Working Paper Series
ISSN 1170-487X

Interactive concept learning
for end-user applications

by David Maulsby and
Ian H. Witten

Working Paper 95/4
February 1995

© 1995 by David Maulsby and Ian H. Witten
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

Interactive concept learning
for end-user applications

David Maulsby' and Ian H. Witten?

! Media Laboratory 2 Department of Computer Science
Massachusetts Institute of Technology University of Waikato
Room E15-423 Private Bag 3105
Cambridge MA 021394307 USA Hamilton, New Zealand
tel. +01 (617) 253-9832 tel. +64 (7) 838-4246
maulsby @media.mit.edu ihw @cs.waikato.ac.nz

Abstract

Personalizable software agents will learn new tasks from their users. This implies being able to
learn from instructions users might give: examples, yes/no responses, and ambiguous, incomplete
hints. Agents should also exploit background knowledge customized for applications such as
drawing, word processing and form-filling. The task models that agents learn describe data,
actions and their context. Learning about data from examples and hints is the subject of this paper.

The Cima learning system combines evidence from examples, task knowledge and user hints to
form Disjunctive Normal Form (DNF) rules for classifying, generating or modifying data. Cima’s
dynamic bias manager generates candidate features (attribute values, functions or relations), from
which its DNF learning algorithm selects relevant features and forms the rules. The algorithm is
based on a classic greedy method, with two enhancements. First, the standard learning criterion,
correct classification, is augmented with a set of utility and instructional criteria. Utility criteria
ensure that descriptions are properly formed for use in actions, whether to classify, search for,
generate or modify data. Instructional criteria ensure that descriptions include features that users
suggest and avoid those that user reject. The second enhancement is to augment the usual statistical
metric for selecting relevant attributes with a set of heuristics, including beliefs based on user
suggestions and application-specific background knowledge. Using multiple heuristics increases
the justification for selecting features; more important, it helps the learner choose among alternative
interpretations of hints.

When tested on dialogues observed in a prior user study on a simulated interface agent, the
learning algorithm achieves 95% of the learning efficiency standard established in that study.

Maulsby and Witten 1

1 Introduction

A truly personalizable software agent is one that learns new tasks from the user. For the interaction
to be comfortable and reliable, the agent must facilitate rich communication with both user and task
environment. Its learning mechanism should minimize the number of examples needed—in
particular negative examples, which users perceive as time-wasting errors. To take advantage of
users” knowledge and keep them in control, the learner should accept additional instructions: partial
specifications or “hints.” It should also exploit application-specific domain knowledge. Moreover,
it should learn not merely how to distinguish positive from negative examples, but to describe
those aspects of data relevant to the actions it is taught. Finally, since the set of potentially relevant
features is enormous, even in simple situations, the learner must be able to select and change its
biases and focus of attention. The user might direct the bias by suggesting relevant features of the
data. In turn, the agent should assess the user’s hints and select among alternative interpretations
by ranking them on their plausibility and statistical utility.

This paper describes Cima (Chee-ma), an interactive learning algorithm for modeling the data
selected and modified by an agent as it performs a task. Part of a programming-by-demonstration
(PBD) system, which learns tasks by watching the user perform them, Cima is invoked when
actions are matched, to find a common description of their “operands.” The algorithm is based on a
standard DNF concept learner, Prism [Cendrowska 87]. Prism finds a set of rules covering all and
only positive examples, and forms each rule by adding “features™ (attribute-value predicates) until
the rule covers only positive examples. In contrast, Cima takes examples, task knowledge and
instructions as input, and forms each rule by adding features until it meets stated utility and
instructional criteria. Utility criteria ensure that a rule includes features required for a given type of
action (classify, find, generate or modify data). Instructional criteria ensure that a rule includes
features the user suggests and avoids ones the user rejects. To select features, Cima augments
Prism’s probabilistic coverage measure with a set of “justification” heuristics, including beliefs
based on user hints or prior task knowledge. The feasibility of utilizing ambiguous hints was
established in a “Wizard of Oz” user study in which a researcher simulated an instructible agent
called Turvy [Maulsby 93]. The data gathered in this study influenced the choice and weighting of
heuristics. It also affords an opportunity to assess Cima’s performance on real user interactions
even before the system is ready for field testing.

2 Data descriptions and utility criteria

To model tasks, an agent needs to learn about data, actions, and when to act. Data descriptions
[Halbert 93] specify criteria for selecting objects, and the results of actions. For instance, suppose
the user wants an agent to store email messages from Pattie Maes in the folder “Mail from pattie,”
as shown at the top of Figure 1. The data description sender’s id begins “pattie” tells it which
messages to select — those from Pattie, regardless of her current workstation. The data description
Jolder named “Mail from <first word of sender’s id>" tells it where to put them.

Conventional machine learning algorithms learn to classify examples. But agents do things with

Maulsby and Witten 2

- - £ A
From|pattie@media | » [Mail from pattie _ _
Classify To[maulsby@media | ::1“"9 m?i?aaﬁ |sff||’3m “E‘a‘!;‘c‘; ' .
Subject| Tuesday meeting | en put it in the folder "Mail from pattie”.
Eind tel 243-6166 tel 243-6166 Find the next telephone number
fax 284-4707 P fax|284-4707 preceded by the word “fax”.
Mon 21 toDo Mon 21 toDo Insert a calendar template of the form:
Generate X > Tue 22 toDo) [Next(DayName) Tab Next(DayNumber)
Tab toDo].
\\
. Move the circle to the point at which a
Modify 9/(> @/ dashed line intersects a plain line.
£, .

Figure 1 — General types of action on data

data, and to be useful, descriptions may require features in addition to those needed for
classification. This is one reason why rule-learning algorithms are rarely found in interface agents.
Cima embodies a model for testing whether a description determines the necessary action
parameters (c.f. the “operationality” tests used in the pioneering Eager PBD system [Cypher 93b]).
Figure 1 illustrates four types of action: classify (sort) data; find data; generate new data; and
modify properties. Cima continues adding features to a rule until it meets the utility criteria for the
given type of action, preferring features that contribute most toward satisfying them.

Classify actions have a single utility criterion: to discriminate between positive and negative exam-
ples. Features with the most discriminating power are therefore strongly preferred. This is the
criterion tested by Prism and in nearly all other learning algorithms.

Find adds a second criterion: the description must delimit objects, and in some domains state the
direction of search. Thus a text search pattern specifies where the string begins and ends, and
whether to scan forward or backward. Features that describe more parts or constraints are
preferred. For instance, the pattern follows the string “fax ” is incomplete; Cima adds matches
Number—Number (or, if it has the appropriate concept, is a phoneNumber) to specify where the
string ends. It prefers these over precedes a blank because they specify both endpoints of the text.

Generate adds a third criterion: the description should specify all features of a new object. If
generating a graphic, the description must specify size, shape, color, etc.; for text, it must specify
the actual string. Though user input is a valid feature value, the system strongly prefers value
“generators”—constants, such as “/oDo”, or functions, such as Next(DayName).

Modify stipulates two criteria: the description should discriminate between positive and negative
examples, and it should determine (as far as possible) the property’s new value. As when
generating data, deterministic or strongly constraining values are preferred. The graphics example
in Figure 1 shows a conjunction of features determining a property value: two relations of the form

Maulsby and Witten 3

touch(Circle.center, Line??) together determine the circle’s new (x,y) location. By itself, each one
removes a degree of freedom on the circle’s center. The utility criteria for set-2D-object-part-
location state that a location has two potential degrees of freedom and the target is zero. Features
that remove both degrees of freedom, e.g. touch(Circle.center, Circle2.center), are most strongly
preferred, and after them, features that remove one degree of freedom. Cima continues adding
touch(Circle.center, Line??) features until zero degrees remain. If the user rejects an example in
which the circle touches two solid lines, Cima adds a third feature—that one of the lines be
dashed—to meet the classification criterion.

3 Interacting with the user

An interactive learner elicits instructions from the user, processes them, and provides feedback.
The feedback should help the user understand the learner’s state well enough to formulate
appropriate further instructions. Although elicitation and feedback are vital to the success of
interactive agents, they lie beyond the scope of this paper (see [Maulsby 94]). Here we focus on
the instructions that the learner can interpret and show how they are processed.

Cima supports three types of instruction:

classifyExample (Example, Class, Concept)
classifyRule (Rule, Class, Concept)
classifyFeature (Feature, Class, Concept, Disjunct)

The first classifies an example as positive or negative with respect to some concept: this is the usual
instruction supported by supervised learners [Michalski 83]. The second states whether a given
rule is valid: it is widely adopted in systems that learn from an informant [Angluin 88].

The third instruction, classifyFeature, is more unusual. Formally, an attribute (e.g. color) or value
(e.g. color(red)) is classified as relevant or irrelevant to some subset of examples. Clint-Cia [de
Raedt 92] supports this instruction in a restricted form: it displays the conjunction of feature
predicates it has chosen to form a rule, and invites the user to classify them. Thus, each
classifyFeature instruction given by the user specifies a particular attribute value, its class (relevant
or irrelevant), the concept and disjunct (current rule). RAP lets a user classify words and phrases
as relevant features of an email message [Bocionek 94]. Cima extends this approach by interpreting
ambiguous, incomplete hints. A hint may map to several classifyFeature instructions, and it need
not define all the arguments. The user may suggest either a feature type or a specific value, and
may refer to a rule, a set of examples, or a particular example.

Hints may be verbal or gestural (pointing at objects to indicate whether they are relevant). For
example, in the sort mail task at the top of Figure 1, the user might point at the substring pattie in
the From field and say “Look at this.” Cima generates the following interpretations (assuming that
this particular example is labeled eg03):

classifyFeature (Begins(SenderID, “pattie”), relevant, “sort mail”, eg03)
classifyFeature (Begins(SenderID, LowercaseWord), relevant, “sort mail”, eg03)

Maulsby and Witten 4

If the user says “Always look at this,” the disjunct specifier is allExamples rather than eg03. Cima
generates these initial interpretations by applying domain knowledge to the data involved in the
user’s action. For verbal hints, it extracts key phrases and searches a thesaurus for corresponding
attributes and values, generating one interpretation for each meaning. For pointing gestures, as in
this example, it finds features relating the selected data to the target example, and generates both
specific and generalized values. In this example, Begins(SenderID, Lowercase-Word) is obviously
irrelevant to the task. Cima relies on the learning algorithm to test the initial interpretations on other
criteria, such as statistical fit to examples, and choose the best one.

ClassifyFeature instructions can emanate from another agent or from domain knowledge. Cima
records the instruction’s source and uses credibility ratings to select among conflicting
suggestions. As a matter of courtesy, the user’s suggestions are given priority, and the system
always tries to use features that the user suggests and avoid ones that she rejects, though it may
advise her that this causes the description to be inconsistent or excessively complex.

4 Example scenarios

Suppose that the user has a text file of addresses and is creating an agent to retrieve and dial phone
numbers. She wants to teach the agent to strip the local area code (617). Sample data appears in
part i of Figure 2. The scenarios that follow illustrate teaching the concept “local phone number” by
examples (part ii of the Figure) and by using hints along with some domain knowledge (parts iii,
iv, and v). We assume that Cima has not yet been taught the concept of phone number.

Learning from examples

To give the first example, the user selects 243-6166 with the mouse and picks I want this from a
popup menu. Cima records the example and its context, and proposes the rule (a) in Figure 2.ii.
When given the second example, 220-7299, Cima generalizes the rule to (b). It predicts the third
example, and then the fourth, 255-6191. Because this is preceded by a nonlocal area code, the
user rejects it by selecting Nof this one from the menu. At present Cima is focusing only on the
pattern of the selected text: since no generalization covers all three positive examples yet excludes
the negative, it forms three special-case rules, shown in (c). Because it had to create new special-
case rules, Cima shifts bias, checking the context for distinguishing features. It now finds the
single general rule shown in (d). This predicts the remaining positive examples, except for an
anomalous one 339-8184 that lacks an area code. When the user says I want this, Cima forms the
disjunctive ruleset (e). To maximize the similarity between rules, it adopts a generalized pattern for
this final phone number—even though it is the only example of the new disjunct.

Suggestions from the user

Now consider the same task taught by examples and hints. Realizing that the distinguishing feature
of a local phone number is its area code, the user selects the text “(617)” and chooses Look at this
from the popup menu when giving the first example. This causes Cima to consider the preceding
context, focusing on the text the user suggested, and form the rule shown in line (a) of Figure 2.iii.
After the second positive example, Cima generalizes the phone number, as shown in (b). This
predicts the remaining examples (other than the anomalous one).

Maulsby and Witten

iv

Me (617) 243-6166 home; (617) 220-7299 work; (617) 284—-4707 fax
Cheri (403) 255-6191 new address 3618 — 9 St SW

Steve C office (415) 457-9138; fax (415) 457-8099

Moses (617) 937-1064 home; 339-8184 work

Rule formed after first example
Searching forward, Selected text MATCHES 243-6166

Rule generalized after second example
Searching forward, Selected text MATCHES Number(length 3)-Number(length 4)

Ruleset formed after negative example “255-6191”

Searching forward,

Selected text MATCHES 243-6166
or Selected text MATCHES 220-7299
or Selected text MATCHES 284-4707

Rule formed after shift of bias

Searching forward,
Selected text FOLLOWS 617)0 and MATCHES Number(length 3)-Number(length 4)

— Note: Cima proposes 617)0 rather than 7)0 because it tokenizes at the word level by default

Ruleset after final positive example “339-8184"

Searching forward,
Selected text FOLLOWS 617)0 and MATCHES Number(length 3)-Number(length 4)
or Selected text FOLLOWS ;0 and MATCHES Number(length 3)-Number(length 4)

Rule formed after first example and pointing hint
Searching forward, Selected text FOLLOWS (617)0 and MATCHES 243-6166

Rule generalized after second example

Searching forward, Selected text FOLLOWS (617)0 MATCHES Number(length 3)—
Number(length 4)

Rule formed after first example and verbal hints
Searching forward, Selected text FOLLOWS)0 and MATCHES Number—Number

Rule specialized after negative example
Searching forward, Selected text FOLLOWS 617)0 and MATCHES Number—Number

Rule formed after first example and partial specification
Searching forward, Selected text FOLLOWS (617)¢ and MATCHES Number—Number

Rule specialized after negative example

Searching forward,
Selected text FOLLOWS (617)0 and MATCHES Number—Number
or Selected text FOLLOWS ;¢ and MATCHES Number—Number

Figure 2— i Sample phone numbers (positive examples shown in bold)

i Series of data descriptions induced from examples

iii Data descriptions induced from examples and pointing hint
iv ... from examples and verbal hints

v ... from examples and partial specification

Maulsby and Witten 6

Rather than point at “(617)”, the user could have given a verbal (typed or spoken) hint such as “it
follows my area code” while selecting the first example. The phrase “it follows™ corresponds to
context before and after the example, with preference to the former; “area code” is unrecognized.
Using default knowledge, Cima selects as salient feature values the parenthesis before the example
and the blank space after it. The learning algorithm settles on text FOLLOWS)0 as the relevant
feature, since that interpretation is preferred and no other evidence counts against it. A second
verbal hint, “any numbers OK,” given while pointing at the phone number, causes Cima to
generalize the example, focusing on tokens of type Number and ignoring other properties such as
string value and length. It forms the rule shown in line (a) of Figure 2.iv. After the negative
example it specializes the fext FOLLOWS feature, obtaining the rule in line (b).

A programmer could specify the concept in greater detail by classifying features as follows:
classifyFeature (Token_Sequence (Target, [Number-Number]), relevant, “local phone”, allExamples)
classifyFeature (Ends (BeforeTarget, “(617)"), relevant, “local phone”, allExamples)

The specification is incomplete, but Cima will add the requisite features when given examples.
Thus, after the first positive example, it forms the rule shown in entry (a) of Figure 2.v; it has
added the Search direction feature required for utility when searching for data but omitted by the
programmer. To cover the anomalous positive example, Cima forms a second rule, using the
Token_Sequence suggested by the programmer and an alternative value of the suggested
Ends(BeforeTarget) feature, as shown in entry (b) of the Figure.

These scenarios illustrate some important behaviors of the Cima learning system:

* adding and focusing on features suggested by the user;

* focusing on features suggested by background knowledge;

* using knowledge and statistics to choose the most justified interpretation of a hint;
shifting bias to find simpler descriptions.

5 System overview

Cima is implemented in the Common Lisp Object System (CLOS). Figure 3 illustrates its
components (except the interface to applications). The discourse manager processes instructions,
decides when to update the concept or shift bias, and generates feedback to the user. The dynamic
bias manager loads the current set of features, matches and generalizes their values on new
examples, and updates beliefs about their relevance based on user hints or domain knowledge. The
DNF learning algorithm forms rules by selecting among features proposed by the bias manager,
evaluating them on heuristics also supplied by the bias manager.

Cima uses three sources of built-in knowledge to interpret hints and find features relevant to a
given action. Discourse knowledge defines the types and forms of instructions users may give, as
well as the forms of feedback and elicitation the system can generate. Rules state the context in
which feedback and elicitation are used—for instance, if a concept describes the alignment of
graphics, the agent might draw a guideline to illustrate. Elicitation knowledge includes rules for
deciding whether to shift bias or ask the user for a hint when the current bias appears inadequate.

Maulsby and Witten 7

User Bias / Focus Knowledge
i , Dynamic « Utility criteria for actions
Examples | Elicitations Formalized Bias « Focusing heuristics
Hints | Feedback Examples Manager

* Application terminology
¢ Gesture interpretations
¢ Feature indexing

Hints

Shift bias!

Examples
Features
Suggestions

Discourse
Manager

Descriptions Feature Knowledge

* Pre-defined feature types
* User-taught concepts

Matching
Generalization

Discourse
Knowledge
e |nstructions
* Feedback
« Elicitation

DNF
Learning
Algorithm

Salience metrics

Figure 3 — Learning system components

Bias/focus knowledge comprises the criteria and heuristics to be applied when forming a concept,
and the mappings from the content of user hints to inferences about the relevance of features. The
knowledge is application-specific, although general knowledge about the domains of text, numbers
and graphics can be combined with knowledge customized for an application. As explained in
Section 2, utility criteria associated with each type of action define the features and restrictions on
feature values required for a concept to be useful. To interpret hints, the bias manager uses
knowledge about the meaning of words and gestures, encoded in a thesaurus which maps them to
attributes and values. Justification heuristics, used by the learning algorithm to rank features, test
their statistical fit to examples, satisfaction of utility criteria, salience based on domain knowledge,
and (most important) beliefs based on user hints.

Feature knowledge defines the types and values of features, and their generalization hierarchies and
operators. When adding a new type of feature, application programmers define a CLOS class and
methods for matching two feature values and finding their minimal common generalization. The
programmer may also define three optional methods. The first generalizes a feature value based on
domain knowledge: for instance, automatically deriving Number—Number from 243-6166. The
second finds a generalization that mismatches some other value: Cima uses this to specialize a
feature when given negative examples. The third computes a default salience score for a given
feature value. For instance, the salience method for text gives a high score to short contextual
features containing delimiters, such as text FOLLOWS)¢, which scores higher than text
FOLLOWS WordOWordOWord?.

6 Learning algorithm

Cima’s learning algorithm seeks a DNF ruleset that meets all the utility and instructional criteria,
and minimizes the number of rules and features per rule. It uses a greedy subdivision strategy
pioneered in ID3 [Quinlan 86], in which rules are progressively specialized by adding the feature

Maulsby and Witten 8

makeRules (Concept, Features, Examples, Criteria, Heuristics)
until all positive examples are covered:
add makeOneRule (Concept, Features, Examples, Criteria, Heuristics) to Concept's definition
return new Concept definition

makeOneRule (Concept, Features, Examples, Criteria, Heuristics)

create new empty Rule

until Rule meets Utility Criteria and Instructional Criteria, or until all Features have been tried:
add mostJustifiedFeature (Features, Heuristics, Concept, Examples) to Rule
delete Examples no longer covered by Rule
update bias, removing Criteria already satisfied and re-ordering preferences

simplify (Rule, Concept, Features, Examples, Criteria, Heuristics)

return Rule

mostJustifiedFeature (Features, Heuristics, Concept, Examples)
set Candidates to Features
repeat for each SelectionHeuristic in Heuristics until only one Candidate remains:
set Candidates to FeaturesScoringHighest (SelectionHeuristic, Features, Concept, Examples)
return first feature in Candidates

Figure 4 — Algorithm for composing DNF data description rules

that appears most “useful” or “justified” according to a heuristic, until the rules satisfy utility
criteria (such as correct classification). Figure 4 summarizes Cima’s methods for creating a ruleset,
forming a single rule, and selecting the next most justified feature.

The most noteworthy aspects of the algorithm are that it tests the candidate rule on multiple utility
and instructional criteria, and that it selects features according to several heuristics, including
beliefs based on user hints. Because the rules it creates meet action-specific utility criteria wherever
possible, the algorithm can be used in a variety of applications beyond classification. By
considering only rules that contain all features suggested by the user, the algorithm ensures that the
learning agent “obeys” the user. To generate an alternative description by “independent thought,”
the system can set the instructional criteria to nil. The use of several feature selection heuristics
allows both suggestions from the user and background knowledge to be exploited, yet their merit
is assessed on other criteria, such as how well they distinguish positive and negative examples.

Selecting the features

Perhaps the most important distinction among greedy DNF learning algorithms is the measure that
they evaluate to select the next term with which to specialize a rule. ID3 uses an information-based
measure, the “information gain” of an attribute with respect to the current subset of examples.
Induct [Gaines 89] uses a probabilistic measure, Pr[Class | Feature], and then prunes terms from
rules on the basis of the probability that the rule would be bettered by a randomly-chosen one.
Prism does not prune terms and only generates “exact” rules that perform perfectly on the training
set. It uses the same probabilistic measure as Induct, but breaks ties according to the number of
examples covered. Cima extends this approach by treating the “justification heuristics” as a
parameter and allowing any number of them.

1. suggested relevance 4. used in other rule 7. generality or specificity
2. category utility 5. feature value salience 8. arbitrary choice
3. utility for action 6. feature type salience

Figure 5 — Heuristics used to select most justified feature

Maulsby and Witten 9

Figure 5 lists the heuristics used by Cima in order of importance. The first is suggested relevance,
in which a feature’s score depends on whether the user (or an agent) has classified it as relevant or
irrelevant, and also reflects the credibility of the source. Figure 6 shows the range and
interpretation of scores. A score of 0 indicates that no suggestion has been made. When the user
positively affirms a feature as relevant or irrelevant, perhaps by selecting it from a property sheet, it
scores 1 (User affirms) or —1 (User repudiates). If the system has inferred that the feature is
relevant from a pointing hint, the score is about 0.75 (User suggests). This enables Cima to
acquire beliefs about feature relevance from multiple sources, and then focus on the most credible
ones when selecting features.

o xS 1S
N\ e i e e A
< ¢ < e a‘e’\e a'?pQQ < o (&
NN CCF G @ P
-1 irrelevant 0 relevant 1 Degree of relevance believed

Figure 6 — Degree of the “suggested relevance” measure

A suggestion may refer to an entire collection of features (e.g. “text before selection™), and there
may be several competing interpretations. Thus many feature values may score equally on
suggested relevance. Filtering the winners through other heuristics amounts to gathering multiple
sources of evidence for disambiguating the suggestion.

Prism tends to overfit the example set, because it prefers features that cover only positive examples
regardless of how few they cover. Cima uses category utility, adapted from the Cobweb clustering
algorithm [Fisher 87] and defined as Pr[Class | Feature] x Pr[Feature | Class]. For example, in
Figure 7 feature A covers two positive and no negative examples, B covers four of each, and C
covers three positives and one negative: C scores highest.

+ A A B(B|B|B

cu(Aq+) = 1*1/2 = 1/2 cu(B,+) = 1/2*1 = 1/2 cu(C,+) = 3/4*3/4 = 9/16
Figure 7 — Category utility of three features, A, B and C

The third heuristic is utility for action, which prefers features that contribute most toward achieving
the utility criteria specified for the current action. If the action is to classify examples, then the
utility metric is category utility (already tested). If it is to find data, the heuristic prefers features
that specify the most delimiters or search parameters. For actions that generate data, it prefers
features that deterministically specify object attributes. For actions that modify object properties, it
prefers features that determine or most strongly constrain a property’s new value.

The fourth heuristic, used in other rule, dictates that features found relevant to one disjunct are
likely to be relevant to another. Particular values are preferred over attributes, so that if color(red)
is used in another rule but color(blue) is not, color(red) is preferred (assuming that both have equal
category utility in the current subset). But if color(red) is not among the candidate features, the

Maulsby and Witten 10

heuristic prefers color(blue) (and other values of color) to size, shape, and so on.

The fifth and sixth heuristics rank features on application-defined salience measures. The seventh
heuristic, generality or specificity, prefers either more general or more specific values of features,
according to the current preference setting. In the unlikely event that several candidate features
remain, Cima finally chooses one arbitrarily.

Machine learning theorists concerned with refining the statistical or informational metric used for
feature selection may view the use of multiple heuristics with suspicion. We point out that PBD
presents special demands and opportunities. Application developers and end-users offer a rich
variety of knowledge, but it lacks theoretical rigor and may expressed ambiguously. In many
applications, users expect the system to achieve correct performance after very few examples, and
they tolerate only “reasonable” errors [Maulsby 93]. Exploiting domain knowledge through
multiple heuristics reduces sample complexity and increases the justifiability of statistical inference.

7 Evaluation

Cima is designed to interact with users and exploit customized domain knowledge, hence it is not
easy to evaluate its performance. Testing it on the large public datasets used in machine learning
research would not exercise its most important capabilities, nor predict its interactions with real
users. On the other hand, we have yet to implement the robust user interface needed for an
effective user study. Our initial evaluation therefore utilizes data gathered in the Turvy user study
mentioned in Section 1. Cima was run on transcripts of users’ input to Turvy—the examples and
hints they gave in the course of teaching Turvy about syntactic structures in a bibliography.

Experimental design

Cima was taught eight textual search patterns from five tasks in the Turvy user study. The concepts
are named with a letter identifying the task and a number, as follows: (A1) underlined text, (B1)
start and (B2) end of paper title, (C1) primary author’s surname, (C2) publication date, (D1) all
surnames, and (F1) colons and semicolons to be cut or (F2) replaced with periods. Part i of Figure
8 shows some of the bibliographic data (there were nineteen entries in total), while part ii presents
some of the data descriptions that Cima learned.

Cima was tested on four user traces from the Turvy experiment, and on learning from examples
alone. Three of the traces were chosen at random from the seven available; the fourth was chosen
because it contained hints fraught with errors.

In evaluating Cima the aim is not to replicate all of Turvy’s behavior, since Cima is only one
component of a task learning agent. But since users accepted Turvy, meeting or exceeding its
concept learning performance is Cima’s primary design objective. The experimental conditions
biased results both for and against Cima: where possible, more heavily against it. Preparing the
input for Cima required a manual step—transcribing users’ speech to text and segmenting the
utterances—but this gave Cima no special advantage since Turvy understood speech perfectly.
Turvy could disjoin attribute values or rules; Cima, only rules. This favored Turvy, which always
chose the appropriate tactic. When Cima predicted a different negative example than Turvy, the

Maulsby and Witten 11

1 [John H. Andreae, Bruce A. MacDonald: Expert control for a robot body: %Journal IEEE Systems, Man &
Cybernetics:% July 1990.

Ray Bareiss: @Exemplar-based knowledge acquisition: @ Academic Press: San Diego CA:1989

D. Angluin, C. H. Smith: Inductive inference: theory and methods: %Computing Surveys 3 (15),% pp. 237-269:
September 1983.

Michalski R. S., J. G. Carbonell, T. M. Mitchell (eds): Machine Learning II: Tioga. Palo Alto CA. 1986

Kurt van Lehn: “Discovering problem solving strategies: Proc. Machine Learning 7th Int'l Workshop, pp. 215—
217: 19889.

ii (Bl Start of journal paper title
Searching forward from start of paragraph, Insertion point FOLLOWS :0 and PRECEDES CapitalWord

B2 End of journal paper title (actually, after colon at end of title)
Searching forward from previous example of B1, Insertion point PRECEDES 0%

C1 Primary author’s surname

Searching forward from start of paragraph (Note: this feature used in all four rules),
Selected text MATCHES CapitalWord and PRECEDES

or Selected text MATCHES CapitalWord and PRECEDES ,

or Selected text MATCHES Michalski

or Selected text MATCHES LowercaseWord¢CapitalWord

DI Any surname

Searching forward (Note: this feature used in all seven rules),

Selected text MATCHES CapitalWord and PRECEDES :0NonAlphanumericCharacter
or Selected text MATCHES CapitalWord and FOLLOWS CapitalWord.0 and PRECEDES ,
or Selected text MATCHES LowercaseWord{¢CapitalWord and PRECEDES :
or Selected text MATCHES LowercaseWord(CapitalWord and FOLLOWS CapitalWord.¢
or Selected text MATCHES CapitalWord(length 9) and FOLLOWS Linebreak
or Selected text MATCHES Quinlan
or Selected text MATCHES Mitchell

Figure 8 — i Some of the bibliographic data used to evaluate Cima
(Legend: “%” = start or end italics; “@" = start or end boldface)
ii Data descriptions learned for some concepts from the user study

researcher would classify it correctly, since Turvy’s users correctly classified all examples. Some
hints mentioned no example (disjunct) to which they should apply. Turvy rightly guessed whether
to use the hint in some or all rules; Cima was told to use suggested features wherever possible, and
to use some other value if the one suggested did not apply—a bias favoring overspecialization.

Results

Learning system performance is often measured by the number of positive and negative examples
required to achieve some level of predictive accuracy (as in the PAC learning model [Valiant 84]).
For PBD systems and interface agents, predictive performance in the course of learning is more
relevant. We used a predictive utility score defined as Pr[Predicted | +] X Pr[+ | Predicted]; that is,
the proportion of positive examples the learner predicted, times the proportion of predicted
examples that were positive. Scores are normalized relative to Turvy’s average: thus a score equal
to Turvy’s becomes 1.0. Figure 9 shows Cima’s score on the eight concepts. The graph on the left
depicts the range of performance on all user traces; that on the right compares learning from
examples only with learning from examples and hints. Turvy’s absolute score is overlaid on the

Maulsby and Witten 12

2.0 Max. 20—
] j; Mean all users § . u E%amples only
o> '15 Min. 3 B With hints
8¢ 157 157 g
c 9 H a] -
2 a -
5 2 1018 § 1.0 =
T g i jI_ % ; 5 {
ge] :] - 2 g
05— — — ™ -0.8 Turwy's 0‘5q.
— =i N Prediction .
] T - 0.4 Score]
0.0 T 0.0

Concept A1 B1 B2 C1C2 D1 F1 F2 A1 B1B2 C1C2 D1 F1F2

Figure 9 — Cima’s performance relative to Turvy

left-hand graph. Cima averages 95% of Turvy’s score; 94% when learning from examples alone,
and 96% when given hints. Variability between tasks is partly attributable to the relatively small
number of examples of each concept. But as the graphs show, Cima’s performance on some tasks
varied widely due to the quality of hints. On average, hints did not significantly improve learning,
and Cima’s ability to utilize hints fell short of Turvy’s. Treating hints as applicable to all examples
by default produced many extraneous disjuncts and failures to predict, accounting for most if not
all of this shortfall. Moreover, Cima’s domain knowledge and automatic generalization enabled
efficient learning from examples alone, requiring on average 1 positive and 0.4 negative examples
per disjunct. We conclude that Cima performs well enough to warrant further development, and
that the user interface should be designed to ensure that hints are associated with examples.

8 Conclusion

When an interactive user agent learns, it must utilize multiple sources of information—including
interaction with the user. The goal of minimizing example complexity is taken to an extreme, and
the criteria for learning include action-specific operational utility as well as correct classification.
This paper has presented an interaction model comprising three types of instruction,
classifyExample, classifyRule, and classifyFeature, and a novel methodology for interpreting
ambiguous and incomplete hints in terms of classifyFeature instructions. The model has been
operationalized as the Cima learning algorithm and has been shown to perform well on dialogues
collected from human interaction with a simulated interface agent—although this evaluation is only
preliminary because the protocols employed were also used as inspirational examples during

system design.

Further work includes embedding the Cima algorithm into an interactive PBD system, and more
extensive user testing on new dialogues and tasks. An important omission from Cima is the
inference of the sequential structure of tasks. A software agent has already been described that
completes sequential patterns [Schlimmer 93], but it works from several examples of each pattern,
which have been delimited by the user. A more natural extension of Cima would be to synthesize a
program from a single, continuous, unsegmented, example of a behavior stream. An algorithm has
been developed for this [Nevill-Manning 94] but not yet placed into the context of PBD.

Maulsby and Witten

13

References
[Angluin 88]

[Bocionek 94]

[Cendrowska 87]
[Cypher 93a]
[Cypher 93b]

[de Raedt 92]
[Fisher 87]

[Gaines 89]

[Halbert 93]

[Maulsby 93]

[Maulsby 94]
[Michalski 83]

[Nevill-Manning 94]

[Quinlan 86]
[Schlimmer 93]

[Valiant 84]

Angluin, D. “Queries and concept learning.” J. Machine Learning (2), pp.
319-342.

Bocionek, S. “Software secretaries: learning and negotiating personal
assistants for the daily office work,” in Proc. IEEE Int. Conference on
Systems, Man and Cybernetics, pp. 7-12. San Antonio TX.

Cendrowska, J. “PRISM: an algorithm for inducing modular rules.” Int. J
Man-Machine Studies, 27(4), pp. 349-370.

Cypher, A. (ed.) Watch what I do: programming by demonstration. MIT
Press. Cambridge MA. 1993.

Cypher, A. “Eager: programming repetitive tasks by demonstration,” in
[Cypher 93a], pp. 205-217.

de Raedt, L., and Bruynooghe, M. “Interactive concept-learning and
constructive induction by analogy.” J. Machine Learning (8), pp. 107-150.

Fisher, D. “Knowledge acquisition via conceptual clustering.” J. Machine
Learning (2) pp. 139-172.

Gaines, B.R. “An ounce of knowledge is worth a ton of data: quantitative
studies of the trade-off between expertise and data based on statistically well-
founded empirical induction,” in Proc. ML’89, Sixth International Workshop
on Machine Learning, pp. 156-159. San Mateo, CA.

Halbert, D.C. “SmallStar: programming by demonstration in the desktop
metaphor,” in [Cypher 93a], pp. 103-123.

Maulsby, D., Greenberg, S., and Mander, R. “Prototyping an intelligent
agent through Wizard of Oz,” in Proc. InterCHI'93, pp. 277-285.
Amsterdam.

Maulsby, D. “Instructible agents,” PhD thesis. Dept. of Computer Science,
University of Calgary. 1994.

Michalski, R.S. “A theory and methodology of inductive learning,” in
Machine Learning I, pp. 83—134. Tioga. Palo Alto.

Nevill-Manning, C., Witten, L.H., and Maulsby, D.L. “Compression by
induction of hierarchical grammars.” Proc Data Compression Conference,
edited by J.A Storer and M. Cohn. IEEE Press, 1994, pp. 244-253.

Quinlan, J.R. “Induction of decision trees.” J. Machine Learning (1), pp.
81-106.

Schlimmer, J.C. and Hermens, L.A. “Software agents: completing patterns
and constructing user interfaces.” J AI Research, 1, pp. 61-89.

Valiant, L.G. “A theory of the learnable.” Communications of the ACM (27)
11, pp. 1134-1142.

