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Abstract

This paper articulates a new method of linear regression, “pace regression,” that addresses many drawbacks of
standard regression reported in the literature—particularly the subset selection problem. Pace regression improves
assical ordinary least squares (OLS) regression by evaluating the effect of each variable and using a clustering
analysis to lmprove the statistical basis for estimating their contribution to the overall regression. As well as
outperforming oLs, it also outperforms—in a remarkably general sense—other linear modeling techniques in the
literature, including subset selection procedures, which seek a reduction in dimensionality that falls out as a natural
byproduct of pace regression. The paper defines six procedures that share the fundamental idea of pace regression,
all of which are theoretically justified in terms of asymptotic performance. Experiments confirm the performance
improvement over other techniques.
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1 Introduction

The basic idea of regression analysis is to fit a linear model
to a set of data. The classical ordinary least squares
{OoLs) estimator is simple, computationally cheap, and has
well-established theoretical justification. Nevertheless, the
models it produces are often less than satisfactory. For ex-
ample, OLS does not detect redundancy in the set of depen-
dent variables that are supplied, and when a large number
of variables are present, many of which are redundant, the
model produced usually has worse predictive performance
on future data than simpler models that take fewer vari-
ables into account.

Many researchers have investigated methods of subset
selection in an attempt to neutralize this effect. The most
common approach is OLS subset selection: from a set of
ors-fitted subset models, choose the one that optimizes
some predetermined modeling criterion. Almost all these
procedures are based on the idea of thresholding varia-
tion reduction: calculating how much the variation of the
model is increased if each variable in turn is taken away,
setting a threshold on this amount, and discarding vari-
ables that contribute less than the threshold. The ratio-
nale is that a noisy variable usually reduces the variation
only marginally, whereas the variation accounted for by a
meaningful variable is larger and grows with the variable’s
significance.

Many well-known procedures, including ¥PE (Akaike,
1970), a1c (Akaike, 1973), ¢, (Mallows, 1973) and
BIC (Schwarz, 1978) follow this approach. While these
certainly work well for some data sets, extensive practical
experience and many simulation studies have exposed se-

rious shortcomings in them all. Often, for example, a cer-
tain proportion of redundant variables are included in the
final model (Derksen and Keselman, 1992). Indeed, there
are data sets for which a full regression model outperforms
the selected subset model unless most of the variables are
redundant (Hoerl et al., 1986; Roecker, 1991).

Shrinkage methods offer an alternative to OLS subset
selection. Simulation studies show that the technique of
biased ridge regression can outperform OLS subset selec-
tion, although it generates a more complex model (Frank
and Friedman, 1993; Hoerl et al., 1986). The shrink-
age idea used in ridge regression was further explored by
Breiman (1995) and Tibshirani (1996), who were able to
generate models that are less complex than ridge regres-
sion models yet still enjoy higher predictive accuracy than
OLS subset models. Empirical evidence presented in these
papers suggests that shrinkage methods yield greater pre-
dictive accuracy than OLS subset selection when a model
has many noisy variables, or at most a moderate number of
variables with moderate-sized effects—whereas they per-
form worse when there are variables that have a dramatic
effect on the cutcome.

These problems are systematic: the performance of
modeling procedures can be related to the effects of vari-
ables and the extent of these effects. Researchers have
sought to understand these phenomena and use them to
motivate new approaches. For example, Miller (1990) in-
vestigated the selection bias that is introduced when the
same data is used both to estimate the coefficients and to
choose the subsets. New procedures, including the little
bootstrap (Breiman, 1992), ric (Donoho and Johnstone,
1994; Foster and George, 1994), and cIc (Tibshirani and



Kuight, 1997) have been proposed. While these undoubt-
edly produce good models for many data sets, we will see
below that there is no single approach that solves these
svstematic problems in a general sense.

This paper shows that these problems are the tip of an
iceberg. They are manifestations of a much more general
phenomenon that can be understood by examining the ex-
pected contributions that individual variables make in an
orthogonal decomposition of the estimated model. This
analysis leads to a new approach called “pace regression,”
standing for Projection Adjustment by Contribution Esti-
mation.

Six procedures of pace regression are developed, de-
noted PACE; to PACEg, that share a common fundamental
idea—estimating the distribution of the effects of variables
from the data and using this to improve modeling. The
fact that this distribution can be estimated has appar-
ently not been mentioned in the literature so far. The first
four procedures utilize OLS subset selection, and outper-
form existing OLS methods for subset selection, including
oLs itself. By abandoning the idea of selection, PACE;
achieves the highest prediction accuracy of all. It even
surpasses the OLS estimate when all variables have large
effects on the outcome—in some cases by a substantial
margin. Unfortunately, the extensive numerical calcula-
tions that PACEs requires limit its application in practice.
However, PACEg is a very good approximation, and is com-
putationally efficient. Theoretical and experimental com-
parisons between the new procedures and existing ones are
reported in this paper.

We investigate model estimation in a general sense that
subsumes subset selection. We do not confine our efforts
to finding the best of the subset models; instead we ad-
dress the whole space of linear models and regard subset
models as a special case. But it is an important special
case, because simplifying the model structure has wide ap-
plications in practice, and we will use it extensively to help
sharpen our ideas.

We adopt two separate but complementary criteria for
successful modeling. The first is predictive accuracy: the
best model is the one with greatest accuracy on future data
sampled independently from the same population. The
second is parsimony: of models with similar predictive ac-
curacy, prefer the smallest. Because of the inherent uncer-
tainty present in any modeling situation, a small sacrifice
in predictive accuracy may allow a substantial reduction
in model complexity, significantly improving the compre-
hensibility of the model. This is particularly important in
situations where the only estimates of predictive accuracy
are inaccurate ones.

Like most work on model selection, we confine discus-
sion to linear models with normally distributed noise. In
fact, most of the ideas presented here generalize to other
situations. More importantly, this work challenges many
fundamental principles of empirical modeling. We return
to these broader issues in Section 9.

The paper proceeds as follows. In Section 2, we dis-
cuss issues in linear regression and introduce some nota-

tion that will be used throughout. Section 3 discusses an
orthogonal decomposition of linear models that forms the
basis of all our modeling procedures. In Section 4, the
“contribution” of each dimension of the orthogonal de-
composition to the model is defined, and related functions
are introduced. The notion of contribution functions is at
the very core of our new scheme, and Section 5 shows how
they can be used to understand modeling tasks, giving
an intuitive introduction to the procedures that form the
principal research contribution of this paper. Section 6
formally defines the six procedures of pace regression and
theoretically justifies them, under the condition that a cer-
tain distribution function (the distribution of the under-
lying dimensional absolute distance) is known. Section 7
addresses the question of how to estimate this distribu-
tion, followed in Section 8 by some experimental examples
that illustrate the power of the new methods. Section 9
discusses some important issues raised by pace regression,
and explains how it challenges currently-accepted model-
ing principles.

2 Issues in linear regression

We begin by introducing some important issues in linear
regression to provide a basis for the analysis that follows.
We briefly review the major approaches to model selec-
tion, focusing on their failure to solve the systematic prob-
lems raised above. A common thread emerges: the key to
solving the general problem of model selection in linear
regression lies in the distribution of the effects of the vari-
ables that are involved. Subsection 2.8 pulls this theme
together, briefly previewing the ideas underlying this pa-
per.

2.1 Linear models and the distance

Given a set of input variables and an output variable, a
linear model is uniquely determined by a parameter vector
B of length k, the number of input variables. Suppose we
are given the input variables for n independent instances
in the form of an n x k design matrix X, and the corre-
sponding output vector y. Then if 8* is the parameter
vector of the true, underlying, model, ¥ can be written as

y=XpB"+e, (1)

where € is a noise vector whose n components are indepen-
dently sampled from N(0,02%). We assume for the most
part that the variance o2 is known; if not, it can be esti-
mated using the OLS estimator 2.

Use M to denote any model, M(8) the model with pa-
rameter vector 3, and M* as shorthand for the underlying
model M(B8*). The entire model space under considera-
tion is M = {M(B) : B € R¥}. Given y and X, the
modeling task is to find an estimate M(5) € My of the
underlying model M* € My, with the greatest predictive
accuracy on future data.

Models produced by the oLS method, oLS subset selec-
tion methods, and shrinkage methods are all subclasses of



the model space M. Any zero entry in % corresponds
to a redundant variable. In fact, dimensionality reduction
is not a problem independent from modeling; it is just a
special case in which the discarded dimensions correspond
10 zero entries in the parameter vector.

We need a way of measuring the distance between
two models, and choose to characterize this by the dif-
ference between the models’ prediction vectors, since this
relates directly to predictive accuracy. Given a design ma-
trix X, the prediction of the model M(f) is the vector
Yamp = XB. In particular, the true model M* predicts
the output vector y* = ya~ = X B8*. We find it convenient
to define the distance between two models as

D(M(B1), M(B2)) = [lyrmsy) — YmanI* /0%, (2)

where ||-|| denotes the Ly norm. (When the noise variance
o2 is unknown, the OLS estimator 2 is used instead.) The
problem of model construction is to find a model M € M,
that is as close as possible to the true model M* in the
sense that it minimizes the loss function D(M, M*). Be-
cause of the uncertainty involved in the data set from
which the model is constructed, it is the ezpected loss—the
risk——that is minimized.

2.2 0oLS subset models and their ordering

Any model that uses a subset of the k candidate variables
and whose parameter vector is an OLS fit is called an “OLS
subset model.” When determining the best subset to use,
it is common practice to generate a sequence of k41 nested
models {M;} with increasing numbers j of variables. Mg
is the null model with no variables and My is the full
model with all variables included. The OLS estimate of
model M;’s parameter vector is

B, = (X, Xy) 1 X g, 3)

where X a4, is the n x j design matrix for model M;. Let
Pr;, = Xpm, (Xj\/,],XMj)_lXij, which is the orthogonal
projection matrix from the original k-dimensional space
onto the reduced j-dimensional space. Then §aq; = P,y
is the OLS estimate of ij]_ = Pnm,y".

One way of determining subset models is to include
the variables in a predefined order using prior knowledge
about the modeling situation. For example, in time series
analysis it usually makes good sense to give preference to
closer points when selecting autoregressive terms, while
when fitting polynomials, lower-degree terms are often in-
cluded before higher-degree ones. When the variable se-
quence is predefined, a total of & + 1 subset models are
considered.

In the absence of prior ordering, a data-driven approach
must be used to determine appropriate subsets. The fi-
nal model could involve any subset of the variables. Of
course, computing and evaluating all 2 models rapidly
becomes computationally infeasible as k increases. Tech-
niques that are used in practice include forward, backward,
and stepwise ranking of variables based on partial-F ratios

{Thompson, 1978).

The difference between the prior ordering and the data-
driven approach affects the subset selection procedures. If
the ordering of variables is predefined, the subsets are de-
termined independently of the data, which implies that
the ratio between the residual sum of squares and the es-
timated variance can be assumed to be F distributed. The
subset selection criteria FPE, AIC, and ¢, all make this as-
sumption. However, data-driven ordering complicates the
situation. Candidate variables compete to enter and leave
the model, causing competition bias (Miller, 1990). It is
certainly possible to use FPE, AIC and Cj, in this situation,
but they lack theoretical support, and in practice they per-
form worse than when the variable order is correctly pre-
defined. For example, suppose underfitting is negligible
and the number of redundant variables increases without
bound. Then the selected model’s predictive accuracy and
its expected number of redundant variables both tend to
constant values when the variable order is predefined (Shi-
bata, 1976}, whereas in the data-driven scenario they both
increase without bound.

Predefining the ordering makes use of prior knowledge
of the underlying model. As is only to be expected, this
will improve modeling if the information is basically cor-
rect, and hinder it otherwise. In practice, a combination
of predefined and data-driven ordering is often used. For
example, when certain variables are known to be relevant,
they should definitely be kept in the model; also, it is
common practice to always retain the constant term.

2.3 Asymptotics

We will be concerned with two asymptotic situations: n-
asymptotics, where the number of observations increases
without bound, and k-asymptotics, where the number of
variables increases without bound. In this subsection we
review some n-asymptotic results. The remainder of the
paper is more concerned with k-asymptotics.

The model selection criteria FPE, AIC and C, are n-
asymptotically equivalent (Shibata, 1981) in the sense
that they depend on threshold values that become the
same—in this case, 2—as n approaches infinity. With
reasonably large sample sizes, the performance of dif-
ferent n-asymptotically equivalent criteria are hardly
distinguishable—both theoretically and experimentally.
When discussing asymptotic situations, we use AIC to rep-
resent all three criteria.

Asymptotically speaking, the residual sum of squares
of a significant variable is O(n), whereas that of a redun-
dant variable has a weak upper bound O(1) and a strong
upper bound O(loglogn). The model estimator gener-
ated by a threshold function bounded between O(1) and
O(n) is weakly consistent in terms of model dimension-
ality, whereas one whose threshold function is bounded
between O(loglogn) and O(n) is strongly consistent.

Some model selection criteria are n-asymptotically
strongly consistent. Examples include Bic (Schwarz,
1978), ¢ (Hannan and Quinn, 1979), Gic (Zhao et al.,
1986), and Rao & Wu (1989). These all replace AIC’s



threshold of 2 by an increasing function of n bounded be-
tween O(loglogn) and O(n). The function value usually
xceeds 2 {unless n is very small), giving a threshold that
is larger than A1¢’s. However, employing the rate of con-
vergence in this way is of little help in practice. For any
finite data set, a higher threshold runs a greater risk of dis-
carding a nonredundant variable that is only barely con-
tributive. Criteria such as AIC that are n-asymptotically
inconsistent do not necessarily perform worse than consis-
tent ones.

Any OLS subset selection criterion minimizes a quantity
that becomes. in the sense of n-asymptotic equivalence,

lly = ya, I|?/0° +7j (4)

with respect to the dimensionality parameter 5, where 7 is
the threshold value. We write this in parameterised form
as OLSC(r), where oLS = 0LsC(0), AIC = OLSC(2) and
B1c = oLsc(logn). The model selected by criterion (4)
is denoted by MOC(T): thus we have MO = MOWSe(0)
MAC = AQOISC(2) gnd MBIC = Morsc(logn) (When the
variance o2 is unknown, the OLS estimate 62 is used in-
stead.)

2.4 z-fixed vs z-random models

Two alternative basic assumptions underly regression
modeling. In an “a-fixed” model the design matrix X
remains unchanged for future prediction data, while in an
“z-random” one each x; is a random variable with a given
distribution, and future data takes on values different
from those used for training. Thompson (1978) discusses
the implications of these assumptions in the subset selec-
tion situation. Some authors (for example, Miller (1990),
Breiman (1992) and Breiman and Spector (1992)) treat
the two cases differently.

Our work strives to minimize the expected distance be-
tween the prediction vector yas and the underlying y*,
given a data sample X and y. This lies strictly within the
classical z-fixed regression scenario. But it differs from
most other procedures because they evaluate models ac-
cording to their expected error on future data—which nec-
essarily requires different handling for the two situations.
In our case, we believe the models obtained will work
equally well for the z-random situation. Since each model
is uniquely determined by its parameter vector f, reduc-
ing the distance between yas and ya- given the design
matrix X is tantamount to reducing the distance between
B and Ba-—in other words, reducing the distance be-
tween the prediction vectors of the estimated model and
the true model for other samples.

According to the Gauss-Markov Theorem, OLS yields a
“best, linear unbiased estimator” (or BLUE) in the z-fixed
situation (Rao and Toutenborg, 1995). Shaffer (1991) re-
lates this to the z-random situation by establishing that
if a best linear unbiased estimator exists for a given z-
random situation, the OLS estimator is also a best linear
unbiased estimator for the same situation. Shaffer’s result

makes it plausible to conjecture that that the two situa-
tions share (approximately) the same best estimator in the
biased model space—although it would be nice to establish
this theoretically. Of course, n-asymptotically speaking,
there is no difference between the two situations.

2.5 Shrinkage methods

Shrinkage methods provide an alternative to OLS subset
selection. Ridge regression gives a biased estimate of the
model’s parameter vector that depends on a ridge param-
eter. Increasing this quantity shrinks the OLS parameters
toward zero. This may give better predictions by reducing
the variance of predicted values, though at the cost of a
slight increase in bias. It often improves the performance
of the OLS estimate when some of the variables are (ap-
proximately) collinear. Experiments show that ridge re-
gression can outperform OLS subset selection if most vari-
ables have small to moderate effects (Tibshirani, 1996).
Although standard ridge regression does not reduce model
dimensionality, its lesser known variants do (Miller, 1990).

The “nn-garrote” (Breiman, 1995) and “lasso” (Tibshi-
rani, 1996) procedures zero some parameters and shrink
others by defining linear inequality constraints on the pa-
rameters. Experiments show that these methods outper-
form ridge regression and OLS subset selection when pre-
dictors have small to moderate numbers of moderate-sized
effects, whereas OLS subset selection based on C, prevails
over others for small numbers of large effects (Tibshirani,
1996).

All shrinkage methods rely on a parameter: the ridge
parameter for ridge regression, the garrote parameter for
the nn-garrote, and the tuning parameter for the lasso.
In each case the parameter value significantly influences
the result. However, there is no consensus on how to de-
termine suitable values, which may explain the unstable
performance of these methods. In Section 5, we offer a
new explanation of shrinkage methods.

2.6 Data resampling

Standard techniques of data resampling, such as cross-
validation and the bootstrap, can be applied to the sub-
set selection problem. Theoretical work has shown that,
despite their computational expense, these methods per-
form no better than the OLS subset selection procedures.
For example, under weak conditions, Shao (1993) shows
that the model selected by leave-d-out cross-validation
or cv(d) is n-asymptotically consistent only if d/n — 1
and n —d — o0 as n — oo. This suggests that the
training set in each fold should be chosen to be as small
as possible. Zhang (1993) further establishes that un-
der similar conditions, cv(d) = ovsc((2n — d)/(n — d))
n-asymptotically. This means that alc = c¢v(1) and
BIC = cv(n(logn — 2)/(logn — 1)) n-asymptotically.

The behavior of the bootstrap for subset selection is
examined by Shao (1996), who proves that if the boot-
strap using sample size m, BS(m), satisfies m/n — 0, it



is p-asvmptotically equivalent to ¢v(n — m); in particu-
lar. Bs{n) = cv(1) n-asymptotically. Therefore, Bs(m) =
oLse({n 4+ my)/m) n-asymptotically.

One problem with these data resampling methods is
the difficulty of choosing an appropriate number of folds
d for cross-validation, or an appropriate sample size m
for the bootstrap. More fundamentally, data resampling
methods do not address problems caused by chance fea-
tures of competing variables whose biases are rooted in
the training set, and so cannot solve the problems raised
in Section 1.

2.7 The ric and cCIC

When there is no predefined ordering of variables, it is
necessary to take account of the process by which a suit-
able ordering is determined. The expected value of the ith
largest squared t-statistic of &k noisy variables approaches
2log(k/i) as k increases indefinitely. This property can
help with variable selection.

The soft thresholding procedure developed in the con-
text of wavelets (Donoho and Johnstone, 1994) and the
rIC for subset selection (Foster and George, 1994) both
aim to eliminate all non-contributory variables, up to the
largest, by replacing the threshold 2 in AIC with 2logk;
that 1s, RIC = oLsC(2logk). The more variables, the
higher the threshold. When the true hypothesis is the null
hypothesis (that is, there are no contributive variables), or
the contributive variables all have large effects, RIC finds
the correct model by eliminating all noisy variables up to
the largest. However, when there are significant variables
with small to moderate effects, these can be erroneously
eliminated by the higher threshold value.

The cIC procedure adjusts the training error by tak-
ing into account the average covariance of the predictions
and responses, based on the permutation distribution of
the dataset (Tibshirani and Knight, 1997). In an orthogo-
nally decomposed model space, the criterion simplifies to

Zt%i;k)] & (5)

i=1

cie(j) = |y —yam,ll? +2E°

7
~ Ay =y |+ 4> log(k/i)a®. (6)

i=1

where t?i:k> is the sth largest squared t-statistic out of k,
and EY is the expectation over the permutation distribu-
tion. As this equation shows, CIC uses a threshold value
that is twice the expected sum of the squared ¢ statis-
tics of the j largest noisy variables out of k. Because
limy o0 P[t?lzk) > 2Et%m)] = 0, this means that, for the
null hypothesis, even the largest noisy variable is almost
always eliminated from the model. Furthermore, this has
the advantage over RIC that smaller contributive variables
are more likely to be recognized and retained.
Nevertheless, shortcomings exist. For example, if most
variables have strong effects and will certainly not be dis-
carded, the remaining noisy variables are treated by CIC as

though they were the smallest out of k noisy variables—
whereas in reality, the number should be reduced to re-
flect the smaller number of noisy variables. An overfitted
model will likely result. Analogously, underfitting will oc-
cur when there are just a few contributive variables (Sec-
tion 8 gives an experimental illustration of this effect.) cic
is based on an expected ordering of the squared t-statistics
for noisy variables, and does not deal properly with situ-
ations where variables have mixed effects.

2.8 Remarks

We have now completed our brief review of the major pro-
cedures for linear regression. They all fail to solve the sys-
tematic problems raised in Section 1 in any general sense.
From our discussion, it has emerged that each procedure’s
performance is closely related to the proportions of the
different effects of the individual variables. It seems that
the essential feature of any particular regression problem
is the distribution of the effects of the variables it involves.
This raises three questions: how to define this distribution;
how to estimate it from the data, if indeed this is possi-
ble; and how to formulate satisfactory general regression
procedures if the distribution is known.

In Section 3, we introduce the orthogonal decomposi-
tion of models. In the resulting model space, the effects
of variables, which correspond to dimensions in the space,
are mutually independent. Once the effects of individual
variables have been teased out in this way, the distribution
of these effects is easily defined.

The second question asks whether we can estimate
this distribution from the data. Surprisingly, the an-
swer is “yes.” Moreover, estimators exist which are k-
asymptotically strongly consistent. In fact, estimation is
simply a clustering problem-——to be more precise, it is the
estimation of the mixing distribution of a semiparametric
mixture. Section 7 shows how to perform this.

We answer the third question by demonstrating three
successively more powerful techniques. First, following
conventional ideas of model selection, the distribution of
the effects of the variables can be used to derive an optimal
threshold for OLS subset model selection. The resulting
estimator is provably superior to all existing OLS subset
selection techniques that are based on the idea of thresh-
olding. Second, by showing that there are limitations to
the idea of thresholding variation reduction, we develop an
improved selection procedure that does not involve thresh-
olding. Third, abandoning the idea of selection entirely re-
sults in a new adjustment technique that substantially out-
performs all other procedures—outperforming OLS even
when all variables have large effects. Section 6 introduces
these procedures, which are all based on analyzing the
dimensional contributions of the estimated models intro-
duced in Section 4, and discusses their properties. Sec-
tion 5 illustrates the ideas of these procedures through
examples.
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3  Orthogonal
models

decomposition

In this section, we discuss issues conceruning orthogonal
decomposition of linear models. Advantages of an orthog-
onal model space include additivity over individual dimen-
sions of the distance measure between models, dimensional
independence, and the ability to define the distribution of
the effects of variables. We assume in the following that
no variables are collinear—that a model with k variables
has k degrees of freedom. We return to the problem of
collinear variables in Section 9.

Given a model M(3) with parameter vector (3, its pre-
diction vector is ypg = X where X is the n X k£ design
matrix X. This vector is located in the space spanned by
the k separate n-vectors that represent the values of the
individual variables. For any orthogonal basis of this space
bi...., by, let Py,..., P, be the corresponding projection
matrices onto the axes. ya; decomposes into k& compo-
nents Piyaq, ..., Pryat, each being a projection on to a
different axis. Clearly the whole is the sum of the parts:

k
Ym = Zj:l ])jy./\/(-

3.1

The distance D(M(B1), M(B=2)) between models M(51)
and M(3;) has been defined in (2) above. Although this
measure involves the noise variance ¢ for convenience of
both analysis and computation, it is [{yas,) — Ym(sa)?
that is the center of interest.

Given an orthogonal basis, the distance between two
models can be decomposed as follows.

Decomposing distances

k

DM(B1), M(B2)) = > Di(M(B1), M(Ba)), (7)

=1

where

Di{(M(B1), M(B2)) = [|Piyriss) — Piymaall* /o (8)

is the jth dimensional distance between the models. The
property of additivity of distance in this orthogonal space
will turn out to be crucial for our purposes: the distance
between the models is equal to the sum of the distances
between the models’ projections.

Denote by Mg the null model M(0), whose every pa-
rameter is zero. The distance between M and the null
madel is the absolute distance of M, denoted by A(M);
that is, A(M) = D(M, My). Decomposing the absolute
distance yields

where
A (M) = [|Pjyml|* /o

is the jth dimensional absolute distance of M.

3.2 Decomposing the estimation task

Two models are of central interest in the process of es-
timation: the true model M™ and the estimated model
M. The distance between them is defined as the loss of
the estimated model, denoted by £(M); that is, L{M) =
D{M, M*). The aim of estimation is to minimize the loss.

Being a distance, the loss can be decomposed into di-
mensional components

k
LM) =D Li(M), (11)
Jj=1
where
Lj(M) = Dj(M, M*) = ||Pjys — Py 11> /0® (12)

is the jth dimensional loss of model M.

Orthogonal decomposition breaks the estimation task
down into individual estimation tasks for each of the k
dimensions. A;(M?*) is the underlying absolute distance
in the jth dimension, and A4;{M) is an estimate of it.
The loss incurred by this estimate is £;(M). The sum of
the losses in each dimension is the total loss £L(M) of the
model M. This reduces the modeling task to estimating
A;j(M*) for all j. Once these estimated distances have
been found for each dimension j = 1,..., k, the estimated
model can be reconstructed from them; we tackle the de-
tails in the next subsection.

Our estimation process has two steps: an initial esti-
mate of A;(M*) followed by a further refinement stage.
This implies that there is some information not used in
the initial estimate that can be exploited to improve it;
we use the loss function to guide refinement. The first
step is to find a relationship between the initial estimate
A; (M) and A;(M*). The classic OLS estimate M, which
has parameter vector E = (X'X) 1 X'y, provides a basis
for such a relationship, because it is well known that for all
7, A;(M) are independently, noncentrally x* distributed
with one degree of freedom and noncentrality parameter
A;(M*)/2 (Schott, 1997, p390). We write this as

Aj(M\) ~ X3(A;(M™)/2) independently for all j. (13)

When ¢? is unknown and therefore replaced by the unbi-
ased OLS estimate 62, the x? distribution in (13) becomes
an F distribution: A, (M) ~ F(1,n— k, A;(M*)/2) inde-
pendently for all j. The F-distribution can be accurately
approximated by (13) when n/k > 1.

This relationship forms a cornerstone of this paper.

3.3 Reconstructing the model from esti-
mated absolute distances

Once final estimates for the absolute distances in each di-
mension have been found, the model needs to be recon-
structed from them. Consider how to build a model from
a set of absolute distances, denoted by Aj,...,Ar. Let



a = (51 A1, ..., s,/ Ay), where s; is either +1 or —1
depending on whether or not the jth projection of the
prediction vector yg; has the same direction as the or-
thogonal base b;. This choice of s;’s value is based on the
fact that the projections of y; and yas- are most likely
in the same direction. (It will become clear later that
alternative choices would degrade the estimate.)

QOur estimate of the parameter vector is

3 =(X'X)"'X'Bao, (14)
where B is a column matrix formed from the bases
hi,...,by. For example, if {4;,..., A} are the OLS es-
timates of the absolute distances in the corresponding di-
mensions, (14) gives £ the value of the OLS estimate 3.

It may be that not all the A;’s are available, but a
prediction vector is known that corresponds to all miss-
ing A,’s. This situation will occur if some dimensions are
forced to be in the final model—for example, the constant
term, or dimensions that give very great reductions in vari-
ation (very large A;’s). Suppose the number of dimensions
with known A;’s is k', and call the overall prediction vec-
tor for the remaining k — &' dimensions yest- Then the
estimated parameter vector is

G = (X'X)" ' X' (yrest + Bao), (15)
where B is an n x k' matrix and o a k’-vector.

The estimation of g from A;’s is fully described by (14)
and (15). However, in practice the computation takes a
different, more efficient, route. Once the n x k approxi-
mation equation of the original least-squares problem has
been orthogonally transformed, finding the least squares
solution reduces to solving a matrix equation

UB =d, (16)
where U is a k X k upper-triangular matrix and d is a
k-vector (Lawson and Hanson, 1974). As a matter of
fact, the square of the jth element in d is exactly the
OLS estimate A;0°. When a new set of estimates, say A;
( =1,...,k), is obtained, the corresponding estimate of
3* is the solution of (16) with the jth element in d replaced

by \/gjo without changing sign. If not all A\j ’s are known,
so that (15) is used instead of (14), only dimensions with
known A;’s are replaced.

3.4 A special case: OLS subset models

OLS subset models are just a special case of orthogonally
decomposed models in which each variable is associated
with an orthogonal dimension. This makes it easy to sim-
plify the model structure: discarding variables in a certain
order is the same as deleting dimensions in the same order.
If the discarded variables are actually redundant, deleting
them makes the model more accurate.

Denote the subset models of M, from the null model
up to the full one, by Mg, My, ..., My respectively. De-
note by ya; the prediction vector of the j-dimensional

model M, and by Pay, = Xy, (XjMWXM].)*lX}Wg; the
orthogonal projection matrix from the space of k dimen-
sions to the j-dimensional subspace corresponding to M.
Then ya; = Pau;ym and Py = Py — Pag,_,- Further-
more, the jth base can be written as b; = Pyy/|| Pyl =
(y./\/ij - yMJAI)/H(-yM] - yM];])H'

This demounstrates that OLS subset models are indeed
orthogonally decomposed models.

3.5 Summary of orthogonal decomposi-
tion

There are two advantages of using orthogonally decom-
posed models for estimation. The first is additivity: the
distance between two models is the sum of their distances
in each dimension. This convenient property is inher-
ited by two special distances: the absolute distance of the
model itself and the loss function of the estimated model.
Of course, any quantity that involves addition and sub-
traction of distances between models is additive too.

The second advantage is the mutual independence of
the model’s components in the different dimensions. This
makes the dimensional distances between models indepen-
dent too. In particular, the absolute distances in each di-
mension, and the losses incurred by an estimated model
in each dimension—as well as any measure derived from
these by additive operators—are independent between one
dimension and another.

These two features allow the process of estimating the
overall underlying model to be broken down into estimat-
ing its components in each dimension separately.

4 Contributions and contribution
functions

We next explore a new measure for a model: its contribu-
tion. An estimated model’s contribution is zero for the null
model and reaches a maximum when the model is the same
as the underlying one. It can be decomposed into £ inde-
pendent, additive components in k-dimensional orthogo-
nal space—the “dimensional contributions.” In practice,
these quantities are random variables, and we can define
both a cumulative expected contribution function and an
expected contribution density function of a given dimen-
sional contribution of a given estimated model. These two
functions can be estimated for any particular regression
problem, and will turn out to play key roles in understand-
ing the modeling process and in building actual models in
practice.

Definition 4.1 The contribution of an estimate M of the
underlying model M* is defined to be

C(M) = A(M*)y — L(M). (17)
The contribution is calculated as the difference between
two distances: the maximum gain that the estimated
model can possibly offer over the null model, and the loss



that the actual estimated model incurs from this ideal sit-
uation. The maximum gain is the gain achieved by the
true underlving model M* namely A(M™), the distance
of M* from the null model. The loss incurred by M is
its distance from the true model: D(M, M*). For a given
underlying model, the contribution reaches a maximum
when the estimated model is the same as the underlying
one, while the contribution is zero if the estimated model
is the null model. A positive contribution means that the
estimated model is better than the null one in terms of
predictive accuracy; a negative value means it is worse.
CGiven a k-dimensional orthogonal basis, the contribu-
tion function decomposes into & components that retain
the properties of additivity and dimensional independence:

k
C(M) =D Ci(M) (18)

=1
where

Cj(M) = A; (M) = L;(M) (19)
is the jth dimensional contribution of the model M.

In the subset selection task, each dimension is either re-
tained or discarded. It is clear that this decision should be
based on the sign of the corresponding dimensional contri-
bution. If a dimension’s contribution is positive, retaining
it will give better predictive accuracy than discarding it,
and conversely, if the contribution is negative then discard-
ing it will improve accuracy. If the dimensional contribu-
tion is zero, it makes no difference to predictive accuracy
whether that dimension is retained or not.

In following we focus on a single dimension, the jth.
The results of individual dimensions can easily be com-
bined because dimensions are independent and the con-
tribution measure is additive. Focusing on the contri-
bution in this dimension, we write a;? = A;(M) and
a*2 = A;(M*). Without loss of generality, assume that
a; > 0. If the projection of yaq in the jth dimension is in
the same direction as that of ya~, then a; is the positive
square root of A;(M); otherwise it is the negative square
root. In either case, the contribution can be written

C;(M) = a}* = (a; — a})*. (20)
Clearly, C;(M) is zero when a; is 0 or 2aj. When a; lies
between these values, the contribution is positive. For any
other values of a;, it is negative. The maximum contribu-
tion is achieved when a; = aj, and has value af, which
occurs when—in this dimension—the estimated model is
the true model. This is obviously the best that the esti-
mated model can do in this dimension.

In practice, however, only a;* is available. Neither the
value of a;z nor the directional relationship between the
two projections are known. Denote C;(M) by C(a;?),
altering the notion of the contribution of M in this di-
mension to the contribution of a;?. Notice, however, that
C(a;?) is used below as shorthand for C(aﬁ;a;??,sj) =
C;(M), where s; is the sign of a;j. In the following we

drop the subscript j when only one dimension is under
consideration, giving a* and a*” for a;* and a}’ respec-
tively. We also use A for a” since it is this, rather than a,
that is available; likewise we use A* for a**

We have argued that the performance of an estimated
model can be analyzed in terms of the value of its con-
tribution in each dimension. Unfortunately, this value is
unavailable in practice. What can be computed is the ex-
pected value, denoted by E[C(A)], where the expectation
is taken over all other factors that affect the value of C(A4).

In practice, the estimate A is a random variable. For
example, according to (13), the OLS estimate is A ~
x3(A*/2). Analogously to the definitions of CDF and pdf
of a random variable, we define the cumulative expected
contribution function and the expected contribution density
function of A, denoted by H(A) and h(A) respectively.

Definition 4.2 The cumulative
function of A is defined as

expected contribution

A
H(A) = / EC()]f (1) dt, (21)

where f(A) is the pdf of A.

Definition 4.3 The expected contribution density func-
tion of A is defined as

dH(A)
dA
For reason of convenience, we call H(A) and h(A) the H-

and h-functions of A. Immediately from the above defini-
tions, we have

h(A) =

(22)

A
T Ay

E[C(A)] (23)

o~

Now we derive an expression for h(A) given A*, where
A is the oOLS estimate of the dimensional absolute dis-
tance. We utilize the property (13). The pdf of the non-
central chi-squared distribution has an infinite series form,
and thus is inconvenient for both analysis and computa-
tion. Instead, setting a* = +V/A*, we use the fact that
A =a? ~ x}(a*?/2) where @ ~ N(a*,1). The pdf of a is
given by

1 a—a* 2
e (24)

a,a") = —
p(a;a”) N
Then the CDF of A given A* is

A Vi
F(A; 4%) = [ otV dr

(25)
hence
~ dF(g;A*)
_ p(VAVA) + p(—V/4; VAT (26)

2vV/A



Jsing (20), rewrite the contribution of A given A* by a
two- fng mment function c(a; a®)

C(4) = cla;a*) = a*? = (a — a*)?.
Here only the sign of @ can affect the value of the contri-
bution, and so the expected contribution of A given A*

(27)

('('\/T »1*)]*)(\/2 VA +c(—\/jy VAR p( f W
(VA5 A +p(s“vffl VAF)
Using (23),

DA A% = c(\f \/_)p(\/_ VAT
2\f

b o=V AN TN~V AVA). (29)

In particular, A(0; A*) = 0 for every A* (see Appendix A).
This gives the following theorem.

Theorem 4.1 The ezpected contribution density function
(—1 A*) of the OLS estimate A given A* is determined by

(29), while the pdf F(A; A*) is determined by (26).

Because E[C(A)] = h(A)/f(A) by (23), and f(A) is
always positive, the value of h(A) has the same sign as
E[C(A)]. Therefore the sign of h can be used as a criterion
to determine whether a dimension should be discarded or
not. Within a positive interval, where h(A) > 0, A is ex-
pected to contribute positively to the predictive accuracy,
whereas within a negative one, where h(A4) < 0, it will do
the opposite. At a zero of h(A4) the expected contribution
1S zero. N

Figure 1(a) shows examples of h(A4; A*) where A* is
0,0.5,1,2 and 5. All the curves start from the origin.
When A* = 0, the curve first decreases as A increases, and
then gradually increases, approaching the horizontal axis
asymptotically and never rising above it. As the value of
A* grows, the h(A; A*} curve generally rises. However, it
always lies below the horizontal axis until A* becomes 0.5.
When A* > 0.5, there is one positive interval. A maximum
is reached not far from A* (the maximum approaches A*
as the latter increases), and thereafter each curve slowly
descends to meet the axis at around 4A* (the ordinate
approaches this value as A* increases). Thereafter the in-
terval remains negative; within it, each hA-function reaches
a minimum and then ascends to approach the axis asymp-
totically from below.

Most observations in the last paragraph are secured in
the following theorem. For convenience, denote the zeros
of hbyZ,, Z5, Z3 in increasing order along the horizontal
axis, and assume that h is properly defined at co. Since A*
in practice is always finite, we only consider the situation
AY < 00.

Theorem 4.2 Properties of Zz(‘@; A%

1. Every h(ﬁ; A*) has three zeros (two of which may
coincide).

When A* < 0.5, 21 = 2, = 0, Z3 = oo; when
A" > 05,21 =0,0< 2y <00, Z3 =0

3. limasLoo(Z2 — 44%) = 0.

4. R(A;A%) > 0 for A € (0,2,) and h{A; A*) < 0 for
Ae (ZQ,OO).

o

5. When A* > 0.5, h(ﬁ; A*) has a unique mazimum,
at Amax, Say. Then lim g« oo {Amax — 4%) = 0.

6. h{A; A*) is continuous for every A and A*.

The proof can be easily established using formulae (24)-
(29). Almost all these properties are evident in Fig-
ure 1(a). The critical value 0.5—the largest value of A* for
which h(ﬁ A*) has no positive interval—can be obtained
by settmg to zero the first derivative of h(A A*) with re-
spect to A at point A = 0. The derivatives around A =0
can be obtained using the Taylor expansion of h(A; A%)

with respect to VA (see Appendix A).

As noted earlier, the sign of A can be used as a cri-
terion for subset selection. In Section 5, Figure 1(a) is
interpreted from a subset selection perspective.

Figure 1(b) shows the expected contribution curves
E[C(E)M*] = h(A; A*)/f(A; A*). The location of the
maximum converges to A* as A* — oo, and it converges
very quickly—when A* = 2, the difference is almost un-
observable.

When deriving the H- and A-functions, we have as-
sumed that the underlying dimensional absolute distance
A* is given. However, A*, is, in practice, unknown—only
the value of A is known. To allow the functions to be cal-
culated, we consider A* to be a random variable with a
distribution G(A*), a distribution which is estimable from
a sample of A. This is exactly the problem of estimat-
ing a mixing distribution. In our situation, the pdf of the
corresponding mixture distribution has the general form

FAG) = [ | fAi A7) daan, (30)
where A* € RY, the nonnegative half real line. G(A*) is
the mixing distribution function, f(A4; A*) the pdf of the
component distribution, and f(A4;G) the pdf of the mix-
ture distribution. Section 7 shows how to estimate the
mixing distribution from a sample of A.

If the mixing distribution G(A*) is given, the h-function
of A can be obtained from the following theorem.

Theorem 4.3 Let A* be distributed according to G(A*)
and A be a random variable sampled from the mizture dis-
tribution defined in (30). Then
hMA;G) = / h(A; A*)dG(A"), (31)
R+

where h{A; A*) is the h-function determined by f(A; A™).



(a)

Figure 11 The expected contribution density function R(A: A*) and the expected contribution E{C(g)l:’i*], for A" =0,.5,1,2,5.

The proof follows easily from the definition of h.

the modeling situation, each A corresponds to an A*.
Therefore G(A”) is discrete and the mixture is a countable
one. Suppose the discrete random variable A* take values
from the set {af;4 = 1,...,m}—m could be as large as
L—and define the pdf g(4*) as

m

glal) = w;, where Zwi =1. (32)
=1
Then (30) can be re-written as
FAG) =Y wif(4;07), (33)
=1
and (31) as
h(A;G) = Zwih(A; al). (34)
i=1

Although the general forms (30) and (31) are adopted in
the following analysis, it is (33) and (34) that are used in
practical computations. Note that if h(4;G) and f(4;G)
are known, the expected contribution of 4 given G(A*) is
given by (23) as h(A4; G)/f(A;G).

Since all IZ[j’s of an oLs estimated model which is de-
composed in an orthogonal space are mutually indepen-
dent (see (13)), they form a sample from the mixture dis-
tribution with a discrete mixing distribution G(A*). The
pdf of the mixture distribution takes the form (33), while
the pdf of the component distribution is provided by (26).
Likewise the hA-function of the mixture has the form (34),
while the component h-function is given by (29).

From now on, the mixing distribution G(A*) becomes
our major concern. If f(A; A*) and h(A; A*) are well de-
fined (as they are in OLS estimation), G(A*) uniquely de-
termines f(4;G) and h(4;G) by (30) and (31) respec-
tively. The following sections analyze the modeling pro-
cess with known G(A*), show how to build the best model
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with known G{A*), and finally tackle the question of esti-
mating G(A*).

5 The role of H- and h-functions
in modeling

The H- and h- functions illuminate our understanding of
the modeling process, and help with building models too.
Here we use them to illustrate issues associated with the
OLS subset selection procedures described in Section 1, and
to elucidate new, hitherto unreported, phenomena. While
we concentrate on OLS subset selection criteria, we touch
on shrinkage methods too.

We also illustrate with examples the basis for the new
procedures that are formally defined in the next section.
Not only does subset selection by thresholding variation
reduction severely restrict the modeling space, but the
very idea of subset selection is a limited one—when a wider
modeling space is considered, better estimators emerge.
Consequently we expand our horizon from subset selec-
tion to the general modeling problem, producing a final
model that is not a least-squares fit at all. This improves
on OLS modeling even when all dimensions contribute sig-
nificantly.

The methodology we adopt is suggested by contrast-
ing the model-based selection problem that we have stud-
ied so far with the “dimension-based selection” that is
used in principal component analysis. Dimension-based
selection tests each orthogonal dimension independently
for elimination, whereas model-based selection analyses a
set of orthogonal nested models in sequence (as discussed
in subsection 2.2, the sequence may be defined a priori or
computed from the data). In dimension-based selection,
deleting a dimension removes the transformed variable as-
sociated with it, and although this reduces the number



of dimensions, it does not generally reduce the number of
I

ion 2 showed that all oLs subset selection criteria
the idea of thresholding the amount by which the
tion is reduced in each dimension. While straightfor-
for dimension-based selection, this needs some ad-
justment in model-based selection because the variation
reductions of the nested models may not be in the desired
decreasing order. The necessary adjustment, if p variables
are tested, is to compare the reductions of the variation
by these variables with p times the threshold value. The
central idea remains the same.

The key issue in OLS subset selection is the choice of
threshold. €1¢’s threshold depends on the number of di-
mensions in the model, whereas other methods use fixed
thresholds. We denote these schemes by OLSC(7), where 7
is the threshold (see (4)). The optimum value of 7, in the
sense of minimum expected risk, is denoted by 7*. We now
consider how 7* can be determined using the H-function,
assuming that all dimensions have the same known H.
We begin with dimension-based selection and tackle the
nested model situation later.

1y
vallla

ward

Theorem 5.1 Given an orthogonal decomposition of a
model space My, let M* € My be any underlying model
and M € M, be its estimate. Assume that all dimen-
sional absolute distances of M have the same distribution
function F(A) and thus the same H-function. Rank the
A;(M)’s in decreasing order as j increases. Then the es-
timator MPYSU) of M* has the minimum expected risk
with respect to F(A) for every MO if and only if

7" = argmin H(A).
A>0

(35)

Proof. For dimension j, we know {rom (19) that
Li(M) = A;(M*) = C;(M).
orsc(r) discards dimension j if A;(M) <7, so

0
Ci(M)

if ;M) < T

G (M) = { if A (M) > 7,

where A;(AM) is a random variable which is distributed
according to the CDF F'(+).

E[C, (MOS0 dF (A)
JR+

[ Eaenara - [ e o))
JR+ r

= A;(M*) = H{co) + H(7).

Taking advantage of additivity and dimensional indepen-
dence, sum the above equation over all k dimensions:

/' ELL(MOS)] dF(A) = AM®) — kH (o0) + kH (7).
Jp+
(36)
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H{7) is the only term that varies with 7 on the right-hand
side of (36). Thus minimizing the expected risk is equiv-
alent to minimizing H (1), and wvice versa. This completes
the proof. O

Theorem 5.1 requires the dimensional absolute dis-
tances of the initially estimated model to be sorted into
decreasing order. This is easily accomplished in the
dimension-based situation, but not in the model-based sit-
uation. However, the nested models are invariably gener-
ated in a way that attempts to establish such an order,
and so this condition is approximately satisfied in practice.
Thus M=) is 3 good approximation to the minimum
expected risk estimator even in the model-based situation.

From Theorem 5.1, we have

Corollary 5.1.1 Properties of 7.

1. 7" = argmingerz,) H(Z), where {Z;} is the set of
zeros of h.

If 7 >0, h{r*=) > 0; if 7" < o0, h(r*+) < 0.

H(r*) <0 and H(co) — H(7*) > 0.

. If there exists A such that H(oco) — H(A) > 0, then
T < 0.

Properties 1 and 2 show that the optimum 7* must be
a zero of h—moreover, one that separates a negative inter-
val to the left from a positive interval to the right (unless
7% = 0 or oo). Properties 3 and 4 narrow the set of ze-
ros that includes the optimal value 7*, and thus help to
establish which one is the optimum.

Four examples follow. The first two illustrate Theo-
rem 5.1 in a dimension-based situation in which each di-
mension is processed individually. In the first example,
each dimension’s underlying A* is known—equivalently,
its h(A; A*) is known. In the second, the underlying value
of each dimensional absolute distance is chosen from two
possibilities, and only the mixing distribution of these two
values and the corresponding h-functions are known.

The last two examples introduce the ideas that we will
explore in the next section for building models.

Throughout these examples, notice that the dimen-
sional contributions are only ever used in expected-value
form, and the component h-function is the oLs h(A; A*).

Example 1 Subset selection from a single mizture. Con-
sider the function h(A; A*) illustrated in Figure 1(a). We
suppose that all dimensions have the same h(A; A*).

Noisy dimensions, and ones whose effects are unde-
tectable. A noisy dimension, for which h(4;0) is
always negative, will be eliminated from the model
no matter how large its absolute distance A. Since
lima» 0 h(A; A*) = h(A;0), nonredundant dimensions
behave more like noisy ones as their underlying effect
decreases—in other words, their contribution eventually
becomes undetectable. When A* < 0.5, any contribution
is completely overwhelmed by the noise, and no subset
selection procedure can detect it.



Dimensions with small vs. large effects. When the es-

te resides in a negative interval of h, its contribu-
All As, no matter how laxge their A*,
have at least one negative interval (4A* co). This in-
validates all subset selection schemes that eliminate di-
mensions based on thresholding their variation reductions
threshold, because a large estimate A does
not necessarily mean that the corresponding variable is
contributive—its contribution also depends on A*. The
reason that threshold-type selecfion works at all is that
the estimate A in a dimension whose effect is large is less
likely to fall into a negative interval than one whose effect
is small.

101 negative.

with fixed

The oLsc(r) criterion. The OLS subset selection crite-
rion OLSC{7) eliminates dimensions whose OLS estimate
falls below the threshold 7, where 7 = 2 for aic, logn for
B1C, 2log k for RIC, and the optimal value is 7* as defined
n {35). Since dimensions should be discarded based on
the sign of their expected contribution, we consider three
cases: dimensions with zero and small effects, those with
moderate effects, and those with large effects.

When a dimension is redundant, i.e. A* =0, it should
always be discarded no matter how large the estimate A.
This can only be done by oLsC(7*), with 7% = oo in this
case. Whenever 7 < oo, dimensions whose A exceeds T are
kept inside the model: thus a certain proportion of redun-
dant variables are included in the final model. Dimensions
with small effects behave similarly to noisy ones, and the
shreshold value 7* = oo is still best—which results in the
null model.

Suppose that dimensions have moderate effects. As the
value of 4* increases from zero, the value of the cumula-
tive expected contribution H{r) will at some point change
sign. At this point, the model found by orsc(r), which
heretofore has been better than the full model, becomes
worse than it. Hence there is a value of A* for which the
predictive ability of M°¥¢(7) is the same as that of the full
model. Furthermore, there exists a value of A* at which
the predictive ability of the null mode] is the same as that
of the full model. In these cases, model M) ig either
the null model or the full one, since 7™ is either 0 or co
depending on the value of A*.

When each dimension has a large effect—Ilarge enough
that the position of the second zero of h(A; A*) is at least
7—any OLSC(r) with fixed 7 will inevitably eliminate con-
tributive dimensions. This means that the full model is a
better one than MO°7)  Furthermore, oLsc(r*) with
7* = 0 will always choose the full model, which is the
optimal model for every AOSC(T)

Shrinkage methods in orthogonal space. In orthogo-
nal regression, when X'X is a diagonal matrix, contribu-
tion functions help explain why shrinkage methods work.
These methods shrink the parameter values of OLS models
and use smalier values than the OLS estimates. This may
or may not change the signs of the OLS estimated param-
eters; however, for orthogonal regressions, the signs of the
parameters are left unchanged. In this situation, there-
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fore, shrinking parameters is tantamount to shrinking the
A’s. Ridge regression shrinks all the parameters while the
nn-garrote and lasso shrink the larger parameters and zero
the smaller ones.

When A” is small, it is possible to choose a shrinkage
parameter that will shrink A’s that lie between A* and 4.A4*
to around A*, and shrink the negative contributions out-
side 44" to become positively contributive—despite the
fact that A around the maximum point A* are shrunk to
smaller values. This may give the resulting model lower
predictive error than any model selected by oLsc(r), in-
cluding 7 = 7. Zeroing the smaller A’s by the nn-garrote
and lasso does not guarantee better predictive accuracy
than ridge regression, for these dimensions might be con-
tributive. When A* is large, shrinkage methods perform
badly because the distribution of A tends to be sharper
around A*. This is why the oOLS subset selection often
does better in this situation.

Example 2 Subset selection from a double mizture.
Suppose

~ k

h(A) = 2

h(A ),

T+ k—ljh(ﬁ; aj (37)
where k = k; + ks. For k; dimensions the underlying A*
is af, while for the remaining ko dimensions it is a3. A
is an observation sampled from the mixture distribution
FlA) =5 f(4 al)+ ’”Zf(A a3). Altering the values of k3,
ai, ko and «} yields the different hs illustrated in Figure 2.

Let us consider the optimal threshold 7* of oLsc(r). In
Figure 2(a), where af =0, af = 3 and k; : kz = 80 : 20,
no positive interval exists despite the fact that there are
20 nonredundant dimensions. This is because the effect
of all the nonredundant dimensions is overwhelmed by the
noisy ones. No matter how large its effect, any dimension
can be overwhelmed by a sufficient number of noisy ones.
In this case 7% = 0o and oLsC(7") selects the null model.

In Figure 2(b), which is obtained from the previous sit-
uation by altering ki : k2 to 75 : 25, there is a positive
interval. But H(co) is the minimum of all zeros, so that
7* remains oo and the model chosen by oLsc(r*) is still
the null one. The contributive dimensions are still sub-
merged by the noisy ones.

If a finite threshold value 7% exists, it must satisfy
H(oco) — H(7*) > 0 (Property 4 of Corollary 5.1.1). Then
it can take on any nonnegative value by adjusting the four
parameters ki, aj, k2 and a}. Figure 2(c) shows three
functions h, obtained by setting of and o3 to 0 and 20 re-
spectively and making the ratio between k; and ky 5 : 95,
50 : 50, and 95 : 5. As these curves show, the correspond-
ing values of 7% are about 2, 4 and 8.

In Figure 2(d), k1 : k2 = 95 : 5 and o} and o} are set to
make H(Z3) = 0, where Z3 is the third zero of h. In this
case, there are two possibilities for 7*: the origin Z;, and
Z3. Z3 gives a simpler model. Notice that the number of
parameters of the two models is in the approximate ratio
5 : 100. However, the balance is easily broken—for exam-
ple, if af increases slightly, then there is a single value 0 for
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% Although the larger model has slightly smaller predic-  with smaller A and discard ones with larger A. Or it

rror than the smaller one, it is much more complex.

<t

situation where a far more succinct model can
be obtained with a small sacrifice in predictive accuracy.

Example 3 Subset selection based on the sign of h. Al-
though oLsC{r*} is optimal among every OLSC(7), it has
limitations. It always deletes dimensions whose A’s fall be-
low the threshold, and retains the remaining ones. Thus it
may delete dimensions that lie in the positive intervals of
1, and retain ones in the negative intervals. We know that
the sign of h is the sign of the expected contribution, and
the selection can be improved by using this fact: we sim-
ply retain dimensions whose h(A4) is positive and discard
the remainder.

In the next section we formalize this idea and prove
that predictive accuracy always increases. Because the
positive and negative intervals of h can lie anywhere along
the half real line, this procedure may retain dimensions
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may delete a dimension whose A lies between those of the
other dimensions. For example, in Figure 2(b), the new
procedure will keep all the dimensions whose A’s lie within
the small positive interval, despite the fact that oLsc{r*)
chooses the null model.

Example 4 General modeling. So far we have only dis-
cussed subset selection, where the estimate A is either
altered to zero or remains the same. A natural question
is whether better results might be obtained by relaxing
this constraint—and indeed they are. For example, in Ex-
ample 1, where all dimensions are noisy, 0LSC(7*) deletes
them all and chooses the null model. This in effect re-
places the estimate A by the underlying A*, which is 0 in
this case. Similarly, when all estimates A have the same
underlying A* (which is non-zero), and all A’s are updated
to A*, the estimated model improves significantly—even
though no dimension is redundant.



A gimilar thing happens when the underlying 4~ is
distributed according to a mixture distribution. In Fig-
ure 2{a), the h-function of the mixture has no positive
interval, although 20 out of 100 dimensions have A* = 3.
The best that subset selection can do is to discard all di-
mensions. However, a dimension with A = 20-—despite
i(A) being less than 0—is unlikely to be a redundant one;
it is more likely to belong to the group for which A* = 3.
Altering its oLs estimate A from 20 to 3 is likely to convert
the dimension into a contributive one.

The next section formulates a formal estimation proce-
dure based on this idea.

6 Modeling with known G(A*)

We now assume that the underlying G(A*) is known
and define a group of six procedures, collectively called
pace regression, which build models by adjusting the
orthogonal projections based on estimations of the ex-
pected dimensional contributions. They are denoted
PACE, PACEs, ...,PACEg, and the model produced by
PACE; is written MPCE “Pace” stands for “projection
adjustment by contribution estimation.” We will learn in
the next section how to estimate G(A4*).

G(A*) is the distribution function of a random variable
A* that represents the dimensional absolute distance of
the underlying model M*, These distances, denoted by
Ar, ..., Ay, form a sample of size k from G(A*). When the
mixing distribution G(A*) is known, (30) can be used to
obtain the mixture pdf f(A; G) from the component distri-
bution pdf f(A; A*). From this, along with the component
h-function h(A4; A*), the functions h(A4;G) and H(A4;G)
can be found from (31) and (23) respectively. As Theo-
rem 4.1 shows, OLS estimation provides both f(A4; A*) and
h{A4; A*).

The pace procedures consist of two steps. The first,
which is the same for all procedures, generates an ini-
tial model M. We always use the OLS estimate M for
this, although any initial model can be used so long as
the component distribution and the component h-function
are available. Decomposing M in a given orthogonal
space yields the model’s dimensional absolute distances,
say Ay,...,Ag. These are in fact a sample from a mixture
distribution F(A;G) with known component distribution
F(A; A*) and mixing distribution G(A*). In the second
step, the final model is generated from either (14) or (15)
where A, .. Ak are obtained by updating Al, . ,Ak.
The new procedures differ in how the updating is done.

To characterize the resulting performance, we define a
class of estimators and show that pace estimators are op-
timal within this class, or a subclass of it. The class of es-
timators My, (where k is the number of orthogonal dimen-
sions) is as follows: given the initial model M and its abso-
lute distances in an orthogonal decomposed model space,
every member of 9y is an updating of M by (14) and wvice
versa, where the updating is entirely dependent on the set
of absolute distances of M. Clearly, M°S¢(™) e 9, for
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any 7.

Various corollaries below establish that the pace esti-
mators are better than others, although the proofs are
omitted. FEach estimator’s optimality is established by
a theorem that applies to a specific subclass, and prov-
ing each corollary reduces to exhibiting an example where
the performance is actually better, which is easily done.
When we say that one estimator is “better than” another,
we mean in the usual sense of risk. With one exception,
better estimators have lower expected risk (the exception,
as noted below, is Corollary 6.2.1, which compares PACE;
and PACE3).

Of the six procedures, PACE; and PACE; perform model-
based selection, that is, they select a subset model from
a sequence. Procedures PACE; and PACE4 address the
dimension-based situation, where each orthogonal dimen-
sion is tested and selected (or not) individually. If these
procedures are used for a sequence of orthogonal nested
models, the resulting model may not belong to the se-
quence. The last two procedures, PACE; and PACEg, are
not selection procedures. Instead, they update the ab-
solute distances of the estimated model to values chosen
appropriately from the nonnegative half real line.

Theorem 5.1 shows that there is an optimal threshold
for threshold-type OLS subset selection that minimizes the
expected risk. We use this idea for nested models.

Procedure 1 (PACE;). Given a sequence of orthogonal
nested models, let T = argminzeyz,y H(Z), where {Z;}
is the set of zeros of h. Output the model in the sequence
selected by oLsC(T).

According to Corollary 5.1.1, Procedure 1 finds the op-
timal threshold 7*. Therefore PACE; = oLsc(7*) and
MPACEL = AOLSC(TT) - Since the sequence of dimensional
absolute distances of the model M is not necessarily al-
ways decreasing, M°("") is not guaranteed to be the
minimum expected risk estimator. However, in practice
these distances do generally decrease, and so in the nested
model situation M¢(7") is an excellent approximation to
the minimum expected risk estimator. In this sense, PACE;
is superior to other OLS subset selection procedures—OLS,
AIC, BIC, RIC, and cic—for these do not use the opti-
mal threshold 7*. In particular, the procedure CIC uses a
threshold that depends on the number of variables in the
subset model as well as the total number of variables. The
relative performance of these procedures depends on the
particular experiments used for comparison, since datasets
exist for which any selection criterion’s threshold coincides
with the optimal value 7*.

Instead of approximating the optimum as PACE; does,
PACE- always selects the optimal model from a sequence
of nested models, where optimality is in the usual sense of
risk.

Procedure 2 (PACE;). Among a sequence of orthogonal
nested models, output the one which has the largest value

of 3201 h(A)/ F(Ay).



Theorem 6.1 Given G(A™), M7 fias the smallest risk
in o subclass of 9N in which each estimator can only se-

n the sequence of orthogonal nested models that is

Is mof Let M be Lhe selected model, then A; =0ifi > J

<

and 4; = A; ii 1 < 7. From the definition of dimensional
contribution (19), we have

J
AM*) =S E[C(A
i=1
B“( ause [C(fi ) = h(A) ] f(A 4;) by (23), minimizing
L{M)] is equivalent to maximizing Y7, h(A )/ F(A;
mti\ respect to j. This completes the proof. O

E[L(M;)] = (38)

Corollary 6.1.1 Given G{A™} and a sequence of orthog-

onal nested models, MFAE2 s o beiter estimator than

‘\/i”’“’ T for any 7. This includes MPAOEL ) MO MAC
B[( \/iRi( un(] \/lfi(

Since n-asymptotically the cross-validation subset se-
lection procedure ¢v(d) = oLsc((2n —d)/(n —d)) and the
bootstrap subset selection procedure Bs(m) = oLsC((n +
m)/m) (see subsection 2.6}, we have

Corollary 6.1.2 Given G(A*) and a sequence of orthog-
onal nested models, n-asymptotically MP*®2 is a better
estimator than M for any d and M®™ for any m.

In fact, the difference between the models generated by
PACE;, and PACE, is small, because we have

Corollary 6.1.3 Given G(A*),
{_;j;j =1,...,k} are in decreasing order as j increases,
almost surely, the difference between the wvalues of the
risk of MPAE2 gnd the expected risk of MFAF1 tends to
zero k-asymptotically. In particular, if MPAEL is unique,
MPEPACEL — AMPACE2 g k-asymptotically.

if the elements of

Proof. Since {ﬁj;j = 1,...,k} are in decreasing or-
der as j increases, M™% is in effect model that min-
imizes [, B[L(M;)]dFy(A) with respect to j, where
F,(4) is Kolmogrov’s empirical CDF of A, and MPACE:
is the model that minimizes [,  E[L(M})] dF(A) with
respect to j. Clearly, imy oo [p+ E[E(Mj)]dFk(ﬁ) =
Ju+ BIL(M;)] dF(A) almost surely, because of the Dom-
inated Convergence theorem(Galambos, 1995). Appar-
ently, if MPAB2 £ MPACEL 35 & — oo, there would exist
more than one M1 contradicting the uniqueness of

AMPACET O

These two procedures show how to select the best model
in a sequence of k + 1 nested models. However, no model
sequence can guarantee that the optimal model is one of
the nested models. Thus we now consider dimension-based
modeling, where the final model can be a combination of
any dimensions. With selection, the number of potential
models given the projections on % dimensions is as large as
2% When the orthogonal basis is provided by a sequence

i5

of orthogonal nested models, this kind of selection means
that the final model may not be one of the nested models,
and its parameter vector may not be the OLS fit in terms
of the original variables.

Procedure 3 (PACE3). Let 7 = argminge(z,y H(Z),
where {Z;} is the set of zeros of h. Set [Ey =0 Li] <7
otherwise A; = Aj.
(A, ... AR

Theorem 6.2 Given G(AY), M 45 the minimum ex-
pected risk estimator of M* with respect to F(A) in an
estimator class which is the subclass of 9y in which ev-
ery estimator is determined by {A1,..., Ay} where A; €

{0, 4;} for all j.

Qutput the model determined by

The proof is omitted; it is similar to that of Theo-

rem 5.1.

Since MPACE1 is the model determined by {4, .. JAd)
where A; is either Ej or 0 depending on whether the asso-
ciated variable is included or not, this estimator belongs
to the class described in Theorem 6.2. This gives the fol-
lowing corollary.

Corollary 6.2.1 Given G(A*), MFA°Es s q better esti-
mator (in the sense of expected risk) than M1,

The difference between the models generated by PACE;
and PACE3 is also small, because
Corollary 6.2.2 Given G(A*), if the of

{A;;5 =1,...,k} are in decreasing order as j increases,

MPACEL — A (PACEs

elements

As we have seen, whether or not a dimension is con-
tributive is indicated by the sign of the corresponding h-
function. This leads to the next procedure.

Set A'j 0 Zf h(f/i\]) S O,‘
Output the model determined by

Procedure 4 (PACEy).
= Aj.

otherwise fij
{Aq, ... A}

PACE4 does not rank dimensions in order of absolute
distance and eliminate those with smaller distances, as
do conventional subset selection procedures and the pre-
ceding pace procedures. Instead, it eliminates dimensions
that are not contributive in the estimated model irrespec-
tive of the magnitude of their dimensional absolute dis-
tance. It may eliminate a dimension with a larger abso-
lute distance than another dimension that is retained. (In
fact the other procedures may end up doing this occasion-
ally, but they do so only because of incorrect ranking of
variables.)

Theorem 6.3 Given G(A*), M™ has the smallest risk
in the subclass of 9y in which every estimator is deter-
mined by {Al,.. Ak} where A € {0, A; i} forall j.

The proof is omitted;
rem 6.1.

it is similar to that of Theo-

Because the estimator class defined in Theorem 6.3 cov-
ers the classes defined in Theorems 6.1 and 6.2,



Corollary 6.3.1 Given G(AY)
y Iz
mator than ,‘ui’ ACB2 i ATACES

MPEABL 45 q better esti-

PACEs, PACEs and PACE4 are all selection pro-

each updated dimensional absolute distance of

the estimated model must be either 0 or A The optimal
P

PACEY,

cedures:

value of l is often neither of these. If the possible values
are chosen from RT instead, the best updated estimate
A is the one that maximizes the expected contribution of
the jth dimension given ﬂj and G{A*). The optimality is
achieved over an uncountably infinite set of potential mod-
ols. This relaxation can improve performance dramatically
even when there are no noisy dimensions.

Procedure 5 (PACEs).
RN 4;} where

Output the model determined by

h(A; A%)

A T p A AN dGHAY).
Jm+ 'f(AA;A*\)f(A], ) G( )

(39)

A; = argmax
AcRT

Theorem 6.4 Given G{A*), MP°®s has the smallest risk
of all estimators n My,

Proof. Each OLS estimate 217 is an observation sampled
from the mixture pdf f{ A; G) determined by the compo-
nent pdf f(A;G) and the mixing distribution G(A*). If
X] is replaced by any A € RT, the expected contribution
of 4 given /Tj and G(A*) is

Je+ B A)‘A*]f(AWA*)dG(A*)

E[C(A)|A;,G] =
fIR+ AJ,A dG(A*)
(40)
Since [p 4 f(A J,1 *)dG(A*) is constant for every A, and
E[C(A)|A*] = h(A; A*)/f(A4; A*) from (23), (39) actu-

ally maximizes over the expected contribution of A. From
{19}, this is equivalent to minimizing the expect loss in
the jth dimension. Because all dimensions are mutually
independent, the risk of the updated model given the set
{4;} and G(4*) is minimized. O

Corollary 6.4.1 Given G(A*), MPA%Es
mator than MFPAPs.

is a better esti-

This motivates a new shrinkage method: shrink the
magnitude of the orthogonal projections of the model M.
This is equivalent to updating the OLS estimate M to a
model that satisfies 4; < A; for every j. Since all shrink-
age estimators of this type obviously yield a member of
M., MPACEs ig g better estimator than any of them. Mod-
els produced by shrinkage methods in the literature—ridge
regression (including ridge regression for subset selection),
the nn-garrote, and the lasso—do not necessarily belong
to this subclass, and so we cannot show that the new es-
timator is superior to them in general. However, in the
important special case of orthogonal regression, when the
vectors corresponding to each variable are taken as the or-
thogonal axes, these shrinkage methods do belong to the
above subclass. Therefore,
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Corollary 6.4.2 Given G(A*"), M
mator for orthogonal regression than M98,
and M3sse,

15 a better esti-
fv{llll*g}ll'l'OtQ

A general explicit solution to (39) does not seem to ex-
ist. Rather than resorting to numerical techniques, how-
ever, a good approximate solution is available. Consider-
ing that

h(A; A*)

fA; 4%
(VA VA )P(VA VAT + o(—VA; VAT ) p(—VA VAT
(VA VAY) + p(—VA; VA7) ’

(41)
the dominant part on the right-hand side is
(VA VANP(VA;V/A*)—and  its  dominance  in-
creases dramatically as A* increases. Replacing

R(A; A*)/ f(A; A*) in (39) by ¢(v/A;VA*), we obtain the
following approximation to PACEs.

Procedure 6 (PACEg). Output the model determined by

{ﬁl, ..., Ac} where
,AL- = arg max / (VA4 \/F)f(gj;A*)dG(A*)- (42)
AcrT JR*

Equation (42) can be solved by setting the first deriva-
tive of the right-hand side to zero, resulting in
i - [IR+ VATf(Aj; A7) dG(A")]?

Jas f(Aj3 A*) dG(A%)

In (39), (42) and (43) the true distribution G(A*) is dis-
crete (as in (32)), so they become respectively

(43)

A = argmax Zc(\/_ va A],a Wi, (45)
AcRt =1
and
i [zz'; Vi (A af)wi)? (46)
J m N «
2im1 S Ay 0w

The following loose bound can be obtained for the in-
creased risk suffered by the PACEg approximation.

Theorem 6.5

0 < E[L; (M) 4;, G(A)]

— B[L;(MPA)| A, G(A®)] < 2¢71. (47)



I I3 1

FProof. See Appendix B.
Ap yD(‘ildi\' B actualiy obtains the tighter bound
- ‘X\(' R .
4\/ 4””( e VA . This bound rises from zero
at fhe origin, achieves the maximum 2e~! at the point

TPACEg
A

a® 0.5, and thereafter drops exponentially to

zero as AT q” increases. o is one of G(A*)’s discrete

points and has a maximum value of c(w/fI;ACEG; N
B[C(A7™)|ay] for i = 1,...,m. Tt follows that the in-
creased risk caused by approximating PACEg is usually
close to zero.

All these pace procedures adjust the magnitude of the
orthogonal projections of the OLS estimate M, based on
an estimate of the expected dimensional contributions.
Among them, PACEs and PACEg g0 the furthest: each pro-
jection of M onto the orthogonal axis can be adjusted
to any nonnegative value and the adjusted value achieves
(or approximately achieves) the greatest expected contri-
bution, corresponding to the minimum risk. These two
procedures can shrink, retain or even expand the values
of the absolute dimensional distances. Surprising though
it may sound, increasing a zero distance to a much higher
value can improve predictive accuracy.

Of the six pace procedures, PACE,, PACE4 and PACEg are
most appropriate for practical applications. PACEs gener-
ates a very good approximation to the model from PACEs,
which is the best of the six procedures. Procedure PACE;
chooses the best member of a sequence of subset models
that is provided to it, which is useful if prior information
dictates the sequence of subset models. PACE; and PACE;
involve numerical integration and have higher risk than
other procedures. PACEy, which is a lower risk procedure
than PACEs, is useful for dimension-based subset selection.

7 The estimation of G(A*)

Now it is time to consider how to estimate G(A*) from
41, .. A,\, which are t] the dimensional absolute distances
of the OLS estimate M. Once this is accomplished, the
procedures described in the last section become fully de-
fined by replacing the true G(A*), which we assumed in
the last section was known, with the estimate. The esti-
mation of G(A*) is an independent step in these model-
ing procedures, and can be investigated independently. It
critically influences the quality of the final model—better
estimates of G(A*) give better estimators for the underly-
ing model.

41 Ak are actually a sample from a mixture distri-
bution Whose component distribution F (A A*) is known
and whose mixing distribution is G(A*). Estimating
G(A*) from data points A1, ..., Ay is tantamount to es-
timating the mixing distribution. Note that the mixture
here is a countable one—the underlying G(A*) has sup-
port at /11, .. .,gk, and the number of support points is
unlimited as £ — oo.
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There are many ways of estimating mixing distribu-
tions: the method of moments, maximum likelihood,
Bayesian methods, and minimum distance methods (Tit-
terington et al., 1985; McLachlan and Basford, 1988; Lind-
say, 1995). However, only the minimum distance approach
is suitable for estimating unlimited countable mixtures.
This approach has some advantages over others: it can
estimate arbitrary mixing distribution (others cannot); it
is computationally cheap (being a mathematical program-
ming problem which has an efficient solution); it always
yields a globally optimal solution (other methods may con-
verge to a local optimum and need careful selection of ini-
tial values).

The following theorem guarantees that if the mixing
distribution is estimated sufficiently well, the pace regres-
sion procedures continue to enjoy the various properties
proved above in the limit of large k.

Theorem 7.1 Let {Gr(A*)} be a sequence of CDF es-
timators. If Gp(A*) —w G(A*) a.s. as k — oo, and
the known G(A*) is replaced by the estimator Gp(A*),
Theorems 5.1-6.5 (and all their corollaries) hold k-
asymptotically a.s.

Proof. According to the Helly-Bray theorem(Galambos,
1995), Gi(A*) — G(A*) as. as k — oo implies the al-
most sure pointwise convergence of all the objective func-
tions used in these theorems (and their corollaries) to the
underlying corresponding functions, because these func-
tions are continuous. This further implies the almost sure
convergence of the optimal values, and of the locations
where these optima are achieved, as k — oco. This com-
pletes the proof. O

All of the above results utilize the loss function ||y —
y*||?/o?. However, our real interest is |[ya —y*{|?. There-
fore we need the following corollary.

Corollary 7.1.1 If the loss function |y —y*||?/o* is re-
placed by ||ym — y*||? in Theorems 5.1-6.5 (and all their
corollaries),

1. Theorem 7.1 continues to hold, if o2 is known;

2. Theorem 7.1 holds almost surely as n — oo if o2
replaced with an n-asymptotically strongly consistent
estimator.

It is well known that both the unbiased OLS estima-
tor 6% and the biased maximum likelihood estimator are
n-asymptotically strongly consistent, if lim, o k/n = 0.

In view of Theorem 7.1, any estimator of the mixing
distribution is able to provide the desired theoretic re-
sults in the limit if it is strongly consistent in the sense
that, almost surely, it converges weakly to the underlying
mixing distribution as k — oo. A few minimum distance
estimators are known to be strongly consistent. Before
introducing them, we need some notation.

Let x1,...,2 be a sample chosen according to a mix-

ture distribution, and suppose (without loss of general-
ity) that the data is ordered so that =y < z3 < --- <



. Let Gr(8) be a discrete estimator of the under-
lving mixing distribution with a set of (potential} sup-
port points at {fy;;7 = 1,...,my}. Bach 8 provides
a component of the final mixture with weight w; > 0,
where > 7 wi; = 1. Given the support points, obtain-
G (6) is equivalent to computing the weight vector
wy, = {(We1, Weas - - -, Wem, ) - Denote by Fg, (z) the esti-
mated mixture CDF with respect to G (6).

Choi and Bulgren (1968) investigated a minimum dis-
tance estimator with

ing

(48)

k
> Fa(xy) —i/k]
=1

I =

as the distance measure. Minimizing this quantity with
respect to (; yields a strongly consistent estimator. A
slight improvement is obtained by using the Cramér-von
Mises statistic

| =

k
S [Fon (o)) — (G — L/2)/6P +1/(128),  (49)

J

=~

which essentially replaces j/k in (48) by (j — 3)/k with-
out affecting the asymptotic result. As might be expected,
this reduces the bias for small-sample cases, as was demon-
strated empirically by Macdonald (1971) in a note on Choi
and Bulgren’s paper.

Deely and Kruse (1968) investigated a similar estimator
that uses the sup-norm associated with the Kolmogorov-
Smirnov test. The minimization is over

1<y<k

(50)

and this leads to a linear programming problem. Deely
and Kruse also established the strong consistency of their
estimator. This approach was extended by Blum and
Susarla (1977) by using any sequence {f} of functions
that satisfies sup|fx — fe| — 0 a.s. as k& — oo. Each
fr can be obtained by a kernel-based density estimator.
Blum and Susarla approximated fi by the estimated mix-
ture pdf f¢, , and established the strong consistency of the
estimator under weak conditions.

If any of these estimators are used to obtain Gy(A*),
Theorem 7.1 is secured. This, finally, closes our circle of
analysis.

However, it has been pointed out that all these min-
imum distance methods suffer from a serious defect in
a finite-sample situation: they may completely ignore
small numbers of data points in the estimated mixture,
no matter how distant they are from the dominant data
points (Wang and Witten, 1999). This severely impacts
their use in our modeling procedures, because the value
of one dimensional absolute distance is frequently quite
different to all the others—and this implies that the un-
derlying absolute distance has a very high probability of
being different too. Unfortunately, other approaches such
as maximum likelihood or Bayesian methods, which could
be employed if computational cost was not an issue, suffer
from the same problem.
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A new minimum distance method has been developed
recently that overcomes this problem (Wang and Witten,
1999). For the existing minimum distance methods, the
problem stems from the use of CDFs for approximation
and the normalization constraint 37 wy; = 1. The new
method is based on the idea of local rather than global
fitting, and uses the estimated mixture measure to ap-
proximate the empirical measure over selected intervals.
Let G, be a discrete function with masses {wg;} at {0x;};
note that we do not require the wy;’s to sum to one. The
new method seeks to approximate the empirical measure
P, (not necessarily a probability measure) by an estimated
one PG% , which we denote

Py = Py (51)

Here, the symbol 2 implies with respect to G, the min-
imization of the distance between the measures on either
side. The intervals over which the approximation takes
place are called “fitting intervals.” It is important to note
that (51) is not subject to the normalization constraint,
and so G}, is not a CDF; neither is P a probability mea-
sure. However, G}, can be converted into a CDF estimator
by normalizing it after (51) has been solved.

To define the estimation method fully, we need to de-
termine (a) the set of support points, (b) the set of fitting
intervals, (¢) the empirical measure, and (d) the distance
measure. Wang and Witten (1999) show how to determine
these in a suitable way. They report experiments on mix-
tures of normal distributions whose results illustrate the
superiority of their method to other minimum-distance es-
timators when small clusters are present in finite data sets,
and also suggest that it is more accurate and stable than
other methods even when there are no small clusters.

For all the above minimum distance estimators, the fol-
lowing three conditions must be satisfied in order to ensure
strong consistency (Robbins, 1964).

(C1) F(z;0) is continuous on X x 0.

(C2) Define G to be the class of CDFs on Q. If
Fg, = Fg, for G1,G4 € G, then G| = Gs.
(C3) Either © is a compact subset of R, or

limp_,too.0co F(x;0) exists for each z € X and is not a
distribution function on X.

Pace regression involves mixtures of x%(r?/2), where
r? is the mixing parameter. Conditions C1 and C3 are
clearly satisfied. C2, the identifiability condition, is veri-
fied in Appendix C.

There might well exist better estimators of mixing dis-
tributions in finite sample situations, particularly for mix-
tures of x?(r2/2) distributions. If so, their use might im-
prove the performance of the modeling procedures in Sec-
tion 6.

8 Experimental examples
It is time for some experimental results to illustrate the

idea of pace regression and give some indication how it per-
forms in practice. The results are very much in accordance
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with the theoretical analysis above. We give three exam-
s that compare pace regression with other procedures
erms of both predicitive accuracy and model complex-
itv. In the first, contributive variables have small effects;
in the second they have large effects. The third example
tests the influence of the number of candidate variables on
pace regression. Results are given in the form of graphs;
corresponding tabular data appears in Appendix D.

We use the partial-F' test and backward elimination of
variables to determine the orthogonalization, and employ
the 01S unbiased 62 estimator. The non-central x? distri-
bution is used instead of the F-distribution for computa-
tional reasons. For clustering, we use the measure-based
minimum distance estimation procedure of (51), along
with the quadratic programming algorithm NNLS provided
by Lawson and Hanson (1974). Support points are the set
1/1]} plus zero (if there is any /Ij near zero), except that
points lying between zero and three are_discarded in or-
der to simplify the model. For PACEg, A;’s smaller than
0.5 are discarded to simplify the model without sacrific-
ing much loss of accuracy. These are rough and ready
decisions, taken for practical expediency.

We tested AlcC, BIC, RIC, CIC (in the form (6)), PACE2,
PACE4, and PACEg. The oLs full model and the null
model—which are actually generated by procedures OLS
and oLsC(oo)—are included for comparison. Shrinkage
methods are not included because the choice of shrinkage
parameter is in each case somewhat controversial. Proce-
dures PACE;, PACE3, and PACE5 are not included because
they involve numerical solution.

Example 5 Variables with small effects. The under-
lying model is y = by + 25:1 bjz; + N(0,0%), where
bo = 0,2; ~ N(0,1), the covariance between z; and z;
is zero if i # 7, and ¢ = 200. Each parameter b; is either
1 or 0, depending on whether it has an effect or is redun-
dant. For each sample, n = 1000 and &k = 100 (excluding
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bg which is always left inside the model). The number of
nonredundant variables k* is set to 0, 10,20, ...,100. For
each value, the result is the average of twenty runs over
an independent test set. The test set is generated from
the same model structure with 10,000 observations and
zero noise variance. The results are shown in Figure 3 and
recorded in Table 1.

Figure 3(a) shows the dimensionality of the estimated
models, while Figure 3(b) shows their predictive errors;
the horizontal axis is k* in both cases. In Figure 3(a),
the solid line gives the size of the underlying models.
Since predictive accuracy rather than model complexity
is used as the standard for modeling, the best estimated
model does not necessarily have the same complexity as
the underlying one—dimensionality reduction is merely
a byproduct of eliminating redundant variables. Models
generated by PACE,, PACE4 and PACEg find the underly-
ing null hypothesis Hy and the underlying full hypothesis
Hy correctly; their seeming inconsistency between these
extremes is in fact necessary for the estimated models to
produce optimal predictions. AIC overfits Hy and under-
fits Hy. BIC and RIC both fit Hy well, but dramatically
underfit all the other hypotheses—including H;. CIC suc-
cessfully selects both Hy and Hy but either underfits or
overfits models in between.

In Figure 3(b), the vertical axis represents the average
mean squared error in predicting independent test sets.
The models built by BIC and RIC have errors nearly as
great as the null model. AIC is slightly better for H; than
BIC and RIC, but fails on Hy. CIC eventually coincides with
the full model as k* increases, and produces large errors for
some model structures between Hy and Hy. PACE; always
performs as well as the best of OLSC(00) (the null model),
RIC, BIC, AIC, CIC, and OLS (the full model): no OLS sub-
set selection procedures produce models that are sensibly
better. Recall that PACE; selects the optimal subset model
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Figure 4: Example 6.

from the sequence, and in this respect resembles PACE;,
which is the optimal threshold-based OLs subset selection
procedure OLSC(7*). PACE4 performs similarly to PACE;.
Remarkably, PACEg outperforms PACE; and PACE4 by a
large margin, even when there are no redundant variables.

Example 6 Variables with large effects. The underlying
model is the same as before except that o2 = 50; results
arc shown in Figure 4 and Table 2.

The results are similar to those in the previous example.
As Figure 4(a) shows, models generated by PACE, PACEy
and PACEg lie closer to the line of underlying models than
in the last example. AIC generally overfits by an amount
that decreases as k* increases. RIC and BIC generally un-
derfit by an amount that increases as k* increases. CIC
settles on the full model earlier than in the last example.

In terms of prediction error (Figure 4(b)), models built
by PACE; and PACE4 are still the best of all OLS sub-
set selection procedures, while PACEg is significantly su-
perior. When there are no redundant variables, PACEg
chooses a full-sized model but uses different coefficients
from oOLS, yielding a model with much smaller prediction
error than the orLs full model. This defies conventional
wisdom, which views the OLS full model as the best pos-
sible choice when all variables have large effects.

Example 7 Rate of convergence. Qur third example ex-
plores the influence of the number of candidate variables.
The value of k is chosen to be 10,20, ...,100 respectively,
and for each value k* is chosen as 0, k/2 and k; otherwise
the experimental conditions are as in Example 5. Note
that variables with small effects are harder to distinguish
in the presence of noisy variables. Results are shown in
Figure 5 and recorded in Tables 3-5.

The pace regression procedures are always among the
best in terms of prediction error, a property enjoyed by
none of the conventional procedures. None of the pace
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;= 100,02 = 50. (a) Selected dimensions. (b) Prediction errors.

procedures suffer noticeably as the number of candidate
variables k£ decreases. Apparently, they are stable when k
is as small as ten.

9 Discussion

Several issues related to pace regression deserve further
discussion, issues that are either necessary to complete
the definition of the pace regression procedures in special
situations, or to expand their implications into a broader
arena.

9.1 Finite k£ vs. k-asymptotics

We have seen that the pace regression procedures are opti-
mal in a k-asymptotic sense. Larger numbers of variables
tend to produce estimators that are closer to optimal. If
there are only a few candidate variables, pace regression
will not necessarily outperform other methods. Since k is
inevitably finite in practice, it is worth expanding on this.

The central idea of pace regression is to decompose the
prediction vector of an estimated model into & orthogonal
components, and then adjust each according to aggregated
magnitude information from all components. The more di-
verse the magnitudes of the different components, the less
they can inform the adjustment of any particular one. If
one component’s magnitude differs greatly from that of all
others, there is little basis on which to alter its value.

Pace regression shines when many variables have simi-
lar effects—a common special situation is when many vari-
ables have zero effect. As the effects of the variables dis-
perse, pace regression’s superiority over other procedures
gradually fades. When the effect of each variable is iso-
lated from that of all others, the pace estimator is exactly
the oLs one. In principle, the worst case is when no im-
provement over OLS is possible.
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ugh pace regression k-asymptotically optimal,
this doces not mean that increasing the number of candi-
date variables necessarily itnproves prediction. New con-
tributive variables should increase predictive accuracy, but
new redundant variables will decrease it. Pre-selection of
variables based on background knowledge will always help
modeling, if suitable variables are selected.

5.2 Collinearity

Pace regression, like almost any other linear regression
procedure, fails when presented with collinear variables.
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Example 7. (a}, (¢) and (e) show the dimensionalities of the estimated models when the underlying models are the

1

alf, and full hvpotheses. (b), (d) and (f) show corresponding prediction errors over large independent test sets.

Such variables should be detected and eliminated before
applying the procedure. We suggest eliminating collinear-
ity by discarding variables. The number of candidate vari-
ables k should be reduced accordingly, because collinearity
does not provide new independent dimensions, a prereq-
uisite of pace regression. In other words, the model has
the same degrees of freedom without collinearity as with
it. Appropriate variables can be identified by examining
the matrix (X’X)~! (Lawson and Hanson, 1974).

Note that OLS subset selection procedures are some-
times described as a protection against collinearity. How-
ever, the fact is that none of these automatic procedures



can reliably eliminate collinearity.

9.2 Regression for partial models

The full oLs model forms the basis for pace regression.
In some situations, however, the full model may be un-
available. For example, there may be too many candidate
variables—perhaps more than the number of observations.
Although the largest available partial model can be sub-
stituted for the full model, this causes some practical dif-
ficulties.

The clustering step in pace regression must take all can-
didate variables into account. This is possible so long as
the statistical test used to determine the initial partial
model can supply an approximate distribution for the di-
mensional absolute distances of the variables that do not
participate in it. For example, the partial-F' test may
be used to discard variables based on forward selection;
typically, dimensional absolute distances are smaller for
the discarded variables than for those used in the model.
It seems likely that a sufficiently accurate approximate
distribution for the dimensional absolute distances of the
discarded variables can be derived for this test, though
further investigation is necessary to confirm this.

In many practical applications, some kind of feature se-
lection is performed before the modeling procedure is in-
voked. However, it is generally not acknowledged that bias
is introduced by discarding variables without passing rel-
evant information on to the modeling procedure—though
admittedly most modeling procedures cannot make use of
this kind of information.

Estimating the noise variance, should it be unknown a
priori, is another issue that is affected when only a partial
initial model is available. The noise component will con-
tain the effects of all variables that are not included in the
partial model. Moreover, because of competition between
variables, the oLS estimate of ¢ from the partial model
is biased downwards. How to compensate for this is an
interesting topic worth further investigation.

9.4 Pace regression vs. major modeling
principles

As noted in Section 1, pace regression measures the suc-
cess of modeling using two separate criteria. The primary
one is accuracy, or minimization of the expected loss. The
secondary one is parsimony, or a preference for the small-
est model, and is only used when it does not conflict with
the first—that is, to decide between several models that
have about the same accuracy. The secondary criterion is
essential if dimensionality reduction is of interest. For ex-
ample, if the support points found by PACE5 and PACEg are
not all zero, none of the upgraded A;’s will be zero. But
many may be tiny, and eliminating tiny ﬁj has negligible
influence on predictive ability.

When the goal is to minimize the expected loss, pace re-
gression casts doubt on four widely-accepted general prin-
ciples of modeling.
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First, pace regression challenges the Least Squares
Principle in a general sense. All six pace procedures out-
perform OLS estimation: PACE; and PACE3 in the sense of
expected risk and the remainder in the sense of expected
loss. According to the Gauss-Markov Theorem, OLS yields
a “best linear unbiased estimator” (or BLUE). OLS’s infe-
riority, however, is due precisely to the unbiasedness con-
straint, which fails to utilize all the information implicit
in the data. Tt is well known that biased estimators such
as subset selection and shrinkage can outperform the OLS
estimator in particular situations. We have shown that
pace regression estimators, which are also biased, outper-
form OLS in all situations.

Second, pace regression challenges the Maximum Like-
lihood Principle. In the linear regression situation, the
maximum likelihood estimator is exactly the same as the
OLS one.

Third, Bayes’ Rule itself comes under attack. The
Bayesian estimation is threshold-based OLS subset selec-
tion, where the a priori density is used to determine the
threshold. Yet the six procedures of pace regression equal
or outperform the best OLS subset selection estimator.
This improvement is not based on prior information—the
validity of which has long been questioned—but on hith-
erto unexploited information that is implicit in the very
same data. Furthermore, when the noninformative prior
is used—and the use of the noninformative prior is widely
accepted, even by many non-Bayesians—the Bayes esti-
mator is the same as the maximum likelihood estimator,
i.e., the oLS estimator, and therefore inferior to the pace
regression estimators.

Fourth, questions arise concerning complexity-based
modeling. According to the Minimum Description Length
(MpL) Principle (Rissanen, 1978), the best model is the
one that minimizes the sum of the model complexity and
the data complexity given the model. In practice the first
part is an increasing function of the number of parame-
ters required to define the model, while the second is the
resubstitution error. Our analysis and experiments do not
support this principle. We have found that pace regres-
sion often chooses models of the same or even larger size,
and with larger resubstitution errors, than those of other
procedures, yet gives much smaller prediction errors on
independent test sets. In addition, the MDL estimator de-
rived by Rissanen (1978) is the same as the BIC estimator,
which has already been shown inferior to the pace regres-
sion estimators.

10 Conclusions

This paper explores a new approach to linear regression.
Not only does this approach yield accurate prediction
models; it also reduces model dimensionality. It outper-
forms all other modeling procedures in the literature, both
in a theoretical sense and experimentally.

The consequences of this work reach well beyond linear
regression. We have seen that the least squares principle
is outperformed in a very general sense by pace regression.



This raises significant questions about the validity of this
principle- -and of other principles widely used in empirical
modeling. The analysis we have presented disputes many
conventional ideas about modeling from data.

We have limited our investigation to linear models with
normally distributed noise, but the ideas are so fundamen-
tal that we believe they will soon find application in other
realms of empirical modeling.
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A The Taylor expansion of h(4; A*) with
respect to VA
Let a = VA > 0 and a* = VA* > 0. Denote ¢ = 1/@

Because
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that is,
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h(A; A™) = e T[(—14+ 24"WA+ 0(A42)]. (52)

B  Proof of Theorem 6.5

To prove Theorem 6.5, we need a simple lemma.

Lemma 1 For any A>0 and A* >0,

0 < e(VA; VAY) - E[C(A)|A”] < 4V AA e~ *AA < 27,
(53)

Proof. For every A > 0 and A" > 0, e(VA; VA*) > 0 and

e(—VA; v/ A*) < 0, hence
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thus completing the proof of the lemma. O

Proof of Theorem 6.5. According to the definition of dimen-
sional contribution, to prove Theorem 6.5 is the same as to
prove

0 < E[C(AD™)|4;, G(A™)] — E[C(A7)|4;,G(A")] < 2.
(54)



The first inequality in (54) is obvious because AP\(E5 is the
> For the second inequality, due to the above
A7ACE6 ig the optimal solution of (45),
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which finishes the proof of Theorem 6.5. O

C Identifiability for mixtures of yi(r*/2)
distributions

Although we have been unable to locate the following theorem
in the literature, it seems unlikely to be original. Note that
here, identifiability applies only to the situation where the mix-
ing function is limited to being a CDF. However, it is possible
to show that identifiability of mixtures using CDFs as mixing
functions implies the identifiability of mixtures using any finite
nonnegative functions as mixing functions, as required by (51).

Theorem C.1 The mizture of Xi(A™/2) distributions, where
A* 45 the mizing parameter, is identifiable.

Proof. Let P{zx;u) be the CDF of the distribution N(u,1),
and F(A; A*) be the CDF of the distribution x7(4"/2). From
the definition of x3(A*/2) distribution and the symmetry of
the normal distribution,

F(A;AY) = P(A;VAY) — P(—VA;VAY)
= P(VA;VA") + P(VA;—V/A*) -1, (55)
where P(VA,vVA*) is the CDF of N(vVA*1) and

P(VA; =A%) is the CDF of N(—V/A*,1). Therefore, if the
mixture of F(A; A*) is unidentifiable, the mixture of normal
distributions where the mean p is the mixing parameter would
be unidentifiable. Clearly this contradicts the well-known iden-
tifiability result for mixtures of normal distributions (Teicher,
1960), thus completing the proof. O

D Results for Examples 5, 6 and 7



Table 1: Data for the experimental results in Example 5.

I 0 1 20 30 40 50 60 70 80 90 100

Model complexities AlC 14.8 21.4 28.1 34.5 40.6 46.9 53.4 59.9 65.2 71.2 77.6
BIC 1.1 4.2 7.4 111 14.5 16.7 20.1 22.9 26.6 30.1 32.5

RIC 0.2 1.6 3.7 6.0 7.9 10.4 12.2 14.6 17.9 19.6 21.8

CIC 0.0 0.2 1.3 2.6 28.4 72.0 100 100 100 160 100

PACE2 0.0 4.6 18.6 37.8 59.6 84.0 95.7 99.4 100 100 100

PACE4 0.0 4.6 18.8 37.9 59.6 84.2 95.8 99.4 100 100 100

PACEg 0.6 8.9 22.1 34.0 47.6 62.0 72.8 R7.2 94.5 99.1 100

Prediction errors AlIC 11.2 13.1 15.6 18.2 20.9 23.8 26.4 28.8 31.1 33.5 35.7
BIC 1.7 9.1 16.9 24.5 31.8 41.0 49.4 57.3 65.6 73.3 82.1

RIC 0.5 9.3 18.2 27.5 36.6 45.6 55.4 64.6 72.6 83.5 92.5

(sie 0.0 10.1 19.7 29.3 33.9 29.3 21.6 21.6 21.6 21.6 21.6

PACE2 0.0 9.8 15.6 19.3 21.1 22.1 21.8 21.6 21.6 21.6 21.6

PACE4 0.0 9.8 15.6 19.3 21.3 22.2 22.0 22.0 21.8 21.8 21.7

PACEs 0.1 7.0 10.6 13.2 15.4 16.9 17.1 16.5 15.5 14.5 16.7

full 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6

Table 2: Data for the experimental results in Example 6.

k* 0 10 20 30 40 50 60 70 80 90 100

Model complexities AIC 14.8 23.4 32.0 40.5 49.2 58.2 66.4 75.3 83.0 91.4 99.7
BIC 1.1 10.6 20.1 29.4 39.0 48.4 57.8 67.2 75.9 85.4 94.0

RIC 0.2 9.6 18.8 27.4 36.6 45.3 54.0 62.5 70.3 78.0 86.0

eife} 0.0 9.6 21.1 72.4 100 100 100 100 100 100 100

PACE3> 0.0 10.3 21.4 31.5 42.0 53.0 63.2 74.0 83.4 93.3 100

PACE4 0.0 10.3 21.4 31.5 42.1 53.0 63.4 74.0 83.5 93.3 100

PACEg 0.6 11.5 22.1 32.6 43.0 54.2 63.9 74.3 83.4 92.5 100

Prediction errors AIC 2.80 3.00 3.27 3.53 3.85 4.16 4.40 4.70 4.95 5.32 5.56
BIC 0.43 1.00 1.59 2.71 3.44 4.50 5.62 6.35 7.88 8.76 10.5

RIC 0.12 1.00 2.03 3.82 5.04 6.81 8.59 10.3 13.1 15.8 18.3

CIC 0.00 0.99 1.83 4.31 5.40 5.40 5.40 5.40 5.40 5.40 5.40

PACE2 0.00 1.06 1.71 2.40 2.95 3.56 3.96 4.57 5.03 5.29 5.40

PACE4 0.00 1.06 1.71 2.40 2.92 3.58 3.98 4.57 5.04 5.29 5.40

PACEsg 0.03 0.80 1.19 1.82 2.31 2.66 2.92 3.24 3.28 3.22 2.48

full 5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40

Table 3: Example 7—null hypothesis (k* = 0).

k 10 20 30 40 50 60 70 80 90 100

Model complexities AIC 17 2.5 5.0 5.8 7.8 8.2 1233 10.9 132 148
BIC 0.0 0.2 0.3 0.2 0.2 0.5 0.8 0.5 0.9 i1

RIC 0.2 0.3 0.3 0.2 0.2 0.1 0.2 0.2 0.3 0.2

CIC 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

PACE> 0.9 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.0

PACE4 0.9 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.0

PACEg 0.8 0.7 1.1 0.6 0.3 0.6 1.4 0.5 0.6 0.6

Prediction errors AIC 1.1 2.0 3.5 4.4 5.8 6.1 9.5 8.5 10.7 11.2
BIC 0.0 0.5 0.5 0.5 0.5 0.7 1.4 0.8 1.6 1.7

RIC 0.3 0.6 0.5 0.5 0.4 0.3 0.6 0.4 0.7 0.5

CIC 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

PACEg 0.5 0.5 0.4 0.4 0.1 0.2 0.2 0.1 0.1 0.0

PACE4 0.5 0.5 0.4 0.4 0.1 0.2 0.2 0.1 0.1 0.0

PACEg 0.2 0.2 0.3 0.2 0.2 0.1 0.4 0.1 0.2 0.1
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Table 4: Example 7—half hypothesis (k" = k/2).

k 10 20 30 40 50 60 70 86 90 100
Model complexities ALC 4.8 8.9 14.6 18.8 23.4 27.2 33.2 37.0 40.2 46.9
BIC 2.0 3.5 6.2 6.5 7. 10.6 12.0 13.3 13.9 16.7
RIC 3.0 4.2 6.2 5.8 6.7 8.0 8.3 9.7 8.7 10.4
oIc 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

PACE2 7.2 14.6 22.3 32.8 41.0 45.9 579 59.1 65.6 84.0
PACE, 7.2 14.6 22.3 32.8 41.0 46.0 58.0 59.1 65.8 84.2
PACEg 5.9 11.1 18.2 24.8 31.4 34.0 44.8 46.6 51.0 62.0

Prediction errors AIC 2.3 4.7 7.2 9.0 114 13.8 17.1 18.1 22.0 23.8
BIC 3.5 8.0 11.0 15.8 20.2 22.9 27.8 32.2 37.3 41.0
RIC 2.8 7.5 10.9 16.5 20.9 24.7 30.4 35.3 41.8 45.6
(e 2.8 5.4 8.0 11.3 12.5 16.9 19.7 21.6 29.4 29.3
PACE2 2.1 4.5 6.8 8.3 10.7 12.6 16.0 16.9 19.4 22.1
PACE4 2.1 4.5 6.8 3.3 10.8 12.7 16.2 16.9 19.5 22.2
PACEg 1.8 3.4 5.3 6.8 8.3 9.6 12.2 12.9 15.9 16.9

Table 5: Example 7—full hypothesis (k* = k).

k 10 20 30 40 50 60 70 80 90 100
Model complexities ALC 7.7 15.6 23.6 31.0 38.6 45.9 52.0 60.9 67.5 77.6
BIC 3.3 7.2 111 13.2 15.2 19.9 22.1 24.4 27.4 32.5
RIC 5.3 8.5 11.3 12.3 13.1 15.6 16.6 18.1 18.8 21.8
C1C 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100
PACE: 9.4 20.0 30.0 40.0 50.0 60.0 70.0 &0.0 90.0 100
PACE4 9.4 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100
PACEg 9.2 20.0 29.9 39.6 49.9 60.0 70.0 30.0 90.0 100
Prediction errors AIC 3.5 7.0 10.3 13.8 17.1 21.2 26.7 28.3 33.1 35.7
BIC 7.7 15.3 22.8 31.3 40.5 47.2 56.4 65.7 74.0 82.1
RIC 5.6 13.9 22.6 32.1 42.5 51.3 61.9 71.8 82.4 92.5
CIC 2.0 4.0 6.4 8.2 10.4 12.1 16.2 16.6 19.1 21.6
PACE: 2.3 4.0 6.4 8.2 10.4 12.1 16.2 16.6 19.1 21.6
PACE4 2.3 4.0 6.4 8.3 10.6 12.3 16.4 16.9 19.4 21.7
PACEs 1.2 1.0 2.6 2.7 4.5 5.2 7.8 8.0 10.4 10.7
full 2.0 4.0 6.4 8.2 10.4 12.1 16.2 16.6 19.1 21.6
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