nr 

depends on the degree of N saturation; forest systems where Nr is limited cycle Nr 

efficiently with little losses whereas systems where Nr is in excess cycle Nr 

inefficiently with large losses (Aber et al., 1998). Losses of Nr from forest 

systems occur through transport to the atmospheric environment as emissions of 

NO and N2O and to the aquatic environment as NO3¯ (Galloway et al., 2003). 

Similar to both agricultural and grassland systems, the typically well-aerated soils 

found in forest systems limit the potential for denitrification (Robertson and 

Tiedje, 1984; Groffman and Tiedje, 1989). 

 

2.4.3 The aquatic environment 

The aquatic environment encompasses groundwater, surface water and coastal and 

marine systems. The main source of Nr to groundwater systems occurs in the form 

of NO3¯ from leaching from agricultural systems, although in some areas waste 

disposal is the main source (Dinnes et al., 2002; Galloway et al., 2003). The 

residence time of Nr in groundwater systems is variable, with low NO3¯ 

concentrations and high NO3¯ losses associated with some systems and high NO3¯ 

concentrations and low NO3¯ losses associated with other systems (Galloway et 

al., 2003). Elevated concentrations of NO3¯ in groundwater used as drinking water 
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is of concern to human health. Once ingested, NO3¯ is converted to NO2¯ which 

reduces the capacity of the blood to carry O2 and ultimately causes death in a 

disorder known as methaemoglobinemia (Vitousek et al., 1997; Camargo and 

Alonso, 2006). Losses of Nr from groundwater occur through transportation of 

NO3¯ to surface water systems and as emissions of NO, N2O and N2 through 

denitrification (Blowes et al., 1994; Dinnes et al., 2002; Galloway et al., 2003). 

 Surface water systems include wetlands, streams, rivers and lakes and the 

main sources of Nr to these systems is from the surrounding watershed, BNF and 

atmospheric deposition (Rabalais, 2002). The residence time of Nr in surface 

water systems is variable although much shorter than the residence time in 

terrestrial systems; representing a small lag in the N cascade (Galloway et al., 

2003). In the undisturbed headwaters of surface water systems Nr is present in low 

concentrations and is tightly cycled. However, in disturbed downstream reaches 

Nr can be present in concentrations which exceed the retention capacity and can 

be lost through transportation to downstream (coastal and marine) systems 

(Rabalais, 2002). In surface water systems Nr present in excess of requirements 

can cause acidification, eutrophication and loss of biodiversity (Rabalais, 2002; 

Camargo and Alonso, 2006). The potential for denitrification in surface water 

systems varies and, apart from the prerequisites for denitrification, depends on the 

residence time (Galloway et al., 2003). Wetlands have relatively long residence 

times and large denitrification potential compared to channelized streams which 

have short residence times and little denitrification potential (Seitzinger et al., 

2006). 

 The main source of Nr to coastal and marine systems is from ground and 

surface water systems, although the main source for open marine systems is 

atmospheric deposition (Rabalais, 2002; Rabalais et al., 2002). The productivity 
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of coastal and marine systems is limited by N and as such, the addition of Nr to 

these systems is initially met with an increase in productivity (Galloway et al., 

2003). Increased productivity is beneficial as it can initially result in an increase in 

harvestable fish. However, Nr present in excess of requirements can cause 

eutrophication, a loss of biodiversity and anoxic (O2 limited) or hypoxic (O2 

absent) conditions (Rabalais et al., 2002; Galloway et al., 2003). Coastal areas 

experiencing anoxic or hypoxic conditions are referred to as ‘dead zones’ because 

of the inability to catch fish and invertebrates in such areas with low or no O2 

(Rabalais et al., 2002). Coastal and marine environment represents the largest 

potential for denitrification, with transport of Nr to the open marine system limited 

due to the efficiency of denitrification in the coastal system (Galloway et al., 2003; 

Seitzinger et al., 2006). 

In an ideal world, the demands of the growing human population would have 

no adverse impacts on the environment. However, this is not the case of the real 

world and there are two key areas in which interventions regarding Nr can be 

made; the first area involves agricultural systems, where the amount of Nr added 

either has to be reduced or used more efficiently to prevent Nr leaving the system. 

Strategies for the improved management of Nr include the timing, rates and 

methods of Nr fertiliser applications, crop rotations, cover crops and crop residue 

management and nitrification inhibitors (Dinnes et al., 2002; Robertson and 

Vitousek, 2009).The second area involves the interface between agricultural 

systems and their surroundings, where the amount of Nr leaving the system can be 

removed or redirected away from downstream ecosystems (Dinnes et al., 2002). 
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2.5 Nitrate removal through denitrification 

The most important mechanism of permanent N removal in terrestrial systems is 

heterotrophic denitrification, in which microorganisms convert Nr in the form of 

NO3¯ to N2 which is returned to the atmosphere, representing the termination of 

the N cycle (Myrold, 2005; Davidson and Seitzinger, 2006). Denitrification is a 

sequential reduction process, in which NO3¯ is converted to NO2¯, NO and N2O 

before being converted to N2 (Knowles, 1982; Myrold, 2005). As such, 

incomplete denitrification can result in the loss of NO and N2O which is of 

concern because of the role of these gases in ozone production and consumption 

and radiative forcing (Knowles, 1982; Davidson and Seitzinger, 2006). The rate of 

denitrification and level to which denitrification is completed are regulated by a 

number of controls. 

 

2.5.1  Controls on denitrification 

Denitrification is mediated by microorganisms, known as denitrifiers, which 

possess one or all of the enzymes, known as reductases, necessary to reduce NO3¯ 

to N2 (Knowles, 1982). Denitrifiers are widespread within the terrestrial and 

aquatic ecosystems and as such, denitrifiers do not generally limit denitrification 

(Barton et al., 1999; Seitzinger et al., 2006). Instead, the activity of denitrifiers is 

regulated by the concentrations of O2, NO3¯ and C which are further regulated by 

pH and temperature (Barton et al., 1999). While the ‘proximal’ controls (O2, NO3¯ 

and C) are important in the regulation of denitrification at a cellular scale or field 

scale, the ‘distal’ controls (pH and temperature) are important at a global scale 

(Barton et al., 1999).  
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2.5.1.1 Oxygen 

Denitrifiers are typically facultative aerobes and use O2 as an electron acceptor for 

respiration when O2 is present (Knowles, 1982; Davidson and Seitzinger, 2006). 

However, when O2 is absent or present in low concentrations denitrifiers can 

instead use NO3¯ as an electron acceptor for respiration (Seitzinger et al., 2006). 

The activation of the reductases involved in denitrification in anaerobic conditions 

appears to be an indirect result of competition for electrons as opposed to a direct 

result of inactivation of the reductases by O2 (Knowles, 1982). The reductases 

involved in the latter stages of denitrification appear to be more sensitive to the 

presence of O2, which is observed in systems where O2 is present in low 

concentrations as, although the rate of denitrification decreases, the fraction of 

N2O produced through incomplete denitrification increases (Weier et al., 1993). 

The extent to which O2 is present depends on factors such as the rate and 

pathways of O2 diffusion into and within the system and the rate of O2 

consumption within the system (Knowles, 1982; Weier et al., 1993). These factors 

enable the existence of anaerobic microsites in which denitrification can occur in 

otherwise aerobic systems (Barton et al., 1999).   

 

2.5.1.2 Nitrate 

In the absence of O2, denitrifiers use NO3¯ as an electron acceptor for respiration 

(Seitzinger et al., 2006). The availability of NO3¯ differs between systems, with 

the availability of NO3¯ in systems which do not receive large additions of Nr 

often limited (Barton et al., 1999). Similarly to O2, the availability of NO3¯ 

depends on factors such as the rate of NO3¯ production into and diffusion within 

the system and the rate of NO3¯ consumption within the system (Knowles, 1982; 

Barton et al., 1999). Diffusion is important in systems which do not receive large 
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additions of Nr to ensure the availability of NO3¯ at anaerobic microsites (Barton 

et al., 1999). In systems where NO3¯ is present in low concentrations, 

denitrification appears to follow first-order kinetics (Knowles, 1982; Barton et al., 

1999). However, in systems where NO3¯
  is present in higher concentrations, the 

rate of diffusion of NO3¯ within the system may increase and alter the apparent 

kinetics (Knowles, 1982). In addition, the reductases involved in the latter stages 

of denitrification may be inhibited and increase the fraction of N2O produced 

through incomplete denitrification (Weier et al., 1993).  

 

2.5.1.3 Carbon  

Denitrifiers use C as a source of energy and as an electron donor for respiration 

(Davidson and Seitzinger, 2006). The availability of a C source is important for 

denitrification in systems where NO3¯ is present in excess of system requirements, 

as denitrifiers use O2 as an electron acceptor in the oxidation of C for energy until 

the system becomes anaerobic and denitrifiers can instead use NO3¯ as an electron 

acceptor (Barton et al., 1999). As such, the role of the C source is dual as it 

provides both anaerobic conditions and an electron for denitrification (Knowles, 

1982; Barton et al., 1999). Similarly to the presence of O2, the availability of a C 

source may limit denitrification in systems where NO3¯ is present in excess 

(Barton et al., 1999). In addition, the type of C source may have an influence on 

the reductases involved in the latter stages of denitrification, as different types of 

C source which support the same rate of denitrification may produce different 

fractions of N2O (Knowles, 1982).      
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2.5.1.4 pH 

Denitrifiers function at a range of pH levels, with the optimum range between pH 

levels 7.0 and 8.0 (Knowles, 1982). Denitrification has been observed to occur in 

pH levels as high as 11 in waste systems and in pH levels as low as 4 (Prakasam 

and Loehr, 1972; Knowles, 1982). However, at low pH levels there is a decrease 

in the rate of denitrification and an increase in the fraction of N2O produced which 

suggests inhibition of the reductases involved in the latter stages of denitrification 

(Knowles, 1982).  

 

2.5.1.5 Temperature 

As is true for the majority of biological processes, the rate of denitrification 

increases with increasing temperature until a temperature is achieved which 

causes the reductases involved to denature (Davidson and Janssens, 2006). 

However, the nature of the temperature dependency of denitrification is not well 

understood (Davidson and Seitzinger, 2006). 

The temperature responses of biological processes are commonly 

modelled using empirical functions, such as exponential and Arrhenius functions, 

which have been modified little since there creation in the late 19th century 

(Davidson et al., 2006). Both functions describe an increase in the rate of the 

biological process with an increase in temperature (Fang and Moncrieff, 2001). 

However, as a result of their empirical nature, both the exponential and Arrhenius 

functions erroneously assume that the response of enzymes involved in the 

biological process is constant at all temperatures (Davidson et al., 2006). The 

assumption of a constant response to temperature results in the tendency of 

exponential and Arrhenius functions to underestimate the rate at low temperatures 

and overestimate the rate at high temperatures (Lloyd and Taylor, 1994). 
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Other functions have been developed to model biological processes, using 

not only the exponential and Arrhenius functions as a foundation but linear, 

quadratic and logarithmic functions (Lloyd and Taylor, 1994; Fang and Moncrieff, 

2001). However, functions are commonly developed using an empirical approach 

and, despite successfully modelling the temperature response of a biological 

process under particular conditions, offer different explanations for the 

temperature dependency without a physiological foundation to the function (Fang 

and Moncrieff, 2001; Davidson et al., 2006). 

The temperature responses of biological processes are commonly 

compared using a Q10, which is the factor by which the rate of the process 

increases for a 10°C increase in temperature (Davidson and Janssens, 2006; 

Davidson et al., 2006). A Q10 of 2, or a doubling of the rate of the process, is 

observed for many biological processes over a moderate temperature range 

(Kirschbaum, 2000). Q10 values are useful for the purpose of comparisons 

between biological processes (Lloyd and Taylor, 1994). However, like the 

empirical functions from which the Q10 is derived, the usefulness of the Q10 from 

a physiological perspective is debated within scientific literature (Davidson and 

Janssens, 2006; Davidson et al., 2006) 

In the commonly used exponential and Arrhenius functions, the Q10 

remains constant with temperature, despite it being widely understood that a 

constant response to temperature is incorrect (Fang and Moncrieff, 2001). In other 

functions, the Q10 does not remain constant and decreases with increasing 

temperature (Lloyd and Taylor, 1994). It is argued that the Q10 should decrease 

with increasing temperature on the grounds that with increasing temperature, there 

is a smaller relative increase in the amount of molecules involved in the biological 

process with enough energy to allow the process to occur (Davidson and Janssens, 
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2006). In addition, the Q10 is known to increase with increasing substrate 

complexity and be altered by substrate availability and the affinity of the enzymes 

involved in the biological process for the substrate (Davidson and Janssens, 2006; 

Davidson et al., 2006).  

In previous studies of denitrification in soils, the rate of NO3¯ removal has 

been reported to increase with increasing temperature. Q10 values ranging from 

1.5 – 3 have been reported in previous studies for the rate of denitrification in 

soils over a moderate temperature range of 10 – 35 °C (Knowles, 1982). Maag et 

al. (1997) investigated the temperature response of NO3¯ removal in riparian soils 

adjacent to agricultural systems in Copenhagen, Denmark, and reported that 

seasonal changes in temperature between 5 and 15 °C would increase the rate of 

denitrification by a factor of 2 – 4.   

 

2.5.2  Methods of nitrate removal through denitrification  

The majority of anthropogenically produced Nr is added to agricultural systems. 

Of this added Nr, a substantial proportion can be lost to downwind and 

downstream systems in which Nr in forms such as NO3¯ can act as an 

environmental pollutant. In addition to interventions made in agricultural systems, 

interventions can be made in the interface between agricultural systems and their 

surroundings (Robertson and Vitousek, 2009). The potential for the removal of 

NO3¯ though denitrification has resulted in considerable interest in identifying 

ways to utilise denitrification to reduce excess NO3¯ reaching downstream 

ecosystems (Dinnes et al., 2002). Various methods for NO3¯ removal through 

denitrification have been identified and include wetlands, riparian zones, 

controlled drainage, wastewater treatment systems and denitrifying bioreactors 

(Dinnes et al., 2002; Robertson and Vitousek, 2009) and are discussed below. 
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2.5.2.1 Wetlands 

Natural and constructed wetlands have been demonstrated to effectively remove 

NO3¯ from intercepted surface and shallow ground waters by providing the 

conditions conducive to denitrification (Dinnes et al., 2002; Vymazal, 2007). 

Ingersoll and Baker (1998) investigated the ability of a laboratory wetland 

microcosm to remove NO3¯ at different temperatures, flow rates and C 

concentrations. The NO3¯ removal efficiency was found to range from 8 – < 95 % 

and was observed to decrease with a decrease in C concentration and an increase 

in flow rate. The findings of Ingersoll and Baker (1998) highlighted the 

importance of C in promoting denitrification and identified C as a potential 

limitation to denitrification in wetlands in the field environment. In addition, the 

flow rate was identified as a potential limitation in the field environment as the 

flow rate determines the residence time within the wetland and the interaction 

between the NO3¯ in the wastewater and C (Seitzinger et al., 2006). 

 

2.5.2.2 Riparian zones   

Riparian zones have been shown to be an effective method of NO3¯ removal from 

intercepted surface and shallow ground waters, through both uptake by vegetation 

and by providing conditions which promote denitrification (Hill, 1996). Dinnes et 

al. (2002) investigated a number of studies on the NO3¯ removal in riparian zones 

and found that efficiencies ranged from 48 – 100 %. However, the NO3¯ removal 

efficiencies reported in some of the studies were attributable to processes of 

removal other than denitrification, including dilution and assimilation (Dinnes et 

al., 2002). The rate of NO3¯ removal has been shown to increase in riparian zones 

with high water tables and high C concentrations, identifying water table height 

and C as potential limitations to denitrification (Dinnes et al., 2002). In addition, 
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the slope and flow rate determine the residence time within the riparian zones and 

likewise have the potential to limit NO3¯ removal (Hill, 1996; Seitzinger et al., 

2006).  

 

2.5.2.3 Controlled drainage 

Controlled drainage has shown some promise as method of NO3¯ removal from 

ground waters (Woli et al., 2010) and involves one of three approaches; the first 

consists of decreasing the discharge of the groundwater from the system, the 

second consists of minimising NO3¯ leaching through decreasing the infiltration 

depth of the soil and the third consists of maximising denitrification by decreasing 

the aerobic portion of the soil (Dinnes et al., 2002). Decreasing the aerobic 

portion of the soil involves the manipulation of the water table, with shallower 

water table depths observed to result in greater NO3¯ removal through 

denitrification. However, as a result of the cost and maintenance associated with 

drainage control structures, the method is restricted to environments with a slope 

of, or less than, 1 % (Skaggs and Chescheir III, 1999; Dinnes et al., 2002).   

 

2.5.2.4 Wastewater treatment systems 

Onsite wastewater treatment systems have been widely used as a method of NO3¯, 

nutrient and contaminant removal from residential wastewater (Oakley et al., 

2010). However, wastewater treatment systems have also been widely implicated 

as a source of NO3¯ to ground and surface water (Robertson and Cherry, 1995; 

Galloway et al., 2003; Oakley et al., 2010). N removal occurs through sequential 

nitrification and denitrification and there are three general approaches for 

wastewater treatment; pre-anoxic systems that recirculate wastewater through an 

anaerobic or anoxic reactor followed by an aerobic reactor, post-anoxic systems 



Chapter 2 Literature Review 

29 

that circulate wastewater through an aerobic reactor followed by an anoxic reactor 

and simultaneous nitrification-denitrification systems that circulate wastewater 

through a reactor with both anoxic and aerobic zones (Oakley et al., 2010). 

Approaches which are more passive, such as post-anoxic systems which utilise a 

denitrifying bioreactor, have been shown to remove NO3¯ efficiently and 

economically than intensive systems. However, more passive approaches require 

more space and as such, more intensive systems continue to be retrofitted into 

environments with limited space (Oakley et al., 2010).  

 

2.5.2.5 Denitrifying bioreactors 

Denitrifying bioreactors represent a simple, inexpensive method for the enhanced 

removal of NO3¯ from groundwater and a range of wastewaters (Robertson et al., 

2000). Bioreactors incorporate a C source into nitrified effluent which supports 

denitrification in systems which would have otherwise been limited by a C source 

(Blowes et al., 1994). A variety of liquid and solid C sources have been trialled 

with success for use in bioreactors, although most sources have only been trialled 

at the laboratory scale (Volokita et al., 1996; Greenan et al., 2006). Wood-particle 

media (sawdust and wood chip) is the C source most widely used in field scale 

bioreactors, largely because it is reasonably inexpensive, permeable and durable 

(Blowes et al., 1994; Robertson et al., 2008). Bioreactor designs differ based on 

the hydrologic connection between the groundwater or wastewater containing 

NO3¯ and the bioreactor containing the C source and the ratio between the two 

(source area: treatment area) (Schipper et al., 2010b). Based on the different 

designs, bioreactors can be categorised as denitrification walls, denitrification 

layers or denitrification beds (Robertson and Cherry, 1995).  
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 In denitrification walls, the C source is incorporated vertically into 

groundwater in a perpendicular direction to that of groundwater flow (Robertson 

and Cherry, 1995; Robertson et al., 2000). Walls can intercept either groundwater 

flow that is natural or groundwater flow that has been modified because of tile 

drainage systems (Schipper et al., 2010b). However, walls are largely restricted to 

sites where there are high NO3¯ concentrations such as those associated with 

intensive agricultural and septic systems (Schipper and Vojvodic-Vukovic, 1998). 

Wood chip and sawdust are the C sources most widely used in walls and are 

incorporated either wholly (Jaynes et al., 2008) or as a mixture with soil (Schipper 

and Vojvodic-Vukovic, 1998). Site characteristics including hydraulic 

conductivity and hydraulic retention time and C source characteristics including 

permeability and durability determine whether the C source is incorporated 

wholly or as a mixture (Robertson and Cherry, 1995; Robertson et al., 2005b). 

In denitrification layers, the C source is incorporated horizontally under 

the soil surface (Robertson and Cherry, 1995). Layers intercept flows with high 

NO3¯ concentrations from tile drainage systems associated with agricultural and 

septic systems (Robertson et al., 2000; Schipper et al., 2010b). Sawdust is the C 

source most widely used in layers and is incorporated either wholly or as a 

mixture with soil depending on the tension saturation requirements of the site 

(Robertson et al., 2000). Tension ensures saturation of the layers, despite the 

position of the layers above the water table, which promotes anaerobic conditions 

which enhance denitrification (Robertson et al., 2000; van Driel et al., 2006). 

In denitrification beds, the C source is incorporated into a container or 

trench which receives flows with high NO3¯ concentrations from a range of 

wastewaters (Figure  2.3) (Robertson et al., 2005a; Schipper et al., 2010b) and tile 

drainage systems (Blowes et al., 1994; Robertson et al., 2000). Beds can be fitted 
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into existing stream beds and drainage trenches, referred to as stream bed 

bioreactors (Robertson and Merkley, 2009), or fitted into existing stream banks, 

referred to as upflow bioreactors (van Driel et al., 2006). Wood chip and sawdust 

are the C sources most widely used in beds and are incorporated either wholly or 

as a mixture, with upflow bioreactors using both C sources in layers because of 

tension saturation requirements of the site (van Driel et al., 2006). The source area: 

treatment area is typically larger in beds in comparison to other designs because 

flows with high NO3¯ concentrations are essentially captured and redirected into 

the bed (Schipper et al., 2010b).  

Figure  2.3: A diagram of a denitrification bed (Modified from Schipper et al. 

(2010b)). 

 

As denitrifying bioreactors have been implemented as a method of 

reducing excess NO3¯ reaching downstream ecosystems, the majority of research 

on bioreactors has focussed on the efficiency on NO3¯ removal. In denitrification 

beds, NO3¯ removal rates have been reported to range from about 2 – 22 g N m-3 

day-1 (Blowes et al., 1994; Robertson et al., 2000; van Driel et al., 2006; Schipper 

et al., 2010a), with variations removal rates suggested to be the result of influent 

NO3¯ concentrations, available C source concentrations and bed temperature. In 
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denitrification walls NO3¯ rates have been reported to range from 0.014 – 3.6 g N 

m-3 day-1, with influent NO3¯ concentrations and wall material (as wood media is 

commonly in a mixture with soil which is unreactive) suggested to be the cause of 

the variations (Schipper et al., 2010b). 

The influence of O2, NO3¯ and C concentrations on the rate of NO3¯ removal 

in denitrifying bioreactors is reasonably well understood. However, the 

temperature dependence of denitrification is not as well understood. Bioreactors 

have been, and continue to be implemented across the globe in a range of 

environments with different temperature regimes as awareness of NO3¯ as an 

environmental pollutant and of bioreactors as a method to remove NO3¯ spread. 

As such, understanding the temperature response of denitrification is important to 

ensure that bioreactors are designed to match predicted NO3¯ concentrations. 

 In perhaps the earliest study, Blowes et al. (1994) investigated the ability 

of two pilot scale bioreactors containing sand and organic C (bark, wood chip and 

leaf compost) to remove NO3¯ from agricultural tile drainage in Ontario, Canada. 

Over one year, influent NO3¯ concentrations of 3 – 6 mg N L-1 were reduced to < 

0.002 mg N L-1 within the bioreactors. The temperature of the effluent ranged 

from 5 – 19 °C and the observation of NO3¯ removal in temperatures below 8 °C 

lead to the suggestion that bioreactors could be used to remove NO3¯ throughout 

the growing season Blowes et al. (1994). 

 Robertson and Cherry (1995) investigated the ability of three pilot scale 

bioreactors containing organic C (sawdust) to remove NO3¯ from septic system 

drainage in Ontario, Canada. At the Killarney and Borden sites, the bioreactors 

were installed as denitrification layers and at the Long Point site, the bioreactor 

was installed as a denitrification wall. Influent NO3¯ concentrations of 125 and 

0.26 mg N L-1 were reduced to 1.2 and < 0.05 mg N L-1 within the Killarney and 
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Borden layers, respectively. Similarly, influent NO3¯ concentrations of 57 – 62 mg 

N L-1 were reduced to 2 – 25 mg N L-1 within the Long Point wall. In addition, 

Robertson and Cherry (1995) investigated the longevity of NO3¯ removal in 

bioreactors and, using mass balance calculations, suggested that bioreactors could 

effectively remove NO3¯ from effluent with no maintenance for a number of years. 

 In 2000, Robertson et al. investigated the long-term ability of pilot scale 

bioreactors to remove NO3¯ from septic system and agricultural tile drainage by 

revisiting the Killarney, Borden and Long Point sites (Robertson and Cherry, 

1995), in addition to the previously unreported North Campus site. At the North 

Campus site, the bioreactor was installed as a denitrification bed containing 

organic C (wood mulch) to remove NO3¯ from agricultural tile drainage. Over the 

course of four years, the influent NO3¯ concentration of 4.8 mg N L-1 was reduced 

to 2.0 mg N L-1 in the North Campus bed. The NO3¯ removal in the bed was 

observed to be temperature dependent; ranging from about 5 mg N L-1 per day at 

temperatures of about 2 – 5 °C to about 15 – 30 mg N L-1 at temperatures of about 

10 – 20 °C. A Q10 of 1.7 (Table  2.1) was calculated in this study using the linear 

regression fitted to the rate of NO3¯ removal and temperature (NO3¯ removal = 4.9 

+ 0.93T; R2 = 0.55) between 10 – 20 °C. The linear regression fitted to the 

temperature dependency of NO3¯ removal did not include samplings where the 

NO3¯ concentration was thought to be limiting. In support of the suggestion of 

Robertson and Cherry (1995) regarding the longevity of the performance of 

bioreactors, the  NO3¯ removal rate in the North Campus bed was observed to 

remain similar throughout the four years of the investigation. 
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Table  2.1: Site characteristics and temperature dependency of the rate of NO3¯ removal in previous studies of denitrifying bioreactors. 

Reference  Location  Design  Size (m3) 
Influent NO3¯ 
concentration  

(g N m‐3) 

Effluent NO3¯
concentration 

(g N m‐3) 

Temperature 
range (°C)  Q10 

Robertson et al. (2000) Ontario, Canada Bed 2 4.8 2 2 – 20 1.7b 

van Driel et al. (2006) Ontario, Canada Layer (lateral flow) 17 11.8 8.0 2.3 – 13  2.7b 

  Ontario, Canada Layer (upflow) 16 3.2 1.6 1.2 – 30  3.7b 

Robertson et al. (2008) Ontario, Canada Walla 10 9.7  5.9  6 – 22  5b 

Robertson and Merkley (2009)  Ontario, Canada Bed (stream) 40  4.8 1.0 3 – 14  3.2b 

Elgood et al. (2010) Ontario, Canada Bed (stream) 40 2.8 1.3 1 – 26  2 

Cameron and Schipper (2010)  Wairakei, New Zealand Mesocosms 0.2 ~150 ~140 14 – 23.5 1.6 

Warneke et al. (2011a) Karaka, New Zealand Bed 1320 ~250 ~50 15.5 – 23.7  2 

Christianson et al. (2012) Iowa, USA 4 x Bed  18 ‐ 128 3.9 – 11.6 2.24 – 10.1 < 3 ‐ > 15 0.8 – 5.7 

Schmidt and Clark (2013) Florida, USA Mesocosms 0.03 7.5  4.6  7.9 – 24.1 4.7 

a Columns extracted from wall 
b Calculated in this study 
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van Driel et al. (2006) investigated the ability of two field scale 

bioreactors to remove NO3¯ from agricultural tile drainage in Ontario, Canada. 

Two different denitrification layer configurations were investigated which 

consisted of alternate layers of sawdust and wood chip. In the lateral flow 

bioreactor, a sawdust layer overlay and underlay a wood chip layer. In the upflow 

bioreactor, a sawdust layer overlay a wood chip layer to promote vertical 

movement of effluent through the layer. The average influent NO3¯ concentrations 

of 11.8 and 3.2 mg N L-1 were reduced to 8.0 and 1.6 mg N L-1 in the lateral flow 

and upflow bioreactors, respectively. In addition, the rate of NO3¯ removal was 

observed to be temperature dependent for both bioreactors and ranged from about 

2 – 7 mg N L-1 per day at temperatures of 2 – 5 °C to about 4 – 20 mg N L-1 at 

temperatures of 10 – 13 °C. Q10 values of 2.7 and 3.7 (Table  2.1) for the lateral 

and upflow bioreactors, respectively, were calculated in this study using the 

exponential regressions fitted to the rate of NO3¯ removal and temperature (lateral 

flow NO3¯ removal = 2.9e0.10T; R2 = 0.25; upflow NO3¯ removal = 2.3e0.13T; R2 = 

0.46) between 3 – 13 °C. The exponential regressions fitted to the temperature 

dependency of NO3¯ removal did not include samplings where the NO3¯ 

concentration was thought to be limiting (van Driel et al., 2006). 

In 2008, Robertson et al. investigated the longevity of the performance of 

a bioreactor to remove NO3¯ from septic system drainage by revisiting the Long 

Point site (Robertson and Cherry, 1995; Robertson et al., 2000). Dynamic flow 

tests were undertaken using cores of media extracted from the 15-year-old wall 

and compared to results from similar tests undertaken using fresh samples of 

media prior to the installation of the wall. The rates of NO3¯ removal obtained 

using the 15-year-old media were within 50 % of the rate obtained using the fresh 

samples and were observed to be temperature dependent; ranging from 0.2 – 1.1 
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N mg L-1 per day at 6 – 10 °C to 3.5 – 6.0 mg N L-1 per day at 20 – 22 °C. A Q10 

of 5.0 (Table  2.1) was calculated in this study using the exponential regression 

fitted to the rate of NO3¯ removal and temperature (NO3¯ removal = 0.17e0.16T; R2 

= 0.96) between 12 – 22 °C. The rate of NO3¯ removal obtained using the 15-year-

old media was not limited by NO3¯ concentration. 

 Robertson and Merkley (2009) investigated the ability of a stream bed 

bioreactor containing C (wood chip) to remove NO3¯ from agricultural tile 

drainage in Ontario, Canada. The average influent NO3¯ concentration of 4.8 mg 

N L-1 was reduced to 1.0 mg N L-1 in the stream bed bioreactor. The rate of NO3¯ 

removal was observed to be temperature dependent, with generally complete 

NO3¯ removal (< 0.1 mg N L-1) occurring in the warmer seasons (> 10 °C) and 

incomplete NO3¯ removal (1 – 5 mg N L-1) occurring in the colder seasons as a 

results of lower removal rates. A Q10 of 3.2 (Table  2.1) was calculated in this 

study using the linear regression fitted to the rate of NO3¯ removal and 

temperature (NO3¯ removal = 8.8 + 13.6T; R2 = 0.46) between 4 – 14 °C. The 

linear regression fitted to the temperature dependency of NO3¯ removal did not 

include samplings where the NO3¯ concentration was thought to be limiting 

(Robertson and Merkley, 2009). 

In 2010, Elgood et al. investigated the ability of a stream bed bioreactor to 

remove NO3¯ and produce GHG’s (N2O and methane, CH4) by revisiting the 

bioreactor previously reported by Robertson and Merkley (2009). Over the course 

of a year, influent NO3¯ concentrations of 0.3 – 5.8 mg N L-1 were reduced to < 

0.01 – 3.9 mg N L-1. The temperature of the effluent ranged from 1 – 26 °C and, 

similarly to the previous study by Robertson and Merkley (2009), the rate of NO3¯ 

removal was observed to be temperature dependent with greater removal rates 

occurring in the warmer seasons and lower removal rates occurring in the colder 
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seasons. A Q10 of 2 (Table  2.1) was calculated in the study by Elgood et al. (2010) 

using a linear regression fitted to the rate of NO3¯ removal and temperature (NO3¯ 

removal = 246 + 54T; R2 = 0.39) between 5 – 15 °C. Similarly to the previous 

study of the bioreactor by Robertson and Merkley (2009), the linear regression 

fitted to the temperature dependency of NO3¯ removal did not include samplings 

where the NO3¯ concentration was thought to be limiting (Elgood et al., 2010). 

 Cameron and Schipper (2010) investigated the ability of organic C (wood 

chip, maize cobs, wheat straw and green waste) to remove NO3¯ at two 

temperatures treatments (14 and 23.5 °C). Over the course of 10 - 23 months, the 

average rates of NO3¯ removal were 3.0 and 4.9 g N m-3 day-1 for softwood wood 

chips, 3.3 and 4.4 g N m-3 day-1 for hardwood wood chips, 19.8 and 15 g N m-3 

day-1 for maize cobs, 5.8 and 7.8 g N m-3 day-1 for wheat straw and 7.8 and 10.5 g 

N m-3 day-1 for green waste for the 14 and 23.5 °C treatments. The rate of NO3¯ 

increased with increasing treatment temperature and was greater for the more 

labile C sources (maize cobs > green waste > wheat straw > wood chip). An 

average Q10 of 1.6 was calculated in the study by Cameron and Schipper (2010) 

using the average NO3¯ removal rates and treatment temperatures. However, the 

more labile C sources in the 23.5 ˚C treatment are likely to have undergone more 

degradation, as a result of the warmer temperature, in comparison to the C sources 

in the 14 ˚C treatment and were likely to support a lower NO3 ̄ removal rate. This 

may have resulted in an underestimate of the temperature response and the 

calculation of a lower Q10 value. The rate of NO3¯ removal was not limited by 

NO3¯ concentration.  

 Warneke et al. (2011a) investigated the ability of a denitrification bed 

containing organic C (wood chip and sawdust) to remove NO3¯ and produce 

GHG’s from hydroponic glasshouse effluent in Karaka, New Zealand. Over the 
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course of the investigation, the average rate of NO3¯ removal was 7.6 g N m-3 d-1 

and ranged from 4.6 – 11.2 g N m-3 d-1. The temperature of the effluent ranged 

from 15.5 – 23.7 °C. The rate of NO3¯ removal was observed to be temperature 

dependent and generally increased with increasing temperature. A Q10 of 2 

(Table  2.1) was calculated in the study by Warneke et al. (2011a) using an 

exponential regression fitted to the rate of NO3¯ removal and temperature (y = 

2.23 + 0.07x; R2 = 0.91; p = 0.009) between 15.5 – 23.7 °C. The rate of NO3¯ 

removal obtained from the bed was not limited by NO3¯ concentration. 

 Christianson et al. (2012) investigated the controls influencing the ability 

of four denitrification beds containing C (wood chip and mulch) to remove NO3¯ 

from agricultural tile drainage in Iowa. Over the course of the investigation, the 

average influent NO3¯ concentrations of 3.9 mg N L-1 in the Pekin bed, 11.6 mg N 

L-1 in the Northeast Research and Demonstration Farm (NERF) bed, 10.8 mg N L-

1 in the Greene County bed and 8.7 mg N L-1 in the Hamilton County bed were 

reduced to 2.2, 10.1, 5.3 and 2.2 mg N L-1, respectively. The temperature range 

from < 3 – > 15 °C and rate of NO3¯ removal was observed to increase with 

temperature. The Q10 values were calculated to range from 0.18 – 5.7 (Table 2.1) 

for the four beds in the study by Christianson et al. (2012). The rate of NO3¯ 

removal was not limited by NO3¯ concentration.  

 Schmidt and Clark (2013) investigated the controls influencing the ability 

of mesocosms containing organic C (sawdust) to remove NO3¯ from agricultural 

drainage in Alachua, Florida. The average influent NO3¯ concentration of 7.5 ± 

0.73 mg N L-1 was reduced to 4.6 ± 3.6 mg N L-1 within the mesocosms. The 

temperature of the effluent ranged from 7.9 – 24.1 °C and the rate of NO3¯ 

removal was observed to be temperature dependent and generally increase with 

increasing temperature. A Q10 of 4.7 (Table 2.1) was calculated in the study by 
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Schmidt and Clark (2013) using the exponential regression fitted to the rate of 

NO3¯ and temperature (y = 0.15e0.16x; R2 = 0.87). The rate of NO3¯ removal 

obtained from the mesocosms was not limited by NO3¯ concentration. Schmidt 

and Clark (2013) suggested that the Q10 values of observed for the rate of NO3¯ 

removal which are greater than the Q10 value of 2 observed for other biological 

processes are the result of a ‘synergistic response’ between the rate of NO3¯ 

removal and processes which increase the availability of the C source with 

increasing temperatures.   

To summarise, previous studies on denitrifying bioreactors have 

commonly observed the rate of NO3¯ removal to be temperature dependent and 

increase with increasing temperature. The Q10 values calculated for the 

temperature dependency of denitrification in previous studies of bioreactors range 

from 0.18 – 5.7 (Christianson et al., 2012), although are more commonly 

observed to range from 2 – 4 (van Driel et al., 2006; Robertson and Merkley, 

2009; Elgood et al., 2010; Warneke et al., 2011a). The rate of NO3¯ removal is 

influenced by controls including O2 concentration, NO3¯ concentration and C 

source availability and as such, there is difficulty in determining the sole influence 

of temperature on the rate of denitrification in bioreactors in the field environment. 

However, further research is required as a significant influence of temperature on 

the rate of NO3¯ removal may have implications of the design of future 

bioreactors to ensure optimum performance (Christianson et al., 2012) 
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Chapter 3 The temperature response of nitrate removal in 

denitrification beds 

3.1 Abstract  

Denitrification beds represent an inexpensive and effective strategy for the 

removal of nitrate (NO3¯) from a range of wastewaters. Beds are essentially lined 

containers which are filled with a carbon (C) source to support denitrification; the 

conversion of NO3¯ to unreactive dinitrogen (N2). In this study, three field scale 

denitrification beds in New Zealand receiving NO3¯ in wastewaters from a 

glasshouse (Karaka), campground (Motutere) and research station (Newstead) 

were monitored to determine the dependence of the NO3¯ removal rate to seasonal 

changes in temperature. Samples of wastewater were collected from wells along 

each bed every month, along with measurements of temperature. Nitrate 

concentrations declined along the length of each bed, with average removal rates 

of 3.6, 4.3 and 1.7 g N m-3 day-1 for Karaka, Motutere and Newstead, respectively. 

The rate of NO3¯ removal increased with increasing temperature at Karaka and 

Motutere, with Q10 values of 4.1 and 2.2, respectively. The bed at Newstead had 

been recently installed and there was no evidence of an increase in the rate of 

NO3¯ removal with temperature, with a consequent Q10 of 1.0. Nitrate was 

depleted in the beds at Motutere and Newstead and indicated that the calculated 

rates of removal were limited by NO3¯. The rates of removal and Q10 values 

calculated for Karaka and Motutere were similar to those reported in previous 

studies both in New Zealand and internationally and confirmed that temperature is 

a major controller of NO3¯ removal in denitrification beds. This study highlighted 

the need for further research to constrain the range of Q10 values from which 

design decisions can be made to optimise NO3 ̄ removal in denitrification beds. 
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3.2 Introduction  

Nitrogen (N) is an essential element for living organisms and is abundant within 

the biosphere (Canfield et al., 2010). However, the majority of N is present as 

dinitrogen (N2) which is unreactive and unavailable to the majority of organisms 

(Davidson and Seitzinger, 2006). In most unmanaged terrestrial ecosystems, the 

proportion of N which is biologically available to organisms restricts productivity 

and influences ecosystem structure and function (Vitousek et al., 1997; Robertson 

and Vitousek, 2009). The addition of reactive nitrogen (Nr) to agricultural systems 

has enabled crop production to sustain human population growth (Robertson and 

Vitousek, 2009). However, the addition of Nr to agricultural systems in excess of 

plant and animal requirements is susceptible to loss from the system (Dinnes et al., 

2002). Loss of Nr from agricultural systems is of concern due to the ability of Nr 

to ‘cascade’ through atmospheric, terrestrial and aquatic ecosystems where Nr can 

cause or contribute to a range of environmental changes (Galloway et al., 2003). 

Initially, the addition of Nr to ecosystems can result in an increase in productivity. 

Over time, however, the addition of Nr can result habitat degradation and a loss of 

biodiversity as well as subsequent loss of Nr to downwind and downstream 

ecosystems (Vitousek et al., 1997; Galloway et al., 2003). 

The cascade of Nr ends with the return of N2 to the atmosphere. Denitrification 

is one of the most important processes of permanent Nr removal in terrestrial 

ecosystems and is the conversion of nitrate (NO3¯) to N2 by microorganisms in the 

presence of a carbon (C) source (Davidson and Seitzinger, 2006). Denitrifying 

microorganisms (denitrifiers) are typically facultative aerobes and oxidise a C 

source for energy, using oxygen (O2) as an electron acceptor (Knowles, 1982; 

Davidson and Seitzinger, 2006). However, under anaerobic conditions, denitrifiers 

can oxidise a C source using NO3¯
 as an electron accepter instead (Knowles, 
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1982). The importance of a C source is dual as it promotes anaerobic conditions 

and acts as electron donor for denitrification (Barton et al., 1999). 

Denitrification occurs in most terrestrial and aquatic environments in the 

presence of NO₃¯ and C and in the absence of oxygen (Davidson and Seitzinger, 

2006). However, denitrification can be limited in agricultural systems by aerobic 

conditions and a lack of a suitable C source and limited in wetlands and riparian 

zones by a loss of hydrological connection (Barton et al., 1999).  

Denitrifying bioreactors represent a simple, inexpensive strategy for NO3¯
 

removal from a range of wastewaters and agricultural tile drainage through 

enhanced denitrification (Schipper et al., 2010b). Denitrifying bioreactors 

overcome the aerobic conditions and C source limitations of agricultural systems 

by inclusion of a C source through which wastewater is passed (Robertson and 

Cherry, 1995) (Section 2.5.2.5). Denitrifying bioreactors are categorised by the 

hydrological connection between the wastewater and the C source and the ratio of 

the wastewater source area to the C source (Schipper et al., 2010b). 

Denitrification beds are a design of bioreactor where the C source is incorporated 

into a container or lined trench through which effluent or groundwater flows 

(Blowes et al., 1994; Robertson et al., 2000). 

A wide range of NO3¯ removal rates have been reported for denitrification 

beds, which appears to be in part a result of varying NO3¯ concentrations and 

operating temperatures. The rate of denitrification is known to increase with 

increasing temperature yet the exact nature of the relationship is not well 

understood (Davidson and Seitzinger, 2006). One of the reasons for this lack of 

understanding is that the rate of NO3¯ removal in denitrification beds is influenced 

by several controls, not just temperature, which makes unravelling the sole 

influence of temperature field scale beds difficult. Denitrification beds are being 
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implemented across the world and as such further understanding of the 

temperature response of denitrification is required to determine whether beds 

constructed in cooler environments need to be of larger size to remove NO3¯ as 

efficiently as beds constructed in warmer environments. 

 Previous studies on denitrifying bioreactors have reported the rate of 

denitrification to increase with increasing temperature (Robertson et al., 2000; van 

Driel et al., 2006; Robertson et al., 2008; Robertson and Merkley, 2009). In 

addition, some studies have reported the temperature response as a Q10 value, 

which represents the factor by which the rate of denitrification increases for a 

10 °C increase in temperature and allows comparisons between studies (Davidson 

and Janssens, 2006). Elgood et al. (2010) reported a Q10 of 2 in an investigation 

into the rate of NO3¯ removal and greenhouse gas (GHG) production in a stream-

bed bioreactor in Ontario, Canada. In a similar study, Warneke et al. (2011a) 

reported a Q10 of 2 in a denitrification bed in Karaka, New Zealand. In an 

investigation into the influence of various controls (including NO3¯ concentration 

and C source availability) on the rate of NO3¯ removal, Christianson et al. (2012) 

reported a Q10 range of 0.18 – 5.7 in four denitrification beds in Iowa. In a similar 

study, Schmidt and Clark (2013) reported a Q10 of 4.7 in mesocosms in Florida.  

This study investigated the temperature dependency of the rate of 

denitrification in three field scale denitrification beds in New Zealand, including 

the bed previously investigated by Warneke et al. (2011a). The rate of NO3¯ 

removal was determined by analysing effluent samples collected monthly from 

wells along the length of each bed. Temperature measurements collected during 

effluent sampling were combined with NO3¯ removal rates to determine the 

temperature response of denitrification in each bed as temperature changed 
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seasonally. The results from the denitrification bed at Karaka were compared to a 

previous study at the bed by Warneke et al. (2011a).  

 

3.3 Methodology 

3.3.1 Site descriptions 

3.3.1.1 Karaka 

This denitrification bed was installed in 2006 at a site receiving hydroponic 

glasshouse effluent in Karaka, North Island, New Zealand as originally described 

by Schipper et al. (2010a) (Figure  3.1). The denitrification bed was constructed by 

excavating a trench (141 m long x 7.8 m wide x 1.5 m deep) which was lined with 

plastic and backfilled with an even ratio of coarse sawdust and wood chips of the 

softwood Pinus radiata.  

 

 

 

Figure  3.1: The denitrification bed at Karaka with glasshouses (Photo: L. Schipper). 

 

The majority of N in the glasshouse effluent was in the form of NO3¯ 

(Schipper et al., 2010a) and, prior to discharge, was stored in a settling pond and 

received no other pre-treatment. Effluent was pumped into the bed at one end 

through an inlet pipe (150 mm diameter) and left the bed at the other end through 
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four pipes (150 mm diameter) connected through T-junctions to an outlet pipe 

(150 mm diameter). Records of the flow rate of effluent through the bed were 

provided by glasshouse staff and varied daily and seasonally depending on 

glasshouse requirements. Effluent was discharged from the outlet pipe to a 

holding pond prior to irrigation onto surrounding farmland. Twelve polyvinyl 

chloride (PVC) pipes (50 mm diameter) were installed at even intervals (of about 

12 m) along the length of the bed for sampling effluent passing through the bed 

which was analysed for NO3¯. The PVC pipes were capped to prevent wood chip 

from entering the pipe and slotted to allow effluent to flow into the pipe 

(Figure  3.2 a). The PVC pipes were installed by hand or using a wooden mallet 

and wooded block to half the depth of the bed (Figure  3.2 b). 

  

Figure  3.2: a) A capped and slotted PVC pipe and b) installation of a PVC pipe using a 

wooden mallet and wooden block (Photo: A. Keyte Beattie). 

 

The denitrification bed at Karaka was previously sampled by Schipper et 

al. (2010a) to investigate the rate of NO3¯ removal and by Warneke et al. (2011a) 

to investigate the influence of controls on denitrification (temperature, pH and O2 

and C concentrations) on the rate of NO3¯ removal and in the bed over the course 

of a year. 

a) b) 
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3.3.1.2 Motutere 

This denitrification bed was installed in 2007 at a site receiving municipal effluent 

in Motutere, North Island, New Zealand (Ewert et al., 2008) (Figure  3.3). The 

municipal effluent was largely generated by a small campground and consisted of 

wastewater from kitchens and ablution blocks (Ewert et al., 2008). As is common 

with campgrounds, the amount of effluent generated varied seasonally and was 

greatest in the summer and lowest in the winter. The denitrification bed was 

constructed by excavating a trench (28 m long x 5.6 m wide x 1m deep) which 

was lined with plastic and was backfilled with wood chips of P. radiata.  

 

Figure  3.3: The denitrification bed at Motutere. 

 

Prior to discharge, the effluent received pre-treatment through submerged 

aerated filter (SAF) tanks which converted ammonium (NH4
+) to NO3¯ and 

clarifiers which separated solids from effluent (Ewert et al., 2008). Effluent was 

pumped into the denitrification bed at one end through an inlet pipe (150 mm 

diameter) connected through T-junctions to six pipes (150 mm) and left the bed at 

the other end through six pipes (150 mm) connected through T-junctions to an 
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outlet pipe (150 mm). Records of the flow rate of effluent through the bed were 

provided by Taupo District Council staff and varied seasonally depending on 

campground usage. Effluent was discharged from the outlet pipe and irrigated 

onto surrounding land. PVC pipes (50 mm diameter) were installed at even 

intervals (of about 4 m) along the length of the bed to sample NO3¯ concentrations 

using the same method of installation as outlined in  3.3.1.1. However, initial 

samplings at the site showed complete NO3¯ removal had occurred by the first 

well and prior to subsequent samplings a further three PVC pipes were installed at 

even intervals (of about 1 m) between the inlet and the first 4 m to improve the 

detection of changes in NO3¯ concentrations. 

 

3.3.1.3 Newstead 

This denitrification bed was installed in 2013 at a site receiving municipal effluent 

in Newstead, North Island, New Zealand (Figure  3.4). The municipal effluent was 

generated by a research station and consisted of wastewater from laboratories and 

ablution blocks. The denitrification bed was constructed by excavating a trench 

(26 m long x 10.5 m wide x 1 m deep) which was lined with plastic and backfilled 

with wood chips of the softwood P. radiata. The wood chip was overlain with 

geotextile mesh and planting media consisting of sand and coco-peat. 

 



Chapter 3 Temperature Response of Nitrate Removal 

49 

Figure  3.4: Denitrification bed at Newstead (Photo: C. Tanner). 

 

Prior to discharge, the effluent received pre-treatment through an aerated 

packed bed reactor (PBR) which converted NH4
+ to NO3¯. Effluent entered the 

denitrification bed at one end through an inlet pipe connected to a perforated 

drainage pipe and left the other end through a perforated drainage pipe connected 

to an outlet pipe. Records of the flow rate of effluent through the bed were 

provided by research station staff and varied depending on laboratory usage. 

Effluent was discharged from the outlet pipe and discharged onto surrounding 

land. Four PVC pipes (50 mm diameter) were installed at even intervals (of about 

4 m) along the length of the bed between the inlet and outlet pipes to sample NO3¯ 

concentrations, using the same method of installation as outlined in  3.3.1.1. The 

denitrification bed at Newstead was recently installed and some start-up issues 

were identified which affected data ( 3.4.3). 

 

3.3.2 Effluent and temperature sampling 

The denitrification beds were sampled at monthly intervals in 2013; at Karaka 

from March to November, at Motutere from April to November and at Newstead 
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from August to December. Effluent samples were collected from PVC pipes 

installed along the length of the denitrification beds ( 3.3.1.1) using a simple hand 

pump and stored in plastic tubes (50 mL) on ice for transport back to the 

laboratory (Figure  3.5 a). During sampling, temperature measurements were 

recorded from the PVC pipes installed along the length of the beds using a 

calibrated temperature sensor (YSI 63) which was lowered into the bottom of each 

pipe (about 0.75 m at Karaka and 0.5 m at Motutere and Newstead) (Figure  3.5 b). 

Following transport back to the laboratory, the collected effluent samples were 

stored at 4 ˚C, filtered within 48 hours using 0.45 µm syringe filters (Minisart) 

and frozen until analysis.  

 

Figure  3.5: a) Collection of effluent samples using hand pump (Photo: R. Carter) and b) 

collection of temperature measurements using temperature sensor in the denitrification 

bed at Karaka (Photo: R. Carter). 

 

3.3.3 Effluent and temperature analysis 

Effluent samples were transported to a commercial analytical firm (Hill 

Laboratories, Hamilton, New Zealand) for analysis of NO3¯ using ion 

chromatography following standard methods (APHA, 2005). NO3¯ removal rates 

a) b) 
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(g N m-3
 d

-1) were calculated as the linear decline in NO3¯ concentration along the 

length of the bed (∆NO3¯) as: 

NO3¯ removal rate = ∆NO3¯ x FR/Vbed 

where FR was the flow rate of effluent through the bed (m3
 d

-1) and Vbed was the 

effective volume of the bed (m3) (Warneke et al., 2011b). The Vbed was 

determined by multiplying the volume of the bed by an effective porosity value of 

0.7 (van Driel et al., 2006). 

As a result of the variability in daily FRs at Karaka and Newstead, the FR on 

the day of sampling was unlikely to be representative of the FRs experienced 

during the week, or longer, prior to the day of sampling. Consequently, an average 

daily FR was calculated for Karaka and Newstead by adding the daily FRs 

through the bed until the sum of the FRs was equal to the total volume of effluent 

that would saturate the effective porosity of the bed (Vbed). This sum of the FRs 

was then averaged by the number of daily FRs included in the sum to calculate an 

average daily FR for the treatment of sampled effluent through the bed. The FR at 

Motutere was less variable than those of Karaka and Newstead and the FR at the 

time of sampling at Motutere was determined by averaging the monthly FRs 

through the bed calculate an average daily FR.  

Sampling at Motutere and Newstead showed complete NO3¯ removal along 

the length of the denitrification bed. However, complete removal suggested that 

the rate of denitrification was limited by NO3¯ and to accurately calculate the 

temperature response of denitrification it is essential that NO3¯ is non-limiting. As 

such, the NO3¯ removal rate was calculated from the linear decline in NO3¯ 

concentration at Motutere and Newstead before complete NO3¯ removal.  
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The temperature sensitivity of NO3¯ removal in the denitrification beds 

was determined by calculating a Q10 value. A Q10 value represents the factor by 

which the rate of NO3¯ removal increased for a 10˚C increase in temperature as: 

Q10 = (R2 /R1)
 [10 / (T

2
- T

1
)] 

where R1 is the rate of NO3¯ removal at T1, the temperature which is 10 °C less 

than T2 and R2 is the rate NO3¯ removal at T2, the temperature 10 ˚C greater than 

T1 (Davidson and Janssens, 2006; Davidson et al., 2006). This formula also allows 

the calculation of a Q10 value in situations where the rates of NO3¯ removal are 

less than 10 °C apart. As there was little variation in the temperature along the 

length of the bed at each sampling, the average temperature of the bed at each 

sampling was used to calculate the temperature response of NO3¯ removal. 

The temperature response of NO3¯ removal in the Karaka denitrification 

bed was compared to the temperature response of NO3¯ removal in the Karaka 

denitrification bed previously published by Warneke et al. (2011a). 

 

3.4 Results 

3.4.1 Karaka  

In general, there was a linear decline in NO3¯ concentration along the length of the 

denitrification bed at Karaka for each month of sampling as was expected 

(Figure  3.6). Several of the declines were not significant (p > 0.05) which is likely 

to be the result of the variability in influent NO3¯ concentrations and FRs as 

opposed to a lack of denitrification. Consequently, all calculated linear declines 

were used in determining the temperature sensitivity of NO3¯ removal. 
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Figure  3.6: NO3¯ concentrations along the length of the denitrification bed at Karaka for 

each month of sampling, with two samplings in March as indicated by numbers. Linear 

regressions fitted. 

 

The average rate of NO3¯ removal at Karaka was 3.6 g N m-3 day-1 and 

ranged from 0.9 g N m-3 day-1 in May to 11.9 g N m-3 day-1 in the first sampling in 

March (Table  3.1). The average temperature of the effluent in the bed at the time 
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of sampling was 16.9 °C and ranged from 12.0 °C in July to 21.9 °C in the first 

sampling in March. 

Table  3.1: Average temperature, flow rate, change in NO3¯ concentration and NO3¯ 

removal rate of the denitrification bed at Karaka for each month of sampling. 

Month 
Average 

temperature (°C) 

Flow rate 

(m3
 d

‐1) 

Change in NO3¯

concentration (g N m‐3) 

NO3¯ removal rate 

(g N m‐3 day‐1) 

March  21.9 189.5 0.7 11.9 

March  20.9 229.6 0.3 5.1 

April  18.7 135.0 0.2 2.7 

May  15.9 58.7 0.2 0.9 

June  13.2 36.9 0.5 1.6 

July  12.0 44.4 0.4 1.6 

August  14.1 44.3 0.5 1.7 

September  15.2 63.4 0.5 2.6 

October  16.7 125.0 0.2 2.5 

November  20.1 124.9 0.5 5.2 

 

  

The rate of NO3¯ removal in the denitrification bed at Karaka generally 

increased with increasing effluent temperature (Figure  3.7). A Q10 of 6.1 was 

calculated using the exponential regression fitted to the rate of NO3¯ removal and 

temperature for each month of sampling (NO3¯ removal = 0.12e0.18T; R2 = 0.71; p 

= 0.007). The first sampling in March yielded the highest NO3¯ removal rate of 

11.9 g N m-3 per day and the highest average temperature of 21.9 °C. However, 

prior to the first sampling in March there was a system blockage in the outlet of 

the denitrification bed at Karaka which is likely to have resulted in abnormal 

operating conditions. Based on the uncertainty of the validity of this data, a Q10 of 

4.1 (Table  3.4) was calculated from the exponential regression fitted to the rate of 

NO3¯ removal and temperature for each month of sampling except the first 

sampling in March (y = 0.22e0.14x; R2 = 0.61; p = 0.004).  
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Figure  3.7: Temperature dependency of NO3¯ removal in the Karaka denitrification bed 

for each month of sampling. Exponential regressions fitted for each month of sampling 

and for each month of sampling except the first sampling in March (○). 

 

In a previous study of the denitrification bed at Karaka by Warneke et al. 

(2011a) the rate of NO3
- removal in the bed was strongly temperature dependent 

and generally increased with increasing temperature (Figure  3.8). However, prior 

to the sampling in December a substance (composition unknown) was applied to 

the glasshouse which is likely to have contaminated the denitrification bed at 

Karaka and resulted in abnormal operating conditions. Based on the uncertainty of 

the validity of this data, a Q10 of 2.0 (Table  3.4) was calculated using the 

exponential regression fitted to the rate of NO3¯ removal and temperature for each 

month of sampling except December (NO3¯ removal = 2.23e0.07T; R2 = 0.92; p = 

0.009).  
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Figure  3.8: The temperature dependency of the rate of NO3¯ removal in the 

denitrification bed at Karaka for each month of sampling (●) and in the previous study by 

Warneke et al. (2011a) (○). Exponential regressions fitted do not include first sampling in 

March (▲) and, in keeping with previous study by Warneke et al. (2011a), do not include 

sampling in December (∆). 

 

3.4.2 Motutere 

The NO3¯ concentration in the denitrification bed at Motutere declined rapidly 

between the inlet and the first sampling point, which meant that the calculation of 

NO3¯ removal rates would include a length of the bed where denitrification was 

limited by NO3¯ and the rate of removal would be underestimated. After the 

addition of a further three sampling points between the inlet and the original first 

sampling point, there was a strong linear decline in the NO3¯ concentration in the 

denitrification bed at Motutere between the inlet and the original first sampling 

point for each month of sampling (Figure  3.9). 
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Figure  3.9: NO3¯ concentrations along the length of the denitrification bed at Motutere 

for each month of sampling. Linear regressions fitted do not include measurements after 

complete NO3¯ removal (○). 

 

The average rate of NO3¯ removal at Motutere was 4.3 g N m-3 day-1 and 

ranged from 2.0 g N m-3 day-1 in August to 11.5 g N m-3 day-1 in April (Table  3.2). 

The average temperature of the effluent in the bed at the time of sampling was 

14.1 °C and ranged from 9.4 °C in July to 19.7 °C in April. 
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Table  3.2: Average temperature flow rate, change in NO3¯ concentration and NO3¯ 

removal rate of the denitrification bed at Motutere for each month of sampling. 

Month  Average 
temperature (°C) 

Flow rate 
(m3 d‐1) 

Change in NO3¯
concentration (g N m‐3) 

NO3¯ removal rate 
(g N m‐3 day‐1) 

April  19.7  10.8 6.0 11.5 

May  13.9  4.7 6.0 5.1 

June  10.2  4.7 3.2 2.7 

July  9.4 4.1 4.3 3.1 

August  10.9  4.4 2.5 2.0 

September  13.7  3.9 3.9 2.7 

October  15.6  4.6 5.3 4.3 

November  19.4  4.0 3.8 2.7 

 

The rate of NO3¯ removal in the denitrification bed at Motutere generally 

increased with increasing effluent temperature (Figure  3.10). A Q10 of 2.2 

(Table  3.4) was calculated using the exponential regression fitted to the rate of 

NO3¯ removal and temperature (NO3¯ removal = 0.13e0.08T; R2 = 0.35; p = 0.1). 

However, the rates of NO3¯ removal at temperatures above 19 °C (April and 

November) were very different without these samplings a Q10 of 2.5 was 

calculated.   

 

Figure  3.10: The temperature dependency of the rate of NO3¯ removal at the 

denitrification bed at Motutere for each month of sampling. Exponential regression fitted. 
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3.4.3 Newstead 

The NO3¯ concentration in the denitrification bed at Newstead declined rapidly 

between the inlet and the first sampling point for each month of sampling 

(Figure  3.11). The exception was in September, when there was very little NO3¯ in 

the effluent entering the bed. NO3¯ concentrations were much lower than expected 

from the design which indicated that the pre-treatment system was not nitrifying 

effluent as well as expected. 

 

Figure  3.11: NO3¯ concentrations along the length of the denitrification bed at Newstead 

for each month of sampling, with two samplings in August as indicated by numbers. 

Linear regressions fitted do not include measurements after complete NO3
- removal (○). 

 

The average rate of NO3¯ removal was 1.7 g N m-3 day-1 and ranged from 

0.00007 g N m-3 day-1 in September to 3.8 g N m-3 day-1 in October (Table  3.3). 
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The average temperature of the effluent in the bed at the time of sampling was 

18.0 °C and ranged from 15.5 °C in August for the first sampling to 22.8 °C in 

November. 

Table  3.3: Average temperature, flow rate, change in NO3¯ concentration and NO3¯ 

removal rate at the denitrification bed at Newstead for each month of sampling. 

Month  Average 
temperature (°C) 

Flow 
rate (m3) 

Change in NO3¯
concentration (g N m‐3) 

NO3¯
 removal rate 

(g N m‐3 day‐1) 
August (1)  15.5  12.7 1.5 1.8 

August (2)  15.8  11.5 1.3 1.4 

September  16.5  11.3 0.00007 0.00 

October  19.2  11.2 3.6 3.8 

November  22.8  21.3 0.7 1.3 

December  22.8  10.92 2.0 2.0 

 

There was no evidence that the rate of NO3¯ removal in the denitrification 

bed at Newstead was temperature dependent (Figure  3.12). A Q10 of 1.0 

(Table  3.4) was calculated using the exponential regression fitted to the rate of 

NO3¯ removal and temperature (NO3¯ removal = 1.880.0006T; R2 = 0.00; p = 0.7).  

 

Figure  3.12: The temperature dependency of the rate of NO3¯ removal at the 

denitrification bed in Newstead. Exponential regression fitted does not include 

measurement in September (○). 
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3.4.4 The temperature response of the rate of nitrate removal in the 

denitrification beds at Karaka, Motutere and Newstead 

The temperature dependency of the rate of NO3¯ removal varied both between 

studies in the denitrification bed at Karaka and between the denitrification beds at 

Karaka, Motutere and Newstead (Figure  3.13). The rate of NO3¯ removal was 

observed to be strongly temperature dependent in the previous study at Karaka 

(Warneke et al., 2011a) (R2 = 0.92) and moderately temperature dependent in this 

study at Karaka and at Motutere (R2 = 0.61 and 0.35, respectively). There was no 

evidence that the rate of NO3¯ was temperature dependent at Newstead (R2 = 0.00). 

Figure  3.13: The temperature dependency of the rate of NO3¯ removal for each month of 

sampling in the denitrification bed at Karaka in this study (●) and in the previous study 

by Warneke et al. (2011a) (○), at Motutere (♦) and at Newstead (■). Exponential 

regressions fitted and do not include the first sampling in March at Karaka in this study 

(▲), the sampling in December in the previous study at Karaka  by Warneke et al. (2011a) 

(∆) and the  sampling in September at Newstead (□).   

 

The Q10 values calculated from the exponential regressions of the temperature 

dependency of NO3¯ removal at each site varied between studies at Karaka and 
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between the denitrification beds at Karaka, Motutere and Newstead (Table  3.4). 

The Q10 values ranged from 1.0 at Newstead to 4.1 at Karaka, with similar Q10 

values calculated in the previous study at Karaka (Warneke et al., 2011a) and at 

Motutere of 2 and 2.2, respectively.  

Table  3.4: The Q10 calculated using the average NO3¯ removal rate and average 

temperature at Karaka in this study and the previous study by Warneke et al. (2011a) and 

at Motutere and Newstead. 

Site 
Influent NO3¯ 
concentration  

(g N m‐3) 

Effluent NO3¯
concentration 

(g N m‐3) 

Temperature 
range (°C)  Q10 

Karaka  156 95 13.2 – 21.9  4.1a 

Karaka (Warneke et al., 2011a)  ~250 ~50 15.5 – 23.7  2 

Motutere  20 0.05 9.4 – 19.7 2.2 

Newstead  7 0.01 15.5 – 22.8  1.0 

a 
Calculated excluding first sampling in March 

 

3.4.5 The temperature response of the rate of nitrate removal in 

denitrifying bioreactors 

In previous studies of denitrifying bioreactors, the temperature dependency of the 

rate of NO3¯ removal varied both between studies and sites (Table  3.5). The Q10 

values calculated from the regressions in each study and ranged from 0.8 to 5.7.  
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Table  3.5: Site characteristics and the temperature dependency of the rate of NO3¯ removal in this study in comparison to previous studies of denitrifying bioreactors. 

Reference  Location  Design  Size (m3) 
Influent NO3¯ 
concentration  

(g N m‐3) 

Effluent NO3¯
concentration 

(g N m‐3) 

Temperature 
range (°C)  Q10 

Robertson et al. (2000) Ontario, Canada Bed 2 4.8 2 2 – 20 1.7b 

van Driel et al. (2006) Ontario, Canada Layer (lateral flow) 17 11.8 8.0 2.3 – 13  2.7b 

  Ontario, Canada Layer (upflow) 16 3.2 1.6 1.2 – 30  3.7b 

Robertson et al. (2008) Ontario, Canada Walla 10 9.7  5.9 6 – 22  5b 

Robertson and Merkley (2009)  Ontario, Canada Bed (stream) 40  4.8 1.0 3 – 14  3.2b 

Elgood et al. (2010) Ontario, Canada Bed (stream) 40 2.8 1.3 1 – 26  2 

Cameron and Schipper (2010)  Wairakei, New Zealand Mesocosms 0.2 ~150 ~140 14 – 23.5 1.6 

Warneke et al. (2011a) Karaka, New Zealand Bed 1320 ~250 ~50 15.5 – 23.7  2 

Christianson et al. (2012) Iowa, USA 4 x Bed  18 ‐ 128 3.9 – 11.6 2.24 – 10.1 < 3 – < 15  0.8 – 5.7 

Schmidt and Clark (2013) Florida, USA Mesocosms 0.03 7.5  4.6  7.9 – 24.1 4.7 

This study  Karaka, New Zealand Bed 1650 156 95 13.2 – 21.9 4.1c 

 Motutere, New Zealand Bed 157 20 0.05 9.4 – 19.7 2.2 

 Newstead, New Zealand Bed 273 7 0.01 15.5 – 22.8 1.0 

a Columns extracted from wall 
b Calculated in this study 
c Calculated excluding first sampling in March 
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3.5 Discussion 

3.5.1  Rates of nitrate removal 

In general, the average rates of NO3¯ removal measured in the denitrification beds 

at Karaka, Motutere and Newstead (3.6, 4.3 and 1.7 g N m-3 day-1, respectively) 

were similar to the rates of removal measured in denitrification beds in previous 

studies. The highest rates of NO3¯ removal (4 - 22 g N m-3 day-1) were previously 

reported for a denitrification bed in Ontario, Canada (Blowes et al., 1994; 

Robertson et al., 2000). However, the majority of the rates of removal reported in 

other studies have been < 10 g N m-3 day-1. For example, Robertson and Merkley 

(2009) and Elgood et al. (2010) reported NO3¯ removal rates of 3.8 g N m-3 day-1 

and 0.3 - 2.5 g N m-3 day-1, respectively, in separate studies of the same stream 

bed bioreactor in Ontario. Schipper et al. (2010a) and Warneke et al. (2011a) 

reported NO3¯ removal rates of 5 – 10 g N m-3 day-1 and 7.6 g N m-3 day-1, 

respectively, in separate studies of the same denitrification bed in Karaka. Lastly, 

in a study of four denitrification beds in Iowa, Christianson et al. (2012) reported 

NO3¯ removal rates of 0.4 – 7.8 g N m-3 day-1. The variation in the rates of NO3¯ 

removal reported in previous studies are likely the result of differences between 

sites and the influence of controls such as NO3¯ concentration, C source 

availability and operating temperature (Schipper et al., 2010b).  

 

3.5.2  The temperature response of nitrate removal 

The importance of understanding the nature of the temperature response of NO3¯ 

removal was highlighted by Christianson et al. (2012), who reported that 

temperature was the main control influencing the rate of NO3¯ removal in four 

denitrification beds in Iowa. Furthermore, in a multivariate analysis Schmidt and 

Clark (2012) showed that temperature accounted for 50 % of the variation in the 
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rate of NO3¯ removal in mesocosms in Florida. In many other studies of 

denitrifying bioreactors, reported NO3¯ removal rates were limited by low NO3¯ 

concentrations (< 1 mg N L-1) so that temperature effects were not always obvious. 

In order to disentangle the influence of temperature from other controls, the NO3¯ 

removal rates in the denitrification beds at Karaka, Motutere and Newstead were 

measured using sections of the beds that were not limited by low NO3¯ 

concentration (> 1 mg N L-1). In general, the rate of NO3¯ removal increased with 

increasing temperature and the temperature response of NO3¯ removal measured 

in the denitrification beds at Karaka and Motutere (Q10 values of 4.1 and 2.2, 

respectively) were similar to the temperature response measured in previous 

studies of denitrification beds (Section 2.5.2.5; Table 3.6).  

Table 3.6: Temperature dependency of the rate of NO3¯ removal in the current study in 

comparison to previous studies of denitrifying bioreactors. 

Reference  Design 

Influent NO3ˉ 
concentration 

(g N m‐3) 

Effluent NO3ˉ 
concentration 

(g N m‐3) 
Q10 

Robertson et al. (2000)  Bed 4.8  2  1.7b 

van Driel et al. (2006)  Layer (lateral flow) 11.8  8.0  2.7b 

  Layer (upflow) 3.2  1.6  3.7b 

Robertson et al. (2008)  Walla 9.7  5.9  5a,b 

Robertson and Merkley (2009)  Bed (stream) 4.8  1.0  3.2b 

Elgood et al. (2010)  Bed (stream) 2.8  1.3  2 

Cameron and Schipper (2010)  Mesocosms ~150  ~140  1.6 

Warneke et al. (2011a)  Bed ~250  ~50  2 

Christianson et al. (2012)  4 x Bed 3.9 – 11.6  2.24 – 10.1  0.8 – 5.7 

Schmidt and Clark (2013)  Mesocosms 7.5  4.6  4.7 

This study  Bed 156  95  4.1c 

  Bed 20  0.05  2.2 

  Bed 7  0.01  1.0 

a Columns extracted from wall 
b Calculated in this study 
c Calculated excluding first sampling in March 
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The highest and lowest temperature dependencies (Q10 values of 0.8 and 

5.7, respectively) were reported for four denitrification beds in Iowa (Christianson 

et al., 2012). It is noted that a Q10 of ~1 indicates that the rate of NO3¯ removal is 

not temperature dependent, which seems unlikely. However, the majority of the 

Q10 values reported for the temperature response of NO3¯ removal in previous 

studies are around 2 – 4 (van Driel et al., 2006; Robertson and Merkley, 2009; 

Elgood et al., 2010; Warneke et al., 2011a). For example, in the study of the 

denitrification bed in Ontario by Robertson et al. (2000), a Q10 value of 1.7 was 

calculated using the linear regression fitted to the temperature dependency of the 

rate of NO3¯ removal (NO3¯ removal = 4.9 + 0.93T; R2 = 0.55) between 10 and 

20 °C. In the study of the stream bed bioreactor by Robertson and Merkley (2009), 

a Q10 of 3.2 was calculated using the same method (NO3¯ removal = 8.8 + 13.6T; 

R2 = 0.46) between 4 and 14 °C. In the subsequent study of the stream bed 

bioreactor by Elgood et al. (2010) a Q10 of 2 was reported (NO3¯ removal = 

246.54 + 54T; R2 = 0.39) between 5 and 15 °C. 

In the previous study of the denitrification bed at Karaka, Warneke et al. 

(2011a) reported a Q10 of 2 (NO3¯ removal = 2.23e0.07T; R2 = 0.91; p = 0.009) with 

an average NO3¯ removal rate of 7.6 g N m-3 day-1. In the current study of the 

denitrification bed at Karaka, a much higher Q10 of 4.1 (NO3¯ removal = 

0.22e0.14T; R2 = 0.61; p = 0.004) was calculated with a much lower average NO3¯ 

removal rate of 3.6 g N m-3 day-1. The discrepancies between the temperature 

responses and the rates of NO3¯ removal in two studies at Karaka may be partly 

due to seasonal and annual variability; however, temperature is not the only factor 

regulating NO3¯ removal. Nitrate removal in denitrification beds is also highly 

dependent on the availability of the C source (Cameron and Schipper, 2010) and 

the availability of the C source changes through time(Schipper and Vojvodic-
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Vukovic, 1998; Robertson et al., 2008; Moorman et al., 2010; Robertson, 2010; 

Long, 2011). Wood particle media, commonly used as the C source in 

denitrification beds, supports NO3¯ removal for a considerable number of years 

but there is a well-documented decrease in removal rate with time (Robertson et 

al., 2008; Moorman et al., 2010; Robertson, 2010). This change in C availability 

likely contributed to the decline in NO3¯ removal from 7.6 to 3.4 g N m-3 day-1 

and the change in Q10 through time at Karaka. 

Robertson et al. (2008) reported that the rate of NO3¯ removal determined 

using sawdust from a wall that had been in operation for 15 year was around 50 % 

of the rate of NO3¯ removal determined using fresh sawdust. In addition, 

Robertson (2010) reported that the rates of NO3¯ removal determined using wood 

chips from denitrification beds that had been in operation for 2 and 7 years were 

around 50 % of the rate of NO3¯ removal determined using fresh wood chips. 

Robertson (2010) suggested that the reason for the decrease in the NO3¯ removal 

rate was the depletion of the more labile fraction of the C source and that there 

had been a relative increase in the more recalcitrant fraction of the C source. The 

denitrification bed at Karaka was installed in 2006 and rates of NO3¯ removal 

were initially measured in 2008/2009 (Warneke et al., 2011a), five years before 

the current study in 2013. During this time it is likely that there was a decrease in 

the availability of the C source which contributed to the decline in the measured 

rates of NO3¯ removal in the bed at Karaka. 

 The temperature sensitivity of NO3¯ removal by denitrification is 

dependent on substrate complexity and concentration (Davidson and Janssens, 

2006; Schmidt and Clark, 2013). With time, the C source in denitrification beds 

becomes more recalcitrant and more complex C sources are considered to have 

low rates of decomposition, high activation energies and, consequently, a higher 
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temperature sensitivity and a higher Q10 (Davidson and Janssens, 2006). As such, 

the greater Q10 for the NO3¯ removal rate in the current study in comparison to the 

previous study at Karaka by Warneke et al. (2011a) may be the result of the 

greater temperature sensitivity of the more recalcitrant fraction of aged wood 

chips in the bed.  

In the denitrification bed at Motutere, the Q10 of 2.2 (NO3¯ removal = 

1.13e0.08T ; R2 = 0.35; p = 0.1) and average NO3¯ removal rate of 4.3 g N m-3 day-1 

were similar to the Q10 values and removal rates reported for previous studies of 

denitrification beds (Table 3.6). After the first few meters of the bed, the rate of 

NO3¯ removal at Motutere was likely limited by NO3¯ concentration as is 

frequently observed in denitrifying bioreactors (Schipper et al., 2010b). Limited 

NO3¯ concentrations are common in studies where the NO3¯ concentration of 

effluent or groundwater from tile drainage is diluted prior to entering 

denitrification layers and stream bed bioreactors and is depleted along the length 

of the bioreactor (van Driel et al., 2006; Robertson and Merkley, 2009). 

In contrast to the denitrification beds at Karaka and Motutere, there was no 

evidence of an increase in the rate of NO3¯ removal with an increase in 

temperature at the denitrification bed at Newstead (Q10 = 1.0). Furthermore, the 

average NO3¯ removal rate of 1.7 g N m-3 day-1 was generally less than the rates 

of removal rates reported in previous studies of denitrification beds. The rate of 

NO3¯ removal at Newstead was almost certainly limited by NO3¯ concentration, as 

was observed at Motutere and in many other studies of denitrifying bioreactors 

(Schipper et al., 2010b). Low NO3¯ concentrations would have resulted in the 

underestimation of the potential rate of removal. The pre-treatment system and 

denitrification bed at Newstead had been installed only a few month before 

sampling commenced. There was evidence that the denitrification bed was still in 
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the start-up phase as initial samplings of effluent from the wells were dark in 

colour, indicating leaching of dissolved C from the wood chips as effluent passed 

through the bed (Robertson and Cherry, 1995; Robertson et al., 2005b). 

Furthermore, it appeared that the pre-treatment system, including the nitrification 

component, was not operating as planned since NO3¯ concentration entering the 

bed was low (average 7 g N m-3).  

Despite the variation in the range of Q10 values reported for the 

temperature response of NO3¯ removal in the current study and previous studies, it 

is recognised that temperature determines the extent to which denitrifying 

bioreactors can be implemented across the world (Christianson et al., 2012; 

Schmidt and Clark, 2012). However, there is the potential to manipulate the 

temperature of denitrifying bioreactors. In a previous study, Cameron and 

Schipper (2011) investigated the influence of passive heating and different flow 

regimes on the rate of NO3¯ removal in denitrification beds. One of the attractions 

of denitrifying bioreactors is the low cost involved and as such, passive heating 

provides a more economically viable option in comparison to active heating. 

Passive heating was achieved by using dark material (black polythene and 

polyethylene tubing) laid on the bed surface to capture short-wave radiation 

emitted by the sun. Heat from long-wave radiation emitted by the dark material 

was then trapped using transparent material (polycarbonate sheets) laid on top of 

the black polythene and polyethylene tubing. Passive heating increased the bed 

temperature by around 3.4 °C; however, no significant difference was detected in 

the rate of NO3¯ removal between the passively heated and non-heating beds. It is 

likely that the variability in rate of NO3¯ removal obscured the increase in the rate 

of removal driven by temperature (Cameron and Schipper, 2011). As such, further 
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research on the potential for manipulating the temperature of denitrifying 

bioreactors to increase the rate of removal is required. 

It is unlikely that the rate of NO3¯ removal and the temperature response of 

NO3¯ removal will remain constant with time. Comparing the results of this study 

at Karaka with the previous study by Warneke et al. (2011a), it is suggested that 

the rate of NO3¯ decreased with time as a result of the more recalcitrant fraction of 

the aged C source remaining in the bed. In addition, it is suggested that the 

temperature response of the rate of NO3¯ removal increase might with time as a 

result of the higher apparent temperature sensitivity of the more recalcitrant 

fraction of the C source (Figure 3.14).  

 

Figure 3.14: Conceptualised rate of NO3¯ removal and temperature response of NO3¯ in a 

denitrification bed with increasing time (T0 < T1 < T2). Downwards arrows indicate 

change in rate through time, assuming NO3 is not limiting, and curves indicate change in 

temperature sensitivity with time as remaining C becomes more recalcitrant (Davidson 

and Janssens, 2006). 

 

Field based research is required to confirm whether the rate of NO3¯ removal 

decreases and whether the temperature sensitivity of NO3¯ removal increases with 

time. If this is confirmed, research is required to demonstrate whether the higher 
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apparent temperature sensitivity was the result of increasing recalcitrance of the 

remaining wood chips. Further research will also be required to confirm the 

timespan over which changes in the temperature response of NO3¯ removal occur. 

If the temperature dependency of NO3¯ removal does increase with time, the 

future design of denitrification beds will have to consider the proposed lifespan of 

the denitrifying bioreactor to ensure that the bioreactor is designed large enough 

to support NO3¯ removal for the proposed lifespan of the bioreactor. 

 

3.5.3  Confounding influences and methodological limitations 

Unravelling the influence of temperature on the rate of NO3¯ removal in 

denitrification beds in the field is difficult because of the variability of controls 

such as NO3¯ concentration and C source availability. Denitrification is assumed 

to follow Michelis-Menton kinetics and, as most bioreactors receive NO3¯ 

concentrations above the Km value of denitrifiers (Barton et al., 1999), 

denitrification is assumed to be zero-order (Schipper et al., 2010b). Warneke et al. 

(2011a) suggested that the linear decline in NO3¯ concentration along the length of 

the denitrification bed at Karaka was evidence of zero-order kinetics as the 

effluent leaving the bed was much greater than the Km  value of denitrifiers. In 

addition, Warneke et al. (2011a) suggested that the increase in the rate of NO3¯ 

removal in laboratory studies of wood chip samples amended with C but not NO3¯ 

demonstrated that NO3¯ removal at Karaka was not limited by NO3¯ concentration. 

Robertson (2010) found that the rate of NO3¯ removal determined using fresh, 2- 

and 7-year-old wood chip samples amended with NO3¯ were zero-order until the 

concentration with which the samples were amended with was <1 mg N L-1, after 

which NO3¯ removal was found to be first-order. 
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In the denitrification bed at Karaka, the rate of NO3¯ removal was clearly 

not limited by NO3¯ concentration and followed zero-order kinetics as the 

concentration of NO3 in the effluent was much greater than the Km of denitrifiers 

(Barton et al., 1999). The lack of NO3¯ limitation meant that the denitrification 

bed at Karaka bed was suitable for determining in situ rate of NO3¯ removal and 

the temperature dependency of the rate of removal. However, in the denitrification 

beds at Motutere and Newstead, the rate of removal was limited by NO3¯ 

concentration and complete NO3¯ removal occurred within the first sampling 

points at each bed. To account for the limitation, rates of NO3¯ removal were 

calculated using only the lengths of each bed before complete NO3¯ removal. 

Even so, it was likely that the actual rates of NO3¯ removal were underestimated 

for the denitrification beds at Motutere and Newstead as NO3¯ concentration 

became limiting between sampling points (Figure 3.9; Figure 3.11).  

In the denitrification bed at Newstead, there was very little NO3¯ present in 

the sampling in September. This low NO3¯ concentration suggested that 

microorganisms in the pre-treatment system, particularly in the nitrifying 

component which converts NH4
+

 to NO3¯ prior to discharge into the bed, had been 

poisoned through the use of a substance (composition unknown) in the research 

station. This potential poisoning was investigated in a separate study. Similarly, in 

the previous study at Karaka by Warneke et al. (2011a) a relatively low NO3¯ 

removal rate (4.6 g N m-3 day-1) in comparison to the average removal rate (7.6 g 

N m-3 day-1) was determined for a single sampling in December. Warneke et al. 

(2011a) suggested that microorganisms were poisoned though the use of 

substance (composition unknown) in the glasshouse that entered the effluent 

stream (Warneke et al., 2011a) although this was not confirmed. 
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In addition to NO3¯ concentration, certainty regarding the FR and daily 

variations in FR were important for calculating the rate of NO3¯ removal 

(Robertson and Merkley, 2009). The FRs through the denitrification beds at 

Karaka and Newstead were variable as a result of production requirements and it 

was unlikely that the FR at the time of sampling was representative of the FRs 

experienced during the week, or longer, prior to sampling. Furthermore, daily 

variation in NO3¯ concentration coupled to variations in FR are not well captured 

on a single sampling day. The FR determines the residence time of effluent within 

the bed and in turn the interaction between the effluent and the C source which 

determines NO3¯ removal. An average daily FR was calculated for the 

denitrification beds at Karaka, Motutere and Newstead. The intention was this 

average FR would be a better representation of the general FR of effluent through 

the bed as opposed to the FR through the bed on the day of sampling. The rates of 

NO3¯removal were calculated as: 

NO3¯ removal rate = ∆NO3¯ x FR/Vbed 

and as such, the uncontrolled errors in the average daily FR calculated for each 

denitrification bed had an influence on rate of removal and in turn the temperature 

response determined for the denitrification beds at Karaka and Newstead. 

 Variable FRs have been reported in previous studies of denitrifying 

bioreactors where the FR of effluent or groundwater from tile drainage is 

influenced by seasonal events such as rainfall and snowmelt (van Driel et al., 

2006; Robertson and Merkley, 2009; Elgood et al., 2010). Flow control structures 

allow the FR to be lowered within the bioreactor during seasonal events to 

increase the percentage of NO3¯ removal, though are likely to decrease overall 

actual NO3¯ removal rate from the effluent (Robertson and Merkley, 2009; Elgood 

et al., 2010). Flow control structures are also likely to increase the cost associated 



Temperature Response of Nitrate Removal Chapter 3 

74 

with bioreactors. However, it is not cost effective to design bioreactors based on 

infrequent peak flows (van Driel et al., 2006). Designing bioreactors in 

association with other methods of reduced N additions or NO3¯ removal, such as 

wetlands, maybe an option worth further research (van Driel et al., 2006; 

Robertson and Merkley, 2009). 

 In addition to the FR of effluent through the denitrification bed, effluent 

flow paths, particularly short-circuit flow, though the bed influence the amount of 

NO3¯ removal. When estimating NO3¯ removal and the influence of other controls, 

it is generally assumed that the flow of effluent is uniform though denitrification 

beds. However, rapid flow of effluent can result in short-circuiting and decreased 

NO3¯ removal (Cameron and Schipper, 2012) and slow flow can result in ‘dead 

zones’ and localised increases in NO3¯ removal. Slow flow in dead zones 

increases the retention time and the interaction between the effluent and the C 

source, which increases NO3¯ removal in within the zone but reduces the effective 

volume of the bed.  

At the denitrification bed at Karaka, short-circuiting may have occurred 

following the system blockage in the outlet of the bed prior to the first sampling in 

March, as effluent was observed flowing along the surface of the bed. 

Additionally, a dead zone may have occurred midway along the length of the bed 

(around the 6th sampling point), as the NO3¯ concentration at this sampling point 

was consistently lower compared to the NO3¯ concentration of surrounding points 

(Fig. 3.6). As the denitrification bed resumed normal operating conditions in later 

samplings, it appeared that the flow of effluent became more uniform and the 

‘dead zone’ ceased to occur. However, non-uniform flow of effluent may have 

had an influence on rate of removal and in turn the temperature response 

determined for the denitrification bed at Karaka. Non-uniform flow would 
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certainly decrease the ability to accurately estimate the decline in NO3¯ 

concentration along the bed and thus the rate of NO3¯ removal. 

 Cameron and Schipper (2011) investigated the influence of different flow 

regimes on the rate of NO3¯ removal in passively heated and non-heated 

denitrification beds. Four regimes were investigated, with the hydraulic design 

and short-circuit flow of each regime evaluated using tracer tests. Horizontal flow 

regimes were found to have higher short-circuiting in comparison to vertical flow 

regimes. Higher short-circuiting in horizontal flow regimes was suggested to be 

the result of flow across the top of the beds and was found to increase with 

passive heating as the result of higher buoyancy of warmer effluent. Vertical flow 

regimes were found to have the least short-circuit flow and were most effective in 

both NO3¯ removal and passive heating (Cameron and Schipper, 2011).  

 

3.5.4  Conclusions and implications 

The rates of NO3¯ removal for the denitrification beds at Karaka, Motutere and 

Newstead were similar to rates of NO3¯ removal reported in previous studies of 

denitrification beds. Interestingly, the rate of NO3¯ removal measured in the 

denitrification bed at Karaka was lower than the rate of removal measured in 

previous studies at Karaka (Schipper et al., 2010a; Warneke et al., 2011a). The 

discrepancy in the rates of NO3¯ removal was likely due to the remaining C source, 

from the wood chips, becoming more recalcitrant and so supporting lower rates of 

NO3¯ removal through time. Variation in the rates of NO3¯ removal between beds 

was most likely the result of differences between sites such as variation in NO3¯ 

concentration, available C source concentration and operating temperature 

(Schipper et al., 2010b).  
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In general, the rate of NO3¯ removal increased with increasing temperature 

in the denitrification beds at Karaka and Motutere. However, there was no 

evidence of an increase in the rate of NO3¯ removal with increasing temperature in 

the denitrification bed at Newstead, mainly due to the NO3¯ limitation. The Q10 

values for the temperature response of NO3¯ removal at Karaka and Motutere 

were similar to Q10 values reported in previous studies of denitrification beds. The 

temperature response of rate of NO3¯ removal measured for the denitrification bed 

at Karaka was greater than the response measured in the previous study at Karaka 

(Warneke et al., 2011a). The discrepancy in the temperature response may have 

been the result of the higher temperature sensitivity of the decomposition of more 

recalcitrant C source in aged wood chips.  

 The NO3¯ concentration in the denitrification beds at Motutere and 

Newstead frequently limited NO3¯ removal, which may have resulted in an 

underestimation of the true rate and the temperature response of NO3¯ removal. 

The pre-treatment system and denitrification bed at Newstead had been installed 

just prior to sampling and were likely to be operating in the start-up phase, with 

the nitrifying component of the pre-treatment system likely to be the cause of low 

NO3¯ concentrations entering the bed. In addition, variability in the FR and 

pathways of the flow of effluent through the denitrification beds, particularly in 

the bed at Karaka, may have had an influence on the ability to accurately 

determine the rate and temperature response of denitrification.  

 This study supported previous suggestions of the importance of 

temperature to the rate of NO3¯ removal and to the design of denitrifying 

bioreactors (Christianson et al., 2012; Schmidt and Clark, 2013). To ensure 

appropriate sizing of denitrification beds, the NO3¯ concentration and temperature 

of the effluent and groundwater from tile drainage require consideration. Larger 
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beds are required to treat effluent with higher NO3¯ concentrations or with greater 

flow rates, although smaller denitrification beds might be able to treat effluent in 

environments with warmer temperatures. The temperature sensitivity of NO3¯ 

removal determines how much smaller beds could be; however, the temperature 

sensitivity as defined by the Q10 values reported in previous studies are still not as 

well constrained as would be useful for design purposes. As such, there is a need 

for further research on the temperature response of NO3¯ removal in bioreactors in 

the field to refine the range of Q10 values and it is possible that better 

methodologies will be required. It is noted that the variation within the Q10 values 

of previous studies somewhat depends on the function used to describe the 

temperature response; linear functions produce very different Q10 values 

depending on the temperatures used whereas exponential functions produce 

similar Q10 values regardless. In addition, there is a need for further research on 

the temperature response of NO3¯ removal in bioreactors through time. An 

increase in the temperature response of NO3¯ removal with time will mean 

considering the proposed lifespan of bioreactors to ensure that the design is 

appropriate for the NO3¯ removal required over the lifespan. 
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Chapter 4 Conclusions and further research 

4.1 Conclusions 

Denitrifying bioreactors represent an inexpensive and effective method for the 

removal of NO3¯ from a range of wastewaters. The rate of denitrification is 

regulated by several controls including O2 concentration, NO3¯ concentration, C 

source availability and temperature. As awareness of reactive nitrogen Nr as an 

environmental pollutant spreads, so does this method of removal to such an extent 

that denitrifying bioreactors are now present in many geographic locations. 

However, temperature changes with location and the nature of the influence of 

this control is poorly understood as a result of the influence of temperature being 

masked by the influence of other controls in the field. Improved understanding of 

the influence of temperature on the rate of NO3¯ removal is important for the 

future design of bioreactors, particularly for ensuring that bioreactors are built the 

right size to achieve NO3¯ removal targets. This will be important for determining 

the extent of the geographic location in which bioreactors will function efficiently 

and matching design criteria to location. 

 This thesis determined the temperature response of the rate of NO3¯ 

removal in three field scale denitrification beds in New Zealand. It was concluded 

that the rates of NO3¯ removal measured at the denitrification beds at Karaka, 

Motutere and Newstead (3.6, 4.3 and 1.7 g N m-3 day-1, respectively) were similar 

to rates of removal reported for previous studies of denitrifying bioreactors. The 

highest rates of NO3¯ removal were reported for a denitrification bed in Ontario 

and ranged from 4 – 22 g N m-3 day-1 (Blowes et al., 1994; Robertson et al., 2000). 

However, the majority of rates of NO3¯ removal reported were < 10 g N m-3 day-1 

(Robertson and Merkley, 2009; Elgood et al., 2010; Schipper et al., 2010a; 

Warneke et al., 2011a; Christianson et al., 2012), which was consistent with the 
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rates in this study. The differences in the rates of removal reported in previous 

studies were suggested to be the result of the influence of controls such as NO3¯ 

concentration, C source availability and temperature. 

It was concluded that the rate of NO3¯ removal generally increased with 

increasing temperature in the denitrification beds Karaka and Motutere (Q10 of 4.1 

and 2.2, respectively). However, there was no evidence that the rate of NO3¯ 

removal increased with increasing temperature at Newstead (Q10 of 1.0). By 

comparison, the highest and lowest Q10 values reported for four denitrification 

beds in Iowa ranged from 0.8 – 5.7 (Christianson et al., 2012). However, 

consistent with the findings of this study the majority of the Q10 values reported in 

previous studies ranged from 2 – 4 (van Driel et al., 2006; Robertson and Merkley, 

2009; Elgood et al., 2010; Warneke et al., 2011a). The differences in the 

temperature response were suggested to be the result of the differences in NO3¯ 

concentration and C source availability.  

In this study of the denitrification bed at Karaka, a rate of NO3¯ removal of 

3.6 g N m-3 day-1 and a Q10 of 4.1 were measured. In a previous study at Karaka, 

Warneke et al. (2011a) reported a rate of NO3¯ removal of 7.6 g N m-3 day-1 and a 

Q10 of 2. The difference in the rates of NO3¯ removal are suggested to be the result 

of the C source in the denitrification bed becoming more recalcitrant with time 

and supporting lower rates of denitrification while resulting in a higher apparent 

temperature response. In addition, variations in the FR and the occurrence of 

short-circuiting (Cameron and Schipper, 2012) and ‘dead zones’ in the bed are 

suggested to have an influence on the measured rate of NO3¯ removal. 

In the denitrification beds at Motutere and Newstead, the rates of NO3¯ 

removal and the temperature response of the rate of removal were likely 

underestimated as a result of limiting NO3¯concentrations in each bed. In addition, 
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the denitrification bed at Newstead had been recently installed and was likely to 

be in a start-up phase (Robertson and Cherry, 1995; Robertson et al., 2005b). It is 

suggested that the pre-treatment system operating at the denitrification bed at 

Newstead may have been poisoned prior to sampling in September, similar to the 

poisoning reported as occurring in the denitrification bed at Karaka in a previous 

study (Warneke et al., 2011a).     

 

4.2 Further research 

In general, the controls influencing the rate of NO3¯ removal in denitrifying 

bioreactors are reasonably well understood. However, further research is still 

required on the influence of temperature. It is widely understood that there is an 

increase in the rate of NO3¯ removal with increasing temperature as was supported 

in the findings of the current and previous studies. However, in terms of future 

design of bioreactors the temperature response of denitrification requires research 

to further refine the range of Q10 values from which design decisions can be made. 

Additionally, the potential to manipulate the temperature of bioreactors requires 

further research.  

 From the current and previous studies is it apparent that conditions within 

denitrifying bioreactors do not remain constant with time and that the rate of NO3¯ 

removal is likely to decrease through time (Robertson et al., 2000; Robertson et 

al., 2008; Robertson, 2010). Further research is required to determine the 

influence of variable FRs and short-circuiting and ‘dead zone’ behaviour on the 

measured rate of NO3¯ removal and how to remedy or avoid this behaviour. 

Previous studies have highlighted the importance of controlled flow for efficient 

NO3¯ removal (van Driel et al., 2006; Robertson and Merkley, 2009). However, 

part of the attraction of bioreactors is that they are inexpensive and require little 
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maintenance and it is likely that controlled flow may increase both cost and 

maintenance requirements. 

From this study it was also apparent that as the rate of NO3¯ removal 

decreases though time there may be an increase in the apparent temperature 

response of the rate of removal. Further research is required to test this suggestion 

and the future design of bioreactors may need to take into account both a changing 

rate of NO3¯ removal and changing temperature sensitivity with time. The 

implications of this on the design of bioreactors is that the proposed lifespan of 

the bioreactor would have to be considered to ensure that the bioreactor is 

designed appropriately to meet NO3¯ removal requirements which change with 

time.  
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