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Summary 

 

The continual evolution of the SARS-CoV-2 and the emergence of variants that show resistance to vaccines and 

neutralizing antibodies threaten to prolong the COVID-19 pandemic. Selection and emergence of SARS-CoV-2 

variants are driven in part by mutations within the viral spike protein and in particular the ACE2 receptor-binding 

domain (RBD), a primary target site for neutralizing antibodies. Here, we develop deep mutational learning (DML), a 

machine learning-guided protein engineering technology, which is used to interrogate a massive sequence space of 

combinatorial mutations, representing billions of RBD variants, by accurately predicting their impact on ACE2 binding 

and antibody escape. A highly diverse landscape of possible SARS-CoV-2 variants is identified that could emerge 

from a multitude of evolutionary trajectories. DML may be used for predictive profiling on current and prospective 

variants, including highly mutated variants such as Omicron, thus guiding the development of therapeutic antibody 

treatments and vaccines for COVID-19.     
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INTRODUCTION 

Throughout the course of 2021 and 2022, variants of SARS-CoV-2 associated with higher transmissibility and/or 

immune evasion (antibody escape) have supplanted the original founder strain (Wu-Hu-1) (Wu et al., 2020a). Such 

variants often possess at least one mutation in the RBD, which can directly influence binding to ACE2 (Supasa et al., 

2021; Yi et al., 2020). For example, Alpha (B.1.1.7), Beta (B.1.351), and Gamma (P.1) variants all possess the N501Y 

mutation, which is associated with higher affinity binding to ACE2 (Han et al., 2021), suggesting this may represent a 

possible selective pressure for variant emergence.  

 

Neutralizing antibodies, including monoclonal antibody therapeutics and those induced by vaccination (with the 

original Wu-Hu-1 spike protein), often display reduced binding and neutralization to variants. Detailed molecular 

analysis has revealed that many neutralizing antibodies to SARS-CoV-2 share sequence and structural features (Nielsen 

et al., 2020; Yang et al., 2021), which has led to their categorization into four common classes defined by groups of 

targeted RBD epitopes (Barnes et al., 2020; Harvey et al., 2021). For example, Class 1 antibodies include the previously 

clinically used REGN10933 (casirivimab) (Baum et al., 2020; Hansen et al., 2020) and LY-CoV16 (etesevimab) (Shi 

et al., 2020). Circulating variants with mutations in position K417 [e.g., Beta, Gamma, and Delta plus (B.1.617.2 + 

K417N)] as well as the mink-selected Y453F mutation (Cluster 5) display decreased neutralization by these class 1 

antibodies (Hoffmann et al., 2021; Starr et al., 2021a; Wang et al., 2021b). Class 2 neutralizing antibodies including 

the clinically used LY-CoV555 (bamlanivimab) also strongly inhibit ACE2 binding, however, variants such as Beta, 

Gamma, eta (B.1.525), Kappa (B.1617.1), and iota (B1.526) all possess the RBD mutation E484K/Q that can lead to 

a substantial loss of binding and neutralization. Class 3 antibodies, including the clinically used REGN10987 

(imdevimab) and S309 (sotrovimab) (Pinto et al., 2020), bind partially conserved epitopes and are resistant to several 

variants (e.g., Alpha, Beta, Gamma) (Tzou et al., 2020). Class 4 antibodies such as CR3022 target a highly conserved 

epitope among sarbecoviruses (ter Meulen et al., 2006; Wu et al., 2020b; Yuan et al., 2020), and have been largely 

resistant to escape variants, but generally lack neutralizing potency since they do not directly inhibit ACE2 binding.  

 

The emergence of Omicron has revealed variants can evolve with severe immune evasion properties such as escape 

from several classes of neutralizing antibodies that bind to a diverse set of RBD epitopes (Cao et al., 2022a; 

Dejnirattisai et al., 2022; Iketani et al., 2022; Liu et al., 2022). Notably, nearly all clinically approved antibody therapies 

have lost substantial neutralizing activity against Omicron (BA.1 / B.1.1.529), including the multi-class antibody 

cocktails from Eli Lilly (LY-CoV16+LyCoV555), Regeneron (REGN10933+REGN10987) and AstraZeneca 

(AZD8895+AZD1061) (Cao et al., 2022a) all of which have subsequently had their clinical authorization revoked (Eli 

Lilly and Regeneron) or dosage modified (AstraZeneca) by the US FDA (FDA, 2022a, 2022c; NIH, 2022). One 

exception was S309, originally isolated from B cells of a patient infected with SARS-CoV-1 and possessing cross-

reactivity to SARS-CoV-2 (Pinto et al., 2020), S309 has reduced but still potent neutralizing activity against Omicron 

(BA.1) (Cameroni et al., 2022; Sheward et al., 2022), likely because it binds  to a highly conserved epitope found 

across genetically diverse sarbecoviruses. However, the Omicron sublineage BA.2 shows substantial escape from S309 

(Iketani et al., 2022) and became widely circulating in early 2022, thus leading to the loss of clinical authorization of 

S309 (FDA, 2022b). As of August 2022, LY-CoV1404 (bebtelovimab) is the only clinically approved antibody 

discovered based on binding to the original Wu-Hu-1 RBD (Westendorf et al., 2022) that has maintained strong 

neutralizing activity to Omicron BA.1 and BA.2 variants (Iketani et al., 2022), as well as emerging sublineages BA.4 

and BA.5 (Cao et al., 2022b).  
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Bloom and colleagues have performed yeast surface display and deep mutational scanning (DMS) (Fowler and Fields, 

2014) on the entire 201 amino acid RBD of SARS-CoV-2 in order to determine the impact of single-position 

substitutions on binding to ACE2 and escape from monoclonal or serum antibodies (Greaney et al., 2021a, 2021b; 

Starr et al., 2020, 2021a, 2021b). While DMS has been very effective at single mutation profiling of the RBD, several 

previously circulating variants (e.g., Beta, Gamma, and Delta) possess multiple RBD mutations, and Omicron and its 

sublineages possess up to 21 RBD mutations (BA.1.12.1), thus underscoring the urgent need to determine the impact 

of combinatorial mutations. However, combinatorial sequence space grows exponentially as the number of mutations 

and amino acid diversity increases, rapidly outpacing the capabilities of experimental screening techniques. For 

instance, when focusing only on a subset of twenty RBD residues directly involved in ACE2 binding (Lan et al., 2020), 

theoretical sequence space (2020 = 1 x 1026) far exceeds what can be screened by yeast display libraries (~109).   

 

Here, we establish deep mutational learning (DML), which integrates experimental yeast display screening of RBD 

mutagenesis libraries with deep sequencing and machine learning (Fig. 1). We perform DML to comprehensively 

interrogate combinatorial RBD mutations and their impact on ACE2 binding and escape from a panel of neutralizing 

antibodies, including clinically used therapeutics and other broadly neutralizing and potent antibodies. DML reveals a 

highly diverse mutational landscape of RBD mutations that can maintain binding to ACE2 while escaping many 

different classes of neutralizing antibodies. Finally, DML is able to predict antibody robustness to prospective SARS-

CoV-2 variants and thus may be a valuable tool in evaluating and selecting the most promising antibody therapeutics 

for clinical development.   

 

RESULTS 

Design and screening of RBD mutagenesis libraries  

SARS-CoV-2 RBD mutagenesis libraries were targeted to core regions of the receptor-binding motif (RBM-3: 

positions 439-452; RBM1: 453-478; RBM-2: 484-505), which are subregions of the RBD that interface with ACE2 

and where mutations are commonly observed in viral genome sequencing data [available on GISAID 

(www.gsaid.org)]. To generate training datasets covering a high mutational sequence space,  combinatorial 

mutagenesis schemes were designed based on DMS data for ACE2 binding, previously published by Starr et al. (Starr 

et al., 2020). Single mutation fitness values were empirically thresholded and converted to amino acid frequencies, 

with mutations below the ACE2 binding fitness threshold excluded. For each position, degenerate codons 

approximating the desired amino acid distribution were selected by minimizing mean-squared error (Mason et al., 

2018) (some positions remained fixed due to their inability to tolerate mutations and retain ACE2 binding), resulting 

in RBM libraries with theoretical amino acid diversities of 3.5 x 107 (library 3C), 1.2 x 1010 (library 1C) and 1.50 x 

1010 (library 2C) (Fig. 2A, Fig. S1A). An extended version of library 2C was also designed, with fully degenerate 

codons (NNK) at positions 417 and 439, which are mutated in a number of circulating variants and associated with 

antibody escape (Thomson et al., 2021; Tsai et al., 2021), resulting in a theoretical amino acid diversity of 5.99 x 1012 

(library 2CE). To generate training datasets covering a lower mutational sequence space, we constructed tiling 

mutagenesis libraries, whereby fully degenerate codons (NNK) were tiled across three of the positions in each RBM, 

resulting in a theoretical amino acid diversities of 3.94 x 105 (library 3T), 2.53 x 106 (library 1T) and 1.53 x 106 (library 

2T) (Fig. 2B).  
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Synthetic oligonucleotides encoding the different libraries and spanning the region of interest were amplified by PCR 

to produce double-stranded DNA with homology to the full RBD sequence. Co-transformation of yeast (S. cerevisiae 

EBY100) with library-encoding DNA and linearized plasmid yielded more than 2 x 107 transformants for each library. 

RBD variants, displayed on the yeast surface as a C-terminal fusion to Aga2 (Boder and Wittrup, 1997), were isolated 

by fluorescence-activated cell sorting (FACS) based on binding to soluble human ACE2 receptor (Wu-Hu-1 RBD used 

as a guide for gating) (Fig. 2C). RBD variants which showed a complete loss of binding to ACE2 were also isolated. 

Importantly, this did not include variants with only partially reduced binding since such an intermediate population 

could not be assigned as binding or non-binding with sufficient confidence necessary for training supervised machine 

learning models (Fig. 2C, Table S1). Targeted deep sequencing (Illumina) of the RBD gene was performed on all the 

sorted libraries; protein sequence logos revealed highly similar patterns of amino acid usage between the ACE2-

binding and non-binding fractions (Fig. 2D, Fig. S2 and Table S2,). 

 

Next, using exclusively the ACE2-binding populations, FACS was performed to isolate variants that maintained 

binding or showed a complete loss of binding (escape) to a panel of 13 neutralizing antibodies; these include clinically 

used therapeutic antibodies (REGN10987, REGN10933, LY-CoV16, LY-CoV555, S309 and LY-CoV1404), 

antibodies demonstrating exceptional sabrecovirus breadth (S2E12, S2H97 and A23-58.1)  (Starr et al., 2021c; Wang 

et al., 2021a) and other potent neutralizers isolated directly from COVID-19 individuals (G32A4, mAb-50, mAb-64 

and mAb-82) (Ehling et al., 2022; Tong et al., 2021) (Table S3, Fig. S2B, C). Wu-Hu-1 RBD was again used as a 

guide for gating antibody binding or escape (Fig. 2E). The proportion of binding and escape (non-binding) for each 

antibody and library was highly variable, for example with RBM-2 libraries REGN10933 showed a low fraction of 

escape variants and LY-CoV555 had a very high fraction (Fig. 2E, Table S1). Deep sequencing was once again 

performed on antibody binding and escape fractions of all the sorted RBD libraries, and similar to ACE2, protein 

sequence logos of the two fractions looked highly similar (Fig. S2). 

 

Machine learning models accurately predict ACE2 binding and antibody escape 

Deep sequencing data from ACE2 selections underwent pre-processing, quality filtering and balancing steps to create 

the final training sets (STAR Methods, Table S4). Following nucleotide to protein translation, amino acid sequences 

were converted to an input matrix by one-hot encoding (Fig. 3A). Supervised machine learning models were trained 

for classification of ACE2 binding, which is defined as the probability (P) that any given RBD sequence binds to ACE2 

(higher P correlates with binding). For initial benchmarking, a range of different baseline models (default parameters) 

were trained using data derived from RBM-2 libraries (2C, 2CE and 2T) and evaluated based on  their classification 

performance across several metrics (accuracy, F1, precision, recall). Machine learning models tested included K-

nearest neighbor, logistic regression, naive Bayes, support vector machines and random forests (RF); long-short term 

memory recurrent neural networks (RNN) were also trained, which are a class of deep learning models that have the 

ability to learn long-range dependencies in sequential data (Akbar et al., 2021; Hochreiter and Schmidhuber, 1997; 

Mason et al., 2021; Saka et al., 2021). All baseline models trained on RBM-2 libraries performed effectively (i.e., 

accuracy scores between 0.87 - 0.94), including some of the more simple models such as logistic regression and naive 

Bayes, highlighting the potential importance of training data generated with combinatorial mutagenesis libraries to 

evaluate to which degree mutations are additive. RF and RNN models were selected for further optimization and 

application since they showed relatively higher performance metrics and could be trained faster (Fig. S3, Table S5). 

 

Jo
urn

al 
Pre-

pro
of

https://www.zotero.org/google-docs/?8fhGnW
https://www.zotero.org/google-docs/?PituGO
https://www.zotero.org/google-docs/?PituGO
https://www.zotero.org/google-docs/?jyRaV0
https://www.zotero.org/google-docs/?GApqEa
https://www.zotero.org/google-docs/?GApqEa


Taft, Weber et al., Deep mutational learning of SARS-CoV-2 RBD 

5 

SARS-CoV-2 evolves across a range of mutational trajectories, including variants such as Omicron and its sublineages 

that have accumulated multiple combinatorial mutations in their RBD. Determining the performance of machine 

learning models across various mutational edit distances [Edit Distance (ED) from the reference Wu-Hu-1 RBD 

sequence] is therefore an important criterion. Initially,  DMS data consisting of single point mutations (ED1) were used 

to train baseline models, with binding/non-binding labels assigned based on minimum affinity required to retain ACE2 

binding as previously defined in (Starr et al., 2020). The resulting models exhibited very low performance metrics for 

ACE2-binding prediction (i.e., accuracy scores of 0.50 and AUC of 0.56 - 0.65) (Fig. S3). This is likely because single 

point mutations are not additive at higher distances, and therefore are unable to account for the non-linear effects of 

combinatorial mutations, leading to  models  that predict nearly all combinatorial escape variants to be ACE2 binders 

(Fig. S3). Next, we examined model performance on RBM-2 test data that was divided into low mutational distances 

(≤ ED5), which corresponds to variants such as Beta and Gamma, and high mutational distances (≥ ED6), which 

corresponds to variants such as Omicron. We found that when models were trained using only the low distance library 

(2T), their performance on predicting ACE2-binding on high distance data was very poor (accuracy <0.65 and AUC  

<0.83). (Fig. 3B). However, models trained using high distance only (RBM-2C/CE) or combined low distance and 

high distance libraries (RBM-2 Full) resulted in vastly improved performance across all distances, with accuracy scores 

of  >0.94 and >0.92 for low and high distances, respectively, and AUC of  >0.97 for both models (Fig. 3B).  

 

Similar to the ACE2 selections, deep sequencing data from antibody selections were pre-processed, quality filtered, 

balanced and encoded as before. Supervised machine learning models (RF and RNN) were trained to classify antibody 

escape, which is defined as the probability that a given RBD sequence escapes a defined antibody (lower P correlates 

with escape). As before, we show that using both low and high distance libraries (RBM-2 Full) for training data resulted 

in models with better performance for predicting escape from a representative antibody (LY-CoV16) as opposed to 

training models with only low distance (RBM-2T) or only high distance libraries (RBM-2C/CE) (Fig. 3C). RBM-2 

models for  nearly all  antibodies showed high performance metrics, with the only exception being LY-CoV555 

exhibiting low F1 scores. Initial machine learning training and benchmarking revealed that balanced classification data 

(similar number of sequence variants in binding vs. non-binding/escape classes) was required for training accurate 

models (see Methods). Thus, the lower performance of LY-CoV555 models can be explained through its imbalanced 

classification data (nearly all RBD variants escape LY-CoV555)  (Fig. 3D, Fig. S4B). For RBM-1 libraries, most 

antibodies produced imbalanced classification data at low ED (very few  escape variants at ≤ ED5) (Fig. S7); therefore 

RBM-1 models were trained using only high distance data (≥ ED6) and resulted in high performance metrics for most 

antibodies, with the exception of LY-CoV16, mAb-64 and mAb-82, which had imbalanced classification data (few 

escape variants)  across all distances (Fig. 3E, Fig. S4A). Finally, for RBM-3 libraries, nearly all antibodies produced 

imbalanced classification data (mostly all binding or all escape variants) (Fig. S4C and Table S5); and thus, RBM-3 

machine learning models were excluded for future analysis.    

 

Predictive profiling on synthetic lineage variants  

Having established that ACE2 binding and antibody escape machine learning models can make highly accurate 

predictions on test data, we next evaluated their classification performance on defined variants, followed by 

experimental validation and structural modeling. First, we identified synthetic RBD variants that had single mutations 

(ED1 from Wu-Hu-1) predicted to retain binding, whereas the combination of two single mutations (ED2) were 

predicted to escape a given antibody.  Our machine learning models predict that REGN10933 retains binding to the 
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single mutation variants E484K or F490I or the single mutation variants G485K and Q493V (Fig. S5C), which also 

correlates with previously published data from DMS (Greaney et al., 2021c). However, the combination of E484K + 

F490I or G485K + Q493V results in variants predicted to escape REGN10933. We subsequently expressed each variant 

by yeast surface display and evaluated antibody binding and escape; indeed, we observed that single mutation variants 

retained binding whereas the combinatorial variants show substantially reduced binding to REGN10933, thus 

corresponding with the machine learning predictions (Fig. S5D). 

 

Next, synthetic lineages were generated in silico to simulate plausible evolutionary paths, where RBD variants without 

predicted ACE2-binding intermediates at each mutational step were excluded (Fig. 4A). We focused our analysis on 

the RBM-2 region and the four neutralizing antibodies (LY-CoV16, LY-CoV555, REGN10933, REGN10987) that 

were used extensively as clinical therapeutics during the peak of the pandemic in 2021. The lineages were designed to 

include variants at ED3, ED5, and ED7 from the original Wu-Hu-1 RBD sequence (nucleotide and amino acid). 

Additionally, the sequences were chosen to form lineages containing mutations observed in circulating variants (e.g., 

Alpha: N501Y, Beta/Gamma: E484K and N501Y, Kappa: E484Q and N501Y). ACE2 binding was predicted based on 

a consensus model, whereby a given RBD sequence is predicted to bind ACE2 when both RF and RNN models yield 

P > 0.5, else they were predicted to be non-binders. The 46 synthetic lineage variants were chosen to contain diversity 

in ACE2 binding prediction (36 predicted binders, 10 predicted non-binders) (Fig. 5A). Additionally, predictions for 

escape from each of the four therapeutic antibodies were made for the synthetic variants using a similar consensus 

model approach (RBD sequence escapes an antibody when both RF and RNN outputs are P < 0.5) (Fig. S5B). After 

having made all machine learning predictions, each synthetic RBD variant was individually expressed on the surface 

of yeast cells and assessed for ACE2 binding and antibody escape. The consensus model correctly predicted ACE2 

binding for 91.67% (33/36) of the synthetic variants, with an accuracy of non-binding prediction of 100% (10/10), 

resulting in an overall prediction accuracy of 93.48% (43/46) (Fig. 4B, Fig. S5A). For the 33 correctly predicted ACE2-

binding variants, the combined accuracy of antibody escape predictions across all four therapeutic antibodies was 

93.94% (124/132) (LY-CoV16: 31/33, LY-CoV555: 30/33, REGN10933: 31/33, REGN10987: 32/33) (Fig. 4C, Fig. 

S5B). Additionally, we identified three variants that were only ED3 (nucleotide and amino acid) from the Wu-Hu-1 

RBD and in which consensus models predicted ACE2 binding and escape from all four therapeutic antibodies. One of 

these variants possessed mutations in positions 493, 498 and 501, which are all mutated in the Omicron variant (Martin 

et al., 2021). Subsequent yeast display experiments confirmed these machine learning predictions of antibody escape 

to all four therapeutic antibodies, including escape from the often mutation-resistant REGN10987 (Fig. S5E, F). 

Structural modeling by AlphaFold2 (Jumper et al., 2021) was performed on eight synthetic RBD variants (all variants 

were accurately classified and experimentally validated for ACE2 binding or non-binding) (Fig. 4D). The structural 

predictions showed that several ACE2 non-binding variants did not differ substantially from the original Wu-Hu-1 

RBD. In contrast, the ACE2-binding variants showed a wide diversity of possible structural conformations. 

 

Predicting antibody escape to current and prospective variants 

In addition to the selected synthetic lineages, we also performed machine learning to predict ACE2 binding and 

antibody escape on a panel of 12 naturally-occurring variants of SARS-CoV-2 (Table S6). Once again, we focused 

our analysis on RBM-2 and four extensively used clinical antibodies (LY-CoV16, LY-CoV555, REGN10933, 

REGN10987). We determined the accuracy of machine learning predictions on antibody escape by using the Stanford 

SARS-CoV-2 Susceptibility Database as a reference (Tzou et al., 2020). Applying the same RBM-2 consensus model 

approach (RF and RNN) and thresholds as before, the prediction accuracy for ACE2 binding was 100% (12/12) and 
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the prediction accuracy for escape across all four therapeutic antibodies was 85.42% (41/48) (antibody escape is 

defined here as a reported 30-fold reduced neutralization in the Stanford database). Strikingly, when applying a more 

stringent threshold for antibody escape prediction that requires both RF and RNN models to have high certainty in 

their prediction (both models P < 0.25 for escape and P > 0.75 for binding), 100% (30/30) of the machine learning 

predictions matched the results reported in the Stanford database. 

  

Next, we used machine learning models on RBM-2 to predict antibody escape on prospective ACE2-binding lineages 

at low mutational distances (ED1 and ED2) from the Wu-Hu-1, Alpha, Beta, Kappa, Gamma, and B.1.1523 RBD 

sequences. (Fig. 5, Fig. S6, Table S5). Using a stringent threshold for antibody escape, we identified distinct patterns 

based on the starting variant. For example, REGN10933 and REGN10987 were largely resilient to escape from ED1 

lineages of Wu-Hu-1, Alpha, Kappa (Fig. 5A-I and Fig. S6A-I). While ED1 lineages of Beta and Gamma almost 

entirely escape both LY-CoV555 and LY-CoV16. A large fraction of ED2 lineages from all variants escaped 

REGN10933, LY-CoV555, and LY-CoV16, revealing an increasing likelihood of escape with an increasing number 

of mutations. Notably, a small fraction (0.17%) of Beta ED2 lineages are predicted to escape all four therapeutic 

antibodies, whereby several of these variants possess mutations in positions 417, 484, 493 and 501, which are all 

mutated in  Omicron variants (Fig. 5F). For further visualization, we constructed deep escape networks (Fig. 5C, F, I, 

Fig. S6C, F, I), depicting the vulnerability of the four therapeutic antibodies to low distance mutations (ED1 and ED2). 

Specifically, deep escape networks illustrate the increase in sequence space per mutation while also pointing out the 

presence of mutations that vastly increase escape from multiple antibodies. For example, there are variants at ED1 from 

Wu-Hu-1 that are predicted to not escape any of the four antibodies, however, just one additional mutation (ED2) can 

result in variants predicted to escape up to three antibodies. DML enables rapid in silico evaluation of new variants 

that appear on genomic databases (GISAID). For example, we performed a similar analysis on B.1.1.523 variant 

possessing RBD mutations E484K and S494P (Veer et al., 2021), which revealed complete escape from LY-CoV555 

and ED1 lineages, as well as substantial escape for other antibodies in ED2 lineages, including three variants that 

escaped all four of the extensively used therapeutic antibodies (Fig. S6G, H, I).  

 

Determining antibody robustness to SARS-CoV-2 mutational lineages 

Determining antibody robustness (maintenance of binding) to potential SARS-CoV-2 variants, including to high 

distance variants with many combinatorial RBD mutations such as Omicron, may be a critical parameter when 

selecting candidate antibodies for therapeutic development. To this end, we applied DML to determine if we could 

prospectively determine the robustness of several neutralizing antibodies (Table S3). Initially, we focused on synthetic 

lineage variants that correspond with Omicron (Fig. 6A). We determined antibody escape against  specific single and 

combinatorial mutations present in Omicron in RBM-2 (K417N, E484A, Q493R, N501Y). Machine learning revealed 

that some antibodies such as LY-CoV16 and LY-CoV555 are predicted to maintain binding to most single variants but 

lose binding to nearly all combinatorial variants (Fig. 6B), whereas in contrast other antibodies such as REGN10987 

and LY-CoV1404 are predicted to bind nearly all single and combinatorial variants. Expanding on this approach, we 

explored the impact of all mutations in a given position or combination of positions, by calculating the average 

percentage of escape induced by mutations in that position. This allowed us to construct dynamic antibody escape 

profiles and identify lineages with mutation orders that may lead to increased escape. For example, lineages derived 

from an initial mutation in position 493 and even at low distances of ED2 are predicted to have very high escape 

fractions for several antibodies (LY-CoV16, LY-CoV555, REGN10933, mAb-50, mAb-82) (Fig. 6C). Whereas, 
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lineages from some positions such as 501 require more mutations such as ED3 and ED4 before antibody escape is 

predicted. Notably, several antibodies such as REGN10987, mAb-50 and LY-CoV1404 showed highly resilient escape 

profiles across all positional lineages.  Determining antibody robustness at high distances is critical given how most 

antibodies discovered against the original SARS-CoV-2 (Wu-Hu-1) are unable to neutralize the high distance Omicron 

variant. Therefore, we used machine learning models to predict antibody binding and escape to high distance 

combinatorial variants (ED6 - ED10) in RBM-2 (Fig. 6D, E), revealing varying levels of robustness for several 

antibodies. For example, as expected from low distance predictions, LY-CoV555 showed very little robustness, with 

nearly all high distance variants predicted to escape. In contrast, antibodies such as S2E12 and S2H97 are predicted to 

be very robust at high distances, which correlates with the fact they show broad neutralization across a diverse clade 

of sarbecoviruses (Starr et al., 2021c). Finally, when considering strict thresholds for binding and escape (both RF and 

RNN models P < 0.25 for escape and P > 0.75 for binding), LY-CoV1404 was determined to be the antibody with the 

highest robustness, as it is predicted to bind the broadest set of combinatorial RBD variants, thus correlating with the 

fact that it maintains neutralization to Omicron and all its sublineages (Cao et al., 2022b). 

 

DISCUSSION 

Eradication of SARS-CoV-2 appears improbable. Instead, an endemic future likely awaits  (Antia and Halloran, 2021; 

Phillips, 2021). An endemic and continually evolving SARS-CoV-2 poses a perpetual risk for the emergence of new 

variants that escape from vaccine- or infection-induced antibodies. In this study, we develop DML, a machine learning-

guided protein engineering method for determining the impact of combinatorial mutations in the SARS-CoV-2 RBD 

on ACE2 binding and antibody escape. In DML, machine learning models trained on thousands of labeled RBD 

variants obtained from library screening make highly accurate predictions across a sequence space of billions of RBD 

variants, several orders of magnitude larger than what is possible from experimental screening alone.  

 

A combination of future library designs, more elaborate screening strategies based on different binding thresholds and 

improved machine learning models - perhaps incorporating structural knowledge, could improve predictions across 

longer lengths of the RBD. For example, a recent study performed a machine learning analysis to predict apparent 

affinities of ACE2 binding on single and multiple mutation RBD variants (Makowski et al., 2022). Another important 

consideration is that our DML library was based on the original Wu-Hu-1 RBD sequence, however nearly all of the 

circulating variants globally (as of August 2022) are Omicron or its sublineages. Bloom and colleagues demonstrated 

single-amino acid mutations (DMS) result in a shifting of mutational trajectories when on a different background of 

RBD variants (Starr et al., 2022). Given the extensive mutational changes present in Omicron variants (> 15 RBD 

mutations), future DML (as well as DMS) studies should use mutagenesis libraries based on an Omicron background 

RBD sequence, with the caveat that other future high distance variants may still yet emerge, requiring continued 

updating of library designs.   

 

The evolution and emergence of SARS-CoV-2 variants has created a continuously shifting landscape of clinical 

authorization for antibody therapeutics: several clinically approved antibodies such as REGN10933, REGN10987, LY-

COV555, LY-COV16 and S309 are no longer authorized for clinical use, in most cases due to loss of activity versus 

Omicron or its sublineages (Cameroni et al., 2022; Cao et al., 2022b). One exception is LY-CoV1404, which to date 

has maintained effective binding and neutralization to all SARS-CoV-2 variants, including Omicron BA.1 and its 

sublineages (BA.2, BA.4, BA.5) and is therefore still authorized for clinical use (Cao et al., 2022b). By providing 
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accurate predictions of antibody escape across a large mutational landscape, DML may enable researchers to select 

candidate antibody therapeutics and cocktails with the most robustness: broadest efficacy against the spectrum of 

possible variants, some of which may occur simultaneously and may be highly mutated such as Omicron. Assessing 

the robustness of candidate antibodies against future variants puts therapeutic development on a proactive rather than 

reactive footing, potentially avoiding situations where many clinically approved antibodies are only used for short 

periods of time. Furthermore, such an approach could be used to guide the development of antibodies and cocktails 

that maximize breadth and potency (Hastie et al., 2021; Starr et al., 2021c) to both current and prospective variants and 

therefore extending the lifespan of clinical use. For example, of the 13 antibodies that we profiled, all of which were 

discovered based on binding to the original Wu-Hu-1 RBD and included several clinically approved therapeutics, DML 

predicted that LY-COV1404 is the most robust to prospective RBD variants, which correlates with its broad 

neutralization and continued clinical use (Cao et al., 2022b). Therefore going forward, in addition to neutralization 

potency, antibody robustness to combinatorial mutations in the RBD will be a critical parameter to assess for the 

therapeutic development of antibodies for COVID-19.  

 

Finally, evidence exists that the receptor-binding domains of other endemic coronaviruses may be undergoing adaptive 

evolution to escape from human antibody responses (Eguia et al., 2021; Kistler and Bedford, 2021). Consequently, the 

application of DML to predict SARS-CoV-2 escape from polyclonal antibodies present in serum of vaccinated or 

convalescent individuals, combined with phylogenetic models of viral evolution (Worobey et al., 2020), may enable 

the prospective identification of future variants with the highest likelihood of emergence and thus support vaccine 

development for COVID-19. 

 

Limitations of the Study 

To establish DML, we rationally designed our combinatorial mutagenesis libraries using previously published DMS 

data on the RBD (Starr et al., 2020) in order to improve the probability of isolating variants that maintain binding to 

ACE2, which is important for generating sufficient training data for machine learning. This led to us leaving some 

positions fixed since the single mutation DMS data suggested mutations in these positions lead to a complete loss of 

binding to ACE2 (Fig. 2A). While this approach was largely effective in covering the mutational sequence space of 

most SARS-CoV-2 variants, it did lead to some limitations, as some of the fixed positions in our library design (e.g., 

486, 496) are mutated in Omicron or its sublineages, further highlighting the impact of epistasis or combinatorial 

mutations in SARS-CoV-2 evolution. Most notable is position 486, which is mutated in Omicron BA.4 and BA.5 

variants (F486V) and is strongly associated with antibody escape, including to BA.1-specific antibodies (Cao et al., 

2022b). Therefore, future mutagenesis library designs for DML will need to consider the impact of epistatic effects 

and should not only rely on single-mutation DMS data. Additionally, during library construction, we split the RBD 

into three distinct regions to build RBM-1, -2 and -3 libraries in order to constrain the size of our combinatorial 

libraries. This leaves us unable to explore epistatic effects of mutations across RBM sites (e.g., S477N in RBM-1 and 

Q498R in RBM-2 present in Omicron).  
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MAIN FIGURES 

 
Figure 1. Overview of deep mutational learning of the RBD for prediction of ACE2 binding and antibody 

escape. The RBD or the SARS-CoV-2 spike protein is expressed on the surface of yeast, mutagenesis libraries are 

designed on the receptor-binding motif of the RBD (RBM-3, RBM-1, RBM-2), which are the sites of interaction 

with ACE2 and neutralizing antibodies (e.g., therapeutic  antibody drugs). RBD libraries are screened by FACS for 

binding to ACE2 and neutralizing antibodies, both binding and non-binding (escape) populations are isolated and 

subjected to deep sequencing. Machine learning models are trained to predict binding status to ACE2 or antibodies 

based on RBD sequence. Machine learning models are then used to predict ACE2 binding and antibody escape on 

current and prospective variants and lineages.  

  

Figure 2. Design of RBD mutagenesis libraries and screening by yeast surface display and deep sequencing.  

(A) Shown is the amino acid usage in the combinatorial libraries (Library 3C, 1C, 2C). Degenerate codons are 

derived from DMS data for ACE2 binding (Starr et al., 2020)  

(B) Representative examples of degenerate codons tiled across RBM-2, which are pooled together to comprise 

library 2T.  

(C) Flow cytometry dot plots depict yeast display screening of combinatorial (1C, 2C, 2CE, 3C) and tiling (1T, 2T, 

3T) RBD libraries and control RBD (Wu-Hu-1); gating schemes correspond to selection of ACE2-binding and non-

binding variants.  

(D) Amino acid logo plots of the RBD are based on deep sequencing data from ACE2-binding and non-binding 

selections.  

(E) Flow cytometry dot plots depict yeast display screening of pooled RBD libraries (2C and 2CE) after selection for 

ACE2 binding; gating schemes correspond to selection of variants for binding and escape (non-binding) to 

monoclonal antibodies (mAbs). 

See also Figure S1 and S2 and Table S1, S2 and S3.  

 

Figure 3. Training and testing of machine and deep learning models for prediction of ACE2 binding and 

antibody escape based on RBD sequence.   

(A) Deep sequencing data from ACE2 and monoclonal antibody (mAb) selections is encoded by one-hot encoding 

and used to train supervised machine learning (e.g., Random Forest, RF) and deep learning models (e.g., recurrent 

neural network, RNN). Models perform classification by predicting a probability (P) of ACE2 binding or non-

binding and mAb binding or escape (non-binding) based on the RBD sequence.   

(B and C) Performance of RF and RNN models trained on 2T, 2C or Full ACE2 or LY-CoV16 binding data shown 

by accuracy, F1, and ROC curves.  Low and high distance sequences are defined as those ≤ ED5 and ≥ ED6 from Wu-

Hu-1 RBD, respectively.  

(D and E) Accuracy, F1, and AUC of all 13 mAb models trained on RBM-2 and RBM-1 data, evaluated on both low 

and high distance test sequences.  

See also Figure S3 and S4 and Table S4, S5 and S6.  

 

Figure 4. Prediction and experimental validation of synthetic lineages of RBD variants.  

(A) Workflow to select and test synthetic variants at chosen edit distances (ED3, ED5, and ED7) from Wu-Hu-1 RBD.  

(B) Lineage plot of synthetic variants depicts machine learning predictions and experimental validation (Fig. S5) for 

ACE2 binding and non-binding   

(C) Dot plots of synthetic variants correspond to machine learning model (RF and RNN) predictions and 

experimental validation for antibody binding or escape.  

(D) Structural modeling by AlphaFold2 shows predicted structures of RBD variants that are ACE2 binding (green 

boxes) or non-binding (red boxes); control is Wu-Hu-1 RBD (black box).   

See also Figure S5.  

 

Figure 5. Predictive profiling of selected RBD variants for antibody escape across low mutational distances.  

(A, D and G) Heatmap depicts monoclonal antibody (mAb) binding as assessed by RF and RNN models of ED1 and 

ED2 variants of Alpha, Beta and Kappa.  
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(B, E and H) The number of sequences escaping a combination of n (number) mAbs for ED1 and ED2 (agreement 

between models, threshold >0.5).  

(C, F and I) Deep escape networks display possible evolutionary paths between variants and their escape from mAbs. 

See also Figure S6.  

 

Figure 6. Determining antibody robustness to synthetic RBD variants and mutational lineages.  

(A) Omicron (BA.1) mutations covered by combinatorial library RBM-2.  

(B) Binding prediction for single and combinatorial mutations observed in Omicron  

(C) Dynamic escape profile along Omicron lineage with percentage escape sequences across all mutations at distance 

1–4 from Wu-Hu-1.  

(D) Antibody prediction of ACE2 binding RBDs for each antibody at edit distance 6-10 from Wu-Hu-1 (10’000 

sequences simulated in triplicate, only confident predictions shown (i.e. P(ACE2 binding) > 0.5 and either 

P(antibody binding) > 0.75 or P(antibody escape) < 0.25 for both RNN and RF)  

(E) Total count of confident predictions across all distances (mean across triplicates). 
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STAR METHODS 

 

KEY RESOURCES TABLE 

 

REAGENT OR RESOURCE SOURCE IDENTIFIER 

Flow Cytometry Staining Reagents   

PE anti-DYKDDDDK Tag Antibody Biolegend 637309 

anti-human IgG-AlexaFluor647 Jackson Immunoresearch 109-605-098 

biotinylated human ACE2 Acro AC2-H82E6 

streptavidin-AlexaFluor 647 Biolegend 405237 

Deposited Data   

Raw sequencing data Starr et al. 2020 NCBI SRA: BioProject PRJNA639956 

Raw and processed sequencing data This study 

https://github.com/LSSI-ETH 

 

Oligonucleotides   

Degenerate Ultramers and oPools for RBD 

library construction IDT 

https://github.com/LSSI-ETH 

 

Recombinant DNA   

pYD1-RBD(wt) This study 

https://github.com/LSSI-ETH 

 

Cell Lines   

EBY100 ATCC MYA-4941 

Software and Algorithms   

bbduk Joint Genome Institute 

https://jgi.doe.gov/data-and-

tools/software-tools/bbtools/bb-tools-

user-guide/bbduk-guide/ 

custom scripts for curation, analysis, and 

visualization This study 

https://github.com/LSSI-ETH 

 

 

 

RESOURCE AVAILABILITY 

 

Lead Contact  

Further information and requests for reagents and resources should be directed to and will be fulfilled by the Lead 

Contact, Sai T. Reddy (sai.reddy@ethz.ch)  

 

Materials Availability 

SARS-CoV-2 mutagenesis libraries generated in this study will be made available on request to the Lead Contact 

with a completed Materials Transfer Agreement. 

 

Data and Code Availability 
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- The main data supporting the results in this study are available within the paper and its Supplementary 

Information.  

- Raw and processed data and code (scripts) used for data curation, analysis and visualization are available at:  

https://github.com/LSSI-ETH 

- Additional data files and code that supports the findings of this study is available from the corresponding 

authors upon reasonable request.  

- Additional Supplemental Items are available from Mendeley Data at  

https://data.mendeley.com/datasets/pkg3jk26y6/3 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Saccharomyces cerevisiae EBY100 harboring the pYD1 plasmid were cultured for 1-2 days at in a 250 rpm shaking 

incubator at 30C in SD-UT medium (20 g/l glucose, 6.7 g/l yeast nitrogen base without amino acids, 5.4 g/l 

Na2HPO4, 8.6 g/l NaH2PO4·H2O and 5 g/l casamino acids), or at 23C for 2 days in SG-UT induction medium (SD-

UT with 20 g/l galactose instead of glucose).  

 

 

METHOD DETAILS 

 
Rational design of SARS-CoV-2 RBD mutagenesis libraries  

Combinatorial library design.  

The  design of the combinatorial library 2C consisted of mutating residues within the RBM-2 region (positions 484-

505 of the RBD) and was based on previously described results from deep mutational scanning (DMS) experiments 

(Starr et al., 2020). DMS enrichment ratios described by Starr et al. were thresholded to exclude mutations with 

decreased ACE2-binding fitness and then converted to amino acid frequencies as described previously (Mason et al., 

2018). For each position, degenerate codons approximating the amino acid frequency distribution and diversity were 

selected, resulting in a library with a theoretical diversity of 1.50 x 1010 amino acid sequences. Library 2CE consisted 

of the same combinatorial design in positions 484-505 but with additional fully degenerate codons (NNK) in 

positions 417 and 439, resulting in a theoretical amino acid diversity of 5.95 x 1012.  

 

Tiling library design.  

The tiling library 2T was designed by incorporating three positions with full degenerate codons (NNK) within the 

RBM-2 (positions 484-505) of the RBD. The degenerate codons are tiled across such that the total sequences of a 

tiling library, i.e., the number of variants of up to a maximum edit distance (ED) k away from the wild-type sequence 

is determined by the length of sequence (n, here = 14 non-fixed positions in RBM-2), the number of NNKs (or max 

ED) introduced (k, here = 3) and the size of the Alphabet (a, here = 20): 

    

Similarly, the number of sequences for a given ED k is given by:  

 

The resulting total diversity of the library 2T is 1,533,035 sequences.  
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Cloning and expression of RBD mutagenesis libraries for yeast surface display  

For libraries 2C and 2CE, synthetic single-stranded oligonucleotides (ssODNs) (Integrated DNA Technologies 

ultramers or oPools) were designed with degenerate codons spanning the region of interest and encoding the desired 

library diversity, with 30 bp overhangs on each end that were homologous to the yeast display plasmid pYD1. For 

library 2T, pools of ssODN were designed, where each member of the pool contains one combination of the three 

‘NNK’ codons; in this case, consisting of 120 unique ssODNs. The ssODNs were amplified by PCR to produce 

double-stranded DNA. The plasmid pYD1 was modified such that the entire C-terminal fusion to Aga2 was replaced 

with a cassette encoding the RBD (Wu-Hu-1 sequence), expression tags and stop codon (HA Tag-RBD-FLAG-Stop). 

The RBM-2 residues 484-505 were replaced with an EcoRI recognition site, allowing production of a linearized 

vector with homology to mutagenesis ssODNs and with no parental background. Insert and EcoRI-linearized 

plasmids were concentrated and purified by silica spin columns (Zymo D4013) followed by drop dialysis for 1 hour 

in nuclease-free H2O (Millipore VSWP02500). The libraries were cloned and expressed in yeast by in vivo 

homologous recombination, as previously described (Boder and Wittrup, 1997; Chao et al., 2006), using 1 μg each of 

plasmid and insert DNA per 300 μl of electrocompetent EBY100 cells in a 2 mm electroporation cuvette. 

 

Screening RBD libraries for ACE2-binding and non-binding  

Surface expression of SARS-Cov2 RBD was induced by growth in SG-UT medium at 23°C for 16-40 hours, as 

previously described (Boder and Wittrup, 1997). Approximately 108 library cells were washed once with 1 mL wash 

buffer (Dulbecco’s PBS+ 0.5% BSA + 0.1% Tween20 + 2 mM EDTA) by centrifugation at 8000 x g for 30 s.  

Washed cells were stained with 50 nM biotinylated human ACE2 (Acro AC2-H82E6) for 30 minutes at 4 °C, 

followed by an additional wash.  Cells were then stained with 2.5 ng/μl streptavidin-AlexaFluor 647 (Biolegend 

405237) and 1 ng/μl PE anti-DYKDDDDK Tag Antibody (Biolegend 637310) for 30 minutes at 4 °C.  Cells were 

subsequently pelleted by centrifugation at 8000 x g for 30s and kept on ice until sorting. Binding (ACE2+/FLAG+) 

and non-binding (ACE2-/FLAG+) cells were sorted by FACS (BD FACSAria Fusion or Sony MA800 cytometer) 

(Fig. 2).  Collected cells were cultured in SD-UT medium for one to two days at 30 °C.  Induction and sorting was 

repeated until the desired populations were pure. 

 

Screening RBD libraries for antibody binding and escape  

RBD libraries pre-sorted for ACE2-binding were cultured and induced, as described above.  Induced cells were 

washed once with DPBS wash buffer, followed by incubation with 100 nM monoclonal antibody, or antibody 

mixtures.  In the case of antibody mixtures, 100 nM of each antibody was used.  Following an additional wash, cells 

were resuspended in 5 ng/μl anti-human IgG-AlexaFluor647 (Jackson Immunoresearch 109-605-098) and incubated 

for 30 minutes at 4°C. Cells were washed once more and resuspended in 1 ng/μl anti-FLAG-PE before 30 minutes of 

incubation at 4°C. Cells were then pelleted by centrifugation at 8000 x g for 30s and kept on ice until sorting. Cells 

expressing RBD that maintained antibody-binding (IgG+/FLAG+) or showed a complete loss of antibody binding 

(escape) (IgG-/FLAG+) were sorted by FACS (BD Aria Fusion or Sony MA800 instrument). Collected cells were 

cultured in SD-UT medium for 16-40 hours at 30 °C. Induction and sorting was repeated for multiple rounds until the 

desired populations of RBD variants showed purity for binding and escape (non-binding) to antibodies. 

 

Antibody production and purification 
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Heavy chain and light chain inserts were cloned into pTwist transient expression vectors by Gibson Assembly. 30 

mL cultures of Expi293 cells (Thermo, A14635) were transfected according to the manufacturer’s instructions. After 

5-7 days, dense Expi293 cultures were centrifuged at 300 x g for 5 minutes to pellet the cells. Supernatant was 

filtered using Steriflip® 0.22 µm (Merck, SCGP00525) filter units. Using protein G purification, Expi supernatant 

was directly loaded onto Protein G Agarose (Pierce, Cat# 20399) gravity columns, washed twice with PBS and 

eluted using Protein G Elution Buffer (Pierce, Cat# 21004). The eluted fractions were immediately neutralized with 

1M TRIS-Buffer (pH 8) to physiological pH and quantified by Nanodrop™ 2000c for A280 nm absorption. Protein 

containing fractions were pooled and buffer exchanged using SnakeSkin™ dialysis tubing (10 MWCO, Pierce 

Cat#68100) followed by further dialysis and concentration using Amicon Ultra-4 10kDa centrifugal units (Merck, 

Cat# UFC801096), as described previously (Vazquez-Lombardi et al., 2018).   

 

Deep sequencing of RBD libraries 

Plasmid DNA encoding the RBD variants was isolated following the manufacturer’s instructions (Zymo D2004).  

Mutagenized regions of the RBD were amplified using custom oligonucleotides. Illumina Nextera barcode sequences 

were added in a second PCR amplification step, allowing for multiplexed high-throughput sequencing runs. 

Populations were pooled at the desired ratios and sequenced using Illumina 2 x 250 PE or 2 x 150 PE protocols 

(MiSeq or NovaSeq instruments).  

 

Experimental validation of selected RBD variants for ACE2-binding and antibody escape  

Individual sequences for RBD variants were ordered as complementary forward and reverse primers (Integrated 

DNA Technologies) in 96-well plates A single round of annealing and extension was used to produce double-

stranded DNA with 14-bp of homology at 5’ and 3’ ends to the pYD1-RBD entry vector, followed by Gibson 

Assembly with EcoRI digested vector.  Plasmids were transformed into EBY100 prepared with the Frozen-EZ Yeast 

Transformation Kit II (Zymo) and plated on SD-UT agar.  Individual colonies were picked and grown in SD-UT 

liquid medium overnight at 30°C, then diluted to OD600 = 0.5 in SG-UT medium and grown for 40-48 hours at 23°C.  

Cells were stained with biotinylated ACE2 or purified antibody as described above.  Flow cytometry analysis was 

performed on the BD Fortessa cytometer. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Processing of deep sequencing data, statistical analysis and plots 

Data preprocessing 

Sequencing reads were paired, quality trimmed and assembled using Geneious and BBDuk, with a quality threshold 

of qphred ≥ 25. Mutagenized regions of interest were then extracted using custom Python scripts, followed by 

translation to amino acid sequences. The sequences obtained from each of the three libraries (2C, 2CE and 2T) were 

pre-processed separately before being combined into the final training set used for model training and evaluation. To 

remove sequencing errors, all libraries were filtered for sequences complying with the initial degenerate codon 

mutagenesis scheme. Library 2CE was filtered for only those sequences retaining unmutated residues in positions 

417/439, to focus on the 484-505 region. Next, library 2T was filtered using a threshold of read counts > 4 and 

restricted to sequences that were ≤ ED3 from Wu-Hu-1 RBD sequence.  
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Duplicate sequences in the full dataset were removed and a balanced dataset was created from the remaining data 

such that equal numbers of positive (binding) and negative class (non-binding) sequences were present for each ED. 

We observed significant bias in model performance when predictions are separated by ED from the Wu-Hu-1 RBD 

sequence, which was likely due to class (binding vs. non-binding/escape) imbalance in the training data. Class 

balancing was thus performed through random subsampling from the majority class at each ED equal to the counts 

from the minority class. Those that were not sampled from the majority class were then reserved separately as 

additional “unseen sequences”. These were then used for model evaluation to ensure that the models could generalize 

well even to the sequences removed during balancing. 

Statistical analysis and plots 

Statistical analysis was performed using R 4.0.1 (R Core Team) and Python 3.8.5 (Rossum and Drake, 2011) . 

Graphics were generated using the ggplot2 3.3.3 (Wickham, 2009), ComplexHeatmap 2.4.3 (Gu et al., 2016), 

pheatmap 1.0.12 (Kolde, 2019), igraph 1.2.6 (Csardi and Nepusz, 2006), RCy3 2.8.1 (Gustavsen et al., 2019), stringr 

1.4.0 (Wickham, 2019), dplyr 1.0.6 (Wickham et al., 2021), and RColorBrewer 1.1-2 (Neuwirth, 2014) R package. 

Escape Networks 

Network plots were generated using the igraph package (Csardi and Nepusz, 2006) and Cytoscape software 3.8.2 

(Shannon et al., 2003) with edges drawn between every pair of two amino acid sequences from ED  1 and 2, when 

the pair of sequences share a common mutation on amino acid level. Edges were colored according to the change in 

number of antibodies that escape. Nodes representing RBD variant sequences were clustered and colored according 

to the number of antibodies that escape, and the mutational distance from the reference  sequence. 

 

Machine learning model training and evaluation  

All machine learning (ML) classifier models were built in Python (3.8.5) (Rossum and Drake, 2011). Data was 

prepared and visualized using numpy (1.19.2), matplotlib (3.3.4), and pandas (1.2.4). Random Forest (RF) and other 

benchmarking ML models were built using Scikit-Learn (0.24.2), a 80/20 train-test data split (random split) to train 

baseline models, and a 90/10 train-test data split (random split) for final RF and RNN models. Keras libraries (2.4.3) 

from Tensorflow (v2.5) were used to build the long-short-term-memory recurrent neural networks (RNN) models. 

 

RBD sequences were one-hot encoded prior to being used as inputs into the models. For the RNN, the 2D one-hot 

encoded matrix was used as the input, while for all other models, the matrix was flattened into a single dimensional 

vector beforehand. After selecting the best models, hyperparameter optimization was performed to further improve 

the performance of the chosen RF and RNN models using 50 rounds of Random Search with 5-fold cross-validation 

while scoring based on precision (Table S5). All RF models were further calibrated using both the “isotonic” and 

Platt scaling (Platt, 2000; Boström, 2008; Niculescu-Mizil and Caruana, 2005), and the best model from the three 

was selected by calculating the overall mean-square error (MSE) from the true labels, with the RF model with the 

lowest MSE selected as the final model. Models were evaluated on the full test set which is unbalanced and includes 

the sequences removed during balancing to create the training set. Models were evaluated on the basis of Accuracy, 

F1, MCC, and AUC-ROC curve using the full test set, over 5 rounds of external cross-validation using different 

train-test splits. For further detailed evaluation, the test data was separated into two distances: low and high distance 

sequence sets, which consisted only of sequences ≤ ED5 or  ≥ ED6 from Wu-Hu-1 RBD sequence, respectively. 

These two sets were then used to evaluate the accuracy, F1, MCC, and AUC-ROC of models to investigate any 

performance bias at different distances.  

Jo
urn

al 
Pre-

pro
of



Taft, Weber et al., Deep mutational learning of SARS-CoV-2 RBD 

23 

 

In silico sequence generation and evaluation 

Synthetic RBD variant sequences were generated in silico using custom Python scripts for selected edit distances 

(ED) from the Wu-Hu-1 RBD sequence. The ED was defined on both the nucleotide and amino acid level, such that 

each generated nucleotide sequence was categorized by an ED pair (distance_nt, distance_aa). The synthetic variants 

(in silico generated sequences) were evaluated for their probability of ACE2-binding and non-binding using a 

consensus model (RF and RNN) approach. For a given RBD sequence, ACE2-binding prediction was defined as the 

case where both models output P > 0.5, else the sequence was considered as ACE2 non-binding. Similarly, the 

sequences were evaluated for binding and escape (non-binding) from monoclonal antibodies. Here the sequences 

were categorized into one of four categories: escape (both models P <0.25), antibody binding (both models P >0.75), 

unsure (at least one model gives P between 0.25 and 0.75), and disagree (one model outputs P <0.25 while the other 

model outputs a P >0.75). 

 

Structural Prediction of RBD variants by AlphaFold2 

Structural predictions were generated with the Alphafold v2.1.0 public iPython notebook using residues 331-530 of 

the spike protein. (https://colab.research.google.com/github/deepmind/Alphafold/blob/main/notebooks/AlphaFold 

.ipynb) (Jumper et al., 2021). Results were visualized and aligned in PyMol v2.2.3 (Schrödinger and DeLano, 2020). 
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SUPPLEMENTARY FIGURES 

 

Figure S1. Design and Screening of RBD Libraries.  

(A) Amino acid distribution of combinatorial libraries RBM-1 and RBM-3.   

(B) Yeast display of RBD libraries pre-selected for ACE2 binding were sorted by flow cytometry for binding and 

escape to four therapeutic monoclonal antibodies (mAbs): LY-CoV16, LY-CoV555, REGN10933, and REGN10987.   

(C) A further nine monoclonal antibodies were screened for binding and escape.  Approximately 107 yeast cells were 

screened for each antibody. 

See also Figure 2 and Table S1.  

 

Figure S2. Combinatorial sequence space of RBD libraries following selection. 

 Sequence logo plots of sorted populations for ACE2 binding and antibody escape.  For each population, up to the 

10,000 most abundant unique amino acid sequences after read count thresholding are shown. 

See also Figure 2 and Table S2.  

  

Figure S3. Performance metrics machine learning models.  

(A) K-nearest Neighbours (KNN), Logistic Regression (Log Reg), Naive Bayes (NB), Random Forest (RF), Long-

short term memory recurrent neural network (RNN), Support vector machine with linear kernel (SVM Linear), and 

Support vector machine with radial basis function kernel (SVM RBF) models were trained on the ACE2 deep 

sequencing data without hyperparameter optimization. Models were then challenged to perform classification by 

predicting a probability (P) of ACE2 binding on test data. Performance of models was evaluated by Accuracy, F1, 

Precision, and Recall. All models except RNN were trained using Sci-kit Learn, and the RNN was trained using 

Keras.  

(B) K-nearest Neighbours (KNN), Logistic Regression (Log Reg), Naive Bayes (NB), Random Forest (RF), Long-

short term memory recurrent neural network (RNN), Support vector machine with linear kernel (SVM Linear), and 

Support vector machine with radial basis function kernel (SVM RBF) models were trained on the ACE2 deep 

sequencing data without hyperparameter optimization. Models were then challenged to perform classification by 

predicting a probability (P) of ACE2 binding on test data. Performance of models was evaluated by Accuracy, F1, 

Precision, and Recall. All models except RNN were trained using Sci-kit Learn, and the RNN was trained using 

Keras.  

(C and D) DMS trained models were evaluated on the larger combinatorial ACE2 binding test data shown by 

accuracy, F1 graphs, and ROC curves. 

See also Figure 3 and Table S4, S5 and S6.  

 

Figure S4. Distribution of binding and non-binding across RBM regions. 
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Count distributions of unique binding/non-binding sequences from the ACE2 and antibody selection library datasets 

after pre-processing.   

(A) RBM-1,  

(B) RBM-2,  

(C) RBM-3.  

See also Figure 3.  

 

Figure S5.  Experimental evaluation of selected RBD variants for antibody escape.   

(A) The 46 selected synthetic variants were individually cloned and expressed for yeast display and ACE2 binding 

by flow cytometry. 43 variants showed ACE2 binding or non-binding that matched machine learning predictions. 

The ACE2-binding status for two variants (38 and 42) could not be conclusively determined, while one variant (41) 

showed was incorrectly predicted by machine learning for ACE2 binding.  

(B) RBD sequences at chosen EDs (ED0, ED 3, ED5, ED7) from the Wu-Hu-1 RBD were predicted for ACE2 binding 

and escape from four therapeutic monoclonal antibodies (mAbs). Accuracy for antibody escape predictions are the 

following: LY-CoV16 = 31/33 (93.94%), LY-CoV555 = 30/33 (90.91%),  REGN10933 = 31/33 (93.94%), 

REGN10987 = 32/33 (96.97%).  

(C and D)  Two double mutants, and their constituent mutations, which were predicted to display epistasis were 

assayed individually by yeast surface display  

(E) Three synthetic RBD variants of ED3 from Wu-Hu-1 RBD that were predicted to escape all four therapeutic 

antibodies by the consensus machine learning model were expressed as individual clones in yeast and evaluated by 

flow cytometry for binding to antibody  or ACE2. 

See also Figure 4.  

 

Figure S6. Predictive profiling of additional selected RBD variants for antibody escape across low mutational 

distances. (A, D and G) Heatmap depicts monoclonal antibody (mAb) binding as assessed by RF and RNN models 

of ED1 and ED2 variants of Wu-Hu-1, Gamma, and B.1.523.  

(B, E and H) The number of sequences escaping a combination of n (number) mAbs for ED1 and ED2 (agreement 

between models, threshold >0.5).  

(C, F and I) Deep escape networks display possible evolutionary paths between variants and their escape from mAbs. 

See also Figure 5.  

 

 

SUPPLEMENTARY TABLES 

 

Table S4 (see Excel File). Detailed sequences used as the training data for individual models. Each dataset 

combines sequences from all RBM libraries after preprocessing, filtering, and removing duplicates. 

See Fig. 3.  

 

 

Table S6 (see Excel File). Machine and deep learning model predictions compared to susceptibility data from 

the Stanford Database (https://covdb.stanford.edu/page/susceptibility-data/, 2021-10-19). RF and RNN model 

predictions are compared to previously published susceptibility data. The sequences had previously been excluded 

from the training datasets. 

See Fig. 3.  

 

Jo
urn

al 
Pre-

pro
of

https://covdb.stanford.edu/page/susceptibility-data/


Var.

Pos.

RBM-2

Class 3Class 1 Class 2

RBD

ACE2 & Neutralising Antibodies

REGN10987LY-CoV555LY-CoV16
REGN10933

D
ee

p 
se

qu
en

ci
ng

Machine learning

2C-E, 2C, 2T
(417, 439 +)  

484-505

RFRNN

ACE2

Surface Display

m
Ab

 B
in

di
ng

AC
E2

 b
in

di
ng

Sort 
ACE2+

Stain ACE2+ 
Yeast-RBD

Predict & Validate

Yeast libraries

ACE2

33
3

52
7

40
3

41
7

43
9

50
5

48
4

Critical ACE2 binding sites:

Binding or Escape
ACE 2 or mAbs

R
F_LY16

R
N
N
_LY16

R
F_LY555

R
N
N
_LY555

R
F_R

EG
N
33

R
N
N
_R

EG
N
33

R
F_R

EG
N
87

R
N
N
_R

EG
N
87

0

0.2

0.4

0.6

0.8

1

R
F_LY16

R
N
N
_LY16

R
F_LY555

R
N
N
_LY555

R
F_R

EG
N
33

R
N
N
_R

EG
N
33

R
F_R

EG
N
87

R
N
N
_R

EG
N
87

0

0.2

0.4

0.6

0.8

1

R
F_LY16

R
N
N
_LY16

R
F_LY555

R
N
N
_LY555

R
F_R

EG
N
33

R
N
N
_R

EG
N
33

R
F_R

EG
N
87

R
N
N
_R

EG
N
87

0

0.2

0.4

0.6

0.8

1

Ly
16

Ly
55

5

RE
G

N
33

RE
G

N
87

Escape networksBinding predictions
RNN vs. RF

Binding

Escape

No escape

Escape 1 mAb

Escape 2 mAbs

Escape 3 mAbs

Escape 4 mAbs

RBM-1RBM-3

A23-58.1
G32A4

S2E12

S309
LY-CoV1404mAb-64

mAb-82
mAb-50

Jo
urn

al 
Pre-

pro
of



Li
br

ar
y 

12
3C

RBD Display 
(FLAG-PE)

m
Ab

 B
in

di
ng

(a
nt

i-I
gG

-A
F6

47
)

A B

C D

E

*

A
C
D
E
F
G
H
I
K

L

M
N
P
Q

R

S

T

V
W
Y

*

A
C
D
E
F
G
H
I
K

L

M
N
P
Q

R

S

T

V
W
Y

A

E

G

K

P

Q

R

T

G

K

Q

F N C Y

*

A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R

S

T

V
W
Y

P

I

L

*

A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R

S

T

V
W
Y

A

D
E

G

H
K
N

P

Q

R

S

T

Y G F

F

H

L

Q

W

Y

P

R

T

T

*

A

D
E
F

I
K
L
M
N

S

T

V

Y

G

D
E

G

H
I

K

L

M
N
Q

R

S

V

D

G

N

S

F

Y

0

25

50

75

100

417
439

484
485

486
487

488
489

490
491

492
493

494
495

496
497

498
499

500
501

502
503

504
505

O
cc

ur
re

nc
e 

AA
 [%

]
Library 2C

REGN10933 REGN10987 LY-CoV16 LY-CoV555 mAb-50LY-CoV1404 S309

No
n-

Bi
nd

in
g

Bi
nd

in
g

No
n-

Bi
nd

in
g

Bi
nd

in
g

Library 3T
41

7
43

9
48

4
48

5

49
0

49
2

49
3

49
4

49
8

49
9

50
1

50
3

50
4

50
5

45
3

45
5

45
8

45
9

46
0

46
2

46
4

46
8

46
9

47
0

47
1

47
2

47
7

47
8

43
9

44
0

44
1

44
4

44
5

44
6

45
0

45
2

41
7

43
9

48
4

48
5

49
0

49
2

49
3

49
4

49
8

49
9

50
1

50
3

50
4

50
5

45
3

45
5

45
8

45
9

46
0

46
2

46
4

46
8

46
9

47
0

47
1

47
2

47
7

47
8

43
9

44
0

44
1

44
4

44
5

44
6

45
0

45
2

Library 3C

Y
FRL

MFRH
P
N
Q
D
A
E
T
K

M
I
E
R
K
A
D
N
V
T
G
S

D
H
Q
G
E
S
L
N
T
A
I
P
K
V
R

LP
I
H
N
D
S
Q
T
L
E
V
M
A
K
G
R

PL
H
F
YERDK

Q
M
I
L

T
S
P

Q
A
K
T
E

H
Q
D
E

M
IYQAG

K
Q
H
E
P
T
N
S
A
D
R
G

P
T
K
Q

DW

G
Q
F
C
N
M
A
S
Y
K
I
H
L
P
V
T
R

PW
F
E
D
Y
I
G
C
S
M
T
Q
V
K
H
L
A
R
N

G
P
Q
K
T
A
R
E

Q
K
GFNCYQ

I
M
K
P
E
T
W
L
H
G
C
N
A
D
V
R
F
Y
S

PILD
N
W
E
T
Q
K
I
H
C
M
G
S
Y
L
F
R
A
V

D
E
Q
G
K
T
P
N
H
A
S
R

YGFL
H
Y
F
Q
W

LT
R
P

TCP
H
E
Q
W
Y
D
L
I
M
F
G
N
T
A
S
V

G
H
N
S
D
G
M
Q
K
I
L
E
V
R

N
S
D
G
F
Y
W

K
N
P
Q
E
K
M
I
H
T
N
L
D
A
V
S
R
G

L
I
VDS

P
I
H
Q
N
D
E
G
K
M
S
L
A
T
V
R

Q
I
M
P
T
L
A
K
E
V

H
I
N
D
S
Q
K
L
M
T
A
P
E
V
R
G

GNYTP
H
N
K
D
Q
E
A

YPDINHLEKMTQSVAG
R

F
YRL

MFRH
N
D
Q
P
K
E
T
A

K
E
R
M
N
T
S
D
A
I
V
G

H
P
N
K
Q
S
D
E
T
A
L
I
V
R
G

LH
Q
N
D
K
S
I
P
E
A
M
L
T
R
G
V

PY
H
F
L

ERDIMLQ
K

S
T

Q
T
P
K
E
A

H
Q
D
E

I
MYQAG

Q
K
H
P
E
N
D
S
T
A
R
G

T
K
Q
P

I
E
D
W
M
K
V
C
N
F
H
Q
G
Y
A
T
L
S
P
R

W
E
G
C
K
D
F
V
M
Q
I
A
Y
H
N
R
T
S
P
L

P
Q
A
T
K
E
G
R

NS

Q
K
GFNFCYQ

K
E
H
M
P
N
W
T
D
Y
A
I
F
R
C
G
L
S
V

PL
I

Q
K
E
M
H
P
N
W
Y
A
T
D
I
F
C
R
L
V
G
S

V

Q
K
P
H
E
N
T
A
S
D
R
G

YDWVGFC

H
Y
L
F
W
Q

SL

P
T
RTQ

K
H
M
N
E
P
T
W
A
I
Y
D
F
C
R
V
L
S
G

DE

RW

C
V

G
H
N
D
Q
S
M
K
I
E
L
V
G
R

YI

C

V
N
S
D
G

CS
L
Y
F
W

N
K

Q
K
E
H
N
D
M
T
A
S
P
L
I
R
G
V

L
I
V

DS
H
D
N
Q
S
K
T
E
A
I
M
P
L
R
G
V

P
I
T
Q
K
M
E
A
L
V

N
D
H
S
Q
E
P
K
I
T
A
M
G
L
V
R

GNYN
H
D
Q
K
E
A
P
T

YK
H
Q
N
M
I
S
E
L
D
T
R
A
P
G
V

F
YRM

LFRE
N
K

R
I
N
G

S
D
E
H
A
Q
G
P
K
I
V
T
R
S
L
N

LQNRIEKPY
L
FERDLM

IS
PA

T
D
EM
IYQAG

N
E
D
H
K
Q
G
A
P
R
T
S

Q
K
P
T KNQ

P
A
K
G
T
R
E

K
Q

GFNCYN
I
C
D
H
E
Y
Q
P
M
K
G
W
A
T
V
S
R
L
FPILPDNECWIHKYFGTAMRSVLQD

N
H
E
K
G
Q
P
A
T
R
SYGFL

W
H
Y
F

Q
T
R
PTPDKGEAHQLWIYMFVTSNG

S
D
G
N
E
H
I
Q
K
M
R
L
V
D
N
S

G
W
F
Y

K
N

D
H
P
I
Q
M
K
E
A
V
T
G
R
S
L
N
VI
LDS

P
I
M
E
G
N
D
H
Q
A
V
T
R
S
L
K
E
L
M
A
V
D
I
N
E
H
A
R
Q
K
M
V
T
P
S
L
GGNYT

H
D
E
A
K
Q
NYP

D
I
E
H
N
G
K
Q
V
M
A
T
R
S
L

F
YRM

LFRKS
Q
I
P
H
G
E
V
S
R
L
T
A
K
D
N

LKPFERDISTEM
IYQAG

N
H
E
T
G
D
Q
P
K
R
A
S

Q
K
P
T KNP

Q
K
T
A
R
G
E

K
Q

GFNCYD
N
C
Y
H
Q
A
P
I
E
M
K
W
G
T
R
S
V
L
FPILY

A
V
F
C
K
H
M
G
I
W
D
N
E
T
R
L
S
P

Q
H
K
N
Q
P
A
E
D
R
G
T

SYGFW
H
Y
F
L
Q

T
R
PTYVQCAITSHEGDLKPR

N

G
E
D
K
I
N
H
G
Q
M
R
L
S
V
D
N
S
G

W
F
YK

N
Q
A
H
D
G
E
T
S
K
V
M
P
I
R
L
NLDS

Q
D
N
H
E
A
S
M
G
V
T
I
R
P
L
K
L
A
M
V
N
D
E
K
Q
M
I
T
P
H
A
S
V
R
L
G

GNYQ
H
D
A
K
P
T
NYN

K
R
G
A
Q
E
M
T
S
I
V
D
P
L

Library 1T

Library 1C Library 2CE

Library 2T

Surface RBD Display (FLAG-PE)

AC
E2

 B
in

di
ng

 (S
AV

-A
F6

47
)

Library 1T

Library 1C Library 2CELibrary 2C

Wu-Hu-1Library 2T

Li
br

ar
y 

2C
+2

C
E

Library 2T
1.

2.

3.

4.

216.

217.

218.

219.

220.

...

 484  485  486  487  488  489  490  491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
484

485
486

487
488

489
490

491
492

493
494

495
496

497
498

499
500

501
502

503
504

505

Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



Jo
urn

al 
Pre-

pro
of



A
lp
ha

B
et
a

K
ap
pa

Node colour

Escape 0 mab

Escape 1 mab

Escape 2 mab

Escape 3 mab

Escape 4 mab

Inside : dist = 1 
Outside : dist = 2

Stay same
Decrease 2 mab
Decrease 1 mab
Increase 1 mab
Increase 2 mab
Increase 3 or 4 mab

Edge colour

Fr
om

 D
is

t=
1 

to
 D

is
t =

2

 n

 o
f a

nt
ib

od
y 

es
ca

pe

Node colour

Escape 0 mab

Escape 1 mab

Escape 2 mab

Escape 3 mab

Escape 4 mab

Inside : dist = 1 
Outside : dist = 2

Stay same
Decrease 2 mab
Decrease 1 mab
Increase 1 mab
Increase 2 mab
Increase 3 mab

Edge colour

Fr
om

 D
ist

=1
 to

 D
ist

 =
2


 n
 o

f a
nt

ib
od

y 
es

ca
pe

Node colour

Escape 0 mab

Escape 1 mab

Escape 2 mab

Escape 3 mab

Escape 4 mab

Inside : dist = 1 
Outside : dist = 2

Stay same
Decrease 2 mab
Decrease 1 mab
Increase 1 mab
Increase 2 mab
Increase 3 mab

Edge colour

Fr
om

 D
ist

=1
 to

 D
ist

 =
2


 n
 o

f a
nt

ib
od

y 
es

ca
pe

81

(63.28%)

42

(32.81%)

4

(3.13%)

1

(0.78%)

3144

(42.94%)

3462

(47.28%)

588

(8.03%)126


(1.72%)

72

(56.25%)

24

(18.75%)

3

(2.34%)

29

(22.66%)

1189

(16.38%)

3493

(48.13%)

1988

(27.39%)

575

(7.92%)

2

(0.03%)

12

(0.17%)

6

(4.72%)

96

(75.59%)

23

(18.11%)

2

(1.57%)

782

(10.85%)

4033

(55.98%)

1920

(26.65%)

469

(6.51%)

1

(0.01%)

0
0.2
0.4
0.6
0.8
1

0
0.2
0.4
0.6
0.8
1

0
0.2
0.4
0.6
0.8
1

81

42

4 1 0
0

20

40

60

80

0 1 2 3 4
n of antibody escape

se
qu

en
ce

s 
co

un
t

3144
3462

588
126 2

0

1000

2000

3000

0 1 2 3 4
n of antibody escape

se
qu

en
ce

s 
co

un
t

29

72

24

3 0
0

20

40

60

0 1 2 3 4
n of antibody escape

se
qu

en
ce

s 
co

un
t

1189

3493

1988

575

12
0

1000

2000

3000

0 1 2 3 4
n of antibody escape

se
qu

en
ce

s 
co

un
t

6

96

23

2 0
0

25

50

75

100

0 1 2 3 4
n of antibody escape

se
qu

en
ce

s 
co

un
t

782

4033

1920

469
1

0

1000

2000

3000

4000

0 1 2 3 4
n of antibody escape

se
qu

en
ce

s 
co

un
t

Dist = 1 Dist = 2

Dist = 1 Dist = 2

Dist = 1 Dist = 2

Dist = 1 Dist = 2

Dist = 1 Dist = 2

Dist = 1 Dist = 2

None LY-Cov16 & LY-Cov-555 LY-Cov16 & LY-Cov-555 & REGN10933 
LY-Cov16 LY-Cov16 & REGN10933 LY-Cov16 & LY-Cov-555 & REGN10987 
LY-Cov-555 LY-Cov-555 & REGN10933 LY-Cov-555 & REGN10933 & REGN10987
REGN10933 LY-Cov-555 & REGN10987 All

None LY-Cov16 & LY-Cov-555 LY-Cov16 & LY-Cov-555 & REGN10933 
LY-Cov16 LY-Cov16 & REGN10933 LY-Cov16 & LY-Cov-555 & REGN10987 
LY-Cov-555 LY-Cov-555 & REGN10933 LY-Cov-555 & REGN10933 & REGN10987
REGN10933 LY-Cov-555 & REGN10987 All

None LY-Cov16 & LY-Cov-555 LY-Cov16 & LY-Cov-555 & REGN10933 
LY-Cov16 LY-Cov16 & REGN10933 LY-Cov16 & LY-Cov-555 & REGN10987 
LY-Cov-555 LY-Cov-555 & REGN10933 LY-Cov-555 & REGN10933 & REGN10987
REGN10933 LY-Cov-555 & REGN10987 All

A

B C

D

E F

G

H I

Jo
urn

al 
Pre-

pro
of



Evaluating lineages 
with specific omicron 

mutations

Evaluating general 
susceptibility of 

mutated positions

1

2

3

4

41
7

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

48
4

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

49
3

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

50
1

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

41
7

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

48
4

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

49
3

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

50
1

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

41
7

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

48
4

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

49
3

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

50
1

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

41
7

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

48
4

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

49
3

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

50
1

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

41
7

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

48
4

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4
49

3

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

1

2

3

4

50
1

LY16 LY555 REGN33 REGN87 nCOV50 nCOV64 nCOV82

0.00

0.25

0.50

0.75

1.00
% of escaping sequences

LY1404

41
7

49
3

48
4

50
1

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

BA

C

D E

E484A

K417N

Q493R

N501Y

P(Binding)

0

5000

10000

15000

LY
−C

oV
14

04

LY
−C

oV
16

R
EG

N
10

98
7

R
EG

N
10

93
3

A2
3−

58
.1

G
32

A4

LY
−C

oV
55

5

S2
E1

2

S3
09

S2
H

97

To
ta

l c
ou

nt
 p

re
di

ct
io

ns

G32A4 LY−CoV555 S2E12 S309 S2H97

LY−CoV1404 LY−CoV16 REGN10987 REGN10933 A23−58.1

6 7 8 9 10 6 7 8 9 10 6 7 8 9 10 6 7 8 9 10 6 7 8 9 10

6 7 8 9 10 6 7 8 9 10 6 7 8 9 10 6 7 8 9 10 6 7 8 9 10
0

500

1000

0

100

200

300

0

500

1000

1500

0

200

400

600

0

500

1000

1500

0

200

400

600

800

0

500

1000

1500

0

200

400

600

800

0

1000

2000

3000

0

300

600

900

1200

Distance to Wu−Hu−1

C
ou

nt Binding/Escape
binding

escape

Jo
urn

al 
Pre-

pro
of



 

 

Deep Mutational Learning Predicts ACE2 Binding and Antibody Escape to 

Combinatorial Mutations in the SARS-CoV-2 Receptor Binding Domain 
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Highlights  

 

- Millions of combinatorial SARS-Cov-2-RBD variants screened by yeast surface display 

 

- Machine learning models accurately predict ACE2 binding and antibody escape  

 

- Identification of combinatorial mutations that drive escape to multiple antibodies  

 

- Assessment of antibody robustness to billions of prospective RBD variants 

 

 

In Brief: 

A machine learning-guided, protein engineering method enables the prediction of how SARS-CoV-2 RBD 

combinatorial mutations will impact therapeutic antibody escape and ACE2 affinity. This method facilitates the 

identification of multisite mutations that are major drivers of antibody escape and the evaluation of neutralizing 

antibody efficacy on heavily mutated viral variants.  
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REAGENT OR RESOURCE SOURCE IDENTIFIER

Flow Cytometry Staining Reagents

PE anti-DYKDDDDK Tag Antibody Biolegend 637309

anti-human IgG-AlexaFluor647 Jackson Immunoresearch 109-605-098

biotinylated human ACE2 Acro AC2-H82E6

streptavidin-AlexaFluor 647 Biolegend 405237

Deposited Data

Raw sequencing data Starr et al. 2020 NCBI SRA: BioProject PRJNA639956

Raw and processed sequencing data This study https://github.com/LSSI-ETH

Oligonucleotides

Degenerate Ultramers and oPools for RBD library construction IDT https://github.com/LSSI-ETH

Recombinant DNA

pYD1-RBD(wt) This study https://github.com/LSSI-ETH

Cell Lines

EBY100 ATCC MYA-4941

Software and Algorithms

bbduk Joint Genome Institute https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-user-guide/bbduk-guide/

custom scripts for curation, analysis, and visualization This study https://github.com/LSSI-ETH
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