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Abstract

Destination choice models with individual-specific taste variation have become the
presumptive analytical approach in applied nonmarket valuation. Under the usua
specification, tastes are represented by coefficients of site attributes that enter utility,
and the distribution of these coefficients is estimated. The distribution of willingness-
to-pay (WTP) for site attributes is then derived from the estimated distribution of
coefficients. Though conceptually appealing this procedure often results in untenable
distributions of willingness to pay. An alternative procedure is to estimate the
distribution of willingness to pay directly, through a re-parameterization of the model.
We compare hierarchical Bayes and maximum simulated likelihood estimates under
both approaches, usng data on site choice in the Alps. We find that models
parameterized in terms of WTP provide more reasonable estimates for the distribution
of WTP, and aso fit the data better than models parameterized in terms of attribute
coefficients. This approach to parameterizing utility is hence deemed promising for

applied nonmarket valuation.
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1 Introduction

Nonmarket values of qualitative changes in sites for outdeareation are often investigated by
estimating random utility models (RUMSs) of site selecti®o¢kstael et al. 198 Morey et al.
1993. Most recent applications address the issue of unobseastel heterogeneity by using
continuous (rain 1998 1999 or finite mixing (Provencher et al. 200&carpa & Thiene 2005

of individual taste distributions by means of panel mixeditonodels. Such approaches are
shown to produce more informative and realistic estimafesoomarket values than models
without taste heterogeneity and are now part of the stateagtipe in the profession. However,
models with conveniently tractable distributions for eesbefficients, such as the normal and the
log-normal, often obtain estimates that imply countetiiite distributions oMW TP This is due

to the fact that the analytical expression Wi Pinvolves a ratio where the denominator is the
cost coefficient. Values of the denominator that are clogeto (which are possible under most
standard distributions such as the lognormal) cause tletoabe exceedingly large, such that
the derived distribution 0fWTPobtains an untenably long upper tail. The mean and variahce o
the skewed distribution are both raised artificially by #haaplausibly large values.

One solution is to assume that the cost coefficient is congtad not random (e.g.
Revelt & Train 1998 Goett et al. 2000Layton & Brown 2000 Morey & Rossmann 2003
This restriction allows the distributions of willingness pay (VTP to be calculated easily
from the distributions of the non-price coefficients, sitise two distributions take the same
form. For example, if the coefficient of an attribute is dlaited normally, thetWTPfor that
attribute, which is the attribute’s coefficient divided thetprice coefficient, is also normally
distributed. The mean and standard deviatio\afPis simply the mean and standard devia-
tion of the attribute coefficient scaled by the inverse of(fineed) price coefficient. The fixed
cost coefficient restriction also facilitates estimatiéior exampleRuud (1996 suggests that
a model specification with all random coefficients can be eicglly unidentified, especially
in datasets with few observed choices for each decisiorem@kort panels). However, this
restriction is counter-intuitive as there are very goodtkécal and common-sense reasons
as to why response to costs should vary across respondemsiiag to factors that can be
independent of observed socio-economic covariates.

Train & Weeks(2005 note on the topic that assuming a fixed price coefficient iesghat
the standard deviation of unobserved utility (i.e. thespgarameter) is the same for all observa-
tions. On the other hand, it is important to recognize thatsttele parameter can, and in many
situations clearly does, vary randomly over observati&@stimation practices that ignore such
source of variation may lead to erroneous interpretatia@hgolicy conclusions. For example,
in the context of destination choice modeling, if the tras@t coefficient is constrained to be
fixed when in fact scale varies over observations, then thati@n in scale will be erroneously
attributed to variation iWTPfor site attributes.

Another solution is to re-parameterize the model such ti@aparameters are tNgTP for
each attribute rather than the utility coefficient of eadhitaite. That is, instead of the usual
approach of parameterizing the model in ‘preference spaee, coefficients in the utility), the
model is parameterized iWWTP space’. This alternative procedure has recently beerzexdili
to represent taste heterogeneityrain & Weeks(2005 andSonnier et al(2007). However,



the idea of specifying utility in th&VTP space is not new. For example, the readers familiar
with the analysis of discrete-choice contingent valuatiate may recall the so-calledria-

tion function orexpenditurefunction approach suggested@ameron & Jamegl987) and in
Cameron(1988, which as discussed in some more detaiMgConnell(1995 in some cases
boils down to a simple re-parameterization of the RUM modeppsed byHanemanr (1984
1989.

Train & Weeks (2005 and Sonnier et al(2007) extended the approach by Cameron and
James to multinomial choice models with random tastes, eviistributional assumptions and
restrictions can be placed on the coefficients of Wi€Ps. They point out that the two ap-
proaches are formally equivalent because any distributfaroefficients translates into some
derivable distribution ofNTPs, and vice-versa. However, the appeal of the approachatstth
allows the analyst to specify and estimate the distribstioiWTP directly, rather than deriv-
ing them indirectly from distributions of coefficients inethutility function. To researchers in
nonmarket valuation this is an important advantage.

Comparisons of estimates obtained from the two paramateis on an identical dataset
have already been investigated using stated preferengedé®® Train and Weeks compared
the estimates of the two approaches and the imph&d for attributes related to cars with
different fuel (fossil, hybrid and electric)Sonnier et al(2007) investigate the same issues in
the context of stated preference data for car brand choidephntographic cameras. Both
results use hierarchical Bayes (HB) estimators and findaimesults. In particular, they found
that the specifications in the preference space fit their lolett@r but produce less reasonable
distributions ofWTPthan specifications in th&/ TPspace

We apply these concepts to revealed-preference (RP) tiatéirgt such application to our
knowledge. In order to ensure that results are not deperuatetite estimation method, we es-
timate our models by both HB and maximum simulated likeldth@®ISL). To our knowledge,
this is the first application of MSL to random coefficient misdiea WTP space. We find, like
Train & Weeks(2005 andSonnier et al(2007), that models inVTP provide far more reason-
able distributions oV TP than models in preference space. However, unlikgn & Weeks
(2005 andSonnier et al(2007), we find that the models idVTP space also fit the data better
than the models in preference space. This improved fit angdsboth HB and MSL estima-
tion. Our findings indicate that, with our RP data, there ignadeoff between goodness of fit
and reasonableness of results: the mod®#/iFPspace outperforms on both criteria.

2 Specification

In this section we start with the conventional specificatbrutility in the preference space,
and describe the implications for correlation of utilityetficients and impliedWTPs. We then

Yimportantly for the practice of RUM estimation, Train and &ke emphasize how assuming independence
across utility coefficients in the presence of a scale patemaghich varies across visitors implies dependence (cor-
relation) across implieWTPdistributions, and vice-versa. This issue may escape taptatn of analysts, and it
is worth bearing in mind for its consequences in interpretatdf results, because in general neither marg\ieis
for attributes nor their taste intensities are indepergeatistributed, and hence correlation matrices should be
estimated whenever the data allow it, regardless of thecehafiutility specification.
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reparameterize the modelWTPspace and discuss the implications. Throughout, the ootati
and language is adapted for our application to Alpine siteazh

Day trippers are indexed by, destination sites by, and choice situations by To ease the
illustration, we specify utility as separable in prigeand a vector of non-price attributes,

Unjt - _anpnjt + egxnjt + Enjt (l)

whereq,, andd,, vary randomly over day visitors ang;; is Gumbel distributed. The variance
of €, is visitor-specific:Var (e,;;) = p2(7?/6), wherep,, is the scale parameter for day visitor
n. Since utility is ordinal one can divide equatidl) py the scale parameter to obtain its scale-
free equivalent. This division does not affect behavior wetdt results in a new error term that
has the same variance for all decision-makers:

Unjt = — (/) Prje + (On/ 1in) Trje + €nji (2)

wheres,,;; is i.i.d. type-one extreme value, with constant variamt&. The utility coefficients
are defined a3,, = (a,, /1) @ande,, = (0,,/1,), such that utility may be written:

Unjt - _)\npnjt + C/nxnjt + <C:njt (3)

Note that ify,, varies randomly, then the utility coefficients are correthtsinceu,, enters the
denominator of each coefficient. Specifying the utility fisgents to be independent implicitly
constraing:,, to be constant. If the scale parameter variesgnandd,, are fixed, then the utility
coefficients vary withperfectcorrelation. If the utility coefficients have correlatioesk than
unity, thena,, andé,, are necessarily varying in addition to, or instead of, tredesparameter.
Finally, even ify.,, does not vary over visitors (e.g., the standard deviatiamwbserved factors
over sites and trips is the same for all visitors), utilityeffawients can be correlated simply due
to correlations among tastes for various attributes.

The specification in equatior8) parameterizes utility in ‘preference space’. The implied
WTPfor a site attribute is the ratio of the attribute’s coeffiti¢o the price coefficientw, =
cn/An = 0, /v, Using this definition, utility can be rewritten as

Unjt - _)\npnjt + ()\nwn),xnjt + 6njta (4)

which we name ‘utility inWTPspace’, whileSonnier et al(2007) called it the ‘surplus model'.
In a context in which scale can vary over people—such as ialpime destination choice—this
specification is very useful for distinguishiMgTP variation (i.e. the distributional features of
w,) from variation in scale. To what extent this distinctiofeats the derived welfare estimates
remains an empirical question, and one of the objectivesuofinvestigation. We note that,
although any coefficient can be used as the base that inedgsoscale, the reason to focus
on the travel cost coefficient in this case is that the saa@e-fierms can be directly interpreted
asWTPs, which are easy to rationalize. This utility specificatisndistinctive for another
reason as it gives a nonlinear-in-the-parameter utilibgfion, which poses some computational
challenges in the context of MSL estimation (and is probdbé/ reason MSL has not been



previously used for models WTPspace. In contrast, nonlinearity is readily accommodated i
HB estimation.

The utility expressions are behaviorally equivalent angldstribution of \,, andc,, in (3)
implies a distribution of\,, andw,, in (4), and vice-versa. The general practice in nonmar-
ket valuation and elsewhere has been to specify distribsio preference space, estimate the
parameters of those distributions, and derive the digioha of WTP from these estimated
distributions in preference spacéréin 1998. While fully general in theory, this practice is
usually limited in implementation by the use of computadiliy convenient distributions for
utility coefficients. However, empirically tractable disutions for coefficients do not neces-
sarily imply convenient, or reasonable, distributions W8P, and vice-versa. For example,
if the travel cost coefficient is distributed log-normal ahé coefficients of site attributes are
normal, thedWTPis the ratio of a normal term to a log-normal term. Similanhy(4), normal
distributions forWTPand a log-normal for the (negative of) travel cost coeffitiemply that
the utility coefficients are the product of a log-normal eéeiand a normal onex,, x w,,.

A similar asymmetry exists for the placement of restricti@n patterns of correlations
(independence). In the travel cost site selection liteesitLis fairly common for researchers to
specify uncorrelated utility coefficients. However, thestriction implies that scale is constant,
as stated above, and moreover MaEPis correlated in quite a particular way via the common
variation in the price coefficient. Researchers might naaware of such implications of their
choice of specification, as few papers discuss its consegsersymmetrically, specifications
assuming uncorrelata®TPimply a pattern of correlation in utility coefficients thatdlifficult
to implement in preference space. We know of only one othglicgiion of travel cost RUMs
that assumes a random scale parameter, but in that casetltioesadio not explicitly address
correlation acrosgVTPestimatesBreffle & Morey 2000.

The issue becomes: does the use of convenient distribuaimhsestrictions in preference
space oMVTPspace result in more accurate and reasonable models? TWweraasiecessarily
situationally dependent, since the true distributiongediin different applications. However,
some insight into this issue can be obtained by compariegreltive specifications on a given
dataset under alternative estimators. Description of ata & the topic of the next section.

3 Data

3.1 Respondents data

The data for our estimates were collected with a survey adteired to a sample of 858 mem-
bers of the local (Veneto Region) chapter of the CAl (Ital&lpine Club), who reported on
their mountain visits for the year 1999. The total numberipktreported was 9,221, and some
descriptive statistics are reported in Tabl&he most visited sites are Piccole Dolomiti, Asiago,
Lessini-Baldo, which are located in the pre-Alps, and QaePale S.Martino and Tre Cime,
all of which are in the Dolomites. Unsurprisingly the mosduently attended sites are those
closest to the urban centers located in the plains. Thevieteers contacted the CAl members
at club meetings taking place in the municipalities of th@a&te region. The various parts of



the questionnaire were explained to a group of respondamiisthen each member of the group
filled out the questionnaire on their own. Respondents wakedquestions about their moun-
taineering abilities and experience (i.e. when they stam@untain recreation, whether they
attended mountaineering training courses, and the kindtofites they usually undertook at
the sites etc.). Importantly for this application they was&ed the total number of days out they
took to each of the 18 sites in the last twelve months. Fingilgy provided the interviewers
with socio-economic information about themselves and thaiiseholds.

Round-trip distance from own residence to each of the dastins in the choice set was
calculated using the software package “Strade d’ltalialEubpa”. These data were used to
estimate the individual travel cost for each trip. Distanosts were converted into monetary
values using a figure &£0.35 per km, which was the car running cost at the time. Egubrted
trip was a ‘day out’, as is customary for this generic formaufdl outdoor recreation. The eigh-
teen mountain destinations differ substantially from betinorphological and mountaineering
point of view, but they can provide both specialist and npaesalist outdoor recreation, and so
are all destinations for local visitors.

3.2 Site attribute data

Data on attributes of mountain destinations have mostly lrevided by means of a Geo-
graphical Information System and some of them were codedrdicy to the knowledge of
a panel of experts in local hiking features. Two broad ggogially-determined groups can
be distinguished. Destinations 1-6 (Talb)ebelong to the Prealps, which are mountains with
gentler slopes and lower peaks separating the plane fromprtper Alps. Because of their
distinct nature the Prealps are the final destination of niidpy with different recreational ob-
jectives from those trips taken to the Alps. Destinatioris87are in the Northeastern Alps, in
the mountain chain of the Dolomites, which is an extendellyacea mostly made of dolomite
rocks. This rare and distinguished rock type is geologroakll-defined as it originates from
coral reefs. Mountains made of this rock are scenicallyegattractive as they tend to show
orange-pink reflections at sunset.

Some of the recreational attributes describe the land ubeaites and some others provide
specific information about hiking by means of an indeegree of difficultys a score taking up
to 3 ordinal values and describing the degree of technidtdty of trailing itineraries avail-
able at destination. That is, taking into account not ongytthtal length of the trails network,
but also the average degree of adversity of the mountaim@nwvient at destinatiorferrata
is the number of trails equipped so as to allow visitors tausethemselves onto a safety rope
in the ascent towards hard-to-reach vantage poilfEne shelterss the number of equipped
alpine shelters accessible in the destination area.

The recreational attractiveness of a destination to daysisitiors is also described on the
basis of the percent of total length of ‘easily’ walkablelt &% of Easy trailg). These are those
requiring lower than average physical effort and are seteon the basis of a composite set of
measurements, such as width, incline and accessibilitthe\bther extreme of the spectrum we
use the percent of total length made-up of ‘hard’ walkalkddgr% of Hard trails), which are
those requiring higher than average physical effort, apdetiore degree of fithess. Percentages



are worked out of the total existing trail network at dediioa Finally, because the Prealps offer
an experience distinctively different from the Dolomitt® trips to the former are associated
with a alternative-specific constant.

4 Method

Revelt & Train(1998 derived the mixed logit specification in the context of rajeel choices
by individuals with continuous taste distributions, thecadled panel mixed logit. In our alpine
destination choice context, visitar faces a choice among destination alternatives in each
of T,, trips taken over an outdoor seasasn.in our case is 18 while we have a maximum of
T,, =40 which represents a reasonable maximum number of daysreutg/ear. We have an
unbalanced panel since the number of trips vary acrossithdils, hence the subscript

To assure a negative price coefficient, we define= — exp(v, ), wherew, can be con-
sidered the latent random factor underlying the price adefit. Let(, denote the random
terms entering utility, which are,, and ¢, for the model in preference space, (equat®n
and )\, and w,, for the model inWTP space, (equatiod). Similarly, let utility be written
Unjt = Vait(Bn) + €njt, With V,,,(5,,) being defined by either equatio) (or (4), depending on
the parameterization.

Visitor n chooses destinatiarin periodt if U,;, > U,,;; V7 # i. Denote the visitor's chosen
destination in choice occasiagnasy,,;, the visitor's sequence of choices over thechoice
occasions ag, = (yn1,- - -, Ynr, ). CoNditional ons,, the probability of visitom’s sequence of
choices is the product of standard logit formulas:

t= Tn Vnynt t 511

L(yn | Ba) = Hzemtﬁn

The unconditional probability is the integral 6fy,, | 5,,) over all values of3,, weighted by its
density:

Pa(ya) = / Liyn | Ba)g(Bu)dB (5)

whereg(-) is the density ofs,, which depends on parameters to be estimated. This uncomaliti
probability is called the mixed logit choice probabilitinse it is a product of logits mixed over
a density of random factors reflecting tastes.

4.1 Mixed logit estimation via hierarchical Bayes

Because MSL estimation of mixed logit models is well-docuated (Train 2003 e.g.), in this
section we mostly focus on HB estimation. For the MSL estiamatve just mention that to
deal with non-linearity of//,;; we used BIOGEME Bierlaire 2002 2003 and the algorithm
CFSQP Lawrence et al. 19970 as to avoid the problem of local optima. All MSL estimates
were obtained using 100 quasi-random draws via Latin-loyier samplingHess et al. 2006
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The Bayesian procedure for estimating the model with ndgndiktributed coefficients
was developed byllenby (1997 and implemented byawtooth Softwar€1999. This es-
timation method was also applied Bigby & Burton (20069 to derive transforms that ad-
dress mass distribution at zero (indifference to attriutd utility coefficients (noWTP co-
efficients) for choice over GM food products in the U.K. Rethimethods for probit models
were developed bglbert & Chib (1993, McCulloch & Rossi(1994), Allenby & Rossi(1999.
Layton & Levine(2005 made a contribution in the context of sequential learniogifprevious
applications. A review of applications to marketing methaifound inRossi et al(2005.

We specify the density of,, to be normal with meahand variancé2, denoted;(5, | b, (2).
Although terminology differs over authors and fiefdsge callb and(2 ‘population parameters’
since they describe the distribution of visitor-leykls in the population. With this usage, the
distributiong (3, | b,?) is interpreted as the actual distribution of tastes for #ereational
attributes of destination sites in the population of theaeal branch of the Italian Alpine Club,
from which we drew the sample. Note that, given the expressibmve for the price coefficient,
the specification of normat,, implies that the price coefficient is lognormally distribdt

In Bayesian analysis, a prior distribution is specified for parameters. We lack previous
information on the type of visitors in our sampland therefore specify the prior érnto be a
diffuse normal, denoted/ (b | 0,©), which has zero mean and a sufficiently large variafce
such that the density is essentially flat from a computatipaespective. A normal prior oh
has a computational advantage since it provides a condltpmsterior orb (i.e., conditional on
G,Vn and(?) that is also normal and hence easy to draw from, while tlgelaariance ensures
that the prior has minimal (effectively no) influence on tlosterior, reflecting the absence of a-
priori knowledge, especially in the presence of large sas)@uch as in our case. The standard
diffuse prior onS2 is inverted Wishart with low degrees of freedom. This speatfon is also
computationally advantageous as it provides a conditipnaterior or( that is also Inverted
Wishart and hence easy to draw from. The conditional pasten 3,Vn , givenb and(?, is

Information about the posterior is obtained by taking drémes the posterior and calcu-
lating relevant statistics, such as moments, over thesgsdr®raws from the joint posterior
are obtained by Gibbs samplinGd4sella & George 1992 In particular, a draw is taken from
the conditional posterior of each parameter, given theipusvdraw of the other parameters.
The sequence of draws from the conditional posteriors agesge after a sufficient number of
iterations (called ‘burn-in’), to draws from the joint pesbr. Technical information about the
algorithm can be found ifirain & Sonnier(2005 andTrain (2003.4

2In Bayesian applications and Q2 tend to be called hyper-parameters, with thgs themselves being the
parameters of interest. Sometimes, howeverlie are called nuisance parameters, to reflect the concefpt tha
they are incorporated into the analysis to facilitate eastiom ofb andf.

3The only other study we know of on the regiordsarpa & Thieng2009 and it focussed on rock-climbers
and not generic day-out visitors.

“For the HB models in preference space, we used the GAUSS hatlestavailable on K. Train’s website at
http://elsa.berkeley.edu/ train/software.html. We addphis code appropriately for the HB model$iTPspace.



It is worth reminding the reader not familiar with Bayesiastimation that the Bernstein-
von Mises theorem states that, under quite unrestrictinglitons, the mean of the Bayesian
posterior of a parameter is a classical estimator that impsytically equivalent to the maxi-
mum likelihood estimator of the parameter. Similarly, tlagiance of the posterior distribution
is the asymptotic variance of this estimator. Se&in (2003 for an extended explanation with
citations. Hence, the results obtained by Bayesian praesdian be interpreted from a purely
classical perspective. In the tables below, results areepted in the way that is standard for
classical estimation, giving the estimate and standawt éor each parameter. These statis-
tics are the mean and standard deviation, respectivelizeaditaws from the posterior for each
parameter.

5 Estimation results

5.1 Preference space
5.1.1 Model estimates

The HB estimates for models in the preference space (i.eatiem3) with uncorrelated coef-
ficients are reported in the top part of Talblleand estimates with correlated coefficients are
reported in the bottom part. Allowing for full correlatiomangst coefficients increases the
log-likelihood simulated at the posterior means from —28,39 to —20,383.65. Tabld re-
ports similar estimates obtained by MSL, while the estimafehe Choleski matrix associated
with the correlated model are reported in Table Again, allowing for correlation increases
the value of the simulated log-likelihood from —20,469.86-20,147.91.

In interpreting the figures in Tabldks andlll, recall that the coefficient for travel cost is
log-normally distributed, such that the estimated meansaaddard deviation are the mean of
the latent normally distributed random factor underlyihg travel cost coefficient. The other
coefficients were all normally distributed, such that thegans and standard deviations are
estimated directly. The estimated mean and standard deviaigether determine the propor-
tion of the population implied to have coefficients of eadnsithe implied share with negative
coefficients is reported in the last column of these two Table

The estimated means have the same signs and ordering oftod@gacross models (with
and without correlation) and estimators (HB and MSL). Thgnsiare plausible considering
that the population of reference are the members of theutalipine Club selecting days out
in the Alps. A negative mean is observed for the degree ofnieahdifficulty. To tackle
technically difficult sites requires rigorous training aexperience, and it is expected that in
general visitors are not attracted by technically chalilegglestinations. The negative mean
for the number of ferrata seems reasonable when one beaisdhtinat the number of ferrata
is mostly a consequence of strategic access for the miliatablished during the World War
| period against invading Austrians, and not necessarisygied to facilitate tourist access to
such vantage points.

Destinations with many alpine shelters tend to be liked ntlba@ those with few. Alpine
shelters are often themselves the destinations of days ¢l iAlps and offer opportunities to
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encounter other visitors and eat local specialities, as ageproviding shelter for unexpected
bad weather. Everything else equal, one would be more extlio plan a day out to a destina-
tion with shelters.

Sites with higher percent of easily walkable trails and haadkable trails are, on the av-
erage, both liked by visitors from the Alpine Club, but witrde estimated taste variation.
Trail-walking is still the most popular activities in the gd because it is cheap and attracts
visitors of all ages and abilities. These results indichgg Visitors like destinations with easy
as well as more challenging trails and that there is conailderheterogeneity in visitors’ re-
sponse to trails’ features. For example, we note that the ESimate imply that nearly fifty
percent of the population do not like hard trails. Perhapsiditure of trails helps in sorting the
composition of the visiting party or the purpose of the ratical visit.

5.1.2 Implied WTP distributions

Using the estimates for the means of the latent normal Vi@sadnd their variance-covariance
matrices, one can simulate the implied distributioWéfPin the population of visitors. The
means, medians and standard deviations are given in VablEhe implied distribution o'W TP

is highly skewed, as evidenced by the absolute values of g&eniWTP being considerably
larger than those of the median for all attributes. Impdiyathe estimates imply a fairly large
proportion of visitors have implausibly larg& TPfor certain attributes, such as the degree of
difficulty of excursions, the number of ferrata and the petage of hard trails. For example,
the MSL model in preference space implies that ten percewisabrs areWTP over€20 to
avoid 1 extra level of difficulty, five percent ad TP more than€3 to avoid a ferrata, and ten
percent are willing to pay ove€30 to have 10% more difficult trails. Similarly implausible
results are reported in many applications in which the prasficient is allowed to vary across
agents, and indeed it often motivates the assumption of d figeel cost coefficient.

The correlation matrices acro$sTPs obtained by simulating the population distribution of
the utility parameters according to these estimates am@teapin the lower triangular part of
TableV, with the top part of the Table showing the HB estimates, dedbiottom the MSL
ones. These estimates mostly concord in signs across &stamath only 2 out 15 correlations
being different. A large positive correlation is found beemWTPfor the number of Ferrata
at destination and the degree of difficulty, which is veryugiale, and similarly plausible is the
strong negative correlation betwedhl Pfor alpine shelters and the degree of difficulty.

5.2 WTP space

A salient feature of th&/TPspace model is that estimated parameters are also the garame
of the impliedWTPdistributions. These are therefore discussed jointly énsdime subsection.
5.2.1 Model estimates and impliedVTP distributions

In Table VIl we report HB estimates of models parameterizedinP space, i.e., according
to equation 4). Estimates for the model without correlation are repoitethe top part of



the table, while the one with full correlation is in the battgart of the table. The simulated
log-likelihood is higher for the models iIWTP space than in preference space: —20,470.89
versus —20,773.59 for uncorrelated terms, and —20,32@%pared to —20,383.65 for models
with correlated terms. This result, which differs from thedings of Train & Weeks(2005

and Sonnier et al(2007 on SP data, indicates that it is possible for model8WihP space to
outperform models in preference space. A similar improvarisefound for the MSL estimates
reported in Tabl&/Ill . The associated estimates for the CHoleski matrix are tegan Table

IX.

The MSL estimates imply small&vTP variation than the HB ones for all attributes, but
means have identical signs and very similar magnitudes.diéadth correlation also uniformly
imply smallerWTPvariation in the population, with exclusion of the Preal@S@\in the MSL
model. Examining the upper triangular sections of Tablee note that estimated correlation
match perfectly in sign between the HB (upper part of the @phhd MSL estimates.

The estimated standard deviation3ét Pare uniformly lower for the models M/ TPspace
than the models in preference space. For example, in the HRInwith correlated terms, the
standard deviation ofVTP for Alpine shelters is 1.29 for the model in preference spawd
0.51 for the model iWTPspace. However, the estimated means are not consistegtlgror
lower under either parameterization: with correlated g&grthe HB model ilWTPspace gives
a higher mean than the model in preference space for thrdguéts and a lower mean for the
other three. The share of implausibly high values\WrPis far less with the models WTP
space than with the models in preference space. For exathpleprrelated preference space
HB model implies that five percent of the population is wifjito pay at leas€1.41 for one
percent increase in easy trail$n contrast, the correlated model\WTPspace implies a more
plausible€0.60.

This point is visually described in figur& obtained with the SM package in R
(Bowman & Azzalini 1997. Here we plot the kernel smoothing with cross-validateddsa
width of a simulation of 100,000 draws from each mod&V/3$Pfor an extra alpine shelter at
destination. The densities implied by the modelS\iiP space are much ‘tighter’ than those
implied by the models in preference space. As a result, theeslabove implausibly high values
for WTPare much smaller for the models\MTPspace than those in preference space.

6 Policy implications and conclusions

This study investigated destination choices of an inhgrativerse population of visitors to
alpine destinations in the North-East of Italy: those mermlod the local (Veneto) chapter of
the alpine club visiting the Alps for days out. Using a panatiadet of 858 respondents who
took a total of 9,221 day-out trips we estim&él'P distributions for key site attributes using
models parameterized in preference space aMiTi® space. Because parameters enter non-
linearly in the model ilWTP space and the number of parameters is large when corredation

5The distribution ofii’ TP was simulated with 100,000 draws from the distributionduested at the estimated
location and scale parameters.
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are allowed, previous studies used hierarchical Bayemattn procedures, which are com-
putationally much faster than maximum simulated likeliidor models of this form. In this
study we contrast HB and MSL estimates and found them to baugiog similar results, with
the latter implying smaller variation of taste and hencealtigs. However, we note that MSL
estimates are much more time consuming to derive. Even wkeations are started at the
convergence values of the HB procedure &P space model with correlation took four days
to run using BIOGEME with the CFSQP algorithm in a 3GHz pc watls-bytes of RAM.
The equivalent HB model was estimated in GAUSS using 500d0@@/s for burn-in and a
further 200,000 after burn-in, of which every 50-th draw wetained for averaging and run
overnight. The convergence of the sampler was evaluatdovistally and formally using the
test suggested bgeweke(1992 andKoop (2003.

Our results confirm previous findings obtainedTrgin & Weeks(2005 andSonnier et al.
(2007 that the models iIWTPspace provide more reasonable estimates of the distribafio
WTPthan the models in preference space. However, unlike thres@ps studies, which used
stated preference data, we find that, on our revealed prefemata, the specification WTP
space statistically outperforms that in preference spddd@s means that practitioners need
not face a trade-off between plausibility W TP estimates and model fit to the data, as was
previously suggested.

Although the main objective of the paper is methodologitted,estimation results from the
MSL model inWTPspace with correlated terms—which gives the most behdiyqkausible
results and also fits the data best—provide some interestipfications. About 83 percent
of day visitors are estimated to dislike sites with high diffty of tracking activities. Only
about 17 percent show a positiVéTP value for this attribute. Similarly, a large number of
ferrata at the site is attractive to only about 16 percenhefgopulation of day-out visitors.
The presence of alpine shelters is preferred by the vastrityapd visitors: only five percent of
visitors prefer sites without the shelters. For most mebéthe Italian Alpine Club, the site
becomes more attractive as the percent of trails that assifitd as easily walkable and hard
walkable (as opposed to those with mixed classificatiostig-inally, visitors are found to be
willing to pay more to visit the Dolomites than the Prealpkjah—given the popularity of these
sites—is a perhaps foregone conclusion, but is neverthetedirmed by the negative sign of the
alternative specific constant for Prealps.
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Table I: Site-specific data.

GT

Descriptive Statistics of Trips Attributes
Degree of Ferratas Easy Shelters Hard

Destination sites Mean St. Dev. Visits Percent | Difficulty Trails Trails
1. Vette Feltrine 0.7 15 642 7.0 3 3 0.61 25 0.07
2. P. Dolomiti-Pasubio 21 4 1808 19.6 1 4 0.54 13 0.17
3. Alpago-Cansiglio 0.5 1.7 414 4.5 3 4 0.86 10 0.08
4. Asiago 15 2.8 1318 14.3 1 0 1 13 0

5. Grappa 0.9 2.1 757 8.2 1 1 0.99 5 0.01
6. Baldo-Lessini 1.2 3.6 1045 11.3 1 2 0.76 18 0.02
7. Antelao 0.3 0.7 244 2.6 3 0 0.68 6 0.08
8. Pelmo 0.3 0.6 243 2.6 3 0 0.66 9 0.04
9. Cortina 0.3 0.8 220 2.4 2 22 0.53 32 0.11
10. Duranno-Cima Preti| 0.1 0.3 44 0.5 3 0 0.33 4 0.09
11. Sorapis 0.1 0.5 128 1.4 3 4 0.36 9 0.23
12. Agner-Pale S.Lucanp 0.1 0.5 112 1.2 3 2 0.51 7 0.14
13. Tamer-Bosconero 0.2 0.6 188 2.0 3 0 0.3 6 0.06
14. Marmarole 0.2 0.7 161 1.7 2 1 0.51 9 0.07
15. Tre Cime-Cadini 0.6 1.2 547 5.9 2 4 0.6 9 0.08
16. Civetta-Moiazza 0.7 1.3 561 6.1 2 4 0.34 16 0.11
17. Pale S.Martino 0.7 1.3 564 6.1 2 11 0.46 14 0.14
18. Marmolada 0.3 0.7 225 24 3 2 0.21 13 0.25




Table II: HB estimates. Coefficients for preference spacdetso

Prefer. parameters Statistics of posterior distribution

v and¢ Mean St.err. St.dev. St err.
0 -1.29 0.04 0.73 0.25
Degree of difficulty —-0.76 0.04 0.72 0.24
Ferrata -0.12 0.01 0.09 0.03
% of easy trails 0.02 .002 0.06 .001
Alpine shelters 0.11 .005 0.08 .001
% of hard trails 0.09 0.01 0.10 0.03
Prealps ASC -1.54 0.10 1.28 0.46
Uncorrelatedin £* at means of post. dist. —20,773.59
0] -1.22 0.05 0.88 0.28
Degree of difficulty -1.16 0.07 1.17 0.39
Ferrata -0.19 0.01 0.23 0.06
% of easy trails 0.04 .004 0.11 0.03
Alpine shelters 0.15 0.01 0.18 0.05
% of hard trails 0.14 0.01 0.19 0.06
Prealps ASC -2.74 0.16 2.84 0.94

With correlation:In £* at means of post. dist. —20,383.65
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Table Ill: MSL estimates. Coefficients for preference spaocelels

Prefer. parameters

v and¢ Mean St. err. St.dev. St. err.

0 -1.41 0.06 0.71 0.06

Degree of difficulty —-0.51 0.04 0.48 0.06

Ferrata -0.07 0.01 0.02 0.01

% of easy trails 0.01 .001 0.01 .002

Alpine shelters 0.07 0.01 0.03 0.01

% of hard trails 0.05 .005 0.07 .005

Prealps ASC —-0.98 0.11 0.98 0.09
Uncorrelatedin £* at convergence —20,469.86

0] -1.43 0.07

Degree of difficulty —-0.67 0.12 0.73

Ferrata -0.10 0.01 0.11

% of easy trails 0.01 .002 0.01

Alpine shelters 0.09 0.01 0.08

% of hard trails 0.07 0.01 1.95

Prealps ASC -1.62 0.25 0.07

With correlation:In £* at convergence —20,147.91
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Table IV: Choleski matrix from MSL estimates in preferenpace

~

v

Degree of Ferrata

% of easy Alpine

% of hard Prealps

Parameters difficulty trails Shelters trails ASC
0 0.92
(20.4)
Degree of diff. —0.19 0.70
(3.9) (19.7)
Ferrata -0.06 0.05 -0.08
(5.5) (6.5) (7.3)
% of easy trail  0.001 0.002 0.002 0.01
(0.4) (1.3) (1.0) (0.7)
Alpine shelters  0.06 -0.02 0.06 -0.001  -0.004
(8.1) (3.5) (9.6) (0.2) (0.7)
% of hard trail  0.01 -0.01 -0.02 0.001 —-0.03 0.06
(2.8) (2.2) (2.0) (0.9) (6.1) (10.8)
Prealps ASC -1.29 0.92 -0.34 -0.07 -0.02 1.08 -0.01
(7.3) (8.2) (2.4) (0.5) (4.0) (14.8) (0.04)
(|z-values in brackets)
Table V:WTPcorrelations
Site attributes HB estimates
Degree of diff. 1 060 -035 -040 -0.59 0.73
Ferrata 0.43 1 -0.30 -0.80 -0.42 0.61
% of easy trail —-0.13 -0.12 1 0.04 0.68 -0.51
Alpine shelters —-0.20 -0.48 0.04 1 0.27 -0.40
% of hard trail —0.32 -0.27 0.34 0.14 1 -0.46
Prealps ASC 0.63 048 -0.14 -0.38 -0.21 1
MSL estimates
Degree of diff. 1 080 -080 -0.66 -0.73 0.71
Ferrata 0.57 1 -052 -0.93 -0.46 0.83
% of easy trail 0.16 -0.07 1 041 0.68 -0.64
Alpine shelters —-0.38 -0.97 0.11 1 0.33 -0.75
% of hard trail —0.21 -0.02 -0.04 0.02 1 -0.32
Prealps ASC 0.63 0.70 -0.01 -0.67 0.31 1

Upper triangular fronWTPspace
Lower triangular from preference space
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Table VI: Statistics of simulated/TPs from models in preference spacesn

Statistics Medians Means St. Dev.
Correlated No Yes No Yes No Yes
Estimator Simulated from HB estimates

Degree of difficulty -2.35 -3.04 -3.62 -452 544 8.77
Ferrata -0.39 -0.48 -0.58 -0.67 0.77 1.65
% of easy trails 0.06 0.09 011 0.18 035 0.84
Alpine shelters 034 036 051 040 065 1.29
% of hard trails 0.28 035 044 053 073 144
Prealps ASC -483 -6.93 -7.34 -7.87 10.07 19.52
Estimator Simulated from MSL estimates

Degree of difficulty -1.65 -2.08 -2.99 -3.12 6.49 7.10
Ferrata -0.21 -0.31 -0.40 -0.29 1.22 1.08
% of easy trails 0.03 0.05 006 0.09 079 0.16
Alpine shelters 022 026 042 021 142 0.83
% of hard trails 0.16 021 032 034 218 0.70
Prealps ASC -3.31 -4.72 -5.75 -2.67 10.10 20.77

Table VII: HB estimates fo'WTPspace models i&.

WTP Parameters  Statistics of posterior distribution

v andw Mean St.err. St.dev. St err.
v -1.41 0.04 0.74 0.24
Degree of difficulty —2.80 0.16 2.24 0.83
Ferrata -0.37 0.02 0.21 0.08
% of easy trails 0.07 0.01 0.09 0.03
Alpine shelters 0.35 0.01 0.17 0.06
% of hard trails 0.30 0.02 0.23 0.08
Prealps ASC -4.54 0.32 4.60 1.72
Uncorrelatedin £* at means of post. dist. —20,470.89
0] -1.81 0.05 0.74 0.25
Degree of difficulty —5.59 0.34 5.87 2.25
Ferrata —-0.60 0.05 0.74 0.28
% of easy trails 0.16 0.02 0.27 0.09
Alpine shelters 0.53 0.04 0.51 0.19
% of hard trails 0.56 0.05 0.70 0.26
Prealps ASC -7.37 0.78 13.78 5.13

With correlation:In £* at means of post. dist. —20,325.55
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Table VIII: MSL estimates foWWTPspace models i&.

WTP parameters

0 andw Mean St. err. St. dev. St. err.

0 -1.22 0.06 0.67 0.05

Degree of difficulty —1.99 0.20 2.19 0.33

Ferrata -0.31 0.03 0.06 0.04

% of easy trails 0.07 0.01 0.03 0.01

Alpine shelters 0.32 0.02 0.12 0.02

% of hard trails 0.28 0.03 0.16 0.01

Prealps ASC -4.39 0.46 3.97 0.39
Uncorrelatedin £* -20,419.91

0 -1.16 0.04

Degree of difficulty —-2.85 0.16 2.98

Ferrata -0.37 0.02 0.37

% of easy trails 0.10 0.01 0.08

Alpine shelters 0.36 0.02 0.23

% of hard trails 0.37 0.02 0.38

Prealps ASC -5.76 0.36 2.57

With correlation:ln £* —20,068.04
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Table IX: Choleski matrix from MSL estimates WTPspace

0 Degree of Ferrata Easy Alpine Hard Prealps

Parameters difficulty trails  Shelters trails ASC
0 —-0.043
(21.5)
Degree of diff.  0.193 -2.977
(1.7) (19.4)
Ferrata 0.067 -0.291 0.220

(2.9) (11.2) (9.3)
% of easy trail —0.007 0.060 0.015 -0.043
(1.1) (7.5) (1.3) (12.5)
Alpine shelters —-0.037  0.148 -0.149 -0.003 -0.081
(2.2) (8.8) (8.5) (0.3) (7.0)
% of hard trail  0.011 0.279 0.070 -0.038 0.024 -0.244
(0.5) (11.2) (2.2) (4.3) (2.1) (10.5)
Prealps ASC 2520 -4.517 2449 1605 -0.014 -1.312 2.490
(7.9) (11.4) (7.2) (5.3) (1.6) 4.2) (4.2

(|z-values in brackets)
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Figure 1: Distributions o'W TPfor one additional alpine shelter at destination.
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