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  ABSTRACT 
 
Ethylenediaminetetraacetic acid (EDTA) is a well-known chelating agent, and has 
numerous applications in industries, for example in dairy industry to improve the cleaning 
efficiency of plant and equipment. 
 
As EDTA is water-soluble and not volatile, it is eventually released into the environment 
with wastewater effluent. In general, EDTA has a low toxic impact for both humans and 
natural environments. There are some concerns, however, about its poor biodegradation 
in conventional wastewater treatment plants and natural environments, and its effect in 
mobilizing heavy metals from solid phases to pose a risk to groundwater. 
 
In the late 1980’s the environmental impact of EDTA was scrutinized in Europe. Since 
then, treatment and discharge of wastewater containing EDTA is increasingly required as 
environmental regulations become more stringent. This is the first investigation into the 
effects of EDTA in New Zealand. 
 
In the New Zealand dairy industry, EDTA has been used as an additive alongside caustic 
agents to improve cleaning efficiency within dairy processing plants and to minimize 
dairy wastewater discharge into the environment. There are two main disposal methods of 
dairy wastes; direct discharge into the local stream after treatment, and spray irrigation 
onto pasture land. The primary aim of this research is to identify whether EDTA is 
detectable in the environment after the release of dairy wastes containing EDTA into that 
environment. 
 
For the first time in New Zealand, an analytical method using reversed–phase ion-pair 
liquid chromatography, was established to determine EDTA present in dairy wastewater, 
and then applied to surface water, soils and groundwater with appropriate modifications. 
Method detection limits were 5 µg/L for dairy wastewater, 1 µg/L for surface water, 0.15 
mg/kg (dry weight) for soils, and 2 µg/L for groundwater. 
 
Significant concentrations of EDTA, as high as 83 mg/L, were observed in wastewater 
from dairy processing plants, when EDTA had been used alongside alkaline cleaning 
agents. The analyses have shown that approximate 93 % of EDTA was removed in the 
existing biological treatment process, which is an extended aeration activated sludge 
process, operated under alkaline pH 8.0–8.2 with a 3-week sludge retention time. 
 
For surface water receiving the dairy effluent, 1 – 2.7 µg/L of EDTA were found, and no 
particular concerns were suggested about the associated heavy metals.  
 
A quasi one-dimension vertical mixing model and a two-dimension (depth-averaged) 
3DD hydrodynamic model were applied to simulate EDTA dispersion in the river. The 
modelling results for ‘a worst case scenario’ of high EDTA release combined with a low 
river flow, suggest that the dairy effluent discharge at the Fonterra Waitoa dairy site will 
not lead to a significant effect on the Waitoa River in terms of EDTA concentration.  
 
Investigation of EDTA and heavy metal concentrations in pastoral topsoil and 
groundwater following the land application of dairy biomass concludes that there are no 
specific concerns. In contrast, the analyses suggest that heavy metals may be built up over 
long periods of irrigation with dairy effluent in soils, and then transported to the 
groundwater in the presence of EDTA. However, more research would be required to 
clarify this matter. 
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1.0 CHAPTER ONE: THE VALUE AND 

ISSUES OF EDTA  IN THE DAIRY 

INDUSTRY 
 

Ethylenediaminetetraacetatic acid (EDTA) is a potential environmental 

contaminant for New Zealand. EDTA was recently reported at higher 

concentrations in surface waters than any other identified anthropogenic organic 

compounds in several European countries (Nowack and VanBriesen, 2005; 

Reemtsma et al., 2006). Indeed, EDTA has been severely restricted in some 

countries (The Australian Environmental Labelling Association Inc., 2004), or is 

carefully controlled in many other countries. For example, a target value of 10 

µg/L EDTA was proposed for surface waters in Austria (Conrad, 2000; 

Fuerhacker et al., 2003). The international working group of water companies in 

the Rhine catchment area (IAWR) set out IAWR quality requirements as 5 µg/L 

concentration for well-degradable complexing agents and 1 µg/L for poorly 

degradable compounds. To date, EDTA is the only chelating agent identified as a 

problem by the International Commission for the Protection of the Rhine (IKSR) 

(Knepper, 2003).  

 

EDTA, a powerful and cheap hexadentate chelating agent, is widely used as a 

sequestering agent to bind and mask undesirable metal ions in many industrial 

applications, such as in the cleaning process for the dairy industry (Knepper, 

2003). As EDTA is highly water soluble, nearly all of these applications will 

eventually result in the release of EDTA into the aquatic environment via 

wastewater (Wolf and Gillbert, 1992; Conrad, 2000).  

 

In general, EDTA has a low toxic impact for both humans and natural 

environments. However, there are several concerns associated with the use and 

application of EDTA. The main concern is that EDTA is poorly biodegradable 

and rather persistent in the environment (Bucheli-Witschel and Egli, 2001; 

Oviedo and Rodíguez, 2003; Sillanpää, 2005). The presence of EDTA at high 

concentrations in wastewater and surface waters has the potential to perturb the 

natural speciation of metals to cause harm to the organisms in the waterways (Xue 
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et al., 1995; Nowack, 2002; European Chemicals Bureau, 2004; Schmidt et al., 

2004). Thus, EDTA has been included in the group of recognised polar, persistent 

pollutants.  

 

It was recommended by Knepper (2003) that all industrial processes and 

productions related to poorly degradable chelating agents and compounds, such as 

EDTA, should be used as little as possible, and the emission into the aquatic 

environment should be as low as possible. As a result of these concerns, 

considerable effort had been made to reduce or substitute the production and use 

of EDTA between 1985 and 1999. In Europe, a voluntary declaration and 

subsequent voluntary agreements were achieved to significantly reduce EDTA 

release into the environment (Conrad, 2000).  

 

Fonterra is a major multi-national dairy company seeking a “clean and green” 

image. Some 95% of its dairy products are exported to 140 countries around the 

world. The intent of its environmental group policy was stated as:  

 

“Fonterra shall demonstrate a global commitment to protecting the 

environment. Sustainability, good environmental practice and 

environmental improvement are cornerstones of Fonterra’s 

environment” (Fonterra Environmental Group Policy, 2006).  

 

On a global basis, the mounting environmental pressure associated with the 

application of EDTA is likely to continue until the potential environmental effects 

of the production system are identified and addressed. Accordingly, Fonterra 

decided to investigate whether EDTA could be identified in natural environments 

following its use in dairy manufacturing plants. This is the essential focus of this 

thesis. 

 

1.1 CLEANING PROCEDURES IN THE DAIRY INDUSTRY 

 

Cleaning operations in food industries are essential to ensure the quality of 

products. This is referred to as a clean-in-place (CIP) system in the dairy industry 
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(Eide et al., 2003). The standard CIP cycle in the dairy industry is comprised of 

the following steps (Bylund, 1995): 

(i) recovery of product residues by scraping, drainage and expulsion with water 

or compressed air; 

(ii)  pre-rinsing with water to remove loose dirt; 

(iii)  cleaning with alkaline detergents, usually NaOH, to clean off the protein 

and fat; 

(iv) rinsing with clean water; 

(v) disinfection by heating or with acid agents (HNO3) to remove mineral; and  

(vi) rinsing with clean water. 

 

The prime objective of an efficient cleaning process in the dairy industry is to 

reduce the amount of cleaning chemicals and to use easily degradable chemicals 

during conventional wastewater treatment processes. It has been demonstrated by 

Bylund (1995) that using multi-chemicals is more likely to attain an effective 

cleaning result with lower chemical concentrations than merely containing the 

basic component of sodium hydroxide. This is applicable in particular for an 

effective complexing agent included in alkaline detergents.  

 

Complexing agents are substances that can bind and mask metal ions to form 

highly stable and soluble compounds, and then lose their original chemical 

characteristics. For instance, in dairy industries, they are used for complexing 

highly insoluble Ca2+, Mg2+ ions or other minerals to facilitate the elimination and 

prevention of the formation of milk-stone linings (Wolf and Gillbert, 1992). Ring 

complexes formed by the reaction of a multiple-charged metal ion and an organic 

complexing agent are called chelates. The complexing agents capable of forming 

such rings are called chelating agents or “chela” (Greek = Claw of Crab) 

(Knepper, 2003). At present, EDTA is still the most common and suitable 

complexing compound for many technical purposes and large quantities are used 

in a broad range of industrial applications, as well as in consumer products 

(Nörtemann, 1999; Reemtsma et al., 2006).  

 

In the New Zealand dairy industry, EDTA has been used as an additive alongside 

caustic agents to improve cleaning efficiency within the dairy processing plants. 
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The role of a chelating agent (‘claw of crab’) illustrated in Figure 1.1 is to 

complex with metal ions and form metal-chelates. For instance, EDTA is used to 

facilitate the elimination of milk-stone linings due to the precipitation of calcium 

and magnesium on the surface of machinery within the manufacturing processes. 

A comparison of a standard with two-stages and the alternative using EDTA as a 

one-stage CIP procedure is shown in Figure 1.2. It can be seen that the main 

advantage of using EDTA is in reducing the time required for the CIP process, 

which leads to an increase of production and reduction in other relevant costs, 

such as wastewater treatment.  

 

 

Figure 1.1 Chelating agents are used for a wide variety of industrial applications 

to bind undesirable metal ions. For example EDTA is used in the removal of 

precipitated calcium (Ca) and magnesium (Mg) on the surface of machinery 

in the cleaning process of dairy manufacturing plants. 
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Figure 1.2 A comparison of a standard  two-stage, and the alternative using 

EDTA as a one-stage cleaning procedure of the CIP system applied in 

manufacturing plants in the New Zealand dairy industry. 

 

1.2 CURRENT METHODS OF DAIRY EFFLUENT 

DISPOSAL 

 

Waste waters from dairy processing plants contain milk and milk product 

residues, as well as some additives from the specific dairy products and cleaning 

agents. They generally comprise high concentrations of organic materials such as 

proteins, carbohydrates and lipids, high concentrations of suspended solids, high 

biological oxygen demand (BOD) and chemical oxygen demand (COD), high 

nitrogen concentrations, high suspended oil and/or grease contents, and large 

variations in pH (Britz et al., 2004).  

 

There are two commonly used methods for the disposal of dairy wastes in New 

Zealand. One method is to directly discharge wastewater into local waterways. 

This requires consents from the environmental managing authorities, the Regional 
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Councils in New Zealand. This is the method used by the Fonterra Waitoa dairy 

site. An alternative disposal method is to apply the dairy effluent to pasture land 

via spray irrigation (Figure 1.3), as is used at the Fonterra Kauri dairy site in 

Northland. This process is referred to as a land treatment system (Degens et al., 

2000; Sparling et al., 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Dairy effluent applied onto pastureland via spray irrigation nearby the 
Fonterra Kauri dairy site in Northland, New Zealand. 

 

At the Fonterra Waitoa dairy site, wastewater from the manufacturing factory is 

pumped to a nearby wastewater treatment plant (WWTP) for treatment, after 

which it is discharged into the adjacent local waterway (the Waitoa River), within 

environmental stipulations of the regional council, in this case - Environment 

Waikato (Figure 1.4). 
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Figure 1.4 Dairy effluent discharges into the adjacent waterway of the Waitoa 
River after treatment at the Fonterra Waitoa dairy site, New Zealand. WWTP is 

the wastewater treatment plant. 
(Source: Google Earth) 

 

A study of the land treatment system for dairy effluent disposal indicated that a 

major disadvantage is the potential accumulation of immobile heavy metals in 

soils (Angin et al. 2005). Long term irrigation can induce changes in the quality of 

soil, and trace metal inputs sustained over long periods could pose a risk to 

groundwater (Haruvy et al., 1999; Friedal et al., 2000; Friedly et al., 2002). 

Nonetheless, the land treatment system for dairy effluent presents as an important 

and common option in New Zealand (Degens et al., 2000; Sparling et al., 2001), 
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where effluent from the dairy industry is regularly applied to nearby pastureland 

via spray irrigation such as of the Fonterra Kauri dairy site (Figure 1.3).  

 

1.3 RESEARCH AIM 

 

The primary aim of this research is to ascertain whether EDTA can be identified 

at NZ dairy plants subsequent to its use in the cleaning process of dairy 

manufacturers, and to ascertain its concentration range in the natural environment.  

The research approach is illustrated in Figure 1.5. 

 

The major objectives of the research are to:  

1) review the nature, use and concerns of EDTA especially as it relates to the 

dairy industry; 

2) develop an analytical method with appropriate sensitivity to detect and 

quantify EDTA levels in different matrices of environmental samples; 

3) quantify concentrations of EDTA in dairy wastewaters from processing 

plants, and discharged as effluent to the environment; 

4) reveal EDTA removal efficiency by the existing wastewater treatment plants 

under normal operations; 

5) investigate the presence of EDTA and any associated heavy metals in the 

local adjacent waterway, in this case – the Waitoa River; 

6) conduct a dispersal simulation of EDTA in the local surface water by the 3D 

numerical model, and determine the dispersal paths and concentrations of 

EDTA in the river; and 

7) determine EDTA in soils and ground waters following its application of 

dairy waste via a land treatment system onto pasture land; analyse levels of 

heavy metals in the associated soils and ground waters, and assess any 

significant transportation of heavy metals by EDTA;  

8) interpret results to provide recommendations for measures to mitigate any 

potential effects of EDTA on the natural environment.  
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Figure 1.5 The research approach includes four major steps to (i) identify EDTA 
occurrences in drainage of dairy processing plants, (ii) ascertain EDTA removal 
efficiency from wastewater treatment plants, (iii) investigate EDTA presence in 

the natural environment, and (iv) forecast  EDTA potential environmental effects 
on waterways subsequent to the dairy wastewater discharge. 

 

This study primarily relates to the Waitoa and Kauri dairy sites of Fonterra Co-

operative Group Limited in the North Island of New Zealand. Locations are 

shown in Figure 1.6. One of the worst case scenarios is when large volumes of 

wastewater containing high EDTA concentrations are discharged into a relatively 

Effluent discharges Dairy sludge 

Waitoa dairy site Kauri dairy site 

3D numerical modelling Further research required 

Effluent irrigation 

Dairy waste disposal 

Step1: To identify 
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dairy wastewater 
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EDTA dispersal in 

the waterway 

Step3: To 
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in the environment 



CHAPTER ONE THE VALUE AND ISSUES IN THE DAIRY INDUSTRY 

10 

small waterway, and where EDTA is not effectively removed in the wastewater 

treatment plant (European Chemicals Bureau, 2004; Schmidt et al. 2004; Grundler 

et al. 2005). The Fonterra Waitoa dairy site is likely to be one of these cases, in 

which significant amounts of EDTA have been used in the cleaning process of 

manufacturing plants, EDTA removal efficiency by the existing wastewater 

treatment plants is unknown, and large volumes of dairy effluent are discharged 

into the relatively small Waitoa River. The Fonterra Kauri dairy site is chosen as a 

case study of a land treatment system for dairy effluent containing EDTA, to 

investigate the potential risk to ground waters when the dairy effluent disposal has 

been applied for a period of time. 

 

Figure 1.6 Location of the Fonterra Waitoa and Kauri dairy sites, North Island, 
New Zealand.  

(Source: Map Toaster Topo/NZ) 
 

1.4 LAYOUT OF THESIS 

 

In order to address and achieve the objectives listed above, the thesis is structured 

as follows: 
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Chapter 2 – The Nature, Use and Concerns of EDTA. This chapter reviews the 

available literature pertinent to this study in terms of EDTA characteristics, 

application, behaviour, occurrences and risk in the eco-environment. It outlines 

the research questions associated with the current practice. A peer-reviewed paper 

entitled “EDTA in the environment: with special reference to the dairy industry” 

was published in the International Journal of Environment and Waste 

Management, pp.351-36, Vol. 1, No 4, 2007. 

 

Chapter 3 – Methodology for Measuring EDTA. This chapter reviews the 

determination of EDTA with different matrices of samples, and presents a study 

of the development and validation of the method to determine EDTA in dairy 

wastewater using HPLC – UV. A peer-reviewed paper entitled “Determination of 

EDTA in dairy wastewater and the adjacent surface water” was published in 

Proceedings of World Academy of Science, Engineering and Technology 

(WASET), pp. 50-54, Vol. 34, Oct. 2008. 

 

Chapter 4 – EDTA in Dairy Wastewater and Removal Efficiency. This 

chapter describes a case study of EDTA in the dairy industry, including 

application in the dairy cleaning process, concentration range occurring in the 

wastewater discharged from dairy manufacturing plants, EDTA removal 

efficiency by the existing site wastewater treatment plants under normal 

operations, and concentrations of EDTA in dairy effluent discharged into an 

adjacent waterway. A paper entitled “EDTA removal from the dairy wastewater 

treatment plant – a case study” has been submitted to the International Journal of 

Environment and Sustainable Development. 

 

Chapter 5 - EDTA and Associated Heavy Metals in the Waitoa River. This 

chapter establishes a profile of EDTA and heavy metals in the local adjacent 

waterway of the Waitoa River. It explains the bioavailability of heavy metals, and 

demonstrates the possibility of influencing the natural speciation of metals due to 

the occurrence of EDTA in the Waitoa River. 
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Chapter 6 – Simulation of EDTA Dispersal within the Waitoa River. Two 

approaches namely (i) approximate calculations using quasi one-dimension 

vertical mixing model; and (ii) a numerical simulation of the hydrodynamic 

processes and effluent mixing in two-dimensions (depth-averaged) were 

undertaken to enhance the understanding of the fundamental aspects of the 

transport of EDTA within the Waitoa River.  

 

Chapter 7 – Investigation of EDTA and Heavy Metals in Soils and 

Groundwater. This chapter investigates the presence of EDTA and heavy metals 

in soils and ground waters where a long-term land treatment system of dairy 

effluent or waste sludge has been applied. The potential risk to ground waters with 

current practices of dairy effluent is evaluated for the Kauri dairy site.  

 

Chapter 8 – Conclusions and Discussion. This chapter presents to interpret the 

major findings on environmental concerns of dairy effluent containing EDTA 

studied in this research, and provides suggestions for future research. A paper has 

been drafted and submitted to the International Journal of Environment and 

Waste Management. 
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2.0 CHAPTER TWO: THE NATURE , USE 

AND CONCERNS OF EDTA 
 

2.1 INTRODUCTION  

 

The available literature pertinent to the study of EDTA characteristics, use, 

occurrence, behaviour, fate and risk in the environment are reviewed in this 

chapter.  

• Section 2.2 describes the EDTA characteristics, application and 

environmental occurrence; 

• Section 2.3 reviews the elimination and degradation of EDTA in the 

natural environment; 

• Section 2.4 presents available knowledge on the environmental fate and 

risk of EDTA, including concern about the potential remobilization of 

heavy metals; 

• Section 2.5 outlines known impacts in the natural environment, 

ecosystems, and for human health (toxicity);  

• Section 2.6 discusses both natural and anthropogenically derived metals in 

soils, effects of EDTA, and soil remediation; and 

• Section 2.7 discusses implication of EDTA in the dairy industry 

 

2.2 EDTA AND ITS OCCURRENCE IN THE ENVIRONMENT 

 

2.2.1 EDTA and APCAs 

 

EDTA is the abbreviation for EthyleneDiamineTetraacetatic Acid, which was 

patented in Germany in 1935 by F. Munz (Oviedo and Rodriguez, 2003), and 

industrially manufactured in 1939 (Knepper, 2003). Its molecular weight is 292 

and empirical formula is C10H16N2O8. The molecule is a substituted diamine 

(Figure 2.1), usually marketed as sodium salts. EDTA belongs to the group of 



CHAPTER TWO THE NATURE, USE AND CONCERNS OF EDTA 

15 

aminopolycarboxylic acids (APCAs) (Nowack and Van Briesen 2005), which 

have the ability to form stable, water-soluble 1:1 complexes with di- and trivalent 

metal ions. The other important representatives of APCAs are nitrilotriacetate 

(NTA), diethylenetriaminepentaacetic acid (DTPA) etc. (Figure 2.2). 

HOOC-CH2                                                       CH2-COOH 

 

                                                       N-CH2-CH2-N 

 

HOOC-CH2                                                          CH2-COOH 

Figure 2.1 Molecular structure of EDTA.  

(Source: Oviedo and Rodriguez 2003) 

 

Figure 2.2 Structural formulae of important aminopolycarboxylates EDTA = 
EthyleneDiamineTetraacetic Acid, NTA = NitriloTriacetatic Acid, 1,3 – PDTA = 
1,3 – PropyleneDiamineTetraacetic Acid, β – ADA = β – AlanineDiaacetic Acid, 
MGDA = MethyGlycineDiacetic Acid DTPA = DiethyleneTriaminePentaacetic 

Acid 
(Source: Schmidt et al. 2004) 

 

Worldwide, EDTA is the most powerful and common chelating (complexing or 

sequestering) agent used to bind and mask metal ions that could otherwise cause 
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undesired reactions since 1939 (Conrad, 2000; Knepper, 2003). EDTA has many 

favourable properties when used in chemical engineering processes. For example, 

formation of high stability metal-EDTA complexes loses the original chemical 

characteristics of the metal ions, and they become soluble in water and insoluble 

in organic solvents. Therefore, EDTA is widely used for solubilisation and/or 

transport of metal cations in the following applications: 

(i) water treatment for scale and corrosion control in boiler and cooling waters; 

(ii)  foods to prevent degradation of flavour, colour, texture and appearance; 

(iii)  household, industrial and institutional cleaners to help to dissolve soap scum 

and hard water scale, such as in the dairy industry to facilitate the 

elimination of milk-stone linings;  

(iv) agricultural application to improve plant uptake of micronutrients needed to 

correct trace metal deficiencies ; and 

(v) a variety of other uses such as for paper-making, metal-working, 

pharmaceutical and cosmetics and environmental cleanup applications. 

 

2.2.2 Production and Consumption of EDTA 

 

EDTA is mainly produced and used as an acid (H4EDTA) or a salt (Na4EDTA). 

Only small amounts of other salts or metal complexes are produced and used. All 

production and use volumes are given here as H4EDTA equivalents for an 

environmental risk assessment. Na4EDTA is usually synthesised by 

cyanomethylation of ethylene diamine with sodium cyanide and formaldehyde, 

and H4EDTA is produced by acidification with sulphuric acid and precipitation 

from aqueous solution from its salt (European Chemicals Bureau, 2004). There 

are only a few companies in the world which manufacture complexing agents. For 

instance, in 1999 about 90% of all aminopolycarboxylic acids were produced by 

only four companies (Akzo Nobel, BASF, Dow and Solutia) in the US and 

Europe (Knepper, 2003). 

 

The European Union Risk Assessment Report (2004) indicated that 53,900 tonnes 

per annum (calculated as H4EDTA) were produced in 1999 in Europe, of which 

34,546 tonnes were consumed by European Union countries and the rest exported. 

The breakdown of usage in different applications is given in Table 2.1. The global 
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consumption of EDTA was estimated roughly as 100,000 tons/annum in 2001 

(Schmidt et al., 2004). 

 

Table 2.1 Use of EDTA in Europe for the year 1999. 

Use 
Marketed amount 

(t/a) 
Percentage 

(%) 
Household detergents 2619 7.6 

Industrial and institutional detergents 10,685 31 
Photochemicals 4,191 12 

Textiles 639 1.8 
Pulp and paper 4,002 12 
Metal plating 470 1.4 
Agriculture 5,821 17 
Cosmetic 756 2.2 

Fuel gas cleaning 595 1.7 
Polymer and rubber processing 469 1.4 

Exports 1143 3.3 
Others 2971 8.6 

Total 34546 100 
(Source: European Chemicals Bureau, 2004) 

 

Table 2.1 shows that the total consumption of industrial and institutional 

detergents in Europe was 10685 tons/year in 1999, for which the dairy and 

beverage industries were reported as major consumers accounting for about 50% 

of the total (European Chemicals Bureau, 2004). Most of those industries 

consumed less than one ton per year, and less than 5% of them used more than 10 

tons/year, of which over 50% had their own wastewater treatment plant (WWTP). 

However, about 800 customers throughout Europe were in the above industries. It 

has been recorded that 180 kg/day of EDTA was consumed at a dairy site 

producing whey proteins in Germany (European Chemicals Bureau, 2004). 

 

EDTA consumption has been steadily increased during the last decade in Western 

Europe (Schmidt et al., 2004). However, the trend of EDTA sales in Germany has 

been generally declining, even though a slight increase can be observed again 

from 1998 onwards (Figure 2.3a & b). In 1991, the German authorities established 

a voluntary agreement with the German chemical industry for a 50% reduction in 

EDTA in German surface waters, due to the perception of EDTA as an 

environmentally hazardous substance (Conrad, 2000).  
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a. Western Europe 

 

b. Germany 

Figure 2.3 Trend of sales for the aminopolycarboxylates in Western Europe (a) 

and Germany (b) from 1990-2001. EDTA = EthyleneDiamineteTraacetic 

Acid, NTA = NitriloTriAcetate, DTPA = DiethyleneTriaminePentaacetic 

Acid from Schmidt et al. 2004 

 

2.2.3 Occurrences of EDTA in the Environment 

 

In almost all applications of EDTA conducted in aqueous medium, EDTA is 

subsequently released into the environment through wastewater. As an example, 

the sale of EDTA was reported as 3894 tons in 1999 in Germany, and the amount 

of EDTA being introduced into the aquatic environment, via wastewater, was 

calculated to be about 860 tons (Knepper, 2003). The presence of EDTA in soils 

may be due to agrichemical application, or to the disposal of wastes containing 

EDTA. EDTA is highly unlikely to be detected in the air because of its very low 

vapour pressure. 
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1. Surface waters 

 

Both widespread use of EDTA in industrial and domestic applications and its slow 

removal under many environmental conditions have led to recognition that it 

likely comprised the highest concentration of anthropogenic compounds in many 

surface waters in Europe, and possibly the world (Sillanpää, 1997). Table 2.2 

shows some of the concentration ranges of EDTA found in natural waters. The 

highest value of 2460 µg/L was found in lakes in Spain, and the second highest 

value of 1120 µg/L was in English rivers. 

 

The International Association of Waterworks in the Rhine catchments area 

(IAWR) set out quality requirements for well-degradable complexing agents of 5 

µg/L, and for poorly degradable compounds as 1 µg/L. The International 

Commission for the Protection of the Rhine (IKSR) has classified only EDTA as a 

relevant chelating agent in the Rhine catchment (Knepper, 2003). 

 

Table 2.2 Occurrence of EDTA in surface waters.  

Range of Concentration 
(µg/L) 

Type of fresh water 
 

Location 
 

10 ~ 184 River Australia 
14 ~ 1120 River England 

158 River France 
2.0 ~ 104 River Germany 

6 ~ 60 River Great Britain 
900 River Jordan 

5 ~ 30 River Mississippi (USA) 
2.4 ~ 13 River Santa Ana (USA) 
2.0 ~ 45 River Switzerland 

1.7 ~ 44.0 Lake Finland 
2.9 Lake Germany 
0.52 Lake Greece 

599 ~ 2460 Lake Spain 
1 ~ 735 Lake Swedish 
1.2 ~ 4.0 Lake Theiß (Romania) 
2.6 ~ 29.2 Surface Netherlands 

 
(Data extracted from Bucheli-Witschel and Egli, 2001; Fuerhacker et al., 2003; Oviedo 

and Rodriguez, 2003; Schemidt et al., 2004; Nowack and VanBriesen, 2005) 
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2. Drinking water and groundwater 

 

EDTA has also been reported in drinking water and groundwater as EDTA 

behaves as a persistent substance, evidently derived from EDTA-contaminated 

surface waters (Nowack et al. 1997). EDTA concentrations in U.S. groundwater 

receiving wastewater effluent recharge were reported at 1-72 µg/L, and EDTA 

was found to be a conservative tracer, with higher concentrations of EDTA 

corresponding to a greater percentage of reclaimed water in drinking water 

production wells (Nowack and VanBriesen, 2005). Research by Schmidt et al. 

(2004) demonstrated that raw waters were polluted by EDTA at concentrations of 

between 1.1–11 µg/L, and the investigated drinking waters were regularly 

polluted with EDTA at concentrations of up to 7 µg/L. In Germany EDTA in 

groundwater samples recorded between 15 - 30 µg/L (Fuerhacker et al., 2003). In 

Swiss groundwater, EDTA concentrations of 0.1 to 15 µg/L were found (Bucheli-

Witschel and Egli, 2001).  

 

3. Domestic and industrial wastewaters  

 

The concentration of EDTA in all municipal wastewater treatment plant (WWTP) 

effluent and industrial WWTPs has been found to vary widely depending upon the 

type of industry, the amount applied, and any specific wastewater treatment 

procedure (Knepper, 2003). Some typical EDTA concentrations of effluents from 

industrial WWTPs were reported at between 100-20,000 µg/L in Germany, the 

highest concentration reaching 400,000 µg/L (Schmidt et al., 2004). According to 

an evaluation by the Europe Union (2004), local EDTA concentration in the 

receiving water in the immediate vicinity of industrial wastewater discharge 

points were predicted in a worst-case scenario to be as high as 12 mg/L.  

 

For the dairy and beverage industry, the research by Schmidt et al. (2004) showed 

that: 

• the possible EDTA concentrations in effluent were measured between 

2500 – 25,000 µg/L; and  
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• local EDTA concentrations in the receiving water in the immediate 

vicinity of effluent discharge points were estimated to be in the range of 

350 – 2600 µg/L as the worst-case scenario. 

 

2.3 DEGRADABILITY AND ELIMINATION OF EDTA  

 

In recent years, the degradability of EDTA has been increasingly scrutinized and 

investigated from different points of view (Nörtemann, 1999). Apparently, EDTA 

is not toxic to mammals at the occurred level in the aquatic environment, but there 

has been some concern about its potential to remobilize heavy metals out of river 

sediments and sewage sludge, which would lead to possible contamination of 

surface and groundwater (Alder et al., 1990; Xue et al., 1995; Kari and Giger, 

1996; Nowack et al., 1997). Another reason to investigate EDTA degradability is 

the fact that it can be used for the remediation of sites contaminated with heavy 

metals or radionuclides (Nörtemann, 1999).  

 

EDTA occurs in natural waters predominantly in the form of metal complexes due 

to its strong complexing characteristics and high stability. Basically, there are two 

different ways, including biological and non-biological pathways, to eliminate and 

degrade EDTA from the environment. 

 

2.3.1 Biodegradation of EDTA 

 

EDTA has been widely reported to either resist degradation or undergo slow 

biodegradation based upon the EDTA concentration detected from the 

corresponding influent and effluent (Alder et al., 1990; Allard, 1996; Kari & 

Giger, 1996; Hinck et al., 1997; Sillanpää, 1997; Eklund, 2002; Fuerhacker et al., 

2003). Influent is generally referred to as untreated wastewater before it flows into 

a treatment plant, and effluent is treated wastewater to be discharged into 

environments. For instance, an Organization for Economic Co-operation and 

Development (OECD) screening test indicated 10% degradation of municipal 
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wastewater after 19 days when EDTA concentration was between 7 and 50 mg/l 

(European Chemicals Bureau, 2004).  

 

In biodegradation tests, Eklund et al. (2002) demonstrated that EDTA was slowly 

biodegradable under aerobic conditions. The rate of biodegradation may vary 

strongly with the bacterial population present in the particular ecosystem. EDTA, 

especially in the form of the EDTA-iron-chelate, is readily decomposed on 

exposure to sunlight and yields biodegradable products. Nevertheless, the 

information collected to date strongly suggests that ready and ultimate 

biodegradability is essential for a reliable and quick elimination of the EDTA in 

the environment. The degradation mechanism and elimination of EDTA from the 

environment is discussed below. 

 

1. Effects of bacteria and chemical speciation 

 

Microbial degradation of aminopolycarboxylic acids, including EDTA, was 

reviewed by Bucheli-Witschel and Egli (2001). As a result of 40 years of study, 

three pure cultures of EDTA-degrading bacteria have been isolated, namely the 

genus Agrobacterium which is able to degrade the Fe(III)-EDTA complex; the 

strain BNC1 - a gram-negative bacterium that is able to degrade Mg-EDTA, Ca-

EDTA, Mn-EDTA, and Zn-EDTA and DSM 9103 - also a gram-negative 

bacterium which was assigned to Proteobacteria (Satroutdinov et al., 2003; 

Nörtemann, 2005; Satroutdinov et al., 2005). 

 

The first report of biodegradation (Belly et al., 1975) demonstrated decomposition 

of EDTA by microbial populations from an aerated lagoon receiving industrial 

effluents containing EDTA (Bucheli Witschel and Egli, 2001). The authors 

followed [14C] CO2 formation from an Fe(III) complex of radioactively labelled 

EDTA, which was incubated in the dark to prevent photodegradation. After an 

incubation period of 5 days, about 90% of the initially present EDTA had 

disappeared. 27% of the initial radioactivity of the acetate-labelled and 31% of the 

ethylene-labelled EDTA was recovered as 14CO2, indicating that both the ethylene 

backbone and the acetyl groups were attacked. Optimum conditions were at pH 

between 7 and 8 (Sillanpää and Pirkanniemi, 2001).  
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Biodegradation of EDTA by a mixed bacterial culture, taken from sewage, was 

studied by Nörtemann (1992) and Henneken et al. (1995). The mixed culture used 

EDTA as the source of carbon and nitrogen. The chemical speciation was 

observed to have no influence (Nörtemann, 1992). However, it was later reported 

that uncomplexed EDTA interacted negatively with the cell walls of the bacteria 

and completely inhibited the bacterial growth, whereas Mg-EDTA and Ca-EDTA 

supported, and Fe-EDTA remained inert (Henneken et al., 1995). It has been 

suggested that the thermodynamic and biological stability of metal-EDTA 

complexes correlate (Henneken et al., 1998; Egli, 2001). The slow biodegradation 

of uncomplexed EDTA was suggested to be due to the chelation of essential trace 

metals from the medium (Thomas et al., 1998). 

 

Several laboratory-scale EDTA degradation experiments have been published 

either (i) as closed bottle or batch culture experiments (Henneken et al., 1995; van 

Ginkel et al., 1997; van Ginkel et al., 1999; Satroutdinov et al., 2000), (ii) as 

Semicontinuous Activated Sludge (SCAS), (iii) as Continuous Activated Sludge 

(CAS) experiments (van Ginkel et al., 1997; Henneken et al., 1998; Kaluza et al., 

1998), or (iv) as gas-lift bioreactor experiments (Henneken et al., 1998; Thomas et 

al., 1998).  Pure cultures were used in some of the studies, whereas some used 

mixed cultures. 

 

A pure culture of Agrobacterium sp. mineralised Fe(III)-EDTA, which was the sole 

carbon source for the isolate. At a substrate concentration of approximately 10 

g/L, 90 % of Fe(III)-EDTA was degraded in three days, although photogradation 

could have played some role. Contrary to this, uncomplexed EDTA, Ni-EDTA 

and Cu-EDTA did not support bacterial growth (Sillanpää and Pirkanniemi, 

2001). In contrast to other studies discussed below in detail, the degradation rate 

was found to be higher at low pH values (initial pH 6.2 and 7.4) and the pH had to 

be maintained below 8 for degradation of Fe(III)-EDTA to occur. 

 

Work by Klüner et al. (1998), Nörtemann (1999), and Willelett and Rittmann 

(2003) demonstrated that a gram-negative, rod-shaped bacterium strain BNC1 

(DSM 6780) was found to degrade EDTA and some of its metal complexes. When 
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strain BNC1 was used, the degradability of metal-EDTA complexes depended 

strictly on their thermodynamic stability. Metal complexes with a stability 

constant over 1012, such as Fe(III)-, Co-, Cd-, Pb-, Ni-, and Cu-EDTA, were not 

metabolized. Ba-, Mg-, Mn-, Ca-, and Zn-EDTA, which have a stability constant 

below 1012, were degraded.  

 

The gram-negative bacteria strain DSM9103 is able to grow with EDTA as the 

sole source of carbon, nitrogen and energy (Witschel et al., 1997; Bohuslavek et 

al., 2001). Satroutdinov et al. (2003) used cell suspension of the bacterial strain 

DSM 9103 in the degradation experiments of EDTA. In their study, the metal 

speciation proved an important factor. The metal-EDTA (Me-EDTA) complexes 

studied could be divided into three groups according to their degradability. EDTA 

complexes with stability constant K below 1016 (log K<16), such as Mg-EDTA, 

Ca-EDTA, and Mn-EDTA, as well as uncomplexed EDTA, were degraded by the 

cell suspension at a constant rate to completion within 5-10 h of incubation. Me-

EDTA complexes with log K above 16 (Zn-EDTA, Co-EDTA, Pb-EDTA, and 

Cu-EDTA) were not completely degraded during a 24-h incubation, which was 

possibly due to the toxic effect of the metal ions released. No degradation of Cd-

EDTA or Fe(III)-EDTA by cell suspensions of strain DSM 9103 was observed 

under the conditions studied. 

 

Additionally, Pitter and Sýkora (2001) also observed that biological degradability 

of ethylenediamine derivatives depended on the type and the number of the 

substituents (mono-, di-, tri- and tetrasubstituted derivatives). They found that the 

biodegradability of ethylenediamine derivatives depended on the type and number 

of substituents. The susceptibility to biodegradation decreased in the sequence of 

substituents -COCH3, -CH3, -C2H5, -CH2CH2COOH and with polysubstitution. 

The biodegradability depended also on the kind and number of nitrogen atoms 

(Pitter and Sýkora, 2001; Sýkora et al., 2001).  

 

In summary, the biodegradability of EDTA in the environment strongly depends 

upon the bacteria, EDTA species, and natural environmental factors, such as pH. 
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2. Effect of pH and sludge retention time (SRT) 

 

Several studies have been conducted to investigate the effect of pH on the 

degradation of EDTA (van Ginkel et al., 1997 and 1999; Ek et al., 1999). The 

optimal pH for the degradation of EDTA by a mixed microbial population was 

found to be between 9 and 9.5. Complete breakdown of the target molecule was 

obtained at a hydraulic retention time (HRT) of 1.5 h. EDTA was mineralised as 

the only carbon source (Sillanpää and Pirkanniemi, 2001). 

 

Biodegradation of EDTA was found to be strongly pH dependent in a semi 

continuous activated-sludge facility (van Ginkel et al., 1997; European Chemicals 

Bureau, 2004; van Ginkel and Geerts, 2005). EDTA was effectively removed at 

pH 8.5, in contrast to pH 6.5, suggesting that microorganisms use EDTA as a 

carbon and energy source only under alkaline conditions (van Ginkel et al., 1997; 

Sillanpää and Pirkanniemi, 2001). One of the investigations into the removal of 

EDTA was conducted in a full-scale activated sludge plant operated at pH 

between 7.5 and 8.5, and 20 days of sludge retention time with dairy wastewater 

containing ~30 mg/l EDTA. Approximately 90% removal of EDTA was observed 

from the analysis of influent, effluent and sludge concentrations of EDTA. 

However, no biodegradation took place at pH of 6.7 (van Ginkel et al., 1997). 

Table 2.3 demonstrates the removal of EDTA at five activated sludge plants 

treating only or predominantly wastewater from the dairy and beer industries (van 

Ginkel and Geerts, 2005). 

 

Table 2.3 EDTA removal from 5 full-scale activated sludge plants treating 

wastewater from the dairy and beer industry.  

Plant Wastewater pH SRT* (days) Removal (%)  

I Dairy 7.5-8.1 ~20 ~90 
II  Beer 7.3-7.7 ~23 ~50 
III  Dairy 7.8-8.4 ~9 ~30 

IV (5˚C) dairy and domestic 7.5-7.8 ~40 ~35 
IV (20˚C) dairy and domestic 7.8-8.0 ~40 ~95 

V dairy and domestic 6.9-7.1 ~20 0 
VI  Dairy 8.7-8.9 20 95ª 

ª measured in a laboratory-scale activated sludge unit  
*SRT – sludge retention time 

(Source: van Ginkel and Geerts, 2005) 
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In addition to pH (Figure 2.4), sludge retention time seems to have a significant 

impact on EDTA degradation (Figure 2.5). It has been suggested that several 

organic compounds, such as EDTA, being considered recalcitrant to microbial 

attack, can be degraded at certain sludge retention time in laboratory mixed 

culture systems (Kaluza et al., 1998; Sillanpää and Pirkanniemi, 2001). In the 

dairy wastewater containing EDTA, sludge retention time above 20 days was 

found to be necessary (van Ginkel and Geerts, 2005). Another report revealed that 

pH had little impact on the removal rate of EDTA (pH 7 and 8.5), but the sludge 

retention time was far more significant (Sillanpää and Pirkanniemi, 2001). 

 
                                                                
Figure 2.4 EDTA Removal efficiency of dairy wastewater at pH 6.5 ▪ and 8.5 ▫. 

(Source: van Ginkel et al., 1997) 

 

 

Figure 2.5 EDTA removal efficiency of dairy wastewater associated with the 

sludge retention time at pH value of 8.7 - 8.9 

 (Source: van Ginkel and Geerts, 2005) 
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Accelerating EDTA degradation is likely through the mechanism of biological 

oxidation. The other reasonable explanation for the phenomena could be the 

transition of EDTA-metal complexes as the alkalinity increases, especially for the 

more stable Fe(III)-EDTA and alkaline earth metal complexes. Alkaline earth 

metals can therefore compete successfully with trace metals to form EDTA 

complexes that are more biodegradable (van Ginkel et al., 1997). The relatively 

high sludge retention time required for the degradation of EDTA could be due to 

the slow kinetics of these reactions (Sillanpää and Pirkanniemi, 2001).  

 

3. Pathway of EDTA degradation 

 

It has been demonstrated that EDTA is able to be biodegraded in the presence of 

suitable microbial populations (Henneken et al., 1998; Nörtemann, 1999; Bucheli-

Witschel and Egli, 2001; Egli, 2001 Sillanpää and Pirkanniemi, 2001; Willelett 

and Rittmann, 2003). The catabolism of EDTA by microbes involves: 

i. Bacteria take up EDTA as a source of carbon and nitrogen via an energy-

dependent carrier (Klüner et al., 1998); 

ii. The EDTA, present as metal-EDTA complexes or free EDTA, is then 

oxidized under aerobic conditions. The intermediate products of 

oxidization are mainly ethylenediaminetriacetate (ED3A)  and 

iminodiacetate (IDA) (Klüner et al., 1998); 

iii.  The final biodegradation products of EDTA are CO2, and inorganic 

nitrates and ammonia (Kaluza et al., 1998; Van Ginkel et al. 1999).  

 

2.3.2 Photodegradation of EDTA 

 

In the absence of evidence for the rapid biodegradation of EDTA, other 

mechanisms for its breakdown in the environment have been sought. One is 

photodegradation, i.e. degradation resulting from the absorption of sunlight. The 

susceptibility of a species to photodegradation depends upon its absorption 

spectrum; and the quantum efficiency of the photochemical reaction. The 
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absorption spectra of metal chelates reflect three types of electronic transitions 

(Wolf and Gilbert, 1992): 

(i) transitions typical of the central metal ion, modified by the ligand 

field of the chelating molecule; 

(ii)  charge transfer transitions between metal ion and ligands; and 

(iii)  transitions typical of the ligand. 

 

Of these, the charge transfer transitions are most likely to induce photochemical 

reactions, and typically involve absorption of radiation in the UV-visible 

wavelength range. Therefore, those species that exhibit strong absorbance bands 

in the region of the solar spectrum (wavelengths greater than 295 nm) are likely to 

be more susceptible to photodegradation. The process considered to be the most 

important for the elimination of EDTA from surface waters is direct photolysis, 

which results from the fraction of sunlight below 400 nm (Bucheli-Witschel and 

Egli, 2001). The study of Kari et al. (1995) for the Swiss River Glatt found that 

the reaction quantum yield of Fe(III)-EDTA was affected by the irradiation 

wavelength. With increase of wavelength, the quantum yield strongly decreased. 

If the solar irradiation was completely available, the half-life would range from 20 

to 100 minutes (summer to winter), corresponding to flow distances of 0.6 to 3 

km, respectively. The rapid photodegradation of Fe(III)EDTA results in a mean 

half-life of EDTA in river water of a few hours during summer and several days 

in winter. Degradation was slower in winter because of the bank vegetation 

shading the water while cloudiness also reduced the reaction rate. 

 

Other environmentally relevant EDTA species (complexes with Mg2+, Ca2+, Ni2+, 

Cu2+, Zn2+, Cd2+ and Hg2+) will not photolyse (Kari et al., 1995; Kari and Giger, 

1995 and 1996; Nowack and Baumann, 1998; Bohuslavek et al., 2001; Metsärinne 

et al., 2004). Complexes of EDTA with Co (III) and Mn (III) in aqueous solution 

were also found similarly unstable against photolysis, however, with lower 

reaction constants. The relative reaction rates of Fe (III), Co (III), and Mn (III) 

complex are in the ratio 1, 0.01 and 0.05. There is no significant contribution to 

the degradation of EDTA in the hydrosphere for the very low environmental 

concentrations of Co (III) and Mn (III) complexes and their relative low reaction 

constants (European Chemicals Bureau, 2004). 
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Photodegradation of Fe(III)EDTA is considered to be  the main degradation of 

EDTA in the aqueous medium whereas microbial processes seem to be of little 

importance (Wolf and Gilbert, 1992; Kari et al., 1995; Kari and Giger, 1995; 

Klüner et al., 1998). Major photodegradation products were identified as carbon 

dioxide, formaldehyde and ED3A by Lockhart Jr. and Blakeley (1975). However, 

there seems to be very little information available about any further degradation of 

ED3A in the aqueous environment. 

 

2.3.3 Physicochemical and Other Degradation of EDTA 

 

Apart from the biodegradation and photodegradation of EDTA, physicochemical 

degradation may also play an important role in the elimination of EDTA. 

 

The UV/H2O2 process, which is based on the photolysis of H2O2 (Madden et al., 

1997; Davis and Green, 1999; Sillanpää and Pirkanniemi 2001; Rhoads and Davis 

2004; Jiraroj et al. 2006), and the UV/ TiO2 process, in which an electron vacancy 

is produced within TiO2 when exposed to UV light (Ku et al., 1998; Krapfenbauer 

and Getoff, 1999; Rämö and Sillanpää, 2001; Pirkanniemi et al., 2003), have been 

used successfully to degrade EDTA in aqueous solution. The applicability of 

ozonation and an oxygen activation scheme (Chitra et al., 2004; Lee et al., 2004; 

Noradoun and Cheng, 2005) to remove EDTA have also been studied extensively.  

 

EDTA is not expected to be significantly adsorbed onto solid matter as EDTA is a 

hydrophilic compound. On the other hand, it has been proposed that the 

elimination of EDTA from the water column by settling of EDTA-loaded particles 

might be a relevant process in the elimination of EDTA in lakes (Nowack et al., 

1996a). This is supported by the occurrence of EDTA in lake sediments (Nowack 

et al., 1996b). Therefore EDTA adsorption onto sediments might be an important 

pathway for its elimination (Sillanpää et al., 1997).The adsorption of EDTA and 

its metal complexes, Cu, Fe(III), Hg, Mn and Ni onto lake sediment was studied 

by Sillanpää and Rämö (2001). The results revealed that EDTA and metal-EDTA 

complexes, even through being hydrophilic compounds, were indeed adsorbed 
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within one month of contact time (6.3-24.8%). The study shows that the 

adsorption of Fe(III)-EDTA complexes onto positively charged compounds, e.g., 

metal hydroxides, in solid matter might be another relevant process in some cases. 

 

2.3.4 Degradation of EDTA in Soils and Sediments  

 

A study of the biodegradability of EDTA in aquatic sediments and agricultural 

soils demonstrated slow but steady mineralization of all the EDTA carbon, 

suggesting that the degradation was accelerated by microbial action (Wolf and 

Gilbert, 1992). The biodegradation rates of free EDTA and its complex of Cu, Cd, 

Zn, Mg, Ca and Fe were comparable, while the NiEDTA showed lower 

biodegradability. No significant biodegradation was observed under anaerobic 

conditions (Bucheli-Witschel and Egli, 2001). 

 

2.3.5 Summary 

 

i. Complexing agents, such as EDTA, were once considered as stable and 

almost non-degradable compounds. In the light of later findings, it is evident 

that these substances often can be removed by favourable treatment 

processes. 

ii. According to several studies referred to above, biodegradation of EDTA is 

possible if the reaction conditions are favourable, and if EDTA degrading 

bacteria species is present. However, long sludge retention time and 

elevated pH may limit the use of this method for the removal of EDTA in 

certain industrial situations. 

iii.  Photodegradation of Fe(III) complexes of EDTA has been suggested to be 

the major pathway for the removal of EDTA from the natural aquatic 

environment. Also, the adsorption of Fe(III)-EDTA complexes onto 

positively charged compounds in solid matter might be another relevant 

process in some cases. 

iv. Advanced oxidation treatment processes discussed above have been shown 

to be promising tools for the degradation of recalcitrant organic pollutants. 
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These processes apply a combination of radiation, oxidants (ozone, 

hydrogen peroxide) and catalysts for degrading the target compounds. 

v. Chemical species play a key role in the behaviour of chelating agents and 

influences their fate in the environment. It has been shown that adsorption 

as well as photochemical and biological degradations strongly depends upon 

the metal complexed by EDTA. Moreover, taking into account the excess of 

alkaline earth and transition metals, it is expected that no chelate is present 

in uncomplexed form in wastewaters. 

vi. Contradictory results have been published concerning EDTA degradation in 

soil and sediments. Some groups found no biological EDTA breakdown, 

whereas others observed a slow microbial EDTA decomposition under 

aerobic conditions. No EDTA mineralization was found under anaerobic 

conditions. 

 

2.4 ENVIRONMENTAL FATE AND RISK 

 

EDTA has been used as an indicator of metal toxicity in a Toxicity Identification 

Evaluation Method by the U.S. Environmental Protection Agency (Hockett and 

Mount, 1996). Hence, the environmental fate of a chelating agent, such as EDTA, 

needs to be addressed with the presence of metals and how they interact with the 

chelates (Nowack, 2002). The environmental risk assessment is also related to the 

speciation under environmental conditions (Williams, 2005; Popov and Wanner, 

2005).  

 

2.4.1 EDTA metal complexes in the environment  

 

1. Stability of EDTA complexes 

 

The most important property of EDTA is to form complexes (usually 1:1-

complexes) with multivalent metal ions. The metal ion is centred in the complexes 

to form a ring with a multi-charged metal ion and EDTA while being coordinately 

bound to nitrogen and oxygen atoms. Five or six-ring numbers formed of EDTA 
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leads to extremely stable complexes. The stability of those complexes, strongly 

depending upon the pH value, is usually described by the mass action law as: 

                           

KMeZ = [MeZ(m-n)-] / [Men+]*[Z m-] 

Where    KMeZ            is the stability constant of the metal complex;       

[MeZ(m-n)-]  is the concentration of the metal complex; 

               [Men+]     is the concentration of the metal ion; and 

               [Zm-]        is the concentration of the EDTA4- anion 

                

EDTA is a strong complexing agent with a relatively weak affinity for Ca and Mg 

ions, but a high affinity for Fe, Mn, Cu, Cd, and Zn ions (Knepper, 2003). The 

stability constants for the most important metal ions and other APC complexing 

agents are given in Table 2.4. 

 

Table 2.4 Stability constants of 1:1 complexes of NTA, EDTA and [s,s]-EDDS 

with di- and trivalent metal ions determined for an ionic strength of 0.1M at a 

temperature of 25˚C, or where indicated (+); at 20°C. 

Metal 
ion 

Log K 
Me NTA 

Log Me 
EDTA 

Log K 
Me EDDS 

Mg2+ 5.47 8.83 5.82 
Ca2+ 6.39 10.61 4.23 
Mn2+ 7.46 13.81 8.95 (+) 
Zn2+ 10.66 16.44 13.49(+)  
Co2+ 10.38 16.26 14.06 
Cu2+ 12.94 18.7 18.36 
Pb2+ 11.34 17.88 12.7 (+) 
Cd2+ 9.78 16.36 10.8 (+) 
Al 3+ 11.4 16.5   
Fe2+ 8.33(+) 14.27   
Fe3+ 15.9 25 22.0(+) 
Ni2+ 11.5 18.52 16.79 

(Source: Bucheli-Witschel and Egli, 2001) 

 

2. Speciation of EDTA metal complexes 

 

Generally, the speciation of EDTA in ecosystems is predicted by equilibrium 

calculations based on the stability constants. Two major difficulties, however, 

affect the prediction of EDTA speciation under environmental conditions. One is 

that other natural ligands, including organic and inorganic compounds, compete 
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with EDTA for the metals, and the other difficulty is that the speciation 

calculation assumes that chemical equilibrium has been reached (Bucheli-

Witschel and Egli, 2001). In the case of EDTA, true speciation in the natural 

environment may differ considerably from the calculated equilibrium due to the 

slow kinetics of some metal exchange reactions (Sillanpää et al., 2001). 

  

In natural waters where a large excess of Ca2+ and Mg2+ exists, exchanging 

reactions of EDTA complexes with metals have been shown to occur at slow rates 

with a time range from hours to days. Especially Fe(III)EDTA was observed to 

exchange rather slowly with other metals in river water (Xue et al., 1995; Nowack 

and Sigg, 1996). Besides, the species of EDTA complex in river water depends 

not only on the dissolved concentrations of the various cations and other ligands 

which determine the equilibrium speciation, but also on the initial specification of 

EDTA released from the wastewater (Sillanpää et al., 2001).  

 

The speciation pattern of EDTA in a river system can be determined from a 

combination of measurements and equilibrium calculations (Nowack et al., 1997; 

Bucheli-Witschel and Egli, 2001; Stefano et al., 2003). The following distribution 

was predicted by Nowack et al. (1997): 31% Fe(III)EDTA, 30% ZnEDTA, 15% 

MnEDTA, 12% CaEDTA, 10%NiEDTA, 2% PbEDTA and 0.5% CuEDTA. More 

recently, investigations, based on a combination of measurement and equilibrium 

calculations, concluded that ZnEDTA (51%), Fe(III)EDTA (32%), CaEDTA 

(7%), MnEDTA (5%), MgEDTA (2%), PbEDTA (2%), CuEDTA (0.8%), and 

NiEDTA (<0.01%) in the natural water (Nowack, 2002; Schmidt and Brauch, 

2004). 

 

Sillanpää et al. (2001) modelled and simulated the speciation of EDTA and DTPA 

for the pulp and paper mill effluent, and subsequently in receiving waters. The 

results revealed that the main species were Mn and Ca complexes of EDTA and 

DTPA in pulp mill processing water; Fe(III) and Mn complexes of EDTA and 

DTPA in the wastewater; and Fe(III) and Zn complexes of EDTA and DTPA in 

the receiving water. 
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2.4.2 Exchange Reactions of Metal Complexes and Metal Remobilization 

 

The effect of EDTA on metal mobility depends upon the speciation of EDTA 

complexes under the conditions of natural waters, which predict the metal ions are 

likely to be transported together with EDTA under environmental conditions (Xue 

et al., 1995). Metal ion exchange reactions occur in river waters as the released 

EDTA complexes are usually different from those estimated at thermodynamic 

equilibrium. Remobilization of metals from sediments by EDTA would depend on 

the competition between EDTA in solution and binding of metals to particular 

materials. The following discussion outlines the metal exchange, adsorption, 

dissolution, and remobilization processes. 

 

1. Metal exchange 

 

The equilibrium speciation of a metal complex system is established under the 

concentrations of all metals and ligands, and the stability constants of all 

complexes. A new equilibrium will be reached, if another metal-ligand complex 

or metal ion is added to the solution, when the kinetic of the reaction is not 

considered. Also, the re-equilibration of a natural system undergoing 

perturbations of metals or ligands cannot be expected to be rapid without the 

detailed kinetics knowledge (Sillanpää et al., 2001; Nowack, 2002). For instance, 

the exchange reactions of Fe(III)EDTA are notably slow in the natural water even 

if it is the most important released EDTA species (20 – 90%) with a very high 

stability constant (LogK of 25) (Kari et al., 1996; Nowack et al., 1996a; Nowack 

et al., 1997). Nonetheless, the study proved that exchange reactions did happen 

under natural aquatic conditions with an excess of Ca rather than trace metals 

(Sillanpää, 2005). 

 

Additionally, the same mechanism of metal exchange has been applied to remove 

other heavy metal complexes with EDTA from soils (e.g. Pb, Cu, Zn etc.) (Kim 

and Ong, 1999; Ridge and Sedlak, 2004).  

 

2. Adsorption and dissolution 
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EDTA has been developed to solubilize metals and keep them in the solution for 

many applications. It is most likely that EDTA decreases heavy metal adsorption 

by forming dissolved complexes, even if this only happens with very high 

concentration of EDTA (Stumm, 1995). Conversely, EDTA could significantly 

increase metal adsorption onto mineral surfaces at low concentration as EDTA 

complexes themselves are adsorbed onto the surface, which is similar to a ligand-

exchange reaction to form complexes in the solution (Nowack, 2002).  

 

The speciation of EDTA significantly affects the adsorption of EDTA complexes, 

as do the structure of EDTA complexes and the environmental conditions. 

Adsorption of metal-EDTA complexes to iron and aluminium oxides has been 

studied by several authors (Xue et al., 1995; Nowack et al., 1996; Nowack and 

Sigg, 1996; Nowack, 2002). The EDTA chelates of divalent metals Ca, Zn, Ni, 

Cu, Co(II) and Pb all showed the same ligand-like adsorption behaviour. Pb (II)-

EDTA was adsorbed even more strongly. For trivalent metals, the EDTA chelates 

of LaEDTA and BiEDTA were adsorbed very strongly over the entire pH range, 

while Co (III)-EDTA was weakly adsorbed at low pH. Fe (III)-EDTA was also 

weakly adsorbed over the whole pH range (Nowack and Sigg, 1996). A much 

stronger adsorption of Co (II)-EDTA onto δ-Al2O3 occurred than for Co (III)-

EDTA, which was attributed to the differences in the stereochemistry of these 

chelates (Nowack, 2002).  

 

The dissolution of mineral phases by EDTA could be attributed to ligand 

exchange reactions (Stumm, 1997). The metal–oxygen bonds on the surface are 

weakened upon adsorption of the ligand, and the release of metal species from the 

surface into the adjacent solution is enhanced. Nowack and Sigg (1997) 

investigated systematically the influence of complexing on the dissolution of iron 

oxides by EDTA chelates. Conversely, the dissolution of iron oxides by 

uncomplexed EDTA was studied extensively by Nowack (2002), who found the 

rate of the ligand-promoted dissolution was related to the concentration of surface 

bound ligands. He noted particularly that, a change in the oxidation state of the 

coordinated metal ions could completely change the behaviour of the metal and 

the chelates (Nowack, 2002; Fisher et al., 2004). For example, the oxidation of Co 

(II) EDTA to Co (III) EDTA, the stability constant of Co (III) EDTA (LogK = 
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39.8) increases by a factor of 1020 relative to Co (II) EDTA (LogK = 16.3). 

Therefore, Co (III) EDTA is extremely stable and rather mobile in aquatic 

systems because of its exhibiting only very weak interaction with surfaces. 

 

3. Metal  remobilization 

 

Metals adsorbed onto a solid can be remobilized by EDTA chelates (Nowack et 

al., 1996a; Sillanpää et al., 1997, Sillanpää and Romo, 2001; Ceremigna et al., 

2005). Consequently, EDTA has been used for many years as an extractant for the 

metals from soils and sediments to characterize the plant available fraction. EDTA 

chelates have also been proposed as enhancers for the phytoremediation of heavy 

metals by plants and soil washing (Hong and Jiang, 2005; Juang and Wang, 2000; 

Manouchehri and Bermond, 2006; Manouchehri et al., 2006). 

 

Remobilization of metals from sediments by EDTA depends upon the competition 

between EDTA in solution and binding of metals to particular matters, mostly by 

complexing with surface ligands (Knepper, 2003; Di Palma and Mecozzi, 2007). 

For example, Eklund et al. (2002) added EDTA to pulp mill effluent in the 

laboratory and compared it to wastewater without EDTA. The results showed that 

EDTA markedly increased the solubility of Zn, Cd, Pb, Fe, Ni and Cu, whereas 

the solubility of V, Mo, Tl, As, and Cr was not changed by the presence of EDTA. 

 

High concentration of EDTA has the potential to significantly remobilize heavy 

metals from river sediments. Interestingly, the high concentration of EDTA does 

not automatically coincide with a high remobilization of heavy metals as the 

initial released speciation of EDTA is likely to be playing a key role that 

influences its potential to remobilize heavy metals (Kari and Giger, 1996). The 

importance of speciation of EDTA for the evaluation of remobilization process 

was also demonstrated by Nowack et al. (2001), who investigated the 

remobilization of metals from the surface of synthetic iron oxides and from river 

sediment by different EDTA chelates. They observed that (i) the order of the 

remobilization rate of Zn2+ from goethite was CaEDTA > Fe(III)EDTA, reflecting 

the slow exchange reaction of Fe(III)EDTA; (ii) the order of the remobilization 

rate of Pb2+ from goethite was found as Fe(III)EDTA > CaEDTA > ZnEDTA, 



CHAPTER TWO THE NATURE, USE AND CONCERNS OF EDTA 

37 

Fe(III) EDTA surprisingly illustrating the fastest exchange rate; and (iii) the 

remobilization rate of Zn2+ from a natural river sediment was CaEDTA > 

CuEDTA > Fe(III)EDTA.  

 

In summary, the concentration of EDTA in solution and the initial released 

speciation of EDTA chelates are the key factors to evaluate the effect of EDTA on 

the remobilization of heavy metals from river sediments and treated sludge. Metal 

concentration, pH, nature of the sediment, and the interactions between EDTA 

chelates and metals also affect the remobilization process. It can be concluded that 

significant remobilisation processes are only likely to occur in extreme cases. For 

instance, high amount of EDTA release leads to an increase of metals with the 

high conditional complex-forming constants. There is no general rule to apply to 

all surface waters for the effect of EDTA on the heavy metal remobilization 

process. 

 

2.4.3 Minimisation of EDTA Use and Substitutes 

 

On a global scale EDTA is the most frequently used complexing agent in a variety 

of industrial applications, largely because it is the cheapest and most suitable 

complexing compound for many technical purposes (Nowack et al., 1997; Friedly 

et al., 2002). On the other hand, EDTA can be included in the group of polar 

persistent pollutants as it is not, or only slowly biodegradable. Consequently, the 

use of EDTA and its risk need to be minimised whenever possible (Sillanpää, 

1997; Oviedo and Rodríguez, 2003; Fuerhacker et al., 2003; Knepper, 2003; 

Grundler et al., 2005). In order to limit the EDTA risk, efforts have been 

undertaken to reduce EDTA emission by substitution and changes in technical 

processes since the late 1980s (Conrad 2000). 

 

Apart from EDTA, the most useful chelating agents are the 

aminopolycarboxycarboxylate group (Nowack and VanBriesen, 2005) including 

nitrilotriacetic acid (NTA), ethylene diamine disuccinate (EDDS) and diethylene 

triamine pentaacetic acid (DTPA) (Sillanpää, 1997; Fuerhacker, 2003; Cokesa Et 

al., 2004; Schmidt et al., 2004).  
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1. NTA 

 

NTA contains four donor atoms and is a so-called quadridentate chelating ligand 

(Fig. 2.2). It forms 1:1 complexes with metal ions, and the stability of the NTA 

complex is several orders of magnitude lower than that of its EDTA complex, as 

can be expected from the lower chelating capacity of NTA (Table 2.4).  

 

NTA is mainly eliminated in biological steps such as oxidation ponds and 

lagoons, activated sludge systems, or trickling filters (Alder et al., 1990; Kari and 

Giger, 1996; Egli, 2001; Nörtemann, 2005). For elimination efficiencies for NTA 

of different wastewater treatment plants was suggested over 90% and 

recommended that EDTA should be substituted by NTA wherever possible (Kari 

and Giger 1996; Madsen et al.; 2001). According to numerous laboratory studies, 

NTA is biologically degraded in fresh water (Egli, 2001). However, contradictory 

results have been reported on its degradation in marine and estuarine water 

samples (Hunter et al. 1986).  

 

NTA is recommended as a substitute of EDTA within reasonable limits by the 

UBA (Umweltbundesamt, i.e. the German Federal Environmental Agency), 

whereas NTA use is not recommended or even restricted to special application in 

some other countries because of the assumed but not finally proven potential 

carcinogenicity (Conrad, 2000; Knepper, 2003 ). NTA is likely to have negative 

effects on heavy metal removal during wastewater treatment and on the 

mobilisation of metals from sediments in receiving waters (Perry et al., 1984; 

Madsen et al.; 2001). 

 

2. EDDS 

 

EDDS (Ethylene Diamine Di-succinic Acid) is a structural isomer of EDTA and a 

well biodegradable complexing agent with low toxicity. The field of possible 

application is therefore restricted due to the relatively low stability of their metal 

complexes (Table 2.4) (Nörtemann, 2005). 
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In 1999, Jaworska et al. completed an environmental risk assessment of [S, S]-

EDDS (thereafter as EDDS) for a new, biodegradable, strong transition metal 

chelator. They concluded that completed biodegradation of EDDS was observed 

in all environmental matrices; and the predicted environmental concentration was 

around 1µg/L, which was well below the concentrations causing adverse effects 

towards the ecosystem. EDDS was evidently safe at the anticipated usage volumes. 

In some applications EDDS was suggested to replace the more poorly degradable 

EDTA (Schowanek et al., 1997; Bucheli-Witschel and Egli, 2001; Vandevivere et 

al., 2001; Tandy et al., 2006a). Furthermore, EDDS was suggested  as a promising 

approach to reduce heavy metal contents in soils (Tandy et al., 2004; Hauser et al., 

2005; Luo et al., 2005; Meers et al., 2005a; Tandy et al., 2006b & c). Hence, 

EDDS seems to be an appropriate substitute for EDTA with many areas of 

application, except it is much more expensive (Conrad, 2000).  

 

3. DTPA 

 

The biodegradation of DTPA has been shown to not occur, or only at extremely 

slow rates (Means et al., 1980; Hink et al., 1997; Alarcón et al., 2005) similar to 

EDTA. Regarding the application of DTPA, Conrad (2000) stated that the 

environmental problems of EDTA had not really been solved, but only shifted to 

another complexing agent.  

 

4. Other APCs Chelating Agents 

 

Apart from the above compounds, a few other chelating agents of amino 

polycarboxylates (APCs) could also be used as a substitute for EDTA. For 

instance, 1, 3-propylene diamine penta-acetic acid (PDTA) and β-alanine diacetic 

acid (β-ADA) are being used as oxidizing agents and as substitutes for EDTA, and 

methyl glycine diacetic acid (MGDA) (as well as NTA) are suggested as a 

replacement for the predominantly used EDTA in the dairy industry (Knepper, 

2003). 
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2.5 ENVIRONMENTAL IMPACT OF EDTA 

 

EDTA has been selected by the European Union authorities as one of the priority 

substances for extensive evaluation due to environmental concerns (European 

Commission, 2003). The extensive Technical Guidance Document (TGD) of the 

European Union was followed by the European risk assessment process. A 

comprehensive risk assessment of EDTA, which includes a critical review and 

discussion of about 250 validated references, was completed in 2004 (European 

Chemicals Bureau, 2004). 

 

2.5.1 Risk of EDTA in the Natural Environment  

 

1. Atmosphere 

 

There is no concern about possible EDTA emission into the atmosphere because 

of its relatively low toxicity and physical properties. Likewise a risk to terrestrial 

organisms is not expected (European Chemicals Bureau, 2004; Grundler et al., 

2005). 

 

2. Aqueous environment 

 

In the aqueous environment, the risk of EDTA depends upon the speciation of 

EDTA complexes occurring. The potential risk of EDTA to the aqueous 

environment is generally assessed by comparing the predicted no-effect 

concentration (PNEC) with the predicted environmental concentration (PEC) for 

the discharge from identified sources. A potential risk is indicated to the aqueous 

environment when the ratio of PEC/PNEC is >1 for an emission site (European 

Chemicals Bureau, 2004). 

 

Toxicity 
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In the Risk Assessment Report of EDTA, relevant short-term and long-term 

ecotoxicity tests were evaluated (European Chemicals Bureau, 2004). Valid long-

term tests are available on three different species: Fish, Daphnia and Algae 

(Sorvari and Sillanpää, 1996; Sillanpää and Oikari, 1996). Daphnia appeared to be 

the most sensitive species with 21-day NOEC (long-term no effect concentration) 

of 25 mg/L of Na2H2-EDTA which is comparable to 22 mg/L of H4-EDTA 

(European Chemicals Bureau, 2004). The PNEC of 2.2 mg/L for EDTA in the 

aqueous environment was then determined as an assessment factor of 10 

(Grundler et al., 2005). 

 

In terms of the potential risk of EDTA, an extreme case is likely to occur in 

relatively small surface waterways experiencing large amounts of EDTA release. 

Thus, EDTA may pose a risk to the local aqueous environment in a situation 

where EDTA is used as an industrial cleaning agent to prevent precipitation of 

calcium, magnesium and heavy metals at large dairy and beverage plants. 

Grundler et al. (2005) reported that a high EDTA consumption of 10 tonnes per 

annum with no effective EDTA removal in the wastewater treatment plants 

(WWTPs) led to a PEC of 2.6 mg/L in the receiving surface water. Consequently, 

an appropriate risk reduction measure should be considered to prevent any 

potential risk (PEC >2.2 mg/L) for the local aqueous environment (European 

Chemicals Bureau, 2004). 

 

Bioaccumulation  

 

A highly polar, water soluble compounds such as EDTA would not be expected to 

bioaccumulate by partitioning into the lipid component of aquatic organisms 

(Madsen et al., 2001; Knepper, 2003). EDTA and other aminopolycarboxylates 

(APCs) will not, therefore, bioaccumulate in the aquatic food chain, which is 

supported by the fact that the concentration of EDTA in fish is no higher than in 

the surrounding water (Wolf and Gilbert, 1992; European Chemicals Bureau, 

2004; Schmidt and Brauch, 2004).  

 

Stimulation of Algal Growth 
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The stimulating effects of EDTA on the growth of algae and other organisms 

under laboratory conditions are well documented (Wolf and Gilbert, 1992; Eklund 

et al., 2002; Oviedo and Rodríguez, 2003). This phenomenon could be relevant, 

since the EDTA molecule contains approximately 10 % of nitrogen that could 

eventually be available to the aquatic microbiota. EDTA could also have an 

indirect effect when the exchange reactions of metal complexes occur in surface 

waters (Wolf and Gilbert, 1992; Sillanpää, 1997; Nirel et al., 1998). For instance, 

EDTA redissolves the calcic and ferric phosphates, releasing phosphorous or Fe3+ 

to stimulate the algal growth. 

 

Based on the above discussion, EDTA may theoretically extract trace levels of 

essential metals from sludge and humic acids to make them more available for 

algae and other plants. However, the stimulation effect of EDTA appears to be 

negligible as the levels of EDTA and metals in surface waters are too low to make 

the nutrients available for the algal growth. 

 

Heavy metal mobilisation 

 

EDTA is able to mobilise heavy metals in the environment that is influenced by a 

series of factors. However, it appears that no conclusive experimental evidence of 

heavy metal mobilisation potential of EDTA at environmentally realistic 

concentrations is available (Knepper, 2003). This phenomenon can only occur in 

extreme cases of the high local concentration of EDTA (European Chemicals 

Bureau, 2004). 

 

In summary, there appears to be little risk to the aqueous environment due to the 

influence of EDTA on the mobility of heavy metals, eutrophication and nutrient 

deficiency. 

 

2.5.2 Mammalian Toxicology and Human Health of EDTA 

 

In the aquatic environment, a large stoichiometric excess of calcium ions is likely 

to exist. The complex of CaEDTA should therefore be used for the safety 
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assessment. The occurrence of EDTA in drinking water is mainly via the oral 

route, though washing will also involve some dermal exposure. 

 

1. Acute and long term toxicity 

 

The published data indicate that conversion from the tetrasodium salt to the 

calcium disodium salt greatly reduces toxicity. In different studies after oral and 

dermal application, EDTA was evaluated to be no concern (Wolf and Gilbert, 

1992; Grundler et al., 2005).  

 

2. Teratology 

 

Where studies involving EDTA have caused congenital abnormalities, there is a 

hypothesis that it is caused by the EDTA-induced zinc deficiency (Wolf and 

Gilbert, 1992). From a study on subcutaneous administration of CaEDTA, 

ZnEDTA and a mixture of the two to rats, it was concluded that CaEDTA is 

teratogenic in rats, and protection is afforded by incorporation of zinc in the 

chelate (European Chemicals Bureau, 2004). 

 

3. Carcinogenicity 

 

Based on the bioassay of Na3EDTA for possible carcinogenicity on rats and mice, 

there was no specific data on kidney toxicity, and no tumours related to the 

treatment in either species. Thus, there is no concern in terms of carcinogenic 

potential of EDTA (European Chemicals Bureau, 2004; Grundler et al., 2005). 

 

4. Acceptable daily intake for humans 

 

Reflecting EDTA’s low toxicity to humans, EDTA is permitted as an additive to a 

range of foodstuffs in the United States (U.S. Code of Federal Regulations, 2006), 

the Netherlands, the United Kingdom and Denmark (Wolf and Gilbert, 1992; 

Yuan and Van-Briesen, 1997). 
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The level causing no toxicological effect in rats was suggested as 5000 ppm in the 

diet, equivalent to 250 mg/kg. Based on this, the WHO level of acceptable daily 

intake for human is 0 to 2.5 mg/kg calculated as CaNa2EDTA (1/100 of no-effect) 

(Wolf and Gilbert, 1992). The levels of EDTA in rivers used for the preparation of 

drinking water are generally below 25 µg/L, and therefore pose no risk to human 

health. (European Chemicals Bureau, 2004) 

 

Heimbach et al. (2000) reported a safety assessment of iron EDTA (sodium iron 

(III) ethylenediaminetetraacetic acid), including toxicological, fortification and 

exposure data. The data over the past 20 to 30 years has demonstrated that iron 

EDTA was safe and effective for iron fortification of food products and met the 

standards of “reasonable certainty of no harm”.  

 

2.6 METALS AND EDTA IN SOILS 

 

2.6.1 Mineral and Trace Element of Milk and Dairy Products 

 

The effluent from the dairy industry originates from the manufacturing process, 

utilities and services. The various sources generated from a dairy processing are 

spilled milk, spoiled milk, skimmed milk, whey, and wash water from milk 

equipment and floor washing (Bylund, 1995; Rajeshwari et al., 2000; Britz et al., 

2004).  

 

The minor and trace element contents in milk and dairy products have been well 

documented (Coni et al., 1994, 1995 and 1996; Lindmark-Månsson et al., 2003; 

García et al., 2006).  The levels of trace elements are correlated with animal 

feeding, year period of sample collection, environmental conditions and 

manufacturing processes (Coni et al. 1995; García et al. 2006). Selected trace 

elements were analyzed by Coni et al. (1996) in sheep and goats milk as well as 

for typical cheese. Also, concentration of major (Ca, Mg, P, K, Na and S) and 

trace (Fe, Mn, Cu, Zn and Al) in commercial goat fluid milk, evaporated, 

powdered, yogurt, and cheese products manufactured in the US were evaluated for 
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compositional differences by Park (2000). Lindmark-Månsson et al. (2003) chose 

Na, K, Cl, Ca, Mg, P, Fe, Cu, Zn, Mn, Cr and I as the minerals and trace elements 

to investigate the composition of Swedish dairy milk affected by geographic and 

seasonal changes. Lante et al. (2006) also contributed to the study of the 

characterisation of the mineral profile of dairy products (Crescenza and 

Sequacquerone cheeses), together with the corresponding milk. Macroelements 

(Ca, P, Na, Mg, K and S) and microelements (Al, Fe, Cu, Zn, Pb, Se and Cd) were 

analysed by inductively coupled plasma optical emission spectrometer (ICP-

OES). 

 

In summary, the minerals and trace metals of dairy milk could differ due to the 

diet, seasonal and geographic changes, and generally they are Ca, Mg, K, Na, Fe, 

Zn, Al, Cu, Mn, Cd and Se. 

 

2.6.2 Metals in Soil 

 

The use of wastewater for irrigation of agricultural land is a world-wide practice, 

which offers an economic alternative to disposal into surface waters and it 

contributes to nutrient cycling (Haruvy et al., 1999; Friedel et al., 2000; Angin et 

al., 2005). Furthermore, long term irrigation can induce changes in the quality of 

soil, especially as trace element inputs are sustained over long periods and may 

lead to the risk of groundwater contamination (Stuart and Milne, 2001; Silveira et 

al., 2003; Sinha et al., 2006).  

 

Where wastewater is being used for the irrigation, there are various reports that 

describe the resulting effects on the physical and chemical properties of the soils 

(Shahalam et al., 1998; Friedel et al., 2000; Zhou et al., 2003; Angin et al., 2005; 

Dawes and Goonetilleke, 2006), plant or crop growing (Shahalam et al., 1998; 

Angin et al., 2005; Sinha et al., 2006), environment (Shahalam et al., 1998) and 

even birds (Laposata and Dunson, 2000). The study of Angin et al. (2005) 

suggested that the major disadvantage of the wastewater irrigation was the 

accumulation of immobile heavy metals in soils.  
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Effluent from milk processing to dairy products by dairy factories is commonly 

irrigated onto land in New Zealand (Degens et al., 2000; Sparling et al., 2001). 

There are not many studies about heavy metals in soil relevant to the dairy 

effluent. However, the suitability of dairy plant sludge for fertilisation of 

Cambisolic soil (soils that are either young or, depending on the climate, 

processes of soil formation occur slowly.) was investigated in northwest Spain by 

López-Mosquera et al. (2000). Soil properties (pH, electrical conductivity, organic 

matter content, N P, Ca, Mg, Na, K and Al) and soil and plant tissue heavy metal 

contents (Hg, Pb, Cd, Cu, Zn, Ni, and Cr) were determined in 12 grassland plots 

fertilised over a 1-4 year period with dairy sludge and conventional fertiliser 

(cattle slurry and mineral fertilisers), and in six meadows fertilised with 

conventional fertilisers only. Heavy metal contents were also determined in plant 

tissues from different plots. This study suggested that (i) application of dairy-plant 

sludge to grassland on a Cambisolic soil did not lead to harmful accumulation of 

heavy metals in the short- or medium-term (4 years). (However, the dairy sludge 

was a source of heavy metals for the soil); and (ii) long-term sludge application 

would eventually lead to a build-up of heavy metals in soils and plants. 

 

2.6.3 EDTA and Soil Remediation 

 

Metal contamination of soils by natural processes or human activities is one of the 

most serious ecotoxicological problems across the globe. Heavy metals may be 

adsorbed via specific or non-specific adsorption reactions in soils (Sauvé et al., 

2000; Mulligan et al., 2001; Luo et al., 2003; Silveira et al.; 2003; Tandy et al. 

2004). Ion oxides and organic matter are the most important soil constituents 

retaining heavy metal (Li and Shuman, 1996; Mulligan et al., 2001; Gyliené et al., 

2004; Lim et al., 2005).  

 

EDTA extraction 

 

Heavy metals including lead, chromium, arsenic, zinc, cadmium, copper and 

mercury can cause significant damage to the environment and human health. The 

cleanup of the soils contaminated with the heavy metals has been one of the most 

difficult tasks for environmental engineering (Sun et al. 2001). Manouchehri et al. 
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(2006) studied the thermodynamic equilibrium (in 24 hours) and kinetics about 

major and trace metal extraction from soil by EDTA. The study of Hong and 

Jiang (2005) highlighted several factors relevant to selecting suitable chelating 

agents, including the chelating agent strength and selectiveness toward the target 

metal as well as its viability of recovery and reuse. 

 

Various in-situ and ex-situ remediation techniques have been employed 

(Manouchehri and Bermond, 2006). A particularly promising technique is ex-situ 

soil washing with chelating agents (Peters, 1999; Juang et al., 2000; Gyliené et al., 

2004; Lim et al., 2005). The advantage of the method is the high potential 

extraction efficiency and the specificity for heavy metals with low cost. 

 

Due to the similarities between soil and sediment mineralogy, it can be applied 

with minor modification to contaminated sediment remediation (Ceremigna et al. 

2005; Di Palma and Mecozzi, 2007). 

 

EDTA for Phytoextraction 

 

Besides the extraction of chelating agents, phytoextraction has been used as an 

alternative remediation technology for soils contaminated with heavy metals. 

Natural phytoextraction is generally conceived as too slow working. Subsequently, 

chemically enhanced phytoextraction has been developed to accelerate this 

processing (Afyuni and Rezaeinejad, 2006; Lombi et al., 2001; Madyiwa et al., 

2003; do Nascimento et al., 2006). Several chelating agents, such as EDTA, have 

been studied for their ability to mobilize metals in soils and increase metal 

accumulation in plants (Wong et al., 2004; Meers et al., 2005a and 2005b; Ruley 

et al. 2006). This approach makes use of high-biomass crops that are induced to 

take up large amounts of metals when their mobility in soil is enhanced by 

chemical treatments, like EDTA. 

 

Despite the success of this remediation technology, some concerns have been 

shown about the enhanced mobility of metals in soil and their potential risk of 

leaching to ground water (Cooper et al., 1999; Tandy et al., 2006a). Also a 

strategy for managing leaching losses needs to be considered as a part of EDTA-
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enhanced phytoremediation plan (Thayalakumaran et al., 2003). Uncustomized 

additions of chelates may result in unsuccessful phytoremediation, and 

subsequently cause negative effects on the eco-environment (Song et al., 2005). 
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2.7 IMPLICATION OF EDTA IN THE DAIRY INDUSTRY  

 

EDTA has been used as an additive to caustic (usually sodium hydroxide) 

cleaning solutions to facilitate removal of Ca, Mg and minerals during the 

cleaning of dairy industry processing plants (Wolf and Gilbert, 1992; European 

Chemicals Bureau, 2004; Schmidt et al., 2004). Significant amounts of EDTA 

have been applied in the dairy industry, in particular during the high milk 

production season, and due to the frequent specification change of milk products. 

The literature indicates that significant use of EDTA leads to high EDTA 

concentrations in the plant wastewater (Kari and Giger, 1996; European 

Chemicals Bureau, 2004). Subsequent discharges of the effluent is likely to cause 

a high local concentration of EDTA in receiving waters, and causes further 

environmental issues relating to heavy metals (Oviedo and Rodriguez, 2003; 

Nowack and Van Briesen, 2005). In particular, the effluents from a large dairy 

factory (Figure 2.6) discharged to a relatively small stream have the potential to 

pose a risk to aquatic environments. 

 

Figure 2.6 A large-scale dairy factory of New Zealand in a rural setting.  

 

The minerals and trace metals in milk and dairy products have been well 

documented as Ca, Mg, K, Na, Fe, Zn, Al, Cu, Mn and Cd (Lindmark-Månsson et 

al., 2003; García, 2006). EDTA complexes not only with Ca and Mg, but also 

with trace metals of milk and added minerals in the dairy industry.  
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For dairy factories with their own wastewater treatment plants, EDTA can be 

significantly removed under favourable conditions. This process is evidently 

dependant on the speciation of EDTA and wastewater treatment procedure 

(Bucheli-Witschel and Egli, 2001; Sillanpää and Pirkanniemi, 2001; Van Ginkel 

and Geerts, 2005). The study of Van Ginkel and Geerts (2005) for dairy effluents 

revealed that the elevated pH value evidently accelerated the degradation of 

EDTA during the wastewater treatment processing. In terms of the elevated pH 

accelerating EDTA degradation, it could possibly be through the mechanism of 

biological oxidation. The other reasonable explanation for the phenomena could 

be the transition of EDTA-metal complexes as the alkalinity increases, in 

particular for the most stable Fe(III)-EDTA and alkaline earth metal complexes. 

Alkaline earth metals can therefore compete successfully with trace metals to 

form EDTA complexes that are more biodegradable (van Ginkel et al., 1997). In 

addition to pH, sludge retention time seemed to have a significant impact on 

EDTA chelate removal from dairy effluents (Sillanpää and Pirkanniemi, 2001; 

Van Ginkel and Geerts, 2005). The relatively high sludge retention time required 

for the degradation of EDTA could be due to the slow reaction rate.  

 

Study of land treatment systems for dairy effluents indicates that the major 

disadvantage of the wastewater irrigation is the accumulation of metals, 

particularly sodium, in soils. Long term irrigation can induce changes in the 

quality of soil. Complexation and mobilization of divalent metals such as Ca and 

Mg by EDTA may further degrade soil structure. Sustained inputs of trace 

elements may induce a risk to ground water due to EDTA chelates (Haruvy et al., 

1999; Friedel et al., 2000). There are not many studies about heavy metals in soil 

in relation to the dairy effluents. However, the study of López-Mosquera et al. 

(2000) suggested the dairy sludge was a source of heavy metals for the soils. 

 

2.8 CONCLUSIONS 

 

(i) EDTA is the most powerful and widely used chelating agent to complex 

undesirable cations in many industrial areas. Almost all applications of 
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EDTA are conducted in aqueous media and it is subsequently released into 

the environment through wastewater. Hence EDTA is likely to be present in 

the highest concentration of all anthropogenic compounds in many surface 

waters, and also has been detected in drinking water and groundwater. 

(ii)  EDTA generally has a low toxic impact for both humans and natural 

environments. However, there are some concerns about its poor 

biodegradation in conventional wastewater treatment plants and natural 

environments, and its remobilisation of heavy metals. As a chelating agent 

EDTA was once considered as a stable and almost non-degradable 

compound. In the light of later findings, it is evident that EDTA can be 

removed by favourable treatment processes, including biodegradation, 

photodegradation of Fe(III)EDTA and advanced oxidation treatment 

processes. Contradictory results have been published concerning EDTA 

degradation in soil and sediments. 

(iii)  Chemical species plays a key role in the behaviour of EDTA and influences 

its fate in the environment. One of the main concerns about using EDTA is 

the significant remobilisation of heavy metals. However, this is only likely 

to occur in rare cases where high concentrations of EDTA, heavy metals, 

and unfavourable environmental conditions are present. 

(iv) In the New Zealand dairy industry, EDTA has been used as an additive into 

caustic cleaning solutions to facilitate the removal of Ca, Mg and minerals 

during the cleaning process. Significant use of EDTA may lead to high 

concentrations in wastewater from processing plants’, subsequent 

discharges of effluent is likely to cause a high concentration of EDTA in 

local receiving water, and to create further environmental issues relating to 

heavy metals. This is the first investigation into the effects of EDTA in New 

Zealand. 
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3.0  CHAPTER THREE: METHODOLOGY 

FOR MEASURING EDTA 
 

Measuring EDTA is a critical component of this research. To date there is no 

international standard method available. In this chapter, relevant analytical 

techniques to quantify EDTA in multi-media samples are reviewed, and an 

HPLC-UV analytical method developed that is based on the nature of dairy 

wastewater and potential interference. A paper titled ‘Determination of EDTA in 

dairy wastewater and adjacent surface waters’ by Xie, C. Z.; Healy, T.; Robinson, 

P.; Stewart, K. has been peer-reviewed and published in Proceedings of World 

Academy of Science, Engineering and Technology (WASET),Vol. 34, pp. 50-54, 

Oct. 2008. 

 

3.1 OVERVIEW OF PRESENT ANALYTICAL TECHNIQUES 

FOR EDTA 

 

A number of techniques exist for the analytical determination of EDTA. Relevant 

assays include gas and liquid chromatography, capillary electrophoresis, and the 

recently developed method of ion chromatography. The method to be selected 

depends upon the individual problem. 

 

Most of the methods currently employed for the analysis of mixtures containing 

EDTA are based on gas chromatography (GC) or high performance liquid 

chromatography (HPLC). 

 

3.1.1 Gas Chromatography 

 

The high sensitivity of GC enables low level determinations of EDTA to be 

detected. The EDTA must firstly be isolated from its aqueous matrix in a pre-

concentration step. This is generally by ion exchange- solid phase extraction. 
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After elutriation, the EDTA is derivatised to produce a volatile species for GC 

determination. 

 

The sample preparation of EDTA involves their conversion to readily volatile 

alkyl ester derivatives, like methyl, ethyl or 1-propyl (Lee et al., 1996; Sillanpää et 

al., 1998). Detailed studies have demonstrated that often the derivation to propyl 

or butyl esters yields better results than derivatization to methyl esters (Wolf and 

Gilbert, 1992; Lee et al., 1996; Schmidt and Brauch, 2005). The derivatization 

step makes sample preparation tedious and time-consuming. Particularly, when 

EDTA exists as metal complexes, their derivatization is more difficult as metal 

complexes must be decomposed prior to derivatization by decreasing the pH value 

and causing a conversion of EDTA complexes into their free acid forms. GC 

methods are therefore not suitable for the determination of individual EDTA-

metal species and determine only the integral content (Sillanpää, 1996). 

 

In most cases, derivatization is preceded by a concentration step to increase the 

sensitivity of the overall process. In principle, two approaches exist:  

(i). concentration of EDTA as anion on an anion exchanger (e. g. SAX) at pH 2-3, 

elution with formic acid and evaporation of the elute at 100-1100C to dryness 

(Sillanpää et al., 1996; Lee et al., 1996; Schmidt and Brauch, 2005); and 

(ii). simple evaporation of the acidified aqueous sample to dryness at 100-1150C 

(Nishikawa and Okumuta, 1995; Fuerhacker et al., 2003).  

 

More detailed studies have demonstrated that simple evaporation yields better 

results than the first approach. Both approaches require the complete removal of 

water traces for the following esterification. After derivatization followed by 

water addition, the resulting EDTA acid alkyl esters can be extracted from the 

aqueous phase and purified by liquid-liquid extraction with an organic solvent 

such as hexane (Fuerhacker et al., 2003), toluene (Sillanpää et al., 1998) or 

methylene chloride (Schmidt and Brauch, 2005).  

 

While detection in earlier studies often involved the use of flame ionization 

detectors (FID) (Wolf and Gilbert, 1992; Fuerhacker et al., 2003), they have been 
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almost completely replaced in current studies by mass-selective (MSD) (Lee et al., 

1996) or nitrogen-sensitive (NPD) detectors (Lee et al., 1996; Sillanpää et al., 

1996 and 1998; Fuerhacker et al., 2003) that have become state-of-the-art due to 

their increased sensitivity.  In the case of GC-MSD or GC-NPD detection, the 

detection limits are usually in the low µg/L range. Most published applications 

involved the analysis of all types of aqueous solutions (drinking water, surface 

water, ground water and wastewater), but also of food, sediments and fish 

(Schmidt and Brauch, 2005). In 1995, Nishikawa and Okumura treated their 

samples with a boron trifluoride-methanol mixture, after evaporation to dryness. 

The resulting methyl ester derivatives were determined by capillary GC-MS 

(Mass Spectrometry) with selective-ion monitoring. EDTA could be determined 

in the ranges 3.9-11.8 ng/ml in water. 

 

The advantage of the GC method is high sensitivity which enables the detection of 

low concentrations of EDTA. The disadvantage is the time-consuming and labour 

intensive sample preparation. Consequently, the liquid chromatography method 

was developed to resolve this.  

 

3.1.2 High Performance Liquid Chromatography (HPLC) 

 

EDTA has been determined in wide variety of sample matrices by liquid 

chromatography (LC). This includes drinking water, surface water (Bedsworth 

and Sedlak, 1999 and 2001; Loyaux-Lawniczak et al., 1999), ground water 

(Ammann, 2002), wastewater (Sillanpää et al., 1995; Sillanpää, 1996; Nirel et al., 

1998; Dodi and Monnier, 2004), medical products (Lin et al., 2003), sediments 

and soils (Nowack et al., 1996), fertilizers and micronutrients (Hernandez-

Apaolaza, 1997) and others (Cagnasso et al, 2007). In recent years, high 

performance liquid chromatography (HPLC) has represented the most common 

approach for the determination of EDTA complex and trace metal separations. 

Compared to GC, it offers the major benefits that no extraction of the aqueous 

samples is required, and that no derivatization of the analytes for increase 
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volatility is necessary. Basically, the sample can be directly applied to the 

separating column.  

 

The LC separation of EDTA is performed either on reversed-phased (RP) columns 

(Sillanpää et al., 1995; Nowack et al., 1996; Yuan and VanBriesen, 1997; Lin et 

al., 2003; Dodi and Monnier, 2004; Schmidt and Brauch, 2005) or by ion 

chromatography (IC) on an anion exchange column (Nirel et al., 1998; Bedsworth 

and Sedlak, 1999). The reversed-phase technique is usually based on ion-pair 

chromatography (IPC) that ion-pair reagent is added to the mobile phase to 

convert the target compounds into neutral components.  

 

Detection is normally performed with a UV detector. For this purpose, by addition 

of excess of metal ions prior to, during, or after the chromatographic run (Schmidt 

and Brauch, 2005), the EDTA to be analysed is converted into a highly stable 

defined metal complex with favourable UV absorption characteristics. Most 

frequently Fe(III) (Nowack et al., 1996; Nirel et al., 1998; Bedsworth and Sedlak, 

1999) and Cu(II) (Yuan and VanBriesen, 1997; Lin et al., 2003; Metsärinne et al., 

2005) are used. It is also claimed that the methods using the Cu(II) EDTA 

complex are superior because the Fe(III) EDTA complex is photochemically 

unstable (Wolf and Gilbert, 1992). In addition to UV detection, some studies were 

performed using mass-spectrometric detection (Dodi and Monnier, 2004), 

fluorescence (Yuan and VanBriesen, 1997), electrochemical and also ICP-MS 

coupling (Ammann, 2002; Schmidt and Brauch, 2005). 

 

The typical detection limits of LC are in the low mg/L range (Wolf and Gilbert, 

1992; Schmidt and Brauch, 2005). Without the enrichment step, it is unlikely that 

LC is suitable for natural waters in which the concentrations are expected to be 

below detection limits. Examples of typical chromatograms of both GC and 

HPLC analysis are presented in Figure 3.1. LC method has been used as a 

standard method for determination of nitrilotriacetric acid (NTA), 

ethylenedinitrilotetraacetic acid (EDTA) and diethylenetrinitrilopentaacetic acid 

(DTPA) in water, wastewater and sludge in Germany (DIN 38413-8, 2000), in 

which clearly demonstrated that the major problem related to the liquid-
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chromatographic determination of aminopolycarboxylic acid was poor sensitivity 

with working range of 0.1-20 mg/L.  

 

Standard approaches to increase sensitivity include sample pre-concentration by 

evaporation, large injection volumes and the use of sensitive detectors. Some 

methods taking these aspects into account are managing to achieve lower 

detection limits down to 1 µg/L (Sillanpää and Sihvonen, 1997; Ammann, 2002; 

Dodi and Monnier, 2004; Quintana and Reemtsma, 2007). 

 

Interestingly, the speciation study of metal complexes has received attention, 

which is of importance for estimating their environmental fate and 

ecotoxicological effects (Sillanpää, 1997). The HPLC method was described by 

Bedsworth and Sedlak (2001) for determination of the Cd(II), Co(II), Cu(II), 

Pb(II), and Zn(II) complexes of EDTA in municipal wastewaters and surface 

waters. The method involved separation by ion-exchange chromatography on a 

reversed-phase C18 column coated with ion-pair reagent, followed by post-column 

conversion to FeEDTA- and subsequent detection by UV absorbance. The method 

detection limit was 6-8x10-8 M (5-7ng) EDTA. Currently, a promising method for 

the determination of EDTA speciation at trace level has been published. It is 

based on the coupling of ion chromatography with ICP-MS involving on-line 

sample enrichment via column switching. This method allows the determination 

of nM levels of EDTA metal complexes in surface waters (Ammann, 2005). 

However, some relatively simple means are available for the determination of 

Ni(II)-EDTA - and Fe(III)EDTA species in water samples. The Fe(III) portion of 

the total EDTA speciation can be determined by illumination of the water sample, 

resulting in the complete photochemical decomposition of Fe(III)EDTA (Nowack 

et al., 1996). 
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Figure 3.1 Typical chromatograms of both Gas Chromatography (GC) and High Performance Liquid Chromatography (HPLC) analysis 

(Source: Sillanpää, 1996) 

 GC: 0.72 mg/L HPLC: 1.2 mg/L EDTA  
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3.1.3 Capillary Electrophoresis 

 

In recent years, capillary electrophoresis (CE) has evolved to an alternative 

separation technique besides HPLC allowing the determination of the speciation 

of complexing agents (Pozdniakova et al. 1999; Owens et al., 2000; Schmidt and 

Brauch, 2005). CE is a highly efficient separation technique that has been used for 

the analysis of inorganic and organic ions (Soga and Imaizumi, 2001; Brooks 

2005). The principle of CE is based on the different migration speeds of 

electrically charged particles in an electric field (Wang and Li, 1995; Timerbaev 

et al., 2002); its particular benefit is its high separation efficiency at short analysis 

times (Baraj et al, 1995; Blatný et al, 1997; Padarauskas and Schwedt, 1997). 

Complexing agents are traditionally used in particular as an electrolyte additive 

for the modification of the ion mobility of the metal cations (Haumann and 

Bachmann, 1995; Conradi et al, 1996; Bürgisser and Stone, 1997; Fukushi et al., 

1997). The first direct assay has been published by Òkeefe et al. in 1995. This 

method has proved useful for the direct determination of organic chelates and 

their metal complexes (Brooks, 2005). So far, the analysis of free EDTA and their 

metal complexes has been predominantly performed by capillary zone 

electrophoresis (CZE) techniques (Padarauskas and Sahwedt, 1997), but also the 

application of micellar electrokinetic capillary chromatography (MEKC) has been 

described (Harvey, 1996). 

 

Electrophoretic assays for EDTA include all possible variations like the free acids 

(Zhang et al, 2005), the determination following conversion of all existing 

complex species into a single defined metal complex and also the differentiated 

determination of individual metal complex species (Conradi et al., 1996; Fukushi 

et al., 1997). Published application ranges include drugs (Pálmaesdóttir and 

Edholm, 1995), wastewater (Baraj et al., 1995), plating baths solutions and 

cosmetic products (Padarauskas and Sahwedt, 1997; Katata et al., 2006), surface 

water (Blatný et al., 1997), radioactive waste solution (Bürgisser and Stone, 

1997), human plasma and urine (Sheppard and Henion, 1997), mayonnaise, and 

Vegetables (Fukushi et al., 1997), and drinking water (Zhang et al., 2005). 

Compared with GC, LC, CE has the advantages of higher efficiency, simpler 

chemistry, faster separation time, ease of automation, smaller sample and reagent 
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requirements, but with poor detection limits. The poor concentration limit of 

detection is primarily caused by a consequence of short optical path length within 

the detection cell and the extremely small sample volume that can be introduced 

into the CE capillary. In 1999, He and Lee used large-volume sample stacking in 

acidic buffer to analyse small organic and inorganic anions by CE. Recently, a 

novel sample injection technique-large volume stacking using the EOF 

(electroosmotic flow) pump (LVSEP)-has been developed and applied for the first 

time in detection of EDTA in drinking water by capillary electrophoresis(Zhu et 

al., 2002; Zhang et al., 2005). The detection limit of the method was as low as 0.2 

µg/L or 2.0 µg/L, with or without 10-fold pre-concentration procedure, 

respectively. 

 

3.1.4 Ion Chromatography 

 

Ion-Chromatography was introduced by Lucy and Ye (1995) as a new reagent 

system for determination of hexadentate aminopolycarboxylic acids. This system 

is based on the fluorescent ternary complex formed between lutetium, hexadentate 

aminopolycarboxylic acids, and 8-hydroxyquinoline-5-sulfonic acid (HQS) (Lucy 

and Ye, 1995). The formation of the lutetium, trans-1, 2-diaminocyclohexane-N, 

N, N’, N’-tetraacetic acid, and 8-hydroxyquinoline-5-sulfonic acid (Lu-CDTA-

HQS) fluorescent ternary complex was also used to determine chelating ligands 

(Ye and Lucy, 1996). The detection limit obtained was 2.5x10-8 M (ca. 0.5 ng) for 

EDTA. Additionally, the existence of ten-fold excess alkaline earth metal and the 

transition metal ions did not interfere with the determination of these chelating 

ligands with a metal-exchange sample pre-treatment step. 

 

The coupling of ion chromatography with electrospray mass spectrometry (IC-

MS) is a simple, sensitive and quick method for the determination of polar organic 

traces in water samples (Charies and Pépin, 1998; Bauer et al., 1999). Analysis of 

EDTA in aqueous samples, including wastewater, was completed by IC-MS on an 

anion exchange column after simple sample preparation steps. The detection limit 

was down to a concentration level of 1 µg/L (Knepper et al., 2005). 

 



CHAPTER THREE METHODOLOGY FOR MEASURING EDTA 

68 

3.1.5 Other Methods 

 

Except for the analytical methods discussed above, there are a few other methods 

which have been applied to analyse EDTA and metal-EDTA complexes, for 

example, electrochemical methods (Sillanpää and Sihvonen, 1997), 

spectrophotometry, atomic absorption spectrometry (AAS) (Güclü et al., 2000; 

Baytak and Türker, 2006) and titration method. Schmidt and Brauch (2005) have 

published an excellent review article on this matter. 

 

3.1.6 Summary 

 

EDTA can be determined in different samples by GC, LC, IC, CE and 

electrochemical techniques etc. GC (GC-MS and GC-NPD) allows the sensitive 

and reliable identification of the complexing agents. However, it involves 

cumbersome sample preparation and does not allow the determination of EDTA 

speciation in the sample. GC can be applied to drinking waters, surface waters and 

wastewaters. Alternatively, the determination in these matrices can be performed 

by liquid chromatography (LC). LC techniques also allow the separation and 

quantification of individual EDTA-metal species. However, the detection limit is 

too high for surface water analysis (i.e. low µg/L-range). Nevertheless, the 

coupling of ion chromatography with electrospray mass spectrometry (IC-MS) 

can resolve this matter. A number of EDTA –metal species can also be 

differentiated by capillary electrophoresis (CE); the sensitivity required for 

drinking water is achieved by LVSEP. The other methods, e.g. 

spectrophotometry, AAS etc. are prone to interferences, in particular in the case of 

complex matrices. As these techniques demonstrate relatively poor selectivity, 

they are usually only suitable for the determination of the general complexing 

capacity of samples. 
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3.2 METHOD DEVELOPMENT FOR ANALYSIS OF EDTA 

USING HPLC – UV 

 

Taking into account the equipment availability and running cost, HPLC-UV 

seemed to be the most appropriate analytical technique for this project. The 

primary prime objective of the method development was to establish a robust and 

sensitive analytical technique with minimum interference to apply to multi-media 

samples, such as dairy wastewater. In view of the highly diversity of the dairy 

industry relating to their products and processes, this method development is 

based upon the dairy wastewater from Fonterra Co-operative Group Limited, 

Waitoa. 

  

3.2.1 Initial Experiment Design 

 

Before commencing the method development, it was necessary to review the 

nature of samples and the goal of HPLC separations.  

 

1. Analysis of sample features 

 

In general, wastewater from dairy processing plants contains high concentrations 

of organic material such as proteins, carbohydrates and lipids, high concentrations 

of inorganic compounds such as NO3
- and large variations in pH (Britz et al., 

2004).   

 

Wastewater from the Fonterra Waitoa dairy factory is composed of three parts: 

• Processing water, which includes cooling water and heating processes 

with free pollutants, is discharged into the Waitoa river with storm water; 

• Cleaning wastewater originates from the cleaning of the equipment, 

which has been in contact with milk or milk products, and chemicals 

applied to the Clean – In – Place (CIP) system, are collected in a sump 

and subsequently pumped to the treatment ponds for  further treatment to 

certain standards, and then discharged to the Waitoa river; and  
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• Sanitary wastewater is piped into a separate treatment pond, and then 

discharged to the Waitoa River. 

 

The method development of HPLC–UV was focused on the cleaning wastewater, 

in which chemicals containing EDTA were applied during the cleaning process.  

 

2. Separation goals 

 

The analyte of interest - EDTA, which has a molecular weight less than 2000 

g/mol, exists in an ionic pattern as 1:1 aqueous – soluble metal complexes. 

Objectives of the experimental design were set as following: 

• The analyte of interest – EDTA being separated from the myriad of 

individual compounds in samples;  

• Sharp, symmetrical chromatographic peaks; 

• Separation time less than 10 minutes for practical time considerations;  

• Capacity/retention factor 2 < k’ < 10 and maximum column plate number 

for a quality chromatogram. The retention factor for the analyte of EDTA 

is defined as  k’ = tR –tM/ tM, where tR is the time between sample 

injection and an analyte peak reaching a detector at the end of the column 

tM is the time taken for the mobile phase to pass through the column ; and 

• Minimum use and ease of disposal chemicals. 

 

The aim of HPLC separations in this case was to ensure that the analytical 

component of [Fe(III)EDTA]- was completely separated from other compounds in 

dairy wastewater samples, with a practical separation time of less than 10 minutes, 

and to ensure that other metal – EDTA complexes were totally converted into 

[Fe(III)EDTA] - before analyses. The method was thus optimized for a dairy 

wastewater matrix, including checking potential interferences at levels found in 

dairy wastewater. 

 

3. Apparatus 

 

The HPLC system consisted of a Shimadzu LC–10 AT VP Liquid 

Chromatography (USA) with a 50 µl sample loop, a Shimadzu SPD–10A VP UV-
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Vis detector set at 265 nm, a Hypersil C18 RP column (Phenomenex) of length 

200 mm, diameter 4.6 mm and particle size 5µm, and a Phenomenex security 

guard column. The HPLC recording and integration software was PowerChrom 

(eDAQ Pty Ltd, Australia) attached to a Powerlab/8sp data recorder 

(ADInstrument). All water was obtained from an ELGAS TAT ® UHQII system 

and filtered through 0.45µm Nylon filters (Phenomenex). Degassing of the mobile 

phase was achieved by helium sparging. HPLC system components are shown in 

a flow chart as below (Figure 3.2). 

  

Figure 3.2 HPLC System Components for the determination of EDTA applied in 

this research. 

 

4. Reagents, chemicals and solutions 

 

Reagents were all chromatographic analysis grade or reagent grade used without 

further purification. A sodium formate / formic acid buffer solution (pH 3.3) was 

prepared by dissolving 0.17g sodium formate (BDH) and 0.33 ml (Ajax Finchem) 

90% formic acid in 1 L of water. An ion-pair reagent solution (15 mM TBABr) 

was prepared by dissolving 4.836g of tetra-n-butylammoniumbromide 

(C16H36NBr, 322.38 g/mol) (Merck) in 1L of pH = 3.3 buffer solution. A stock 

EDTA standard solution (0.1 g/L EDTA) was prepared by dissolving 0.1462 g 
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ethylenediaminetetraacetic acid iron sodium salt (MW = 421.10 g/mol) (Merck) in 

1L of water, and stored in the refrigerator wrapped in tin foil. Standard solutions, 

ranging from 0–750 µg/L EDTA for calibration, were prepared daily from the 

stock solution. A Fe3+ solution (0.1941g/L or 3.47 mM) was prepared by 

dissolving 2.4203 g FeCl3·6H2O (Merck) and 0.144ml HCl (37% Merck) in 500 

ml water. A nitrate solution (1 g/L) was prepared by dissolving 0.4077 g of KNO3 

(Seelze–Hannover) in 250 ml water as a stock solution for further dilution. 

Calcium (0.1 g/L) and magnesium (0.1 g/L) ion solutions were prepared by 

dissolving 0.2732g of CaCl2·6H2O (BDH) and 0.1046 g of MgCl2·6H2O (BDH) 

in 500 ml water respectively for further dilution. 

 

3.2.2 Optimizing Chromatographic Separations 

 

A number of HPLC methods have been published to determine EDTA 

concentration in multi-media samples. A review of the literature indicated that the 

method of Loyaux-Lawniczak et al. (1999) was appropriate as a starting point as it 

was reported to be suitable for measuring EDTA in natural waters.  

 

1. Buffer solution 

 

In selecting a particular buffer, the buffer capacity and its UV absorbance should 

be taken into account. Buffer capacity is determined by pH, buffer pKa and buffer 

concentration. Generally, the effective pH control range is given by pKa ± 1.5. 

The pKa of formic acid/K-formate is 3.8, buffer range is 2.8 – 4.8 and the UV 

cutoff is 210 nm (10mM) (absorbance < 0.5) (Snyder et al., 1997).  

 

The analyte of interest – EDTA complexed as [Fe(III)EDTA] - is a basic 

compound and its retention in the RP column is related to the pH value of the 

mobile phase. The pH value of 3.3 was chosen to prevent precipitation of iron as 

99.2% of [Fe(III)EDTA]- exists in its deprotonated form when pH value is 3.3 

(Loyaux-Lawniczak et al., 1999). Furthermore, this buffer solution was chosen 

due to there being no absorbance at the wavelength of 265 nm (Snyder et al., 

1997). 
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2. Solvent of the mobile phase 

 

In reversed phase (RP) separations, the sample retention can be controlled by 

varying the solvent strength of the mobile phase. This can be achieved either by 

using different solvents or varying the percent organic (% B) composition with the 

same solvent in the mobile phase. Both solvents of acetonitrile (ACN) (Nowack, 

et al., 1996; Cagnasso et al., 2007) and methanol (MeOH) (Loyaux-Lawniczak et 

al., 1999; Laine and Matilinen, 2005; Katata, et al., 2006) were investigated. A 

similar retention time was achieved using a lower percentage of ACN (1%) than 

MeOH (5%) if other parameters remained the same (Figure 3.3). The study of 

different % B compositions of MeOH showed that increasing % MeOH shortened 

the retention time (Figure 3.4). Buffer solution with 2% MeOH was selected for 

giving a practical retention time and a good separation (2< k’<10).  

 

3. Ion–pairing reagent 

 

An addition of the ion–pair reagent to the mobile phase can often improve peak 

shapes and large changes in separation selectivity for ionic samples (Snyder et al., 

1997). The ion–pair reagent, tetrabutylammonium (TBA) bromide (TBABr) 

(Nowack et al., 1996; Loyaux-Lawniczak et al., 1999; Lin et al., 2003; Laine & 

Matilainen, 2005) / TBA hydroxide (Nirel et al., 1998; DIN 38413-8, 2000; 

Cagnasso, et al., 2007) and TBA hydrogen sulphate (Katata et a., 2006), is often 

used as TBA+ is positively charged on its nitrogen and competes with anions, for 

instance, [Fe(III)EDTA]-, NO3
-, Cl- to form an ion-pair. The varied concentrations 

of TBABr in the mobile phase were studied, and the results observed that the 

retention of [Fe(III)EDTA]- compound decreased when the concentration of 

TBABr was increased and other parameters remained the same, with a 100 µg/L 

EDTA standard solution (Figure 3.5 and Figure 3.6). The concentration of 15mM 

TBABr was selected for the determination of EDTA in dairy wastewater. 
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Figure 3.3 A similar [Fe(III)EDTA]-  retention time obtained using a lower 

percentage of ACN (1%) than MeOH (5% )during chromatographic 

separation when other parameters remain the same. 

 

 

 

Figure 3.4 High composition of solvents shortened the [Fe(III)EDTA] - retention 

time during chromatographic separation when other parameters remain the 

same. 
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Figure 3.5 Retention time of [Fe(III)EDTA]- decreases with increasing the 

concentration of  tetrabutylammonium bromide (TBABr) in the  mobile phase 

during chromatographic separation when other parameters remain the same. 

 

 

 

Figure 3.6 Effects of concentrations of tetrabutylammonium bromide (TBABr) in 

the mobile phase on the retention of [Fe(III)EDTA]- during chromatographic 

separation when other parameters remain the same. 
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4. Flow rate of mobile phase 

 

In general, retention time increases with a lower flow rate, but the separation often 

improves (Figure 3.7). The flow rate was set at 0.9 ml/min for a better separation 

with a practical analysis time. 

 

 

Figure 3.7 [Fe(III)EDTA]- is retained longer with a lower flow rate of the mobile 

phase during chromatographic separation when other parameters remain the 

same. 

 

5. Resolution of HPLC separation 

 
The HPLC separation for [Fe(III)EDTA]- of interest in the dairy wastewater 

sample is shown in Figure 3.8 by varying solvent strengths and ion-pair reagent 

TBABr concentrations with the optimized flow rate (0.9 ml/min). The optimal 

solvent strength and concentration of TBABr for peak resolution were 2% 

methanol and 15mM TBABr.  
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Figure 3.8 Overlay of chromatograms during chromatographic separations by 

varying composition of mobile phases to ensure that [Fe(III)EDTA]- is 

completely separated from other compounds for dairy wastewater samples 

 

6. Wavelength of UV detector 

 

The choice of wavelength of UV detector depends upon the analyte absorbance of 

interest, sample interference and the mobile phase absorbance. The detector signal 

(A) is proportional to the molar absorptivity (ε) of the compound of interest. In 

fact, the [Fe(III)EDTA]- has a large value of ε and can be detected at a higher 

wavelength (>210 nm) (Snyder et al., 1997). A wide range of wavelength between 

240nm and 330 nm has been used for the UV detection (Loyaux-Lawniczal et al., 

1999; DIN 38413-8, 2000; Laine and Matilainen, 2005; van Ginkel and Greerts, 

2005; Katata et al., 2006). A wavelength of 265 nm was determined by 

wavelength scan using UV–Visible Recording Spectrophotometer UV–240 

(Shimadzu) and Graphic Printer PR – 1. The scan was carried out with different 

concentrations of EDTA using the mobile phase as reference. The 

spectrophotogram is shown in Figure 3.9. 
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Figure 3.9 Wavelength scan spectrophotograms of [Fe(III)EDTA]- with different 

concentrations of EDTA standard solution 

 

3.2.3 Compounds that potentially complicate analysis  

 

Some inorganic compounds can complicate the determination of EDTA. 

 

1. Nitrates 

 

Some authors (Nowack et al., 1996; Loyaux-Lawniezak et al. 1999; DIN 38413 – 

8, 2000) reported that the determination of EDTA could be under-estimated in the 

presence of high concentration of NO3
- due to cross-sensitivities. Also, nitrate 

(NO3
-) shows a minor absorption at the wavelength of 265 nm (the wavelength 

used to detect EDTA), which can cause over-estimation of EDTA (Snyder et al., 

1997).  

 

The concentration of nitrate in dairy wastewater samples varies depending upon 

manufacturing processes. Levels of nitrate found in dairy wastewater in this case 

were generally below 100 mg/L. An experiment was undertaken by adding 

different concentrations of NaNO3
 (10, 50 and 100 mg/L) to a 100 µg/L EDTA 

standard solution (Figure 3.10). This indicated that there is no apparent 
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interference to the [Fe(III) EDTA]- peaks at nitrate concentrations likely to be 

found in dairy wastewater. 

b

c

a

a. 100 µg/L EDTA Std. + 100 mg/L NO3-

b. 100 µg/L EDTA std.+ 10 mg/L NO3-
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Figure 3.10 The effect of addition of nitrate on HPLC analysis of EDTA. 

 

2. Metals 

 

Nowack et al. (1996) stated that waters with high calcium and magnesium ions 

may influence the determination of EDTA due to a matrix effect. The content of 

calcium in the Waitoa dairy effluent was stated to be 8-10 times higher than 

would be expected in local clean water (Waitoa dairy factory fact sheet). To 

investigate possible interference, an experiment was carried out by spiking a 

100µg/L EDTA standard solution with different concentrations (10, 25, 50 and 

100 mg/L) of Ca2+ and Mg2+ (Figure 3.11 and Figure 3.12). The effect of a 

mixture of Ca2+ and Mg2+ at the approximate ratio of Ca2+ and Mg2+ in the dairy 

wastewater (4:1), was also studied (Figure 3.13). The overall results showed no 

apparent interference of these metals on the determination of EDTA by HPLC-

UV at concentrations likely to be found in dairy waste water. 
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Figure 3.11 The effect of addition of calcium on HPLC analysis of EDTA. 

 

 

 

Figure 3.12 The effect of addition of magnesium on HPLC analysis of EDTA. 
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Figure 3.13 The effect of addition of a mixture of calcium and magnesium (ratio 

4:1) on HPLC analysis of EDTA. 

 

3. Addition of excess ferric ions 

 

In dairy wastewater from processing plants, EDTA exists mainly in the form of 

Ca-EDTA and Mg-EDTA. These species have low pKa values and slow exchange 

kinetics (Nowack et al. 1996). Pre-treatment is thus needed to convert these 

species to Fe(III)EDTA for the analysis of total EDTA in a sample. A series of 

experiments were carried out which involved the addition of different molar ratios 

of Fe3+ (1xFe3+, 1.5xFe3+, 2xFe3+, 5xFe3+, 10xFe3+ and 20xFe3+) to a 100 µg/L 

EDTA standard solution under different pre-treatment conditions. The procedures 

involved: 

• Heating in 90oC water bath for over 3 h (Nowack et al., 1996; Loyux-

Lawniczak et al., 1999);  

• Placing in a dark place over-night (van Ginkel et al. 1999; Katata et al. 

2006); and  

•  Boiling for 1.5 h. 

 

The experimental results revealed that (i) the addition of excess Fe3+ altered the 

baseline and shifted the peak retention time of the chromatogram at higher 

concentration of iron (Figure 3.14), but appeared not to affect the peak area and 

hence the determination of EDTA; and (ii) similar results were obtained with 



CHAPTER THREE METHODOLOGY FOR MEASURING EDTA 

83 

different pre-treatment conditions. Consequently, as it was the most 

experimentally convenient, the overnight pre-treatment was applied for 

subsequent experiments. 
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Figure 3.14 Overlay of EDTA chromatograms to determine the effect of addition 

of Fe3+ on HPLC analysis. 

 

4. Exchange of metal complexes 

 

The determination of EDTA may be under-estimated if some EDTA exists as 

other metal complexes, most likely to be Ca2+ in waters. The molar extinction 

coefficient of [Ca(II)EDTA]2- is much less than that of the [Fe(III)EDTA]-, so 

smaller absorbance peaks would be expected to be observed (Loyux-Lawniczak et 

al., 1999). This was confirmed using 100 µg/L solutions of CaEDTA and 

FeEDTA (Figure 3.15). Hence, it is vital to ensure that all metal complexes, most 

likely [Ca(II)EDTA]2- in both dairy wastewater and natural waters, convert to 

[Fe(III)EDTA] - with the appropriate pre-treatment.  

 

The experiment was established according to the method of Loyux-Lawniczak et 

al. (1999), and accomplished by adding 10 times equivalent ferric ion to a 100 

µg/L EDTA standard solution as [Fe(III)EDTA]- and a 100 µg/L EDTA as 

[Ca(II)EDTA]2- to verify any losses of EDTA compared with 100 µg/L EDTA 

standard solution only with the pre-treatment. The test results (Figure 3.16) 
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showed that the same peak areas were observed within the three independent 

solutions and indicated the completed conversion of [Ca(II)EDTA]2- to 

[Fe(III)EDTA] -, and no losses of EDTA from the pre-treatment. 

 

 

Figure 3.15 Absorbance comparison of 100 µg/L EDTA as [Fe(III)EDTA]- and 

[Ca(II)EDTA]2-. 

 

 

Figure 3.16 Overlay of chromatograms of 100 µg/L EDTA from independent 

solutions of standard EDTA as [Fe(III)EDTA]-, converted [Ca(II)EDTA]2- 

and pre-treated standard as [Fe(III)EDTA]-. 
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3.2.4 Method Accuracy, Precision and Detection Limit 

 

There is no Certificated Reference Material (CRM) available for EDTA in waters. 

The method accuracy was checked using the analyte spike recovery, in which 100 

µg/L EDTA of standard was added to dairy wastewater samples (Figure 3.17). 

The spike recovery was between 98 % and 102 % (n = 9). Additionally, the 

method accuracy was demonstrated by comparing peak areas of 1 mg/L of EDTA 

standard as NaFe(III)EDTA manufactured by different companies. The same peak 

areas were observed from the independent solutions, illustrated in Figure 3.18. 

 

 

Figure 3.17 Overlay of chromatograms of a dairy wastewater sample only, 100 

µg/L EDTA standard solution and dairy wastewater sample spiked by 100 

µg/L EDTA with 101 % EDTA recovery achieved. 
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Figure 3.18 Overlay of chromatograms at the concentration of 1 mg/L EDTA as 

NaFeEDTA manufactured by different companies. 

 

A daily calibration curve of concentration versus peak area was obtained with 

EDTA concentrations ranging from 0 to 1000 µg/L (0, 10, 50, 100, 200, 500 and 

1000). Good linearity (0.99-0.999) was observed during the experiment. 

 

Precision of the method was determined by analyzing individual sample 12 times. 

The repeatability, given as the relative standard deviation (RSD), was less than 

1.5 %. The method detection limit (MDL) was calculated as three times the 

standard deviation of sample 1 (3x1.43 µg/L), giving 5 µg/L EDTA. 

 

This developed method was applied to the determination of EDTA in multi-media 

environmental samples in the research that details were described in following 

chapters (Xie et al., 2008). 
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Table 3.1 Method repeatability test results from replicate dairy wastewater 

analyses. 

Tests 
Sample 1 
(µgL-1) 

Sample 2  
(µgL-1) 

1 107.2 1792.4 
2 107.9 1759.3 
3 107.1 1758.9 
4 107.7 1780.3 
5 107.5 1756.3 
6 106.9 1737.5 
7 106.2 1801.1 
8 106.9 1751.0 
9 107.7 1753.6 
10 104.7 1765.7 
11 107.0 1766.8 
12 103.0 1759.3 

Average 106.7 1765.2 
STDEV 1.43 17.97 
% RSD 1.34 1.01 

 

3.3 CONCLUSIONS 

 

Having reviewed available analytical methods for the determination of EDTA, an 

appropriate HPLC-UV method has been established for this research. The method 

accuracy was checked using the analyte spike recovery as there is no Certificated 

Reference Material (CRM) available for EDTA in waters. Precision of the method 

was determined by analyzing samples in replicate. The method detection limit was 

calculated as 5 µg/L of EDTA. 

 

The next task is to apply the developed method to ascertain whether EDTA can be 

detected in dairy waste waters as well as in environments. 
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4.0 CHAPTER FOUR: EDTA  IN DAIRY 

WASTEWATER AND REMOVAL 

EFFICIENCY  
 

EDTA is believed normally to be of low risk to human health and environments. 

But an impact from EDTA may be evident in some cases at sites where there is an 

output source (European Chemicals Bureau, 2004; Grundler et al., 2005). The 

research undertaken in this chapter aims to ascertain levels of EDTA in 

wastewater from dairy processing plants, EDTA removal efficiency from the 

existing wastewater treatment plants under normal operating conditions at a case 

study of the Waitoa dairy site, Fonterra Co-operative Group Limited (Fonterra 

Waitoa dairy site). The specific objective is to ascertain whether EDTA can be 

identified in the dairy waste waters. 

 

Based on this chapter, a paper entitled ‘EDTA in dairy wastewater and removal 

efficiency- a case study’ by Xie, C. Z.; Healy, T.; Robinson, P.; Stewart, K. has 

been submitted to the International Journal of Environment and Sustainable 

Development. 

 

4.1 APPLICATION OF EDTA IN DAIRY PROCESSING 

PLANTS AT THE FONTERRA WAITOA DAIRY SITE 

 

The Waitoa dairy site, Fonterra Co-operative Group Limited (Figure 4.1) was 

established in 1902. There are approximately 500 staff processing up to 5.0 

million litres of milk a day, and it is primarily a nutritional powder site. A 

cleaning compound containing EDTA, namely Eliminator or Eliminator LF, has 

been used as an additive to caustic cleaning agents during the CIP (clean-in-place) 

process in manufacturing plants. The primary drive for dairy industries using 

EDTA (also known as a single-stage cleaning) is to reduce CIP time and increase 

available production time. This is achieved by adding EDTA to the caustic step of 

CIP and dropping the use of the acid step (see Chapter 1). Single-stage cleaning 
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also reduces water consumption and hence wastewater generation and 

nitrate/phosphate emission to wastewater through lower use of nitric acid and 

phosphoric acid containing blends (Orica Chemnet, 2004). 

 

 

Figure 4.1 Waitoa dairy site, Fonterra Co-operative Group Limited  

(Photo provided by the Waitoa dairy factory) 

 

At the time of this study, there were two processing plants manufacturing cheese 

and milk powder using Eliminator/ Eliminator LF alongside the caustic cleaning 

agents at the Waitoa dairy site. Eliminator is a strong liquid solution of organic 

acid salts and surfactants, which contains EDTA (34.0 to 36.0 %) with a pH 

around 14. The consumption of Eliminator associated with the CIP could vary 

depending on milk volumes and market demands for the specific dairy products. 

The ratio of EDTA in the caustic tank was generally controlled at 0.1 - 0.3% and 

the ratio of EDTA residue in discharge was controlled at less than 0.1%. The 

historical usage of EDTA at the site is tabulated in Table 4.1. The usage of 

Eliminator containing EDTA is, suggested by the factory, likely to be increased 

depending upon the market demand for dairy products in the future. 
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Table 4.1 Historical Usage of EDTA at the Waitoa dairy site, Fonterra Co-

operative Group Limited, New Zealand. 

Seasons 
Usage of Eliminator/ 

Eliminator LF   
Specific 
Gravity Na4EDTA 35% EDTA  

 (Litres) (kg/L) (kg) (kg) 
2003-2004  1.3 9990*  2650 

2004-2005  1.3 24787* 6575 

2005-2006 63190 1.3 82147 21791 

2006-2007 46940 1.3 61022 16187 

2007-2008 23610 1.3 30693 8142 

 (Source: Waitoa dairy factory and Orica Chemnet*) 

 

4.2 DETERMINATION OF EDTA IN DAIRY WASTEWATER 

USING HPLC-UV 

 

4.2.1 Cleaning Wastewater Discharge System at the Waitoa Dairy Site 

 

The cleaning wastewater of 12-14 streams from all processing plants, which has 

been in contact with milk or milk products, and chemicals applied during the 

clean-in-pace (CIP) process, is collected in a sump on site and subsequently 

pumped to the wastewater treatment plants (WWTPs) through a 1 km long 

pipeline going across the company farm (Figure 4.2).  

 

4.2.2 Wastewater Treatment Plants (WWTPs) at the Waitoa Dairy Site 

 

Wastewater is generally referred to as “influent” as it enters WWTPs. The WWTP 

at the Waitoa dairy site includes two major ponds with a capacity of 46,000 m3 

operated in series and two clarifiers (settling tanks) operated in parallel (Figure 

4.2 and Figure 4.3).  
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Figure 4.2 Schematic wastewater biological treatment flow diagram in an 

extended aeration sludge system at the Waitoa dairy site. 

 

 

Figure 4.3 A layout of the wastewater treatment plant at the Waitoa dairy site. 

(Source: Waitoa dairy factory) 

 

Once at the ponds, the wastewater is mixed with activated sludge contained in the 

ponds. Activated sludge is a liquid mass containing floc, made up of bacteria and 

other micro-organisms. The activated sludge uses the wastewater as a food source, 

consuming oxygen in the process. Oxygen is added continuously to the system by 

the aerators to satisfy the micro-organisms. The level of oxygen in the ponds is 

measured continuously by a computer turning the aerators on or off to maintain 

Pond 1 

Pond 2 

Clarifier 1  

Clarifier  2 

Sand filter 
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the oxygen concentration. This wastewater treatment processing is named as “an 

extended aeration sludge treatment” (see Figure 4.4). 

 

 

Figure 4.4 An extended aeration sludge wastewater treatment pond, where the 

activated sludge uses dairy wastewater as a food source and consumes oxygen 

to satisfy the micro-organisms. 

 

From the ponds the activated sludge mass flows into either of two clarifiers, in 

which the floc is separated from the water (Figure 4.5). Water, about 7000 m3 per 

day on average, is clean enough to be discharged into the Waitoa River on a daily 

basis. Some of the water is directed through a sand filter to give additional 

cleaning when the turbidity exceeds 99 NTU (Nephelometric turbidity units). In 

this case the discharge is automatically stopped, and an alarm set off. The 

suspended solid matter is therefore the major monitoring parameter for the 

effluent.  

 

The floc that settles to the bottom of the clarifiers (the sludge) (Figure 4.6) is 

returned to the ponds, which is generally pond 1. However, a certain amount of 

sludge needs to be disposed off daily to keep the system stable as the micro-

organisms grow continuously. 
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Figure 4.5 Clarifiers where the floc is separated from the water by gravity at the 

Waitoa dairy wastewater treatment plant. 

 

 

Figure 4.6 Some of the sludge from the bottom of clarifiers is pumped back to the 

treatment ponds or disposed off to retain the micro-organisms for the 

processing at the Waitoa wastewater treatment plant. 

 

The disposed sludge (0.5% solid average) needs to be thickened (2.5% solid 

average) before being trucked away for a land treatment. The sludge thickening is 

achieved on gravity belts where polymer is dosed into the sludge to create larger 

flocs, excess water is drained off and pumped back to the ponds (Figure 4.7). The 
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thickened sludge is trucked away and spread onto nearby pasture land (see 

Chapter 7).The amount of disposed sludge is about 300 m³ per day on average. 

 

The WWTP at the Waitoa dairy site is operated under aerobic conditions and 

remains highly efficient with COD removal of 99% (Rule, 1997). The operating 

pH value of the ponds is controlled at pH = 8.0 – 8.2, and the sludge age is 3 

weeks average. 

 

 

Figure 4.7 Gravity belts operate to thicken the sludge before being trucked away 

and spread onto nearby pasture land at the Waitoa dairy wastewater treatment 

plant. 

 

4.2.3 Wastewater Sample Collection 

 

Wastewater samples were collected at the following sites within the operating 

factory in order to determine firstly whether the EDTA can be detected within the 

system and if so, at what levels of EDTA at the Waitoa dairy site, Fonterra Co-

operative Group Limited. 

 

1. Sampling sites 

 

Samples were collected at the sites illustrated in Figure 4.8 as the following:  
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a. Cheese drain, wet process flume from the processing plants at the Waitoa 

dairy site; 

b. Influent into the wastewater treatment plant (WWTP); 

c. pond 1 and pond 2 at the WWTP; and  

d. Effluent discharged into the adjacent stream –the Waitoa River. 

 

 

Figure 4.8 Flow diagram of wastewater and sample collecting sites at the Waitoa 

dairy site, Fonterra Co-operative Group Limited 

 

2. Seasonal conditions 

 

The operation of dairy industries is generally related to the milk production. 

Figure 4.9 demonstrates the operation status of dairy manufacturing plants. The 

seasonal effects of milk production and factory operation were therefore 

considered as below while collecting the wastewater samples at the Fonterra 

Waitoa dairy site.  

a. Low factory operation due to the machinery down time for maintenances 

at low milk production: 28, 29 and 30 August 2007; and 

b. Full factory operation at high milk production: 22 - 24 October 2007 (14 

-16 November for cheese drain only) and 9 – 16 December 2007. 
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Figure 4.9 Indicative operation status of manufacturing plants during a year at the 

Waitoa dairy site, Fonterra Co-operative Group Limited. 

(m KG MS – million kilograms of milk solid) 

 
3. Frequency 

 

Samples were collected as: 

a. a 24–hour composite flow-proportional sample at the cheese drain, wet 

process plant, influent, and effluent sites (Figure 4.10); and 

b. for the oxidation pond1 and 2 of the WWTP, each sample from morning 

and afternoon were combined into a composite sample for the day. 
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Figure 4.10 A 24–hour composite flow-proportional sample collection setting of 

wastewater from the cheese drain, wet process plant, influent, and effluent at 

the Waitoa dairy site, Fonterra Co-operative Group Limited. 

4. Sample storage 

 

Samples were collected in opaque PE bottles to avoid photolysis of the 

Fe(III)EDTA and frozen (-180C) until analysis. 

 

4.2.4 Determination of EDTA in Dairy W astewater  

 

1. Analytical apparatus and reagents 

 

Analytical apparatus and reagents involved were as listed in Chapter 3. 

 

2. Sample pre-treatment 

 

The wastewater sample pre-treatment involved following steps: 

a. Taking 1 – 5 mL aliquots depending upon the expected concentration; 

b. Adding appropriate (5 – 9 mL) Fe3+ solution at the concentration of 1.94 

mg/L to the test tube; 

c. Leaving overnight in the dark to allow complexing of Fe(III)EDTA; 

d. Filtered through 0.45 µm cellulose nitrate filters (Phenomenex) using a 

syringe unit; and 

e. Injecting 50 µL of sample into the HPLC system at ambient temperature. 

 

3. Quality control 

 

A calibration curve during the determination of EDTA was carried out daily, 

ranging from 0 – 1000 µg/L of EDTA. The linearity of the daily calibration 

defined as a correlation coefficient (r2) varied between 0.9988 and 0.999 (Figure 

4.11). One blank, duplicate every 10th sample and EDTA standard spike recovery 

every 20th sample were analyzed for each run. Samples with high concentration of 

EDTA were diluted to the calibration range. The chromatogram of a typical dairy 
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wastewater sample is shown in Figure 4.12. A daily work file is attached as 

Appendix 1. 

 

 

 

Figure 4.11 A daily EDTA calibration curve ranging from 0 - 1000 µg/L by 

HPLC-UV with freshly prepared EDTA solutions. 
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Figure 4.12 A chromatogram of a typical dairy wastewater sample of influent 

from the Waitoa dairy site, Fonterra Co-operative Group Limited. 
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4.3 ANALYTICAL RESULTS  

 

EDTA is identified by the retention time (minutes) and the concentration of 

EDTA is quantified by the peak area (mv·s) of [Fe(III)EDTA]-.  

 

4.3.1 EDTA Occurrence in Dairy Processing Wastewater 

 

EDTA concentration in wastewater samples of the wet process flume and cheese 

plant drain from the Waitoa dairy site are shown in Table 4.2. Figure 4.13 and 

Figure 4.14 indicate the number of data points of each group of samples. 

 

Table 4.2 EDTA concentrations detected in dairy wastewater(wet process and 

cheese drain) from processing plants at the Waitoa dairy site, Fonterra Co-

operative Group Limited, based on 13 24-hour composite samples in August, 

October (November) and December, 2007. 

Milk Season 
Conditions 

Sampling Date  
Wet Process 

(µg/L) 
Cheese Drain 

(µg/L)  
Low 27 - 28 Aug. 2007 < 5 NO* 

Low 28 - 29 Aug. 2007 < 5 NO 

Low 29 - 30 Aug. 2007 < 5 NO 

High 21 - 22 Oct. 2007 36430 -** 

High 22 - 23 Oct. 2007 82743 - 

High 23 - 24 Oct. 2007 25944 - 

High 13 - 14 Nov. 2007 - 59619 

     High 14 - 15 Nov. 2007 -  76655 

High 15 - 16 Nov. 2007 - 17183 

High 9 - 10 Dec. 2007 14850 195 

High 10 - 11 Dec. 2007 13554 19602 

High 11 - 12 Dec. 2007 23756 33874 

High 12 - 13 Dec. 2007 9903 1223 

High 13 - 14 Dec. 2007 13876 296 

High 14 - 15 Dec. 2007 6489 711 

High 15 - 16 Dec. 2007 14720 10701 

* NO – not operating 
** - no samples collected 
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Figure 4.13 indicates the variation of EDTA concentration in the wet process 

flume at the Waitoa dairy site, Fonterra Co-operative Group Limited. For samples 

of 27–30 August 2007, EDTA was not detected (< 5 µg/L) indicating no EDTA 

was being applied. However, during the sampling period of 21-24 October and 9-

16 December 2007, EDTA was detected with concentrations as high as 82700 

µg/L. The averaged concentration of EDTA detected from continuous sampling 

during the week of 9-16 Dec. 2007 was 13900 µg/L. 

 

Figure 4.13 Variation of EDTA concentrations detected in the wastewater of the 

wet process flume at the Waitoa dairy site, based on 13 24-hour composite 

samples in August, November and December, 2007. 
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Figure 4.14 Variation of EDTA concentrations observed in wastewater of cheese 

drain at the Waitoa dairy site, based on 13 24-hour composite samples in 

August, October and December, 2007. 

 

Figure 4.14 presents the observed EDTA concentrations in the cheese drain at the 

Waitoa dairy site. There were no wastewater samples from 27-30 August 2007 as 

the cheese plant was not operated due to machinery maintenance. For the 

sampling period of 13-16 November (samples were missed in October) and 9-16 

December 2007, while the plant was routinely operating, the concentrations of 

EDTA detected were between 195 µg/L and 76700 µg/L. It is evident that 

concentrations of EDTA in the processing wastewater are closely related to the 

daily manufacturing schedule. The level of EDTA in the processing wastewater is 

normally controlled below 0.1 % by the manufacturing plants. 

 

4.3.2 EDTA Reduction during the Waitoa Wastewater Treatment Process  

 

Analytical results of EDTA concentrations from the influent to the effluent are 

tabulated in Error! Reference source not found. and illustrated in Figure 4.15, 

when the wastewater was treated by an extended aeration biological system at the 

Waitoa dairy site.  

Table 4.3 Tested results of EDTA concentrations in the influent, treatment ponds 

and the effluent in an extended aeration system at the Waitoa wastewater 

treatment plant, Fonterra Co-operative Group Limited, based on based on 13 

samples collected in August, October and December, 2007. 

Milk 
Season 

Conditions  
Sampling Date  

Influent 
(µg/L) 

Pond 1 
(µg/L) 

Pond 2 
 (µg/L) 

Effluent 
(µg/L) 

Low  27 - 28 Aug. 2007 301 428 299 152 

Low  28 - 29 Aug. 2007 93 442 235 93 

Low  29 - 30 Aug. 2007 226 293 179 161 

High  21 - 22 Oct. 2007 1420 475 238 227 

High  22 - 23 Oct. 2007 3170 405 255 261 

High  23 - 24 Oct. 2007 1374 249 256 147 

High  09-10 Dec. 2007 1997 122 64 98 

High  10 - 11 Dec. 2007 1211 106 50 72 

High  11 - 12 Dec. 2007 5194 295 263 78 
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High  12 - 13 Dec. 2007 1747 148 125 185 

High  13 - 14 Dec. 2007 1625 105 166 147 

High  14 - 15 Dec. 2007 1738 119 73 115 

High  15 - 16 Dec. 2007 3505 304 166 130 

 Average 1813 269 182 144 

 STDEV 1434 139 84 56 

 

 

Figure 4.15 Detected EDTA concentrations with a standard deviation in the 

influent, treatment ponds and the effluent at the Waitoa dairy wastewater 

treatment plant based on 13 samples collected in August, October and 

December, 2007.  

 

Table 4.3 shows changes of the EDTA concentrations in wastewater samples of 

the influent, treatment ponds – pond 1 and pond 2, and the effluent during the 

sampling period of August, October and December 2007, in which time the 

Waitoa dairy WWTP was under usual operating conditions. 

 

1. Influent (wastewater to the treatment ponds)  

 

It is evident firstly that EDTA was present in the influent when the cheese plant 

was not operating and EDTA was not detected in the wet process flume on 27-30 

August 2007. This can be caused either by the partial CIP water recycling or by a 

residue of EDTA in the site sump. It is also possible that EDTA was applied in 

other production processes (Udabage et al. 2000). Secondly, the concentration of 
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EDTA in the influent to the WWTPs varied between 1400 µg/L and 5200 µg/L 

from the whole dairy factory in October and December 2007. In a continuously 

sampled week of December 2007, the averaged concentration of EDTA in influent 

from the factory was 2400 µg/L.  

 

  

2. EDTA in treatment ponds 

 

The Waitoa dairy wastewater treatment plants (Figure 4.2 and Figure 4.3) were 

operated under aerobic conditions and remained highly efficient with COD 

removal of 99%. The operating pH of the ponds was controlled at 8.0–8.2, and the 

sludge retention time was 3 weeks on average. Concentrations of EDTA with one 

standard deviation in pond1 and pond 2 are also illustrated in Figure 4.15. It can 

be seen that concentrations of EDTA in treatment ponds were relatively high in 

August and even in October 2007, ranging from 249–475 µg/L in pond 1 and 179-

299 µg/L in pond 2. For pond 1, the averaged EDTA value was 388 µg/L in 

August and 376 µg/L in October. For pond 2, the averaged EDTA value was 238 

µg/L in August and 250 µg/L in October. In particular for October 2007, one of 

aerators malfunctioned in pond 2 during when the wastewater sample collection. 

This indicates that the biodegradability of EDTA in ponds is strongly dependent 

upon the operation of the WWTPs, and it may not be fully operated due to the 

machinery down time for maintenance during the low milk production season. 

 

3. Effluent (wastewater discharged into the environment)  

 

The detected EDTA concentrations in the effluent discharged into the local 

waterway of the Waitoa River varied between 72 and 261 µg/L. The averaged 

EDTA concentration of the effluent was 135, 212 and 118 µg/L in August, 

October and December 2007, separately. These values were well below the 

Predicted No Effect Concentration (PNEC) for aquatic environments of 2.2 mg/L 

EDTA suggested by the European Union (European Chemicals Bureau, 2004).  
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4.3.3 EDTA Removal Efficiency by an Extended Aeration Activated Sludge 

at the Fonterra Waitoa Dairy Site 

 

Figure 4.16 shows the overall averaged EDTA concentration with a standard 

deviation for wastewater samples from the influent, treatment ponds, and effluent 

at the Waitoa dairy WWTPs during sampling periods. The mass balance of EDTA 

during the treatment process is explained in Table 4.4, when the dairy WWTPs 

were under normal operation. 

 

Figure 4.16 Overall calculated EDTA changes during an extended aeration 

activated sludge treatment process at the Waitoa dairy wastewater treatment 

plant, based on 13 samples collected in August, October and December, 2007. 

 

Table 4.4 Mass balance of EDTA at the Waitoa dairy wastewater treatment plant, 

based on 13 days of August, October and December, 2007. 

Sample   Influent     Effluent   

Date 
Volume 

(m3) 
EDTA Con. 
(µg/L) 

EDTA 
amount (g) 

Volume 
(m3) 

EDTA Con.  
(µg/L) 

EDTA 
amount (g)

27-28 Aug. 2007 
9420 301 2835 6533 152 993 

28-29 Aug. 2007 
9963 93 927 7374 93 686 

29-30 Aug. 2007 
7056 226 1595 8343 161 1343 

21-22 Oct. 2007 
10374 1420 14731 7863 227 1785 

22-23 Oct. 2007 
11025 3170 34949 8598 261 2244 

23-24 Oct. 2007 
11549 1374 15868 7945 147 1168 
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09-10 Dec. 2007 
5293 1997 10570 5954 98 583 

10-11 Dec. 2007 
4208 1211 5096 2986 72 215 

11-12 Dec. 2007 
5145 5194 26723 3234 78 252 

12-13 Dec. 2007 
6394 1714 10959 5098 185 943 

13-14 Dec. 2007 
5242 1625 8518 6942 147 1020 

14-15 Dec. 2007 
8468 1738 14717 6664 115 766 

15-16 Dec. 2007 
9620 3505 33718 7235 130 940 

Average 
7981 1813 13939 6521 144 995 

It can be seen from Table 4.4 that  

(i) there may have a significant difference between volumes of the influent 

and the effluent. On any one day, water level of the ponds can be allowed 

to rise or fall to keep the flow to the river constant. So one day the 

effluent discharge can be higher than the influent and the next it might be 

the opposite; 

(ii)  Evaporation of wastewater during the treatment can be quite high as there 

is over 3000 m2 of surface area of the ponds. The actual area in contact 

with air is much larger due to the aeration. Evaporation of wastewater on 

average, as advised by the factory, is evidently 10 % of the wastewater 

volume of influent. In this case, there was no significant difference 

(4.5%) between the influent (7981 m3) and effluent (6521 +798 + 300 = 

7619 m3). 

 

The reduction of EDTA from the dairy WWTPs is defined as the mass difference 

of EDTA between the influent and the waste discharges, which include the sludge 

and effluent. The influent from the factory site took about 6-7 days to be 

discharged into environments due to large capacity of the ponds and clarifiers. 

Thus the reduction of EDTA from the dairy WWTPs cannot be assessed on a 

daily basis.  

 

The removal of EDTA from the wastewater treatment processing was calculated 

as 93% based upon a mass difference between the overall averaged EDTA 

amounts of the influent and waste discharges (including the effluent and sludge) 

during the sampling period of August, October and December 2007 (Table 4.5). 
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Approximately 93 % of EDTA removal was therefore achieved by an extended 

aeration activated sludge treatment, operated at a pH value of 8.0 – 8.2 and sludge 

age of three weeks at the Waitoa dairy WWTPs.  



CHAPTER FOUR  EDTA IN DAIRY WASTEWATER AND REMOVAL EFFICIENCY  

112 

Table 4.5 EDTA removal efficiency by an extended aeration activated sludge 

system operating under pH 8.0-8.2 and 3-week sludge age at the Waitoa dairy 

site, Fonterra Co-operative Group Limited, based on 13 sampled collected in 

August, October and December, 2007. 

Items 

EDTA mass 

(g/day) 

Percentage 

(%) 

Influent 13939 100 

Effluent 995 7.1 

Sludge 43 0.3 

Breakdown 12901 92.6 

 

4.4 DISCUSSION  

 

4.4.1 Variation of EDTA Concentrations in the Industrial Wastewater  

 

As EDTA is water-soluble and not volatile, it is eventually released into 

wastewater. The investigation of Schmidt et al. (2004) reported that variation of 

EDTA concentrations was detected between 100 and 20,000 µg/L in the industrial 

wastewater in Germany. Concentrations of EDTA in wastewater of the dairy and 

beverage industry were observed from 2,500 to 25,000 µg/L in Germany. 

 

Varied concentrations, as high as 82,700 µg/L of EDTA, were detected in the 

dairy wastewater from processing plants at the Waitoa dairy site. During the high 

milk production season of October and December in 2007, in which time the 

factory was operating to capacity, concentrations of EDTA in the influent into 

watstewater treatment plants from the Waitoa dairy factory were tested ranging 

from 1,200 to 5,200 µg/L. Concentrations of EDT in the effluent discharged into 

the local waterway from the Waitoa wastewater treatment plant was 72- 260 µg/L 

of EDTA. 
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4.4.2 EDTA Removal Efficiency by an Activated Sludge Biological 

Treatment  

 

EDTA is generally believed to either resist degradation or undergo slow 

biodegradation (Kari and Giger, 1995; European Chemicals Bureau, 2004).  

However, it can be degraded under favorable conditions, which depend on the 

speciation of EDTA, the bacterial population and operating conditions during the 

biological treatment processing (Egli, 2001; van Ginkel and Geerts, 2005).  

 

1. Speciation of EDTA in the wastewater treatment ponds 

 

The primary objective for the use of EDTA in the dairy industry is to prevent 

precipitation of calcium, magnesium or other minerals. Table 4.6 shows total 

metal monitoring results (sodium and potassium not included) in wastewater 

treatment ponds at the Waitoa wastewater treatment plant.  

 

Table 4.6 Total metal monitoring results from 2004 and 2005 in wastewater 

treatment ponds at the Waitoa dairy site.  

  Pond 1    Pond 2   

Tests T*Ca TMg TFe TAl TCa TMg TFe TAl 

 (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

1 90.5 22.8 10.1 35.8 83.4 21.5 8.8 32.5 

2     80.7 22.7 11.1  

3     95 23 8  

4 99.9 22.8 7.3 15.2 92.6 20.6 5.9 13.3 

5     95.2 21.5 4.9  

6 95.3 22.4 5.3  92.6 21.6 5.3  

7 102 24.4 6.5 11.1 94.7 22.4 5.6 9.57 

8     86.1 18.2 6.3  

9     93.1 22 10  

10 80.7 24.8 8.1  81.5 25.2 8.3  

Mean 93.7 23.4 7.5 20.7 89.5 21.9 7.4 18.5 
T* - total 

(Source: Waitoa dairy factory) 

 

Based upon calculations of metal-EDTA stability constants as demonstrated in 

Table 4.7, the majority of the EDTA is likely to be in the form of an iron(III) 
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complex in the aerobic treatment ponds as the KFeEDTA*[Fe] is so much higher 

than other metals.  

 

Table 4.7 Calculation of EDTA speciation in the treatment ponds based on the 

EDTA complexing constant at the Waitoa dairy wastewater treatment plants. 

Treatment 
ponds Metals Me. Con. M/W  Me. Con. LogKa Ka*[Me] 

  (mg/L) (g/molar) (mM)   

Pond 1 TMg 23.44 24.3 0.96 8.83 7.0E+08 

 TCa 93.68 40.1 2.34 10.61 9.0E+10 

 TAl 20.7 26.98 0.77 16.5 3.0E+16 

 TFe 7.46 55.8 0.13 25 1.0E+24 

Pond 2 TMg 21.87 24.3 0.9 8.83 6.0E+08 

 TCa 89.49 40.1 2.23 10.61 9.0E+10 

 TAl 18.46 26.98 0.68 16.5 2.0E+16 

 TFe 7.42 55.8 0.13 25 1.0E+24 

 

However, the total iron concentration in the pond reflects Fe3+ (iron exists as Fe3+ 

due to the aerobic condition) in solution plus Fe3+ associated with particulate 

matter, such as dirt, protein, and fats which may have negative charges to which 

Fe3+ will be attracted. Fe3+ will be precipitated under alkaline conditions when pH 

is controlled at ~8.0 in treatment ponds via the following reaction: 

Fe3+(aq) + 3OH-(aq) ← → Fe(OH)3(s) 

 

The concentration of Fe3+ precipitated with OH- will be ⅓x10-6M assuming pH is 

8.0 in the treatment ponds. Meanwhile, Fe3+ complexes with the strong chelating 

agent EDTA to form a 1:1 complex via the following reaction: 

Fe3+(aq) + EDTA4-(aq) ← → [Fe(III)EDTA] - 

 

The complexing stability constant is Ka = [Fe(III)EDTA] -/[ Fe3+]*[EDTA 4-] (Ka = 

1025 at 250C).  

 

In treatment pond 1 the concentration of Fe3+ required for complete complexing 

with EDTA, is 0.4-1.7 µM which is the same as the EDTA concentration (Error! 

Reference source not found.). The actual total Fe concentration in pond 1 was 

0.13 mM, which is three orders of magnitude higher than the EDTA concentration. 

This suggests that the majority, if not all, of the EDTA will be in the form of an 
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Fe(III) complex in the aerobic treatment ponds. Theoretically, the EDTA 

concentration could be as high as 37,440 µg/L if Fe(III) was completely 

complexed in treatment ponds.  

 

2. Biodegradablity of EDTA in the activated sludge treatment process 

 

The principle of a biological wastewater treatment of aerobic process, such as 

activated sludge system, is to use naturally contained micro-organisms in the 

sludge converting undesirable material into environmentally benign substances. 

EDTA has been reported to have no notable degradation with conventional 

wastewater treatment plants. Nonetheless, it has been proved that EDTA can be 

removed by activated sludge systems operated under alkaline conditions (van 

Ginkel et al., 1997; van Ginkel and Boelema, 1999). Removal of EDTA in 

activated sludge systems depends upon (i) sludge retention time, (ii) alkaline 

medium, and (iii) activated sludge with a wide range of micro-organisms (van 

Ginkel and Boelema, 1999). 

 

van Gingle and Boelema (1999) demonstrated that the microbial population 

contained in dairy activated sludge is able to biodegrade EDTA during the 

wastewater treatment process. To achieve an effective EDTA removal by the 

microbiological degradation, it has been suggested that the pH of reaction 

mixtures should preferably remain at 7-9 with a sludge retention time of at least 

one week (van Ginkel et al., 1997; van Ginkel and Boelema, 1999). Other 

contaminants in the wastewater containing EDTA can be effectively purified at a 

pH of about 8-9 by using microorganisms in flocs without employing a special 

material to carry the microorganisms (van Ginkel and Boelema, 1999). The 

relatively high sludge retention time required for the degradation of EDTA could 

be due to the slow kinetics of the reactions (Sillanpää and Pirkanniemi, 2001). 

EDTA nitrogen has been converted into either nitrate or ammonia to evaporate 

during the process of EDTA biodegradation at the activated sludge wastewater 

treatment plant (van Ginkel and Boelema, 1999). 

 

At the Waitoa wastewater treatment plant, wastewater from the dairy processing 

plants was treated by an extended aeration sludge treatment system operating at 
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pH of 8.0-8.2 and three-week sludge retention time. The EDTA removal 

efficiency compared with the international research is demonstrated in Table 4.8. 

  

Table 4.8 EDTA removal efficiency at the Waitoa dairy wastewater treatment 

plant compared with the international research results under various pH and 

sludge retention time (SRT)  

Wastewater  Sludge  pH SRT EDTA  Sources 
type type  (day) Removal (%)  

Dairy dairy 8.0-8.2 ~20 ~93 this study 

Dairy dairy 7.5-8.1 ~20 ~ 90 
van Ginkl and Geerts, 

2005 

Beer beer 7.3-7.7 ~23 ~ 50 
van Ginkl and Geerts, 

2005 

Dairy dairy 7.8-8.4 ~9 ~ 30 
van Ginkl and Geerts, 

2005 

Dairy+domestic municipal 6.9-7.1 ~20 0 
van Ginkl and Geerts, 

2005 

Dairy+domestic municipal 8.7-8.9 20 95 
van Ginkl and Geerts, 

2005 

Municipal municipal 8.0-9.0 >28 100 
van Ginkl and Boelema, 

1999 

Municipal municipal 8.0-9.0 >29 >89 
van Ginkl and Boelema, 

1999 

Municipal industrial 8.6-8.8 >49 100 
van Ginkl and Boelema, 

1999 

Municipal industrial 8.7-8.9 >49 72-100 
van Ginkl and Boelema, 

1999 

Municipal 
paper 
mill 8.5-9.0 10 ~ 80 

van Ginkl and Boelema, 
1999 

 

4.5 CONCLUSIONS 

 

i. An HPLC-UV method was used to investigate occurrences of EDTA in 

dairy processing wastewater and EDTA removal efficiency through an 

activated sludge biological treatment process. The method has 

demonstrated a good linearity (r2 0.9988–0.9998), duplicate limits (less 

than 6.3%, n=5) and EDTA standard spike recovery (100-102%, n=6). The 

method detection limit (MDL) was 5 µg/L of EDTA. 

ii. Significant concentration of EDTA was observed in wastewater samples 

of the manufacturing plants, where the Eliminator or Eliminator II 

containing 34 – 36 % of EDTA was applied in the CIP system of the 

cleaning process. The highest concentrations of EDTA from the cheese 
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drain and the wet process were approximately 77000 µg/L and 83000 

µg/L, respectively. However, those levels of EDTA were below the value 

of EDTA (0.1%) controlled by the process plant at the Waitoa dairy site, 

Fonterra Co-operative Group Limited.  

iii.  During the lower milk production season, EDTA was detected in influent 

when no Eliminator or Eliminator LF had been applied to either the cheese 

or wet process plants. This indicates that there may have some other 

EDTA sources, which may either involve the production process to change 

the product features or originate from the CIP system of other plants due 

to the recycling of cleaning water. Concentrations of EDTA in the influent 

into the wastewater treatment plant varied from 90 µg/L to 5200 µg/L 

were detected. The EDTA concentration of the influent also reflects the 

level of manufacturing activities. 

iv. The analyses showed an effective reduction of 93% EDTA was achieved 

by the extended aeration activated sludge process from the dairy 

wastewater treatment plants, operated under alkaline conditions of pH 8.0–

8.2 with 3-week sludge retention time.  

v. The concentration of EDTA detected in the Waitoa dairy effluent 

discharged into the Waitoa River was 72-260 µg/L during the sampling 

period of August, October and December in 2007, which is well below the 

threshold value of 2.2 mg/L of predicted effect concentration for the 

aquatic environment, advised by the European Union  
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5.0 CHAPTER FIVE : EDTA  AND 

ASSOCIATED HEAVY METALS IN THE 

WAITOA RIVER  
 

The widespread occurrence of EDTA and its poor biodegradability under many 

environmental conditions led to recognition that EDTA likely comprised the 

highest concentration of anthropogenic compounds in many surface waters in 

Europe, and perhaps even in the world (Chapter 2). The International Commission 

for the Protection of the Rhine identified EDTA as the only relevant chelating 

agent in the Rhine catchments (Knepper, 2003). The International Association of 

Waterworks in the Rhine catchment area recommended an EDTA target value of 

5 µg/L for surface waters at 90-percentile of one year (Schmidt et al. 2004).  

 

High concentration of EDTA in surface waters is possible to disturb the natural 

speciation of metals, to affect metal bioavailability, and consequently to affect 

organisms in the aquifer, or pose a risk to groundwater and drinking waters 

(Nowack, 2002). Presently, there is no regulation of EDTA concentration for 

surface waters in New Zealand, except that a maximum acceptable value of 

EDTA for drinking waters is set as 0.7 mg/L for health purposes (Ministry of 

Health, 2005).  

 

The specific objective of this chapter is to investigate occurrences of EDTA and 

associated heavy metals in the Waitoa River, into which large volumes of 

wastewater containing EDTA are discharged from the Fonterra Waitoa dairy site. 

Purposes of this investigation are to identify EDTA concentrations in the Waitoa 

River subjected to the dairy effluent discharge from the Fonterra Waitoa site, and 

ascertain the potential of heavy metals remobilized from rive sediments due to the 

EDTA chelates in the receiving water of the Waitoa River. 
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5.1 OCCURRENCES OF EDTA IN THE WAITOA RIVER 

 

5.1.1 Sample Collection 

 

Surface water samples were collected at 2500 m (site 1) and 10 m (site 2) 

upstream, 10 m (site 3) and 60 m (site 4) downstream from the Waitoa dairy 

effluent discharge point in the Waitoa River on 28-30 August, 22–24 October, 

2007, shown in Figure 5.1- Figure 5.5. Surface water samples included one 

morning and one afternoon sample which were combined with two morning and 

two afternoon sub-samples, respectively. All samples were collected in opaque PE 

bottles to avoid photolysis of the [Fe(III)EDTA]- and refrigerated at 40C until 

analysis. At time of sample collection the river was approximately 6-8 m wide and 

1-2 m deep. 

 

 

Figure 5.1 Locality sketch for surface water sampling sites, including 2 upstream 

and 2 downstream from the dairy effluent discharge point in the Waitoa River 

where large volumes of dairy effluents discharged from the Waitoa dairy 

wastewater treatment plants. 
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Figure 5.2 Surface water sampling site 1 at 2,500 m upstream from the Waitoa 

dairy effluent discharge point (SH 26 Bridge) in the Waitoa River 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Surface water sampling site 2 at 10 m upstream from the Waitoa dairy 

effluent discharge point in the Waitoa River.  
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Figure 5.4 Surface water sampling site 3 at 10 m downstream from the Waitoa 

dairy effluent discharge point in the Waitoa River. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Surface water sampling site 4 at 60 m downstream from the Waitoa 

dairy effluent discharge point in the Waitoa River.  

 

5.1.2 Determination of EDTA for Surface Water Samples  

 

The established HPLC-UV analytical method in Chapter 3 needs to be modified 

for measuring EDTA in surface water samples due to their low concentrations. 

This is generally achieved by pre-concentrating surface water samples (Loyaux-
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Lawniczak et al. 1999). However, the high calcium (Ca) and magnesium (Mg) 

with the pre-concentration process may affect the measurement (Nowack et al. 

1996). It is necessary to obtain an appropriate pre-concentration factor for the 

determination of EDTA in surface waters, and to assure the pre-concentrated Ca 

and Mg do not affect the determination of EDTA. 

 

1. Sample pre-treatment 

 

Several experiments were designed not only with different pre-concentration 

factors to achieve the optimal pre-concentration factor (10x, 5x, 2x and 1x) (Figure 

5.6), but also with a carboxylic acid (CBA) solid phase extraction (SPE) C18 

clean cartridges (Phenomenex) to remove the interferences of Ca2+ and Mg2+ 

(Figure 5.7 and Figure 5.8). Pre-concentration of five times without a SPE 

cleaning cartridge was determined to detect the concentration of EDTA in surface 

waters. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Overlay of chromatograms of surface water (SW) samples with x1, x2, 

x5 and x10 pre-concentration compared with a 50 µg/L EDTA standard 

solution. 
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Figure 5.7 Overlay of chromatograms of the surface water sample with and 

without a CBA SPE clean cartridges, compared with a 50 µg/L EDTA 

standard solution. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Overlay of chromatograms of the surface water spiked by a 50 µg/L 

EDTA standard with and without a CBA clean cartridge, compared with a 50 

µg/L EDTA standard solution. 

 

Sample pre-treatment involved the following steps: 

• taking a 10 mL surface water sample into a 20 mL vial and heated to 

dryness in the 90oC drying oven; 



CHAPTER FIVE EDTA AND ASSOCIATED HEAVY METALS IN THE WAITOA RIVER 

125 

• adding 1.5 mL mobile phase and 0.5 mL 1.94 mg/L Fe3+ solution to the 

vial, leaving overnight in the dark to allow complexing of Fe(III)EDTA; 

• filtering the sample through 0.45 µm cellulose nitrate filters (Phenomenex) 

to a test tube; and 

• injecting a 50 µL sample into the HPLC system at ambient temperature. 

This process gave a five-fold pre-concentration for determination of EDTA in 

surface waters. The detection limit was actually 1µg/L of EDTA calculated by the 

method detection limit of 5µg/L EDTA for HPLV-UV. 

 

2. EDTA Concentrations in the Waitoa River 

 

Forty eight surface water samples were analyzed by the HPLC-UV method with a 

pre-concentrated factor of 5. A calibration curve was established daily at the 

concentration of 0 - 150 µg/L (0, 10, 20, 50, 80, 100 and 150 µg/L). A blank, a 

duplicate every 10th sample and a spike recovery of 50 µg/L EDTA standards 

every 20th sample were undertaken per run for a quality control. The averaged 

duplicate variability was within 8.1 % (n=5) and the spiked recovery varied from 

97 – 107% (n=3). A typical chromatogram of the surface water sample is shown 

in Figure 5.9. A daily work is attached as Appendix 2. 

 

Fe(III)EDTA

Retention time (min.)

P
eak height (m

v)

 

Figure 5.9 Chromatogram of a typical surface water sample from the Waitoa 

River. 
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Table 5.1 gives analytical results of EDTA upstream and downstream from the 

Waitoa dairy effluent discharge point in the Waitoa River during sample periods 

of August and October, 2007. Figure 5.10 illustrates median and highest 

concentrations of EDTA at the sampling sites in the Waitoa River. Figure 5.11 

presents the overall averaged pH value, temperature and EDTA concentration at 

sampling sites during sampling periods,  

 

It can be seen from Table 5.1 that both median and the highest concentrations of 

EDTA were slightly, but not significantly increased 60 m downstream of the dairy 

effluent discharge point. The highest concentration of EDTA detected at 60 m 

downstream was 2.7 µg/L during the sampling periods. This finding is also 

confirmed by the effects of pH and temperatures on the Waitoa River (Figure 

5.11).  

 

5.1.3 Analysis of Associate Metals in the Waitoa River  

 

Associated metals were also analyzed for collected surface water samples by ICP-

MS method. This was conducted by Hill Laboratories, Hamilton. The details were 

attached in Appendix 3. 

 

5.1.4 Other EDTA Sources to the Waitoa River 

 

Apart from the Fonterra Waitoa dairy effluent containing EDTA discharged into 

the Waitoa River, there is another source of EDTA, namely the Wallace 

Corporation Limited (Wallace). Wastewater, generated from a meat rendering 

plant, an abattoir, and a tannery, is treated in a site collective pond system and 

then discharged into the Waitoa River. The Wallace is located 3 km upstream of 

the Fonterra Waitoa dairy site (Figure 5.12). It has been suggested by Mr. S. 

Carter (personal communication), who is the environmental manager of the 

Wallace Corporation Limited, that small amounts of EDTA are applied in the 

tannery. In order to clarify this potential discharge of EDTA, samples were 

randomly collected on 30 May 2008 from the pond where wastewater was ready 

to be discharged, upstream and downstream of the company boundaries in the 

Waitoa River. Analytical results of EDTA are shown in Table 5.2. EDTA is 
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clearly present in the wastewater of the Wallace. Moreover, the EDTA 

contribution of the Wallace is also demonstrated by the difference in EDTA 

concentrations upstream and downstream of the company boundaries in the 

Waitoa River. 
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Table 5.1 Tested concentrations of EDTA in the Waitoa River, August and October, 2007. 

Date Sample 

River 

Flow 

River 

Height   

EDTA concentration 

(µg/L)     pH     

Temperature 

(0C)   

    (m3/s) (m) 

US*1 

2500 

m 

US 10 

m 

DS 10 

m 

DS*1 

60 m 

US 

2500 

m 

US 10 

m 

D1 10 

m 

DS 60 

m 

US 

2500 

m 

US 10 

m 

DS 10 

m 

DS 60 

m 

28 Aug.  am 2.28 13.85 1.3 <1*2 1.0 <1 8.8 9.4 9.3 9.2 13.1 13.2 13.2 13.3 

2007 pm      1.9 <1 1.1 2.7 9.2 9.3 9.2 9.2 13.4 13.4 1.3 13.7 

29 Aug.  am 2.8 13.95 8.0*3 1.0 1.0 2.5 8.3 8.2 8.2 8.6 13.2 13.2 13.1 14.4 

2007 pm     <1 <1 <1 1.5 8.4 8.5 8.2 8.6 15.6 14.4 14.1 14.4 

30 Aug.  am 2.80 13.95 1.1 2.5 1.1 1.0 8.6 8.7 8.7 8.6 13.3 14.8 12.8 12.9 

2007 pm     1.4 1.0 2.4 1.5 8.9 8.6 8.6 8.8 13 14.9 13.3 15.7 

22. Oct.  am 6.76 13.95 1.2 <1 <1 <1 6.7 7 7.1 6.9 13.8 13.8 13.8 13.9 

2007 pm     <1 <1 <1 1.8 6.9 7.1 7 6.9 15.1 14.6 14.3 14.4 

23. Oct.  am 3.78 13.82 <1 <1 <1 1.2 6.9 6.9 6.8 6.9 15.3 15.1 15.2 15 

2007 pm     <1 <1 <1 1.0 6.8 6.9 7 6.9 18.5 16.3 16.3 16.3 

24. Oct. am 3.19 13.78 2.2 2.0 1.7 1.8 6.9 6.8 6.8 6.9 16 16 16.2 16.1 

2007 pm     <1 1.8 <1 1.1 6.9 6.8 6.9 6.9 18 17.9 17.9 18 

Mean  3.60 13.89 1.3 1.3 1.2 1.5 7.8 7.9 7.8 7.9 14.8 14.8 14.5 14.8 

  

* 1 US – upstream, DS – downstream 
* 2 EDTA concentration below the method detection limit 
* 3 not included for the mean value calculation 
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Figure 5.10 Median and highest EDTA concentrations of 12 surface water 

samples collected upstream (US) and downstream (DS) from the Waitoa 

dairy effluent discharge point in the Waitoa River in August and October, 

2007. 

(Source: Xie et al. 2008) 

 

 

Figure 5.11 Averaged pH, temperature and EDTA concentrations of 12 surface 

water samples collected upstream (US) and downstream (DS) from the 

Waitoa dairy effluent discharge point in the Waitoa River in August and 

October, 2007. 
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Figure 5.12 Effluent containing EDTA discharged into the Waitoa River from the 

Wallace Corporation Limited, located 3 km upstream of the Fonterra Waitoa 

dairy site. 

(Source: Map Toaster Topo/NZ) 

 

Table 5.2 EDTA analytical results relating to wastewater discharge into the 

Waitoa River from the Wallace Corporation Limited, sampled on 30 May 

2008. 

Surface water samples 

EDTA concentration  

(µg/L) 

Upstream Wallace boundary 1.0 

Wallace wastewater pond 282.4 

Downstream Wallace boundary 3.6 

State Highway 26 Bridge 3.1 

Upstream Waitoa (10m) 3.1 

 

Wallace 

Waitoa 

W
ai

to
a 

SH26 

1 km 
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Waitoa effluent discharge 102.7 

Downstream Waitoa (60 m) 3.1 

5.2 ASSOCIATED METALS IN THE WAITOA RIVER 

 

5.2.1 Metals in the Dairy Wastewater  

 

The minor and trace element contents in milk and dairy products have been well 

documented and could differ from the diet, seasonal and geographic changes 

(Coni et al., 1994, 1995 and 1996; Lindmark-Månsson et al., 2003; García et al., 

2006). Table 5.3 demonstrates metal differences of Na, K, Ca and Mg between 

dairy effluents from the Fonterra Waitoa dairy site and local (Morrisville) raw 

waters. It can be seen that concentrations of Na, K, Ca and Mg in dairy effluents 

have been increased significantly compared with the local raw water. The increase 

may originate from milk itself or chemicals used in the dairy processing, such as 

the addition of nutrient ingredients of calcium (Ca).  

Table 5.3 Comparison of metal contents between dairy effluents from the 

Fonterra Waitoa dairy site and local raw waters (Morrisville). 

    Dairy Effluent      Clean Water   

Date 

Total 

Ca 

Total 

Mg 

Total 

 Na 

Total 

K 

Total 

Ca 

Total 

Mg 

Total 

Na 

Total 

K 

  (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

Nov.06 36.7 4 686 167  - -  -   - 

Oct. 06 41.5 3.5 728 141 3.37 2.4 14.7 2.53 

Oct. 06  -  -  -  - 3.87* 2.72* 16.3* 2.55* 

Sep. 06 37.6 5.32 678 152 3.27 2.33 14.7 2.59 

Aug.06 40.1 4.06 6.5 125 4.54 2.95 19.2 3.44 

Aug. 06 34.2 4.86 802 88.8 5.84*  1.23* 5.89* 1.64* 

July 06 24.7 6.84 477 37.1 -   - -  -  

June 06 25.3 8.31 541 58.6 3.17 1.79 11.2 1.96 

* dissolved value   

(Source: Fonterra Co-operative Group Limited, Waitoa) 

 

5.2.2 Heavy Metals in the Waitoa River 
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One of the environmental concerns regarding EDTA is that high concentrations of 

EDTA may remobilize heavy metals from sediments, and transferred them into 

the aquatic phase where they could harm organisms in the aquatic system, or 

consequently pose a risk to groundwater and drinking waters (Sillanpää et al., 

2001; Nowack and VanBriesen, 2005). Thus, it is important to identify heavy 

metals present in the Waitoa River. Tested metals included Na, K, Ca, Mg, Zn, 

Fe, Cd, Pb, Ni and Cr. A special heavy metal – Cr was selected as wastewater 

from a tannery factory, namely the Wallace Corporation Limited, is discharged 

upstream into the Waitoa River. All metals in the Waitoa River were analysed as 

dissolved metals by ICP-MS in R. J. Hill Laboratories of Hamilton (see appendix 

3). The test results are shown and illustrated in Figure 5.13 - Figure 5.20. 
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Table 5.4 Analytical results for metal concentrations in surface water of the Waitoa River, August and October 2007. 

Date   28 Aug. 2007 29 Aug. 2007 30 Aug. 2007 22 Oct. 2007 23 Oct. 2007 24 Oct. 2007 Mean STDEV 

River flow (m3/s) 2.61   2.21   1.80   6.76   3.78   3.19   3.393 1794 

River height (m) 13.94   13.83   13.72   14.32   13.82   13.70   13.89 0 

Samples   am pm am pm am pm am pm am pm am pm - - 

  US 2500 m 17 17 16 15 18 16 12 12 15 12 16 12 15 2 

Sodium US 10 m 18 17 16 15 19 19 12 11 15 13 18 13 16 3 

(mg L-1) DS 10 m 19 19 16 18 23 20 14 13 18 14 18 14 17 3 

  DS 60 m 27 20 21 20 28 26 16 18 21 17 21 15 21 4 

  US 2500 m 5.7 5.7 6.4 6.1 6.6 5.8 6.7 7.8 6.3 6.0 6.1 5.1 6.2 1 

Potassium US 10 m 5.8 5.9 6.5 6.2 6.7 6.7 6.9 6.7 6.9 6.4 7.9 6.0 6.6 1 

(mg L-1) DS 10 m 6.0 6.0 6.0 6.2 6.9 6.2 6.7 6.2 7.0 5.7 6.3 5.3 6.2 0 

  DS 60 m 7.2 5.8 6.4 6.6 7.8 7.1 6.4 7.0 7.4 6.1 6.5 6.6 6.7 1 

  US 2500 m 9.6 9.6 8.7 8.3 9.1 8.7 8.0 8.1 8.2 8.1 8.8 7.9 8.6 1 

Calcium US 10 m 9.6 9.7 9.0 8.5 9.2 9.6 8.5 8.3 8.5 8.0 9.0 8.1 8.8 1 

(mg L-1) DS 10 m 9.6 9.5 8.8 8.7 9.7 9.7 8.6 8.6 8.5 8.1 9.0 8.4 8.9 1 

  DS 60 m 11.0 10.0 10.0 9.9 11.0 11.0 9.6 9.6 9.7 9.6 10.0 15.0 10.5 2 

  US 2500 m 4.2 4.3 3.9 3.7 3.9 3.9 3.5 3.6 3.7 3.6 3.9 3.6 3.8 0 

Magnesium US 10 m 4.3 4.4 4 3.8 4 4.3 3.7 3.6 3.8 3.7 4.2 3.9 4.0 0 

(mg L-1) DS 10 m 4.6 4.5 3.8 4.1 4.5 4.3 3.8 3.8 4.1 3.9 4.1 3.9 4.1 0 

  DS 60 m 5 4.6 4.5 4.4 5 5 4.2 4.3 4.5 4.4 4.5 4 4.5 0 

  US 2500 m 1.1 1.4 1.9 1.9 2.3 1.3 21 9.5 7.7 4.7 11 2.6 5.5 6 

Zinc US 10 m 2.8 <1.0 2 1.5 1.8 1.6 8.1 6.2 9.1 4.4 12 11 5.5 4 

(x10-3 mg/L) DS 10 m <1.0 2.1 1.7 1.5 1.4 1.3 7 7.5 5.8 6.3 6.6 3.4 4.1 3 

  DS 60 m 1.7 <1.0 1.6 1.4 2.9 1.1 5.6 6.9 6.2 5.2 4.5 5.8 3.9 2 
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Cont. 

  US 2500 m 55 51 69 43 55 59 230 190 240 180 240 310 144 0 

Iron US 10 m 58 58 55 59 66 68 270 250 230 280 160 300 155 104 

(x10-3mg/L ) DS 10 m 57 61 68 48 59 80 280 260 240 290 180 290 159 106 

  DS 60 m 82 60 53 57 79 55 260 210 220 280 230 240 152 94 

  US 2500 m <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 - - 

Nickel US 10 m <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 - - 

(x10-3 mg/L) DS 10 m <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 - - 

  DS 60 m 0.63 <0.50 <0.50 0.55 0.72 0.63 0.56 0.51 <0.50 <0.50 <0.50 <0.50 0.6 0 

  US 2500 m 0.58 0.71 0.94 0.88 0.83 0.77 0.98 0.93 0.73 0.71 0.72 0.73 0.8 0 

Copper US 10 m 0.66 0.55 0.77 0.77 0.77 0.74 0.99 0.83 0.67 0.7 0.66 0.7 0.7 0 

(x10-3 mg/L) DS 10 m 0.62 0.61 0.75 0.71 0.73 0.73 0.92 0.88 0.65 0.66 0.57 0.59 0.7 0 

  DS 60 m 0.58 0.59 0.63 0.69 0.57 0.57 0.76 0.76 0.54 0.63 0.51 0.68 0.6 0 

  US 2500 m <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 0.57 <0.50 0.6 - 

Chromium US 10 m <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 0.77 <0.50 0.8 - 

(x10-3 mg/L) DS 10 m <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 0.61 <0.50 0.6 - 

  DS 60 m <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 <0.50 0.52 <0.50 0.5 - 

  US 2500 m <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 0.12 <0.050 <0.050 <0.050 <0.050 <0.050 - - 

Cadmium US 10 m <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 - - 

(x10-3 mg/L) DS 10 m <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 - - 

  DS 60 m <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 - - 

  US 2500 m <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 - - 

Lead US 10 m <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 - - 

(x10-3 mg/L) DS 10 m <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 - - 

  DS 60 m <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 - - 

Notes: (i) US (upstream) or DS (downstream) of the Waitoa dairy effluent discharge point 
           (ii) Analyses carried out by RJ Hill laboratories of Hamilton using ICP-MS
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Figure 5.13 Test results of sodium (Na) concentrations for 12 samples collected 

upstream (US) and downstream (DS) from the Waitoa dairy effluent 

discharge point in the Waitoa River in August and October, 2007. 

 

 

 

Figure 5.14 Test results of potassium (K) concentrations for 12 samples collected 

upstream (US) and downstream (DS) of the Waitoa dairy effluent discharge 

point in the Waitoa River in August and October, 2007. 
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Figure 5.15 Test results of calcium (Ca) concentrations for 12 samples collected 

upstream (US) and downstream (DS) of the Waitoa dairy effluent discharge 

point in the Waitoa River in August and October, 2007. 

 

 

 
Figure 5.16 Test results of magnesium (Mg) concentrations for 12 samples 

collected upstream (US) and downstream (DS) of the Waitoa dairy effluent 

discharge point in the Waitoa River in August and October, 2007. 
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Figure 5.17 Mean concentrations of Na, K, Ca and Mg for 12 samples collected 

upstream (US) and downstream (DS) of the Waitoa dairy effluent discharge 

point in the Waitoa River in August and October, 2007. 

 

 

 
Figure 5.18 Test results of iron (Fe) concentrations for 12 samples collected 

upstream (US) and downstream (DS) of the Waitoa dairy effluent discharge 

point in the Waitoa River in August and October, 2007. 
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Figure 5.19 Test results of zinc (Zn) concentrations for 12 samples collected 

upstream (US) and downstream (DS) of the Waitoa dairy effluent discharge 

point in the Waitoa River in August and October, 2007 

(New Zealand trigger value for toxicants of Zn shown by the red line) 

 

 
Figure 5.20 Test results of copper (Cu) concentrations for 12 samples collected 

upstream (US) and downstream (DS) of the Waitoa dairy effluent discharge 

point in the Waitoa River in August and October, 2007. 

(New Zealand trigger value for toxicants of Cu shown by the red line) 

 

The following findings may be drawn from Figure 5.13 - Figure 5.20: 
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i. Concentrations of Na, Ca and Mg at 60 m downstream of the dairy effluent 

diffuser were constantly higher than other sampling sites except K, which 

demonstrates the contribution of dairy effluents to the Waitoa River (Figure 

5.13 - Figure 5.16). Mean concentrations of Na, K, Ca and Mg are also 

illustrated in Figure 5.17, showing increases of Na, K, Ca, and Mg 60 m 

downstream due to the Waitoa dairy effluent discharge.  

ii. Significant differences of Fe and Zn concentrations occurred in the Waitoa 

River between the sampling period of August and October 2007 (Figure 

5.18 and Figure 5.19). During the sampling period of 22-24, October 2007, 

the river flow was relatively high at 6.8, 3.8 and 3.2 m3/s, separately. The Fe 

and Zn may come from runoff of pasture land because the best time to put 

fertilizers on pasture land is spring or autumn in New Zealand. In this case, 

the level of zinc was over the zinc trigger value of 2.4 µg/L for freshwater 

(Australian and New Zealand Environment and Conservation Council, 

2000). 

iii.  In terms of Cu, it was detected both upstream and downstream. It can be 

seen from Figure 5.20 that concentrations of Cu downstream were lower 

than those at upstream sites due to the dilution of dairy effluent flux. The 

value of copper in the Waitoa River is however below the trigger value for 

toxicants of fresh water (Australian and New Zealand Environment and 

Conservation Council, 2000). 

iv. Regarding Cr in the Waitoa River, it was only detectable on one day, and 

that might relate to the wastewater discharge from the Wallace Corporation 

Limited - upstream of the dairy effluent discharge. 

v. Concentrations of Pb, Cd, and Ni in the Waitoa River were lower than their 

detection limits for most of samples.  

 

5.3 DISCUSSION 

 

5.3.1 Water Quality of the Waitoa River 
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To effectively manage water quality, the Waitoa River is one of the routinely 

monitored (monthly) rivers in the regional water quality monitoring programme 

(Beard, 2008). The quality of the Waitoa River for ecology at Mellon Road 

(approximate 7 km downstream of the Waitoa dairy site) and the comparison with 

other regional water quality monitored site are illustrated in Figure 5.21 and 

Figure 5.22, respectively.  

 

 

 

 

 

 

 

 

 

 

Figure 5.21 Water quality, as determined by the percentage of samples rated as 

excellent, satisfactory, or unsatisfactory against accepted ecological standards, 

of routinely monitored factors in the Waitoa River at Mellon Road..  

(Source: Beard, 2008) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22 Averaged water quality score of the Waitoa River at Mellon Road 

compared with other sites in this region for ecology  

(Source: Beard, 2008) 
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It can be seen from Figure 5.21 that 100% of total nitrogen samples from the 

Waitoa River exceeded their ecological standards and the general water quality 

was rated the worst of all of the sites. However, the results of this experiment 

indicate that, although EDTA is comprised of ~10% nitrogen, very little of the 

river nitrogen is from EDTA. This is because the EDTA concentration in the river 

is very low (1-2.7 µg/L) compared to the total nitrogen concentration (Beard, 

2008).  

   

5.3.2 Analysis of EDTA Speciation in the Waitoa River 

 

EDTA concentrations of 1 ~ 2.7 µg/L were found 60 m downstream of the dairy 

effluent discharge. The species of EDTA complex in the Waitoa River depends 

not only on the dissolved concentrations of the associated cations and other 

natural ligands which determine the equilibrium speciation, but also on the 

released EDTA species from the dairy wastewater. Due to the low concentration 

of EDTA and dissolved metals detected in the Waitoa River, EDTA speciation 

was predicted only by its complex stability constants. Comparison of the EDTA 

concentration with concentrations of associated dissolved metals is shown in 

Table 5.5 for the site 60 meters downstream of the dairy discharge point in the 

Waitoa River. 

 

Theoretically, EDTA is completely complexed with Fe(III) at a concentration of 

0.01 µM Fe(III)EDTA in the Waitoa River. Nonetheless, further measurement is 

needed to verify its certainty. 

 

Table 5.5 Comparison of concentrations of EDTA and dissolved metals with their 

complex stability constants 60 m downstream of the dairy outfall.   

Items Molarity  LogKa Ka*[M] ( µM) 

EDTA  0.01 µM - - 

Ca  0.26 mM 10.61 1.0E+13 

Mg  0.19 mM 8.83 1.3E+11 

Zn  0.06 µM 16.44 1.7E+15 

Fe  2.72 µM 25 2.7E+25 

Ni  0.01 µM 18.52 3.3E+16 
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Cu  0.01 µM 18.7 5.0E+16 

Cd  ND* 16.36 - 

Cr  ND - - 

*-the concentration was below the method detection limit 

 



CHAPTER FIVE EDTA AND ASSOCIATED HEAVY METALS IN THE WAITOA RIVER 

143 

5.4 CONCLUSIONS 

 

i. Surface water samples were collected 2,500 m and 10 m upstream, and 10 

m and 60 m downstream of the effluent diffuser in the Waitoa River to 

investigate concentrations of EDTA in the aquatic environment receiving 

large volume of dairy wastewater from the Fonterra Waitoa dairy site. 

ii. A necessary pre-concentration step was needed for the determination of 

EDTA in the surface waters as the level of EDTA was too low. This was 

achieved by heating the surface water sample (10 mL) to dryness in 90°C 

dry oven and adding 1.5 mL mobile and 0.5 mL Fe3+ (1.94 mg/L) solution 

for a 5-fold pre-concentration. 

iii.  The HPLC-UV method was applied to analyze EDTA concentrations in 

surface water samples. A daily calibration curve was established at the 

concentration range of 0 – 150 µg/L EDTA. A blank, a duplicate every 

10th sample and a spike recovery of 50 µg/L EDTA standard every 20th 

sample were undertaken per run for quality control. The averaged 

duplicate variability was 8.1 % (n=5) and the spike recovery varied from 

97 – 107 % (n=3). 

iv. Analytical results show a slight increase of the EDTA concentration 60 m 

downstream from the dairy effluent discharge point. The highest EDTA 

concentration of 2.7 µg/L was observed 60 m downstream during the 

sampling period of August and October, 2007. This value is well under the 

Predicted Effect Concentration (PEC) of 2.2 mg/L for aquatic 

environments advised by the European Union, almost half of EDTA target 

value of 5 µg/L for surface waters in the Rhine catchment area, 

recommended by the International Association of Waterworks, and also 

well below the New Zealand Drinking Water Standards of 0.7 mg/L 

EDTA for health purposes. These data therefore suggest that the discharge 

of dairy effluent at the Fonterra Waitoa site appears not leading to a 

significant effect for the adjacent natural river flow. However, further 

study on dispersion of dairy wastewater in the Waitoa River is going to be 

undertaken in Chapter 6 for this potential effect. 
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v. Analytical results for associated heavy metals in the Waitoa River reveal 

(a) concentrations of Na, K, Ca and Mg were increased downstream of the 

dairy effluent diffuser in the Waitoa River, which demonstrates the 

contribution of effluents at the Fonterra Waitoa dairy site; (b) 

concentrations of Fe and Zn showed significant differences between the 

sampling periods of August and October, with the level of Zn collected in 

October obviously exceeded the trigger value of 2.4 mg/L for natural 

waters; (c) copper was detectable both upstream and downstream, but their 

concentrations were below the trigger value (1.0 mg/L) for toxicants in 

fresh water; (d) Cr was only detectable on one day out of 6 days during the 

sampling periods that may relate to the tannery factory effluent discharge 

(wallace) and (e) Pb, Cd and Ni seemed to be all under detection limits, 

and pose no particular concern. 

vi. In addition to the wastewater discharge containing EDTA from the 

Fonterra Waitoa dairy site into the Waitoa River, another EDTA source 

originated from the Wallace Corporation Limited plant, where EDTA is 

applied in the tannery. The analytical results of random samples collected 

show not only the presence of EDTA in the wastewater pond at the 

Wallace plant, but also the contribution of EDTA to surface water samples 

from comparison of EDTA concentrations between upstream and 

downstream of the company boundaries along the Waitoa River. 
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6.0 CHAPTER SIX : SIMULATION OF EDTA  

DISPERSION WITHIN THE WAITOA RIVER  
 

6.1 INTRODUCTION 

 

EDTA was detected from the limited surface water sample collection (see Chapter 

5). Generally, EDTA is not included in routine monitoring parameters for the 

surface water quality so that there is insufficient data to reveal whether the dairy 

effluent discharge from the Fonterra Waitoa dairy factory has a significant effect 

on the EDTA concentration in the Waitoa River. However, numerical techniques 

with advanced computer performance such as modelling have been widely used to 

fill in this knowledge gap and provide an effective tool for simulating transport of 

dissolved pollutants in freshwater systems (Cox, 2003). 

 

When EDTA contained in dairy effluent enters the Waitoa River, two things 

happen to its transport. Firstly, EDTA is carried away by the water flow, a process 

which is termed advection; and secondly, it spreads out due to the concentration 

gradient, a process which is termed dispersion or diffusion (Ruthford, 1981; 

Furukawa et al. 2007). Accordingly, in this chapter, two approaches namely (i) 

approximate calculations using quasi one-dimension vertical mixing model; and 

(ii) a numerical simulation of the hydrodynamic processes and effluent mixing in 

two-dimensions (depth-averaged) were undertaken to enhance the understanding 

of the fundamental aspects of the transport of EDTA within the Waitoa River. For 

a worst case scenario of high volumes of dairy effluent discharge into the Waitoa 

River at a low river flow, both dispersal path and concentration of EDTA are 

determined through model output analysis.  
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6.2 DISCHARGE AND MOVEMENT OF DAIRY EFFLUENT 

INTO THE WAITOA RIVER 

 

6.2.1 Wastewater Outfall Diffuser 

 

Wastewater from the Fonterra Waitoa dairy processing plants, treated by an 

extended aeration sludge biological treatment at the wastewater treatment plant, is 

discharged into the Waitoa River via a sub-fluvial pipe routed through an adjacent 

wetland. The discharge pipe consists of a 44 cm outside diameter steel pipe with 

an approximate wall thickness of 10-12 mm (Figure 6.1). The diffuser extends 

into the river 6.6 meters from the “0” point, which is submerged on the base of the 

river with multiple discharging points (Figure 6.2). The dairy effluent containing 

EDTA discharge into the Waitoa River occurs continually year round. On a daily 

basis, the discharge is relatively constant, about 7,000 m3/day on average. The 

permit of the effluent discharge is up to 10,000 cubic meters per day, and the 

discharge rate should not exceed 175 litres per second (Waikato Regional 

Council, 1993). 

 

Figure 6.1 End view of wastewater discharge pipe from the Fonterra Waitoa dairy 

site into the Waitoa River. 

(Source: Fonterra Waitoa dairy factory) 
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Figure 6.2 Wastewater diffuser pipe from the Fonterra Waitoa dairy site into the 

Waitoa River.  

 (Source: Fonterra Waitoa dairy factory) 

 

6.2.2 Waitoa River Flow 

 

Flow rates of the Waitoa River vary during the year. However, between late 

October to mid-June, flow rates are generally less than 2000 litres (2 m3) per 

second (Coffey, 2003). The Waikato Regional Council has authorised Fonterra’s 

Waitoa dairy factory to utilise separate discharge loads when the river flow rates 

are <600 L/s, 600-1400 L/s, 1400-1700 L/s, 1700-2000 and >2000 L/s (Waikato 

Regional Council, 1993). 

 

6.2.3 Movement of Dairy Effluent in the Waitoa River 

 

In general, advection and dispersion occur in each of the three coordinate 

directions, and the governing equations will be comparatively complex, such as 

for the Eulerian advection/diffusion equation (Black, 2002). Under conditions of 

non-steady flow, the flux of a tracer can be taken as a sum of the advective motion 

of the fluid, driving by gravity and turbulent diffusion. The concentration (C) will 

be governed by the advection/diffusion equation 7.1: 
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(Equation 7.1) 

where t is time; x, y, z are orthogonal spatial coordinates; Ex, Ey and Ez are 

coefficients of eddy diffusivity; ws is the still water fall velocity under gravity of 

the tracer (position upwards); U, V, W are horizontal and vertical components of 

the fluid velocity; k is the decay coefficient for a non-conservative tracer; and Ss is 

the tracer/effluent source term. 

 

The input parameters vary for each model ranging from one-dimensional models 

to the more complicated two- and three-dimensional models. However, the 

dispersion coefficient is more difficult to estimate, and varies in space, time, and 

for the model type. The dependence of the dispersion coefficient on the model 

complexity is illustrated in Figure 6.3. Apparently, the model coefficient 

decreases with model complexity. 

 

Figure 6.3 Model dispersion coefficient vs. model complexity. The model 

coefficient decreases with model complexity. 

Model type: 1D = one-dimensional, 1D DZ = one-dimensional with dead zones, 

2D V = two-dimensional vertically integrated, 3D = three-dimensional 



CHAPTER SIX SIMULATION OF EDTA DISPERSION WITHIN THE WAITOA RIVER 

150 

(Source: Hellweger, 2005) 

6.3 QUASI ONE DIMENSIONAL PRESENTATION OF EDTA 

DISPERSION  

 

In many practical problems, the analysis can be simplified by neglecting terms 

which are small (Rutherford, 1981). For instance, in the case of Waitoa dairy 

effluent discharges with a steady uniform transverse line-source (Figure 6.4); 

transverse concentration gradients are negligible due to the uniform line-source. 

Longitudinal gradients are also negligible because the source is steady. Thus, the 

dispersion of EDTA can be simplified to become quasi one-dimensional, which is 

only vertical mixing by neglecting the horizontal and transversal dispersion.  

 

 

Figure 6.4 Diagram of quasi one-dimensional vertical mixing of EDTA from a 

steady uniform transverse line source, as for example from the Fonterra 

Waitoa dairy wastewater into the Waitoa River. 

(Source: Rutherford, 1981) 

 

6.3.1 Mixing Mechanism and Approximate Calculations  
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In channels with no secondary circulation, the principle mechanism causing 

vertical mixing is turbulence generated by velocity. The dispersion coefficient 

indicated by Elder (Rutherford, 1981) depends upon both depth and shear velocity 

as per the following equation 

Dy(y) = y/d (1-y/d) K d u* 

(Equation 7.2) 

where Dy is vertical dispersion coefficient; d is depth of flow; K is von Kármán’s 

constant (= 0.4); and u* is shear velocity (= , where s is channel slope). For 

many practical problems the depth average is used  

Dy = 0.067 d u* (Rutherford, 1981) 

(Equation 7.3) 

 

For a natural channel, vertical secondary circulations can be expected to increase 

the rate of vertical mixing. It appears that 

0.067 < Dy/d u* < 0.33 (Rutherford, 1981) 

(Equation 7.4) 

 

Figure 6.4, Figure 6.5 and Figure 6.6 shows vertical mixing with equal 

concentration located downstream from a steady uniform transverse line-source of 

the Fonterra Waitoa dairy effluent at three different depths. It also indicates the 

length and width of the EDTA plume where the concentrations exceed a specified 

level. Variables are expressed in non-dimensional form so that many parameter 

combinations may appear on the same graph (Rutherford, 1981). 

C* = C/  = CUbd/q 

(Equation 7.5) 

y* = y/d 

(Equation 7.6) 

x* = x Dy/Ud2 

(Equation 7.7) 

where C*, y* and x* are non-dimensional concentration, vertical displacement, 

and downstream displacement respectively; C is concentration;  is fully mixed 

concentration; U is mean velocity; Dy is depth averaged vertical dispersion 
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coefficient; d is river depth; b is river width; and q is tracer of EDTA mass inflow 

rate.  

 

The vertical mixing is symmetrical in the direction y as the flow velocity is 

assumed to be uniform with the bed and water surface located at y* = 0 and y* = 1, 

Clearly 0 < y* <1 and C* = 1 appear at a long distance downstream from the 

outfall. The regions to the left of the C* = 0.001 contour do not contain any tracer 

of EDTA, while in the region to the right of the C* = 1.01 and 0.99 contours, the 

EDTA is fully mixed. 

 

However, Figure 6.5 may overestimate the rate of dispersion downstream from an 

outfall on the bed of a rough natural channel due to the low velocity and low 

dispersion coefficient close to the boundary, and irregularities in the bed or dead 

zones causing locally high concentrations in these areas (Rutherford, 1981). The 

complete mixing can be attained within a distance (Figure 6.4) 

xm ≈ 0.4 Ud2/Dy 

(Equation 7.8) 

downstream from an outfall on the bed or at the surface (Rutherford, 1981). It can 

be seen from Figure 6.6 that complete mixing appears to be attained with a 

distance  

xm ≈ 0.1 Ud2/Dy 

(Equation 7.9) 

downstream from an outfall located at mid-depth (Rutherford, 1981).  
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Figure 6.5 Concentration contours downstream from a steady transverse line 

source, applicable to the Waitoa dairy wastewater discharge, located on the 

channel bed of the Waitoa River.  

(Source: Rutherford, 1981) 

 

a 
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Figure 6.6 Concentration contours downstream from a steady transverse line 

source, applicable to the Waitoa dairy wastewater discharge, located at three-

quarters depth of the river channel of the Waitoa River.  

(Source: Rutherford, 1981) 
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Figure 6.7 Concentration contours downstream from a steady transverse line 

source, applicable to the Waitoa dairy wastewater discharge, located at mid-

depth of the river channel of the Waitoa River. The regions to the left of the 

C* = 0.001 contour do not contain any EDTA, while in the region to the right 

of the C* = 1.01 and 0.99 contours, the EDTA is fully mixed. 

(Source: Rutherford, 1981) 

 

6.3.2 Application of Quasi One-dimensional Mixing Mechanism  

 

The above quasi one-dimensional mixing mechanism was applied for a specific 

monitored case of the Waitoa dairy wastewater discharge into the Waitoa River. 
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Field measurements such as water depth, currents, and EDTA concentration in 

dairy wastewater discharge were collected on 30 May, 2008. Mass flow of the 

EDTA was calculated based upon the effluent discharge volume (4,712,000 litres) 

for that particular day and measured EDTA concentration (107 µg/L) for the 24-hr 

composite dairy effluent sample. 

 

An impact from EDTA may be evident in some cases at sites where there is an 

output source (European Chemicals Bureau, 2004; Grundler et al., 2005). The 

worst scenario for the Waitoa case is if significant volumes of dairy effluent are 

discharged into the Waitoa River to result in high EDTA concentrations in the 

waterway. Hence, the worst case is assumed as the maximum usage of EDTA in 

the processing plant combined with low river flow rate (<600 L/s) of the Waitoa 

River. In accordance with usage of Eliminator/Eliminator LF (34-35% EDTA 

contents) at the Fonterra Waitoa dairy factory for the year 2008, the maximum 

used amount was 4180 litres in total for January, 2008. The consumed EDTA on a 

daily basis was 4180 litres x 1.3 kg/L (density) x 35% (EDTA contents)/31days = 

61.4 kg/day. The daily EDTA mass flow rate into the Waitoa River with an 

approximate 90% EDTA removal (see Chapter 4) by the bio-treatment is 

calculated as 61.4 x (1-0.9) x 1000 / (24 x 60 x 60) = 0.071 g/s. 

 

When dairy effluent containing EDTA from the Fonterra Waitoa dairy site is 

discharged into the Waitoa River with a steady uniform transverse line source 

(Figure 6.4), the EDTA fully mixed concentration, and the distance downstream 

from the outfall at the surface and the mid-depth for both monitored case and the 

worst case are listed in Table 6.1. The results show that the distance of completely 

mixed conditions for both cases is 6 meters downstream from the outfall, and the 

complete mixed concentrations of EDTA are 3.18 µg/L for the monitored case and 

40.3 µg/L for the worst case of the year 2008, respectively. 
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Table 6.1 EDTA dispersion results downstream from the dairy effluent outfall in 

the Waitoa River with a steady uniform transverse line-source, when quasi 

one-dimensional vertical mixing mechanism (Rutherford, 1981) is applied.  

Items  Monitored case(30 May 08) Worst case*                    Comments 

 Water depth: d =1.0m 1.0 m  

 Width: b = 8 m 8 m  

Waitoa River Slope: S = 2x10-4 10-4 
(source: Rutherford, 
1981) 

 Velocity: U = 0.22 m/s 0.20 m/s  

 
Shear velocity: 
 u* = 0.0443 m/s 0.0443 m/s u*= (gdS)1/2 

Vertical dispersion 
coefficient (Dy) 

Dy = 0.33du* = 146 cm2/s 146 cm2/s 
assuming as a natural 
and irregular river 
channel  

Complete mixing 
distance at the 

surface 
6 m 6 m Xm = 0.4 Ud2/Dy 

Complete mixing 
distance at the mid-

depth 
1.5 m 1.5 m Xm = 0.1 Ud2/Dy 

EDTA mass flow 0.0056 g/s 0.071 g/s Field measurements 

Fully mixed 
concentration 

3.18 µg/L 40.3 µg/L 
  

= q/Udb 

 

*Worst case - the maximum EDTA discharged into the Waitoa at a low river flow in the year 2008 

 

6.4 3DD HYDRODYNAMIC MODEL SIMULATING EDTA 

DISPERSION IN THE WAITOA RIVER 

 

6.4.1 Introduction  

 

The 3-dimensional hydrodynamic model 3DD was developed by Professor Kerry 

Black and has been used successfully in numerous studies around the world and 

New Zealand for over 25 years (Black, 2002). The Model 3DD is based upon 

highly accurate mixed Eulerian/Lagrangian mathematical techniques and provides 

state-of-art –hydrodynamic and dispersal simulations. Rather than using an 

Eulerian finite difference scheme to solve equation 7.1, the dispersal model 
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POL3DD (POLlution dispersal coupled to 3DD) tracks dissolved materials as 

suspended “particles” to simulate water-borne dispersal and determines 

concentrations of pollutants from multiple sources in 3 dimensions (Black, 2002). 

In the shallow water environment, e.g. the Waitoa River, river currents only 

generated in a 2-dimensional (depth-averaged) using the 3DD hydrodynamic 

model, and the dispersal paths and concentrations of EDTA are then read by 

POL3DD to define the velocity fields. Therefore, the model will be described 

accordingly. 

 

6.4.2 3DD Hydrodynamic Model Inputs and Outputs 

 

The model 3DD requires an operation file (.DAT or .IN), a bathymetry file (.MD) 

and a boundary file (.BND). The operation file controls the input data and output 

file names, which contain the main characteristics of the site, including number of 

grid cells and sizes, friction coefficient, and time step. 

 

A precise bathymetry is essential for the accurate resolution of numerical 

modeling outputs (Black, 2002). The collection of bathymetric data was 

undertaken on 15 October, 2008 by two methods, (i) a standard GPS (TRIMBLE 

RTK GPS) station was set beside the wastewater treatment pond for a known 

point (Figure 6.8); and (ii) water depths were measured by an echosounder 

(KNUDSEN MP 329 Dual Frequency Echosounder) on a survey vessel (3.2 meter 

ZODIAC RIB) (Figure 6.9).  
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Figure 6.8 Setting up a standard GPS station for a known point before the 

collection of bathymetric data for the Waitoa River. 

 

 

Figure 6.9 Collecting bathymetric data using an echosounder on a survey vessel 

for the purpose of hydrodynamic modelling within the Waitoa River. 

 

A one meter by one meter bathymetric grid was created in ARC GIS and exported 

as a XYZ ASCII file. This file was then gridded using the software package 
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SURFER32 (Version 6.04, software by Golden Software Inc, 1997). The 

SURFER ASCII file was converted in-line with a 3DD standard format (I, J) as 

.md file (Figure 6.10). The cell (1, 1) is located at the bottom left corner of the 

grid and the maximum coordinate (Imax, Jmax) are at the top right corner. For 

simulation of EDTA in the Waitoa River, a grid size of 172 x 531(I, J) was 

created. The U velocity of x-direction is positive to the east, corresponding with 

an increasing I value, while the V velocity is positive north and corresponds with 

an increasing J. Each cell is referenced by its (I, J) coordinate as well as U and V 

velocities corresponding to that point. The Kriging method of interpolation was 

chosen with a search radius of 6 m to grid the bathymetry (Figure 6.11). A slight 

(1 cell radius) smoothing was performed for the bathymetry, shown in Figure 

6.12. 

 

 

Figure 6.10 Structure of each model ‘cell’, where dX and dY are grid size (m), 

the x-direction (U velocity) is positive to the east and with corresponding an 

increasing I, and V velocity is positive to the north and corresponds with an 

increasing J. Each cell is referenced by its (I, J) coordinate and the U and V 

velocities in the triangle corresponding to that point. 
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Figure 6.11 Coverage of KNUDSEN MP 329 Dual Frequency Echo-sounder in 

the Waitoa River. Survey was undertaken on 15 October, 2008, river flow 

and height were 3460 L/s and 13.6 m (sea level), respectively. 

(River data: Fonterra Co-operative Group Limited, Waitoa dairy site) 
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Figure 6.12 A comparison of the created bathymetry for the 3DD hydrodynamic 

model with the aerial photo of the investigated region in the Waitoa River 

from the Google Earth. 

(Source: Google Earth) 

 

The boundary file contains boundary information, i.e. input data for the model at 

the boundaries such as the start and end I, J value. 

 

The hydrodynamic model 3DD binary output file (.OUT) contains depth-averaged 

velocity data for each grid cell during the length of the time series. 3DD output 

files were examined and results presented in the MATLAB R2007a (Vision7.4.0) 

graphics using the ‘plot3dd’ command.  
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6.4.3 Hydrodynamic 3DD Model Processes and Calibration 

 

1. Hydrodynamic processes 

 

Model 3DD solves the momentum and continuity equations for the circulation 

explicitly on an Eulerian grid. In this case, only the two-dimensional capabilities 

of the 3DD model were applied to simulate the averaged-depth flow in the Waitoa 

River as a means of understanding how EDTA is dispersed in the receiving 

region. The model accounts for various parameters through bed roughness length 

and horizontal eddy viscosity. Within a shallow water environment of the Waitoa 

River, the dominant dispersion of EDTA is transverse with the main river flow, 

but not horizontal dispersal. Thus, the main effective parameter for the spatial 

variation is the bed roughness length.  

 

2. Model calibration 

 

Models can only produce meaningful results after proper calibration based upon 

comparisons of field measured data against model outputs. The model calibration 

was undertaken at a low river flow (425 L/s) by adjusting the roughness bed 

length in the model equation until the model-simulated river averaged velocities 

matched with the velocity measurements at the specific cross sections of the 

Waitoa River. A time series of the average velocity through the section over the 

full model simulation was extracted from the Model Support Manager of 3DD 

Suite (Figure 6.13). The actual field measurement was carried out using Pigmy 

current meter (P039) on 30 May 2008 assuming the river flow was consistent.  

 

After calibrating the model parameters (shown in 
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Table 6.2), another 48 hours simulation was undertaken. New depth-averaged 

velocities were then extracted to confirm that the model was performing 

consistently. For a comparison of depth-averaged velocities to the actual field 

measurements, the initial and calibrated 3DD model output is listed in Table 6.3.  

 

 

 

These data reveal that  

(i) the calibrated velocities confirmed that the 3DD hydrodynamic model 

was performing consistently by the same velocities; and 

(ii)  differences between the modelled and measured velocities were less than 

4 %, and the averaged difference was -2.3%. This suggests that the river 

velocity was reflected well by the model. 

 

 

Figure 6.13 The 3DD model depth-averaged velocity data extraction window of 

cross sections from the 3DD Suite. 
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Table 6.2 Numerical parameters for the two-dimensional current hydrodynamic 

model of the Waitoa River receiving the Fonterra Waitoa dairy effluent 

containing EDTA. 

Parameters Value 

Time steps 0.06 seconds 
Model Duration 24 hours 
Roughness length 0.01 m 
Resistance length (uniform and constant) 0.01 m 
Horizontal eddy viscosity (uniform and 
constant) 0.1 m2/s 
Grid resolutions 1 m x 1 m 
Grid size 172 x 531 
Rotation of relative to true north 0 
Effective depth 0.3 m 
Drying height 0.05 m 
Boundaries North and south boundary created 

 

Table 6.3 Comparison of depth-averaged velocities from field measurements, the 

initial 3DD model outputs and the calibrated 3DD model outputs at a low 

river flow (425 L/s) for the Waitoa River. 

Cross 
sections 

Depth 
(cm) 

Depth-
averaged 
velocity 

(field) (m/s) 

Depth-
averaged 

velocity (3DD 
output) (m/S) 

Calibrated 
depth-

averaged 
velocity (m/s) 

Differences*
(%) 

1 88 0.208 0.202 0.202 -2.9 

2 150 0.228 0.220 0.220 -3.6 

3 90 0.270 0.269 0.269 -0.4 

    Mean -2.3 
      
* Differences (%) = (modeled velocity - measured velocity)/averaged velocity * 100 

 

6.4.4 Simulation of River Flow by 3DD Model  

 

The river flow patterns, velocity, and velocity vectors from the 3DD model output 

for the Waitoa River are shown in Figure 6.14 for a low river flow (425 L/s) and 

Figure 6.15 for a high river flow (>2000 L/s). Dead zones, caused by an eddy 

close to the river boundary and shown by the red dashed circle, occur during 

hydrodynamic current simulation at both low (0.2 m/s) and high (1.0 m/s) river 

currents. The velocity of dead zone (red dashed circle) is likely to be much lower 
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than the domain flows of the river. The peak velocities for both river flows can be 

seen to reach 0.3 m/s and 2.1 m/s in the Waitoa River. 
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Figure 6.14 The simulated river flow, velocity vector pattern and velocity by the 3DD hydrodynamic model at a low river velocity of 

0.2 m/s (river flow of 425 L/s) in the Waitoa River. The peak velocity can be seen to reach 0.31 m/s in the modelled region, and 
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the velocity of the dead zone caused by an eddy close to the boundary (red dash-circle) can be seen to be much smaller than the 

domain river velocities. 
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Figure 6.15 The simulated river flow, velocity vector pattern and velocity using the 3DD hydrodynamic model at a high river velocity 

of 1.0 m/s for the Waitoa River. The peak velocity can be seen to reach 2.1 m/s in the modelled region, and the velocity of the 

dead zone caused by an eddy close to the boundary (red dash-circle) can be seen to be much smaller than the domain river 

velocities.
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6.4.5 Simulation of EDTA Dispersion in the Waitoa River Using POL3DD 

Model 

 

POL3DD is a Lagrangian 3-dimensional numerical dispersal model for 

application to the transport of dissolved pollutants (EDTA in this case), and is 

linked to the 3DD hydrodynamic model (3DD) detailed flow patterns (Black, 

2002). The model solves the dispersion equations using novel Lagrangian particle 

tracking techniques for the shallow water, which is the Waitoa River in the 

present study. The output from this model shows the EDTA dispersal paths and 

concentrations in the simulated region. The preparation of input files and 

extraction of results from the model output file are all supported by the 3DD 

Suite. The graphics programme, PLOT3DD - a MATLAB support tool, plots 

model outputs. 

 

In essence, the POL3DD model works in four stages (Black, 2002) as follows: 

(i) Boundary condition: EDTA particles are released each time step in 

accordance with a boundary condition, which, in this case, is volume input 

and EDTA concentration of dairy effluents;  

(ii)  Advection/Diffusion: EDTA is firstly advected by currents derived from a 

hydrodynamic model. Next, diffusion is modelled as a random walk, with 

position increments proportional to horizontal and vertical eddy diffusivity; 

(iii)  Accumulation: The EDTA concentration is determined in each model cell 

by accumulating the masses and volumes carried by the EDTA resident 

within the cells; and 

(iv) Decay: EDTA is generally considered not to be biodegraded in the natural 

environment. Hence, EDTA is treated as conservative particles and no 

decay was applied. 

 

1. POL3DD model parameters 

 

The POL3DD model was undertaken to simulate the EDTA dispersal within the 

Waitoa River for the monitored case of 30 May 2008, and the worst case scenario 

for the year 2008. The chosen vertical velocity profiles around the averaged-depth 

current for the river flow pattern were generated by a two-dimensional 
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hydrodynamic model using the 3DD model described above. The parameters for 

POL3DD model are tabulated in Table 6.4. 

 

Table 6.4 Numerical parameters for POL3DD to simulate the dispersal of EDTA 

within the Waitoa River receiving dairy effluent from the Fonterra Waitoa 

dairy site. 

Parameters Value 

Center of release region (I, J) (162, 27) 

Constant release  0 

Upper and lower Z from surface down 0, 1 

Timing of release 0, 0 

Uniform roughness length 0.01 m 

Release EDTA concentration  

Monitored case 0.107 g/m3 

Worst case 0.88 g/m3 

Release volume  

Monitored case 0.055 m3/s 

Worst case 0.081 m3/s 

Horizontal diffusion option 1 (constant) 

Vertical diffusion options 1 (constant) 

Model time step 1 second 

Model duration  72 hours 

 

2. Modelling results 

 

POL3DD of two-dimensional numerical dispersal model was applied to the 

transport of EDTA using novel Lagrangian particle tracking techniques within the 

Waitoa River subsequent to the Fonterra Waitoa dairy effluent discharge. The 

particle tracking results and distribution of EDTA concentrations within the 

Waitoa River for both monitored case (30 May 2008) and the worst case scenario 

for the year 2008 are shown in Figure 6.16 and Figure 6.17. EDTA concentrations 

are also plotted as 3-dimensional presence for the worst case scenario of dairy 

effluent discharge, shown in Figure 6.18.  
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Figure 6.16 Particle tracking result (a) and simulated EDTA concentrations (g/m3, e.g. 103 µg/L) (b) by the POL3DD model within 

the Waitoa River for the monitored case, as dairy effluent discharge volume of 0.055 m3/s at the low river velocity of 0.2 m/s (or 
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river flow of 425 L/s). It can be seen that the maximum particle number and EDTA concentration occurred in the immediate 

vicinity of the dairy effluent outfall. 
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Figure 6.17 Particle tracking result (a) and simulated EDTA concentrations (g/m3, e.g. 103 µg/L) (b) by the POL3DD model within 

the Waitoa River for the worst case, as dairy effluent discharge volume of 0.081 m3/s at the low river velocity of 0.2 m/s (or river 

flow of 425 L/s). It can be seen that the maximum particle number and EDTA concentration occurred in the immediate vicinity of 

the dairy effluent outfall. 
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Figure 6.18 The simulated EDTA concentrations by the POL3DD model 

illustrated in three dimensions within the Waitoa River for the worst scenario 

of high volume discharge (0.081 m3/s) and low river flow (425 L/s). It can be 

seen that the instantaneous EDTA concentration reached 0.25 g/m3 at the 

immediate vicinity of the dairy effluent outfall. 

 

It is evident that  

(i) the maximum EDTA concentrations occurred at the immediate vicinity 

of dairy effluent outfalls for both cases; and 

(ii)  EDTA dispersal paths and concentrations were determined by the particle 

tracking results.  

 

To explain how EDTA is dispersed within the Waitoa River due to the river water 

flux and dispersion, a series of EDTA averaged concentrations for each central 

cell of various transects were extracted, using the 3DD suite support manager, 

downstream from the dairy effluent outfall. Changes of EDTA concentrations for 

both cases within the Waitoa River are illustrated in Table 6.5 after the dairy 

effluent enter the stream. As expected, the concentration of EDTA had a 

significant decrease due to the dilution of water flux of the Waitoa River, but the 

important finding is that there was no obvious concentration change of EDTA 

beyond 50 meters downstream from the outfall.  
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Table 6.5 EDTA concentration extracted results of the central cell from each 

transect of varied distances downstream from the dairy effluent outfall for 

both monitored case and the worst case in the year 2008. 

  

Approx. 
distance   

EDTA 
concentration   

No. Cell  from outfalls 
Monitored 

case  
Worst 
case 

 (I, J) (m)  (µg/L)  

1 162, 27 0 1.80  16.81 

2 164, 29 2 2.03  21.06 

3 163, 35 10 1.23  15.63 

4 166, 40 15 0.84  9.71 

5 164, 45 20 0.80  9.78 

6 165, 50 25 0.64  6.91 

7 167, 66 40 0.28  3.58 

8 168, 78 50 0.22  1.25 

9 62, 175 200 0.14  1.66 

10 22, 424 500 0.16  1.40 

 

For the monitored case of 30 May 2008, the maximum simulated concentration 

(2.03 µg/L) of EDTA occurred around 2 m downstream from the dairy effluent 

discharge point, and then EDTA concentration was gradually reduced to 0.22 

µg/L and 0.14 µg/L 50 m and 200 m downstream, respectively (Table 6.5 and 

Figure 6.19). The analytical results of EDTA concentrations in surface water, 

collected on 30 May 2008, show that there were no observable changes of EDTA 

concentrations upstream (10 m) and downstream (60 m) from the dairy effluent 

diffuser point (see Table 5.2 in Chapter 5).  

 

For the worst Waitoa case, the maximum concentration of EDTA in the vicinity of 

the Fonterra Waitoa dairy effluent outfall was ~21 µg/L (Table 6.5). However, the 

instantaneous concentration of EDTA was likely to reach 0.25 g/m3 (0.25 mg/L) 

in the vicinity of the outfall (Figure 6.18). The concentration of EDTA was then to 

be reduced to ~1.5 µg/L 50 m downstream of the dairy effluent outfall (Figure 

6.20). These, therefore, suggest that the discharge of large volumes of effluents 
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from the Fonterra Waitoa dairy site appears to not result in a significant increase 

of EDTA concentrations in the Waitoa River. 

 

Figure 6.19 The trend of EDTA concentrations in the Waitoa River, where the 

Waitoa dairy effluent discharged for the monitored case of 30 May 2008. 

 

 

Figure 6.20 The trend of EDTA concentrations in the Waitoa River, where the 

Waitoa dairy effluent discharged for theworst case of the year of 2008. 

 

6.5 DISCUSSION AND CONCLUSIONS 
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i. A large number of one- to three-dimensional models are used for 

describing water quality and simulating the transport of dissolved 

pollutants in freshwater systems or coastal seas (Rajar and Cetina, 1997; 

Periáñez, 2004; Rajar etal., 2004; Li et al., 2005). Models are usually 

based upon the environment, model purpose, the number of ‘dimensions’ 

considered etc. (Cox, 2003). However, three-dimensional (3D) models are 

highly sophisticated and usually reserved for large estuaries where the 

mixing patterns are complex (Rajar and Cetina, 1997; Rajar etal., 2004), 

but for water-quality in freshwater systems, such complex 3D solutions are 

not usually necessary. In this study, the environment is a mixing zone 

downstream of the dairy effluent input to the main water body of the 

Waitoa River, and the model purpose is to increase the understanding of 

the effects of dairy effluent discharge containing EDTA on the input 

stream. Both quasi one-dimensional empirical calculations (Rutherford, 

1981) and the two-dimensional hydrodynamic (3DD model) and transport 

model (POL3DD) were undertaken to make a preliminary estimate of 

EDTA dispersal processes within the receiving stream of the Waitoa 

River. 

ii. The one-dimensional model (Cox, 2003) generally presents the water flow 

and the advection and dispersion of solutes such as EDTA, in just one 

direction downstream in a river, where the river is assumed to be 

completely mixed across its width and depth. Based upon this, the 

National Institute of Water & Atmospheric Research (NIWA) (Hamilton) 

developed a dissolved oxygen (DO) model of STUDIO (Steady Uniform 

Flow Dissolved Oxygen) to investigate the transversal downstream of DO 

and to determine the effect of photosynthetic oxygen input from the 

Waitao dairy factory to the Waitoa River system (Oldman, 1996). 

However, when the Fonterra Waitoa dairy effluent discharges into the 

Waitoa River with a steady uniform transverse line-source, transverse 

concentration gradients are negligible due to the uniform line-source. 

Longitudinal gradients are also negligible because the source is steady. 

Thus, the dispersion of EDTA in the Waitoa River simplifies to become 

quasi one-dimensional of vertical mixing only (Rutherford, 1981). 

Rutherford (1981) used some empirical formula to calculate the vertically 
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complete mixing distance and concentration of EDTA occurring 

downstream of the outfalls in the Waitoa River, when the horizontal and 

transversal dispersion of EDTA are neglected. 

iii.  Based upon the quasi one-dimensional line source of the Waitoa dairy 

effluent discharge, the dispersion of EDTA in the Waitoa River was 

illustrated by vertical mixing dispersal contours along the river bed, at 

one-quarter depth and the mid-depth. It is evident that the vertical mixing 

is symmetrical at the mid-depth. However, it may be overestimated for the 

rate of EDTA dispersion downstream from the outfall on the bed of the 

rough natural channel of the Waitoa River due to the small velocity and 

dispersal coefficient close to the boundary. Estimated results of the 

empirical formula showed that the EDTA discharge from the Waitoa dairy 

effluent was completely mixed only 6 m downstream, assuming the river 

depth of 1 m, width of 8 m, slope of 2 x 10-4, and mean velocity of 0.22 

m/s. Fully mixed concentrations of EDTA were 3.18 µg/L for the 

monitored case (30 May 2008), and 40.3 µg/L for the worst case of the 

maximum EDTA used in the processing plant combined with a low river 

flow (425 L/s). 

iv. A two-dimensional model either simulates dispersion across the width or 

depth of the stream (Cox, 2003). The Waitoa River is shallow, so that 

stratification is limited, but dispersion across the width of the river is slow. 

A two-dimensional, depth-averaged hydrodynamic model was, therefore, 

used to simulate EDTA dispersion in the Waitoa River. A similar principle 

of two-dimensional, vertically integrated hydrodynamic model is also 

employed in a multidam river system by Li et al. (2005). 

v. The 3DD hydrodynamic model uses an explicit, finite difference scheme 

to solve momentum and continuity equation, and it is the ideal modelling 

tool for management, science and applied research (Black, 2002). Given a 

1x1 m grid resolution with a precise bathymetry created by a single beam 

eco-sounder, a two-dimensional, depth-averaged hydrodynamic model 

(3DD) was set up for a low river velocity of 0.2 m/s. Outputs of the 3DD 

model concur well with the field measurements by an averaged difference 

of 2.3%. The 3DD hydrodynamic model was performing consistently by 

giving the exactly same velocities with different time series. A high river 
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velocity of 1.0 m/s was also simulated by the 3DD hydrodynamic model. 

Dead zones caused by an eddy close to the boundary were observed for 

both low and high river currents of 0.2 and 1.0 m/s, where vectors of the 

river velocity were much small corresponding to the domain river 

velocities. 

vi. EDTA dispersion of the monitored case of 30 May 2008, and the worst 

case of high EDTA discharge combined with a low river flow were 

simulated in the Waitoa River. From the modelling, it can be seen that the 

maximum EDTA concentrations were present in the mediate vicinity of 

the dairy effluent outfall in the Waitoa River for both monitored and worst 

cases. The important finding was there was no significant increase of 

EDTA concentrations beyond 50 m downstream from the outfalls. The 

highest concentrations of EDTA seemed to be around 2 µg/L for the 

monitored case and 21 µg/L for the worst case. These values are nearly 

half of the quasi one-dimensional calculations. However, the quasi one-

dimensional, vertical mixing of EDTA is only driven by turbulence 

generated by velocity, and the transversal mixing driven by the velocity of 

domain river flow was neglected. The estimated results are only indicative, 

less accurate for the EDTA dispersal in the river. The two-dimensional, 

depth-averaged 3DD hydrodynamic model considers the EDTA dispersal 

in both transversal and horizontal directions, which is believed to provide 

more practical simulation of EDTA dispersal in the Waitoa River. 

vii.  Another key point that should be noted is that the concentration of EDTA 

in the immediate vicinity of the receiving stream was as high as 21 µg/L 

(or 40.3 µg/L from approximate calculation) for the worst scenario of high 

volume dairy effluent discharged into the low flow rate of the Waitoa 

River, and then it was gradually diluted to ~1.5 µg/L due to the river flux 

and dispersion. These suggest that (i) the maximum EDTA concentration 

occurring in the immediate vicinity of the dairy outfall is well below the 

Predicted Effect Concentration (PEC) of 2.2 mg/L for aquatic 

environments advised by the European Union advised (European 

Chemicals Bureau, 2004); (ii) this value is also well under the New 

Zealand Drinking Water Standards of 0.7 mg/L EDTA for health purposes 

(Ministry of Health, 2005), and (iii) large volumes of dairy effluent 
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discharge seem to not result in a significant EDTA contribution to the 

Waitoa River.  

 

In conclusion, the dairy effluent discharge from the Fonterra Waitoa dairy 

processing plants will not to lead to a significant increase of the EDTA 

concentration in the Waitoa River, based upon the estimated calculation and the 

simulation of EDTA dispersion within the Waitoa River by the 3DD 

hydrodynamic model. 
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7.0 CHAPTER SEVEN: INVESTIGATION OF 

EDTA  AND HEAVY METALS IN SOILS 

AND GROUNDWATER  
 

The use of wastewater for irrigation on agricultural land is a world-wide practice, 

which offers an economic alternative to disposal into surface waters and it 

supplies nutrients to soils (Haruvy et al., 1999, Friedal et al., 2000, Angin et al., 

2005). In New Zealand, dairy wastes are commonly applied to land as a means of 

fertilising or boosting the productivity of soils (Degens et al., 2000, Sparling et al., 

2001). This is referred to as land application, and includes irrigation of dairy 

wastewater treatment sludge (also known as biomass or biosolid) and dairy 

effluent onto pasture land (Figure 7.1 and Figure 7.2). Long term land application 

can induce changes in the quality of soil, especially as trace element inputs are 

sustained over long periods and it may lead to groundwater contamination (Stuart 

and Milne, 2001, Silveira et al., 2003, Sinha et al., 2006, Xie et al., 2007). This 

chapter, therefore, investigates EDTA and heavy metals present in soils and 

groundwater in a pastoral area subjected to land application of wastes from dairy 

factories. 

 
Figure 7.1 Dairy wastewater treatment sludge being spread onto nearby 

pastureland as an alternative disposal of dairy wastes in the New Zealand 

dairy industry. 

(Photo provided by Fonterra Co-operative Group Limited) 
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Figure 7.2 Land spray irrigation system of dairy effluent in the New Zealand 

dairy industry. 

(Photo provided by Fonterra Co-operative Group Limited) 

 

7.1 LAND APPLICATION OF DAIRY WASTES IN NEW 

ZEALAND  

 

Land application of wastes from dairy factories in this study includes dairy 

wastewater treatment sludge being spread onto pastureland and land spray 

irrigation of dairy wastewater. The Fonterra Waitoa dairy site was selected as a 

case study of biomass application onto pastureland (Figure 7.1), and the Fonterra 

Kauri dairy site as a case study of land spray irrigation of dairy wastewater 

(Figure 7.2).  

 

7.1.1 Dairy Wastewater Treatment Sludge Disposal 

 

At the Fonterra Waitoa dairy site, wastewater from dairy processing plants is 

treated by an extended aeration sludge biological treatment. About 300 m3 of 

sludge from the wastewater treatment plants (WWTPs) with 2.5 - 3 % solid 

(biomass) is trucked away on a daily basis and spread onto nearby pasture (Figure 

7.1).  
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7.1.2 Land Spray Irrigation of Dairy Wastewater 

 

1. Wastewater system at the Fonterra Kauri dairy site 

 

Wastewater from dairy processing plants at the Fonterra Kauri site is collected in 

a sump (Figure 7.3) and treated by the ‘dissolved air flotation’ (DAF) process 

(Figure 7.4). The treated wastewater is then pumped through pipelines to the 

irrigation station and spray irrigated onto pasture land, as illustrated in Figure 7.1.  

 

Figure 7.3 A site wastewater sump at the Fonterra Kauri dairy factory, Northland 

in New Zealand. 
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 Figure 7.4 Wastewater pre-treatment by the dissolved air flotation (DAF) process 

prior to the land spray irrigation at the Fonterra Kauri dairy site. 

2. Pasture areas irrigated by wastewater from the Fonterra Kauri dairy site 

 

Farms irrigated by dairy wastewater from the Fonterra Kauri site include the 

Jordan Valley, Hikurangi and Kauri farms. The Jordan and Hikurangi farms 

possess clay soils, and Kauri farm has volcanic soils (Figure 7.5). 

 

 

Figure 7.5 Layout of pasture areas irrigated by dairy wastewater, including the 

Jordan Valley, Hikurangi and Kauri farms, nearby the Fonterra Kauri dairy 

site. 

(Map source: Map Toaster Topo/NZ) 
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7.2 METHODS 

 

7.2.1 Dairy Wastewater Treatment Sludge 

 

1. Dairy sludge sample collection 

Dairy sludge samples were collected from the gravity belts when sludge was 

being pre-concentrated before trucking away (Figure 7.6) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 Dairy sludge samples were collected from sludge pre-concentrated 

gravity belts at the Waitoa wastewater treatment plants (WWTPs). 

 

2. Sludge sample pre–treatment 

 

Pre-treatment of the sludge samples for analysis involved: 

a. Spinned the sludge samples in a centrifuge and oven drying at 900C; 

b. Weighed a 0.5 g dried sludge sample in a 20 mL vial;  

c. Extracted EDTA with 15 mL of 0.002 M NaH2PO4 desorption solution in 

an ultrasonic bath (Bransonic 220) for 15 minutes (Nowack et al., 1996); 

d. Took 5 mL supernatant and adding 0.1 mL 0.194 g/L Fe3+; 

e. Allowed the complexing of Fe(III)EDTA overnight in the dark; and 
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f. Filtered the solution through a 0.45 µm cellulose nitrate filter 

(Phenomenex) using a syringe unit prior to HPLC-UV analysis.  

7.2.2 Analyses of Soil Samples  

 

1. Sample collection 

 

Composite soil samples were taken from 0-75 mm within the pastoral topsoil, 

onto which dairy biomass or wastewater had been applied, by taking 

approximately 10 cores (1.5 meters between cores) per arm of a ‘z’ pattern across 

to give a total of 30 cores (Figure 7.7). A 75 mm deep auger was used and 

samples were pooled for one composite sample (Figure 7.8). Soil sampling sites 

of pastureland near the Fonterra Waitoa dairy site are presented in Figure 7.9, and 

two of each irrigated and un-irrigated paddocks were selected for the Hikurangi 

and Kauri farms, which possess clay and volcanic soils irrigated by dairy 

wastewater from the Fonterra Kauri dairy site. Soil samples from un-irrigated 

areas were collected for a comparison. 

 

 

Figure 7.7 A pattern of approximately 10 cores (1.5 m between each core) apart 

per arm of a 0-75 mm deep ‘z’ shape of across to give a total of 30 cores were 

taken and pooled to produce one composite pastoral topsoil sample. 
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Figure 7.8 Sample was collected with a 75 mm deep auger and pooled into a 

plastic bag for a composite pastoral topsoil sample.  

 

  

Figure 7.9 Layout of paddocks for soil sample collection and groundwater wells 

near the Fonterra Waitoa dairy site, where paddock 4 was a reference site as 

no dairy biomass had been applied, and paddock 5 was the heaviest dairy 

biomass spread paddock. 

(  - groundwater bores and  - soil sampling sites) 
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(Map Source: Google Earth) 
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2. Soil sample pre-treatment 

 

Soil samples were dried in a forced air convection drier at 35-400C and crushed to 

pass through a 2 mm sieve. This was conducted by Hill Laboratories Limited, 

Hamilton. A 0.5 gram soil sample was weighed in a 20 mL vial. EDTA was 

extracted by the method of Nowack et al. (1996) with 15 mL of 0.002 M 

NaH2PO4 desorption solution in an ultrasonic bath for 15 minutes. The extracted 

solution was kept in the dark and allowed complexing of Fe(III)EDTA overnight, 

and then filtered through a 0.45 µm cellulose nitrate filter (Phenomenex) prior to 

HPLC-UV analysis. 

 

3. HPLC separation 

 

Modification of the HPLC method was required there were many peaks from 

other compounds that eluted in the region of the Fe(III)EDTA peak. For example, 

Figure 7.10 illustrates the separation of analyte Fe(III)EDTA using a mobile phase 

containing 2 % MeOH and 15 mM TBABr within a pH 3.3 formic acid/formate 

buffer solution, at a flow rate of 0.9 mL/min. 

  

 

Figure 7.10 Overlay of chromatograms of a 50 µg/L EDTA standard (red line) 

and a pastoral topsoil sample (black line) from the Hikurangi irrigated farm 

with dairy wastewater from the Fonterra Kauri site. 
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(HPLC separation conditions: mobile phase of 2 % MeOH and 15 mM TBABr in 

pH 3.3 buffer solution at a flow rate of 0.9 mL/min.) 

Based on experimental trials, final separation conditions were mobile phase with 

1% MeOH and 10 mM TBABr in a pH 3.3 formic acid/formate buffer solution, at 

a flow rate of 1.0 mL/min. The chromatogram with an appropriately separated 

peak of Fe(III)EDTA for the determination of EDTA in the same soil sample is 

illustrated in Figure 7.11.  

 

 

Figure 7.11 Overlay of chromatograms of an 80 µg/L EDTA standard (red line) 

and a  pastoral topsoil sample (black line) from the Hikurangi irrigated farm 

with dairy wastewater from the Fonterra Kauri site. 

(HPLC separation conditions: mobile phase of 1 % MeOH and 10 mM TBABr in 

pH 3.3 buffer solution at a flow rate of 1.0 mL/min) 

 

4. Quality control and detection limit 

 

The method was verified using a spiked recovery (≥80%, n=4) with a standard 

EDTA solution as there is no certified material reference available (Figure 7.12). 

Quality control of analyses was undertaken by running a blank, a duplicate sample 

every 10th sample and a spiked recovery every 20th sample. Duplicated results 

were within 8.7% (n=4) and spiked recoveries were 95 – 98% (n=2).  

 

The method detection limit of 0.15 mg/kg (dry weight) for soils was calculated 

based on the HPLC-UV method of 5 µg/L of EDTA. 
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Figure 7.12 Overlay of HPLC-UV chromatograms of a 100 µg/L EDTA spiked 

soil sample (red line) and a pastoral topsoil sample only (black line) from the 

Hikurangi irrigated farm with dairy wastewater from the Fonterra Kauri site. 

 

5. Other analyses for soil samples 

 

Metals and other measurement for soils were analyzed by Hill Laboratories 

Limited, Hamilton. Method and details are shown in Appendix 4. 

 

7.2.3 Analyses of Groundwater 

 

1. Sample collection 

 

Groundwater samples were collected in opaque PE bottles to avoid photolysis of 

the Fe(III)EDTA and stored at 4ºC until analysis. Sample collection sites for the 

Fonterra Waitoa dairy site are shown in Figure 7.9, where groundwater bores are 

located. Groundwater samples were collected on 4 November, 2007, 8 February 

and 15 July, 2008.  

 

For the Fonterra Kauri dairy site, groundwater samples were obtained by digging 

a hole to reach the groundwater and pumping it through a plastic tube to a 

container (as illustrated in Figure 7.13) at both the Hikirangi and Kauri farms. 

Groundwater samples were collected on the same day as soils. 
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 Figure 7.13 Groundwater sample was collected at both the Hikurangi and Kauri 

farms near the Fonterra Kauri dairy site by digging a hole to reach the 

groundwater and drawing it through a plastic tube to a container.  

 

2.      EDTA Analysis for groundwater using HPLC-UV 

 

A pre-concentration step was needed for the determination of EDTA in 

groundwater samples because of their low concentrations. Groundwater samples 

(10 mL) were heated to dryness at 900C, reconstituted into a mobile phase, 

followed by complexing of Fe(III)EDTA and analysed using HPLC-UV. The pre-
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concentrated factor of 2.5 was appropriate to attain a clear EDTA peak as 

illustrated in Figure 7.14 and Figure 7.15. 

 

 
Figure 7.14 Overlay of HPLC-UV chromatograms of an 80 µg/L EDTA standard 

(black line) and a groundwater sample with a pre-concentrated factor of 5 and 

10 (red lines of b and c respectively). 

 

 
Figure 7.15 Overlay of HPL–UV chromatograms of a 25 µg/L of EDTA standard 

(black line) and a groundwater sample with a pre-concentrated factor of 2.5 

(red line). 

 

3. Quality of control and detection limit 

 

Quality control of the analysis was the same as for previous sector.  The duplicate 

limit and EDTA standard spiking recovery of 80 µg/L was within 7% (n=8) and 

a. 80 µg/L EDTA Std. 
b. GW 5xpre-con. 
c. GW 10xpre-con. 
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91-107% (n=5), respectively. The detection limit was 2 µg/L of EDTA due to the 

pre-concentrated factor. 

4. Other analyses of groundwater 

 

Associated heavy metals and other parameters of groundwater were obtained by 

Hill Laboratories Limited, Hamilton. Method and details are shown in Appendix  

 

7.3 RESULTS 

 

7.3.1 Presence of EDTA in dairy sludge 

 

Chromatograms of dairy sludge samples were complicated due to a wide range of 

chemical and biological constitutions in the sludge. EDTA is generally identified 

by the retention time (minutes), and thus EDTA was likely to occur in sludge 

samples by comparing overlay of chromatograms of a standard EDTA and sludge 

sample (Figure 7.16). No further study was undertaken on its analytical conditions 

for this particular case. 

 

 

Figure 7.16 Overlay of chromatograms of a 100 µg/L EDTA standard solution 

(red line) and a dairy sludge sample (black line) from the Waitoa dairy 

wastewater treatment plant.  
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7.3.2 EDTA Occurrence in Pastoral Topsoil and Groundwater Following 

Land Application of Dairy Sludge  

 

Analytical results of EDTA in pastoral topsoil and groundwater are tabulated in 

Table 7.1 and Table 7.2, where the dairy sludge from the Waitoa dairy wastewater 

treatment plant was spread onto pasture. 

 
Table 7.1 EDTA analytical results for pastoral topsoil samples from the Fonterra 

Waitoa dairy site using HPLC-UV, where paddock 4 was a reference site as 

no sludge had been applied, and paddock 5 was the heavieist sludge pread 

paddock. 

Sampling Sampling  EDTA concentration  Detection limit  

date site (mg/kg) (mg/kg) 

14-Feb-08 Paddock 1 0.41 0.15* 

 Paddock 2 <0.15 0.15 

 Paddock 3 < 0.15 0.15 

 Paddock 4 < 0.15 0.15 

 Paddock 5 < 0.15 0.15 

 Paddock 6 < 0.15 0.15 

15-Jul-08 Paddock 1 < 0.15 0.15 

 Paddock 2 < 0.15 0.15 

 Paddock 3 < 0.15 0.15 

 Paddock 4 < 0.15 0.15 

 Paddock 5 < 0.15 0.15 

 Paddock 6 < 0.15 0.15 

*0.15 mg/kg (dry weight) was calculated based on the method detection limit of 5µg/L 
EDTA for HPLC-UV 

 
EDTA was only detected at paddock for both sample collecting dates at the 

Fonterra Waitoa dairy site. Otherwise EDTA appeared to be below the detection 

limit, even for the paddock 5 in which the heaviest biomass had been applied. 

There was no dairy biomass (sludge) actually having been spread on paddock 1 

except a dairy shed from which some washing detergents used may contain EDTA 

for cleaning purposes. This suggests that the land application of dairy biomass 

seems not to significantly increase EDTA levels in pastoral top soils. 
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Table 7.2 EDTA analytical results in groundwater near the Fonterra Waitoa dairy 

site, where bore 4 was a reference site and there was no bore on the heaviest 

sludge spread paddock (paddock 5).  

Sampling 
date Sample 

Groundwater 
depth 

Pre-concentrated 
factor 

EDTA 
concentration  

  (m)  (µg/L) 
4-Nov-07 Bore 1 2.4 2.5 26.4 

 Bore 2 1.2 2.5 <2* 

 Bore 3 4.1 2.5 <2 

8-Feb-08 Bore 1 3.1 2.5 20.1 

 Bore 2 1.9 2.5 <2 

 Bore 3 2.6 2.5 <2 

 Bore 4 3.3 2.5 ND** 

15-Jul-08 Bore 1 2.8 2.5 14.5 

 Bore 2 1.0 2.5 <2 

 Bore 3 2.1 2.5 <2 

 Bore 4 2.8 2.5 ND**  

       * - less than detection limit 
       ** - No EDTA peak observed 
 

It can be concluded from Table 7.2 that 

i. EDTA was only detected in bore 1, which also had the highest 

concentration in soil;  

ii. the concentration of EDTA in the groundwater collected in July 2008 

was less than that in November 2007 and February 2008; and  

iii.  the depth of groundwater was shallower in July than in November and 

February, except for bore 1.  

 

7.3.3 EDTA Presence in Pastoral Topsoil Subjected to Land Irrigation of 

Dairy Effluent 

  

1. EDTA concentration of wastewater from the Fonterra Kauri dairy site 

 

Monthly treated composite wastewater samples from February to April 2008 were 

collected at the Fonterra Kauri dairy site. There were no wastewater samples from 
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May to August 2008 as dairy processing plants were under maintenance during 

low milk production season. Some water samples from a drainage ditch (testing 

for runoff) along the Hikurangi farm (Figure 7.17) were also collected in April 

and July 2008. Analytical results for both samples are presented in Table 7.3. 

 

Figure 7.17 The drainage ditch where samples were collected for assessment of 

EDTA runoff at the Hikurangi farm irrigated by dairy wastewater from the 

Fonterra Kauri dairy factory. 

 

Table 7.3 EDTA concentrations in dairy wastewater and water samples from the 

drainage ditch along the Hikurangi farm near the Fonterra Kauri dairy site. 

Sampling date Sample 

EDTA concentration 

(µg/L) 

Feb-08 Kauri monthly ww 197.1 

Mar-08 Kauri monthly ww 11.4 

Apr-08 Kauri monthly ww 172.6 

11-April -08 Hika farm ditch #1 58.4 

 Hika farm ditch #2 59.8 

 Hika farm ditch #3 69.0 

 Hika farm ditch #4 71.6 

17-July-08 Hika farm ditch #1 99.7 

 Hika farm ditch #2 79.7 

 Hika farm ditch #3 81.6 

 Hika farm ditch #4 101.8 
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Test results of EDTA show clearly that EDTA was detected in both dairy 

wastewater from the Fonterra Kauri dairy site and surface water samples (runoff) 

of the drainage ditch at concentrations of 11 – 200 µg/L.  

 

2. Analytical results of pastoral topsoil samples 

 

Analytical results of pastoral topsoil for both Hikurangi farm (clay soil) and Kauri 

farm (volcanic soil) are presented in Table 7.4. 

 

Table 7.4 EDTA analytical results for pastoral topsoil samples from the 

Hikurangi and Kauri farms irrigated (I) and un-irrigated (U) with wastewater 

from the Fonterra Kauri dairy site using HPLC-UV. 

Sampling date Soil type Site Sample 

EDTA 

concentration Detection limit 

    (mg/kg) (mg/kg) 

11-April-08 Clay Hika farm  < 0.15 0.15* 

 Clay  U (B) < 0.15 0.15 

 Clay  I (A) 0.93 0.15 

 Clay  I (B) 0.75 0.15 

 Volcanic Kauri farm U (A) <0.15  0.15 

 Volcanic  U (B) <0.15  0.15 

 Volcanic  I (A) <0.15  0.15 

 Volcanic  I (B) 0.17 0.15 

17-July-08 Clay Hika farm U (A) <0.15  0.15 

 Clay  U (B) <0.15 0.15 

 Clay  I (A) <0.15 0.15 

 Clay  I (B) <0.15 0.15 

 Volcanic Kauri farm U (A) <0.15 0.15 

 Volcanic  U (B) <0.15 0.15 

 Volcanic  I (A) <0.15 0.15 

 Volcanic  I (B) <0.15 0.15 

*HPLC-UV detection limit for soil (dry weight) 

 

For land application of dairy wastewater from the Fonterra Kauri dairy site, 

EDTA was detectable for pastoral top soils at both farms irrigated with clay and 

volcanic soils for the relatively dry season (11 April, 2008). EDTA was not 

detected at both farms for the wet season (15 July, 2008), possibly because there 

was enough moisture within the soils and less dairy wastewater irrigation was 

required. 
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3. EDTA in groundwater 

 

EDTA behaves as a persistent substance in its passage through groundwater 

(Nowack and Sigg, 1997). Various literature reports show that EDTA is widely 

observed in groundwater with a low concentration of 0.1 - 72µg/L range (Bucheli-

Witschel and Egli, 2001, Schmidt et al., 2004, Nowack and VanBriesen, 2005).  

 

In the present study, EDTA concentrations in groundwater were investigated in 

association with land application of dairy effluent at both the Fonterra Kauri sites. 

Analytical results of EDTA concentrations are shown in Table 7.5. 

 

Table 7.5 EDTA analytical results in groundwater at both the Hikurangi and 

Kauri farms irrigated and un-irrigated with dairy wastewater from the 

Fonterra Kauri dairy site. 

Sample  Sample 
Groundwater 

depth  
Pre-concentrated 

factor 

EDTA 
concentration 

Date  (m)   (µg/L) 
11-Apr-08 Hika un-irrigated farm  3.5 2.5 4.1 

 Hika irrigated farm A  2.0 1 331.4 

 Hika irrigated farm B  2.0 1 457.3 

 Kauri un-irrigated farm A 1.2 1.25 6.4 

 Kauri un-irrigated farm B 0.5 1.25 38.0 

 Kauri irrigated farm A 1.0 1.25 10.1 

 Kauri irrigated farm B 0.8 1.25 143.1 

17-Jul-08 Hika un-irrigated farm  2.4 2.5 ND* 

 Hika irrigated farm A  1.6 1 51.1 

 Hika irrigated farm B  1.6 1 74.7 

 Kauri un-irrigated farm A 0.4 2.5 <2** 

 Kauri un-irrigated farm B 0.8 2.5 <2 

 Kauri irrigated farm A 0.8 1 626.8 

 Kauri irrigated farm B 0.4 1 110.3 

* - no EDTA peak observed 
** - EDTA peak observed but less than the detection limit of 2 µg/L  
 

In Table 7.5, it is demonstrated that:  

(i) EDTA was detectable for all groundwater samples collected on 11 April, 

2008 and even quite high for groundwater of the irrigated areas; and  
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(ii)  concentrations of EDTA are lower than the maximum acceptable value 

of 700 µg/L EDTA for New Zealand drinking water (2005).  
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7.3.4 Soil Characteristics Subsequent to Land Application of Dairy Effluent  

 

At the present study, physical and chemical properties of clay soils at the 

Hikurangi farm irrigated with dairy wastewater from the Fonterra Kauri site were 

investigated and compared with the un-irrigated soils by the dairy wastewater. 

Samples were collected on 11 April 2008 for two of each irrigated and un-

irrigated paddocks with dairy wastewater (Table 7.4). Soil samples were air-dried 

at 35–400C overnight (residual moisture typically 4%) and crushed to pass 

through a 2 mm screen. Analyses for soils, including basic soil test data, Mehlich 

3 test data and associated heavy metals, were obtained by Hill Laboratories 

Limited, Hamilton. The original test results are attached in Appendix 4, and 

analytical results are summarised in Table 7.6. 

 

Table 7.6 Analytical results of clay soil properties, collected on 11 April 2008, at 

the Hikurangi farm irrigated (I) and un-irrigated (U) with dairy wastewater. 

Items U (A) U (B) 
Mean 
(U) I (A) I (B) 

Mean 
(I) U/I 

pH  6.1 5.9 6.0 6.3 6.2 6.3 <1 
EDTA concentration (mg/kg dry wt) 0 0 0.00 0.9 0.7 0.8 <1 
Total Recoverable Cd (mg/kg dry wt) 0.63 0.61 0.62 0.36 0.37 0.37 >1 
Total Recoverable Fe(mg/kg dry wt) 33000 19000 26000 19000 18000 18500 >1 
Total Recoverable Hg (mg/kg dry wt) 0.098 0.1 0.1 0.14 0.18 0.16 <1 
Olsen P (mg/L) 26 42 34 121 125 123 <1 
K (me/100g) 0.63 0.49 0.56 0.84 1.47 1.16 <1 
Ca (me/100g) 19.2 21.4 20.3 24.5 22.22 23.4 <1 
Mg (me/100g) 1.20 1.40 1.30 1.46 1.60 1.53 <1 
Na (me/100g) 0.17 0.32 0.25 2.72 2.24 2.48 <1 
CEC (me/100g) 26 29 27.5 34 32 33 <1 
Base Saturation (%) 81 81 81 87 85 86 <1 
Volume Weight (g/mL) 0.79 0.70 0.75 0.78 0.71 0.75 1 
Total Nitrogen (%) 0.60 0.67 0.64 0.87 0.62 0.75 <1 
Phosphorus (Mehlich 3) (mg/L) 31 52 42 197 156 177 <1 
Iron (Mehlich 3) (mg/L) 193 384 289 409 399 404 <1 
Manganese (Mehlich 3) (mg/L) 61.2 11.0 36.1 8.6 13.2 10.9 >1 
Zinc (Mehlich 3) (mg/L) 2.04 1.90 1.97 2.46 3.15 2.81 <1 
Copper (Mehlich 3) (mg/L) 1.9 1.5 1.7 1.0 1.3 1.2 >1 

Boron (Mehlich 3) (mg/L) <0.5 <0.5 
No 
data 0.6 <0.5 

No 
data <1 

Cobalt (Mehlich 3) (mg/L) 0.3 <0.1 
No 
data <0.1 <0.1 No data >1 

Aluminium (Mehlich 3) (mg/L) 532 481 507 546 410 478 >1 
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(Source: Hill Laboratories limited – appendix 4) 

Comparing basic soil test data of irrigated and un-irrigated soil samples 

(Appendix 4), it can be concluded that: 

♦ nutrient levels of phosphorus (P), potassium (K), calcium (Ca), 

magnesium (Mg) and sodium (Na) were boosted in irrigated soils,  

♦ cation exchange capacity (CEC) (me/100) and base saturation (%) 

were increased slightly for irrigated soils, and  

♦ volume weight (g/mL) stayed similar in both irrigated and un-irrigated 

soils. 

 

For Mehlich 3 soil test, concentration of P was evidently boosted. Concentrations 

of heavy metals - Fe, Mn and Zn seemed to be enhanced as well with the dairy 

wastewater irrigation areas. Lower concentration of Cu in irrigated soils was 

found in contrast to the un-irrigated soils, and presence of Al was variable for 

both pastoral top soils.  

 

7.3.5 Heavy Metals in Groundwater 

 

To investigate the potential transportation of heavy metals by EDTA, further 

analysis was carried out for groundwater samples in irrigated areas with dairy 

wastewater, and the groundwater of non-irrigated area was sampled for a 

comparison. Tests were undertaken by Hill Laboratories at Hamilton, New 

Zealand. Original data is shown in Appendix 5 and analytical results are presented 

in Table 7.7. 

 

Based on Table 7.7 it can be concluded that: 

i. high concentrations of EDTA (highest ever reported),  were detected in the 

groundwater, where dairy effluent containing EDTA directly irrigated onto 

pasture; and 

ii. there is an indication that trace elements of Cd, Cu, Fe and Zn were 

transported to the groundwater, identified by the loss of metals in soils and 

the gain of metals in groundwater. However, further systematic research is 

needed to confirm this. 
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Table 7.7 Analytical results for groundwater collected on 11 April 2008 from the 

irrigated (I) and un-irrigated (I) areas with dairy effluent at the Hikurangi 

farm. 

Items U (A) I (A) I (B) 
Mean 

(I) U/I 

Groundwater depth (m) 3.5 2.0 2.0 2.0 >1 

EDTA concentration (µg/L) 4.1 331.4 447 389.2 <1 

pH 6.34 5.28 6.42 5.9 >1 

EC (mS/m) 17.6 62.5 93.1 77.8 <1 

Dissolved Cd (g/m3) <0.000050 0.00028 0.00013 0.00021 <1 

Dissolved Ca (g/m3) 2.5 2.5 5.4 4.0 <1 

Dissolved Cu (g/m3) 0.0028 0.0063 0.013 0.0097 <1 

Dissolved Fe (g/m3) <0.020 0.11 0.14 0.13 <1 

Dissolved Mg (g/m3) 3.9 1.1 3.5 2.3 >1 

Dissolved Hg (g/m3) <0.000080 0.00008 <0.000080 No data - 

Dissolved K (g/m3) 2.2 1.1 4.8 3.0 <1 

Dissolved Na (g/m3) 24 110 210 160.0 <1 

Dissolved Zn (g/m3) 0.0041 0.072 0.024 0.048 <1 

Dissolved Reactive Phosphorus (g/m3) 0.14 0.0054 0.0046 0.005 >1 

 Total Phosphorus (g/m3) 1.9 0.12 0.89 0.5 >1 

Nitrate-N+ nitrite-N  (g/m3) 0.055 2 0.36 1.2 <1 

Total Kjeldahl Nitrogen (TKN)  (g/m3) 0.44 0.71 6.9 3.8 <1 
(Source: Hill Laboratories limited – appendix 5) 

 

7.4 DISCUSSION 

 

Land application of dairy wastes, including dairy biomass and wastewater, is an 

economic and practical option due to their fertiliser benefits (Longhurst et al., 

2000, MfE and NZWWA, 2003, Russell, 2007). However, long term or overdose 

of land application has been reported to induce changes in the characteristics of 

soils, such as trace element inputs, when sustained over long periods (Degens, et 

al. 2000, Longhurst et al. 2000, Sparling et al. 2001). López-Mosquera et al. 

(2000) suggested that the dairy sludge was a source of heavy metals for soils, but 

that even the short- or medium-term (4 y) did not lead to harmful accumulation of 

heavy metals in soils. They however indicated that long-term sludge application 

would eventually lead to a build-up of heavy metals in soils. The survey of 

Fonterra dairy wastewater and biomass by Russell (2007) from Fonterra Research 
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Center Limited also recommended that total heavy metal analyses should be 

determined on irrigation farms at 10-yearly intervals to ensure heavy metals levels 

are stable. 

 

Furthermore, heavy metals may leach to groundwater and lead to a risk of 

groundwater contamination, in particular with EDTA chelates (Cooper et al., 

1999, Tandy et al., 2006). Contaminants can be involved in many different 

reactions and processes in soils, but their ultimate fate can be summarized as 

shown in Figure 7.18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.18 Simplified depiction of the fate of contaminants in soils. 

(Source: MfE and NZWWA, 2003) 

 

EDTA has the potential to remobilize metals adsorbed onto a solid (Nowack et al., 

1996, Sillanpää et al., 1997, Sillanpää and Romo, 2001, Ceremigna et al., 2005), 

which suggests that metal ions are likely to be transported together with EDTA 

under environmental conditions (Xue et al., 1995). The process depends upon the 

competition between EDTA in solution and binding of metals to particular 

compounds, mostly by complexing with surface ligands (Knepper, 2003, Di 

Palma and Mecozzi, 2007).  
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7.4.1 Effects of Soil Properties and Management of Land Application of 

Dairy Wastewater 

 

There are various reports describing effects on the physical and chemical 

properties of soils irrigated with dairy wastewater (Shahalam et al., 1998, Friedal 

et al., 2000, Zhou et al., 2003, Angin et al., 2005, Dawes and Goonetilleke, 2006). 

The current study has also shown the changes of soil properties, such as P, CEC, 

and minerals, induced by the irrigation of dairy wastewater. The most important 

point from this study is that heavy metals may be retained in soils because of the 

dairy wastewater irrigation. This disadvantage of the wastewater irrigation was 

also suggested by Angin et al. (2005).  

 

In Table 7.6, if the value of U/I is greater than 1 (as for Fe, Cu, Co, Mn, Al and 

Cd), metals may either have been taken up into plants (stimulated growth by 

irrigation) by enhancing plant availability of EDTA; or lost to groundwater by 

leaching of the complexion with EDTA or free ions). If the value of U/I is less 

than 1 (as for P, N, K, Na, Ca and Mg), it can be inferred that the compounds have 

been retained in soils after irrigation due to metal exchanging, especially via 

inorganic soil colloids (MfE and NZWWA, 2003).  

 

In terms of the EDTA concentration, it was under the method detection limit for 

pastoral topsoil where the dairy sludge was applied. This suggests that the land 

application of dairy biomass seems not to significantly increase EDTA levels in 

the pastoral topsoil. However, EDTA was detectable in both randomly picked 

paddocks irrigated by the Kauri dairy wastewater, as EDTA complexes 

themselves may be adsorbed onto the surface of soil (Nowack, 2002). Conversely, 

EDTA was not detectable in both un-irrigated paddocks.  

 

Concentrations of nitrogen (N) of Nitrate-N (NO3
--N) + Nitrite-N (NO2

--N) and 

total Kjeidahl nitrogen (TKN) was higher in the irrigated groundwater than in the 

un-irrigated groundwater, which is possibly caused by nitrogen leaching from 

soils to groundwater due to nutrients in dairy wastewater (Longhurst et al. 2000, 

MfE and NZWWA, 2003). Moreover, the irrigated groundwater A seemed to have 

higher content of NO3-N + NO2-N than the irrigated groundwater B. On the 
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contrary, the irrigated groundwater A appeared to have lower content of TKN than 

the irrigated groundwater B, presenting nitrogen as ammonia (NH3-N) or bound in 

organic compounds. 

 

Nitrogen is also an essential nutrient element for pasture growing. However, it 

may pose a risk to the ground water if the management of land application loses 

its control. The existing study has demonstrated that higher levels of nitrogen 

were observed in the groundwater of irrigated areas versus the un-irrigated area, 

which were even far below the drinking water limit of 11.3 mg/L nitrate-N that is 

equal to a concentration of 50 mg/L (maximum acceptable value) nitrate ion 

(Ministry of Health, 2005). Nonetheless, this agrees with Longhurst et al. (2000) 

that the application of nitrogen from dairy wastewaters should be limited.  

 

7.4.2 EDTA in Groundwater 

 

It has been recorded in the literature that EDTA is widely observed in 

groundwater at a low µg/L concentration (0.1 – 72 µg/L) (Bucheli-Witschel and 

Egli, 2001, Schmidt et al., 2004, Nowack and VanBriesen, 2005). The present 

research has indicated that EDTA is likely to be found at a low concentration from 

the groundwater collected. Nonetheless, high concentrations of EDTA (highest 

ever reported) were also observed in the groundwater from the irrigated areas with 

dairy wastewater containing EDTA. On the other hand, this is also confirmed by 

the higher concentrations of total Kjeldahl nitrogen (TKN) in the irrigated 

groundwater as EDTA contains about 10% nitrogen.  

 

7.4.3 Mobilisation of Heavy Metals from Soil to Groundwater 

 

Heavy metals, such as cadmium, zinc, copper and mercury, can cause significant 

damage to the environment and human health due to the mobility and solubility. 

Some concern has been raised about the enhanced mobility of heavy metals in 

soils and their potential risk for leaching to groundwater with chelates (Cooper et 

al., 1999, Tandy et al., 2006).  
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There seems no conclusive evidence of heavy metals’ remobilization potential by 

EDTA at environmentally realistic concentrations (Knepper, 2003). Some reports 

suggest that remobilization of metals from sediments by EDTA, is likely to 

happen under environmental conditions (Nowack and Sigg, 1997, Stumm, 1995, 

Sillanpää and Romo, 2001, Ceremigna et al., 2005). Consequently, EDTA has 

been used for many years as an extractant for metals from soils and sediments to 

characterize the plant-available fraction. EDTA chelates have also been proposed 

as enhancers for the phytoremediation of heavy metals by plants and soil washing 

(Hong and Jiang, 2005, Juang and Wang, 2000). Furthermore, some authors 

(Cooper et al., 1999, Tandy et al., 2006) have mentioned that heavy metals may 

leach to groundwater and lead to a risk of groundwater contamination, particularly 

with chelates.  

 

The study undertaken for the Fonterra Kauri dairy site indicates that concentration 

changes of heavy metals were observed. For instance, Fe and Zn of Mehlich 3, 

and total recoverable Hg were consistently increased in irrigated soils versus un-

irrigated soils with dairy wastewater from the Fonterra Kauri site. Conversely, 

total recoverable Cd and Fe were decreased in irrigated soils against un-irrigated 

soils. Table 7.8 and Figure 7.19 present the comparison of the metal mobility with 

its EDTA complex constant in the soil-groundwater system from changes of metal 

concentrations in the unirrigated and irrigated soil and groundwater. 

 

Table 7.8 Comparison of the metal mobility with its EDTA complex constant in 

the soil-groundwater system from changes of the metal concentration in the 

unirrigated and irrigated soil and groundwater. 

Heavy Complex constant Unirrigated Irrigated Ratios (U/I) 

metals log KMeEDTA soil/water soil/water soil/water 

Mg 8.8 0.3 0.7 0.5 

Ca 10.6 8.1 5.9 1.4 

Cd 16.4 12400 1780 7.1 

Zn 16.4 480 58 7.8 

Cu 18.7 607 119 5.1 

Fe 25.0 1300000 148000 8.8 
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Figure 7.19 Comparison of the metal mobility with its EDTA complex constant 

in the soil-groundwater system from ratios of the metal concentration in the 

unirrigated (U) and irrigated (I) soil and groundwater. 

 

To compare heavy metal contents in soils and groundwater with EDTA 

complexing constants (Table 7.8 and Figure 7.19), there is some correlation 

between the mobility of metals and the stability of EDTA complexes, indicating 

that the transportation of metals influenced by EDTA was increased with the 

increase of EDTA complex constants. Further research is however recommended 

to determine this with certainty. 

 

7.4.4 Analysis of Metal-EDTA Present in Groundwater 

 

To compare dissolved metals and EDTA in the groundwater (Table 7.9), the 

majority of the EDTA will be in the form of an iron complex in the groundwater 

as the KFeEDTA*[Fe] is so much higher than other metals. The averaged EDTA 

concentration was observed at 389.2µg/L (1.35E-3 mM), which indicates that 

EDTA could all be complexed with Fe and form a Fe(III)EDTA (1:1) complex. 

Furthermore, the EDTA concentration is supposed to be 671µg/L if Fe(III) is fully 

complexed and formed as the form of Fe(III)EDTA, which means that the 

speciation of EDTA theoretically present in the groundwater was most likely to be 
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only Fe(III)EDTA for this case. Nonetheless, true speciation of metal-EDTA may 

differ from the theoretical calculations due to the complicated environmental 

conditions, such as organic matters from the dairy effluent. Further research is 

thus needed to confirm this. 

 

Table 7.9 Analysis of metals theoretically present as metal-EDTA in the 

groundwater where the dairy effluent containing EDTA was spray-irrigated 

based upon EDTA-complex stability. 

Metals Concentration M. Weight Concentration Complex constant KMeEDTA*[M] 

 mg/L g/molar (mM) log KMeEDTA  

Mg 2.3 24.3 9.47E-2 8.8 5.97E+07 
Ca 5.4 40.1 1.35E-1 10.6 5.36E+09 
Cd 2.1E-4 112.4 1.87E-06 16.4 4.69E+10 
Zn 4.8E-2 65.4 7.34E-4 16.4 1.84E+13 
Cu 9.7E-3 63.6 1.53E-4 18.7 7.64E+14 
Fe 1.3E-1 55.9 2.33E-3 25.0 2.33E+22 

 

7.5 CONCLUSIONS 

 

Application of dairy wastes onto pastureland is commonly undertaken in the New 

Zealand dairy industry. This approach offers the advantage of utilizing nutrients 

contained in dairy wastes for soils and plants, but has the disadvantage of 

retaining heavy metals in soils long term and likely posing a risk to groundwater. 

This chapter investigated the presence of EDTA and related heavy metals in soils 

and groundwater in association with land application of dairy wastes. The purpose 

was to identify the potential risk to groundwater of EDTA chelates.  

 

The HPLC-UV analytical method was applied for identification of EDTA in both 

soils and groundwater. EDTA in soils was released by 0.002 M NaH2PO4 

desorption solution in an ultrasonic bath, and EDTA in groundwater were 

appropriately pre-concentrated due to its low concentration. Quality control of the 

analysis was undertaken by a daily calibration curve with freshly made standard 

EDTA solutions, running a blank, a duplicate every 10th sample and a standard 

spiked recovery every 20th sample. Ranges of duplicated limits and recoveries 
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were within 8.7% (n=4) and 95–98% (n=2) for soils, and 7% (n=8) and 91-107% 

(n=5) for groundwater, respectively. 

 

EDTA is likely to be under the method detection limit of 0.15 mg/kg (dry weight) 

in soils where dairy waste treatment sludge, also known as biomass or bio-solid 

from the Fonterra Waitoa dairy site, had been applied onto pastures. Analytical 

results of EDTA for pastoral top soils indicated that EDTA was, however, 

detected in relatively dry conditions for clay and volcanic soils from the irrigated 

areas with dairy wastewater containing EDTA from the Fonterra Kauri site. 

EDTA, otherwise, was under the method detection limit of 0.15 mg/kg (dry 

weight) for pastoral top soils in wet conditions. 

 

Concentrations of EDTA appeared to be under the detection limit of 2 µg/L in 

groundwater in which dairy biomass had been spread on the pastures near the 

Fonterra Waitoa dairy site. In contrast, EDTA was detectable in groundwater 

whether the paddocks were irrigated or un-irrigated with dairy wastewater from 

the Fonterra Kauri dairy site under relatively dry conditions (April 2008). 

Furthermore, EDTA was detected, even likely to be at higher concentrations for 

irrigated areas under wet conditions (July 2008) while EDTA was below the 

detection limit for groundwater from the un-irrigated areas. Nonetheless, the 

detected concentrations of EDTA for the groundwater were all below the 

maximum acceptable value of 700 µg/L of EDTA for the New Zealand drinking 

water (2005).  

 

It has showed that soil characteristics, for instance, the nutrient levels of N, P and 

K, was changed by comparing the basic soil test data of irrigated and un-irrigated 

pastoral top soils with the dairy wastewater from the Fonterra Kauri site.  

 

Analytical results for soils and groundwater near the Fonterra Kauri dairy site, 

even with this limited data, appear to suggest that heavy metals may be built up 

over long periods of irrigation with dairy wastewater, and they are likely to be 

transported to the groundwater with the existence of EDTA. This finding is 

significant enough to suggest more research is required in the future. 
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8.0 CHAPTER EIGHT : SUMMARY AND 

CONCLUSIONS 
 

8.1 INTRODUCTION 

 

EthyleneDiamineTetraacetatic Acid (EDTA) is a well-known chelating agent, 

used to control the effect of metals in many industrial processes for more than 50 

years, such as in the dairy industry to remove calcium and magnesium in the 

cleaning process.  

 

As EDTA is water-soluble and not volatile, it is mainly released with wastewater 

effluent. It is generally believed to be of low risk to human health and the 

environment. However, it came under scrutiny in Europe in the late of 1980’s 

because of its widespread presence in the aqueous environment and its sequester 

ability to heavy metals. 

 

This research was sponsored by Fonterra Co-operative Group Limited (Fonterra) 

and obtained support also from the Technology New Zealand. The rationale for 

this project arose from the use of EDTA as an additive in caustic agents to 

improve cleaning efficiency, and minimise dairy wastewater in the clean-in-place 

(CIP) system within the processing plants of the New Zealand dairy industry.  

 

There are two major disposal methods for dairy effluent in New Zealand. They are: 

(i) discharge into local waterways after treated by an extended aeration 

system (biological treatment) such as the Fonterra Waitoa dairy site 

(Waitoa), and  

(ii)  spray irrigation onto pasture land (land treatment system), like the 

Fonterra Kauri dairy site (Kauri).  

 

A particular case of the Fonterra Waitoa dairy site was intensively studied as 

significant amounts of EDTA had been used in the CIP system, the reduction of 

EDTA from the existing wastewater treatment plants was unknown, and large 
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volumes of dairy effluent were discharged into a relatively small stream of the 

Waitoa River.  

 

EDTA and associated heavy metals present in both pastoral top soils subjected to 

long term application of dairy effluent (Kauri) and dairy biomass (Waitoa) 

containing EDTA, and groundwater were investigated,  

 

This project was undertaken with the following identified aims:  

(i) Establish an HPLC-UV analytical method (not previously established in 

New Zealand) for determination of the presence of EDTA in 

environments; 

(ii)  Investigate concentrations of EDTA in dairy wastewater; 

(iii)  reveal EDTA removal efficiency by the existing wastewater treatment 

plants; 

(iv) examine EDTA and associated heavy metals present in the local adjacent 

waterway, in this case the Waitoa River; 

(v) conduct a dispersal simulation of EDTA in the Waitoa River using 

applicable models; and 

(vi) undertake the investigation of EDTA in soils and ground waters 

following the application of dairy wastes (dairy biomass and effluent) via 

a land treatment system onto pasture land. 

 

8.2 SUMMARY OF RESEARCH FINDINGS 

 

8.2.1 Method Development for Analyzing EDTA Using HPLC-UV 

 

A standard method for analysing EDTA has not been previously established in 

New Zealand (e.g. a leading analytical laboratory, R J Hill laboratories, has no 

such method). A method for measuring EDTA in dairy wastewater using 

reversed–phase ion-pair liquid chromatography was therefore established. This 

was achieved by optimizing the chromatographic separation including organic 

compositions and concentrations of the ion-pair reagent in mobile phase, studying 
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the effects of interfering compounds such as nitrate, Ca2+ and Mg2+, and 

converting losses of EDTA between metal complexes. Validation procedures 

showed good linearity (r2 0.9988 - 0.9998) and spiking recoveries (98 - 102%) (no 

certificated reference material available). The method standard deviation and 

detection limit (3*RSD) were 1.5% and 5 µg L-1 EDTA, respectively. This 

method was applied to the later research with pre-concentration steps for surface 

and ground waters, and an EDTA extraction step and modified separation 

conditions for soils. 

 

8.2.2 EDTA Occurrences in Dairy Processing Wastewater 

 

Thirteen 24–hour composite flow-proportional wastewater samples (August, 

October/November and December, 2007) were collected from drainage systems 

from cheese and wet process plants. These streams of wastewater were suggested 

as containing potentially high concentrations of EDTA at the Fonterra Waitoa 

dairy site.  

 

Significant concentration of EDTA was observed in wastewater samples of the 

processing plants, where the commercial product of Eliminator, or Eliminator II, 

containing 34 – 36 % of EDTA was applied in the clean-in-place system. The 

highest concentration of EDTA detected for the cheese drain was approximately 

77000 µg/L (77 mg/L) and for the wet process, was 83000 µg/L (83 mg/L). 

Nevertheless, those levels of EDTA were below the controlled value of EDTA 

(0.1%) by the process plants. Furthermore, analysis of EDTA concentrations in 

the processing wastewater showed marked variations in daily and seasonal 

composition. 

 

8.2.3 EDTA Removal Efficiency by the Existing Wastewater Treatment 

Plants 

 

The wastewater from 12 – 14 streams, generated from processing plants at the 

Fonterra Waitoa site, is collected in a sump on site and subsequently pumped to 
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the wastewater treatment plant (WWTP) for a treatment. The Waitoa WWTP, 

utilizing an extended aeration activated sludge treatment, includes two major 

ponds operated in series and two clarifiers (settling tanks) operated in parallel. 

The treatment mechanism is that: 

(i) bacteria and other micro-organisms contained in the activated sludge 

mass use the dairy wastewater as a food source, consuming oxygen 

added continuously through aerators in the process ponds, and  

(ii)  the activated sludge mass flows from the ponds into either of two 

clarifiers, in which the floc is separated from the water. Oxygen is added 

to satisfy the micro-organisms.  

It takes 6-7 days for the influent to go through the treatment process, operated at a 

pH value of 8.0 – 8.2 with a 3-week sludge retention time. 

 

Reduction of EDTA during the treatment processes cannot be assessed on a daily 

basis due to large capacity of the ponds and clarifiers. Thus, EDTA removal 

efficiency was calculated as 93 %, based upon a mass difference of the overall 

averaged EDTA amounts between the influents and wastes discharged (including 

effluent and sludge) during the sampling period of August, October and December 

2007. 

 

The concentration of EDTA in dairy effluent discharged into the adjacent Waitoa 

River was found to be in the range of 72 – 261 µg/L based upon analytical results 

of 13 effluent samples collected in August, October and December 2007.  

 

8.2.4 Presence of EDTA and Related Heavy Metals in the Waitoa River 

 

Surface water samples were collected 2,500 m and 10 m upstream, and 10 m and 

60 m downstream of the dairy effluent outfall in the Waitoa River in August and 

October 2007, for the purpose of investigating concentrations of EDTA and 

associated heavy metals in the aquatic environment receiving dairy wastewater 

from the Fonterra Waitoa site. 
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As the level of EDTA was too low, a 5-fold pre-concentration step was needed 

and achieved by heating the sample to dryness and reconstituting before the 

analysis of EDTA. A daily calibration curve was established at the concentration 

range of 0 – 150 µg/L EDTA. A blank, a duplicate every 10th sample and a 

spiking recovery of an EDTA standard every 20th sample were undertaken per run 

for quality control. The averaged duplicate variability was 8.1 % (n=5) and the 

spiking recovery varied from 97 – 107 % (n=3). 

 

Analytical results showed a slight increase of the EDTA concentration 60 m 

downstream from the dairy effluent outfall based on analyses of 12 samples 

collected. The highest EDTA concentration was 2.7 µg/L. This value is almost 

half of the EDTA target value of 5 µg/L for surface waters in the Rhine catchment 

area, recommended by the International Association of Waterworks; is two orders 

of magnitude below the New Zealand Drinking Water Standards of 0.7 mg/L 

EDTA for health purposes.  

 

In addition to the wastewater discharge from the Fonterra Waitoa dairy site into 

the Waitoa River, another EDTA source was identified from the Wallace 

Corporation Limited (Wallace) plant, where EDTA was applied in the tannery 

plant. Analytical results for the randomly collected samples on 30 May 2008, 

showed EDTA not only present in the wastewater pond at the Wallace site , but 

also in the Waitoa River based upon surface water samples upstream and 

downstream adjacent to the Wallace site, which is about 3km upstream of the 

Fonterra Waitoa discharge point. 

 

Analytical results for associated heavy metals in the Waitoa River revealed that: 

(i) concentrations of Na, K, Ca and Mg were increased downstream of the 

dairy effluent diffuser in the Waitoa River, which demonstrates the 

contribution of dairy effluent from the Fonterra Waitoa site;  

(ii)  concentrations of Fe and Zn showed significant differences between the 

sampling periods of August and October, 2007. The concentration of Zn 

for samples collected in October obviously exceeded the trigger value of 

2.4 mg/L for New Zealand natural waters, which may relate to the 

fertilizers on the pasture;  
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(iii)  copper (Cu)was detectable both upstream and downstream, but their 

concentrations were below the trigger value (1.0 mg/L) for toxicants in 

fresh water (New Zealand water quality); 

(iv) chromium (Cr) was only detectable on one day out of 6 during the 

sampling periods that may relate to the tannery factory effluent discharge 

(Wallace); and 

(v) Lead (Pb), cadmium (Cd) and nickel (Ni) were all under detection limits, 

and pose no particular concerns. 

 

8.2.5 Simulation of EDTA Dispersion in the Waitoa River 

 

Two approaches were undertaken to help the understanding of the fundamental 

aspects of the transport of EDTA in the Waitoa River. These are approximate 

calculations using quasi one-dimension vertical mixing model; and a numerical 

simulation of the hydrodynamic processes (3DD model) and effluent mixing 

(POL3DD) in two-dimensions (depth-averaged). Both specific monitored case (30 

May 2008) and a worst case scenario of high EDTA discharge (the maximum 

EDTA usage at the Waitoa site for year 2008) combined with a low river flow (< 

600 L/s) were simulated for the dispersal path and the concentration of EDTA 

through model output analyses.  

 

The quasi one-dimension vertical mixing model (Rutherford model) is based upon 

the assumption that both transverse and longitudinal concentration gradients are 

negligible due to the uniform line-source, as for the example of the Waitoa dairy 

effluent released into the Waitoa River. Thus, the dispersion of EDTA in the river 

channel simplifies to become quasi one-dimensional from vertical mixing only. 

Estimated results showed the EDTA discharged from the Waitoa dairy effluent 

was only completely mixed 6 m downstream, assuming the river depth of 1 m, 

width of 8 m, slope of 2 x 10-4, and mean velocity of 0.22 m/s. Fully mixed 

concentrations of EDTA were 3.18 µg/L for the monitored case (30 May 2008), 

and 40.3 µg/L for the worst case.  
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The Model 3DD is based upon highly accurate mixed Eulerian/Lagrangian 

mathematical techniques, and the dispersal model POL3DD (POLlution dispersal 

coupled to 3DD) tracks dissolved materials as suspended “particles” to simulate 

water-borne dispersal and determines concentrations of pollutants from multiple 

sources in 3 dimensions. In the Waitoa case of shallow water, river currents were 

only generated in 2-dimensions (depth-averaged) using the 3DD hydrodynamic 

model, and the dispersal paths and concentrations of EDTA were then read by 

POL3D.  

 

Given a 1x1 m grid resolution with a precise bathymetry created by single beam 

echo-sounder, a two-dimensional, depth-averaged hydrodynamic model (3DD) 

was set up for a low river velocity of 0.2 m/s. Outputs of the 3DD model concur 

well with the field measurements by an averaged difference of 2.3%.  

 

EDTA dispersion of the monitored case and the worst case were simulated in the 

Waitoa River. The modelling results suggest that the maximum EDTA 

concentrations were present in the mediate vicinity of the dairy effluent outfall in 

the Waitoa River for both cases. The instantaneous concentration of EDTA was 

likely to reach 0.25 g/m3 (mg/L) for the worst case. But the important finding was 

there was no significant increase of EDTA concentrations beyond 50 m 

downstream from the outfalls. The highest concentrations of EDTA were around 2 

µg/L for the monitored case and 21 µg/L for the worst case based on the data 

extraction of the central cell of transects. These values are nearly half of the quasi 

one-dimensional calculations. The estimated results from the quasi one-dimension 

vertical mixing are only indicative due to its assumption and limitation. The two-

dimensional 3DD hydrodynamic model considers the EDTA dispersal in both 

transversal and horizontal directions, and is believed to provide a more practical 

and realistic simulation of EDTA dispersal in the Waitoa River. 

 

From the quasi one-dimensional or the 2-dimensional simulation results for the 

worst case scenario, a key point is that the concentration of EDTA in the 

immediate vicinity of the receiving stream was as high as 21 µg/L for an average 

(40.3 µg/L from the approximate calculation) or 0.25 mg/L for an instantaneous 
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concentration, and then gradually reduced to ~1.5 µg/L beyond 50 m downstream 

due to the river flux and dispersion. This suggests that:  

i. the EDTA concentration occurring in the immediate vicinity of the dairy 

outfall is well below the Predicted Effect Concentration (PEC) of 2.2 

mg/L for aquatic environments advised by the European Union 

(European Chemicals Bureau, 2004); 

ii. this value is also well under the New Zealand Drinking Water Standards 

of 0.7 mg/L EDTA for health purposes (Ministry of Health, 2005); and  

iii.  large volumes of dairy effluent discharge at this site appears not to result 

in a significant EDTA contribution to the Waitoa River.  

 

In summary, the dairy effluent discharge from the Fonterra Waitoa dairy site will 

not to lead to a significant effect on the Waitoa River in terms of EDTA 

concentration, based upon the estimated results of the quasi one-dimension 

vertical mixing and the simulation of EDTA dispersion within the Waitoa River 

by the 3DD hydrodynamic model. 

 

8.2.6 Investigation of EDTA and Related Heavy Metals in Soils and 

Groundwater Subjected to Land Treatment System of Dairy 

Wastes 

 

In the New Zealand dairy industry, land treatment is an alternative for disposal of 

dairy wastes, including irrigation of dairy wastewater treatment sludge (also 

known as biomass or biosolid) and dairy wastewater onto pasture land. Long term 

land application could potentially induce changes in the quality of soil, especially 

as trace element inputs are sustained over long periods, and it may lead to 

groundwater contamination with the presence of EDTA. For this reason, EDTA 

and related heavy metals present in soils and groundwater were investigated for 

pastoral areas subjected to land application of dairy wastes. 

 

The modified HPLC-UV analytical method was applied for identification of 

EDTA in both soils and groundwater. EDTA in soils were released by 0.002 M 

NaH2PO4 desorption solution in an ultrasonic bath, and an appropriate pre-
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concentration was needed for measuring EDTA in groundwater due to its low 

concentration. The same quality control was undertaken for the analysis. Ranges 

of duplicated limits and recoveries were within 8.7% (n=4) and 95–98% (n=2) for 

soils, and 7% (n=8) and 91-107% (n=5) for groundwater, respectively. The 

detection limits for EDTA were 0.15 mg/kg (dry weight) in soils and 2 µg/L inr 

groundwater. 

 

EDTA was under the method detection limit of 0.15 mg/kg in soils where dairy 

waste treatment sludge had been applied onto pastures at the Fonterra Waitoa 

dairy site. Analytical results of EDTA in pastoral top soils indicate that EDTA 

was, however, detectable for relatively dry conditions in both clay and volcanic 

soils, where dairy wastewater containing EDTA were spray-irrigated onto the 

pasture for a period of time at the Fonterra Kauri site. EDTA, otherwise, was 

under the method detection limit for wet conditions. 

 

Concentrations of EDTA were under the detection limit of 2 µg/L in groundwater 

in which dairy biomass had been spread on the pastures near the Fonterra Waitoa 

dairy site. In contrast, EDTA was detectable in groundwater whether the paddocks 

were irrigated or un-irrigated with dairy wastewater under relatively dry 

conditions (April 2008) at the Fonterra Kauri site. Furthermore, EDTA was 

detectable, even likely to be at higher concentrations for irrigated areas under wet 

conditions (July 2008) while EDTA was below the detection limit in the un-

irrigated areas. Nonetheless, the detected concentrations of EDTA in the 

groundwater were all below the maximum acceptable value of 0.7 mg/L (700 

µg/L) of EDTA for New Zealand drinking water (2005).  

 

It was shown that soil characteristics, for instance, the nutrient levels of N, P and 

K, were changed by comparing the basic soil test data between the irrigated and 

un-irrigated pastoral top soils with the dairy wastewater from the Fonterra Kauri 

site. Analytical results for soils and groundwater near the Fonterra Kauri dairy site 

appeared to suggest that heavy metals may be built up over long periods of 

irrigation with dairy wastewater, and they were likely to be transported to the 

groundwater with the existence of EDTA.  
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8.3 IMPLICATIONS OF THIS RESEARCH 

 

This research has validated the current disposal methods of dairy effluent 

containing EDTA used by the New Zealand dairy industry in protecting the 

environment. Findings of the study imply that: 

♦ The current environmental practices of discharge dairy effluent (treated) 

into the local stream do not appear to threaten to the water quality of the 

local aquatic environment. Nevertheless, the volume of effluent 

discharge and EDTA usage in the processing plants should be monitored, 

particularly when river flows are low (<600 L/s); 

♦ Based upon analyses in this study, the present practice of dairy biomass 

spread onto pasture land does not appear to lead to potential EDTA 

contamination in the environment; however 

♦ The general practice of dairy effluent spray-irrigation onto pasture land 

may retain and build up heavy metals, and then be transported to 

groundwater due to EDTA chelates. This may result in further 

groundwater contamination. 

 

8.4 RECOMMENDATIONS FOR FUTURE RESEARCH 

 

Accordingly, there are some concerns about that: 

(i) long-term land application of dairy wastes would eventually lead to a 

build-up of heavy metals in soils; and 

(ii)  the enhanced mobility of heavy metals in soils poses a potential risk for 

leaching to groundwater with chelates.  

 

Based on findings of this research, the same concern was also proposed for spray 

land irrigation of dairy effluent. This suggests more research is required in future 

for the New Zealand dairy industry.  

 

The following lines of future research are recommended: 
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♦ Collect database of EDTA in soils relating  to land application of dairy 

effluent;  

♦ Metal spices in soils;  

♦ Speciate metal–EDTA complexes in water and soils; 

♦ Investigate the transportation of heavy metals by EDTA chelates in soils, 

e.g. by using column leaching studies; and  

♦ Determine the potential risk to groundwater with the existence of EDTA 

chelates. 
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APPENDICES 
 

A.1 EDTA occurrences in dairy wastewater of the Fonterra Waitoa 

site, analysed on 9 November 2007 

 

Sample table on 9 November 2007. 
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Daily calibration curve of EDTA ranging from 0 – 750 µg/L on 9 November 2007.  
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Analytical results of EDTA in dairy wastewater from the Fonterra Waitoa dairy site, 

sample collected in August and October 2007and analysed on 9 November 2007.  

Sample  Sample   Peak area 
Cal. EDTA 

con. Diluted  
Sample EDTA 

con.  

date name  (mv.s) (ug/L) factor (ug/L) 
28 Aug. 
07 Influent 12.15 149.01 2 298 

  Influent (dup) 12.34 151.47 2 303 

  Effluent 6.5 75.82 2 152 

  Wet pro. 0.71 0.82 2 2 

  Pond 1 (1) 22.11 278.02 2 556 

  Pond 1 (2) 12.2 149.65 2 299 

  Pond 2 (1) 10.06 121.93 2 244 

  Pond 2 (2) 8.57 102.63 2 205 
29 Aug. 
07 Influent 4.22 46.29 2 93 

  
Influent 
recovery 20.92 Recovery: 99.6%   

  Effluent 5.42 61.83 2 124 

  Wet pro. 1.05 5.22 2 10 

  Pond 1 (1) 17.38 216.75 2 434 

  Pond 1 (2) 19.63 245.90 8 1967 

  Pond 2 (1) 11.75 143.83 2 288 

  Pond 2 (2) 7.65 90.72 2 181 
30 Aug. 
07 Influent 9.36 112.87 2 226 

  Effluent 6.86 80.48 2 161 

  Wet pro. ND       

  Pond 1 (1) 10.97 133.72 2 267 

  Pond 1 (2) 12.93 159.11 2 318 

  Pond 2 (1) 8.25 98.49 2 197 

  Pond 2 (2) 6.84 80.22 2 160 

22 Oct. 07 Pond 1 (1) 16.31 202.89 2 406 

  Pond 1 (2) 11.12 135.66 4 543 

  Pond 2 (1) 24.92 314.42 2 629 

  Pond 2 (2) 14.79 183.20 2 366 
24. Oct. 
07  Pond 1 (1) 11.25 137.35 2 275 

  Pond 1 (2) 9.24 111.31 2 223 

  Pond 2 (1) 11.21 136.83 2 274 

  Pond 2 (2) 9.79 118.44 2 237 
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A.2 EDTA analyses in surface water of the Waitoa River, sample 

collected in August 2007 and analysed on 13 March 2008 

 

Sample table on 13 March 08. 
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Daily calibration curve of EDTA ranging from 0 – 150 µg/L on 13 March 2008. 

 



APPENDICES   

233 

Analytical results of EDTA in surface water of the Waitoa River , sample collected in 

August 2007 and analysed on 13 March 2008. 

 
  

Sample  

Peak 

area 

(mv∙s) 

EDTA 

concentration 

(µg/L) 

Precon 

factor 

EDTA con in 

sample (µg/L) 

SH 26 1 28.8.07 0.8 6.33 5 1.27 

SH 26 2  1.08 9.23 5 1.85 

US 10 m 1 0.62 4.46 5 0.89 

US 10 m 2 0.54 3.63 5 0.73 

DS 10 m 1 0.69 5.18 5 1.04 

DS 10 m 2 0.72 5.49 5 1.1 

DS 60 m 1 0.61 4.35 5 0.87 

DS 60 m 2 1.47 13.28 5 2.66 

SH 26 1 29.8.07 4.02 39.76 5 7.95 

SH 26 2  0.56 3.83 5 0.77 

Dup 0.61 4.35 5 0.87 

US 10 m 1 0.69 5.18 5 1.04 

US 10 m 2 0.5 3.21 5 0.64 

DS 10 m 1 0.66 4.87 5 0.97 

DS 10 m 2 0.55 3.73 5 0.75 

DS 60 m 1 1.41 12.66 5 2.53 

DS 60 m 2 0.9 7.36 5 1.47 

SH 26 1 30.8.07 0.73 5.6 5 1.12 

SH 26 2  0.87 7.05 5 1.41 

US 10 m 1 1.41 12.66 5 2.53 

US 10 m 2 0.65 4.77 5 0.95 

Dup 0.66 4.87 5 0.97 

Recovery 5.55   5   

50 ug/L EDTA 4.92     97% 

DS 10 m 1 0.74 5.7 5 1.14 

DS 10 m 2 1.33 11.83 5 2.37 

DS 60 m 1 0.67 4.98 5 1 

DS 10 m 2 0.9 7.36 5 1.47 

DS 10 m 2 Dup 0.96 7.99 5 1.6 

50ug/ EDTA 

Std. 4.92       
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A.3 Analytical results of dissolved metals in the Waitoa River by ICP-

MS 
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A.4 Analytical results of soils subjected to land application of dairy 

effluent from the Fonterra Kauri site 
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A.5 Analytical results of ground water subjected to land 

application of dairy effluent from the Fonterra Kauri site 
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