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Abstract

The approach of combining theories learned from multiple batches of data provide an
alternative to the common practice of learning one theory from all the available data (i.e.,
the data combination approach). This paper empirically examines the base-line behaviour
of the theory combination approach in classification tasks. We find that theory combination
can lead to better performance even if the disjoint batches of data are drawn randomly
from a larger sample, and relate the relative performance of the two approaches to the
learning curve of the classifier used.

The practical implication of our results is that one should consider using theory com-
bination rather than data combination, especially when multiple batches of data for the
same task are readily available.

Another interesting result is that we empirically show that the near-asymptotic per-
formance of a single theory, in some classification task, can be significantly improved by
combining multiple theories (of the same algorithm) if the constituent theories are sub-
stantially different and there is some regularity in the theories to be exploited by the
combination method used. Comparisons with known theoretical results are also provided.

Keywords: theory combination, data combination, empirical evaluation,

learning curve, near-asymptotic performance.

1. Introduction

When different batches of data for the same task are available, the usual approach is to
combine all available data and produce one classifier. This is an intuitive approach that
stems from the conventional wisdom: “more data the better”. Here we investigate an
approach which differs from the way data is utilised. It learns one classifier for each batch
of data (using the same learning algorithm) and then combines the classifiers’ predictions.
We call the former “data combination” and the latter “theory combination”. Figure 1 shows
these two types of combination at the data and theory levels.

While there has been a considerable amount of research on methods to combine mul-
tiple models reported in the literature (e.g., Brodley, 1993; Breiman, 1996a,1996b; Freund
& Schapire, 1996; Perrone & Cooper, 1993; Krogh & Vedelsby, 1995), investigation into
combining theories from a single learning algorithm induced using completely disjoint sets
of data has been limited. Most work shows that combining multiple models induced from
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Figure 1: Combination at different levels — data or theory.

either one type or different types of learning algorithm using a single dataset performs better
than a single model induced from the same dataset.

This paper concentrates on a situation where multiple batches of data are available for
a single classification task. The scenario might be collections of data in consecutive years
or in different events from the same source. We attempt to determine the conditions under
which theory combination performs better than data combination. Thus, our focus here is
not on different types of theory combination method. Specifically, we address the question:
is theory combination a viable option as compared to data combination in classification
tasks? If the answer is yes, when should one use it?
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Figure 2: Different views of data in separate batches and data combination.

The intuition is that different batches of data provide some variation of data representa-
tion in the description space. Theories induced separately from these independent batches
become “specialists” in different parts of the space. Theory combination allows cooperation
between these specialists. Data combination destroys the data variation, and forms a global
representation. Figure 2 depicts the intuition using the data density in an one-dimensional
space domain. Seeing the data in the right diagram, a learning algorithm would usually
produce a strong theory centred on the high data density region, and the low density re-
gions may be neglected. Theories induced from separate batches of data are more localised



because of their more limited view of the data. In combining linear regression estimators,
some (Meir, 1994; Sollich & Krogh, 1996) have attributed the improved performance of
theory combination, under the same multiple-data-batches scenario, to variance reduction
for the resultant classifier (see Section 6).

Some research on multiple model combination focus on varying the induction bias of
the learning algorithm(s) to generate theories of uncorrelated errors. These include varying
learning parameters of a single learning algorithm and using different types of learning
algorithm. Others use sampling methods to create multiple overlapping data subsets from
a given dataset. Here we show that data variation in different data batches, even if the
disjoint batches are drawn randomly from a larger sample, can also produce substantially
different theories from a single learning algorithm. We review related work on using multiple
models to enhance performance in the next section. The experimental design based on a
hypothesis is described in Section 3. The results of the experiments are reported in Section
4 and followed by three discussion sections of different issues and finally the conclusions.

2. Related Work

We focus our review on how multiple models are generated, with just a minor note on how
they are combined since that is not our emphasis.

Some work on multiple models employs sampling methods to generate the models, e.g.,
bagging (Breiman, 1996a) and boosting (Freund & Schapire, 1996; Quinlan, 1996; Breiman,
1996b) Each sample dataset has either the same data size as the available dataset or a
high percentage of the total instances. A set of n classifiers are produced from n sets of
samples and they are combined by voting or weighted voting. Ali and Pazzani (1996) use
k-fold partitioning to generate k models by training on all but the ith partition k times.
In another approach, Fayyad, Weir and Djorgovski (1993) use a covering algorithm to
combine the rulesets induced from several sets of random subsamples. The multiple models
are usually produced from a single learning algorithm, though there is no such restriction
in this formalism.

Multiple models can also be produced by varying the learning parameters of a single
learning algorithm. Work in generating multiple neural networks (Hansen & Salamon, 1990:
Perrone & Cooper, 1993) by using different initial random weight configurations or/and
orders of training data; multiple decision trees (Kwok & Carter, 1990; Buntine, 1991; Oliver
& Hand, 1995) by selecting tests with information gains close to the maximum, generating
option trees, or pruning a tree in different ways; and multiple rules (Kononenko & Kovagic,
1992) by stochastic search guided by heuristics. These works re-order the rank of the classes
by (weighted) averaging the outputs of multiple neural networks, or class probabilities of
multiple trees, or use Naive Bayesian combination of different rules.

Chan and Stolfo (1995; 1996) investigate various theory combination methods. They
show that some combination method (for theories learned from partitions of a dataset) can
outperform one single theory learned from the entire dataset in some domains. While there
is some overlap with our work, their investigation is limited in two ways. First, only two
datasets are used. Second, it is unclear when a combination method (for theories learned
from partitions of data) is better than a single theory learned from the joint dataset.



Jacobs, Jordan, Nowlan and Hinton (1991) use a gating network and a stochastic one-
out-of-n selector to decide which of the n “expert” networks should be used for an instance.
During training, the gating network allocates a new instance to one or a few experts, and
if the output is incorrect the weight changes are localised to these experts and the gating
network. For each input, the gating network produces n outputs (i.e., p; for j = 1..n) to
the selector which acts like a multiple-input, single output stochastic switch, where p; is
the probability that the switch will select the output from expert j.

Some methods provide guidance as to how to partition the description space. Some
use information gain criterion (Utgoff, 1989), user-provided information (Tcheng, Lambert
& Rendell, 1989), or hand-crafted rules (Brodley, 1993) to guide the recursive partitioning
process in a tree structure; and others (Ting, 1994; Wettschereck, 1994) employ a confidence
measure provided from one particular learned theory, during classification, to decide which
one of the two different theories shall be used for final prediction. The former methods apply
different types of learning algorithm for each of the mutually exclusive partitions, and the
latter methods train different types of theory independently using the entire dataset.

Baxt (1992) describes a situation where the data is pre-sorted manually into two differ-
ent groups according to some criterion (i.e., high and low risk groups in a medical diagnostic
task), and then separate neural networks are trained using each data group. During classi-
fication, the network trained using the low risk group is used if its output is below certain
threshold, otherwise the other network is used instead. This method may only be applicable
when the information about the sorting criterion is available.

Stacked generalisation (Wolpert, 1992) is a general method of combining multiple models
learned from the entire dataset. The models can either be induced from the same or different
learning algorithms (Merz, 1995; Ho, Hull & Srihari, 1994). The problem of combination
is seen as another learning problem and it uses a learning algorithm at a higher level to
achieve the aim.

Provost and Hennessy (1996) describe a distributed approach to learning a single ruleset
from several rulesets induced from disjoint partitions of a given dataset. They ensure that
the ruleset is a superset of the rules induced from the entire dataset. This is achieved by
maintaining the invariant-partitioning property during the rule learning process. This prop-
erty guarantees that each rule that is satisfactory over the entire dataset will be satisfactory
over at least one subset. This approach aims at speeding up the process of learning a set
of rules that cover the entire dataset. It is not meant to generate multiple different models
to enhance performance.

Most of this work assumes that a single dataset is used for multiple model generation and
combination. The exceptions are Chan & Stolfo’s (1996), Provost & Hennessy’s (1996) and
Baxt’s (1992) investigations. Only the first two studies have similar working assumption to
ours, i.e., multiple batches of data are available without any prior information about them.

3. Experimental Design
The basis of the experimental design rests on the hypothesis that

the relative performance of theory combination and data combination is related
to the learning behaviour (i.e., the learning curve) of a learning algorithm used.
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At the beginning of the learning curve, where the training data size is relatively small,
data combination usually will give a big gain in performance; whereas at the near-asymptotic
region of the curve, additional data only improves the performance marginally. The near-
asymptotic region is grossly defined here to be the region where doubling the training data
size gives little performance gain. The effect of doubling the training data sizes (X & Y)
in two different regions of a learning curve is illustrated in Figure 3. The reverse is true
for theory combination. When little data is available, the estimated measure(s) required
for successful theory combination can be inaccurate; thus, the performance gain would be
marginal. Large amounts of data enable more accurate estimation and therefore a better
performance gain. Thus, the experiments are designed to unveil the learning curves of
learning algorithms and theory combination methods used for each dataset.
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Figure 3: Performance gain as a result of doubling the training data sizes (X & Y) in two
different regions of a learning curve.

We choose to combine two classifiers because it is the simplest combination; its study
provides an understanding of its base-line behaviour in theory combination. In support of
our choice, the empirical study conducted by Chan and Stolfo (1995; 1996) indicates that
combination of two classifiers performs better than those using more than two classifiers in
the same working assumption. This is also true when this combination is being stacked up
to form a tree, i.e., a binary tree is better than higher order trees (Chan & Stolfo; 1995).

We employ a recent theory combination method (Ting, 1996b) to conduct our investi-
gation. This is based on the characterisation and estimation of predictive accuracy for each
prediction of a classifier. Each classifier is trained independently and uses a cross-validation
method to perform an estimation of predictive accuracy. During classification, the predic-
tion of a classifier which has the best predictive accuracy is selected among the constituent
classifiers as the final prediction. See the Appendix for a more detailed description of the
method. An “oracle” combination method is also used for comparison. It always makes the
correct prediction from its constituent classifiers, if one exists.



4. Experiments and Results

Two inductive learning algorithms, IB1* and NB* (Ting, 1994; 1996a), are used in our
experiments. IB1* is a variant of IB1 (Aha, Kibler & Albert, 1991) that incorporates the
modified value-difference metric (Cost & Salzberg, 1993) and NB* is an implementation of
the Naive Bayes (Cestnik, 1990) algorithm. Both algorithms include a method (Fayyad &
Irani, 1993) for discretising continuous-valued attributes in the preprocessing. This prepro-
cessing improved the performance of the two algorithms in most of the continuous-valued
attribute domains studied by Ting (1994). We use the nearest neighbour for making predic-
tion in IB1* and the default settings are as used in IB1! in all experiments. No parameter
settings are required for NB*.

Our studies employ two artificial datasets and four real-world datasets obtained from
the UCI repository of machine learning databases (Merz & Murphy, 1996). The two noisy
artificial domains are the waveform and LED24 domains introduced by Breiman, Friedman,
Olshen and Stone (1984). Each instance of the waveform domains contains twenty-one
relevant and nineteen irrelevant continuous-valued attributes. There are three uniformly
distributed classes in this domain. Fach class consists of a random convex combination
of two of the three waveforms with Gaussian noise added. The LED24 domain has seven
boolean attributes indicating whether the light-emitting diodes are on or off, plus seventeen
irrelevant binary attributes. Each attribute value is inverted with a probability of 0.1. The
task is to classify the input as one of the ten digits.

The four real-world datasets are the euthyroid, nettalk(stress), splice junction and pro-
tein coding. The selection criteria are that the datasets must have large number of instances
and each class must be supported by large enough instances. A brief description of each of
these datasets is as follows.

The euthyroid dataset is one of the sets of Thyroid examples from the Garvan Institute
of Medical Research in Sydney described in Quinlan, Compton, Horn and Lazarus (1987). It
consists of 3163 case data and diagnoses for one of the many thyroid disorders: euthyroidism.
Eighteen binary attributes and seven continuous-valued attributes are used in this dataset.
The task is to predict whether a patient suffers euthyroid or not.

The goal of the NETtalk task (Sejnowski & Rosenberg, 1987) is to learn to pronounce
English words by studying a dictionary of correct pronunciations. In this task, each letter
to be pronounced is presented to the classifier together with the three preceding and three
succeeding letters in the word. The goal is to produce phoneme and stress that constitute
the pronunciation of the letter. The nettalk(stress) dataset of 5438 instances is for the
prediction of stress (five classes), produced from the NETtalk Corpus of the 1000 most
common English words.

The splice junction dataset, courtesy of Towell, Shavlik and Noordewier (1990), contains
3177 instances of sixty sequential DNA nucleotide positions and each position can have one
of the four base values®. The task is to recognize, given a DNA sequence, two types of the
splice junction or neither.

1. IB1 stores all training instances and uses maximum differences for attributes that have missing values,
and computes Euclidean distance between any two instances.

2. The original dataset has 3190 sequences where a small number of them contains some combination values
(i.e., values combined from four base values). These sequences are eliminated in our experiments.



The protein coding dataset, introduced by Craven and Shavlik (1993), contains DNA
nucleotide sequences and its classification task is to differentiate the coding sequences from
the non-coding ones. Each sequence has fifteen nucleotides with four different values each.
This dataset has 20,000 sequences. The protein coding and splice junction datasets are the
only two datasets used in Chan & Stolfo’s (1995; 1996) investigation.

In what follows, we first perform the experiments using the artificial domains and then
the real-world datasets.

4.1 Artificial Domains

To simulate different batches of data, different seeds are used to generate the data in the
waveform and LED24 domains. We first examine data batches of equal size.

The training data size is varied but the testing data size is fixed at 5000 instances. For
each training data size, two theories are induced from a learning algorithm (either IB1* or
NB*) from two batches of data. Theory combination uses these two theories to produce
a final prediction. Data combination concatenates the two batches of data and produces
a theory using the same learning algorithm. For each training data size, it is repeated 10
trials using different seeds in data generation, and the average error rate and its standard
error are reported. Figures 4 and 5 shows the results of the experiments (i.e., the learning
curves). The horizontal-axis shows the training data size of data combination; the single
theory induced from a batch of half of this training data size is designated as “1/2 Data
Size”. The results of theory combination and the oracle (which makes incorrect prediction
if and only if both theories predict incorrectly) are also shown. Plots (a) and (b) in each
figure show the results using IB1* and NB*, respectively.

We summarise the results as follows. When using IB1*, theory combination performs
significantly better than data combination in both the waveform and LED24 domains in
almost all the experimental training data sizes. Two average error rates are regarded to be
significantly different if they differ by more than or equal to two standard errors (with >
95% confidence). Similar performance is observed for NB* in the waveform domain. Note
that in these three cases, the performance difference is small between data combination
and the single theory induced from half of the training data size. The general trend is
that the positive performance gain of theory combination over data combination becomes
bigger towards the near-asymptotic region of the learning curve. This is where the classi-
fier’s performance gain as a result of doubling the data size does not gain as much as at
the beginning of the curve. For NB* in the LED24 domain, data combination performs
significantly better than theory combination when using small training data sizes and then
becomes marginally worse as the data size gets larger. An explanation to this effect is
provided in Section 5. Theory combination and data combination are always better than
theory combination’s constituent theories®. The oracle shows the optimal performance for
theory combination and it is the best among the four methods.

3. Since the performances of both theories are very similar, one of the curves is eliminated to provide a

better readability of the plot.
4. Note that in some cases, the error rate on curve “1/2 Data Size” at training data size [ is different from

the error rate on curve “Data Combination” at data size D /2. This is due to data fluctuation as a result
of data generated with different seeds.



Average Error Rate (10 Trials)

Average Error Rate (10 Trials)

28

26

Figure 4: Learning Curves in the Waveform

50

45

25

20

(a) Error Rate (I1B1*) in Waveform

(b) Error Rate (NB*) in Waveform

T T T T T T T T T T 23 T T T T T T T T T
% Data Combination —e— Data Combination —e—
Theory Combination -8-- Theary Combination -&--

Oracle -&- - 26 Oracle -
} 1/2 Data Size -o-- 1/2 Data Size -o-~

Il i i i L Il i L

200 400 600 800 1000 1200 1400 1600 1800 2000

Training Data Size

(a) Error Rate (IB1*) in LED24

600 800 1000 1200 1400 1600 1800 2000
Training Data Size

domain (1:1 ratio for the two batches).

(b) Error Rate (NB*) in LED24
T

LY

~§.--§"'—---1!--—----§_.-._._§..-.--—i-—-- e T R

1 Il 1 1 ] L 1 [l 1 1

T T T T T T L T T T 50 T T T T T T T T T
Data Combination -o— Data Combination -e—
Theory Combination -&-- Theory Combination -8--
Oracle - Oracle -
1/2 Data Size -o-- - s 1/2 Data Size -o--

"'4-..._._._‘._._._‘.---- &

]
L
i

& = -

200 400 600 800 1000 1200 1400 1600 1800 2000
Training Data Size

0
200 400 600 800 1000 1200 1400 1600 1800 2000
Training Data Size

Figure 5: Learning Curves in the LED-24 domain (1:1 ratio for the two batches).

One interesting phenomenon is that, in the LED24 domain, IB1* seems to reach its

(near-)asymptotic performance from data size 800 onwards. But, combine theories learned
from half of these data sizes can still significantly improve its performance! The performance
of the oracle indicates that the two theories are significantly different since the performance
difference between the oracle and its constituent theories is as large as 15%! We will come
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(a) Error Rate (IB1*) in LED24 (b) Error Rate (NB*) in LED24
50 T T T T L] L T T L} T 50 T - L} T L} L T L] T L] T
Data Combination -o— i Data Combination -o—
Theory Combination -&-- { Theory Combination -&i--
Oracle -~ Oracle -&--
1/3 Data Size -o-- 1/3 Data Size -<-~
45 2/3 Data Size -8— 45 | ¥ 2/3 Data Size -&—
i)
= - -
=
(=]
= i =
® 8
4 = _q
[+ - -
g
w
1]
o
£
E = -
< Y
o o |
il TN .
25 {5 _ »” i
"‘}-..,}._.-_.}--- BRI St SRR, SRS kY
[ S 7 -
T o o
1 1 L L 1 1 1 L 1 1 1 L 1 1 i 1 L 1 1 1

0
200 400 600 800 1000 1200 1400 1600 1800 2000 200 400 600 800 1000 1200 1400 1600 1800 2000
Training Data Size Training Data Size

Figure 7: Learning Curves in the LED-24 domain (1:2 ratio for the two batches).

back to this point in Section 5.

To investigate the effect of data batches of different sizes, we experiment with two
batches which have one third and two third of training data size for data combination. This
experiment demonstrates similar results as the previous one and the results are shown in
Figures 6 and 7.



4.2 Real-World Datasets

In this experiment, we employ four real-world datasets; and for each dataset, we simulate
two different batches by random subsampling of the training data for data combination into
two disjoint subsets of equal size. The size of training data size is varied from 10% to 90%
of the entire dataset. Each data size is repeated over 20 trials, except in the protein coding
dataset for its huge data size and only 10 trials are used. The testing dataset is from the
remaining portion of the entire dataset not used for training.

Figures 8 to 11 show the results for the four datasets. In the euthyroid, nettalk(stress)
and splice junction datasets, the performance trends of theory combination and data com-
bination generally in accordance to what we have observed previously. Theory combination
performs worse than data combination at the beginning of the learning curve in all three
datasets. At the near-asymptotic region of the curves, theory combination performs bet-
ter using NB* and comparably using IB1* in the euthyroid dataset; theory combination
performs better using IB1* and comparably using NB* in the nettalk(stress) and splice
junction datasets.

For the protein coding dataset shown in Figure 11(a), the trends of the curves (for IB1*)
seem to suggest that the near-asymptotic region of the learning curve does not appear in
the figure, i.e., we do not see the complete learning curve (which contains the two regions
shown in Figure 3). This suggests that improvements are possible for all methods when
more data is available. Nevertheless, theory combination is significantly better than data
combination when the training data sizes are between 10% to 50% of the whole available
data. The trend is reverse when the training data sizes are 80% and 90%. When NB* is
used, theory combination performs worse than data combination at the beginning of the
curve, and they perform comparably at the near-asymptotic region.

In the euthyroid dataset, note that the unstable performance at the near-asymptotic re-
gion of the curve in Figure 8(a) could be due to skew class distribution (the default accuracy
is 90.7%) and the small number of testing data. Also, NB* used in the data combination
shows non-monotonic learning curve in Figure 8(b). This could be due to random data
fluctuation since the performance difference between the theories using different training
sizes are not significant.

Notice that the performance difference between the oracle and data combination is
smaller when NB* is used with comparison to that when IB1* is used in almost all the
datasets, including the artificial ones. This signifys that theory combination has less room
for improvement using NB*. This phenomenon could be due to the nature of the algorithm,
i.e., IB1* is more sensitive to local variability than NB* because the latter summarises
the training data into a few probability parameters whereas the former employs all the
instances. To use Breiman’s (1996b) terminology, NB* is a more stable classifier than IB1*.
Our finding here agrees with that found by Breiman (1996b). It is more likely to improve
the performance of an unstable classifier by combining multiple theories induced from it.

4.3 The Effect of Overlapping Data Batches

In this section, we examine the effect of overlapping data batches to theory combination.
For each real-world dataset, we use one third of it for testing purposes, and then randomly
sample the remaining data into two batches with varying degrees of overlap, range from

10
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in the Nettalk(Stress) dataset.

0% to 50%. The size of each training batch is kept constant, i.e., one third of the entire
dataset, for all trials. Figure 12 shows the performance of theory combination and ora-
cle in four datasets. In almost all cases, theory combination and oracle show progressive
performance degradation as the percentage of overlap increases.
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Figure 12: The effect of overlapping training data batches on theory combination in four

real-world datasets. The results are averaged over 20 trials except in the protein
coding dataset, where only 10 trials are conducted.
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5. Criteria for Performance Improvement

The criteria for performance improvement using theory combination (with respect to data
combination) are:

e relatively high percentage of only either one of the constituent theories making
the correct classifications; or equivalent to high uncorrelated errors,

e ecach of these theories must demonstrate a high degree of prediction regular-
ity, i.e., the uncorrelated correct classifications are not a result of random
guesses. This randomness might be due to noise in the data or/and the
stochastic nature of the classifier,

e accurate characterisation and estimation of predictive accuracy when the com-
bination framework used here is employed. In general, this depends on how
well the theory combination method employed takes advantage of the first
two criteria.

The oracle shows the optimal performance for any methods of theory combination.
However, it is unlikely that any of these methods can match its performance. There are two
main reasons. First, this is because most theory combination methods require to perform
an estimation of some measure or the like (e.g., using a learning algorithm in stacked
generalisation) that is required for theory combination. This estimation is bound to have
errors, no matter how accurate it is. Second, prediction irregularity, as a result of noise
in the data or/and stochastic nature of the learned theory, that cannot be utilized by any
combination methods®. An example is shown in Figure 5(a) for the LED24 domain. Ting
and Cameron-Jones’ (1994) empirical result shows that by storing only one instance per
class for IB1*, which is the perfect bias in this domain, achieves the best result (i.e., 25%
error rate). A similar result is obtained by computing the Bayes rules (Breiman et al,
1984). Thus, the performance of the oracle below the 25% error rate mark is due to random
guesses for any classifiers and no other combination method can do better. For the IB1*
settings we are using here, the contribution of random guesses could be much higher. NB*
also has the right bias in this domain because it is equivalent to an one instance per class
instance-based learner (Ting and Cameron-Jones, 1994). It approaches the best result in
the near-asymptotic region for all methods shown in Figure 5(b). This explains why theory
combination can not outperform data combination in this region.

Note that the behaviour of the oracle is different from the usual learning curve in the
waveform and protein coding datasets when NB* is employed. This indicates that some
learning algorithm can specialise in different regions of the description space when the sizes
of the data batches are relatively small. This can occur because the chances that the data
in different batches fall in the same region of the description space are much less when the
data size is small. This appears to suggest that it might be better to use less data, for
some learning algorithm, when theory combination is intended. However, the combination
method employed does not seem to be able to take advantage of this situation. This is

5. The factor due to prediction irregularity is usually excluded when analysing the effect of correlated
errors in empirical study (e.g., in Ali & Pazzani (1996)), because it is difficult to be isolated in real-world

datasets.
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due to the fact that the estimation of the combination measure is hard and more error
prone when the data size is small. This last note also applies when one or more classes are
supported by only few instances in a dataset.

Though our investigation is limited to one type of combination method, we believe that
the results in this paper are applicable to other reasonable combination methods (e.g., Ali
& Pazzani, 1996) judging from the performance of the “oracle” combination method. In all
datasets, the oracle performs significantly better than data combination, sometimes with
huge margins. This shows there is plenty of room for any reasonable combination method to
gain advantage. We also believe that the results would also hold when other types of learning
algorithm are used (e.g., decision trees and neural networks). Indeed, Chan & Stolfo (1995)
have shown the potential of decision tree learning in the same working assumption®.

6. Links to Theoretical Work

One phenomenon observed in the experiments is that the relative performance between the-
ory combination and data combination is related to the learning behaviour of the classifier.
This is consistent with our hypothesis stated in Section 3. If the performance improvement
is small when the data is combined, theory combination usually performs comparably or
better than data combination. This is evident when we observed the usual learning curves
in all datasets. Even for IB1* in the protein coding dataset (in Figure 11(a)), when the
complete learning curve is not observed, this phenomenon still occurs.

This empirical result seems to be stronger, in terms of the expected performance of
theory combination, than a theoretical result (Kearns & Seung, 1995) based on the same
working assumption. This theoretical work seeks “... the possibility of somehow combining
the independent hypotheses in a way that considerably outperforms any single hypothesis”
(Kearns & Seung, 1995). The ‘single hypothesis’ refers to any of the theory combination’s
constituent theories. Our result indicates that theory combination can significantly outper-
form not only its constituent theories but the theory learned from aggregating the available
data; in spite of the the fact that this result only shows the base-line behaviour of theory
combination, i.e., combining two theories.

Some may assume that the theories learned in the near-asymptotic region would be
very similar as shown by their indistinguishable performance. However, our experiment
results suggest that the two theories learned from separate data batches in this region are
substantially different even though they demonstrate the same performance. This is evident
in most of the experimental datasets, where the performance of the oracle is significantly
better than those of its constituent theories and data combination in the near-asymptotic
region. This indicates that the assumption is incorrect, at least in the near-asymptotic
region.

What surprises us is that the near-asymptotic performance of a single theory can be
signtficantly improved by combining multiple theories of the same learning algorithm. This
can only happen if the constituent theories are substantially different and there is still some

6. A subtle difference on the methods of theory combination employed might be worth noting here. Chan
and Stolfo (1995) use stacked generalisation that essentially require all training data subsets at the low
level to be seen by the high level generaliser during training. Whereas the training subsets are completely
isolated for the method we used here.
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regularity in the theories to be exploited by any combination methods. Figure 5(a) shows
improvements (Figure 11(b) shows no improvements) as a result of theory combination’s
exploitation in the near-asymptotic region. This empirical evidence of further significant
improvement on the near-asymptotic performance of a learning algorithm using multiple
theories is new to us, to the best of our knowledge. Previous work (e.g., Hansen & Salamon,
1990; Perrone & Cooper, 1993; Oliver & Hand, 1995; Chan & Stolfo, 1995; Breiman,
1996a,1996b; Freund & Schapire, 1996; Ali & Pazzani, 1996) only show the possibility of
improving the performance using multiple models in some datasets, without considering the
(near-)asymptotic performance; despite the theoretical result of boosting (Schapire, 1990)
shows that this is possible (Schapire, 1996).

In regression settings, Meir (1994 ) mathematically analyses the effect of (linearly) com-
bining several least squares linear estimators on the expected performance, under the same
working assumption. While his general result agrees with ours, i.e., theory combination can
significantly improve the performance of data combination in some situations, the details
of the two results are at odds. Meir’s result states that theory combination outperforms
data combination for small training data size, and theory combination can be worse for
intermediate sample sizes. This result is based on the analysis of bias/variance decompo-
sition which are quite different in classification tasks (Kohavi & Wolpert, 1996). It also
assumes that the data batches are independent for tractability; but our empirical result has
no such assumption. Relaxing the non-overlapping and independence data subsets assump-
tions, Sollich and Krogh (1996) analytically show that theory combination can substantially
improve the performance of data combination by optimizing the weights of the linear com-
bination for intermediate sample size. This latter result is based a slightly different working
assumption from ours.

7. Other Issues

A note of caution regarding the source of the data batches is in order here. Batches of data
coming from seemingly similar but different sources, thus possibly different tasks, are not
covered in our investigation in this paper. We do not think a theory combination method is
a good choice in such a situation. The multitask learning method (Caruana, 1996) could be
a better choice. The additional data can be used as an extra task to better support learning
for the main task. A more subtle situation is that the data is pre-sorted into different
groups according to some criterion when the data is collected (e.g., Baxt, 1992). This is an
interesting scenario which we intend to explore in the near future.

When more than two batches are available, one possible method is to stack up the
combinations in a binary tree structure as have been reported by Chan and Stolfo (1996).
Nevertheless, more evidence is required to show that it is generally applicable. On the
other aspect, there is no restriction that one must use a single learning algorithm for all
batches of data. One may apply a model selection technique (Schaffer, 1993) to choose one
among several learning algorithms for each batch of data, and then perform the combination.
However, this incurs multiple folds of computational requirement.

The advantages of theory combination over data combination are that it allows faster
learning time in some cases (see the analysis in the next paragraph) and uses less memory
because the former employs less data for each learned theory, and separate copies of a
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learning algorithm can be run in parallel on multiple processors. These advantages make
the theory combination approach more feasible for large datasets. Catlett (1991) studied
a variety of sampling techniques to extract a subset from a large dataset for decision tree
learning, but concluded that they are not a solution to the problem of scaling up to very
large datasets. The results of our experiments with real-world datasets convey a message
that sampling together with parallel processing can be a potential solution to this problem.

The additional computation required for theory combination differs from one method
to the other and the type of learning algorithm used. For the combination method we
used, the main additional computational load is the estimation of predictive accuracy dur-
ing training. This requires a cross-validation method to be performed on the training
data (see the Appendix). Assuming the time complexity of a learner is linear (such as
NB*), i.e., T(n,m) = n + m, where n is the training data size and m is the testing
data size. Because a three-fold cross-validation method is used, the theory combination
method demands Ty(n,m) = 4n + m for inducing a single theory. Data combination re-
quires Ty(2n,m) = 2n + m. For example in the LED24 domain, NB* requires T(n,m) = 6
seconds and T4(2n,m) = 2.5 seconds on a Sun SPARCserver 1000 machine, where n = 1000
and m = 5000. Whereas for an mn? bounded learner such as IB1*, it requires Ts(n,m) = 6.5
minutes and 7;(2n,m) = 12 minutes for the same example. Thus, parallel processing can
help to speedup the computation in some cases, even with the relatively computational
expensive theory combination method we used here.

8. Conclusions

This paper shows that theory combination in the multiple-data-batches scenario is gener-
ally applicable. A comparison of the base-line behaviour of theory combination and data
combination using two randomly drawn disjoint data batches reveals that theory combina-
tion compares favourably when the performance gain due to data combination is small or
the performance of the theories induced from the data batches are at the near-asymptotic
region of the learning curve.

The practical implication of our results is that one should consider using theory com-
bination rather than the common method of data combination, especially when multiple
batches of data for the same task are readily available.

Another interesting result is that we empirically show that it is possible to significantly
improve the near-asymptotic performance of a single theory by combining multiple theories
of the same algorithm if the theories are substantially different and there is some regularity
in the theories to be exploited by the combination method used.
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Appendix - The Method of Theory Combination

We use the composite learner framework (Ting, 1996b) as the method for theory combina-
tion in our experiments. Ting uses the term the characterisation of predictive accuracy to
mean the use of a measure in an induced theory as an indicator for its predictive accuracy.
The posterior probability and the measure of typicality (defined as inter-concept distance di-
vided by intra-concept distance) are employed as the characterisation of predictive accuracy
for NB* and IB1*, respectively.

During training, the algorithm (either NB* or IB1*) performs a three-fold cross-validation
to estimate predictive accuracy from the characterisations for each batch of data indepen-
dently. In a k-fold cross-validation, a dataset is partitioned into k equal-size subsets and
perform training using all subsets except the ith subset k& times. At each fold, the ith subset
is used as the testing set. Thus, each instance will be tested only once; and a training set
of size n will have the testing results of size n at the end of the cross-validation.

Individual Test Points Plot Binned Graph for
for one predicted class one predicted class

Cormel Accuracy

Classification
moving window of 15 instances

ity pdp el el 5,

' i
y ! a !

No fxxixxxx Xx X X X
. 1

Measure of characterisation Measure of characterisation

Fig. A. Transforming individual cross-validation test points to a binned graph for one
predicted class.

For each predicted class, the individual test results from the three-fold cross-validation
are then sorted according to the values of the characterisation (i.e., posterior probability, or
typicality ), shown in the left plot of Figure A. The aim is to produce a binned graph that
relates the average value of the characterisation to its binned predictive accuracy for each
class, shown in the right plot of Figure A. The transformation process, from the left plot
to the right plot, goes as follows. Each bin (the size is pre-determined) in the left plot is
transformed to a point in the right plot by averaging the values of the characterisation for
all test points in the bin. This process is repeated in the style of a “moving window”, i.e.,
the next bin is obtained by dropping the leftmost instance and adding an instance adjacent
to the rightmost instance of the current bin. At the end of the training process, a theory
induced from all the n training instances and the binned graphs for all classes are stored
for future classification.

For each classification of an instance X, the theory which has the higher estimated pre-
dictive accuracy is chosen to make the final prediction. The predictive accuracy, PA(C, H|X),
is obtained by referring to the predicted class’ (C') binned graph with the corresponding
value of the characterisation (H).
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Formally, the selection process can be defined as follows.

Cf = Cpy if PA(Ct1, H11|X) > PA(Cr9, H12| X ),
= Crq if PA(C71, H11|X) < PA(CT2, HT3| X)),

else random select.

where C : final prediction;
Cp & Hyp : Theory T’s prediction & characterisation;
PA(C, H|X) : predictive accuracy of C' and H given instance X.
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