WAIKATO Research Commons

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

Te Whare Wānanga o Waikato

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from the thesis.

CONCURRENT SCHEDULE PERFORMANCE OF POSSUMS: A COMPARISON OF TWO MODELS

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Doctor of Philosophy

at the

University of Waikato

by

ANGELA MARIE BRON

University of Waikato

2001

ABSTRACT

These experiments examined the behaviour of brushtail possums (Trichosurus vulpecula) under concurrent variable-interval schedules of reinforcement. In the first experiment the lever pressing of six possums resulted in intermittent access to a barley/carob mixture under four pairs of variable-interval schedules. In most respects, the behaviour of the possums was similar to that observed with other species. However, the degree of undermatching of the response ratios to the obtained reinforcement-rate ratios was greater than is normally observed with these schedules. Both the Generalised Matching Law and the Contingency-Discriminability model described the data well, although, where overmatching was obtained, the parameter values given by the Contingency-Discriminability model did not make sense in terms of the original assumptions of the model. The second experiment examined the possibility that the undermatching related to the length of the changeover delay used. Six possums were exposed to five different pairs of concurrent schedules at each of four different changeover-delay lengths (ranging from 0 to 6 s). Time allocation and post-changeover delay responses more closely approximated matching with a 2-s changeover delay than with a 0-s delay, but no further changes in sensitivity were observed with further increases in changeover-delay length. Overmatching was consistently observed in the postchangeover delay data, resulting in un-interpretable parameter values from Contingency-Discriminability analyses. The addition of the punishment parameter (w) to the Contingency-Discriminability model, suggested to deal with such data, did not generally result in more sensible parameter estimates. The third experiment attempted to bias possums responding using qualitatively different reinforcers. Equal variable-interval schedules were used with the barley/carob mixture available on one schedule and Cocopops[™] or coconut on the other. Possums' behaviour was biased by these foods, with a small bias away from the barley/carob mixture resulting from the Cocopops and a large bias towards the barley/carob mixture resulting from the coconut. In the fourth experiment, graded point estimates of bias were obtained by presenting four different concentrations of salted barley/carob mixture (ranging from 0% to 6%) on one schedule and plain

barley/carob mixture on the other schedule. Small biases were found with 0% and 2% salt, and large biases were found towards the barley/carob mixture with 4% and 6% salt. To assess whether bias remains constant with changes in the reinforcer-rate ratio, further conditions were conducted with 4% and 6% salt, with four pairs of unequal concurrent variable-interval schedules. Analyses of these data with both the Generalised Matching Law and the Contingency-Discriminability Model revealed an interaction between bias and the reinforcement-rate ratio. This interaction may be due to an improvement in discriminability due to the different reinforcers. The behaviour of the possums was generally well described by both the Generalised Matching Law and the Contingency-Discriminability model. Overall, neither model was better at describing behaviour under the above conditions, although several problems were found with the application of the Contingency-Discriminability model.

I would like to thank my supervisors, Drs. T Mary Foster, Catherine Sumpter, and William Temple for their assistance in completing this thesis.

I would also like to thank the students at the Animal Behaviour and Welfare Research Centre for their help and advice along the way, particularly for filling me in on all the university gossip and survival tips when I first arrived in Hamilton. I would especially like to thank Tania Signal for helping to run the experiments.

I am also grateful to Neil Haigh in the Teaching and Learning Development Unit for letting me take time off work to finish writing, and to Andrea Haines and Grant Harris for giving up valuable time to proof-read this thesis.

Finally I would like to thank the friends who have helped me survive the final stages of the process. Thank you Kent for giving me the motivation and support I needed to get through the last bits of writing, for putting up with my mood-swings in the last couple of weeks, and for not letting me get side-tracked by the house renovations. Thank you also to Lee-Ann and KT for not letting me forget about the outside world, and making sure I didn't go insane. Thanks to your support I managed to get through with a minimum of stress.

CONTENTS

Page
ABSTRACTI
ACKNOWLEDGEMENTSIII
CONTENTS
LIST OF TABLES IX
LIST OF FIGURESXIII
LIST OF APPENDICESXX
GENERAL INTRODUCTION1
Concurrent Schedules
The Generalised Matching Law4
The Contingency-Discriminability Model7
EXPERIMENT 1
Method16
Subjects16
Apparatus17
Procedure
Results
Generalised Matching Law20
Changeover Rates
Response Rates

Discu	ssion	
	The Generalised Matching Law	
	Changeover Rates	
	Response Rates	
	The Contingency-Discriminability Model	50
EXPERIME	NT 2	60
Meth	od	61
	Subjects	61
	Apparatus	61
	Procedure	61
Resul	ts	63
	The Generalised Matching Law	63
	The Contingency-Discriminability Model	71
	Extinction	74
	Changeover Rates	77
	Response Rates	
Discu	ission	
	Changeover Rates	
	Response Rates	
	The Contingency-Discriminability Model	
	Extinction	
EXPERIME	NT 3	
Meth	od	
	Subjects	
	Apparatus	
	Procedure	102
Resul	ts	
1.004	Bias Estimates	
	Changeover Rates	
	5	

	Response Rates	119
Discu	ssion	
	Bias Estimates	124
	Changeover Rates	
	Response Rates	131
EXPERIMEN	JT 4	133
Metho	od	134
	Subjects	134
	Apparatus	134
	Procedure	134
Resul	ts	137
	Point Estimates of Bias	
	Line Estimates of Bias	148
	Point Estimates vs. Line Estimates	162
Discu	ssion	166
	Point Estimates of Bias	166
	Line vs. Point Estimates of Bias	168
	Sensitivity/Discriminability	172
	Changeover Rates	174
	Response Rates	175
GENERAL I	DISCUSSION	177
	General Possum Behaviour	177
	Food Preference	
	The Contingency-Discriminability Model	
	The GML vs. the C-D model	190
	Conclusion	195
REFERENCI	ES	197

APPENDIX A	
APPENDIX B	
APPENDIX C	224
APPENDIX D	

LIST OF TABLES

Table 1.1.	The order of conditions for Experiment 1, the schedules in effect, and the number of sessions required to reach stability in each condition.	Page 19
Table 1.2.	The slopes (<i>a</i>), y-intercepts (log <i>c</i>), the percentage of variance accounted for (%VAC) and standard errors of the estimates (SE) for the lines of best fit for total response and time allocation (Figure 1.1), within- and post-COD responding (Figure 1.2), and first- and second-half response and time allocation (Figure 1.3). Slopes and y-intercepts are also given for PRP- and Net-time allocation (Figure 1.4) where only two data points were collected.	
Table 1.3.	The parameters resulting from the fit of the C-D model (Equation 0.7, with w set to 0) to the response- and time- allocation data (Figure 1.8) and the within and post-COD data (Figure 1.9).	
Table 2.1.	The order of conditions for Experiment 2, and the number of sessions required to reach stability in each condition	62
Table 2.2.	Slopes (<i>a</i>), y-intercepts (log <i>c</i>), the percentage of variance accounted for (%VAC) and standard errors of the estimates (SE) for the lines of best fit for total response allocation (Figures 2.1 and 2.3), and within and post COD responding (Figure 2.3) at each changeover delay	
Table 2.3.	Slopes (<i>a</i>), y-intercepts (log <i>c</i>), the percentage of variance accounted for (%VAC) and standard errors of the estimates (SE) for the lines of best fit for total time allocation (Figures 2.2 and 2.3), and PRP and net time allocation at each changeover delay	
Table 2.4.	Estimates of relative discriminability (p_r) , discriminability (d_r) , bias $(\log c)$, and the percentage of variance accounted for (%VAC) for the lines of best fit for response- (Figure 2.1) and time-allocation (Figure 2.2) at each changeover delay	

Table 2.5 Estimates of relative discriminability (p_r) ,

	discriminability (d_r) , bias $(\log c)$, punishment (w) , and the percentage of variance accounted for (%VAC) for the lines of best fit for post-COD response allocation at each changeover delay.	73
Table 2.6.	Estimates of relative discriminability (p_r) , discriminability (d_r) , bias (log c), punishment (w) and the percentage of variance accounted for (%VAC) for the lines of best fit for post-COD responding from Experiment 1.	91
Table 2.7	The parameter estimates obtained when the GML was fitted to the post-COD time data from the 2-s, 4-s and 6-s COD conditions.	95
Table 2.8	Estimates of relative discriminability (p_r) , discriminability (d_r) , bias $(\log c)$, punishment (w) , and the percentage of variance accounted for (%VAC) for the lines of best fit for the post-COD time data. Estimates were obtained using the original C-D model, and the punishment version (with and without p_r constrained).	96
Table 3.1.	The order of conditions for Experiment 3, the foods presented in the left and right magazines, and the number of sessions required to reach stability in each condition1	03
Table 3.2.	Point estimates of the ratio of bias for each subject when Barley/Carob mixture was paired with Cocopops and coconut. Bias towards the Barley/Carob mixture is indicated by a value greater than 1.01	07
Table 4.1.	The order of conditions for Experiment 4, and the number of sessions required to reach stability in each session	36
Table 4.2.	Point estimates of the ratio of bias for each subject when barley/carob mixture was paired with different concentrations of salted barley. Estimates are given for response and time data (both total and first and second half), within and post-COD responding, and PRP and net time data. Bias towards the barley/carob mixture is indicated by a value greater than 1.0	40

Table 4.3. Slopes (a), y-intercepts (log c), the percentage of variance

	accounted for (%VAC) and standard errors of the estimates (SE) for the lines of best fit for total response (Figure 4.9) and time allocation (Figure 4.10), within and post COD responding (Figure 4.11), first and second half response and time allocation, and PRP and net time allocation (Figure 4.12) when 4% salt was presented	 153
Table 4.4.	Slopes (a), y-intercepts (log c), the percentage of variance accounted for (%VAC) and standard errors of the estimates (SE) for the lines of best fit for total response (Figure 4.9) and time allocation (Figure 4.10), within and post COD responding (Figure 4.11), first and second half response and time allocation, and PRP and net time allocation (Figure 4.12) when 6% salt was presented	 154
Table 4.5.	Estimates of relative discriminability (p_r) , discriminability (d_r) , bias $(\log c)$, and the percentage of variance accounted for (%VAC) for the lines of best fit for response- (Figure 4.9) and time-allocation (Figure 4.10), and post COD responding (Figure 4.11), when 4% and 6% salt were presented.	 155
Table 4.6.	The estimates of bias based on the equal schedule conditions (point estimates) and derived from the GML fits for the 4% and 6% salt conditions. Also presented is the difference between the two estimates, and the change in bias from the 4% to the 6% salt conditions for each subject and each measure of bias.	 165
Table 5.1.	The mean and range of response, time, post COD, and within COD <i>a</i> values with each COD, from Experiments 1, 2 and 4.	 179
Table 5.2.	Slopes (a) and y-intercepts (log c) of the lines of best fit from Figure 5.3. Lines were fitted to the data from conditions in Experiment 2 where the preferred alternative was associated with the left and right levers separately. Also presented are the slopes and intercepts from the original GML analysis	 188
Table 5.3.	Slopes (a) and intercepts (log c) of the lines of best fit from Figure 5.4. Lines were fitted to the data from conditions where the preferred alternative was associated with the left and right key separately. Also presented are	

the slopes and intercepts from the original analysis by	
Temple et al. (1995)	191

LIST OF FIGURES

		Page
Figure 1.1.	The logarithms of the response ratios (left) and the logarithms of the time-allocation ratios (right) plotted as functions of the logarithms of the obtained reinforcer ratios	21
Figure 1.2.	The logarithms of the response ratios within and after the changeover delay plotted as a function of the logarithms of the obtained reinforcer ratios	24
Figure 1.3.	The logarithms of the response ratios from Conditions 2, 3 and 4 plotted for each half of the session	26
Figure 1.4.	The logarithms of the post-reinforcement-pause time ratios, the logarithms of the time ratios, and the logarithms of the net-time-allocation ratios plotted as functions of the obtained reinforcer ratios from Conditions 3 and 4 only	
Figure 1.5.	The rate of changeover for each possum during each of the conditions.	
Figure 1.6.	The absolute response rates on the left and right manipulanda plotted as functions of the logarithms of the obtained reinforcer ratios for the first and second halves of the sessions.	
Figure 1.7.	The local response rates on the left and right manipulanda plotted as functions of the logarithms of the obtained reinforcer ratios for the first and second halves of the sessions.	
Figure 1.8.	The logarithms of the response- and time- allocation ratios plotted as functions of the logarithms of the obtained reinforcer-rate ratios for each subject	
Figure 1.9.	The logarithms of the ratio of responses made within and after the changeover delay plotted against the logarithm of the obtained reinforcer ratio for each subject.	

Figure 1.10.	The average number of responses during each second following a changeover.	.45
Figure 1.11.	The difference between the predicted and obtained logarithms of the response ratios plotted against the logarithms of the obtained reinforcer ratio for the data collected by Davison and Jones (1995). The data were analysed using the GML.	.57
Figure 1.12.	The difference between the predicted and obtained logarithms of the response ratios plotted against the logarithms of the obtained reinforcer ratio for the data collected by Davison and Jones (1995). The data were analysed using the C-D model.	.58
Figure 2.1.	The logarithms of the response ratios plotted against the logarithms of the reinforcer-rate ratios for each subject at each COD length	.64
Figure 2.2.	The logarithms of the time-allocation ratios plotted against the logarithms of the reinforcer-rate ratios for each subject at each COD length	.66
Figure 2.3.	The estimates of sensitivity to changes in the reinforcer- rate ratio are plotted for each subject, at each COD length, for response- and time-allocation, and within- and post-COD responding.	.70
Figure 2.4.	The estimates of relative discriminability of the response-reinforcer contingencies are plotted for each subject, at each COD length, for response- and time- allocation, and post-COD responding.	.75
Figure 2.5.	The proportion of responses made to the extinction alternative during the concurrent EXT VI 20 condition with a 2-s COD (filled circles), and the proportion of responses predicted by the C-D model (unfilled circles) based on the estimates of discriminability and bias calculated using the data obtained during the remaining 2-s COD conditions for each subject.	.76
Figure 2.6.	The rates of changing over plotted against the logarithms of the time-allocation ratios for each possum	

	at each COD length	78
Figure 2.7.	The changeover rate and the mean dwell time are plotted against the COD length for two sets of schedules (one equal schedules condition and one unequal schedules condition) for each subject	79
Figure 2.8.	The average number of responses during each second following a changeover for each possum and each COD length with concurrent VI 40 VI 40 schedules.	81
Figure 2.9.	The average number of responses during each second following a changeover for each possum and each COD length with concurrent VI 180 VI 22.5 schedules.	82
Figure 2.10.	The local response rates on the left and right manipulanda plotted as functions of the logarithms of the obtained reinforcer ratios for each possum at each COD length.	84
Figure 2.11.	The absolute response rates on the left and right manipulanda plotted as functions of the logarithms of the obtained reinforcer ratios for each possum at each COD length.	85
Figure 3.1.	The logarithms of the response ratios plotted for each of the last five sessions of each condition	. 105
Figure 3.2.	The logarithms of the time-allocation ratios plotted for each of the last five sessions of each condition.	. 108
Figure 3.3.	The logarithms of the response ratios from both within and after the changeover delay plotted for each of the last five sessions from each condition	. 111
Figure 3.4.	The logarithms of the response ratios from each condition plotted for each half of the session	. 113
Figure 3.5.	The logarithms of the time-allocation ratios from each condition plotted for each half of the session.	. 115

xv

Figure 3.6.	The logarithms of the post-reinforcement pause time ratios and the logarithms of the net-time-allocation ratios plotted for each of the last five sessions from each condition.	116
Figure 3.7.	The number of changeovers made per minute during each condition plotted as a function of the logarithms of the time-allocation ratios (left panel) and the logarithms of the ratio of responses (right panel)	118
Figure 3.8.	The absolute response rates on the left and right manipulanda plotted for each condition for the first and second halves of the sessions	120
Figure 3.9.	The absolute response rates (left panel) and local response rates (right panel) on the left and right manipulandum plotted for each condition	121
Figure 3.10.	The local response rates on the left and right manipulanda plotted for each condition for the first and second halves of the sessions	123
Figure 3.11.	The rates of changing over during Experiment 1 plotted against the logarithms of the time-allocation ratios, the response-allocation ratios, and the reinforcer-rate ratios for each possum.	130
Figure 4.1.	The point estimates of bias for each possum based on the response and time data for each of the salt concentrations paired with the crushed barley/carob mixture and equal concurrent VI VI schedules of reinforcement.	138
Figure 4.2.	The point estimates of bias for each possum based on the first and second half response data for each of the salt concentrations paired with the crushed barley/carob mixture and equal concurrent VI VI schedules of reinforcement.	141
Figure 4.3.	The point estimates of bias for each possum based on the first and second half time data for each of the salt concentrations paired with the crushed barley/carob mixture and equal concurrent VI VI schedules of	

	reinforcement	143
Figure 4.4.	The point estimates of bias for each possum based on the within- and post-COD data for each of the salt concentrations paired with the crushed barley/carob mixture and equal concurrent VI VI schedules of reinforcement.	144
Figure 4.5.	The point estimates of bias for each possum based on the PRP and net time data for each of the salt concentrations paired with the crushed barley/carob mixture and equal concurrent VI VI schedules of reinforcement.	146
Figure 4.6.	The rate of changing over per minute plotted against the logarithms of the time allocation ratios and the logarithms of the response allocation ratios for each possum, with equal concurrent VI VI schedules	147
Figure 4.7.	The absolute rate of responding per minute on the left and right levers, plotted separately for conditions when the salted alternative and the barley alternative were associated with that lever, for each possum at each salt concentration, when equal concurrent VI VI schedules were used	149
Figure 4.8.	The local rate of responding per minute on the left and right levers, plotted separately for conditions when the salted alternative and the barley alternative were associated with that lever, for each possum at each salt concentration, when equal concurrent VI VI schedules were used	150
Figure 4.9.	The logarithms of the response ratios for the No Salt, 4% Salt and 6% Salt conditions in which the VI schedules were varied, plotted against the logarithm of the obtained reinforcer rate ratio for all possums	151
Figure 4.10.	The logarithms of the time ratios for the No Salt, 4% Salt and 6% Salt conditions in which the VI schedules were varied, plotted against the logarithm of the obtained reinforcer rate ratio for all possums.	157

xvii

Figure 4.11.	The logarithms of the post-COD response ratios for the No Salt, 4% Salt and 6% Salt conditions in which the VI schedules were varied, plotted against the logarithm of the obtained reinforcer rate ratio for all possums
Figure 4.12.	The logarithms of the PRP and net time ratios for the No Salt, 4% Salt and 6% Salt conditions in which the VI schedules were varied, plotted against the logarithm of the obtained reinforcer rate ratio for all possums161
Figure 4.13.	The local rate of responding per minute on the left and right levers for the No Salt, 4% Salt and 6% salt conditions plotted in which the VI schedules were varied, plotted against the logarithm of the obtained reinforcer rate ratio for all possums
Figure 4.14.	The absolute rate of responding per minute on the left and right levers for the No Salt, 4% Salt and 6% salt conditions plotted in which the VI schedules were varied, plotted against the logarithm of the obtained reinforcer rate ratio for all possums
Figure 4.15.	The difference between the predicted and obtained logarithms of the response ratios plotted against the logarithms of the obtained reinforcer ratios. The two leftmost panels show the analysis using the GML and the two rightmost panels show the analysis using the C- D model, from the 4% and 6% salt conditions, respectively
Figure 4.16.	The difference between the predicted and obtained logarithms of the response ratios plotted against the logarithms of the obtained reinforcer ratios for the data from Experiment 2. Here, the data were analysed using the GML
Figure 5.1.	The mean changeover rates plotted against the logarithms of the time allocation ratios (left panel), and the mean local response rates (centre panel) and mean absolute response rates (right panel) plotted against the logarithms of the reinforcer ratios from Experiments 1, 2 (with a 2-s COD), and 4 (for 4% and 6% salt conditions where the schedules were varied)

Figure 5.2.	An approximation of the figures presented by Baum et al. (1999) when separate regression lines were fitted to the concurrent schedule data where the schedules associated with the left key were rich, and where the schedules associated with the right key were rich	185
Figure 5.3.	The logarithms of the response ratios plotted against the logarithms of the reinforcer ratios for the data from Experiment 2.	187
Figure 5.4.	The logarithms of the response ratios plotted against the logarithms of the reinforcer ratios for the data from the no COD (left panel), 2 s COD (centre panel), and 4 s COD (right panel) conditions of Temple et al.'s (1995) experiment.	189

LIST OF APPENDICES

APPENDIX A	Raw data presented for all possums for the last five sessions of each condition in Experiment 1	205
APPENDIX B	Raw data presented for all possums for the last five sessions of each condition in Experiment 2	208
APPENDIX C	Raw data presented for all possums for the last five sessions of each condition in Experiment 3	224
APPENDIX D	Raw data presented for all possums for the last five sessions of each condition in Experiment 4.	228

The brushtail possum (*Trichosurus vulpecula*) was first introduced into New Zealand from Australia in the 1800's to establish a fur industry (Pracy & Kean, 1969). Soon after their introduction, there were complaints about the damage they were doing to gardens and orchards (Pracy & Kean, 1969). However, no action was taken at this time, as it was thought that the benefits of the fur industry would far outweigh any damage caused. Over the years, the amount of damage caused by possums has become progressively more apparent (Pracy & Kean, 1969; Swan, 1996).

Today, possums contribute to a large range of problems, including the defoliation of both native and exotic tree species (Fitzgerald, 1981; Pracy & Kean, 1969; Swan, 1996). Possums cause further damage to trees by biting the bark to mark their territory, and they sometimes use bark as a food source (Pracy & Kean, 1969). This forest destruction affects the native bird populations by destroying their habitats. Possums have also been known to eat eggs and young birds (Swan, 1996). As well as contributing to the destruction of New Zealand's forests, possums have been implicated in the transfer of tuberculosis to cattle and deer (Julian, 1981). The possums' immunity to this disease is deficient, making them highly susceptible (Swan, 1996).

The possum population in New Zealand was estimated to have reached approximately 70 million by 1992 (Seitzer, 1992). The success of the possum population in New Zealand compared to Australia has been attributed to the lack of both predators and competition for food sources (Swan, 1996). For all of these reasons, possum control is a topic of major concern to the community.

Little research has been done on possums' psychophysical and learning abilities. Such research could provide information helpful in developing more efficient possum control measures. One important area of study is possum food preferences, and the identification of odours and/or flavours that possums prefer. Knowledge of such preferences, and of appropriate methods for assessing them, could then be used to help design baits that are attractive to possums.

There have been very few preference studies of any sort with possums. Those that have been done have involved presenting the possums with two or more alternatives simultaneously, and then observing their behaviour towards each (Hudson, Foster & Temple, 1999; Morgan, 1990; Todd, 1995). Todd (1995) examined odour preferences by attaching jars containing synthetic odours to the front of the possum's cages, and observing the amount of time spent sniffing each jar. Todd (1995) found no preference for any of the odours over distilled water (i.e., possums spent approximately the same amount of time sniffing each jar). These odours were also tested in an enclosure, and as lures to traps in the wild. No odour preferences were observed in either of these situations. Todd suggested that a different result may have been achieved if naturally occurring odours had been used rather than synthetic odours.

Hudson et al. (1999) and Morgan (1990) studied the food preferences of possums. Morgan (1990) added flavours to barley and measured the consumption of each flavoured barley. Each trial included the pairing of one of three different flavoured barleys with unflavoured barley. In most trials, more unflavoured than flavoured barley was eaten by the possums. More flavoured than unflavoured barley was eaten with only 14 of the 40 flavours presented. The consumption of only one flavour (orange) was significantly greater than the consumption of unflavoured barley. Hudson et al. (1999) presented possums with pairs of different foods. The subjects were allowed to eat only one food from each pair, and preference was determined by the percentage of times that each food was selected. Although clear preferences were found with this method, it was not possible to determine 'how much' the possum preferred one food over another (Hudson et al., 1999).

Concurrent Schedules

The preferences of several species have been studied using schedules of reinforcement, in which a consequence, termed a reinforcer (usually food), is made contingent on responding. The response selected depends on the species, but is normally one which operates a key or lever. The most commonly used schedules in such studies of preference have been variable-interval (VI) schedules (e.g., Hollard & Davison, 1971; Matthews & Temple, 1979; McAdie, Foster &

Temple, 1996), in which food is made available for the first response emitted after a predetermined period of time has elapsed since the last food presentation, which varies around some average value. For example, a VI 40-s schedule would deliver reinforcement for the first response, on average, after 40 s had elapsed since the previous reinforcement. To measure a subject's preference, two alternatives (each associated with a VI schedule of reinforcement) are made available at the same time. This is termed a concurrent VI VI schedule of reinforcement procedure (Ferster & Skinner, 1957). The most common way of arranging concurrent schedules involves offering two independent response alternatives (e.g., two keys) located next to each other. Each key is associated with a different schedule of reinforcement, and the subject is free to respond on either alternative at any time during a session.

Concurrent schedules can be programmed either independently or dependently. Under independent schedules, once a reinforcer becomes available on one alternative, the timer for that alternative pauses until that reinforcer has been collected. During this time, provided a reinforcer is not due on the alternate schedule, its timer will continue. Under these conditions, it is possible for the subject to respond exclusively on one of the alternatives and to continue to receive reinforcement from that alternative. Under dependent schedules, when a reinforcer becomes available on either of the schedules, the timers for both schedules stop and do not restart until the scheduled reinforcer has been collected. Dependent schedules allow the experimenter to control the proportion of reinforcement received on the alternatives. They also ensure that responding is maintained on both alternatives, because exclusive responding on one alternative will result in extinction on that alternative (i.e., no reinforcers will become available). In a review of concurrent-schedule research, Taylor and Davison (1983) presented the results of several experiments involving both dependent and independent concurrent VI VI schedules of reinforcement. Overall, the behaviour observed appeared similar irrespective of the type of schedules used.

The Generalised Matching Law

Behaviour under concurrent VI VI schedules of reinforcement is most commonly analysed using the Generalised Matching Law (GML; Baum, 1974). Expressed logarithmically, it is:

$$\log (B_1/B_2) = a \log (r_1/r_2) + \log c$$
 (0.1)

where B_1 and B_2 represent the number of responses made, or the times spent on the two alternatives, and r_1 and r_2 represent the rate of reinforcer delivery obtained from the two alternatives. Plotting log (B_1/B_2) against log (r_1/r_2) gives a straight line (matching line), where the slope, *a*, is a measure of the sensitivity of behaviour to changes in the relative rate of reinforcement, and the *y*-intercept, log *c*, is a measure of bias towards one of the alternatives over and above reinforcement-rate differences.

Strict matching $(a = 1.0, \log c = 0)$ implies that the ratio of responses made on each alternative equals the ratio of reinforcers obtained on those alternatives. There are two common types of deviation from strict matching described by Baum (1979). The first occurs when *a* is not equal to 1.0. When *a* is less than 1.0, the subject's responding tends towards indifference (i.e., the amount of behaviour allocated to the schedule providing the greater rate of reinforcement (the rich schedule) is less than that predicted by strict matching). This is referred to as undermatching. Overmatching results when the subject responds more on the rich schedule than predicted by strict matching, and is indicated by an *a* value of greater than 1.0.

Undermatching, with *a* values usually around 0.8 (Baum, 1979; Davison & McCarthy, 1988; Williams, 1988), is the most common result in studies using a GML analysis. Undermatching has been demonstrated in humans (Mace, Neef, Shade & Mauro, 1994), cows (Foster, Temple, Robertson, Nair & Poling, 1996; Matthews & Temple, 1979), goats (Foster, Matthews, Temple, & Poling 1997), horses (Dougherty & Lewis, 1992), rats (Baum, 1979; Wearden & Burgess, 1982), hens (Temple, Scown, & Foster, 1995), and pigeons (Davison & Hunter, 1976; Hollard & Davison, 1971).

One suggestion is that undermatching is related to the length of the changeover delay (COD) used (Baum, 1979; de Villiers, 1977; Shull & Pliskoff, 1967). A COD is a period of time after switching response alternatives during which no reinforcers will be delivered, even if one has been set up by the VI schedule. COD's are usually added to concurrent VI VI schedules to establish independence between the two schedules, and to prevent accidental reinforcement for switching schedules (Catania, 1966).

Introducing a COD has the effect of decreasing the number of changeovers within a session (Findley, 1958). It has been suggested that the presence of a COD also increases the sensitivity of behaviour to reinforcement (Baum, 1979; Shull & Pliskoff, 1967). Temple et al. (1995) studied the behaviour of hens over a range of COD values and reinforcement-rate ratios. They found that the observed *a* values increased from the no-COD condition to the 2-s COD condition, but remained relatively constant with further increases in COD length, suggesting that the presence of a COD may be more important than the length. Responding within the COD was also found to be insensitive to changes in the reinforcement-rate ratios. This finding is common (e.g., McAdie et al., 1996; Muir, 1997; Silberberg & Fantino, 1970), and provides support for Baum's (1982) suggestion that only responses made outside the COD (i.e., post-COD responses) should be analysed.

The second type of deviation from strict matching, termed bias, is seen when log *c* does not equal zero, and arises from a subject's responding consistently more on one alternative, independent of reinforcement rate. This bias can be what is termed inherent bias, for example, due to a colour or position preference. However, bias can also be experimentally arranged by setting up different response requirements (e.g., Sumpter, Foster & Temple, 1995; Sumpter, Temple & Foster, 1998), by providing qualitatively different reinforcers on the two alternatives (e.g., Matthews & Temple, 1979; Miller, 1976), by arranging a delay to reinforcement (Chung & Herrnstein, 1967), or by varying the amount of reinforcement (Todorov, 1973). Such a procedure can give a measure of the degree of 'preference' for the different response or reinforcer types over and above inherent bias.

Using concurrent VI VI schedules, two qualitatively different reinforcers can be made available, each associated with its own response key and schedule of reinforcement. Hollard and Davison (1971) suggested that differences in the qualities of the reinforcers would be demonstrated by an intercept not equal to zero (i.e., $\log c \neq 0$). They found that pigeons exhibited large biases towards the schedule delivering food reinforcers when the other schedule delivered brain stimulation. In that study, no measure of inherent bias was recorded, so it is possible that the bias found was not entirely due to the relative qualities of the different reinforcers.

When attempting to study the food preferences of cows (hay vs. dairy meal), Matthews and Temple (1979) suggested two separate sources of bias and a modification of the GML. In logarithmic form, it is:

$$\log (P_1/P_2) = a \log (r_1/r_2) + \log (q_1/q_2) + \log b$$
(0.2)

where log *b* is the inherent bias, q_1 and q_2 are the qualities of the foods, P is equivalent to B in Equation 0.1, and log $(q_1/q_2) + \log b$ is equal to log *c* in Equation 0.1. Preference was then determined by first arranging the same food on each alternative to obtain a measure of log *b*, then presenting different foods on each alternative. By subtracting log *b* from the total bias measure, the amount of bias due solely to food preference was then determined. A similar method has also been used successfully to study preference between crushed barley and meat meal with cows (Foster et al., 1996), between different grains with pigeons (Miller, 1976), to determine the aversiveness of different noises in hens (McAdie et al., 1996), and to study the behaviour of hens using different response types and force requirements (Sumpter et al., 1995; Sumpter et al., 1998).

The GML provides a good description of behaviour on concurrent VI VI schedules of reinforcement both with and without introduced biasers. Therefore, provided possums respond similarly to other animals under such schedules, the GML will be a suitable model to attempt to study their behaviour.

The Contingency-Discriminability Model

Another model, which was proposed as an alternative to the GML for describing concurrent-schedule performance, is Davison and Jenkins' (1985) Contingency-Discriminability (C-D) model. Expressed mathematically, it is:

$$B_1/B_2 = c(d_r R_1 + R_2)/(d_r R_2 + R_1)$$
(0.3)

where B_1 and B_2 are the same as in Equation 0.1, R_1 and R_2 are equivalent to r_1 and r_2 in Equation 0.1, c is a measure of bias, and d_r is a measure of the discriminability of the response-reinforcer contingencies. In other words, d_r measures how well a subject can discriminate which of the alternatives the response that gave rise to each reinforcer was made on, and therefore, what schedules are in effect. If the subject is unable to make this discrimination, d_r will have a value of 1.0, while as the subjects' ability to discriminate the responsereinforcer contingencies improves, the value of d_r will approach infinity (perfect discrimination). Data which give rise to a values around 1.0 when analysed using the GML will give d_r values that approximate infinity when analysed using Davison and Jenkins' (1985) C-D model. This model assumes, therefore, that any undermatching obtained when data are analysed using the GML is actually the result of less than perfect discrimination between the responsereinforcer contingencies.

A modified version of Equation 0.3 was used by Davison and Jones (1995) and Jones and Davison (1998), and is:

$$B_1/B_2 = c(R_1 - pR_1 + pR_2)/(R_2 - pR_2 + pR_1)$$
(0.4)

where p represents the proportional confusion between the two reinforcer contingencies. When p is equal to zero, there is said to be no confusion between the two VI schedules (i.e., discriminability is perfect, $d_r = infinity$), while when p is equal to 0.5 there is said to be complete confusion between the two VI schedules (i.e., the subject is unable to discriminate between the alternatives, $d_r = 1$). This model assumes that the subjects' behaviour perfectly matches the 'perceived' reinforcer-rate ratio at all times, but that a proportion of reinforcers delivered are mistakenly associated with the incorrect alternative, resulting in a failure to match according to the arranged reinforcer-rate ratio.

When the C-D equation is plotted on logarithmic co-ordinates (i.e., log (B_1/B_2) vs. log (R_1/R_2)) and discrimination is less than perfect, the resulting line is ogival (e.g., Jones & Davison, 1998) with the behaviour-allocation ratio becoming more different from that predicted when discrimination is perfect as the reinforcerrate ratio is made more extreme. When discrimination is perfect, the line is straight with a slope of 1.0 (as is the case with matching when using the GML). As with the GML, bias is indicated by a *y*-intercept not equal to zero.

Very few studies have looked at how well the C-D model deals with concurrent-schedule data. Davison and Jenkins (1985) fitted the model to the data from Miller, Saunders and Bourland (1980). That study examined the effects of changing stimulus disparity in a switching-key concurrent VI VI procedure. The stimuli consisted of single lines with varying degrees of separation (ranging from 0° to 45°). Miller et al. (1980) reported that as stimulus disparity was increased (i.e., the stimuli were made more different), the sensitivity of response allocation to changes in the reinforcer-rate ratio increased (indicated by an increase in a values in the GML). Davison and Jenkins (1985) found that d_r also increased with stimulus disparity, suggesting that as the stimuli became more different, the ability of the subject to discriminate between the associated schedules improved. Alsop and Davison (1991) examined the effects of stimulus disparity using a switching-key concurrent-schedule procedure and different intensities of white light as the stimuli. They reported that values of d_r increased with stimulus disparity (for both response- and time-allocation measures). Alsop and Davison (1991) concluded that their results were conceptually more consistent with the C-D model than the GML, since the C-D model provides an explanation of why stimulus discriminability might be expected to have an effect on response- and time-allocation.

Davison and Jenkins (1985) predicted that analyses using their C-D model would not differ from analyses using the GML when the reinforcer-rate ratio was varied between 0.1:1 and 10:1, which according to Davison and Jenkins is the range used in most experiments. However, they stated that beyond this range, the C-D model predicts more extreme response- or time-allocation ratios than the GML. Davison and Jones (1995) studied the behaviour of pigeons with extreme reinforcer-rate ratios (up to 160:1) using a switching-key procedure. Five of the nine concurrent VI VI schedule pairs used had reinforcer-rate ratios of less than 10:1. The GML was fitted to the data from these five schedule pairs only, as well as to the data from all nine of the schedule pairs. The *a* values obtained from these two analyses differed for all subjects, ranging from 0.36 to 0.6 when all conditions were analysed, and from 0.48 to 0.71 when only the five schedule pairs with the least extreme reinforcer-rate ratios were used. Davison and Jones (1995) presented the above results as evidence that the GML is unable to describe behaviour on concurrent schedules of reinforcement accurately, since the difference in *a* values from the two analyses suggests that the relationship between the logarithms of the response and reinforcer-rate ratios is not linear.

When Davison and Jones (1995) analysed the above data using the C-D model, only one analysis, using the data from all of the schedule pairs, was done. The reason given for not comparing C-D analyses using the data from the five least extreme reinforcer-rate ratio conditions with C-D analyses using the data from all conditions was that the parameters of this model "are mainly determined by the end points" (Davison & Jones, 1995, p. 152). If the C-D model is to be considered 'better' than the GML however, analyses using only the central data and analyses using all of the data should give very similar results. However, Davison and Jones did not carry out such an analysis. Nevertheless, the deviations of the extreme data points from the line predicted using the central data with the GML were given as support for using the C-D model instead of the GML.

Davison and Jones (1995) also compared the obtained response ratios to those predicted by each equation. Smaller differences between these were found from analyses using the C-D model than from analyses using the GML. It should be noted that the GML analysis used in that study was based on the fit to the five least extreme conditions, and therefore did not provide a direct comparison of the predictive abilities of the two models. Nonetheless, Davison and Jones (1995) concluded that this provided further support for the C-D model.

A stated advantage of the C-D model over the GML is that it provides a good description of behaviour on concurrent VI extinction (VI EXT) schedules (Davison & Jenkins, 1985). The GML predicts that responding on such schedules will always occur exclusively on the VI schedule alternative (irrespective of values of *a* and log *c*), however Davison and Jenkins (1985) reported that this result is uncommon. If R_2 is equal to zero, as is the case under concurrent VI EXT schedules, the C-D model reduces to:

$$\mathbf{B}_1/\mathbf{B}_2 = cd_r \tag{0.5}$$

and therefore predicts exclusive responding only when the discriminability measure is infinite, or in other words, the subject's discrimination of the responsereinforcer contingencies is perfect (Davison & Jenkins, 1985).

Davison and Hunter (1976) studied behaviour using several threealternative concurrent schedules in which the schedule on one or two of the alternatives was extinction. In all but three of the instances where extinction was arranged, the subjects continued to respond on that alternative, although the rate of responding was very low. Davison and Jones (1995) conducted one condition using a concurrent VI EXT schedule. In that condition all subjects continued responding on the extinction alternative. The data obtained from the other concurrent VI VI schedule pairs were used to calculate the expected ratio of responding under concurrent VI EXT schedules according to the C-D model (i.e., cd_r). For 5 of the 6 subjects, the obtained ratio of responding on the VI alternative was greater than that predicted based on the subjects' performances on the other schedule pairs (i.e., responding was less extreme (closer to matching) than predicted). Because some responding occurred on the extinction alternative, this was given as evidence against the GML for describing concurrent-schedule behaviour. Davison and Jones argued that the results supported the use of the C-D model, even though it was not able to predict responding on concurrent VI EXT schedules accurately. Davison and Jones (1998) also conducted several

concurrent VI extinction conditions. While exclusive responding did occur during some sessions, this result did not occur consistently within any of the conditions. Davison and Jones (1998) therefore concluded that the C-D model is more appropriate for the analysis of concurrent-schedule data than the GML.

One limitation of the C-D model is that it does not predict, and cannot describe, overmatching. This result can, however, be described using a GML analysis. While the finding of overmatching is not particularly common, any model which attempts to describe concurrent-schedule behaviour should have the ability to deal with all possible data. Davison and Jenkins (1985) attempted to get around this problem in two ways. Firstly, they suggested that models of punishment such as those proposed by de Villiers (1980) and Farley (1980) could be used in conjunction with the C-D model to explain the occurrence of overmatching when a changeover requirement is in effect (such as a COD or fixed-ratio (FR) schedule) and responses during the changeover requirement are not included in the analysis. Secondly, they stated that overmatching is actually the result of statistical error. In other words, the true value of *a* is actually less than or equal to 1.0, but is not given as such due to chance variation in the data. The second of these presumably only applies when no changeover requirement is used, or when the behaviour during the changeover is included in the analysis.

Davison and McCarthy (1994) studied behaviour using a three-alternative switching-key concurrent-schedules procedure with a 3-s blackout following each CO response. Overmatching was observed for all subjects with *a* values ranging from 1.08 to 1.55. Because, as stated above, the C-D model is unable to cope with overmatching, they presented a version of the model with a punishment parameter included, as suggested by Davison and Jenkins (1985):

$$B_{1}/B_{2} = c(d_{r}R_{1} + R_{2} - w)/(d_{r}R_{2} + R_{1} - w)$$
(0.6)

or

$$\mathbf{B}_{1}/\mathbf{B}_{2} = c(p_{r}\mathbf{R}_{1} + (1 - p_{r})\mathbf{R}_{2} - w)/(p_{r}\mathbf{R}_{2} + (1 - p_{r})\mathbf{R}_{1} - w)$$
(0.7)

where w is the number of reinforcers lost per minute due to changing over, and p_r

is the relative discriminability $(d_r = p_r/(1 - p_r))$. In this form, when p_r is equal to 0.5, the subject is unable to discriminate $(d_r = 1)$, and when p_r is equal to 1, discrimination is perfect $(d_r = infinity)$. This model described their data well, giving p_r values close to 1.0 for all subjects. However, p_r values greater than 1.0 and less than 0.5 were observed in several cases. The values of w ranged from 0.02 to 0.24. Generally w was smaller when the a values were larger (i.e., when subjects were overmatching more).

The percentages of variance accounted for by the data when the C-D model was used in the above studies were similar to those usually found using a GML analysis. This suggests that the C-D model is as good at describing concurrent-schedule behaviour as the GML. Analyses using both the C-D model and the GML show that performance on concurrent schedules 'improves' as stimulus disparity increases (indicated by increasing *a* or *d_r* values). In fact, it is expected that changes in *d_r* will always follow changes in *a*, at least over the range of reinforcer-rate ratios usually used (Davison & Jenkins, 1985). Why then, should we start using the C-D model for describing concurrent-schedule behaviour? Davison and Jenkins (1985) suggested that the parameter, *d_r*, in their model is conceptually better than the parameter, *a*, in the GML because 'sensitivity to reinforcement' (*a*) gives no real explanation for why undermatching might occur, whereas they suggested that it can be seen how decreases in contingency discriminability, or increases in confusability, could lead to poorer 'matching' by the subject.

Since strict matching was first found (Herrnstein, 1961, 1970) many models have been proposed in an attempt to account for the commonly observed deviations from strict matching. Ideally, a suitable model for this should have the following attributes:

- 1. The model should fit the data well. In other words, the percentage of variance accounted for (%VAC) should be high.
- The parameters of the model should be logical and defensible.
 This relates to the story behind the model. It is important that there be a good reason for the inclusion of parameters in a model.

- 3. The inclusion, or not, of parameters should depend on arguments, not on a failure to fit the data. In other words, the reasons for including a parameter should be based on theory, not on data.
- 4. The parameter values obtained should be reasonable in terms of the original assumptions. If the parameters have a set range of logically required values, fitting the data should not give values outside this range.
- 5. Ideally, the model should be predictive of changes in the data with changes in the experimental conditions. In other words, when changing the experimental procedure results in changes in the data (or indeed, fails to change the data) the model should be able to predict, and therefore, possibly explain such changes.

One of the aims of this thesis will be to examine how suitable the GML and the C-D model are for describing concurrent VI VI schedule behaviour, based on the above attributes. Another focus of the present thesis is to examine the ways in which experimentally introduced biasers will affect possums' behaviour, and how well these models account for such behaviour.

Previous research has shown that the GML appears to cope well with experimentally introduced biasers (e.g., Foster et al., 1996; McAdie et al., 1996; Miller, 1976; Sumpter et al., 1995; Sumpter et al., 1998). However, how well the C-D model deals with introduced biases (such as different foods) is an area that has not yet been addressed. Before attempting to study food preferences with possums using the GML and the C-D model, it was necessary to determine if possums behave similarly to other animals when exposed to concurrent schedules of reinforcement.

There is only one study of possums' behaviour under concurrent schedules. Muir (1997) obtained choice data with possums using multiple concurrent VI VI schedules of reinforcement. This involved presenting two schedules on separate levers for a 10-min period with green lights presented above the levers, then reversing the schedules for a further 10-min period, with red lights above the levers. The different coloured lights are intended to enable the subjects to discriminate between the two components of the session. This method of obtaining matching lines is slightly more time-efficient than having only one pair of schedules in effect each session. Nevertheless, Muir (1997) found that the possums' behaviour was unusually insensitive to reinforcement-rate changes using this procedure, as demonstrated by the slopes of the matching lines obtained for both response (a values ranged from 0.15 to 0.38) and time (a values ranged from 0.36 to 0.65) measures.

Muir (1997) suggested several possible explanations for the large amount of undermatching observed. One was that possums were not able to discriminate between the red and green lights that were used. There are presently no data available on whether possums can see, or distinguish between, red and green. However, studies currently under way at the University of Waikato's Animal Behaviour and Welfare Research Centre suggest that possums are unable to discriminate between bright and dim lights using either red or green coloured LED's (Signal, personal communication), indicating that some other form of discriminative stimuli may be necessary for multiple-concurrent schedule research. If the possums could not discriminate between the coloured lights, the possums' behaviour could not come under the control of the stimuli. If this was the case, Muir's study could be seen to show support for the C-D model, in that the low sensitivity to reinforcement was due to poor discriminability between the response-reinforcer contingencies. Another possibility was that the 2-s COD she used was too short, and that if this had been lengthened, a closer approximation to matching may have been obtained. Thus, although Muir described possums' behaviour under multiple concurrent schedules of reinforcement, it was not clear whether their behaviour would be similar to that observed with other animals under simple concurrent schedules of reinforcement. Therefore further research into possum behaviour on concurrent VI VI schedules of reinforcement was required.

The first experiment examined possums behaviour under simple concurrent VI VI schedules of reinforcement. The next experiment examined the effects of increasing the length of the COD on possums' behaviour, and looked at
how well the Generalised Matching Law and the Contingency-Discriminability model described such data. The following experiment looked at whether it was possible to bias possums' behaviour with qualitatively different reinforcers using equal schedules of reinforcement. The final experiment studied the effects of qualitatively different reinforcers on behaviour over a range of reinforcer-rate ratios, and how well the Generalised Matching Law and the Contingency-Discriminability model described the data.

EXPERIMENT 1

The present experiment was a partial replication of Muir's (1997) experiment. In this case, simple concurrent schedules of reinforcement were used. Each schedule was associated with a different lever and only one pair of schedules was used for a number of consecutive sessions, in contrast to the multiple components used by Muir. If possums have problems discriminating between the schedules of reinforcement, then it is possible that exposure time in each session might increase differentiation. Muir used components of only 10-min duration, and found extreme undermatching, providing some justification for this idea. Therefore, data from the first and second half of the session will be examined here. The same group of possums used by Muir were used for this experiment to enable direct comparisons of the data from the two procedures.

Method

Subjects

Five common brushtail possums were used as subjects. Four of the possums were male, and one was female. The possums were named George, Arthur, Timmy, Holly and Sylvester. All possums had prior experience on multiple concurrent VI VI schedules of reinforcement (Muir, 1997). The possums were maintained at a stable body weight by daily feeding of dock leaves and apples, and by supplementary feeding of pellets (NRM NZ Ltd) when necessary. They were weighed every two weeks to judge the stability of their weights and to ensure that adequate food was being provided. All possums had a constant supply of water.

The possums were exposed to reverse daylight conditions, since they are nocturnal. This made it possible to conduct experimental sessions during the day. Two standard 100-150-W light bulbs were on between the hours of 6 pm and 6 am, simulating daylight. During experimental sessions, which ran from approximately 8 am to 8:40 am, the only illumination in the room was provided by two 60-W red light bulbs. For the rest of the time the room was in darkness. A heater was present in the room, and the temperature was maintained at between 14 and 21°C.

Apparatus

The subjects' home cages also served as experimental chambers. Each cage measuring 860 mm x 510 mm x 540 mm, was constructed of galvanised steel grid and had a wood nest-box attached to the top where the subjects slept. Access to each of the cages was via a plywood door (550 mm x 330 mm), located 70 mm from the floor of the cage. The experimental equipment was also located on the door, and consisted of two amber lights (28-V bulbs covered with an amber filter), positioned 360 mm from the bottom of the door and 200 mm apart. A slot where a lever could be inserted was located 80 mm below each light. Levers were inserted only during the experimental sessions to prevent damage by the possums. An electronic beeper located at the top and centre of the outside of the door provided auditory feedback when an effective response was made on either of the levers. An effective lever response required a minimum force of 0.25 N. Three of the cages (2, 4 and 6) had a button located on the top left-hand corner of the door, which was used to start experimental sessions for the possums in these cages and their left-hand neighbour (cages 1, 3 and 5 respectively).

Food reinforcers were presented via a food magazine attached to the door of the cage. The magazine could be raised to present food to the possums through a hole (130 mm x 100 mm) in the door, 180 mm below the levers. When lowered, the subjects were unable to reach the food. Reinforcement consisted of 3-s access to steam-flaked barley and carob chips mixed in the ratio of 15:1.

All experiments were run using a 386 IBM-compatible computer equipped with a MED-PCTM interface and software. This was located in the experimental room. The computer collected and stored the experimental data, which were also copied into a data book.

Procedure

Concurrent VI VI schedules were dependently arranged on the left and right levers. Inter-reinforcement intervals were initially calculated for a VI 15-s schedule (an arithmetic series with 15 intervals, a smallest interval of 1 s, and a largest interval of 29 s), and these numbers were adjusted to the size of the required schedule (e.g., for a VI 30-s schedule, each number would be multiplied by 2), and randomly arranged in a series. The same quasi-random series of intervals was used every session, with the starting point randomly determined prior to the beginning of each session.

At the beginning of each session, and following the insertion of the levers, both lever lights were illuminated, and the subjects could respond on either lever. When a response resulted in reinforcement, the lights were extinguished, and the food magazine was presented for a period of 3 s. At the conclusion of a reinforcer, the food magazine was lowered, and the lever lights came back on. Whenever a subject switched levers, a COD of 2 s began, timed from the first response on the lever. During this time, the subject could respond, but no reinforcement was available. All experimental sessions lasted for 40 mins. Sessions were run five days per week (Monday through Friday).

The experiment consisted of four conditions, using three different pairs of schedules: concurrent VI 40-s VI 40-s, concurrent VI 180-s VI 22.5-s, and concurrent VI 22.5-s VI 180-s schedules. Table 1.1 shows the order of the conditions, as well as the number of sessions in each condition. Each condition was in effect until the behaviour of all possums had reached stability. Stability was determined statistically by calculating the median of the proportion of left responses for each five-day period, and comparing this to the median for the previous five-day period. Stability was reached when these medians differed by .05 or less, five, not necessarily consecutive, times. Stability was also assessed visually, by plotting the proportion of left responses across sessions, and once statistical stability was reached, these data were checked for any trends. If the data appeared to be trending, the condition continued until responding was visually stable, as judged by two or more lab members.

VI Schedules (s)							
Condition	Left	Right	Sessions				
1	40	40	26-41				
2	22.5	180	22				
3	180	22.5	29				
4	40	40	37				

Table 1.1 The order of conditions for Experiment 1, the schedules in effect, and the number of sessions required to reach stability in each condition.

The computer recorded the number of responses made on each lever, the number of reinforcers obtained on each lever, the time spent responding on each lever (in seconds), the time to the first response (in milliseconds), the total post reinforcement-pause time (in seconds) associated with each lever (during Conditions 3 and 4 only), the number of changeovers and the number of responses made during the changeover delay. In every condition, these measures were recorded at the end of the session. During Conditions 2, 3 and 4, they were also recorded halfway through the session. In addition, cumulative data were recorded during Conditions 3 and 4. This included the time of every response, as well as the time of every reinforcer. Cumulative data were recorded separately for each lever.

Results

The raw data from the last five sessions of Conditions 1 to 4 are presented in Appendix A. All analyses were carried out on the data summed across these five sessions. All ratios were taken to the left manipulandum and all logarithms are to the base 10.

Generalised Matching Law

Figure 1.1 shows the logarithms of the ratios of the numbers of responses (left panel) and of the ratios of the times (right panel) allocated to each lever, plotted against the logarithms of the obtained reinforcer ratios for each possum and each condition. The data presented here were analysed using the GML. The solid lines plotted through the points on each graph represent the lines of best fit calculated by least-squares regression analyses. The equations at the bottom of each graph describe these regression lines. The slopes and intercepts of each of these lines, as well as the percentages of variance accounted for by each of the lines (%VAC) and the standard errors of the estimates (SE) are presented in Table 1.2. For comparison, the dotted lines on each graph have a slope of 1.0 and a y-intercept of 0, indicating strict matching.

<u>Figure 1.1</u>. The logarithms of the response ratios (left) and the logarithms of the time-allocation ratios (right) plotted as functions of the logarithms of the obtained reinforcer ratios.

Table 1.2

The slopes (a), y-intercepts $(\log c)$, the percentage of variance accounted for (%VAC) and standard errors of the estimates (SE) for the lines of best fit for total response and time allocation (Figure 1.1), within- and post-COD responding (Figure 1.2), and first- and second-half response and time allocation (Figure 1.3). Slopes and y-intercepts are also given for PRP- and Net-time allocation (Figure 1.7) where only two data points were collected.

	Slope	Intercept			Slope	Intercept			Slope	Intercept		
Possum	(a)	$(\log c)$	%VAC	SE	(a)	$(\log c)$	%VAC	SE	(a)	$(\log c)$	%VAC	SE
Total Responses				First Half Responses				Second Half Responses				
George	0.49	0.13	99.3	0.04	0.53	0.13	99.7	0.04	0.46	0.16	99.6	0.04
Arthur	0.36	-0.05	90.9	0.11	0.38	0.00	96.4	0.10	0.34	-0.05	90.5	0.14
Timmy	0.45	0.07	99.3	0.04	0.49	0.08	99.5	0.04	0.42	0.03	99.9	0.02
Holly	0.61	0.09	99.1	0.06	0.59	0.08	99.4	0.07	0.68	0.08	98 .6	0.12
Sylvester	0.63	0.10	93.4	0.16	0.66	0.14	96.2	0.17	0.58	0.16	96.2	0.16
MEAN	0.51	0.07	96.4	0.08	0.53	0.09	98.2	0.08	0.50	0.08	97.0	0.10
Total Time				First Half Time				Second Half Time				
George	0.88	-0.08	98.1	0.12	0.90	-0.07	100.0	0.01	0.86	0.00	100.0	0.01
Arthur	0.64	0.05	99.6	0.04	0.67	0.08	100.0	0.01	0.62	0.05	99.8	0.04
Timmy	1.06	0.02	99.6	0.06	1.05	0.05	99.5	0.10	1.08	0.01	99.9	0.06
Holly	1.09	0.04	98.0	0.16	0.96	0.05	99.8	0.06	1.26	-0.06	97.6	0.29
Sylvester	1.13	-0.14	97.3	0.18	1.07	-0.11	99.3	0.11	1.19	-0.26	96.5	0.32
MEAN	0.96	-0.02	98.5	0.11	0.93	0.00	99.7	0.06	1.00	-0.05	98.7	0.14
		Within COD				Post COD				? Time Net Time		
									Slope	Intercept	Slope	Intercept
									(a)	$(\log c)$	(<i>a</i>)	(log <i>c</i>)
George	0.09	0.44	62.3	0.07	0.76	-0.09	98.8	0.08	0.91	-0.07	0.85	-0.01
Arthur	0.05	-0.12	7.3	0.16	0.49	-0.02	92.8	0.13	0.68	0.08	0.68	0.08
Timmy	-0.11	-0.03	73.0	0.06	0.78	0.07	98.4	0.10	1.04	0.02	0.85	-0.10
Holly	0.15	0.18	28.8	0.25	0.79	-0.02	98.7	0.10	0.81	-0.17	0.96	-0.11
Sylvester	0.04	0.28	4.3	0.19	1.01	-0.09	98.5	0.12	1.12	-0.03	0.71	-0.47
MEAN	0.04	0.15	35.1	0.15	0.77	-0.03	97.4	0.11	0.91	-0.03	0.81	-0.12 2

The data obtained from the two equal concurrent-schedule conditions were similar for all subjects. The mean difference between the logarithms of the response ratios from the two equal-schedule conditions was -0.02, while the mean difference between the logarithms of the time ratios was 0.10. The response data from all subjects show a large amount of undermatching, with the slopes of the regression lines ranging from 0.36 to 0.63 (mean = 0.51). By comparison, the time data more closely approximated matching, with evidence of both undermatching and overmatching (slopes from 0.64 to 1.13; mean = 0.96). In all cases, the slopes of the lines describing the time data were greater than those describing the response data. The intercepts of the lines describing both the response and time data were small, ranging from -0.05 to 0.13 for responses (mean 0.07) and from -0.14 to 0.05 for times (mean = -0.02), indicating only small amounts of inherent bias. Four of the 5 subjects' behaviour (the exception being Arthur) was biased towards the left manipulandum in terms of responseallocation (intercept greater than zero). In terms of time measures, 3 possums (Arthur, Timmy and Holly) exhibited a bias towards the left lever, while the other 2 subjects' behaviour was biased towards the right lever.

The response and time data were well described by the regression lines. The proportions of variance accounted for by the regression lines were high for all subjects, with a lowest %VAC of 90.9%, and means of 96.4% and 98.5% for responses and time respectively. The standard errors of the estimates (SE) were low, averaging 0.08 and 0.11 for responses and time respectively.

Figure 1.2 shows both the logarithms of the ratios of responses made within the COD (left panel) and the ratios of responses made after the COD (right panel) plotted against the logarithms of the obtained reinforcer-rate ratios for all possums. Again, a GML analysis was used here. Lines of best fit were calculated using least-squares regression, and are shown on both sets of graphs (solid lines). The slopes and intercepts of these lines, together with the percentages of variance accounted for (%VAC), and the standard errors of the estimates (SE) are also presented in Table 1.2. Within-COD responding was relatively insensitive to the differences in the reinforcement rates for all subjects, with slopes ranging from

<u>Figure 1.2</u>. The logarithms of the response ratios within and after the changeover delay plotted as a function of the logarithms of the obtained reinforcer ratios.

-0.11 to 0.15 (mean = 0.04). In contrast, there was only a small amount of undermatching in the post-COD data for most subjects, with slopes ranging from 0.49 to 1.01 (mean = 0.77). For all subjects, the slopes of the lines describing the post-COD data were greater than those describing the total response measures, while those describing the within-COD data were consistently lower than those describing the total response measures. The within-COD bias measures (intercepts ranging from -0.12 to 0.44) were always greater than the post-COD bias measures (-0.09 to 0.07). For all but 1 subject (the exception being Timmy), the within-COD bias measures were greater than the overall bias measures, and for these 4 subjects both biases were in the same direction. The post-COD biases were all smaller than, and were sometimes in the opposite direction from, the overall response biases.

The percentages of variance accounted for by the lines describing the post- COD data (mean = 97.4%) were comparable to those describing the overall response measures. The %VAC by the lines describing the within-COD data were relatively low, with a mean of 35.1%, and were consistently lower than the %VAC by the lines describing the total response data. Due to the shallow slopes of the lines describing within-COD responding, the %VAC values are artificially reduced. In such cases, the standard errors of the estimates offer a better description of the fits of the lines to the data. The standard errors of the estimates were low for all subjects for both within- (maximum = 0.25; mean = 0.15) and post-COD responding (maximum = 0.13; mean = 0.11), and were similar to those obtained for overall responding.

The logarithms of the ratios of the total responses (left panel) and times (right panel) allocated to each lever during the first (unfilled circles) and second (pluses) half of the session are plotted against the logarithms of the obtained reinforcer ratios for each subject in Figure 1.3. Data from the first equal VI VI schedule condition are not included here, as only total session data were recorded in that condition. The dotted lines on each graph represent strict matching. The solid lines are the regression lines calculated using a GML analysis from the data from the first half of the session. The dashed lines are the regression lines

Figure 1.3. The logarithms of the response ratios from Conditions 2, 3 and 4 plotted for each half of the session.

calculated using the data from the second half of the session. The slope (*a*) and intercept (log *c*) of each of these lines, the percentage of variance accounted for by each of the lines (%VAC), and the standard errors of the estimates (SE) are presented in Table 1.2. The values of *a* estimated from the response measures of behaviour were lower in the second half of the session for all but 1 subject (the exception being Holly). The bias measures obtained from the response-allocation measures for the first half of the session were smaller than, or equal to, the second-half response bias measures for all but 1 subject (Timmy). There were no consistent differences between either the slopes or intercepts of the matching lines describing the first and second half of the sessions in terms of time-allocation. The %VAC measures for response- and time-allocation during the first half of the session were greater than, or equal to, those obtained from the second half of the session for all but 1 subject (Timmy).

The left panel of Figure 1.4 shows the logarithms of the ratios of postreinforcement-pause (PRP) times associated with each lever plotted against the logarithms of the obtained reinforcer-rate ratios. The right panel shows the logarithms of the ratios of the net-times spent responding on each lever (total-time allocated to each lever minus post-reinforcement-pause time) plotted against the logarithms of the obtained reinforcer-rate ratios. Since the PRP data were collected only during the last two conditions of the experiment, there are only two data points on each graph. To enable a direct comparison with total-time allocation, the centre panel shows the logarithms of the total-time-allocation ratios from the two conditions where PRP time was recorded, plotted against the logarithms of the obtained reinforcer ratios. The equations at the bottom of each graph describe the solid lines plotted through these points. The slopes (a) and intercepts (log c) of the lines describing the PRP and net-time data are presented in Table 1.2. Strict matching lines (dotted lines) have also been drawn for comparison.

The slopes of the lines describing the PRP times (*a* values ranging from 0.68 to 1.12) were greater than or equal to those describing the net-times (*a* values ranging from 0.68 to 0.96) for all but 1 subject (Holly). The slopes of the lines

Figure 1.4. The logarithms of the post-reinforcement-pause time ratios, the logarithms of the time ratios, and the logarithms of the net-time-allocation ratios plotted as functions of the obtained reinforcer ratios from Conditions 3 and 4 only.

describing the PRP data deviated from 1.0 for all subjects. The data for 2 subjects (Timmy and Sylvester) exhibited overmatching (i.e., slopes greater than 1.0), while the remaining 3 subjects PRP data showed undermatching (i.e., slopes less than 1.0). Slopes of less than 1.0 were observed for all subjects' net-time data. When compared to the total time-allocation measures from the same two conditions, the slopes of the lines describing the PRP time data were greater than or equal to (and therefore, the lines describing the net-time data were less than or equal to) those describing the total-time-allocation for all but 1 subject (Holly). There were no systematic differences between total-time biases and either PRP or net-time biases.

Changeover Rates

Figure 1.5 shows, for each subject, the average number of changeovers made per minute during each condition plotted against the logarithms of the obtained reinforcer-rate ratios. For all subjects, the average number of changeovers made was greater during the equal VI schedule conditions (ranging from 1.66 to 5.87 per minute), and lower when the reinforcement schedules were unequal (ranging from 0.42 to 3.42 per minute), resulting in an inverted U-shaped function. For all but 1 subject (Timmy), there was a large difference in the rates of changeover during the two equal-schedule conditions. For all subjects, the rate of changing over was higher during the first equal VI schedule condition

Response Rates

The absolute response rates (number of responses made on each lever divided by total session time) during the first (filled circles) and second (unfilled circles) half of the session are plotted for each subject against the logarithms of the obtained reinforcer-rate ratios in Figure 1.6. The data from the left and right levers are shown separately (left and right panels respectively), and the data from the two equal-schedule conditions were averaged for each subject. Overall, the absolute rates of responding on each lever increased as the rate of reinforcement

Figure 1.5. The rate of changeover for each possum during each of the conditions.

<u>Figure 1.6</u>. The absolute response rates on the left and right manipulanda plotted as functions of the logarithms of the obtained reinforcer ratios for the first and second halves of the sessions.

associated with that lever increased. The average numbers of responses made per minute ranged from approximately 0.5 on the lean alternative to approximately 26 on the rich alternative. For 3 subjects, the absolute rates of responding did not change during the session (i.e., responding was similar in each half of the session). However, for the remaining 2 subjects (Holly and Sylvester), the absolute response rates were always lower during the second half of the session in all conditions.

The local response rates (number of responses made on each lever divided by the time (in minutes) spent responding on that lever) are plotted against the logarithms of the programmed reinforcer-rate ratios for each subject in Figure 1.7. Again, the data are plotted separately for responding on the left lever (left panel) and the right lever (right panel), and the data from the first half (filled circles) and second half (unfilled circles) of the sessions have been separated. Data from the two equal-schedule conditions were again averaged for each subject. The local rates of responding tended to be higher on the lever that provided the lower rate of reinforcement, and decreased as the rate of reinforcement on that lever increased, with the average rate of responding ranging from about 2.6 responses per minute on the rich alternative to about 88 responses per minute on the lean alternative. As with the absolute rates of responding, there were no systematic differences between the local response rates observed during the first and second half of the session for 3 subjects. For the remaining 2 subjects (Holly and Sylvester) however, the local response rates also tended to be lower during the second half of the session.

Contingency-Discriminability Model

The logarithms of the ratios of responses and times allocated to each lever are again plotted against the logarithms of the obtained reinforcer-rate ratios for each possum in Figure 1.8 (as in Figure 1.1). In this figure however, the lines of best fit (solid lines) were calculated by non-linear estimation using Davison and Jenkins' (1985) C-D model. The actual equation used was the logarithmic form of Equation 0.7 (with *w* set to zero). The estimates of the values of d_r and

<u>Figure 1.7</u>. The local response rates on the left and right manipulanda plotted as functions of the logarithms of the obtained reinforcer ratios for the first and second halves of the sessions.

Figure 1.8. The logarithms of the response- and time- allocation ratios plotted as functions of the logarithms of the obtained reinforcer-rate ratios for each subject. The solid lines represent the lines of best fit according to the Contingency-Discriminability model.

log c for each of these lines are presented at the bottom of each graph. The dotted line on each graph represents perfect discrimination, with d_r equal to infinity and log c equal to 0 (identical to a perfect matching line). Table 1.3 gives the values of $p_r (p_r = d_r /(1 + d_r))$, d_r , log c and the percentages of variance in the data accounted for (%VAC) by the regression lines for each subject.

The estimates of discriminability obtained from the response data were small for all subjects, ranging from 2.75 to 7.20. Larger estimates of d_r were always associated with larger estimates of a for response-allocation data. This is necessarily so, since all of the a values were less than 1.0 in these data. The estimates of d_r obtained from the time data show that the absolute value of d_r was larger in those cases where a was higher, with negative values associated with overmatching (a > 1.0). The %VAC by the lines describing both the response and time-allocation data were high for all subjects, with values ranging from 91.1% to 99.7%, indicating that the lines of best fit describe the data well. The average %VAC obtained from the C-D model and the GML were very similar for the response data (96.2% and 96.4% respectively), and identical for the time data (98.5%). The bias measures calculated from the response and time-allocation data using the C-D model were similar to those calculated using the GML for all but 1 subject (Timmy), and in all cases they were in the same direction.

Figure 1.9 shows the logarithms of the ratios of responses made within (left panel) and after (right panel) the COD plotted against the logarithms of the reinforcer-rate ratios (as in Figure 1.2). The dotted line on each graph represents perfect discrimination. The solid lines plotted through the points represent the lines of best fit calculated from the C-D model. The estimates of the values of d_r and log c from these lines are presented on each graph. The values of $p_r (d_r /(1 + d_r))$, d_r , log c, and the percentages of variance in the data accounted for by the lines (%VAC) are presented in Table 1.3.

The estimates of d_r calculated for the within-COD data were small for all subjects, ranging from 0.74 to 1.57. The estimates of d_r were greater when the estimates of *a* obtained from the GML analysis were closer to 1.0. For all subjects, despite finding some negative d_r values, the absolute values of the

Table 1.3

The parameters resulting from the fit of the C-D model (Equation 0.7, with w set to 0) to the response- and timeallocation data (Figure 1.8) and the within and post COD data (Figure 1.9).

Possum	p _r	d,	log c	%VAC	p _r	d,	log c	%VAC		
		R	esponses	Time						
George	0.81	4.25	0.13	99.30	0.97	30.05	-0.08	97.99		
Arthur	0.73	2.75	-0.05	91.10	0.88	7.36	0.05	99.57		
Timmy	0.79	3.78	0.07	99.22	1.01	-68.63	0.02	99.67		
Holly	0.88	7.20	0.09	98.88	1.02	-60.17	0.03	98.04		
Sylvester	0.88	7.05	0.11	92.27	1.03	-36.37	-0.15	97.40		
MEAN	0.82	5.01	0.07	96.15	0.98	-25.55	-0.03	98.53		
		Wi	thin COD		Post COD					
George	0.56	1.30	0.44	61.24	0.93	12.41	-0.09	98.80		
Arthur	0.53	1.14	-0.12	6.94	0.81	4.22	-0.02	93.45		
Timmy	0.43	0.74	-0.03	71.27	0.94	15.56	0.07	98.52		
Holly	0.61	1.57	0.18	29.54	0.95	17.26	-0.01	98.54		
Sylvester	0.52	1.10	0.28	3.07	1.00	-220.94	-0.09	98.53		
MEAN	0.53	1.17	0.15	34.41	0.93	-34.30	-0.03	97.57		

<u>Figure 1.9</u>. The logarithms of the ratio of responses made within and after the changeover delay plotted against the logarithm of the obtained reinforcer ratio for each subject. Solid lines represent lines of best fit obtained using the C-D analysis.

estimates were larger for responding which occurred after the COD than for responding that occurred within the COD. The large negative estimate of d_r calculated for responding after the COD from Sylvester's data corresponds to a small amount of 'overmatching' (i.e., close to perfect discrimination). The estimates of log *c* obtained from responding which occurred both within and after the COD were very similar to those obtained using the GML, and were all in the same direction. For all but 1 subject (Timmy), the amount of inherent bias (log *c*) was greater for responding which occurred within the COD than for responding which occurred after the COD, as was found using the GML.

The post-COD data were well described by the C-D model, with the %VAC by the lines describing the data ranging from 93% to 99%. The %VAC measures describing the within-COD data were quite small with values ranging from 3% to 72% (mean = 35%). These values are similar to those obtained using the GML, which were reduced due to the shallow slopes. This would have had the same effect on the %VAC values obtained using the C-D model.

Discussion

The Generalised Matching Law

The present experiment followed on from Muir's (1997) multiple concurrent-schedule research with possums, which showed that under such schedules possums' behaviour was extremely insensitive to changes in the reinforcer-rate ratio. Here possums' behaviour under simple concurrent schedules was studied to determine whether the large amount of undermatching found by Muir is characteristic of the possum, or was simply the result of the procedure used.

The present data show a closer approximation to matching for both response- (mean a = 0.51) and time- (mean a = 0.96) allocation measures than was previously found by Muir (1997) using multiple concurrent schedules of reinforcement (mean a values of 0.25 and 0.56 for responses and times respectively). This suggests that the large degree of undermatching observed by Muir (1997), using the same possums, was at least partially due to the use of multiple concurrent schedules of reinforcement. Observing a greater amount of undermatching when multiple concurrent schedules of reinforcement are used as opposed to simple concurrent schedules is not uncommon (e.g., Davison & Ferguson, 1978; McAdie et al., 1996). As previously mentioned, it is possible that the possums may have been unable to discriminate between the two components on the basis of the coloured lights that were used in Muir's study. There are currently no data to show whether or not possums can discriminate between red and green lights.

The mean time-sensitivity value found here was similar to that normally found with other species (0.89: Taylor & Davison, 1983), while the degree of undermatching observed in the response measures was greater than that typically observed with other species (about 0.8: Baum, 1979; Taylor & Davison, 1983). While the slopes of the lines describing response-allocation data are most commonly around 0.8 for hens (Temple et al., 1995), rats (Logue & de Villiers, 1978; Norman & McSweeney, 1978) and pigeons (Davison & Hunter, 1976; Hollard & Davison, 1971; Hunter & Davison, 1978), deviations from this have also been observed with species other than possums. For example, Dougherty and Lewis (1992), using horses, found that the slopes of the lines describing the response measures were close to 1.0 (a values ranged from 0.9 to 1.09). The slopes of the matching lines describing the response-allocation measures of both cows (Foster et al., 1996; Matthews & Temple, 1979) and goats (Foster et al., 1997) on concurrent VI VI schedules were much lower than 0.8 (and similar to those obtained here with possums), while the most common result for human subjects' response allocation appears to be overmatching (e.g., Bradshaw, Szabadi & Bevan, 1979; Ruddle, Bradshaw, Szabadi & Bevan, 1979; Schroeder & Holland, 1969). This suggests that, although it has been implied that matching is the 'ideal' result of concurrent-schedule research (e.g., Baum, 1976), the finding of matching is not universal, nor is the commonly reported finding of slopes approximating 0.8 for response allocation. While the response-allocation data in the present experiment showed a large amount of undermatching, the slopes were

still within the range reported in previous experiments with other species.

The finding that the time measures showed greater sensitivity to reinforcement than the response measures is consistent with past research (e.g., Davison & Hunter, 1976; Hollard & Davison, 1971; McAdie et al., 1996). Baum (1979) suggested that the difference between the sensitivities of response and time measures to changes in the reinforcer rates may be due to behaviours other than responding (such as chewing, drinking, grooming etc.). These behaviours are difficult to measure, and any time spent engaging in them is typically added onto the total time spent responding on the alternative to which the last response was allocated. Because more responses are generally made on the rich alternative, it is likely that more of these other behaviours will occur following a response on the rich alternative, and so a larger proportion of this time will be added to this alternative. This would have the effect of increasing the sensitivity of the time measures to the reinforcement-rate differences.

Possums have been observed to spend a large amount of time immediately after each reinforcer engaging in behaviours other than responding (Muir, 1997). This observation has also been made of cows (Foster et al., 1996; Matthews & Temple, 1979). After observing unusually low a values for time measures with cows, Foster et al. (1996) suggested that this may be the result of asymmetrical pausing. If the amount of time spent pausing after each reinforcer on one alternative was greater than the pause time on the other alternative, this would have an effect on the time sensitivity values. Pausing for longer intervals after each reinforcer on the rich schedule would result in an overall increase in sensitivity to reinforcement for time measures (or overmatching). Greater pausing after each reinforcer on the lean alternative would result in an overall decrease in sensitivity, whereas equal amounts of time spent pausing after each reinforcer would result in a shift in overall time-allocation towards matching. Foster et al. (1996) suggested that the large amount of undermatching observed with time measures may have been due to more pausing on the lean alternative. They analysed the post-reinforcement-pause times on each alternative and found that approximately the same amount of time was spent pausing after the delivery of

each reinforcer. That is, post-reinforcement pausing was symmetrical, and the ratios of the post-reinforcement-pause times approximately matched the ratios of the reinforcement measures. When these pause times were removed from total session time, the net-time data gave lower sensitivity values, and therefore, asymmetrical pausing was not responsible for the low *a* values observed in the total-time measures for cows.

A similar analysis has been carried out with possums (Muir, 1997) and goats (Foster et al., 1997). Both studies found post-reinforcement pausing to be approximately symmetrical (Muir found evidence of asymmetrical pausing for 1 subject: a = 1.13), which resulted in greater a values for total-time allocation than net-time allocation. It is possible then, that symmetrical pausing was responsible for the higher sensitivity values found for the time measures when compared to response measures in the present experiment. Post-reinforcement pausing was measured during only two conditions in the present experiment. Analyses of the data from these two conditions showed that, for 3 subjects, the slopes of the lines describing post-reinforcement-pause times were slightly closer to 1.0 than those describing total-time-allocation. Therefore the sensitivity to the reinforcementrate differences in terms of net-time-allocation (total-time minus postreinforcement-pause time) was lower than that of total-time-allocation. This suggests that post-reinforcement pausing was at least partially responsible for the large difference between the response and time sensitivity measures. The difference between the estimates of net-time-allocation and response allocation from the two conditions where post-reinforcement pausing was measured was still large. This may be the result of pausing which does not occur immediately after reinforcement, and therefore was not measured here. Alternatively, this large difference may have occurred because response-allocation sensitivities were reduced by some other procedural factor.

During the present experiment, it was common for subjects to stop working before the end of the session. This could have affected time-allocation sensitivity, because if a large amount of the session time occurred after the possum stopped responding, this time would be added onto the total time for the alternative to which the last response was made. If this was the case, timeallocation data from the first half of the session might be expected to be more representative of the possums' behaviour than total-time-allocation data. In general, the *a* values obtained from time data for the first half of the session were closer to 1.0 than the total-time-allocation *a* values. Therefore, it seems unlikely that the high sensitivity to reinforcement observed with time allocation was the result of a failure to complete the session (although first- and second-half data were only collected during three of the four conditions in the present experiment).

There are a number of factors which may have contributed to the large amount of undermatching found in the response measures in the present experiment. It is possible that the 2-s COD employed was not long enough to separate the schedules effectively. Several authors have suggested the importance of a sufficiently long COD (e.g., Baum, 1979; de Villiers, 1977; Shull & Pliskoff, 1967). As previously mentioned, Temple et al. (1995) studied the matching behaviour of hens across a range of COD values. They found that while sensitivity to reinforcement increased from the no COD condition to the 2 s COD condition, it remained stable beyond that point (up to a 15 s COD). This effect was observed for both time- and response-based measures. Similarly, Foster et al. (1996), with cows as subjects, found that increasing the COD from 3 to 5 s did not increase either the response or time sensitivities.

Since there appears to be a wide range of *a* values obtained with different species, it is possible that an average value of 0.5 is the best that can be expected for response matching by possums. However, only one COD was studied in the present experiment, and therefore there is little evidence to suggest that a 2-s COD is long enough to separate the schedules effectively with possums. For example, the results of Shull and Pliskoff (1967) suggest that rats require a COD of at least 7.5 s for matching to be obtained. It is possible that the behaviour of possums is more similar to that of rats than birds, and therefore increasing the COD beyond 2 s could result in behaviour which is closer to matching in terms of response allocation.

Baum (1982) claimed that the COD is discriminated by subjects (similar

to travel time or blackout) and can therefore be removed from calculations of matching behaviour. When responses which occurred within and after the COD in the present experiment were analysed separately it was found that sensitivity to the reinforcement-rate differences shown in the within-COD data was very low (mean a = 0.04). As a result, post-COD responding was more sensitive to changes in the reinforcer-rate ratio than total responding (mean a = 0.77 vs. 0.51). This result was also found by McAdie et al. (1996), Muir (1997) and Temple et al. (1995), and provides further support for Baum's claim that behaviour which occurs during this period of time should be removed before analysis. The mean difference between the post-COD and total-response allocation a values (0.26) was similar in magnitude to that observed by Temple et al. (1995) at all COD values (but smaller than the difference of about 0.45 observed by McAdie et al., 1996). Therefore, since the sensitivity of total-response allocation was low in the present experiment, post-COD responding was also less sensitive than is normally observed. Whereas undermatching was still the most common result here, McAdie et al. (1996) and Temple et al. (1995) obtained overmatching in the post-COD data for most subjects. It is clear therefore, that the lower than normal sensitivity of response allocation to changes in the reinforcer-rate ratio found here was not simply the result of insensitive responding during the COD.

While responding is generally controlled by reinforcer-rate differences, inherent biases (e.g., position or colour preferences) can also affect responding on concurrent schedules. Overall, very little inherent bias was observed in the present experiment, although more bias was generally observed within the COD than after it. This result was also observed by Muir (1997) but is not consistent with simple concurrent research with hens (e.g., McAdie et al., 1996; Temple et al., 1995). Some subjects had been observed to respond differently to each of the levers during the present experiment. For example, George was observed responding with his paw to the right lever, while left lever responses mainly involved chin presses (which appeared faster than paw responses), with the occasional paw press. It has often been reported that responding occurs at a high rate immediately following a changeover, and quickly decreases to a low rate

following the end of the COD (e.g., Bourland & Miller, 1978; Dreyfus, Dorman, Fetterman & Stubbs, 1982; Silberberg & Fantino, 1970). If this is the case with possums, the different response topographies could place different limits on how fast responses can occur within the COD on each alternative. The time each event occurred was collected for each session during the third and fourth conditions of the present experiment, and therefore a detailed analysis of behaviour following a changeover was possible for these conditions.

Response rates were calculated for each 1-s interval following a changeover in the following manner: For each session, the number of responses made during each second following a changeover were calculated separately for each lever (up to 30 s). Also calculated was the number of times that a subject continued responding on each lever for the corresponding number of seconds (i.e., the total amount of time spent in each second following a changeover). For example, in one session a subject may have remained on an alternative for at least 5 s on 20 occasions, and for at least 30 s on five occasions (and therefore spent

20 s of the session time in the 5th second following changeover, and 5 s in the 30th second following changeover). These data were summed over the last five sessions of each of Conditions 3 and 4. Response rates for each second were then calculated for each lever by dividing the number of responses during each second by the amount of time spent in that second. A similar pattern of responding was observed for all subjects, and two examples of these data are plotted in Figure 1.10 for each second (up to 30 s) following a changeover. The top graph shows the data obtained from George during Condition 4 (concurrent VI 40-s VI 40-s schedules), while the bottom graph shows the data obtained from Arthur during Condition 3 (concurrent VI 22.5-s VI 180-s schedules). The pluses on each of these graphs represent responses made on the left lever, while unfilled circles represent responses made on the right lever.

These graphs clearly show that responding occurred at a much higher rate during the 2-s COD than at any other time following a changeover (this pattern of responding was found for all subjects and conditions), as is the case with other species (data are presented for only the first 30 s following a changeover,

Figure 1.10. The average number of responses during each second following a changeover.

however, very little responding occurred after this period). It can also be seen that, for both of these subjects, responding occurred at a higher rate on one alternative (the left lever for George, where chin responses were observed, and the right lever for Arthur). This is probably due to the different response topographies observed, and results in large biases during the COD. For example, if chin responses (on the left lever) are able to be completed faster than paw responses (on the right lever), and responding always occurs at the maximum rate during the COD, a greater number of responses will always be made on the left lever. Because more left lever responses would occur during the COD at all reinforcerrate ratios, this would result in a within-COD bias towards the left lever. Because post-COD responding occurred at a much lower rate than within-COD responding, the different minimum amounts of time required by the different response topographies could be expected to have less of an effect on post-COD behaviour. Therefore, when no experimentally introduced biasers are present, as in the present experiment, the rates of responding on the two levers should be affected mainly by the schedules of reinforcement. This would be expected to result in small post-COD biases, similar to those observed in the present experiment.

The data obtained from Timmy (although not presented here) are also consistent with the idea that the different response topographies are responsible for the large within-COD biases observed. In Timmy's case, response topographies on the two alternatives appeared very similar, and very little within-COD bias was observed (log c = -0.03). The large amounts of bias observed with other possums within the COD here would not be expected with hens pecking keys if response topography is responsible, because it seems unlikely that the topography of a key-peck response would have enough variations that some would require different amounts of time to complete. Sumpter (1996) studied hens' concurrent-schedule behaviour with different response types. When concurrent VI (key-peck) VI (door push) schedules were arranged, the within-COD biases obtained were of a similar size to those observed in the present experiment. Analyses of these data showed that a door push took about 1.5 times longer than a key peck response. Therefore, the finding of similar within-COD biases suggests a reasonably large difference in the times required for the different response topographies in the present experiment.

The use of arithmetic VI schedules may have contributed to the large amount of undermatching observed in the response measures here. Taylor and Davison (1983) reviewed the results of several concurrent VI VI experiments using either arithmetic or exponential schedules and found that sensitivity to reinforcement was greater when exponential schedules were used for both response (0.97 vs. 0.79) and time (0.96 vs. 0.89) measures. However, the amount of undermatching observed in the response measures here was still markedly greater than that normally observed when using arithmetic schedules of reinforcement, while the sensitivity values observed for time measures were more similar to those normally found with exponential than arithmetic schedules. Therefore, it is unlikely that the use of exponential instead of arithmetic schedules would have greatly reduced the amount of undermatching observed in the present experiment.

Alsop and Elliffe (1988) looked at sensitivity to reinforcement at different overall rates of reinforcement. They reported that as overall reinforcement rate increased, so too did sensitivity to reinforcement for both response and time measures. The overall reinforcement rates used by Alsop and Elliffe (1988) ranged from 0.22 to 10 reinforcers per minute, and the closest mean approximation to perfect matching obtained from their response-allocation data was a = 0.72 (with 10 reinforcers per minute available). In the present experiment, the overall rate of reinforcement was held constant across conditions, and only three reinforcers on average were available per minute. It is possible, therefore, that this low overall reinforcement rate was a contributor to the large amount of undermatching observed. Alsop and Elliffe (1988) obtained *a* values of 0.61 and 0.66 with reinforcer rates of two and five reinforcers per minute, respectively. These are still larger than the *a* values found for the response allocation data in the present experiment. Other experiments which have found a large amount of undermatching have not kept the reinforcer-rate constant (Foster

et al., 1997; Foster et al., 1996; Matthews & Temple, 1979). These experiments have generally arranged between one and three reinforcers per minute with mean a values for response allocation ranging from 0.39 to 0.47. Again, these are lower than those obtained by Alsop and Elliffe at similar reinforcer rates. While Alsop and Elliffe's (1988) results suggest that increasing the overall reinforcer rate may increase the sensitivity to reinforcement of possums' behaviour, other studies have obtained closer approximations to matching than Alsop and Elliffe with low overall reinforcement rates. For example, Temple et al. (1995) used reinforcer rates which varied between 0.83 and 2.5 reinforcers per minute and obtained a mean a value of 0.79 for response allocation with hens (using a 2-s COD). Dougherty and Lewis (1992) obtained a values ranging from 0.90 to 1.09 for response allocation with overall rates of reinforcement ranging from 2.0 to 2.67 reinforcers per minute. These experiments suggest that the overall rate of reinforcement may not be as important for obtaining matching as suggested by Alsop and Elliffe (1988).

Changeover Rates

The rates of changing over between the schedules in the present experiment were highest when the schedules were equal (i.e., concurrent VI 40 VI 40) and decreased as the differences between the schedules increased. This result has previously been demonstrated in possums (Muir, 1997) and is a common finding with other species (Baum, 1974; Catania, 1963; Herrnstein, 1961; Sumpter et al., 1995). The rate of changing over in the present experiment was greater than is normally observed with other species. The average rate of change over across all subjects when the schedules were equal was 3.6 per minute. While similar rates of change over have been observed with rats (Baum, 1976; Shull & Pliskoff, 1967), lower rates have been observed with hens (about 2/min: McAdie et al., 1996), and pigeons (about 1.5/min: Miller, 1976). It is possible, then, that possums are more similar to rats than to birds in this respect. However, rate of changing over is also related to the length of the COD (Shull & Pliskoff, 1967; Silberberg & Fantino, 1970; Stubbs & Pliskoff, 1969; Temple et al., 1995). The possibility that the COD in the present experiment was too short to produce the independence between the schedules required for matching may be responsible for the high changeover rates observed here.

Response Rates

It has been found that absolute response rates on an alternative tend to increase with increases in the rate of reinforcement provided on that alternative (Davison & Ferguson, 1978; Herrnstein, 1961), while local response rates tend to be inversely related to reinforcement rate (i.e., responding is 'faster' on the lean alternative; Baum, 1979). These results were also found in the present experiment, suggesting that the overall pattern of responding exhibited by possums is similar to that of other species. However the rates of responding observed with possums both in the present experiment and Muir's (1997) experiment were markedly lower than those typically obtained with other species (Baum, 1976; Bradshaw et al., 1979; Davison & Hunter, 1976; Herrnstein, 1961; Ruddle et al., 1979). It should be noted, however, that response rates are related to a number of factors including the rate and duration of reinforcement, the level of deprivation of the subject (Morse, 1966), and response topography (e.g., Davison & Ferguson, 1978). It is possible, therefore, that the decreased rates of responding found in the present experiment were due to a combination of these factors, rather than being inherent to the possum.

Generally, the level of deprivation is well controlled in concurrentschedule research. About 80% of the free-feeding body weight is normally used with rats (e.g., Baum, 1976), hens (e.g., McAdie et al., 1996; Temple et al., 1995) and pigeons (e.g., Hollard & Davison, 1971; Hunter & Davison, 1978). This is reasonably easy to accomplish with daily weighing and supplementary feeding. Since possums are extremely difficult to handle, the deprivation level is more difficult to control. Consistent with what has been done with cows (Foster et al., 1996) and goats (Foster et al., 1997), the possums were weighed only fortnightly, and the amount of post feed was adjusted under any of the following situations. If the subject had been regularly losing weight, the post feed was increased. If the subject had been regularly gaining weight, the post feed was decreased. Finally, if the amount of work during the experimental session had decreased, the post feed was reduced for that day. While this method is successful in maintaining a reasonably constant weight and at least a moderate level of deprivation, it does not measure exactly how deprived the subject is. Therefore no direct comparison can be made of the level of deprivation of the possums to that of other species.

The Contingency-Discriminability Model

Davison and Jenkins' (1985) C-D model (using the logarithmic form of Equation 0.7, with w set to zero) described the present response-allocation data well. The %VAC by the regression lines was above 91% for all subjects. The C-D model and the GML were equally good at describing the data in the present experiment, each accounting for very similar amounts of the variance in the data. The measures of the discriminability of the response-reinforcer contingencies (d_r) calculated from the response-allocation data in the present experiment (range: 2.75-7.20) were lower than has been obtained in previous experiments. Davison and Jones (1995) reported p values (confusability) ranging from 0.06 to 0.19 which, according to their definition of p (the inverse of d_r), correspond to d_r values ranging from 5.26 to 16.67, while Jones and Davison (1998) reported log d_r values ranging from 0.48 to 1.03 (d_r ranging from 3.02 to 10.72). In both of these experiments, a switching-key concurrent-schedule procedure was used with two different intensities of yellow light as the main key stimuli. While no mention was made of how different these two yellow lights were, it does not seem unreasonable to assume that the simple left-right discrimination required of the possums in the present experiment would be 'easier' (i.e., the response-reinforcer discriminability should be higher), yet the values of d_r obtained here were slightly lower than those obtained with pigeons in the above experiments.

In both of the papers mentioned above, Equation 0.4 was presented. Davison and Jones (1995) stated that p in that equation is equal to the inverse of d_r (which is $1/d_r$). However, when $1/d_r$ is substituted for p in Equation 0.4, the resulting equation does not reduce to Equation 0.3 (the original C-D equation).
Davison and Jones (1995) also stated that p ranges from 0 (when discriminability is perfect) to 0.5 (when the subject is unable to discriminate). However, this is not true when $p = 1/d_r$. When discriminability is perfect, $d_r = \infty$, and $p = 1/\infty$, or 0, which is consistent with the stated values of p. On the other hand, when the subject is unable to discriminate, $d_r = 1$, and p = 1/1, or 1. Therefore, p cannot equal $1/d_r$ in Equation 0.4, and the values of d_r given above for Davison and Jones' study are incorrect.

Jones and Davison (1998) again presented Equation 0.4, this time stating that $p = d_r /(1 + d_r)$. Again, however, substituting $d_r /(1 + d_r)$ into Equation 0.4 does not give Equation 0.3. In this case, when discriminability is perfect,

 $p = \infty/(1 + \infty)$, or 1 (not 0 as originally stated), while when the subject is unable to discriminate, p = 1/(1 + 1), or 0.5. Jones and Davison did not use this equation for analyses of their data however, so the values of d_r given for their experiment are correct. The correct definition of p in this case is actually $1/(d_r + 1)$. When this is substituted for p in Equation 0.4, Equation 0.3 is obtained. In addition, when discriminability is perfect, $p = 1/(\infty + 1)$, or 0, and when the subject is unable to discriminate, p = 1/(1 + 1) or 0.5. These values are consistent with those originally stated by both Davison and Jones (1995) and Jones and Davison (1998). The correct values of d_r obtained by Davison and Jones (1995), then, ranged from 4.26 to 15.67. These values are similar to those originally reported, and again, are higher than those obtained in the present experiment.

Alsop and Davison (1991) studied concurrent-schedule behaviour using a switching-key procedure with seven different pairs of stimuli. In all cases the main key stimulus was a white light, but the intensity was varied across conditions from no difference between the stimuli signalling the two schedules up to a large difference. While no measure was taken of the differences in intensity of the two lights, as the relative difference increased so did the values of log d_r reported. With the most disparate pair, the obtained log d_r values ranged from 0.93 to 4.14 (d_r ranged from 8.51 to 13,803). Again these values were much higher than those observed in the present experiment. The middle pair of stimuli (with d_r ranging

from 2.45 to 5.25) gave the most similar values of d_r to those in the present experiment, again suggesting that, according to the C-D model, possums found the response-reinforcer contingencies unusually difficult to discriminate in the present experiment. The finding of lower than normal values of d_r in the present experiment is consistent with the *a* values from the GML analysis here, in that the possums' response-allocation measures were found to be less sensitive to changes in the reinforcer-rate ratios than those of most other species. Why this discrimination might be more difficult for some species than others is not clear.

The time-allocation data were also well described by the C-D model, with the %VAC by the regression lines above 97% for all subjects. Again, the data were equally well described by the C-D model and the GML. However, in three out of five cases (where overmatching was observed using the GML) the obtained value of d_r was negative. According to Davison and Jenkins (1985), the value of d_r can range only from 1.0 (no discriminability) to infinity (perfect discriminability). One assumption of the C-D model is that, when discriminability is perfect, strict matching will be observed, while in any case where discrimination is less than perfect, the data will show undermatching in a GML analysis (Davison & Jenkins, 1985). Based on this assumption, overmatching (which gives negative d_r values) should never be observed, as this would imply 'better' than perfect discrimination. However, overmatching is not uncommon in time-allocation measures (e.g., Lobb & Davison, 1975; Norman & McSweeney, 1978; Silberberg & Fantino, 1970; Stubbs & Pliskoff, 1969). As previously mentioned, it has been suggested that when a values slightly greater than 1.0 are obtained, they are actually the result of statistical error (Baum, 1979; Davison & Jenkins, 1985) with the 'true' value being 1.0. In other words, if the a value obtained was not 'significantly' greater than 1.0, overmatching was not really found, and discriminability was actually perfect.

Baum (1979) suggested that values of a ranging from 0.9 to 1.11 were equivalent to (or not significantly different from) 1.0. While in some cases it may true that an a value of 1.09 is not significantly different from 1.0, it would be equally correct to say that it is not significantly different from 1.10. Therefore, although it may be convenient to say that the true value is really 1.0, such a statement does not seem entirely justified. A more practical solution may be to view the occurrence of overmatching as the result of less than perfect discriminability, and therefore as being similar to undermatching since, in both cases, the ratio of responses made to the two alternatives has deviated from the ratio of reinforcers received. The value of d_r is negative when overmatching occurs, being approximately negative infinity when *a* is only slightly greater than 1.0, with smaller negative values as *a* moves away from 1.0 (indicating negative discriminability). A negative measure of discriminability makes no sense (Baum, Schwendiman & Bell, 1999), therefore it may be appropriate to describe discriminability with the absolute value of d_r . This would result in overmatching being viewed as less than perfect discrimination rather than a statistical error, which may be preferable especially given how common the finding is.

Davison and McCarthy (1994) introduced p_r , a measure of relative discriminability, into the C-D equation ($p_r = d_r / (1 + d_r)$). A p_r value of 0.5 is equivalent to a d_r value of 1.0 (no discrimination), while a p_r value of 1.0 is equivalent to a d_r value of infinity (perfect discrimination). The parameter p_r was introduced simply to make fitting the equation easier (Davison & McCarthy, 1994). Whereas values of d_r become negative in the case of overmatching according to the GML, p_r simply becomes greater than 1.0 (implying better than perfect discrimination, which, again, makes no sense). In this respect p_r in the

C-D model is similar to *a* in the GML. It is possible then, that p_r values slightly greater than 1.0 are also the result of statistical error, and an argument could again be made that, in such cases, discriminability was actually perfect. For example, the p_r value of 1.01 calculated from the time-allocation data of 1 subject in the present experiment could be said to represent perfect discrimination of the response-reinforcer contingencies for this subject, because it is unlikely that a slope of 1.01 is significantly greater than 1.0. However, the only apparent justification for making such an assumption is the fact that without doing so the C-D model would surely be seen to fail.

Analyses of time-allocation data with the C-D model have been reported

in only one other study (Alsop & Davison, 1991). The obtained values of d_r ranged from 4.57 to 31.62, and were similar to the values obtained by 2 subjects in the present experiment. The values of d_r for time measures reported by Alsop and Davison (1991) were lower than those reported for their response measures. This is not consistent with most GML analyses where time-allocation a values are generally closer to 1.0 (strict matching) than response allocation a values. Alsop and Davison suggested that this may have been the result of the procedure used, and therefore the results may not be directly comparable with the time-allocation data obtained in other experiments. In Alsop and Davison's study, the schedule presented on the main key (in a switching-key concurrent-schedule procedure) was randomly selected following the delivery of each reinforcer. This could have had an effect on the subjects' behaviour. If any post-reinforcement pausing occurs with pigeons and is symmetrical (i.e., if subjects pause for the same amount of time after each reinforcer, as appears to be the case with some other species (Foster et al., 1996, Foster et al., 1997)), the random alternation of the schedules following each reinforcer could result in the equal distribution of this pausing to each alternative. This would happen because in half of the cases, after a reinforcer has been obtained on the rich alternative, the schedule would be automatically changed to the lean schedule (and vice-versa). Therefore, the number of pauses which occur while the lean schedule is in effect, and therefore the total amount of time allocated to that schedule, would increase, while the number of pauses occurring while the rich schedule is in effect would decrease. In this case, totaltime allocation across the two schedules would become more similar, and overall, time allocation would appear less sensitive to changes in the reinforcer ratio.

Although this is a reasonable explanation as to why time allocation may be less sensitive to changes in the reinforcer-rate ratio than response allocation in this case, the finding of less sensitive response allocation is not universal. For example, Temple et al. (1995) found no systematic differences between the sensitivity to reinforcement of response and time allocation, while Heyman (1979) and Davison (1991) both found that the slopes of the matching lines describing response allocation were greater than those describing time allocation. There were no obvious procedural differences between these two experiments and others where time allocation has been found to be the more sensitive measure of behaviour. This suggests that time allocation should not necessarily be expected to be more sensitive to changes in the reinforcer-rate ratio than response allocation. Any differences observed may simply be the result of differential pausing during the session, although the reasons for these differences are unclear.

Jones and Davison (1998) suggested that subjects will always match the 'perceived' reinforcer-rate ratio. Therefore, when discrimination is perfect, the perceived and actual reinforcer-rate ratios must be the same. The finding of different values of d_r for time- and response-allocation measures of behaviour does not seem to support this idea. Since most analyses using the C-D model have not analysed time-allocation data (and time allocation often shows overmatching), Jones and Davison were probably referring to response allocation when they made this statement.

Davison and Jones (1995) studied concurrent VI VI schedule behaviour over a wide range of reinforcer-rate ratios in an attempt to determine whether the GML or the C-D model was more appropriate for the study of choice. As previously pointed out, they argued that when data are collected over the usual range of reinforcer-rate ratios (0.1:1.0 to 10:1.0; Davison & Jenkins, 1985), the two models differ little in their descriptions of behaviour. However, since the C-D model predicts an s-shaped function, while the GML predicts a straight line, if the C-D model is more appropriate, behaviour at extreme reinforcer-rate ratios should deviate more from perfect matching than behaviour at reinforcer-rate ratios within the range normally used. Davison and Jones (1995) presented pigeons with nine concurrent VI VI schedule pairs. Five of those pairs had reinforcer-rate ratios within the range normally used (providing the central data), while the remaining four pairs gave extreme reinforcer-rate ratios. Using the GML, Davison and Jones analysed the response-allocation data from all nine schedule pairs, and also the central data alone. They found that the estimates of a were greater in all cases when only the central data were analysed. In other words, behaviour at the extreme reinforcer-rate ratios was less sensitive to reinforcementrate differences. They then analysed the data from all nine schedule pairs using the C-D model. Both models provided good fits to the data from all schedule pairs with little difference between the %VAC measures provided by the two equations, although Davison and Jones did suggest that the C-D model appeared preferable because it accounted for the deviations from the straight line predicted by the GML. Based on the above analyses, they suggested that the C-D model was more appropriate for the analysis of choice behaviour. However, as previously pointed out, they failed to test whether the response measures at extreme reinforcer-rate ratios were well predicted by the C-D model when only the central data were analysed. They stated that this analysis was not done because the parameters of the C-D model are determined mainly by the extreme data. However, if the C-D model predicts that behaviour is going to become less extreme as the reinforcer-rate ratio becomes more extreme, any analyses using the central data should not be expected to differ much from those using all of the data.

Using Davison and Jones' data, both the GML and the C-D model were fitted to the five central data points, all nine data points and, out of interest, the four extreme data points. Figure 1.11 shows the difference between the predicted and the obtained response ratios (i.e., the residuals, or the logarithms of the response ratios predicted by the GML minus the logarithms of the obtained response ratios) plotted against the logarithms of the obtained reinforcer-rate ratios for all data points. In the left panel, all data were used in obtaining the a and log c values for the predictions, in the central panel, only the five central data points were used, while in the right panel only the four extreme data points were used. The same analyses carried out with the C-D model are presented in Figure 1.12. The solid line on each of the graphs in these figures represents the point where the predicted and obtained values are equal (i.e., residuals = 0). Therefore, the closer the data points are to this line, the better the model is at predicting the subjects' actual behaviour. It can be seen from these figures that, when all of the data were used and when only the extreme data were used, both models were able to predict the subjects' behaviour well. There was, in fact, little difference between how well the two models predicted behaviour. When the GML was fitted

<u>Figure 1.11</u>. The difference between the predicted and obtained logarithms of the response ratios plotted against the logarithms of the obtained reinforcer ratio for the data collected by Davison and Jones (1995). The data were analysed using the GML.

<u>Figure 1.12</u>. The difference between the predicted and obtained logarithms of the response ratios plotted against the logarithms of the obtained reinforcer ratio for the data collected by Davison and Jones (1995). The data were analysed using the C-D model.

to the central data, it can be seen that the resulting equation did not predict behaviour at extreme reinforcer-rate ratios well. At extreme reinforcer-rate ratios, the observed response-allocation ratios were less extreme than predicted. When the same analysis was conducted using the C-D model, the observed responseallocation ratios were more extreme than predicted. Overall, neither model appeared better than the other at predicting behaviour in any of the above cases, although both models predict more accurately when a wider range of reinforcerrate ratios are used.

The results of the present experiment indicate that possums respond similarly to other species on concurrent schedules of reinforcement, and that their behaviour is well described by the generalised matching law. The C-D model appears to describe the response data from the present experiment about as well as the GML (the %VAC by the two models was very similar). However, the C-D model appears to cope less well with time-allocation data and post-COD data.

Whether or not these conclusions hold for other COD values is the subject of the next experiment. As previously mentioned, the possums' behaviour under these concurrent schedules was somewhat insensitive to changes in the reinforcer-rate ratio. It is possible that changing the COD length will increase this sensitivity.

EXPERIMENT 2

In Experiment 1, a range of concurrent VI VI schedules of reinforcement were presented to possums, each with a 2-s COD. Analyses of these data using the GML showed a large amount of undermatching for all subjects' responseallocation data. The length of the COD was identified as one of the possible contributors. Temple et al. (1995) found that increasing the length of the COD beyond 2 s did not improve the matching behaviour of hens, suggesting that the presence of a COD may be more important than its length. However, Shull and Pliskoff's (1967) results suggested that a COD of 7.5 s is required for matching to be obtained with rats. Therefore, it is possible that a 2-s COD is not sufficiently long for matching to be obtained with possums.

Several potential problems with the way the C-D model copes with post-COD data (particularly when the data show overmatching) were discussed in Experiment 1. Two possible effects of introducing a COD were identified: 1. Increasing discriminability; or 2. Punishing change-over behaviour. An increase in discriminability would be evidenced by an increase in d_r with increases in the length of the COD (i.e., the value of d_r should become closer to infinity with each increase in COD length), whereas punishment of changeover behaviour would be evidenced by increases in w (using Davison & McCarthy's, 1994, punishment version of the C-D model) with increases in COD length (presumably with d_r remaining relatively constant).

One of the aims of the present experiment was to determine whether the large amount of undermatching observed in Experiment 1 was, at least to some extent, related to the length of the COD used. The other aim was to determine how the C-D model, and the punishment version of the C-D model, cope with changes in the length of the COD. Therefore, in the present experiment, the concurrent-schedule behaviour of possums was examined over a range of COD lengths.

Method

Subjects

Six brushtail possums were used in this experiment. Four of the possums were male, and two were female. The possums were named Static, Jasper, Izzie, Benny, Emma and Putzy. All possums had previous experience responding on concurrent schedules of reinforcement, in discrimination experiments. These possums were cared for in the same manner as those used in Experiment 1.

Apparatus

The experimental equipment was identical to that used in Experiment 1.

Procedure

The procedure used here differed from that used in Experiment 1 only in the conditions presented to the subjects. In addition to the concurrent VI 40-s VI 40-s, concurrent VI 180-s VI 22.5-s, and concurrent VI 22.5-s VI 180-s schedules used in Experiment 1, concurrent VI 100-s VI 25-s and concurrent VI 25-s VI 100-s schedules were presented. Each condition was presented with a COD length of 0 s, 2 s, 4 s and 6 s. The order of conditions is presented in Table 2.1. After Condition 6, the COD length was increased from 0 s to 2 s, with no intermediate COD lengths presented to the subjects. None of the subjects had previously experienced a COD of longer than 0 s, and 2 subjects (Static and Emma) continued to make frequent changeovers, resulting in zero reinforcers. After four sessions using a 2-s COD, the COD length used with these 2 subjects was reduced to 1 s for five sessions, increased to 1.5 s for a further two sessions, then increased again to 2 s. Condition 12 used extinction on the left lever (concurrent EXT VI 20-s). Izzie died during Condition 16, and was replaced by Putzy in Condition 20. All data were recorded as for Experiment 1.

Table 2.1

Schedules (s)											
Condition	Left VI	Right VI	COD (s)	No. of Sessions							
1	40	40	0	23							
2	180	22.5	0	22							
3	22.5	180	0	21							
4	100	25	0	29							
5	25	100	0	24							
6	40	40	0	19							
7	40	40	2	23-33							
8	180	22.5	2	16							
9	22.5	180	2	22							
10	100	25	2	20							
11	25	100	2	22							
12	Ext	20	2	18							
13	40	40	2	32							
14	40	40	4	27							
15	180	22.5	4	23							
16	22.5	180	4	22							
17	100	25	4	30							
18	25	100	4	28							
19	40	40	4	17							
20	40	40	6	33							
21	180	22.5	6	30							
22	22.5	180	6	21							
23	100	25	6	20							
24	25	100	6	20							
25	40	40	6	39							

The order of conditions for Experiment 2, and the number of sessions required to reach stability in each condition.

Results

Appendix B contains the raw data from the last five sessions of Conditions 1 to 25. All analyses were carried out on the data summed across these five sessions. All ratios were taken to the left manipulandum, and all logarithms are to the base 10. The data from Condition 12 (concurrent EXT VI 20-s) were not included when fitting the GML or the C-D model.

The Generalised Matching Law

The logarithms of the response-allocation ratios are plotted against the logarithms of the obtained reinforcer-rate ratios for each possum at each COD length in Figure 2.1. The dotted line present on each graph represents strict matching (slope = 1.0, intercept = 0). The dashed lines represent the lines of best fit calculated using least-squares linear regression. The slopes (a), intercepts (log c), standard errors of the estimates (SE), and the percentages of variance accounted for (%VAC) by the lines describing the response-allocation data are given in Table 2.2. There were no consistent changes in the *a* values obtained from these data with changes in the COD length. However, for 3 of the 4 subjects who completed all conditions, the *a* values were higher with a 6-s COD than they were with either a 0-s or 2-s COD. In general, the sensitivity of the possums' response-allocation behaviour to changes in the reinforcer-rate ratio remained low at all COD lengths, with a values ranging from 0.28 (Benny, 6-s COD) to 0.84 (Izzie, 4-s COD). The bias measures (log c) were generally small, showing no consistent changes with changes in COD length. The %VAC measures were generally high, ranging from 85.98 to 99.48%, and did not change consistently with COD length, while the SE measures were low, ranging from 0.04 to 0.16, and again, there were no consistent changes with COD length. The %VAC and SE values indicate that the GML fits these data well.

Figure 2.2 shows the logarithms of the time-allocation ratios plotted against the logarithms of the obtained reinforcer-rate ratios for each possum at each COD length. As above, the dotted lines represent strict matching, while the

Log Reinforcer Ratio

Figure 2.1. The logarithms of the response ratios plotted against the logarithms of the reinforcerrate ratios for each subject at each COD length. The dashed line was fitted by the method of least squares to the data and the dotted line represents perfect matching. The solid line represents the function generated by the fit of the C-D model to the data using non-linear regression.

Table 2.2

Slopes (a), y-intercepts (log c), the percentage of variance accounted for (%VAC) and standard errors of the estimates (SE) for the lines of best fit for total response allocation (Figures 2.1 and 2.3), and within and post COD responding (Figure 2.3) at each changeover delay.

		Total Re	sponses			Withir	n COD		Post COD			
Possum	(<i>a</i>)	(log <i>c</i>)	%VAC	SE	<i>(a)</i>	(log <i>c</i>)	%VAC	SE	(<i>a</i>)	(log <i>c</i>)	%VAC	SE
						0	-s COD					
Static	0.51	-0.09	98.71	0.05	0.00	0.02	0.01	0.05	0.68	-0.12	98.91	0.06
Jasper	0.56	-0.10	94.38	0.11	0.00	0.00	8.66	0.00	0.76	-0.15	93.96	0.15
Izzie	0.48	-0.01	97.52	0.06	0.00	0.00	0.28	0.01	0.67	-0.02	97.83	0.08
Benny	0.45	-0.02	97.49	0.06	0.00	0.00	9.37	0.00	0.59	-0.03	97.29	0.08
Emma	0.51	-0.07	97.94	0.06	0.00	0.00	22.11	0.00	0.68	-0.10	98.61	0.06
MEAN	0.50	-0.06	97.21	0.07	0.00	0.00	8.09	0.01	0.68	-0.09	97.32	0.08
						2	-s COD					
Static	0.58	-0.05	98.62	0.05	-0.18	-0.15	39.21	0.18	1.11	-0.04	97.11	0.15
Jasper	0.43	-0.05	94.71	0.08	0.00	0.01	0.43	0.06	0.88	-0.09	95.73	0.15
Izzie	0.50	0.22	85.98	0.16	0.07	0.28	5.04	0.23	0.93	0.14	98.03	0.10
Benny	0.47	0.05	94.54	0.09	0.05	0.08	13.32	0.11	1.05	-0.02	98.41	0.10
Emma	0.71	0.12	97.56	0.09	0.06	0.15	6.58	0.17	1.14	0.06	98.59	0.11
MEAN	0.54	0.06	94.28	0.09	0.00	0.07	12.92	0.15	1.02	0.01	97.58	0.12
						4	-s COD					
Static	0.48	-0.02	95.55	0.08	-0.34	-0.01	66.34	0.19	1.17	0.01	97.53	0.15
Jasper	0.65	0.00	97.18	0.08	0.12	0.02	51.57	0.09	1.18	-0.05	98.94	0.09
Izzie	0.84	0.53			0.15	0.59			1.35	0.43		
Benny	0.31	0.12	88.11	0.09	-0.22	0.17	69.22	0.12	0.92	0.04	99.81	0.03
Emma	0.73	0.18	99.48	0.04	0.10	0.32	53.62	0.07	1.26	0.02	99.68	0.06
MEAN	0.60	0.16	95.08	0.07	-0.04	0.22	60.19	0.12	1.18	0.09	98.99	0.08
						6	-s COD					
Static	0.66	-0.10	99.08	0.05	-0.44	0.04	72.14	0.23	1.44	-0.16	94.28	0.29
Jasper	0.66	-0.02	98.63	0.06	0.21	-0.07	66.31	0.12	1.00	0.05	99.60	0.05
Putzy	0.48	-0.09	97.07	0.07	0.12	-0.02	77.73	0.05	0.87	-0.15	97.84	0.10
Benny	0.28	0.17	86.24	0.09	-0.23	0.27	71.83	0.11	1.02	-0.03	96.84	0.14
Emma	0.72	0.11	99.47	0.04	-0.02	0.37	22.17	0.03	1.21	-0.09	99.60	0.06
MEAN	0.56	0.01	96.10	0.06	-0.07	0.12	62.04	0.11	1.11	-0.07	97.63	0.13

Figure 2.2. The logarithms of the time-allocation ratios plotted against the logarithms of the reinforcer-rate ratios for each subject at each COD length. The dashed line was fitted by the method of least squares to the data and the dotted line represents perfect matching. The solid line represents the function generated by the fit of the C-D model to the data using non-linear regression.

dashed lines are the lines of best fit. The values of a, log c, SE and %VAC for the time-allocation measures are given in Table 2.3. Generally, the values of a increased from the 0-s COD conditions to the 2-s COD conditions, but did not change consistently as the COD was increased beyond 2 s. For all subjects, the a values obtained from the time-allocation measures were greater than those obtained from the response-allocation measures (a values for time allocation ranged from 0.69 (Jasper, 0 s) to 1.14 (Static, 2 s)). As with response allocation, the bias measures obtained from the time-allocation data were small with no systematic changes with changes in COD length. The %VAC measures were high, ranging from 91.95 to 99.83%, and the SE measures were low, ranging from 0.03 to 0.22, indicating that the regression lines described the data well. Again, neither measure changed consistently with changes in the COD length.

It is difficult to observe any changes in the values of a or log c from Figures 2.1 and 2.2 alone. Therefore, within- and post-COD responding are not presented graphically here. Table 2.2 gives the values of a and log c as well as the SE and %VAC measures. It can be seen from Table 2.2 that there were no consistent changes in the within-COD measures of a in the data from individual subjects as the COD length increased. However, the mean within-COD a value became slightly more negative as the COD length was increased. Within-COD response-allocation was consistently less sensitive to changes in the reinforcerrate ratio than total-response allocation with a values ranging from -0.44 (Static, 6-s COD) to 0.21 (Jasper, 6-s COD).

Bias within the COD also did not change consistently with changes in COD length and ranged from -0.15 to 0.59. There were also no consistent differences between the bias measures obtained from within-COD and totalresponse measures (in 11 of 20 cases, within-COD biases were greater). The %VAC measures obtained from the within-COD data were low, ranging from 0.01 to 77.73%, however, the SE measures were also low, ranging from 0 to 0.23.

The sensitivity measures obtained from the post-COD response measures increased from the 0-s COD conditions to the 2-s COD conditions for all subjects. For 4 of the 5 subjects, the sensitivity values increased again when the COD was

Table 2.3

Slopes (a), y-intercepts (log c), the percentage of variance accounted for (%VAC) and standard errors of the estimates (SE) for the lines of best fit for total time allocation (Figures 2.2 and 2.3), and PRP and Net time allocation at each changeover delay.

		Total Time		PRP Time					Net Time				
Possum	(<i>a</i>)	(log <i>c</i>)	%VAC	SE	(a)	(log c)	%VAC	SE	(a)	(log c)	%VAC	SE	
						0-	s COD						
Static	0.82	-0.07	98.10	0.09	0.96	-0.02	97.79	0.11	0.70	-0.11	81.84	0.26	
Jasper	0.69	-0.10	94.45	0.13	1.10	-0.03	97.70	0.13	0.54	-0.16	73.31	0.26	
Izzie	0.84	0.01	94.62	0.15	1.11	0.06	97.50	0.13	0.57	0.00	77.66	0.23	
Benny	0.79	-0.03	91.95	0.19	1.03	0.00	99.83	0.03	0.53	-0.01	51.20	0.41	
Emma	0.82	-0.06	98.27	0.09	1.13	-0.05	99.61	0.06	0.69	-0.06	96.32	0.11	
MEAN	0.79	-0.05	95.48	0.13	1.06	-0.01	98.49	0.09	0.61	-0.07	76.06	0.25	
						2-	s COD						
Static	1.14	0.00	99.49	0.06	1.10	0.02	99.94	0.02	1.17	-0.05	97.39	0.15	
Jasper	0.92	0.00	97.13	0.12	1.03	0.02	99.93	0.02	0.79	-0.04	90.35	0.20	
Izzie	0.94	0.06	99.33	0.06	1.01	0.09	99.15	0.07	0.82	-0.01	94.20	0.16	
Benny	1.01	-0.04	99.72	0.04	0.98	-0.02	99.96	0.02	1.03	-0.10	96.15	0.16	
Emma	0.87	-0.01	97.98	0.10	1.03	-0.12	98.94	0.08	0.81	0.03	95.79	0.14	
MEAN	0.98	0.00	98.73	0.08	1.03	0.00	99.58	0.04	0.92	-0.03	94.78	0.16	
						4-	s COD						
Static	1.09	-0.02	99.18	0.08	1.09	0.01	99.78	0.04	1.10	-0.05	97.87	0.13	
Jasper	0.89	-0.08	99.79	0.03	1.06	-0.02	99.74	0.04	0.81	-0.11	99.84	0.02	
Izzie	1.03	0.02			0.91	0.02			1.18	0.03			
Benny	1.00	-0.01	99.83	0.03	0.99	0.00	99.64	0.05	1.00	-0.04	99.79	0.04	
Emma	0.86	-0.07	98.50	0.08	0.93	-0.19	96.80	0.13	0.84	-0.04	98.5 7	0.08	
MEAN	0.97	-0.03	99.33	0.06	1.00	-0.04	98.99	0.07	0.99	-0.04	99.02	0.07	
						6-	s COD						
Static	1.13	-0.10	99.13	0.09	1.05	-0.03	99.53	0.06	1.19	-0.15	98.70	0.11	
Jasper	0.75	-0.03	99.36	0.05	1.03	-0.01	99.75	0.04	0.65	-0.05	98.58	0.06	
Putzy	0.87	0.07	90.63	0.22	0.91	0.03	98.87	0.08	0.87	0.07	85.10	0.28	
Benny	0.96	0.01	99.26	0.06	0.98	-0.02	99.98	0.01	0.87	0.07	94.33	0.17	
Emma	0.86	-0.10	98.87	0.07	1.01	-0.05	99.14	0.07	0.83	-0.11	98.60	0.08	
MEAN	0.91	-0.03	97.45	0.10	1.00	-0.01	99.45	0.05	0.88	-0.03	95.06	0.14	

increased to 4 s (the exception being Benny, whose sensitivity measure decreased). An increase in sensitivity with each increase in COD length (up to 6 s) was observed for only 1 subject (Static). The sensitivity measures obtained from the post-COD response measures were consistently greater than those obtained from the total response-allocation data.

As for the within-COD bias measures, there were no consistent changes in the post-COD bias measures with changes in COD length, and no consistent differences between the post-COD bias measures and total response-allocation bias measures (in 10 of 20 cases, the post-COD bias was larger). The %VAC measures were high for all subjects, ranging from 93.96 to 99.81%, and the SE measures were low, ranging from 0.03 to 0.29.

In order to see more clearly how sensitivity changed with changes in the COD length, the sensitivity measures obtained at each COD for the response, time, within-COD, and post-COD measures of behaviour are presented for each subject in Figure 2.3, along with the mean sensitivity obtained from all subjects. Since the sensitivity values for Putzy were obtained at only one COD length (6-s COD), these values are not presented here. These data were, however, included in calculations of the mean data. The solid lines on each graph represent strict matching (a = 1.0). There appears to be no consistent change in sensitivity in terms of the total response-based measures with increases in COD length. There were few changes in the mean response-allocation sensitivity measures with changes in COD length, although there was a slight increase from the 0-s to 2-s COD, and from the 4-s to 6-s COD. Similarly, there were no consistent changes in the individual time-allocation sensitivity measures with changes in COD length. The mean time-allocation sensitivity was lowest with the 0-s COD, but highest with the 2-s COD, decreasing slightly during the 4-s and 6-s COD conditions.

Behaviour within the COD was generally insensitive to changes in the reinforcer-rate ratio at all COD lengths, and there were no consistent changes in within-COD sensitivity measures with changes in the COD length. The post-COD response sensitivity measures increased from the 0-s to 2-s COD conditions

Figure 2.3. The estimates of sensitivity to changes in the reinforcer-rate ratio are plotted for each subject, at each COD length, for response- and time-allocation, and within- and post-COD responding. The solid line on each graph represents perfect matching.

for all subjects, to a value close to 1.0, and generally remained close to 1.0 in the 4-s and 6-s COD conditions (except in the case of Static with a 6-s COD).

The Contingency-Discriminability Model

The solid curves present on each graph in Figures 2.1 (log response ratios vs. log reinforcer-rate ratios) and 2.2 (log time ratios vs. log reinforcer-rate ratios) represent the lines of best fit calculated using non-linear regression, according to the C-D model. The central portion of these curves falls on the dashed line (matching line) with only the ends deviating, in most cases, in the direction of undermatching. However, with time allocation, there were three cases where the curves deviated in the direction of overmatching (Static: 2, 4 and 6-s COD). Again, it is difficult to observe any changes in these curves with changes in COD length.

The values of d_r , log c, and the %VAC measures are presented in Tables 2.4, and 2.5, for the response and time measures and for post-COD measures respectively. Values of p_r ($p_r = d_r/(1+d_r)$) are also given in these tables. Changes in p_r (and, therefore, changes in d_r) follow a similar pattern to changes in a for all of these measures of behaviour. In other words, there were no consistent changes in discriminability in terms of response- and time-allocation as the COD length was increased. However, in four cases, negative values of d_r were observed in the time-allocation data (in cases where p_r is greater than 1.0). In these cases, the GML analysis gave a values greater than 1.0 (overmatching). The C-D analysis also gave values of p_r for post-COD response-allocation which changed in a similar fashion to the a values from the GML analysis. That is, the p_r values generally increased as the COD was increased up to 4 s. However, the d_r values did not follow such a trend. In nine out of 19 cases, the value of d_r obtained was negative (again, in all of those cases, overmatching was found using a GML analysis).

The %VAC measures were high for all measures of behaviour, and were very similar to the measures obtained using a GML analysis. The mean %VAC measures ranged from 94.3 to 99.3% with a GML analysis, and from 93.8 to

Tab	le	2.	4

Estimates of proportional discriminability (p_r) , discriminability (d_r) , bias $(\log c)$, and the percentage of variance accounted for (%VAC) for the lines of best fit for response-(Figure 2.1) and time-allocation (Figure 2.2) at each changeover delay.

		Res	ponse									
Possum	р,	d,	log c	%VAC	p,	d,	log c	%VAC				
				0-s	COD							
Static	0.80	4.10	-0.09	97.97	0.94	16.66	-0.07	98.04				
Jasper	0.83	4.85	-0.10	93.17	0.89	8.09	-0.10	94.51				
Izzie	0.78	3.64	-0.01	98 .30	0.95	19.65	0.01	94.05				
Benny	0.77	3.39	-0.02	97.34	0.93	13.26	-0.03	92.70				
Emma	0.81	4.16	-0.07	96.89	0.94	15.73	-0.06	98.51				
MEAN	0.80	4.03	-0.06	96.73	0.93	14.68	-0.05	95.56				
			2-s COD									
Static	0.84	5.27	0.00	98.38	1.03	-33.65	0.00	99.31				
Jasper	0.76	3.21	-0.05	92.74	0.98	43.99	0.00	97.12				
Izzie	0.80	3.91	0.22	85.59	0.98	58.55	0.06	99.33				
Benny	0.79	3.68	0.05	95.17	1.00	-495.44	-0.04	99.72				
Emma	0.90	8.91	0.12	96.99	0.96	24.55	-0.02	97.92				
MEAN	0.82	5.00	0.07	93.78	0.99	-80.40	0.00	98.68				
				4-s	COD							
Static	0.79	3.72	-0.02	95.15	1.02	-49.28	-0.02	99.04				
Jasper	0.87	6.80	0.00	96.49	0.96	27.55	-0.08	99.67				
Izzie												
Benny	0.69	2.28	0.12	87.14	1.00	1657.56	-0.01	99.83				
Emma	0.90	9.51	0.18	99.31	0.95	20.79	-0.07	98.58				
MEAN	0.81	5.58	0.07	94.52	0.98	414.15	-0.05	99.28				
				6-s	COD							
Static	0.88	7.46	-0.10	98.74	1.03	-38.06	-0.10	98.87				
Jasper	0.88	7.01	-0.02	98.26	0.92	11.09	-0.03	98.87				
Putzy	0.79	3.74	-0.09	96.65	0.96	22.69	0.07	90.89				
Benny	0.67	2.07	0.17	84.98	0.99	75.20	0.01	99.27				
Emma	0.90	9.38	0.11	99.03	0.96	23.23	-0.10	98.50				
MEAN	0.82	5.93	0.01	95.53	0.97	18.83	-0.03	97.28				

Table 2.5

Estimates of relative discriminability (p_r) , discriminability (d_r) , bias (log c), punishment (w), and the percentage of variance accounted for (%VAC) for the lines of best fit for post-COD response allocation at each changeover delay.

Possum	pr	dr	log c	%VAC	pr	dr	log c	w	%VAC	pr	dr	log c	w	%VAC
								0-s COD						
Static	0.88	7.60	-0.13	98.69	0.78	3.53	-0.12	46.71	98.92					
Jasper	0.92	11.56	-0.15	93.30	1.35	-3.84	-0.11	-156.98	95.01	1.00	infinity	-0.13	-29.70	94.31
Izzie	0.88	7.30	-0.02	98.43	0.83	5.04	-0.02	17.08	98.55					
Benny	0.85	5.54	-0.03	97.35	0.78	3.50	-0.03	28.65	97.42					
Emma	0.89	7.90	-0.10	98.10	73.06	-1.01	-0.10	-37333.16	99.45	1.00	infinity	-0.10	-57.94	98.66
MEAN	0.88	7.98	-0.09	97.17	15.36	1.44	-0.08	-7479.54	97.87					
<u>.</u>								2-s COD						
Static	1.02	-41.11	-0.04	96.98	0.94	15.94	-0.04	27.88	97.01					
Jasper	0.96	27.42	-0.09	95.48	2054.30	-1.00	-0.08	-809132.16	96.07	1.00	infinity	-0.09	-809132.16	94.86
Izzie	0.98	48.62	0.14	97.92	0.77	3.38	0.15	65.23	98.95					
Benny	1.01	-122.37	-0.02	98.33	1.04	-24.20	-0.03	-7.88	98.36	1.00	infinity	-0.02	1.66	98.33
Emma	1.04	-26.93	0.07	99.07	1.13	-8.57	0.06	-30.13	99.13	1.00	infinity	0.07	12.00	98.95
MEAN	1.00	-22.87	0.01	97.56	411.64	-2.89	0.01	-161815.41	97.91					
					··· · · · · · · · · · · · · · · · · ·			4-s COD						
Static	1.03	-30.76	0.01	97.03	0.90	8.57	-0.01	40.43	97.17					
Jasper	1.05	-22.35	-0.05	99.19	0.64	1.77	-0.08	144.47	99.97					
Izzie														
Benny	0.98	43.94	0.04	99.82	1.18	-6.71	0.04	-51.44	99. 84	0.98	44.31	0.04	-0.07	99.82
Emma	1.06	-16.93	0.02	99.80	1.01	-73.61	0.02	14.52	99.88	1.00	infinity	0.02	18.46	99.8 7
MEAN	1.03	-6.53	0.01	98 .96	0.93	-17.49	-0.01	37.00	99.22					
								6-s COD						
Static	1.06	-16.78	-0.15	91.88	1.33	-4.00	-0.25	-70.33	94.79	1.00	infinity	-0.13	12.46	90.78
Jasper	1.00	776.79	0.05	99.60	0.83	4.81	0.04	53.40	99.88					
Putzy	0.96	22.75	-0.15	97.99	1.20	-6.01	-0.16	-69.30	98.06	1.00	1536.74	-0.15	-11.85	98.06
Benny	1.01	-179.80	-0.03	96.83	1.97	-2.03	0.03	-232.38	97.86	1.00	infinity	-0.03	0.76	96.81
Emma	1.05	-21.78	-0.09	99.76	0.96	27.25	-0.07	23.84	99.90					
MEAN	1.01	116.24	-0.07	97.21	1.26	4.00	-0.08	-58.96	98.10					

99.3% with a C-D analysis.

Since there is such a large range of d_r values, it is difficult to plot changes in d_r with changes in COD length. Therefore, values of p_r (which should theoretically fall between 0.5 and 1.0) were plotted against COD length in Figure 2.4 for response-allocation, time-allocation and post-COD response-allocation, for each subject. The mean values of p_r are also plotted here. Changes in p_r follow a very similar pattern to changes in a with changes in the COD length, however the values of p_r tend to be slightly larger from response allocation, and slightly smaller from time allocation and post-COD response allocation.

Since the post-COD response-allocation measures gave p_r values greater than 1.0 in several cases, Davison and McCarthy's (1994) punishment version of the C-D model (Equation 0.7) was fitted to these data (Table 2.5). The use of this version of the model resulted in 10 cases where the value of d_r was negative (compared to nine cases with the original C-D model). In six of these cases, the original model had not given a negative d_r value. In addition, when using this version of the model, there were no longer any consistent changes in p_r from post-COD responding with changes in the COD length.

The values of w obtained ranged from -809,132 (reinforcers lost per minute due to changing over; Jasper, 2-s COD) to 144 (Jasper, 4-s COD). There were no consistent changes in w with changes in COD length. The bias measures obtained from the two versions of the C-D model were very similar, and the %VAC measures were higher for the punishment version of the C-D model than the original C-D model (means ranging from 97.87 to 99.22% and from 97.17 to 98.96%, respectively).

Extinction

Figure 2.5 shows the proportion of responses, times and post-COD responses on the right lever (filled circles) for each subject from Condition 12 (concurrent EXT VI 20, 2-s COD). The unfilled circles represent the proportions predicted by the C-D model, calculated using the obtained values of d_r and c as follows. The ratio of responses predicted by the C-D model (B₁/B₂) can be

Figure 2.4. The estimates of relative discriminability of the response-reinforcer contingencies are plotted for each subject, at each COD length, for response- and time-allocation, and post-COD responding. The solid line on each graph represents perfect discriminability.

<u>Figure 2.5</u>. The proportion of responses made to the extinction alternative during the concurrent EXT VI 20 condition with a 2-s COD (filled circles), and the proportion of responses predicted by the C-D model (unfilled circles) based on the estimates of discriminability and bias calculated using the data obtained during the remaining 2-s COD conditions for each subject. The solid line represents perfect matching and perfect discriminability. Subject numbers correspond to possums as follows: 1 =Static, 2 =Jasper, 3 =Izzie, 4 =Benny, 5 =Emma.

calculated using Equation 0.5. In order to calculate the proportion of responses predicted, it is necessary to calculate $B_1/(B_1+B_2)$. Since $B_1/B_2 = cd_r$ (which is equivalent to $cd_r/1$, where $B_1 = cd_r$ and $B_2 = 1$, $B_1/(B_1+B_2) = cd_r/(cd_r+1)$. The solid lines represent the proportion predicted by the GML (1.0; exclusive right responding). With all measures, the obtained proportion of behaviour allocated to the right lever was close to 1.0, as predicted by the GML. The C-D model predicted that a much smaller proportion of responses would be allocated to the right lever (top panel), while the obtained proportions of time (centre panel) and post-COD responses (bottom panel) were similar to those predicted by the C-D model (i.e., the GML and the C-D model predictions were very similar in these two cases). It should be noted that in those cases where a negative value of d_r was obtained, the proportion of right responses predicted by the C-D model is greater than 1.0 (a result which is impossible to obtain). This occurs because the numerator must be a larger negative number than the denominator (which equals the numerator plus one). For example, if $d_r = -2$, and c = 1, $cd_r/(cd_r+1) = -2/-1$. Division of these two negative numbers gives a positive number greater than 1.0 (in this case, 2).

Changeover Rates

The rates of changing over are plotted against the logarithms of the timeallocation ratios for each COD length for all possums in Figure 2.6. When the COD was 2, 4 and 6 s, an inverted U-shaped function can be seen in the data from most subjects when plotted against the time-allocation ratios. This was not the case when the COD was 0 s. When the same data were plotted against the logarithms of the reinforcer-rate ratios, the graphs looked very similar to those in Figure 2.6, and therefore, are not presented here.

The left panel of Figure 2.7 shows changes in the changeover rates as the COD was increased for each possum for the average of the two equal-schedule conditions (concurrent VI 40 s VI 40 s; unfilled circles) and one unequal-schedule condition (concurrent VI 180 s VI 22.5 s; pluses). Generally, the rates of changing over decreased as the length of the COD was increased. The rates of

Figure 2.6. The rates of changing over plotted against the logarithms of the time-allocation ratios for each possum at each COD length.

<u>Figure 2.7</u>. The changeover rate and the mean dwell time are plotted against the COD length for two sets of schedules (one equal schedules condition and one unequal schedules condition) for each subject.

changing over with a 0-s COD varied largely across subjects, from approximately seven changeovers per minute (Emma) to approximately three changeovers per minute (Benny) with equal schedules of reinforcement. There was less variability in the changeover rates with the 6-s COD (between 1.5 and 2.5 changeovers per minute). In all cases, the rates of changing over were lower in the unequal-schedules conditions than during the equal-schedules conditions.

The right panel of Figure 2.7 shows the mean dwell time (time between changeovers) on each lever plotted against the length of the COD for each possum (except Putzy) for the average of the two equal-schedules conditions (concurrent VI 40 s VI 40 s; left lever: unfilled circles; right lever: unfilled squares) and one unequal-schedules condition (concurrent VI 180 s VI 22.5 s; left lever: pluses; right lever: crosses). These data are taken from the same schedules as were used in the graphs presented in the left panel. In general, the mean dwell time increased with increases in the length of the COD.

The average number of responses during each second following a changeover were calculated, for the first equal-schedules condition and the first unequal schedules condition presented at each COD length, as described in the Discussion section of Experiment 1. These data are plotted in Figures 2.8 (equal schedules) and 2.9 (unequal schedules). Data for Izzie and Putzy are not presented here, as these subjects did not complete all conditions. The vertical dashed lines on these graphs represent the end of the COD. It can be seen from both of these figures that the response rates were generally highest during the COD, decreased during the first few seconds following the end of the COD, and remained low until the next CO response was made. With unequal schedules of reinforcement, there was a tendency for the response rate on the rich schedule (right lever) to reduce at a slower rate than that on the lean schedule. The maximum response rate observed was approximately three responses per second. This did not vary across conditions or COD lengths. Overall, there were no consistent differences in the response rates on each lever within the COD. Some subjects did appear to respond consistently faster on one lever than the other, however the lever associated with the faster response rate varied across subjects.

Figure 2.8. The average number of responses during each second following a changeover for each possum and each COD length with concurrent VI 40-s VI 40-s schedules. The dashed line represents the end of the changeover delay.

Figure 2.9. The average number of responses during each second following a changeover for each possum and each COD length with concurrent VI 180-s VI 22.5-s schedules. The dashed line represents the end of the changeover delay.

Response Rates

The local rates of responding on both the left (unfilled circles) and right levers (pluses) are plotted in Figure 2.10 for each possum at each COD length. In most cases (17 out of 20), the local rate of responding was consistently higher on the lever associated with the lower rate of reinforcement. In three cases (Emma: 2, 4 and 6-s COD) the local rate of responding on the left lever was consistently higher than that on the right lever (for all but one schedule pair when the COD was 2 s). There were no consistent changes in the local rates of responding with changes in COD length.

Figure 2.11 shows the absolute rates of responding on the left (unfilled circles) and right levers (pluses) for each possum at each COD length. In all cases the absolute rates of responding on a lever increased as the reinforcer rate associated with that lever increased. For all but 1 subject, there were no consistent changes in the absolute rates of responding with changes in COD length. For the remaining subject (Emma), the absolute response rates on the left lever, at low reinforcement rates, increased from the 0-s to the 2-s COD conditions, and increased again from the 4-s to the 6-s COD conditions.

Discussion

Increasing the length of the COD in the present experiment had no consistent effect on the total response-allocation behaviour of possums. The mean sensitivity to reinforcement (*a*) across possums at each COD ranged from 0.5 (0-s COD) to 0.6 (4-s COD). These values are similar to those reported in Experiment 1, where a different group of possums were presented with a range of concurrent VI VI schedules of reinforcement with a 2-s COD (mean a = 0.51). In terms of total-time allocation, as the length of the COD was increased from 0 to 2-s, the mean sensitivity to reinforcement increased from 0.79 to 0.98, with no further consistent changes with increases in COD length. The mean sensitivities to reinforcement obtained with CODs of 2, 4 and 6 s were similar to that observed in Experiment 1 with a 2-s COD (mean a = 0.96).

Figure 2.10. The local response rates on the left and right manipulanda plotted as functions of the logarithms of the obtained reinforcer ratios for each possum at each COD length.

<u>Figure 2.11</u>. The absolute response rates on the left and right manipulanda plotted as functions of the logarithms of the obtained reinforcer ratios for each possum at each COD length.

In a similar study with hens, Temple et al. (1995) found that the mean sensitivity value increased from 0.63 with no COD to 0.79 with a 2-s COD for response allocation, and from 0.65 to 0.82 for time allocation (with no consistent changes in individual subjects' data with further increases in the COD length). Other studies have shown similar patterns with increasing COD length (Shull & Pliskoff, 1967; Silberberg & Schrot, 1974). Only the time-allocation data from the present experiment are consistent with these results. However, several studies have failed to observe the increases in sensitivity found in the above studies (e.g., Allison & Lloyd (1971), Silberberg & Fantino (1970), and Stubbs & Pliskoff (1969) found no change in the degree of matching with increases in COD length), which is consistent with the response-allocation data in the present experiment.

As previously mentioned, Baum (1979) and deVilliers (1977) have suggested that some minimum COD length may be necessary for matching, and that beyond this length matching will always be found. However, for 1 subject in Temple et al.'s (1995) study, the value of a did not increase to 1.0 but still reached a maximum value (>1.0) with a COD of 2 s, following a similar pattern to the other subjects' data. This suggests that a minimum COD length may be necessary for the closest approximation to matching, but that 'perfect' matching will not always be obtained. The smallest COD used in those studies which did not find any change in sensitivity was 0 s (Stubbs & Pliskoff, 1969). This requires at least two responses on each key before a reinforcer can be obtained. This was also the shortest COD arranged in the present experiment. The actual length of time taken to complete a changeover will vary across subjects depending on response rates. The failure to improve matching in those studies and the present experiment may have been due to the time taken to complete each CO equalling or exceeding the minimum length required for the closest approach to matching. Had a no-COD condition been conducted in the present experiment, it may have resulted in a lower sensitivity to reinforcement for response allocation (as was found by Temple et al., 1995). This would support the idea that introducing a COD does improve matching up to a point, but that once the maximum sensitivity for a subject has been reached, further increases in COD length will have no effect on
matching behaviour. To date, no studies have included both no-COD and 0-s COD conditions. Doing so would help clarify this issue.

Temple et al. (1995) and Baum (1982) have suggested that since responding within the COD is discriminated by the subject (indicated by insensitivity to the reinforcer rate ratio), it should be removed from the responseallocation data prior to analysis. Responding within the COD in the present experiment was insensitive to changes in the reinforcer-rate ratio at all COD lengths, with *a* values being consistently small and/or negative, suggesting that behaviour during this period was not under the control of the arranged schedules of reinforcement. This result was also observed in Experiment 1, and provides support for Temple et al.'s and Baum's suggestion.

Post-COD responding was consistently more sensitive to changes in the reinforcer-rate ratio than total responding. Unlike the total response-allocation data, the mean post-COD response-allocation sensitivity increased from the 0-s COD condition to the 2-s COD condition, to a value close to 1.0, with no systematic variation with further increases in COD length. The mean sensitivity from the post-COD response data was slightly above 1.0 for all but the 0-s COD. When only post-COD responding is considered, the results of the present experiment are consistent with the idea that some minimum COD length may be necessary for matching. The sensitivity of post-COD responding to changes in the reinforcer-rate ratio in the present experiment was similar to that observed in previous studies. The mean post-COD a values in the present experiment ranged from 1.02 to 1.18 (not including the 0-s COD condition), while other studies have found mean post-COD a values in the range of 1.06 to 1.19 (McAdie et al., 1996; Shahan & Lattal, 1998; Temple et al., 1995).

The sensitivity of post-COD responding with a 2-s COD (mean a = 1.02) in the present experiment was greater than that observed in Experiment 1 (mean a = 0.77, 2-s COD). The procedures used in these experiments were identical in all respects. Only the subjects and their previous experience differed. Todorov, Oliveira Castro, Hanna, Bittencourt de Sa and Barreto (1983) reported that sensitivity to reinforcement in concurrent-schedule performance decreased as the number of conditions increased, and increased as the number of sessions per condition increased. This does not explain the differences in *a* values observed in the present experiments. The subjects used in Experiment 1 had previously been exposed to five multiple-concurrent-schedule conditions (Muir, 1997), while during Experiment 1 they were exposed to only four simple-concurrent conditions. Overall, the subjects in the present experiment had been exposed to a larger number of conditions by the end of the 2-s COD conditions (13 in total). Based on Todorov et al.'s findings, the *a* values of these subjects should have been lower than those found in Experiment 1. The number of sessions per condition did not vary systematically across the experiments, therefore this should not have influenced the obtained *a* values.

Changeover Rates

At all COD lengths, the changeover rate decreased as the reinforcer rates on the two schedules became more different, giving an inverted U-shaped function. This is a common finding, which was also found in Experiment 1, and has been reported by Baum (1974), Catania (1963), Herrnstein (1961) and Sumpter et al. (1995). In this experiment, and those of Baum (1976) and Miller (1976) the relationship also held for both response- and time-allocation ratios.

The rate of changing over decreased with increases in COD length for all subjects. The mean rate of changing over with equal schedules of reinforcement decreased from 5.2 per minute with a 0-s COD to 1.8 per minute with a 6-s COD. This decreased rate in changing over with increases in COD length has been observed in several studies (e.g., Shull & Pliskoff, 1967; Silberberg & Fantino, 1970; Stubbs & Pliskoff, 1969; Temple et al., 1995). The rate of changing over with a 2-s COD in the present experiment was lower than that observed in Experiment 1 (2.9 vs. 3.6), however, this rate of changing over is still more similar to that observed with rats than with pigeons or hens.

Temple et al. (1995) presented dwell-time data for hens at each COD length. The dwell time is the average amount of time spent on each schedule between changeovers, and is the inverse of the CO rate. The dwell times observed in the present experiment were longer than those observed by Temple et al. With a 2-s COD, Temple et al. reported a dwell time of approximately 10 s, compared with 21 s in the present experiment, while with a 4-s COD, dwell times ranged from 10-20 s for Temple et al.'s subjects, with a mean of 22 s in the present experiment. The long dwell times found here are consistent with the low CO rates reported above, and these different patterns of responding compared with other species may have contributed to the large amount of undermatching observed in the present experiment.

Response Rates

In all cases, the response rates in the present experiment were higher during the COD and decreased during the first few seconds following the end of the COD to a level which was maintained until the next CO. A similar pattern of behaviour has also been reported in studies using other species (e.g., Bourland & Miller, 1978; Dreyfus et al., 1982; Pliskoff, 1971; Shahan & Lattal, 2000). This elevated response rate has been attributed to the increased probability of reinforcement following a CO response (Catania, 1962; Silberberg & Fantino, 1970). Dreyfus et al. (1982) found that the majority of reinforcers are obtained just after changing over to the lean schedule. Consistent with this finding, Pliskoff, Cicerone and Nelson (1978) found that with a 2-s COD, responding occurred at the highest rate during the second 1-s interval following a changeover, while Silberberg and Fantino (1970) reported that the rate of responding within the COD was higher on the lean schedule. While these specific patterns of behaviour were not observed in the present experiment, the fact that the rate of responding during the COD was consistently higher than the post-COD response rate for all subjects at all COD lengths is consistent with the an increased probability of reinforcement, and provides further support for Temple et al. (1995) and Baum's (1982) suggestion that behaviour during the COD is discriminated by the subjects, and can therefore be removed from response measures of behaviour before analysis.

In general, the absolute response rates on a lever increased as the rate of

reinforcement on that lever increased, while the local response rates were inversely related to the rate of reinforcement. These patterns of responding were also found in Experiment 1, and are consistent with previous research (Baum, 1979; Davison & Ferguson, 1978; Herrnstein, 1961). The actual local and absolute rates of responding were similar to those observed in Experiment 1, and were therefore also lower than those typically obtained with other species (Baum, 1976; Bradshaw et al., 1979; Davison & Hunter, 1976; Herrnstein, 1961; Ruddle et al., 1979). Rates of responding did not change with changes in COD length, which is consistent with the finding that values of *a* did not change with COD length.

The Contingency-Discriminability Model

In all cases when the C-D model was used to describe the data from the present experiment, changes in p_r followed a similar pattern to changes in sensitivity (a) with a GML analysis. This suggests that, for time-allocation and post-COD response-allocation, discriminability $(d_r; p_r = d_r/(1+d_r))$ increased when the COD length was increased from 0 s to 2 s, with no increases in discriminability with further increases in COD length. However, in several cases, p_r was greater than 1.0. In such cases, the value of d_r is negative and uninterpretable. As previously mentioned, Davison and Jenkins (1985) stated that when overmatching is found for time-allocation data with a GML analysis, this is simply the result of statistical error, and should be treated as perfect matching, and therefore, perfect discriminability. A different approach was suggested for dealing with post-COD responding. In such cases, it was suggested that overmatching was the result of the punishing effect of the COD. For these data, Davison and McCarthy (1994) presented a punishment version of the C-D model (Equation 0.7). Since overmatching was found with a 2-s COD in the present experiment (suggesting that the 2-s COD is punishing changeovers), it should also have been punishing changeovers in Experiment 1. Therefore, even though there was no overmatching in the post-COD data in Experiment 1, this model was also fitted to those data (Table 2.6).

Table 2.6

Estimates of relative discriminability (p_r) , discriminability (d_r) , bias (log c), punishment (w), and the percentage of variance accounted for (%VAC) for the lines of best fit for post-COD responding from Experiment 1.

C-D Model								
Possum	Possum pr		log c	%VAC				
George	George 0.93		-0.09	98.80				
Arthur	0.81	4.22	-0.02	93.45				
Timmy	0.94	15.56	0.07	98.52				
Holly	0.95	17.26	-0.01	98.54				
Sylvester	1.00	-220.94	-0.09	98.53				
MEAN	0.93	-34.30	-34.30 -0.03					
	Punishment Version							
	p,	<i>d</i> ,	log c	w	%VAC			
George	4495.25	-1.00	-0.08	-1936254.17	98.97			
Arthur	0.81	4.22	-0.02	0.00	93.45			
Timmy	1.14	-8.16	0.11	-65.72	98.99			
Holly	0.64	1.77	-0.07	73.91	99.41			
Sylvester	0.80	4.01	-0.16	56.89	99 .70			
MEAN	899.73	0.17	-0.04	-387237.82	98 .10			
	Punishment Version (Constrained)							
	p,	d,	log c	w	%VAC			
George	0.93	12.42	-0.09	-0.01	98.82			
Arthur								
Timmy	1.00	infinity	0.09	-20.70	98.82			
Holly								
Sylvester								

For 2 subjects in Experiment 1, the addition of w did result in a reduction in the value of p_r . However, the values of w obtained (56.89 and 73.91 reinforcers per minute) were extremely large compared to those reported by Davison and McCarthy (ranging from 0.02 to 0.243). These values suggest that, when these subjects changed from responding on one lever to responding on the other, the perceived loss of reinforcers was greater than 50 per minute. While this may at first appear highly unlikely, when considered in terms of the actual length of the COD, which in this case was 2 s, the 'perceived' loss of reinforcers each time a changeover response was made was 1.9 and 2.5 for these subjects (Sylvester and Holly respectively). When viewed in this way, the model appears to provide a slightly more reasonable description of the effects on these subjects' behaviour when a COD is introduced, although the 'perceived cost of each changeover' still appears to be quite high.

In two cases (George and Timmy) when Davison and McCarthy's punishment model was used with the post-COD data from Experiment 1, the value of p_r obtained became greater than 1.0. In these cases, the value of w was negative, with the subjects apparently perceiving a gain of 2.19 and 64,500 reinforcers per changeover. While the perceived gain of 64,500 reinforcers per changeover indicates that the model has failed here, the increase in the value of p_r for these subjects is also of concern because Davison and McCarthy introduced w to enable the model to account for data which show overmatching by reducing p_r . Davison and McCarthy's (1994) results showed three cases where values of p_r were greater than 1.0 (1.05-1.06), however they stated that these values were not significantly greater than 1.0, and therefore were of no concern (although no mention was made of how this was tested). However, in Experiment 1, a p_r value of greater than 4000 was obtained, which is quite likely to be significantly greater than 1.0. It is possible that the problems encountered in Experiment 1 are due to the lack of overmatching in the data. Davison (personal communication) suggested that the punishment model should be applied only when a value of p_r greater than 1.0 is obtained with the original model, which was not the case for any subject's post-COD data in Experiment 1.

If the COD was, in fact, punishing changeovers in the present experiment, it would be expected that w (reinforcers lost per minute due to changing over) would increase with increases in COD length. This was not the case. The obtained values of w ranged from -809,132 (Jasper, 2-s COD) to 144 (Jasper, 4-s COD). A negative value of w presumably implies that the subject perceived that reinforcers were gained by changing over (in this case 13,485 during every second spent in the COD).

The values of p_r when the punishment model was fitted were also of concern. There were still several cases in which the value of p_r was greater than 1.0 (10 cases compared with 9 with the original C-D model). In a personal correspondence, Davison suggested that, in such cases, the value of p_r should be constrained in the estimation process to be less than or equal to 1.0. This is presumably because these values are only greater than 1.0 due to statistical error. However, Davison and McCarthy stated that if any of the estimates of p_r were significantly greater than 1.0, this would indicate that the model had failed. The right-hand side of Table 2.5 gives the results when the punishment model was fitted to the data from the present experiment with p_r constrained to be less than or equal to 1.0. The values of w obtained were still negative in five cases, with values ranging from -809,132 to 18.46. These data suggest that the punishment version of the C-D model does not provide a good description of post-COD response allocation, and could not be used to predict behaviour under such schedules, at least for possums. It should be noted that, in several cases, the degree of overmatching in the present experiment may not have been considered large enough to justify the use of the punishment version of the C-D model. As mentioned previously, Baum (1979) suggested that a values in the range 0.9 to 1.11 are not significantly different from 1.0. In the present experiment, the a value was only larger than 1.11 in 7 of 15 cases, and was only consistently larger than 1.11 for 1 subject (Benny). Davison might argue that in those cases where a may not have been significantly greater than 1.0, this model is not appropriate. The implications of this will be discussed later. However, it should be noted that the parameters obtained from fitting this equation to Benny's data (with a values

which are presumably significantly greater than 1.0) are no less problematic than those obtained with other subjects' data.

The C-D model assumes that any deviations from matching found with a GML analysis are the result of less than perfect discriminability (Davison & Jenkins, 1985). However, the degree of deviation often differs for response and time measures of behaviour. While response measures are more commonly used in C-D analyses, there is no evidence to suggest that response measures are more appropriate for describing behaviour than time measures. It is possible that time-allocation data provide the better measure of discriminability. If this is the case, the problems observed when fitting the punishment version of the C-D model to post-COD response data may not appear when post-COD time data are used instead.

The GML, the original C-D model and the punishment version of the C-D model were fitted to the post-COD time-allocation data from the present experiment (Tables 2.7 and 2.8). The value of *a* does not increase with increases in COD length. When the C-D model was fitted to the post-COD time data, p_r values greater than 1.0 were obtained in most cases, suggesting that it is appropriate to use the punishment version of the C-D model with these data. When fitted, p_r becomes less than 1.0 in several cases (7 of 13). When the model was fitted to the 6-s COD data, p_r remained (or became) greater than 1.0 in all cases (ranging from 1.03 to 7547.23). For the 4 subjects that completed all three sets of conditions, values of *w* decreased with increases in COD length for 2 subjects, while for the other 2 subjects there were no consistent changes in *w* with increases in COD length. The parameter *w* was negative in several cases (always when p_r was greater than 1.0). When p_r was constrained to be less than or equal to 1.0, values of *w* were positive in all but one case, however, there were still no consistent changes in values of *w* with changes in COD length.

The above analysis suggests that the punishment version of the C-D model is no better suited to the analysis of post-COD time data than it is to post-COD response data. This suggests that either the COD does not have a punishing effect on changeover behaviour, or that this punishment operates in a manner that

Table 2.7

The paramater estimates obtained when the GML was fitted to the post-COD time data from the 2-s, 4-s and 6-s COD conditions.

	а	log c	SE	%VAC	
	2-s COD				
Static	1.24	0.00	0.07	99.6	
Jasper	1.03	0.00	0.14	97.2	
Izzie	1.04	0.05	0.07	99.4	
Benny	1.05	-0.05	0.04	99.7	
Emma	0.99	-0.03	0.10	98.4	
Putzy					
Mean	1.07	-0.01	0.08	98.9	
		4-s (COD		
Static	1.21	-0.03	0.10	98.9	
Jasper	1.08	-0.11	0.03	99.9	
Izzie					
Benny	1.07	-0.01	0.04	99.8	
Emma	1.03	-0.09	0.08	98.9	
Putzy					
Mean	1.10	-0.06	0.06	99.4	
		6-s (COD		
Static	1.31	-0.10	0.15	98.5	
Jasper	0.88	-0.04	0.06	99.4	
Izzie					
Benny	1.03	0.03	0.07	99.4	
Emma	1.06	-0.12	0.10	99.0	
Putzy	1.10	0.17	0.34	89.2	
Mean	1.08	-0.01	0.14	97.1	

Table 2.8

Estimates of relative discriminability (p_r) , discriminability (d_r) , bias $(\log c)$, punishment (w), and the percentage of variance accounted for (%VAC) for the lines of best fit for the post-COD time data. Estimates were obtained using the original C-D model, and the punishment version (with and without p_r constrained).

	<i>p</i> ,	d,	log c	%VAC	p,	d,	log c	W	%VAC	p,	d,	log c	w	%VAC
							2-s C	OD						
Static	1.05	-21.00	0.00	99.2	0.86	6.14	0.00	59.09	99.6					
Jasper	1.01	-101.00	0.00	97.2	1.01	-101.00	0.00	-0.01	97.2	1.00	infinity	0.00	3.21	97.2
Izzie	1.01	-101.00	0.06	99.3	0.84	5.25	0.07	49.24	99.8					
Benny	1.01	-101.00	-0.05	99.7	0.95	19.00	-0.03	14.86	99.9					
Emma	1.00	infinity	-0.03	98.4	0.92	11.50	-0.02	25.76	98.5					
Putzy														
Mean	1.02	-81.00	0.00	98.8	0.92	-11.82	0.00	29.79	99.0					
							4-s C	OD						
Static	1.04	-26.00	-0.03	98.5	0.92	11.50	-0.04	35.92	98.6					
Jasper	1.02	-51.00	-0.11	99.9	0.78	3.55	-0.11	88.22	100.0					
Izzie														
Benny	1.02	-51.00	-0.01	99.8	1.06	-17.67	-0.01	-9.77	99.8	1.00	infinity	-0.01	3.93	99.8
Emma	1.01	-101.00	-0.09	98.9	0.91	10.11	-0.09	32.16	99.4					
Putzy														
Mean	1.02	-57.25	-0.06	99.3	0.92	1.87	-0.06	36.63	99.4					
							6-s C	OD						
Static	1.05	-21.00	-0.09	97.7	1.14	-8.14	-0.13	-21.10	98.0	1.00	infinity	-0.07	12.00	97.1
Jasper	0.97	32.33	-0.04	99.2	7547.23	-1.00	-0.03	-2530162.16	99.9	1.00	infinity	-0.04	-11.82	99.3
Izzie														
Benny	1.01	-101.00	0.03	99.4	1.20	-6.00	0.06	-46.02	99.5	1.00	infinity	0.02	1.70	99.4
Emma	1.02	-51.00	-0.12	99.2	1.03	-34.33	-0.12	-4.51	99.2	1.00	infinity	-0.12	5.68	99.2
Putzy	1.02	-51.00	0.07	88.9	1.33	-4.03	0.15	-76.69	89.0	1.00	infinity	0.17	4.89	88.9
Mean	1.01	-38.33	-0.03	96.9	1510.39	-10.70	-0.01	-506062.10	97.1					

96

is not captured by this version of the C-D model.

Two problems are evident with Davison's proposed rules for using the punishment version of the C-D model. The problems lie in the application of the two forms of the C-D model, with and without the punishment term, and the effects of the COD. Generally, increasing the length of the COD increases sensitivity to reinforcement using GML analyses, up to a point. For data which lie on or below matching, this increase in sensitivity (towards matching) is interpreted as being the result of the COD increasing discriminability. Once data overmatch, the C-D model cannot (in its simple form) describe response ratios that are more extreme than the reinforcer-rate ratios. The punishment term, by subtracting equal numbers of reinforcers from both the numerator and the denominator, allows the model to describe more extreme behaviour, and has a degree of logical appeal. A period in which reinforcement is never delivered can be easily argued to be subtracting from the overall 'value' of each schedule. The problem arises in the logic of the application. To argue (as Davison has, personal communication) that the punishment term should be included only in cases where the data require it (i.e., when overmatching was found) seems a little circular. There should be, at least, some argument to support the notion that a COD of a particular length might mark the transition from discrimination enhancement to punishment of changing over.

The second problem comes from constraining p_r to be less than 1.0, which is the same as constraining d_r to lie between 1 and ∞ . Unfortunately, when the data from the present experiment were fitted without constraining p_r , values outside the range 0.5 to 1.0 were obtained, and d_r was negative. Logically, this makes no sense in terms of the original assumptions of the model. To counteract this, Davison (personal communication) has suggested constraining p_r to be less than 1.0, but this simply forces the equation to produce larger values of w (the punishment term) to fit the data.

Extinction

Davison and Jenkins (1985) stated that the C-D model provides a better

description of behaviour on concurrent VI EXT schedules of reinforcement. As noted in the General Introduction, the GML always predicts exclusive responding on the VI alternative, whereas the C-D model predicts that the behaviour ratio will equal cd_r (Equation 0.5). While the data from the concurrent EXT VI schedule in the present experiment did not give exclusive responding to the VI alternative, the proportion of responses and time spent on the extinction alternative was much less than that predicted by the C-D model. When post-COD data were considered, the proportion of responses made to the VI alternative was reasonably close to that predicted by the C-D model, however, this was close to 1.0 in all cases (which is the proportion predicted by the GML). These data suggest that the majority of the responses made to the extinction alternative occur during the COD, which, as it has been shown previously, is discriminated by the subjects, with insensitive responding found during this period. It is quite likely that the few responses which occurred outside the COD on the extinction schedule occurred very close to the end of the COD. It has been shown in this experiment that the response rate during the COD was higher than at any other time, and that this rate rapidly dropped off following the end of the COD. This would also be consistent with Silberberg and Fantino's (1970) finding that almost all post-COD responding on the lean alternative results from the continuation of the COD burst. Several other studies have reported responding on an extinction schedule (Davison & Hunter, 1976; Davison & Jones, 1998; Herrnstein, 1961; Hollard & Davison, 1971; Stubbs & Pliskoff, 1969). In all of these cases, the numbers of responses were small and all of the studies used a COD of at least 1.5 s. It is possible that in these cases, as in the present experiment, the majority of these responses occurred during the COD (again, with the remaining responses likely to be occurring just after the end of the COD).

It appears that the undermatching found in Experiment 1 was not due to an insufficient COD length. A similar amount of response undermatching was observed in the present study. However, the post-COD response-allocation data in the present experiment were similar to those observed with other species. It is unclear why this was not the case in Experiment 1. Given the stability of the a values, and the similarity of post-COD response sensitivity and time-allocation sensitivity to that found in previous studies, it is unlikely that further increases in the length of the COD would result in increased sensitivity to reinforcement.

The C-D model and the GML provided equally good descriptions of behaviour in the present study. However, the punishment version of the C-D model was shown to be unsuitable for describing both post-COD response- and time-allocation data from possums. It remains to be seen how the C-D model deals with experimentally introduced biasers.

EXPERIMENT 3

Experiment 1 demonstrated that possums respond similarly to other species on concurrent VI VI schedules of reinforcement, although larger degrees of undermatching were observed with their response measures than those typically observed for other species. Despite this, the possums' response- and timeallocation measures were well described by both the GML and Davison and Jenkins' (1985) C-D model. This suggests that concurrent VI VI schedules of reinforcement are an appropriate method for studying the choice behaviour of the possum.

Of particular interest here was the study of possums' food preferences. The food preferences of other species have been studied using concurrent VI VI schedules of reinforcement by providing different feeds as reinforcers for responses on each of the alternatives and by varying the reinforcer-rate ratio (Foster et al., 1996; Matthews & Temple, 1979; Miller, 1976). The data obtained from these experiments can be analysed using a modification of the GML (Equation 0.2). This equation was presented slightly differently by Davison and McCarthy (1988):

$$Log (B_1/B_2) = a \log (r_1/r_2) + q \log (Q_1/Q_2) + \log b$$
(3.1)

where q is a measure of quality sensitivity (i.e., sensitivity to quantitative changes in the quality ratio), Q_1 and Q_2 are the qualities of the two foods, and log b is inherent bias (log c in Equations 0.1 and 0.2).

Davison and McCarthy (1988) suggested that it would be possible to obtain point estimates of bias by presenting two different food reinforcers on equal concurrent VI VI schedules of reinforcement (i.e., $\log (r_1/r_2) = 0$), and then swapping the response alternative that each is associated with. This requires only two conditions. The behaviour in these conditions would be described by the following equations:

$$Log (B_1/B_2) = q log (Q_1/Q_2) + log b$$
(3.2)

$$Log (B_3/B_4) = q \log (Q_2/Q_1) + \log b$$
(3.3)

where B_3 and B_4 represent responses or times allocated to the left and right manipulanda respectively after the side of food presentation has been swapped. Subtracting Equation 3.3 from Equation 3.2 would therefore give a measure of the relative quality of the foods:

$$0.5 \log (B_1 B_4 / B_2 B_3) = q \log (Q_1 / Q_2)$$
(3.4)

Note that this measure of bias does not include inherent bias (log *b*), since this was assumed to be constant and equal in both conditions, and is therefore removed in the subtraction. Taking the antilogarithm of the above bias measure (*q* log (Q_1/Q_2)) gives a ratio of the bias towards Q_1 (e.g., Miller, 1976).

The aim of the present experiment was to determine whether the behaviour of possums under concurrent schedules of reinforcement could be biased using qualitatively different reinforcers. The method outlined above (i.e., point estimates) was used, to determine the biases resulting from different feeds.

Method

Subjects

The same 5 possums were used in this experiment as in Experiment 1.

Apparatus

The experimental equipment was almost identical to that used in Experiment 1. The only difference was that the magazine was removed from the centre of the cage door, and replaced with two magazines, one located under the left and the other under the right response lever. Access to these magazines was through two holes (130 mm by 100 mm) in the cage door 180 mm below each of the response levers. Each magazine provided reinforcement only for responses on the lever it was located below. The reinforcers used in the present experiment were barley/carob mixture (as in Experiment 1), Cocopops [™] (breakfast cereal consisting of puffed rice covered with cocoa), and desiccated coconut.

Procedure

Condition 1 involved the presentation of a mixture of steam-flaked barley and carob chips in a ratio of 15:1 (standard reinforcer) in both magazines on a concurrent VI 40-s VI 40-s schedule. Conditions 2 and 3 involved presenting Cocopops in the left and the right magazine respectively, with the standard reinforcer in the other magazine. In Condition 4, coconut was presented in the right magazine, while the left magazine contained the standard reinforcer. Condition 5 was a reversal of Condition 4, with coconut in the left magazine. The order of conditions and the number of sessions required for each condition are presented in Table 3.1. For each subject, Conditions 1-3 were changed as soon as their behaviour reached the same stability criteria described in Experiment 1. In Conditions 4 and 5, stability was assessed graphically only, by two or more people (as previously described) as it was found in the previous conditions that subjects' behaviour changed quickly when the side the foods were presented on was changed, and remained stable. All data recorded were the same as for Experiment 1.

Results

The raw data from the last five sessions of Conditions 1 to 5 are presented in Appendix C. All analyses were carried out on the data from the last five sessions of each condition. All ratios were taken to the left manipulandum and all logarithms are to the base 10. The bias measures were calculated using Equation 3.4 such that a value greater than 1.0 indicates a bias towards the barley/carob mixture. The biases obtained in the Cocopops vs. barley conditions were calculated using the total number of responses or total time allocated to each lever during the last five sessions of Conditions 2 (barley:Cocopops) and 3 (Cocopops:barley), such that B₁ and B₂ were the total amounts of behaviour allocated to the left (barley) and right (Cocopops) levers respectively during Condition 2, and B₃ and B₄ were the total amounts of behaviour allocated to the left (Cocopops) and right (barley) levers respectively during Condition 3. The

Table 3.1

The order of conditions for Experiment 3, the foods presented in the left and right magazines, and the number of sessions required to reach stability in each condition.

Condition	Left Magazine	Right Magazine	No of Sessions
1	Barley	Barley	14-27
2	Barley	Cocopops	16-37
3	Cocopops	Barley	14-20
4	Coconut	Barley	10-20
5	Barley	Coconut	13-22

biases obtained in the coconut vs. barley conditions were calculated using the total number of responses or total time allocated to each lever during the last five sessions of Conditions 4 (coconut:barley) and 5 (barley:coconut), such that B_1 and B_2 were the total amounts of behaviour allocated to the right (barley) and left (coconut) levers respectively during Condition 4, and B_3 and B_4 were the total amounts of behaviour allocated to the right (barley) levers respectively during Condition 5.

Bias Estimates

Figure 3.1 shows the logarithms of the ratios of the numbers of responses allocated to each lever plotted across each of the last five sessions of each condition. The condition headings show the reinforcer presented in the left magazine, followed by the reinforcer presented in the right magazine. The dotted lines on each graph represent the bias measured during the barley vs. barley condition (i.e., inherent bias). This was obtained by taking the logarithms of the ratios of all responses made to each lever during the last five sessions of Condition 1 for each possum. In Condition 1, with the standard reinforcer (barley/carob mixture) in both magazines, the data for all but 1 subject (the exception being Arthur, whose data showed no apparent bias) generally exhibited small biases to the left lever (indicated by a log response ratio greater than 0). These results are consistent with those found in Experiment 1 where barley/carob mixture was presented for responding on both levers via a single magazine. During the two conditions where Cocopops were presented (Conditions 2 and 3), there were small response biases for all subjects. Two subjects showed consistent biases towards Cocopops during these conditions (George and Holly), while 2 subjects' response biases were towards the left lever in both conditions (Arthur and Sylvester). The remaining subject's (Timmy) response bias was towards Cocopops during Condition 2, with no apparent response bias in Condition 3.

When coconut was presented (Conditions 4 and 5), 3 subjects' response biases were consistently towards barley. The remaining subjects' (Arthur and Timmy) data showed no bias in Condition 4, but did towards barley in Condition

<u>Figure 3.1</u>. The logarithms of the response ratios plotted for each of the last five sessions of each condition.

5. It can be seen from this figure that, for 3 of the 5 subjects (the exceptions being Timmy and Arthur), the degree of bias was greater when coconut was presented than when Cocopops were presented. This is more obvious in the second Coconut Condition (Condition 5).

Overall response biases from the conditions with Cocopops and coconut were calculated as described earlier. These biases are presented in Table 3.2. The response biases shown for the barley vs. barley condition are the values of intercepts of the dotted lines presented in Figure 3.1, and represent inherent bias. The values presented for the Cocopops and Coconut Conditions represent the degree of overall bias towards the barley/carob mixture calculated using Equation 3.4, as described previously (note that because each food was presented on both sides, inherent bias is not included in these values). Therefore, an overall response bias value of 0.88 (obtained by George with Cocopops) indicates that, under these conditions, George's barley: Cocopops response bias was 0.88:1.0 (which indicates a bias towards Cocopops). Only 1 possum's (Sylvester) overall response bias was towards the barley/carob mixture (by a ratio of 1.09:1.0) when Cocopops were presented. When coconut was presented (Conditions 4 and 5), all subjects showed overall response biases towards the barley/carob mixture (ranging from 1.08 - 4.04:1.0). The size of the bias calculated from the Cocopops conditions was smaller than the inherent bias (barley vs. barley) for all subjects except Timmy, indicating indifference between these two foods. The size of the bias calculated from the coconut conditions was larger than the inherent bias for all subjects except Timmy.

Figure 3.2 shows the logarithms of the time-allocation ratios plotted across the last five sessions of each condition for each possum. Again, the dotted lines show the biases measured during Condition 1 where barley was presented in both magazines (i.e., inherent biases), calculated in the same way as for the response-allocation data. Generally, the time biases obtained in Condition 1 (barley:barley) are similar to those found in Experiment 1 (two levers, one magazine). The biases were small in both cases, and for all but 1 subject (George) they were in the same direction (towards the left lever for 3 subjects, and the right

Table 3.2

Point estimates of the ratio of bias for each subject towards the preferred alternative when Barley/Carob mixture was paired with Cocopops and Coconut. Bias towards the Barley/Carob mixture is indicated by a value greater than 1.0.

Possum	Barley	Cocopops	Coconut	Barley	Cocopops	Coconut		
· · · · · · · · · · · · · · · · · · ·		Responses			Time			
George	1.66	0.88	1.98	1.12	0.95	3.21		
Arthur	0.89	0.98	2.41	1.26	0.96	2.95		
Timmy	1.17	0.83	1.08	1.05	0.97	1.16		
Holly	1.29	0.83	1.72	1.26	1.15	1.96		
Sylvester	1.35	1.09	4.04	0.83	1.31	5.38		
MEAN	1.27	0.92	2.25	1.10	1.07	2.93		
		Within COD			Post COD			
George	2.51	0.94	0.94	1.07	0.86	3.87		
Arthur	0.91	1.01	1.22	0.89	0.96	3.66		
Timmy	0.69	0.96	1.02	2.14	0.71	1.09		
Holly	1.35	0.92	0.89	1.26	0.77	2.93		
Sylvester	1.86	0.88	1.08	0.89	1.36	12.10		
MEAN	1.46	0.94	1.03	1.25	0.93	4.73		
	PRP Time			Net Time				
George	1.12	1.14	2.06	1.12	0.86	3.97		
Arthur	1.20	1.57	2.92	1.29	0.78	2.89		
Timmy	0.83	1.61	1.21	1.74	0.59	1.09		
Holly	1.26	1.74	1.71	1.29	0.72	2.26		
Sylvester	1.07	2.41	3.61	0.69	1.03	6.40		
MEAN	1.10	1.69	2.30	1.23	0.80	3.32		
	Fir	First Half Responses			ond Half Resp	onses		
George	1.58	0.85	1.78	1.74	0.94	2.49		
Arthur	0.91	0.97	2.28	0.87	1.00	2.60		
Timmy	1.10	0.82	1.11	1.26	0.84	1.04		
Holly	1.17	0.83	1.62	1.45	0.84	1.92		
Sylvester	1.35	1.14	3.77	1.35	1.02	5.03		
MEAN	1.22	0.92	2.11	1.33	0.93	2.62		
]	First Half Time			Second Half Time			
George	1.17	0.91	2.80	1.10	0.99	3.75		
Arthur	1.26	0.97	2.84	1.26	0.96	3.08		
Timmy	1.12	0.95	1.25	0.98	1.00	1.06		
Holly	1.29	1.15	2.24	1.23	1.16	1.73		
Sylvester	0.89	1.45	4.89	0.78	1.19	6.14		
MEAN	1.15	1.09	2.80	1.07	1.06	3.15		

<u>Figure 3.2</u>. The logarithms of the time-allocation ratios plotted for each of the last five sessions of each condition.

lever for 1 subject). The time-allocation data tended to be more variable across the last five sessions than the response-allocation data. For all but 2 subjects (Arthur and Sylvester), the response and time biases observed during Condition 1 were in the same direction. All of the time biases obtained during the Cocopops conditions (Conditions 2 and 3) were very small. During these conditions, 2 subjects' (Holly and Sylvester) time biases were consistently towards barley, while there was no apparent time bias for Timmy in either condition. There was no time bias in George's data in Condition 2 and it was small in Condition 3, while Arthur's time-allocation was biased to the right in both conditions (i.e., towards Cocopops in Condition 2 and barley in Condition 3). When coconut was presented, the time biases for all subjects, except Timmy, were towards barley. For Timmy, bias was towards the left lever during both Conditions 4 and 5. Generally, time biases were larger in the coconut conditions than in the Cocopops conditions, as was the case with response allocation.

The time-allocation biases, calculated using Equation 3.4 as described previously, are presented in Table 3.2. When Cocopops were presented, 3 subjects' overall time biases were slightly towards Cocopops, while the other 2 (Holly and Sylvester) showed overall time biases towards barley. In all but one case (Arthur in the Cocopops conditions), the overall time biases were larger than the overall response biases (i.e., although the time biases themselves may not have been larger, the time biases were more towards barley than the response biases). When Cocopops were presented, the overall time-allocation biases ranged from 0.95 to 1.31. When coconut was presented, all subjects' overall time-allocation biases were towards barley (ranging from 1.16 - 5.38:1.0). Similar to the overall response-allocation biases, the sizes of the overall time-allocation biases calculated for the Cocopops conditions were smaller than the barley vs. barley biases for all subjects except Sylvester, again indicating indifference between Cocopops and barley. The size of the overall time bias calculated from the coconut conditions was larger than the barley vs. barley bias for all subjects.

The logarithms of the ratios of the numbers of responses made within (filled circles) and after (unfilled circles) the COD are plotted against the last five

sessions of each condition in Figure 3.3. The dotted lines presented on each graph represent the average inherent biases observed within the COD, while the dashed lines represent the inherent biases from after the COD (calculated as for responses and time). It can be seen that the data from within the COD do not vary much from condition to condition; thus any biases observed in the total response data were the result of post-COD biases. The post-COD biases were more variable across conditions.

When barley was presented in both magazines, the post-COD log response ratios were very close to zero for all subjects, except Timmy (towards the left). Very small biases towards the left lever were observed in the post-COD data from George and Holly, and very small right biases were observed for Sylvester and Arthur. Within-COD responding during Condition 1 was biased towards the left for 3 subjects and slightly towards the right for two (Timmy and Arthur). The post-COD biases during the Cocopops conditions (Conditions 2 and 3) were small for all subjects. When Cocopops were presented, only 1 subject's (Holly) post-COD responding was clearly biased towards Cocopops. One subject's (Timmy) post-COD responding was biased towards the right in both Cocopops conditions. Both George and Arthur showed no post-COD biases in Condition 2 with post-COD biases towards Cocopops in Condition 3, while there was a bias towards barley for Sylvester in Condition 2 and no bias in Condition 3. All but 1 subject (the exception being Timmy) showed large post-COD biases towards barley when coconut was presented (Conditions 4 and 5). Timmy's post-COD response bias was to the left in both coconut conditions (i.e., towards coconut in Condition 4 and barley in Condition 5).

The within- and post-COD biases, calculated from Equation 3.4 as previously described, are presented in Table 3.2. In all cases, when barley was presented in both magazines, the within-COD biases were in the same direction and of similar magnitude to those observed in Experiment 1, while the post-COD biases were in the opposite direction for 2 subjects (George and Holly). The within-COD inherent biases were larger than the overall within-COD Cocopops and coconut biases in all cases but one (Arthur, when coconut was presented).

<u>Figure 3.3</u>. The logarithms of the response ratios from both within and after the changeover delay plotted for each of the last five sessions from each condition.

The post-COD inherent biases were smaller than the overall post-COD Cocopops and coconut biases in most cases (the exceptions were Arthur when Cocopops were presented, and Timmy when both Cocopops and coconut were presented). In all cases, the overall within-COD biases from the Cocopops and Coconut Conditions (0.88-1.01 and 0.89-1.22 respectively) were smaller (i.e., closer to 1.0) than the overall total response biases (0.71-1.36 for Cocopops and 1.09-12.10 for coconut). As a result, the overall post-COD response biases were more extreme than the overall total response biases for both Cocopops and Coconut Conditions, although both measures were in the same direction. This was not the case for the barley vs. barley condition, where the biases within the COD were smaller than the post-COD biases for only 2 subjects (Arthur and Timmy).

In Figure 3.4, the logarithms of the response ratios are plotted for the first (filled circles) and second halves (unfilled circles) of the session across the last five sessions of each condition for each possum. In those cases where the first and second half data were similar, only the unfilled circle is fully visible. The dotted and dashed lines presented on each graph represent the inherent biases during the first and second half of the session respectively. This was calculated from Condition 1 (barley vs. barley) as for total responses. For the last session of Condition 4, Sylvester has no second-half data. This is due to exclusive responding on the right lever during this time. Overall, there were no systematic differences between first- and second-half responding across possums, although the response biases appeared to be greater in the second half of the session during the coconut conditions in a number of cases (for George, Holly and Sylvester in Conditions 4 and 5, and for Arthur in Condition 5 only).

Point estimates of bias were calculated for the first- and second-half response data separately using Equation 3.4 (as previously described). These biases are presented in Table 3.2. It can be seen that during the Cocopops conditions, the overall response biases were greater during the first half of the session for all subjects (i.e., more different from 1.0). During the coconut conditions, the overall response biases were greater during the second half of the

<u>Figure 3.4</u>. The logarithms of the response ratios from each condition plotted for each half of the session.

session for all but 1 subject (the exception being Timmy).

Figure 3.5 shows the logarithms of the time-allocation ratios plotted for the first (filled circles) and second halves (unfilled circles) of the session across the last five sessions of each condition. The inherent biases during both the first and second half of the session (i.e., the average bias measured during Condition 1) are represented on each graph by the dotted (first half) and dashed lines (second half). Again, there is no second-half data point from the last session of Condition 4 for Sylvester, due to this subject not allocating any time to the left lever. There was very little difference between the inherent biases in each half of the session (Condition 1). This was also the case when Cocopops were presented (Conditions 2 and 3). During the first coconut condition (Condition 4), the time biases for 2 subjects (George and Sylvester) were generally larger during the second half of the session, while for 1 subject (Holly) time bias was larger during the first half. The remaining subjects' time biases were not different in the first and second half of the session. For all but 1 subject during the second coconut condition (Condition 5), the time bias was greater during the second half of the session. The bias for the remaining subject (Timmy) was not different across the first and second halves of the session.

Overall time-bias measures were calculated for both the first and second half of the session, as for the overall response-bias measures, and are presented in Table 3.2. Unlike the observed response biases, there were no consistent differences between the first- and second-half overall time biases when either Cocopops or coconut were presented, although the inherent biases was generally slightly greater during the first half of the session.

Figure 3.6 shows the logarithms of the ratios of post-reinforcement pause times (filled circles) and the logarithms of net-times (total time minus postreinforcement-pause time) allocated to each lever (unfilled circles), plotted for each of the last five sessions from each condition. The dotted lines represent the PRP- time inherent biases (i.e., the average PRP-time biases from Condition 1), while the dashed lines represent the net-time inherent bias. The inherent PRPtime biases (from Condition 1) were towards the left lever for all but 1 subject

<u>Figure 3.5</u>. The logarithms of the time-allocation ratios from each condition plotted for each half of the session.

Figure 3.6. The logarithms of the post-reinforcement pause time ratios and the logarithms of the net-time-allocation ratios plotted for each of the last five sessions from each condition.

(Timmy). These biases were in the opposite direction to those obtained during Experiment 1 for all but 1 subject (Holly). The inherent net-time-allocation biases were towards the left for all subjects but Sylvester. For 3 subjects, the net-timeallocation biases obtained during Condition 1 were in the same direction as those from Experiment 1 (the exceptions being Timmy and Holly). During the Cocopops conditions, the PRP-time and net-time biases were in the opposite direction (except during Condition 2 for Sylvester). The PRP-time and net-timeallocation biases were always in the same direction during the coconut conditions (Conditions 4 and 5), however the net-time-allocation biases were generally larger (except during Condition 4 for Arthur, and Condition 5 for Timmy).

Overall biases were also calculated from these data and are presented in Table 3.2. The overall PRP-time biases for all subjects were towards barley in both the Cocopops and coconut conditions. There appear to be no systematic differences between overall PRP-time-allocation biases and overall total-timeallocation biases. The overall net-time-allocation biases obtained in the Cocopops conditions tended more towards Cocopops than did overall total timeallocation biases for all subjects, and the biases were in opposite directions for 1 subject (Holly). In the coconut conditions, 3 subjects' overall biases were larger for the net-time-allocation data than for total timeallocation data, while the remaining 2 subjects' biases were smaller. However, overall bias was still towards barley for all subjects. The overall response and net-time-allocation biases were in the same direction for all subjects in both the Cocopops and coconut conditions.

Changeover Rates

The rates of changeover (averaged over the last five sessions from each condition) are plotted in Figure 3.7 as functions of the logarithms of the timeallocation ratios (left panel) and the logarithms of the ratio of responses (right panel). It can be seen from this figure that the greatest rate of changing over occurred when the time-allocation ratio was approximately zero (i.e., no time bias was present) for all subjects. However, an approximate inverted U-shaped

<u>Figure 3.7</u>. The number of changeovers made per minute during each condition plotted as a function of the logarithms of the time-allocation ratios (left panel) and the logarithms of the ratio of responses (right panel).

function was present for only 2 subjects (i.e., for Arthur and Sylvester, the rate of CO generally decreased as distance from the maximum rate increased). When the rates of CO were plotted against response allocation, only 3 subjects (Arthur, Timmy and Holly) showed maximum rates of CO when the logarithms of the response ratios were approximately zero. An approximate inverted U-shaped function was present for only 2 subjects (Holly and Sylvester) when rate of CO was plotted against the logarithms of the response ratios.

Response Rates

The absolute response rates (number of responses made on each lever divided by total session time) for each subject are plotted for each condition in Figure 3.8. The data from the left and right levers are shown separately (left and right panels respectively). The first-half (filled circles) and second-half (unfilled circles) data are also plotted separately on each graph. For all subjects, the absolute rates of responding were generally lower in the second half of the session on both levers, irrespective of the associated food. However, this effect was small for all subjects except Sylvester.

The left panel of Figure 3.9 shows the absolute response rates (per minute) for the whole session, averaged over the last five sessions of each condition. Responses made on the left (filled circles) and right manipulanda (unfilled circles) are plotted separately. The results from the two Cocopops Conditions (Conditions 2 and 3) show that, for 2 subjects (Timmy and Holly), responding was faster on each lever when it was associated with Cocopops (i.e., responding on the right lever was faster during Condition 2 than Condition 3, while responding on the left lever was faster during Condition 3 than Condition 2). For Sylvester, during the Cocopops Conditions, responding was faster on the left lever when it was associated with barley (Condition 2) than when it was associated with Cocopops (Condition 3), while the rates of responding on the right lever were approximately equal during the two Cocopops Conditions. The absolute response rates for the other subjects (George and Arthur) decreased on both levers from Condition 2 to Condition 3. During the Coconut Conditions

Figure 3.8. The absolute response rates on the left and right manipulanda plotted for each condition for the first and second halves of the sessions.

Figure 3.9. The absolute response rates (left panel) and local response rates (right panel) on the left and right manipulandum plotted for each condition.

(Conditions 4 and 5), the absolute response rates for all subjects were faster on the lever associated with barley than that associated with coconut (i.e., for all subjects, responding on the right lever was faster during Condition 4 than Condition 5, while responding on the left lever was faster during Condition 5 than Condition 4).

The local response rates (number of responses made on each lever divided by the time (minutes) spent responding on that lever) are plotted for each session in Figure 3.10. Again, the data are plotted separately for responding on the left lever (left panel) and the right lever (right panel), and the data from the first half (filled circles) and the second half (unfilled circles) of the sessions have been separated. In general, the local rates of responding tended to be lower for the second half of the session, as was the case with absolute rates of responding. The only exceptions occurred on the right lever in Condition 5, where the local response rates were equal in the first and second halves for both George and Timmy. Again, the differences between the rates of responding in the first and second halves of the session were greater for Sylvester.

The right panel of Figure 3.9 shows the local response rates (per min) for the whole session, averaged over the last five sessions of each condition. Responses made on the left (filled circles) and right manipulanda (unfilled circles) are plotted separately. When Cocopops were presented (Conditions 2 and 3), 3 subjects responded faster on each lever when it was associated with Cocopops than when it was associated with barley. However, for George and Arthur, the local rate of responding on both levers decreased from Condition 2 to Condition 3. When coconut was presented (Conditions 4 and 5), Timmy and Holly had faster local response rates on the right lever regardless of whether is was associated with coconut or barley. George and Sylvester's response rates increased from Condition 4 to Condition 5 on both levers, while Arthur's response rates decreased from Condition 4 to Condition 5. Unlike the absolute response rates, there appears to be no relation between the local response rates and bias.

<u>Figure 3.10</u>. The local response rates on the left and right manipulanda plotted for each condition for the first and second halves of the sessions.

Discussion

Bias Estimates

The results of the present experiment indicate that when possums respond on equal concurrent VI VI schedules of reinforcement, their response and time measures do exhibit bias when presented with qualitatively different reinforcers. The similarity of the biases from Condition 1 (with barley in both magazines) to those of Experiment 1 (single magazine containing barley) suggests that the change from one magazine to two magazines did not result in a change in the possums' behaviour. The amounts and directions of the biases observed for the different foods varied across subjects. For example, when Cocopops were paired with barley, the most extreme response bias measure (obtained by both Timmy and Holly) was 0.83 (i.e., a preference for Cocopops), while 1 subject showed a response bias towards barley (Sylvester: 1.09). However, the average bias across all subjects was towards Cocopops (0.92). While all subjects preferred barley to coconut in terms of overall response measures, with a mean bias of 2.25, there was again a large range of response biases observed (1.08 - 4.04). The time biases in the present experiment ranged from 0.95 to 1.31 in the Cocopops conditions, with an average overall bias towards barley (1.07). The time biases measured during the coconut conditions were consistently towards barley (ranging from 1.16 - 5.38), with a mean bias of 2.93.

When the overall time- and response-bias measures are compared, it can be seen that, in all but one instance (Arthur – Cocopops vs. barley), the time-bias measures were greater than the response-bias measures (Table 3.2). In other words, the time biases tended to be more in the direction of barley than the response biases, regardless of magnitude.

The magnitudes of the biases reported in previous studies of food preferences using concurrent schedules of reinforcement (e.g., Matthews & Temple, 1979; Miller, 1976) have been similar to those obtained in the present experiment. The biases obtained by Matthews and Temple (1979) ranged from 0.74 to 1.07 (response measures) and 0.74 to 1.32 (time measures), while those obtained by Miller (1976) ranged from 0.46 to 1.5 (response measures) and 0.63 to 1.6 (time measures). In these experiments, bias was always measured towards the same alternative, therefore biases of less than 1.0 indicate a bias away from that alternative. The ranges of biases from both of these experiments are very similar to those obtained with Cocopops vs. barley in the present experiment. Both Matthews and Temple's (1979) and Miller's (1976) results included instances where an individual subject's time and response measures of bias were in opposite directions. Therefore, it appears that this finding in the present experiment experiment is not unusual.

In the present experiment, the response biases from the first and second halves of the session consistently differed. During the Cocopops Conditions, the response biases were larger in the first half of the session, while during the Coconut Conditions, the response biases were larger in the second half of the session. Overall, the possums' biases were towards the Cocopops, therefore, smaller biases indicate that preference was shifting away from the Cocopops during the second half of the session. On the other hand, the possums' biases were away from the Coconut, with larger biases again indicating that preference was shifting away from this food. This change in bias may be due to differential satiation, with possums satiating to Cocopops and coconut more quickly than to barley. However, McSweeney, Hinson and Cannon (1996) and McSweeney, Weatherly and Swindell (1996) suggested that sensitisation or habituation to the experimental conditions were more likely to be responsible for within-session changes in responding than satiation. The basis for this argument included a study in which the caloric density of the reinforcer (using different foods), the size of the reinforcer, and the deprivation of the subject were varied (Roll, McSweeney, Johnson & Weatherly, 1995). Varying these factors did not result in differences in within-session changes in responding. However, in that experiment, only one food was available within a session. The change in bias from the first to the second half of the session in the present experiment, suggests that the different foods may be responsible for the present result. If differential satiation were not occurring here, it should be expected that the change in responding during the

session would be the same on both of the schedules (since the only difference between the two alternatives is the reinforcer), and therefore, bias would not change. Had only one of these foods been presented within a session, it is likely, based on the results of Roll et al.'s (1995) study, that within-session changes would have been similar for the two foods. However, by presenting the two foods concurrently, the subject is given the opportunity to choose between them, and therefore, to eat more of one food than the other, as opposed to being in a situation where the only choice is to eat or not eat. Therefore, it is possible that the possums satiated to the Cocopops and coconut, and this is reflected in the shift in bias away from these alternatives from the first half to the second half of the session.

While a change in bias from the first to the second half of the session was also observed when the barley/carob mixture was presented in both magazines in this experiment, a similar change was not consistently observed with the same subjects during Experiment 1 (with only one magazine). It is possible, however, that each pair of magazines were not exactly identical, and it may have been that a possum could more easily obtain ford from one or other magazine. It was likely, therefore, that the amount of food able to be obtained by the possums during a reinforcer differed across magazines. This would result in a difference in the magnitudes of the reinforcers available from each magazine, with subjects behaviour being biased towards the larger reinforcer. The change in bias in this case could also be due to these differences in that, as the rate of responding for the reinforcer decreased over the session, the subjects may have worked consistently harder to obtain access to the more generous of the two magazines during the second half of the session. This suggestion was not tested in this research and it remains to be seen whether switching the magazines would change the direction of the bias changes.

In both the Matthews and Temple (1979) and Miller (1976) experiments, the degree of bias observed with response measures was greater than that observed with time measures. This result was also found in Hollard and Davison's (1971) study of preference between food and brain stimulation in the pigeon, and Sumpter et al.'s (1995) study of response type and number preferences in hens. The opposite result was recorded in 7 of the 10 cases in the present experiment (with mean time biases being larger than mean response biases with both Cocopops and coconut). In Experiment 1, it was found that possums' lever pressing was less sensitive to the reinforcement contingencies than was timeallocation (much more so than is normally found with other species). In that experiment it was suggested that time spent pausing after a reinforcer was obtained may have contributed to the greater sensitivity to changes in the reinforcer rate observed with time-allocation. When this pause-time was removed, the remaining net-time sensitivity was more similar to response sensitivity. However, net-time bias was generally larger than total-time bias. When PRP-time was removed before the bias calculations in the present experiment, larger net-time biases were again found. This resulted in a larger difference between response and net-time bias measures than was observed between response and total-time bias measures in most cases.

Responding within the changeover delay in the present experiment showed only a very small amount of bias in all conditions. As a result, the post-COD biases were larger than the total-response bias measures. No other studies have reported behaviour within the COD when studying food preferences, however McAdie et al. (1996) studied hens' behaviour during the COD with a noise biaser present. In that experiment, a noise was constantly present while the hen was responding on the associated key (i.e., from the first peck on that key until the first peck on the alternate key). The results of McAdie et al.'s experiment showed that the amount of bias due to the noise was much smaller during the COD than after it. They suggested that this finding could be explained by Herrnstein's (1961) suggestion that the COD separates the schedules in such a way that responses during the COD do not come under the control of either schedule. Because of this, they also suggested that post-COD data provide the "better" estimate of bias. This result is consistent with that found in the present experiment. In addition, the present experiment found that the within-COD bias was relatively stable across conditions (i.e., there was very little deviation from the inherent bias measured during Condition 1). This suggests that the behaviour which occurred within the COD was not affected by the different foods presented. Therefore, as with noise biasers in McAdie et al.'s study, it appears that post-COD bias estimates are "better" than estimates which use total-response data. This provides further support for Baum's (1982) and Temple et al.'s (1995) suggestion that behaviour during the COD should not be included in the analysis of behaviour under concurrent schedules of reinforcement.

A constant bias towards barley was observed in the post-reinforcementpause-time data in all conditions. However, the size of this bias was not consistent across the Cocopops and Coconut Conditions. A possible reason for this bias is that barley may simply take longer for the possums to eat, as it is noticeably harder to chew. When PRP-time was removed from total time, the remaining bias (net-time bias), in general, was more similar to the response bias both in direction and in magnitude than was total-time bias. Since it appears that post-reinforcement-pause time may have been affected by the different reinforcers, apparently independently of either preference or the schedules of reinforcement, it may be appropriate to remove the post-reinforcement-pause-time data prior to analysis. This possibility will be explored later.

Changeover Rates

The changeover rates in the present experiment varied systematically with the logarithms of the time-allocation ratios. The rates of changeover were greater when approximately equal amounts of time were spent on each lever (i.e., the subject's behaviour was not showing bias), while, when the time-allocation ratios tended towards the extremes (i.e., subject's behaviour was showing bias), the amount of changing over decreased. This was not the case when rates of changing over were plotted against the logarithms of the response ratios. In Experiment 1, the changeover rates were plotted against the obtained reinforcement rates. Since this rate was held constant in the present experiment, the logarithms of the time- and response-allocation ratios were used instead. The relation between changeover rates and the log time ratios was similar to that normally found when the log reinforcement rates are used (Baum, 1974; Catania, 1963; Herrnstein, 1961; Sumpter et al., 1995). Previous experiments have also plotted CO rate as a function of log time and response ratios (Baum, 1976; Miller, 1976), and have found an approximate inverted U-shaped function, similar to that expected when plotting CO rate against the log reinforcer ratio. However, Baum (1976) found that the log reinforcer ratio provided a slightly closer approximation to the expected function.

Because plotting the changeover rates against the logarithms of the timeallocation ratios in the present experiment gave a similar result to plotting the CO rates against the logarithms of the reinforcer ratio in previous experiments, the CO rates from Experiment 1 were re-analysed here. Figure 3.11 shows the changeover rates from Experiment 1 plotted against the logarithms of the time ratios (left panel) and the logarithms of the response ratios (centre panel). The CO rates are also presented again as functions of the log programmed reinforcer ratios for comparison. In general, a closer approximation to an inverted U-shaped function was observed when the log time ratios were used. This is particularly noticeable for Holly and Sylvester's data. The difference in the log time ratios appears to account for the difference in CO rates from the two equal-schedule conditions. Again, when the CO rates were plotted against the log response ratios an inverted U-shaped function was generally not observed. The logarithms of the reinforcer ratios may not have corresponded as well to rates of changeover in this experiment due to the use of dependent schedules. Baum's (1976) experiment, in which the log reinforcer ratios provided the better fit, used independent schedules of reinforcement. The log time ratios were also found to provide a better fit for CO rates with hens by Sumpter et al. (1998). In this experiment, when the CO rates were plotted against the log reinforcer ratios, the maximum rates of changing over did not occur at log ratios of zero as was expected. However, this was the

Figure 3.11. The rates of changing over during Experiment 1 plotted against the logarithms of the time-allocation ratios, the response-allocation ratios, and the reinforcer-rate ratios for each possum.

case when the CO rates were plotted against the log time ratios. Since CO rate is related to preference (i.e., when preference is greatest, subjects make the least number of changeovers: Baum, 1976), and rate of changing over only varies systematically with time-based estimates of preference, this suggests that, for possums, time measures of bias may be more appropriate than response measures.

Response Rates

The absolute rates of responding observed in the present experiment appear to be related to the possums' preference. For all subjects (except George and Arthur on Cocopops trials), responding on the alternative associated with the preferred food was faster. On the other hand, the local rates of responding did not appear to be related to bias. The finding that absolute response rate is related to preference is logical, in that the absolute rate of responding is determined by the number of responses made on a particular alternative. If a subject's behaviour is biased towards an alternative (on equal schedules), the total number of responses will be higher and, since the session length is constant for both alternatives, the absolute response rate will be higher.

Both the absolute and local response rates were generally lower in the second half of the session. This was only the case for 2 subjects in Experiment 1, where only one food was available, suggesting that the different foods available in the present experiment may have contributed to this result. This drop in response rates suggests that Cocopops and coconut are not successful in maintaining behaviour for the entire length of the session. This is supported by the fact that, for 1 subject, during one of the Coconut Conditions, no responses were made on the lever associated with the coconut during the second half of the session. Therefore, it may be necessary to identify foods which will maintain responding for longer periods before studying food preferences further.

The results obtained in this experiment suggest that concurrent schedules of reinforcement are an appropriate means for determining the degree of food preferences of possums. Possums' responding for qualitatively different reinforcers in the present experiment was similar to that observed with other species. When Cocopops was presented versus barley, the biases were very small. This suggests that the possums did not have a strong preference for one food over the other. When coconut was presented versus barley, however, all possums showed large biases towards barley. It remains to be seen how bias due to qualitatively different reinforcers changes with changes in the reinforcer-rate ratio, and how well the GML and the C-D model describe such data. However, since the biases observed with Cocopops were small, and behaviour was not well maintained with coconut, an alternative food is required. Since barley has already been shown to maintain possums' behaviour, in the next experiment barley was associated with responses made to both alternatives, however, the quality of the barley associated with one of the alternatives was manipulated by adding different concentrations of salt.

EXPERIMENT 4

In Experiment 1, concurrent schedules of reinforcement were found to be an effective means of studying the choice behaviour of possums. Experiment 3 examined whether concurrent schedules could be used to study the effects of biasers on the possums' behaviour, using different food alternatives. Providing different reinforcers for responses on each of the two alternatives did produce changes in the possums' response- and time-allocation measures. The magnitudes of the biases found with Cocopops versus barley were small and similar to those previously observed with different foods in other species (e.g., Matthews & Temple, 1979; Miller, 1976), however, much larger biases were observed in the coconut versus barley conditions.

While different biases were obtained when Cocopops and coconut were paired with barley, it remains to be seen whether graded measures of bias can be obtained under concurrent schedules of reinforcement, and whether these biases remain constant over a range of reinforcer-rate ratios. Discussions with a scientist working with possums have suggested that adding a low salt concentration to a particular food may result in possums showing an increased preference towards that food, with higher salt concentrations being less preferred (Fisher, personal communication). For this reason, the present experiment examined whether the use of several different concentrations of salt added to barley (as opposed to different magnitudes of barley) has a graded biasing effect on the concurrentschedule behaviour of the possums. A further aim of this experiment was to examine how the C-D model copes with experimentally introduced biasers. If different biases are obtained with the different foods, it might be expected that the value of d_r in the C-D model will also change when different foods are presented in each magazine. According to Davison and Jenkins (1985), the parameter d_r measures how well the subject can discriminate the response-reinforcer contingencies. Therefore, following on from Davison and Jenkins' definition of d_r , if the reinforcers given for responses on each alternative (or for each response) are different, it should be easier for the subject to determine which response

produced the reinforcer, and this should result in an increase in discriminability.

Method

Subjects

The subjects were the same as those used in Experiments 1 and 3. At the end of Condition 13, however, Arthur died, and was replaced by Maggie. Maggie was an experimentally naïve subject. Lever presses were trained using the method of successive approximations. Once responding on both levers occurred reliably, concurrent VI 7.5-s VI 7.5-s schedules of reinforcement were introduced with no COD. The schedules were gradually increased to concurrent VI 40 s VI 40 s over 32 sessions, after which the COD was increased from 0 s to 4 s (being the first experimental condition) over a further 10 sessions.

Apparatus

The experimental equipment was identical to that used in Experiment 3.

Procedure

In all conditions, either the left or right magazine (depending on the condition) contained a mixture of steam-flaked barley and carob chips in a ratio of 15:1 (hereafter referred to simply as barley). The other magazine contained barley and carob with varying concentrations of salt, ranging from 0% to 6% (hereafter referred to by the percentage of salt added). The salt concentration was calculated based on the weight of the barley. For example, when 6% salt was required, if 1000 g of barley was used, 60 g of salt would be added. In order to add salt to the barley, and to ensure an even distribution throughout, the salt was first dissolved in water. The barley and salted water were then mixed and dried in an oven designed for the drying of plant material, at 80° C for approximately 24 hours (or until completely dry). The barley for the 0% salt conditions was simply wet and then dried to serve as a baseline for comparison with subsequent concentrations. This was necessary because after the barley had been dried, it was noticeably

harder to chew. The carob was added after the barley had been dried, and allowed to cool.

The order of conditions, and the number of sessions per condition are presented in Table 4.1. During Conditions 1 to 10, reinforcement was available on a dependent concurrent VI 40-s VI 40-s schedule of reinforcement during all conditions (arranged as in Experiment 1), and the lever associated with the salt, as well as the concentration of salt, was changed across conditions. For Conditions 11 to 15, the lever associated with the salt, and the salt concentration were kept constant (6% salt, associated with the left lever), while the schedules of reinforcement associated with each lever were changed across conditions. During Conditions 16 to 20, 6% salt was replaced with 4% salt. In all other respects, these conditions were identical to Conditions 11 to 20. The final condition (Condition 21) was a replication of Condition 8. Each condition was changed as soon as the behaviour of all subjects had reached graphical stability as judged by at least two lab members (i.e., when the proportion of left responses over the last five sessions was not trending).

Condition 3 (barley vs. barley) was included, as a break between conditions, due to a shortage of barley with 0% salt at that time. In this case, 4 of the 5 possums had reached stability, and were put back on the barley vs barley condition until the last possum reached stability. Data from this condition are not presented here. Condition 5 (2% salt (new carob) vs. barley (new carob)) was conducted with 3 possums (who reached stability on Condition 4 before the remaining 2 possums) because it was necessary to change the supplier of the carob chips which were mixed with the barley. Although carob chips were mixed with both the salted and unsalted barley, the new carob was tested for five sessions with these possums to ensure that it did not affect the data obtained. The data obtained during Condition 5 are not presented here as they did not differ noticeably from the data obtained in the previous condition, suggesting that changing the carob did not change the behaviour of the possums. All other aspects of the experiment were the same as for Experiments 1 and 3. All data recorded were the same as for the previous experiments.

		hadulas (s)	Dein		
	50	nedules (s)	Reini	rorcer	
Condition	Left	Right	Left	Right	Sessions
1	VI 40	VI 40	Barley	0% Salt	25-39
2	VI 40	VI 40	0% Salt	Barley	19-24
3	VI 40	VI 40	Barley	Barley	0-7
4	VI 40	VI 40	2% Salt	Barley	40-45
5	VI 40	VI 40	2% Salt*	Barley*	0-5
6	VI 40	VI 40	Barley	2% Salt	32
7	VI 40	VI 40	Barley	4% Salt	29
8	VI 40	VI 40	4% Salt	Barley	30
9	VI 40	VI 40	Barley	6% Salt	20
10	VI 40	VI 40	6% Salt	Barley	27
11	VI 25	VI 100	6% Salt	Barley	18
12	VI 100	VI 25	6% Salt	Barley	17
13	VI 22.5	VI 180	6% Salt	Barley	33-47
14	VI 180	VI 22.5	6% Salt	Barley	14
15	VI 25	VI 100	6% Salt	Barley	53-57
16	VI 25	VI 100	4% Salt	Barley	23
17	VI 100	VI 25	4% Salt	Barley	20
18	VI 22.5	VI 180	4% Salt	Barley	15-27
19	VI 180	VI 22.5	4% Salt	Barley	45
20	VI 25	VI 100	4% Salt	Barley	36
21	VI 40	VI 40	4% Salt	Barley	41

The order of conditions for Experiment 4, and the number of sessions required to reach stability in each condition.

* New carob introduced

Table 4.1

Results

The raw data from the last five sessions of Conditions 1, 2, 4 and 6-21 are presented in Appendix D. All analyses were carried out on the summed data from the last five sessions of each condition. All ratios were taken to the left manipulandum and were logged to the base 10.

Point Estimates of Bias

The point estimates of bias were calculated using Equation 3.4 as described in the Results section of Experiment 3. A bias value greater than 1.0 $(\log ratio = 0)$ indicates a bias towards the barley.

Figure 4.1 shows the logarithms of the point estimates of bias for both response-allocation and time-allocation data plotted against the salt concentration for each possum. The standard deviation of each bias estimate is also presented. The degree of bias is indicated by the distance between the data point and the dotted line (plotted at zero). No consistent changes in the response or time biases were obvious as the concentration of salt was increased from 0% to 6%. The 0% salt condition shows the effect of cooking the barley on the subjects' bias measures. In all but one case (Holly being the exception), the response biases obtained during this condition were towards the uncooked barley alternative. When 2% salt was presented, 3 subjects showed response biases towards the salted alternative, while the remaining 2 subjects' (Arthur and Sylvester) response-allocation measures were biased towards plain barley. When 4% and 6% were presented, the response-allocation measures from all subjects were biased towards the barley.

In terms of time allocation, 3 subjects showed biases towards barley when 0% salt was presented, while 1 subject (Timmy) showed a bias towards 0% salt, and 1 showed no bias (Holly). When 2% salt was presented, 2 subjects (Arthur and Sylvester) showed a time bias towards barley, 2 subjects showed a time bias towards salt, and 1 subject showed no bias (George). When 4% salt was presented, all of the subjects' time-allocation measures were biased towards

<u>Figure 4.1</u>. The point estimates of bias for each possum based on the response and time data for each of the salt concentrations paired with the crushed barley/carob mixture and equal concurrent VI VI schedules of reinforcement.

Table 4.2

Point estimates of the ratio of bias for each subject when barley/carob mixture was paired with different concentrations of salted barley. Estimates are given for response and time data (both total and first and second half), within and post-COD responses, and PRP and net time data. Bias towards the barley/carob mixture is indicated by a value greater than 1.0.

Possum	0% Salt	2% Salt	4% Salt	6% Salt	0% Salt	2% Salt	4% Salt	6% Salt	
		Resp	onses			Ti	me		
George	1.12	0.93	1.24	1.18	1.15	1.00	4.05	0.81	
Arthur	1.68	1.30	1.13	1.65	1.54	1.15	1.07	1.81	
Timmy	1.09	0.95	1.18	1.42	0.91	0.95	1.17	1.19	
Holly	0.82	0.81	1.23	1.31	1.00	0.94	1.15	1.06	
Sylvester	1.24	1.80	1.58	1.65	1.39	1.66	1.55	1.53	
MEAN	1.19	1.16	1.27	1.44	1.20	1.14	1.80	1.28	
		Withir	n COD			Post	COD		
George	1.03	0.96	1.05	0.98	1.18	0.93	1.35	1.35	
Arthur	1.16	1.05	0.97	1.09	2.03	1.41	1.23	2.10	
Timmy	0.97	0.87	1.02	1.12	1.24	1.06	1.40	1.86	
Holly	0.88	0.93	1.13	1.05	0.77	0.72	1.30	1.55	
Sylvester	0.97	0.99	0.93	1.07	1.53	3.17	2.75	2.57	
MEAN	1.00	0.96	1.02	1.06	1.35	1.46	1.61	1.89	
		PRP	Time			Net	Time		
George	1.24	0.91	0.78	0.68	1.14	1.04	1.59	0.89	
Arthur	1.28	1.04	0.87	0.97	1.59	1.25	1.17	2.32	
Timmy	0.71	0.84	1.02	0.99	1.28	1.13	1.44	1.61	
Holly	1.01	0.99	1.14	0.96	0.97	0.85	1.17	1.44	
Sylvester	0.88	0.52	1.14	1.41	1.89	3.99	1.94	1.60	
MEAN	1.02	0.86	0.99	1.00	1.37	1.65	1.46	1.57	
		First Half	Response	s	Se	Second Half Responses			
George	1.11	0.93	1.23	1.10	1.13	0.93	1.27	1.24	
Arthur	1.76	1.34	1.12	1.57	1.56	1.24	1.14	1.74	
Timmy	1.06	0.98	1.14	1.46	1.09	0.93	1.21	1.38	
Holly	0.84	0.80	1.13	1.19	0.79	0.80	1.38	1.52	
Sylvester	1.17	1.59	1.38	1.52	1.40	3.51	1.95	1.89	
MEAN	1.19	1.13	1.20	1.37	1.19	1.48	1.39	1.55	
		First Ha	alf Time			Second H	Ialf Time		
George	1.14	1.03	1.06	0.82	1.17	0.98	1.58	0.81	
Arthur	1.64	1.15	1.03	1.45	1.45	1.15	1.11	2.28	
Timmy	0.86	0.93	1.10	1.16	0.96	0.96	1.24	1.22	
Holly	0.98	0.91	1.04	1.12	1.01	0.96	1.28	1.01	
Sylvester	1.21	1.36	1.39	1.48	1.64	2.06	1.72	1.57	
MEAN	1.17	1.08	1.12	1.21	1.25	1.22	1.39	1.38	

barley. All but 1 subjects' time allocation was biased towards barley when 6% salt was presented (the exception being George). In general, the time bias estimates were more variable than the response bias estimates. This is illustrated by the standard error bars, which are generally larger for the time estimates than for the response estimates.

Table 4.2 gives the bias measures calculated as described for Experiment 3. The mean data show that the degree of the overall response bias towards barley decreased from the 0% to the 2% salt conditions, and increased as the salt concentration increased beyond 2%. However, the response biases of only 2 subjects (Timmy and Holly) systematically increased with subsequent increases in salt concentration. The overall time biases showed no systematic changes with increases in salt concentration. The mean time data showed that 4% salt was the least preferred of the salt concentrations, while 2% salt was the most preferred salt concentration.

The logarithms of the point estimates of the response-allocation biases obtained during the first (left panel) and second half (right panel) of the session are plotted for each salt concentration in Figure 4.2. For 3 subjects (George, Arthur and Timmy), there were no consistent differences between the first- and second-half response biases across conditions, while 1 subject (Sylvester) showed larger biases in the second half of the session in most conditions. This was also true for Holly during the 4% and 6% salt conditions. For 2 subjects (Holly and Sylvester), the response bias estimates obtained from the second half of the session were generally more variable (i.e., the standard deviations were larger) than those obtained from the first half. For the remaining 3 subjects, there were no consistent differences.

The overall response bias measures calculated separately for the data from the first and second half of the session (as in Experiment 3) are also presented in Table 4.2. In most cases (15 out of 20), the response biases from the second half of the session were greater than those from the first half of the session (indicated by a ratio more different from :1.0), particularly at higher salt concentrations.

<u>Figure 4.2</u>. The point estimates of bias for each possum based on the first and second half response data for each of the salt concentrations paired with the crushed barley/carob mixture and equal concurrent VI VI schedules of reinforcement.

Figure 4.3 shows the logarithms of the point estimates of the timeallocation biases from the first (left panel) and second half (right panel) of the session, plotted for each possum at each salt concentration. For 4 of the 5 subjects, there were no consistent differences between the first- and second-half time allocation biases across conditions. The exception (Sylvester) tended to show larger time biases during the second half of the session. For 3 subjects (George, Holly and Sylvester), the time bias estimates obtained from the second half of the session were generally more variable than those obtained from the first half. There were no consistent differences in the variability of these measures for the remaining subjects.

Table 4.2 shows the overall time-allocation biases from the first and second half of the session. When 0% and 2% salt were presented, the time-allocation biases tended to be greater during the first half of the session (indicated by a ratio further away from 1.0). When 4% and 6% salt were presented, most subjects' time-allocation biases were greater during the second half of the session.

The logarithms of the point estimates of the response-allocation biases from within (left panel) and after (right panel) the COD are plotted against the salt concentration for each subject in Figure 4.4. Generally, the within-COD biases were small (close to zero), showing no consistent changes in bias with changes in salt concentration. In most cases (17 of 20), the post-COD biases were clearly larger than the within-COD biases (i.e., further away from zero), while the withinand post-COD biases were in the same direction in only 10 of 20 cases. The post-COD biases were towards the barley for all but 1 subject (Holly) in the 0% salt conditions, and for all but 2 subjects (George and Holly) in the 2% salt conditions, while in the 4% and 6% salt conditions, all subjects' post-COD biases were towards the barley. In most cases, the post-COD bias estimates were more variable than the within-COD bias estimates.

The overall within- and post-COD biases are presented in Table 4.2. In all but one case, the post-COD biases were greater than the within-COD biases. In general, the within-COD biases were small, with no systematic changes with increases in salt concentration. The mean overall post-COD biases show that bias

Figure 4.3. The point estimates of bias for each possum based on the first and second half time data for each of the salt concentrations paired with the crushed barley/carob mixture and equal concurrent VI VI schedules of reinforcement.

Figure 4.4. The point estimates of bias for each possum based on the within- and post-COD data for each of the salt concentrations paired with the crushed barley/carob mixture and equal concurrent VI VI schedules of reinforcement.

increased (in the direction of barley) as the concentration of salt increased (from 0% up to 6%). However, this was not the case for the individual data from any subject.

Figure 4.5 shows the logarithms of the point estimates of bias for the PRP-time (left panel) and net-time ratios (right panel) plotted against salt concentration. The PRP-time biases were generally smaller than the net-time biases. Neither bias measure changed consistently with changes in salt concentration. The PRP-time biases were idiosyncratic, with no consistencies either between or within subjects. The net-time biases were more consistent across subjects.

The net-time allocation biases were towards the barley for all but 1 subject in the 0% salt condition. The remaining subject (Holly) showed no nettime allocation bias. When 2% salt was presented, all but 1 subject was biased towards the barley, the exception being Holly. In the 4% salt conditions, all subjects' net-time allocation was biased towards the barley, and in the 6% salt conditions, all but 1 subjects' (George) net-time biases were towards the barley. There were no consistent differences in the variability of the PRP- and net-time bias estimates.

The overall net-time allocation and PRP-time allocation biases are presented in Table 4.2. In most cases, the net-time biases were greater than the PRP-time biases. The PRP-time biases were less variable than the net-time allocation biases, however, in both cases, there were no systematic changes in bias as the salt concentration was increased.

Since the reinforcement rate was held constant during Conditions 1 to 10, as in Experiment 3, the number of changeovers made per minute are plotted against the logarithms of the time-allocation ratios (left panel) and the logarithms of the response ratios (right panel) in Figure 4.6 for each possum. The data from all subjects failed to conform to the inverted U-shaped function normally found when changeover rate is plotted against these measures. The maximum rate of changing over only occurred at a log ratio of approximately 0.0 for 1 subject (Arthur) with both response and time allocation. No other patterns were evident.

<u>Figure 4.5</u>. The point estimates of bias for each possum based on the PRP and net time data for each of the salt concentrations paired with the crushed barley/carob mixture and equal concurrent VI VI schedules of reinforcement.

<u>Figure 4.6</u>. The rate of changing over per minute plotted against the logarithms of the time allocation ratios and the logarithms of the response allocation ratios for each possum, with equal concurrent VI VI schedules.

Figure 4.7 shows the absolute rates of responding, averaged over the last five sessions of each condition, on both the left (left panel) and right (right panel) levers, plotted against salt concentration for each possum. The unfilled circles represent the data from the conditions in which the salted alternative was associated with that lever, while the pluses represent the data from the conditions in which the barley was associated with that lever. In most cases (28 of 40), the rate of responding on a lever was faster when that lever was associated with the alternative that was preferred overall (based on responding over the two conditions in which each salt concentration was presented). For example, when 6% salt was presented for responses on the left lever, responding was slower than when barley was presented for responses on that lever (with 6% salt associated with the other lever). It would not be expected that the absolute response rates be faster on the alternative that was preferred overall in all cases, because bias was not always consistently towards that alternative across the two conditions. The absolute rates of responding did not appear to change systematically with salt concentration.

The local rates of responding, averaged over the last five sessions of each condition, are plotted against salt concentration for both the left (left panel) and right (right panel) levers in Figure 4.8 for all subjects. The unfilled circles represent the conditions where the salted alternative was associated with that lever, while the pluses represent the conditions where the barley was associated with that lever. There appears to be no systematic relationship between the local response rates and bias. Unlike the absolute rates of responding, there was no tendency for faster responding on either alternative. As with the absolute response rates and salt concentration.

Line Estimates of Bias

Figure 4.9 shows the logarithms of the response ratios plotted against the logarithms of the obtained reinforcer-rate ratios for the 4% (centre panel) and 6% (right panel) salt conditions in which the reinforcer-rate ratio was not equal to zero

<u>Figure 4.7</u>. The absolute rate of responding per minute on the left and right levers, plotted separately for conditions when the salted alternative and the barley alternative were associated with that lever, for each possum at each salt concentration, when equal concurrent VI VI schedules were used.

Figure 4.8. The local rate of responding per minute on the left and right levers, plotted separately for conditions when the salted alternative and the barley alternative were associated with that lever, for each possum at each salt concentration, when equal concurrent VI VI schedules were used.

Figure 4.9. The logarithms of the response ratios for the No Salt, 4% Salt and 6% Salt conditions in which the VI schedules were varied, plotted against the logarithm of the obtained reinforcer rate ratio for all possums. The dashed line was fitted by the method of least squares to the data and the dotted line represents perfect matching. The solid line represents the function generated by the fit of the Contingency-Discriminability model the data using non-linear regression.

(as well as Conditions 8 and 21 (4%) and 10 (6%), where the schedules were equal). For comparison, the logarithms of the response ratios from Experiment 1, where the reinforcer-rate ratio was varied with only one food magazine (left panel) are also presented.

The dotted line presented on each graph has a slope of 1.0 and an intercept of zero (strict matching). The dashed line is the line of best fit (matching line), calculated using least-squares linear regression, and the solid line is the line obtained when the C-D model was fitted to the data using least-squares non-linear regression. The data obtained from the two equal schedules conditions conducted with 4% salt (Conditions 8 and 21) were similar for all but 1 subject (Sylvester), indicating that this condition was generally well replicated. The graphs show that the lines obtained using the GML and the C-D model are very similar over the range of reinforcer ratios used and, in fact, appear to be superimposed over most of this range, with the C-D model predicting less extreme behaviour than the GML beyond this range. This indicates that the biases measured by the two equations should be very similar. Tables 4.3 and 4.4 give the values of a and log c calculated using a GML analysis, as well as the percentages of variance accounted for (%VAC) by the lines, and the standard errors of the estimates (SE) for the 4% and 6% salt conditions respectively. Table 4.5 gives the values of d_r and log c as well as the %VAC by the lines obtained using the C-D model for the 4% and 6% salt conditions.

The mean %VAC measures were high with both models, but were slightly higher in the case of the GML analysis with both salt concentrations (95% vs. 93% for 4% salt; 92% vs. 91% for 6% salt). The standard errors of the estimates obtained using the GML were generally low, ranging from 0.04 to 0.33 in the 4% salt conditions, and from 0.08 to 0.20 in the 6% salt conditions. There were no consistent changes in slope (*a* values) with changes in salt concentration. The mean values of *a* were 0.51, 0.55 and 0.51 for the no salt, 4% salt and 6% salt conditions respectively. Similarly, there were no consistent changes in *d_r* with changes in salt concentration (no salt: *d_r* = 5.01; 4% salt: *d_r* = 5.40; 6% salt: *d_r* = 4.43).

Table 4.3

Slopes (a), y-intercepts (log c), the percentage of variance accounted for (%VAC) and standard errors of the estimates (SE) for the lines of best fit for total response (Figure 4.9) and time allocation (Figure 4.10), withinand post-COD responding (Figure 4.11), first and second half response and time allocation, and PRP and net time allocation (Figure 4.12) when 4% salt was presented.

	Slope	ntercept	t		Slope	ntercep	t		
Possum	(a)	$(\log c)$	%VAC	SE	(a)	$(\log c)$	%VAC	SE	
		Total Re	sponses			Total	Time		
George	0.60	-0.08	97.42	0.08	0.82	-0.11	96.11	0.14	
Maggie	0.40	0.00	99.08	0.05	0.90	0.22	93.91	0.33	
Timmy	0.45	-0.29	98.9 7	0.04	0.86	-0.21	94.31	0.17	
Holly	0.55	-0.08	98.56	0.05	0.77	-0.20	91.48	0.19	
Sylvest	0.74	-0.50	78.52	0.33	1.07	-0.32	98.34	0.12	
MEAN	0.55	-0.19	94.51	0.11	0.88	-0.12	94.83	0.19	
	Fi	rst Half I	Response	es	Sec	ond Halt	f Respons	ses	
George	0.61	-0.08	96.50	0.10	0.58	-0.08	95.18	0.11	
Maggie	0.40	0.05	99.89	0.02	0.48	-0.05	85.30	0.29	
Timmy	0.40	-0.31	98.53	0.04	0.49	-0.26	98.51	0.05	
Holly	0.52	-0.06	97.31	0.07	0.60	-0.14	98.53	0.06	
Sylvest	0.77	-0.48	76.08	0.36	0.68	-0.53	80.52	0.30	
MEAN	0.54	-0.18	93.66	0.12	0.57	-0.21	91.61	0.16	
		First Ha	lf Time		Second Half Time				
George	0.85	-0.17	98.17	0.10	0.80	-0.07	88.10	0.24	
Maggie	0.95	0.03	98.59	0.16	1.06	0.46	77.19	0.82	
Timmy	0.93	-0.36	96.92	0.15	0.85	-0.11	89.97	0.22	
Holly	0.79	-0.19	94.94	0.15	0.77	-0.20	86.63	0.24	
Sylvest	0.97	-0.30	96.91	0.15	1.15	-0.32	98.61	0.12	
MEAN	0.90	-0.20	97.10	0.14	0.93	-0.05	88.10	0.33	
		Within	COD			Post	COD		
George	0.05	0.19	13.69	0.10	0.82	-0.19	99.08	0.07	
Maggie	-0.02	0.12	22.71	0.04	0.79	-0.01	96.90	0.20	
Timmy	0.00	-0.21	1.01	0.03	0.74	-0.34	99.68	0.03	
Holly	-0.06	0.05	28.33	0.08	0.90	-0.16	98.21	0.10	
Sylvest	-0.06	-0.02	5.19	0.22	1.08	-0.72	92.49	0.26	
MEAN	-0.02	0.02	14.19	0.09	0.87	-0.28	97.27	0.13	
PRP Time					Net Time				
George	1.02	-0.06	95.56	0.18	0.73	-0.14	94.37	0.15	
Maggie	0.95	0.14	99.95	0.03	0.85	0.23	75.94	0.68	
Timmy	1.02	-0.12	91.09	0.26	0.67	-0.32	94.93	0.13	
Holly	0.76	-0.29	88.70	0.22	0.92	0.07	97.61	0.12	
Sylvest	1.00	-0.17	98.63	0.10	1.13	-0.43	96.61	0.18	
MEAN	0.95	-0.10	94.79	0.16	0.86	-0.12	91.89	0.25	

Table 4.4

Slopes (a), y-intercepts (log c), the percentage of variance accounted for (%VAC) and standard errors of the estimates (SE) for the lines of best fit for total response (Figure 4.9) and time allocation (Figure 4.10), within and post COD responding (Figure 4.11), first and second half response and time allocation, and PRP and net time allocation (Figure 4.12) when 6% salt was presented.

	Clana standart				01				
D	Slope	ntercept		CE.	Slope	ntercep		0 F	
Possum	(a)	$(\log c)$	%VAC	SE	(a)	$(\log c)$	%VAC	SE	
		I otal Re	sponses			Total	Ime		
George	0.60	-0.04	93.46	0.13	0.89	-0.16	95.58	0.16	
Arthur	0.45	-0.13	94.35	0.09	0.65	-0.15	93.21	0.15	
Timmy	0.46	-0.35	95.95	0.08	0.98	-0.30	95.64	0.18	
Holly	0.38	-0.08	88.08	0.12	0.76	-0.16	95.88	0.13	
Sylvest	0.64	-0.28	89.35	0.20	1.13	-0.26	93.06	0.28	
MEAN	0.51	-0.18	92.24	0.12	0.88	-0.21	94.67	0.18	
	Fi	rst Half I	Response	s	Sec	ond Hal	f Respon	ses	
George	0.60	-0.06	94.96	0.12	0.60	-0.02	91.45	0.15	
Arthur	0.37	-0.11	88.53	0.12	0.54	-0.15	97.38	0.07	
Timmy	0.47	-0.36	97.74	0.07	0.45	-0.34	92.83	0.10	
Holly	0.37	-0.05	89.76	0.11	0.38	-0.15	79.36	0.16	
Sylvest	0.65	-0.25	89.49	0.20	0.59	-0.36	81.15	0.24	
MEAN	0.49	-0.17	92.10	0.12	0.51	-0.20	88.44	0.15	
		First Ha	lf Time		Second Half Time				
George	0.89	-0.18	95.74	0.16	0.89	-0.14	94.08	0.18	
Arthur	0.72	-0.10	96.05	0.13	0.59	-0.18	84.25	0.22	
Timmy	0.95	-0.35	94.80	0.20	1.03	-0.27	95.91	0.17	
Holly	0.82	-0.19	95.75	0.15	0.73	-0.12	94.10	0.15	
Sylvest	0.96	-0.24	96.57	0.16	1.24	-0.46	84.08	0.46	
MEAN	0.87	-0.21	95.78	0.16	0.90	-0.23	90.48	0.24	
		Within	COD			Post	COD		
George	0.06	0.26	66.94	0.03	0.89	-0.20	95.78	0.16	
Arthur	-0.01	0.11	5.40	0.03	0.65	-0.24	94.13	0.14	
Timmy	0.02	-0.22	4.56	0.09	0.87	-0.50	96.96	0.13	
Holly	-0.02	0.12	5.97	0.05	0.61	-0.20	93.18	0.14	
Sylvest	0.09	0.21	25.71	0.14	1.05	-0.69	94.25	0.23	
MEAN	0.03	0.10	21.71	0.07	0.81	-0.37	94.86	0.16	
PRP Time					Net Time				
George	1.07	-0.11	94.44	0.22	0.85	-0.17	96.26	0.14	
Arthur	0.77	0.14	93.58	0.17	0.65	-0.26	83.94	0.24	
Timmy	1.39	-0.32	90.28	0.39	0.74	-0.42	92.05	0.19	
Holly	0.80	-0.14	91.11	0.21	0.69	-0.18	87.49	0.22	
Sylvest	1.12	-0.16	95.23	0.23	1.14	-0.34	90.40	0.33	
MEAN	1.03	-0.12	92.93	0.24	0.81	-0.28	90.03	0.22	

		4%	Salt			6%	6 Salt	
Possum	p,	d,	log c	%VAC	p,	d,	log c	%VAC
George	0.85	5.56	-0.08	96.87	0.85	5.62	-0.04	92.32
Maggie	0.75	2.93	0.03	96.03	0.77	3.26	-0.12	91.13
Timmy	0.77	3.30	-0.29	98.33	0.78	3.51	-0.36	95.12
Holly	0.82	4.55	-0.08	9 7.78	0.73	2.71	-0.09	86.69
Sylvester	0.91	10.65	-0.50	77.71	0.88	7.05	-0.29	87.65
MEAN	0.82	5.40	-0.19	93.34	0.80	4.43	-0.18	90.58
				Post COD	response	es		
George	0.94	16.01	-0.19	99.28	0.97	30.47	-0.20	95.63
Maggie	0.92	12.32	0.04	94.47	0.87	6.61	-0.23	91.82
Timmy	0.91	10.13	-0.34	99.66	0.96	25.35	-0.50	96.91
Holly	0.97	29.68	-0.16	98.27	0.85	5.87	-0.21	92.8 7
Sylvester	1.02	-46.69	-0.72	92.61	1.02	-64.38	-0.69	94.46
MEAN	0.95	4.29	-0.27	96.86	0.93	0.78	-0.37	94.34
				Ti	me			
George	0.94	15.19	-0.11	96.66	0.97	33.09	-0.17	95.29
Maggie	0.97	27.82	0.26	93.19	0.87	6.66	-0.14	93.66
Timmy	0.95	19.16	-0.21	94.66	0.99	115.37	-0.30	95.68
Holly	0.92	11.35	-0.20	91.56	0.92	11.71	-0.16	95.60
Sylvester	1.02	-54.12	-0.32	98.38	1.04	-24.54	-0.26	95.01
MEAN	0.96	3.88	-0.12	94.89	0.96	28.46	-0.21	95.05

Estimates of relative discriminability (p_r) , discriminability (d_r) , bias $(\log c)$, and the percentage of variance accounted for (%VAC) for the lines of best fit for response- (Figure 4.9) and time-allocation (Figure 4.10) and post-COD responding (Figure 4.11) when 4% and 6% salt were presented.

Table 4.5

•

While all subjects' response biases were towards barley when 4% and 6% salt were presented in the alternative magazine, there were no consistent changes in bias across these conditions. Generally, the biases observed in these conditions were greater than those obtained in Experiment 1 with only one food (mean bias estimates: 0.07, no salt; -0.19, 4% salt; -0.18 6% salt). There was very little difference between the bias estimates obtained with the GML and those obtained when the C-D model was used. The mean values of log c obtained with the C-D model were identical to those presented above.

The logarithms of the time ratios are plotted against the logarithms of the obtained reinforcer-rate ratios for Experiment 1 (no salt; left panel), the 4% salt conditions, and the 6% salt conditions (as in Figure 4.9, centre and right panels respectively) in Figure 4.10. As in Figure 4.9, the dashed line present on each graph is the matching line, calculated using least-squares linear regression, the solid line was obtained using non-linear regression with the C-D model, while the dotted line represents strict matching. The data obtained from the two equal schedules conditions conducted with 4% salt (Conditions 8 and 21) were similar for all subjects, again indicating that this condition replicated well. Again, the lines obtained using the GML and the C-D model are very similar over the range of reinforcer-rate ratios used. However, for 1 subject (Sylvester), the C-D model predicts more extreme time allocation outside of this range. This only occurs in cases where 'overmatching' was found with the GML. Nevertheless, the bias estimates obtained with the two models should again be very similar, as both lines appear to cross the y-axis in approximately the same place. The values of a and log c (calculated using a GML analysis), as well as the %VAC and SE measures for the 4% and 6% salt conditions, are presented in Tables 4.3 and 4.4 respectively. The values of d_r , log c, and the %VAC measures obtained using the C-D model are presented in Table 4.5 for the 4% and 6% salt conditions.

The %VAC measures were high for both models. There were very little differences between the mean %VAC from the two models, with the C-D model giving slightly higher measures in both cases (94.8% vs. 94.9% with 4% salt; 94.7% vs. 95.1% with 6% salt). This result is opposite to that observed with the

<u>Figure 4.10</u>. The logarithms of the time ratios for the No Salt, 4% Salt and 6% Salt conditions in which the VI schedules were varied, plotted against the logarithm of the obtained reinforcer rate ratio for all possums. The dashed line was fitted by the method of least squares to the data and the dotted line represents perfect matching. The solid line represents the function generated by the fit of the Contingency-Discriminability model the data using non-linear regression.

response measures. The standard errors of the estimates were low for both the 4% and 6% salt conditions, ranging from 0.12 to 0.33. As was the case with the response measures, there were no consistent changes in the values of either *a* (mean values of 0.96 with no salt; 0.88 with both 4% and 6% salt) or d_r (mean values of -25.55 with no salt, 3.88 with 4% salt, and 28.46 with 6% salt) with changes in salt concentration. All but 1 subjects' (Maggie; 4% salt) time-allocation measures were biased towards the barley when both 4% and 6% salt were presented. Although the mean time-allocation bias measure was greater for the 6% salt conditions than the 4% salt conditions (-0.21 vs. -0.12), there were no consistent changes across salt concentrations. The mean values of log *c* obtained using the two models were identical for both salt concentrations.

The logarithms of the ratios of responses made after the COD are plotted against the logarithms of the obtained reinforcer ratios in Figure 4.11. The left panel shows the data from Experiment 1, where only one magazine was used, with no salt added. The centre and right panels show the data from the 4% and 6% salt conditions (as in Figure 4.9), respectively. The dashed, dotted and solid lines represent the matching line obtained from the data, strict matching, and the line of best fit from the C-D model, respectively.

The lines obtained from the GML and C-D analyses are again superimposed over the range of reinforcer-rate ratios presented. The post-COD data are more similar to the total time data than to the total response data. As was seen with the time-allocation data, the C-D model predicts more extreme responding at reinforcer-rate ratios outside the range presented for Sylvester at all salt concentrations (accompanied by *a* values greater than 1.0). The values of *a*, log *c*, %VAC and SE are presented in Tables 4.3 and 4.4 for the 4% and 6% salt conditions respectively. Although not presented graphically, the parameters are also given for responding within the COD. Table 4.5 gives the values of p_r , d_r , log *c* and %VAC for the post-COD data from the 4% and 6% salt conditions. From this table it can be seen that the values of *a*, d_r and log *c* did not change consistently with changes in salt concentration for either within- or post-COD responding. While in Experiment 1, the within-COD biases were generally larger

<u>Figure 4.11</u>. The logarithms of the post-COD response ratios for the No Salt, 4% Salt and 6% Salt conditions in which the VI schedules were varied, plotted against the logarithm of the obtained reinforcer rate ratio for all possums. The dashed line was fitted by the method of least squares to the data and the dotted line represents perfect matching. The solid line represents the function generated by the fit of the Contingency-Discriminability model the data using non-linear regression.

than the post-COD biases, the opposite is true for the data from the 4% and 6% salt conditions.

Figure 4.12 shows the logarithms of the post-reinforcement-pause (PRP) time ratios and the net-time-allocation ratios plotted against the logarithms of the obtained reinforcement-rate ratios for the 4% salt conditions (centre panel), the 6% salt conditions (right panel) and the no-salt conditions from Experiment 1 (left panel). The dashed and solid lines presented on each graph represent the matching lines obtained from the PRP- and net-time allocation data respectively. No analyses were carried out using the C-D model here.

In most cases (10 out of 15), the line obtained from the PRP-timeallocation data is steeper than that obtained from the net-time-allocation data. In addition, the slope of the line describing PRP-time-allocation data is generally closer to 1.0 than the line describing net-time allocation (11 out of 15 cases). There were no consistent changes in the slopes obtained using either measure with changes in salt concentration. Generally, there was more bias observed in the nettime-allocation data than in the PRP-time-allocation data. While there were no consistent changes in the PRP-time bias measures across salt concentrations for all but 1 subject (the exception being Timmy, whose bias away from the salt increased with increases in concentration), the net-time-allocation bias measures towards barley increased for 2 subjects (George and Timmy), and decreased for 1 subject (Sylvester), as the concentration of salt was increased.

Tables 4.3 and 4.4 give the values of a, log c, %VAC and SE for the PRP-time and net-time-allocation data from the 4% and 6% salt conditions, respectively. There were no consistent changes in the values of either a or log c for either PRP- or net-time allocation as the salt concentration was increased from no salt to 6% salt. While the a values obtained from the PRP-time data increased from the 4% to the 6% salt conditions for all 4 subjects who completed both sets of conditions, there were no consistent differences between the values obtained from the no salt conditions and those obtained from either the 4% or the 6% salt conditions.

The changeover rates from conditions where the schedules were unequal

<u>Figure 4.12</u>. The logarithms of the PRP and net time ratios for the No Salt, 4% Salt and 6% Salt conditions in which the VI schedules were varied, plotted against the logarithm of the obtained reinforcer rate ratio for all possums. The dashed line was fitted by the method of least squares to the data and the dotted line represents perfect matching.

are not presented here. Analysis of these data indicated that the pattern of CO rates plotted against the log reinforcer, log response, and log time ratios was similar to that observed with the data from the equal-schedule conditions presented previously (Figure 4.6). In those conditions, the inverted U-shaped function which has been found when CO rate is plotted against the logarithms of the time- and response-allocation ratios was not present.

The local and absolute rates of responding on the left lever (unfilled circles) and right lever (pluses) are plotted against the logarithms of the reinforcer ratios for each possum in Figures 4.13 and 4.14, respectively. The left panels show the data obtained in Experiment 1 (where no salt was added to the barley), the centre panels show the data from the 4% salt conditions used in the matching line analyses above, and the right panels show the data from the corresponding 6% salt conditions. The local rates of responding on a lever tended to decrease as the reinforcer rate on that lever increased. The local response rates were faster in the no salt conditions, with very little difference between the rates observed during the 4% and 6% salt conditions. The absolute rates of responding tended to be fastest on the lever associated with the rich alternative (i.e., response rates on a particular lever increased as the reinforcer rate on that lever increased). For 3 subjects (Arthur, Timmy and Holly), the absolute response rates were faster during the no-salt conditions, and for 1 subject (Sylvester) the absolute response rates were highest during the 6% salt conditions. In all other cases, the differences between the absolute response rates across salt concentrations were very small.

Point Estimates vs. Line Estimates

In order to compare the point estimates of bias to the estimates obtained from the GML analysis, it is first necessary to remove inherent bias from the estimate. This can be done by subtracting the values of log c (inherent bias) obtained in Experiment 1 from the values of log c (from line estimates) obtained with 4% and 6% salt in the present experiment. These values are presented in Table 4.6. The data obtained from Arthur and Maggie are not presented here, as

Figure 4.13. The local rate of responding per minute on the left and right levers for the No Salt, 4% Salt and 6% salt conditions plotted in which the VI schedules were varied, plotted against the logarithm of the obtained reinforcer rate ratio for all possums.

Figure 4.14. The absolute rate of responding per minute on the left and right levers for the No Salt, 4% Salt and 6% salt conditions plotted in which the VI schedules were varied, plotted against the logarithm of the obtained reinforcer rate ratio for all possums.

Table 4.6

The estimates of bias based on the equal schedule conditions (point estimates) and derived from the GML fits from the 4% and 6% Salt conditions. Also presented is the difference between the two estimates, and the change in bias from the 4% to the 6% Salt conditions for each subject, and each measure of bias.

	Point Estimate (4% Salt)	Matching Line Estimate (4% Salt)	Difference (P.E - M.L.E) 4% Salt	Point Estimate (6% Salt)	Matching Line Estimate (6% Salt)	Difference (P.E - M.L.E) 6% Salt
		Response			Response	
George	-0.09	-0.21	0.12	-0.07	-0.17	0.10
Timmy	-0.07	-0.36	0.29	-0.15	-0.42	0.27
Holly	-0.09	-0.17	0.08	-0.12	-0.17	0.05
Sylvester	-0.20	-0.60	0.40	-0.22	-0.38	0.16
Mean	-0.11	-0.34	0.22	-0.14	-0.29	0.15
		Time			Time	
George	-0.61	-0.03	-0.58	0.09	-0.08	0.17
Timmy	-0.07	-0.23	0.16	-0.08	-0.32	0.24
Holly	-0.06	-0.24	0.18	-0.03	-0.20	0.17
Sylvester	-0.19	-0.18	-0.01	-0.18	-0.12	-0.06
Mean	-0.23	-0.17	-0.06	-0.05	-0.18	0.13
	Point	Matching	Point	Matching		
	Estimate Bias	Line Bias	Estimate Bias	Line Bias		
	Change (4%-	Change (4%-	Change (4%-	Change (4%		
	6%)	6%)	6%)	6%)		
	Resp	onse	Time			
George	-0.02	-0.04	-0.70	0.05	•	
Timmy	0.08	0.06	0.01	0.09		
Holly	0.03	0.00	-0.03	-0.04		
Sylvester	0.02	-0.22	-0.01	-0.06		
Mean	0.03	-0.05	-0.18	0.01		

these subjects did not complete all conditions. There are large differences between the values of log c obtained from the line estimates and those obtained using the point estimates. The mean values of log c obtained from responseallocation data when point estimates were used were -0.11 and -0.14 when 4% and 6% salt were presented, compared to values of -0.34 and -0.14 when the line estimates were used. Similarly, when the time-allocation data were used, the mean point estimates were markedly different from the mean line estimates of bias (-0.23 and -0.05 vs. -0.17 and -0.18, for 4% and 6% respectively).

Even though the actual values of the bias estimates differed markedly, it might be expected that the change in bias from the 4% to the 6% salt conditions would be similar when the two methods were used. The difference between the bias estimates obtained from the 4% and 6% salt conditions is also presented in Table 4.6 for each method. It can be seen from the table that the change in bias was similar for 3 of the 4 subjects for both response and time estimates (in these cases the estimates were within 0.08 of each other). Although not presented here, the same result was observed for post-COD and PRP- and net-time allocation estimates of bias.

Discussion

The results of the Experiment 3 demonstrated that it was possible to bias the behaviour of possums on concurrent schedules of reinforcement using qualitatively different reinforcers. One aim of the present experiment was to determine whether graded biases could be obtained by systematically changing the quality of the food presented. This change in quality was achieved by increasing the concentration of salt added to the standard reinforcer (barley).

Point Estimates of Bias

Increasing the concentration of salt had no systematic effects on the bias measures from individual possums. Although with both response- and timeallocation measures the possums' behaviour was, in most cases, biased towards the Barley in the 0%, 4% and 6% salt conditions, the magnitudes of the biases did not consistently increase or decrease within possums with changes in salt concentration. In addition, when 2% salt was presented, subjects' biases were not consistently either towards or away from this alternative. The mean response bias towards the barley decreased from the 0% to the 2% salt condition, but increased with further increases in salt concentration. This suggests that overall, the possums prefer small amounts of salt (around 2%), with higher salt concentrations being less preferred, as was suggested in the Introduction. However, no such pattern was evident with the mean time-allocation biases.

The mean response- and time-allocation biases obtained in the present experiment were, for all salt concentrations, larger than those found in Experiment 3 with Cocopops, but smaller than those found with Coconut. As in Experiment 3, the bias estimates obtained here fall within the range observed in previous studies (Matthews & Temple, 1979; Miller, 1976).

Response-allocation measures of bias were generally larger in the second half of the session. This was only the case during the 4% and 6% salt conditions for time-allocation measures. This result was also found in Experiment 3 with coconut. As was suggested in that experiment, it is possible that the possums satiated to the salted alternative, and this is reflected in the shift in bias away from the salted alternative from the first half to the second half of the session.

There was very little bias in within-COD responding. Experiments 1, 2 and 3 also demonstrated insensitive responding and little bias during this period. The post-COD bias estimates were generally large, with the mean bias measure increasing with salt concentration. However, again, there were no consistent patterns in the individual subjects' data.

As in Experiment 3, when PRP time was removed from the bias estimates, the remaining (net) time biases were larger than the total-time biases. The PRP-time biases were small in all cases. It might have been expected that PRP biases would be consistently towards the salted alternative, because after the cooking process, the salted barley seemed, to the experimenter, to be noticeably more difficult to chew. However, the direction of the PRP-time bias was not consistently towards either alternative. This suggests that either the time between receiving a reinforcer and the next response is not spent entirely on 'eating', or that cooking the barley did not affect the difficulty, or time taken, for the possums to eat the food in the same way as was expected when the food was tasted by the experimenter.

Line vs. Point Estimates of Bias

Line estimates of bias were obtained for 4% and 6% salt using both the GML and the C-D model. The estimates of bias obtained from the two models were very similar. For both response and time measures, there were no consistent changes in bias with changes in salt concentration. The mean bias estimates from the two sets of conditions were very similar for response allocation (-0.19 and -0.18), with time-allocation measures showing more bias towards the barley during the 6% salt conditions.

The logarithms of the point estimates of bias were compared with the line estimates of bias (with inherent bias removed) for the 4 subjects who completed all conditions. For response allocation, the line-estimate biases were consistently larger than those obtained from the point estimates. When the same comparison was made for time allocation, the point estimates were larger in four cases, and smaller in the remaining four cases. These results suggest little consistency between point and line estimates of bias. It was expected that point estimates of bias would be more variable than line estimates, due to the difference in the number of data points included in the calculation of each measure. It was also expected that the point estimate values would vary to either side of the line estimate values (i.e., sometimes smaller, sometimes larger). This was so for time allocation but not for response allocation.

In this experiment, all of the point-estimate data were collected before the line-estimate data, however, when one of the equal schedules conditions was replicated with 4% salt, after all of the line estimate data had been collected, only 1 subject (Emma) showed a large difference in response allocation across the two conditions, suggesting that these bias estimates are relatively stable. This is consistent with Matthews' (1983) food preference data from cows, suggesting that bias estimates obtained with qualitatively different reinforcers can be expected to remain stable over a large number of experimental conditions. Therefore, these differences in the bias estimates using point and line estimates are not likely to be due to a change in bias over time.

Despite not finding an even distribution of point estimates around the line estimates for response allocation, it is still possible that the changes in bias from 4% to 6% salt might be consistent across the two measures. For both responseand time-allocation, the change in bias with the two measures was similar for 3 of the 4 subjects, giving some support to this idea.

In order to get a clearer picture of why the two measures may have differed, the difference between the predicted and obtained logarithms of the response ratios (i.e., the residuals) from the GML analysis were plotted against the logarithms of the obtained reinforcer ratios in the two left-most panels of Figure 4.15 for the 4% and 6% salt conditions. The solid line on each of these graphs indicates the point where the predicted and obtained ratios were equal. In most cases, the data appear to form a U-shaped function when plotted in this way, indicating systematic deviations from the straight line predicted by the GML. This U-shaped function helps explain the difference in bias estimates using point and line estimates. The function is relatively symmetrical, with the equal schedule data at the base of the U, indicating smaller response ratios when compared to the unequal-schedules data, therefore resulting in different estimates of bias. It is not clear why this U-shaped function might be present.

The differences between the predicted and obtained logarithms of the response ratios from Experiment 2 were also plotted against the obtained reinforcer ratios (Figure 4.16). With these data, although the U-shaped function is present in a few cases, it is not as common a finding as in the present experiment. This function suggests there is an interaction between the reinforcer-rate ratio and the different reinforcers used, with possums showing larger biases towards barley when the salted alternative was associated with the rich alternative. This will be discussed further later.

Figure 4.15. The difference between the predicted and obtained logarithms of the response ratios plotted against the logarithms of the obtained reinforcer ratios for the data from Experiment 4. The two leftmost panels show the analysis using the GML and the two rightmost panels show the analysis using the C-D model, from the 4% and 6% salt conditions, respectively.

Log Obtained Reinforcer Ratio

<u>Figure 4.16</u>. The difference between the predicted and obtained logarithms of the response ratios plotted against the logarithms of the obtained reinforcer ratios for the data from Experiment 2. Here, the data were analysed using the GML.

The within-COD response and PRP-time biases were generally small, with most of the food bias being present in the post-COD response and net-time allocation data. Again, there were no consistent changes in bias with changes in salt concentration, and there were large differences between the point and line estimates of bias. As was the case with the point estimates, the PRP biases were not consistently towards the salted alternative, as might have been expected if the PRP-time were actually entirely devoted to eating.

With both point and line estimates, the rank order of biases across concentrations was not consistent across subjects. There is no obvious reason to expect similar results across possums. When Hudson et al. (1999) studied the food preferences of possums, they found that each of the possums preferred a different food, with foods that were highly preferred by some subjects not being eaten at all by other subjects. Other studies that have used concurrent schedules to measure food biases have also found differences across subjects (e.g., Matthews & Temple, 1979; Miller, 1976). Given these results, it would be unreasonable to expect the order of preferences to be the same for all possums.

Sensitivity/Discriminability

One of the aims of the present experiment was to examine, and compare, how the GML and the C-D model cope with experimentally introduced biasers. Neither the sensitivity (*a*) nor the discriminability (d_r) measure changed consistently with changes in salt concentration. It might have been expected that changing from one magazine which provided reinforcers for responses to both alternatives to two magazines, each associated with a different response alternative, and providing different feeds, would have improved the discriminability of the response-reinforcer contingencies. However, the measures obtained from the present experiment were similar to those obtained in Experiment 1. There were no consistent increases in d_r values from Experiment 1 to the present Experiment.

Given the large biases away from 4% and 6% salt, it is unlikely that the subjects could not discriminate between the feeds, or the responses that were

producing them. Therefore, the lack of change in d_r values from Experiment 1 to the present experiment suggest that this parameter may not actually be measuring the response-reinforcer contingencies. Previous studies have shown that when the stimuli associated with the schedules are made more different the calculated values of d_r required to fit the data increase. Presumably this reflects an increase in discriminability. Davison and his colleagues have not published any studies where other methods of improving the response-reinforcer discriminability have been attempted. It may be that the parameter d_r actually measures the stimulusresponse relationship rather than the response-reinforcer relationship.

It is possible that the problem lies in the way the bias due to the different foods was included in the model. Davison and Nevin (1999) noted that while reinforcer quality could be incorporated into the model, such experimental conditions would result in both the reinforcer value and the response-reinforcer relations being altered, and suggested that the model should allow for this. However, they made no suggestions as to how such variables could be included in the model.

As previously mentioned, the data here showed systematic deviations from the straight line predicted by the GML (Figure 4.15). Figure 4.15 also shows the differences between the logarithms of the predicted and obtained response ratios when the C-D model was used. The pattern of deviations was very similar to that observed with the GML (a U-shaped function), suggesting, as mentioned above, an interaction between the reinforcer-rate ratio and the different reinforcers used. Therefore, it may be that this function is the result of an improvement in discriminability due to the different foods, but that this aspect of discriminability affects behaviour in a different manner to factors such as stimulus disparity (which has been shown to affect the measure of discriminability in the C-D model). The fact that this U-shaped function was not observed in Experiment 2, where the foods were the same and the COD length was varied, adds support to the idea that this function is somehow related to the different foods presented.

Consistent with the present findings, Sumpter (1996) found that when attempting to bias behaviour under concurrent VI (key peck) VI (door push)

schedules of reinforcement, with increasing door weight, the effects of the door weight were not constant with changes in the schedules associated with each alternative (as was found in here). Arranging different response requirements would be expected to increase the discriminability of the response-reinforcer contingencies, and therefore Sumpter's (1996) results support the idea that the Ushaped function found in here was the result of a change in discriminability. However, Sumpter (1996) also found evidence of increased sensitivity estimates with the different force requirements associated with the door. Having different response requirements, such as a key and a door could conceivably have effects on behaviour analogous to increasing the stimulus disparity (with increases in door weight resulting in further increases in disparity), which increases sensitivity and therefore the discriminability measure in the C-D model. In finding both an increase in sensitivity and an interaction between the reinforcer-rate ratio and bias, Sumpter's results support the previous suggestion that d_r is actually measuring some aspect of the stimulus-response relationship, whereas changes in discriminability due to biasers affect behaviour in a different manner. Further research into the effects of different types of biasers on concurrent-schedule behaviour is needed to clarify this issue.

When the C-D model was used to analyse the response, time and post-COD response data, there were four cases where negative (and therefore, uninterpretable) values of d_r were found. In those cases, the values of p_r were close to 1.0 (ranging from 1.02 to 1.04), and it might be argued by some that discriminability was actually perfect (e.g., Davison & Jenkins, 1985). Alternatively, such occurrences may indicate a failure of the model. Two of the instances where p_r was greater than 1.0 occurred with the post-COD data. Davison and McCarthy's punishment version of the C-D model was proposed to deal with such data. However, given the results of Experiment 2, where the model failed to account for this 'overmatching' this model was not fitted to these data.

Changeover Rates

The rate of changing over in the present experiment did not conform to

an inverted U-shaped function when plotted against the logarithms of the response, time or reinforcer-rate ratios. This result is inconsistent with results from Experiments 1 and 2 (and Experiment 3 for the logarithms of the time-allocation ratio only), as well as previous studies (e.g., Baum, 1974; Catania, 1963; Herrnstein, 1961; Sumpter et al., 1995). There is no obvious reason for this finding. It might be, in part, due to the use of qualitatively different reinforcers. The inverted U-shaped function was not as defined in Experiment 3, where qualitatively different reinforcers were also used, and was absent when the CO rate was plotted against the logarithms of the response-allocation ratios. In addition, there were a greater number of conditions in the present experiment. Had a similar number of conditions been conducted in Experiment 3, the U-shaped relation may have been obscured.

Response Rates

The absolute rate of responding on a lever generally increased as the rate of reinforcement associated with that lever increased. When equal schedules were used, the absolute rates of responding were generally faster on the preferred alternative. The local rate of responding generally decreased as the rate of reinforcement associated with that lever increased. When equal schedules were used, there was no relation between local response rate and bias. These results are consistent with those from Experiments 1, 2 and 3, as well as with previous studies (Baum, 1979; Davison & Ferguson, 1978; Herrnstein, 1961). The actual rates of responding were generally slower than was observed in Experiment 1. This may have been due to the presence of a 'non-preferred' food. Similar rates of responding were observed in Experiment 3, providing support for this idea.

The present experiment showed that the GML and the C-D model describe behaviour with qualitatively different reinforcers equally well, giving similar %VAC measures. It was also seen that the bias estimates were not constant across reinforcer-rate ratios. This resulted in systematic deviations from the lines predicted by both models, suggesting that neither model is better suited to the analysis of such data. While it may be possible to modify the C-D model in such a way that the interaction between bias and discriminability is accounted for (as suggested by Davison & Nevin, 1999), it is not clear how this could be done.

•

GENERAL DISCUSSION

General Possum Behaviour

These experiments constitute a comprehensive study of the behaviour of possums under concurrent VI VI schedules of reinforcement. It has been shown that the behaviour of possums is similar to that of other species in the following ways:

- The sensitivity of the possums response-allocation to reinforcement-rate differences was within the range found with other species.
- The time-allocation ratios approximately matched the reinforcerrate ratio.
- Time allocation was more sensitive to reinforcer-rate changes than was response allocation.
- Responding within the COD was insensitive to changes in the reinforcer-rate ratio.
- Responding during the COD was faster than at any other time.
- The rates of changing over decreased as the reinforcer rates on the two schedules became more different (when the reinforcer was the same on both alternatives) and as the COD length increased.
- The local response rates were faster on the lean alternative and, as expected, the absolute response rates were faster on the rich alternative.
- With concurrent EXT VI schedules, a small amount of responding was observed on the extinction alternative for most possums.

Despite behaving in a way that was very similar to other species, there were some inconsistencies between the behaviour of the two groups of possums studied here. While the response-based sensitivity estimates from Experiments 1, 2 and 4 were similar (with a greater amount of undermatching than is normally found with rats, pigeons and hens (Davison & Hunter, 1976; Hollard & Davison, 1978; Logue & de Villiers, 1978; Norman & McSweeney, 1978; Temple et al., 1995)), in Experiment 2, the sensitivity of the post-COD response allocation was similar to that which has been found with other species (McAdie et al., 1996; Shahan & Lattal, 1998; Temple et al., 1995), and was consistently higher than in Experiments 1 and 4 (see Table 5.1). Inspection of the data suggests that this may be due to different patterns of responding within the COD between Experiment 2 and Experiments 1 and 4.

The within-COD sensitivity measures from Experiments 1,2 (2-s COD only), and 4 are presented in Table 5.1. There are no consistent differences between the within-COD sensitivity estimates from those experiments. It may be that the differences in post-COD sensitivity estimates are a function of the amount of time spent, and therefore, the number of responses made, during the COD. The rate of changing over in Experiment 2 was found to be lower than that in Experiment 1. In addition, the rate of responding during the COD was faster than at any other time during the session, and the number of responses made to each alternative within the COD are approximately equal (i.e., local response rates are approximately equal). On the other hand, the local rates of responding after the COD were fount to change with changes in the reinforcer rate ratio, and were approximately equal only when the schedules associated with the two alternatives were equal. If one group of possums was consistently changing over more often than the other, this would result in a smaller amount of post-COD responding, and therefore, a smaller amount of differential responding on the two alternatives, which could influence the post-COD sensitivity estimates. It was also noted that the response rates differed across experiments, which could add to this effect.

In order to examine the possibilities mentioned above, Figure 5.1 shows the mean changeover rates plotted against the logarithms of the time-allocation ratios, as well as the mean local and absolute response rates plotted against the logarithms of the reinforcer ratios for Experiments 1, 2 (with a 2-s COD), and 4 (for both 4% and 6% salt). These graphs show that the rates of changing over were similar during Experiments 2 and 4 (and lower than during Experiment 1), while the rates of responding were similar in Experiments 1 and 2, and higher than

Table 5.1

The mean and range of response, time, post COD, and within COD a values with each COD, from Experiments 1, 2 and 4.

	0-s COD		2-5	2-s COD		4-s COD		6-s COD	
	Mean	Range	Mean	Range	Mean	Range	Mean	Range	
Response	0.5	0.45 - 0.56	0.54	0.43 - 0.71	0.6	0.31 - 0.84	0.56	0.28 - 0.72	
Time	0.79	0.69 - 0.84	0.98	0.92 - 1.14	0.97	0.86 - 1.09	0.91	0.75 - 1.13	
Post COD Responses	0.68	0.59 - 0.76	1.02	0.88 - 1.14	1.18	0.92 - 1.26	1.11	0.87 - 1.44	
Within COD Responses	-	-	0.00	-0.18 - 0.07	-0.04	-0.34 - 0.15	-0.07	-0.44 - 0.21	
			Experimer	it 1 - 2-s COD					
			Mean	Range					
Response			0.51	0.36 - 0.63					
Time			0.96	0.64 - 1.13					
Post COD Responses			0.77	0.49 - 1.01					
Within COD Responses			0.04	-0.11 - 0.15					
		Exp	eriment 4 -	4% Salt, 2-s CC	D				
			Mean	Range					
Response			0.55	0.40 - 0.74					
Time			0.88	0.77 - 1.07					
Post COD Responses			0.87	0.74 - 1.08					
Within COD Responses			-0.02	-0.06 - 0.05					
		Exp	eriment 4 -	6% Salt, 2-s CC	D				
			Mean	Range					
Response			0.51	0.38 - 0.64					
Time			0.88	0.65 - 1.13					
Post COD Responses			0.81	0.61 - 1.05					
Within COD Responses			0.03	-0.02 - 0.09					

Figure 5.1. The mean changeover rates plotted against the logarithms of the time allocation ratios (left panel), and the mean local response rates (centre panel) and mean absolute response rates (right panel) plotted against the logarithms of the reinforcer ratios from Experiments 1, 2 (with a 2-s COD), and 4 (for 4% and 6% salt conditions where the schedules were varied).

in Experiment 4. It appears that the decrease in both response rates and changeover rates from Experiment 1 to Experiment 4 was approximately proportional. Therefore, although both of these aspects of behaviour had changed, there was no corresponding change in sensitivity. On the other hand, in Experiment 2, while the rates of changing over were lower than in Experiment 1, the rates of responding were similar. This means that in Experiment 2, a greater portion of the responses occurred outside the COD. As mentioned previously, responding within the COD was insensitive to changes in the reinforcer-rate ratio. Therefore, when more responses are made outside the COD, where the ratio of responses changes with the ratio of reinforcement, behaviour will become more extreme, resulting in the greater sensitivity found for post-COD responding in Experiment 2.

While this explains how the differences in post-COD responding came about, it does not address why they were present in the first place. The most likely explanation is the subjects' previous experience. The subjects used in Experiments 1 and 4 had only ever experienced a 2-s COD, whereas the subjects in Experiment 2 were first exposed to six conditions with a 0-s COD. It is possible that the change from a 0-s COD to a 2-s COD had a greater effect on the rate of changing over than simply introducing a 2-s COD. The differences in the rates of changing over between Experiments 1 and 4 are likely to be due to the different foods presented. When preference for an alternative is manipulated by changing the reinforcer ratio, the rate of changing over also changes (becoming slower as the alternatives become more different). Therefore, it is not unreasonable to expect the same effect when preference is manipulated in other ways (i.e., lower rates of changing over as preference moves further away from indifference, regardless of the cause of the preference change). This effect was also seen when McAdie et al. (1996) studied the effects of an overlaid noise on concurrent-schedule behaviour with hens.

Food Preference

In Experiments 3 and 4, an in-depth analysis of behaviour with

qualitatively different reinforcers was conducted. Generally, the results of these experiments were consistent with previous studies (e.g., Matthews & Temple, 1979; Miller, 1976), in that the degree of the biases were similar, and there were inconsistent differences between the response- and time-bias estimates across subjects, with these estimates sometimes being in opposite directions. In the present experiments, there was no attempt made to measure consumption of the different foods, so it is not known how well the estimates of bias relate to how much of each of the foods was eaten. Recording such data would provide an indication of how preference measured in this way relates to consumption, which would be helpful in the search for a bait for use with possums in the wild.

These experiments also demonstrated that biases due to qualitatively different foods are not present in behaviour during the COD. The effects of food biasers on within-COD behaviour has not previously been studied, but a similar result was observed by McAdie et al. (1996) using noise biasers. These results suggest that no matter how preference is manipulated, whether it be by changing the rates of reinforcement, or by introducing biasers such as different foods, different flavours, or presenting an aversive noise while responding on one of the alternatives, very little change will be observed in responding within the COD. These findings further support Baum's (1982) and Temple et al's. (1995), suggestion that responding during the COD is discriminated by the subject (i.e., this behaviour does not change with changes in preference measures), and therefore can be removed from the data before analysis.

The Contingency-Discriminability Model

It appears from the results of Experiment 2, that increasing the length of the COD does not improve the response-reinforcer discriminability for possums. When the COD was increased from 0 s to 6 s in 2-s intervals, no consistent changes in discriminability were observed. To date, the only cases where discriminability has been shown to improve have involved changing the disparity of the stimuli (Alsop & Davison, 1991; Davison & Jenkins, 1985). Davison and Nevin (1999) suggested that manipulating variables such as the quality, magnitude and duration of reinforcement should also affect discriminability. Experiment 4 suggested that this is not the case for food quality, at least with the current form of the model. However, while the estimates of discriminability did not change, an interaction was observed between bias and reinforcer-rate ratio. As mentioned previously, Davison and Nevin suggested that the model would need to be modified in such a way that would enable both discriminability and bias to vary with introduced biasers, which could account for the interaction observed in Experiment 4.

In general, the C-D model described the data from these possums equally as well as the GML (giving similar %VAC measures). There were no obvious sshaped functions in the data from these experiments when the logarithms of the response ratios were plotted against the logarithms of the reinforcer ratios. It should be noted again that Davison and Jones (1995) stated that these models should differ only outside the range of reinforcer-rate ratios used in these experiments, and so this s-shaped function should presumably be noticeable only in such cases. However, Baum et al. (1999) suggested that the s-shaped function obtained by Davison and Jones (1995) when the logarithms of the response ratios were plotted against the logarithms of the reinforcer ratios may have been a direct result of the procedure used. Their experiment used dependent schedules, a 3-s COD, and a changeover key procedure with more confusable stimuli (two different levels of brightness) than most concurrent schedule experiments. Baum et al. (1999) studied choice behaviour over a similar range of reinforcer-rate ratios using independent schedules of reinforcement on a standard two-key concurrent schedule procedure without a changeover delay. Under these conditions, Baum et al. failed to obtain the s-shaped function obtained by Davison and Jones (1995), and in fact found that the GML provided a better description of the subjects' behaviour than did the C-D model when the %VAC measures were compared.

Baum et al. (1999) suggested that the small amount of undermatching generally found in studies using concurrent VI VI schedules of reinforcement is actually a direct result of the way the data are analysed. They suggested that instead of looking at behaviour in terms of the position or colour of the associated response alternatives, it may be more appropriate to look at behaviour in terms of the preferred and non-preferred alternatives. When their data were treated in this way, the undermatching that was observed with the traditional generalised matching law appeared as a bias towards the non-preferred alternative (with a slope of approximately 1.0). As a result of this finding they proposed that there are two distinct reasons why undermatching is often observed. The first, which they suggested was the case in their experiment, apparently results from fitting an inappropriate equation (i.e., the GML), and therefore, is not really undermatching (as this can be eliminated by plotting the preferred vs. the non-preferred alternatives). The second is the result of poor discriminability, in which case the C-D model (with preferred and non-preferred alternatives substituted for left and right alternatives) should be used instead.

Baum et al. (1999) proposed an alternative equation to the GML:

$$\log (N/B_{\rm P}) = \log (r_{\rm N}/r_{\rm P}) - \log D - \log c$$
(5.1)

where N is the number of visits to the non-preferred alternative (or half the number of changeovers), B_p is the number of responses or amount of time spent on the preferred alternative, r_N and r_p are the numbers of reinforcers obtained on the non-preferred and preferred alternatives respectively, D is the number of responses or amount of time spent per visit to the non-preferred alternative, B_N/N (i.e., $D = B_N/N$), and c is a measure of bias.

Equation 5.1 states that the probability of visiting the lean alternative depends directly on the ratio of reinforcement. This model is based on the assumption that subjects will make most of their responses (or spend most of their time) on the preferred alternative, with only brief visits to the non-preferred alternative. Baum et al. recommend the use of this equation only if the subjects' behaviour matches the reinforcer-rate ratio (otherwise the C-D model is more appropriate). However, if this is the case, the above equation is of little use over and above the matching law, as it is simply a slightly re-arranged version of the matching law. Substituting B_N/N for D gives:

$$\log (N/B_{\rm P}) = \log (r_{\rm N}/r_{\rm P}) - \log (B_{\rm N}/N) - \log c$$
(5.2)

adding log (B_N/N) gives:

$$\log (N/B_{\rm P}, B_{\rm N}/N) = \log (r_{\rm N}/r_{\rm P}) - \log c$$
(5.3)

or

$$\log (B_{\rm N}/B_{\rm P}) = \log (r_{\rm N}/r_{\rm P}) - \log c$$
(5.4)

which is the GML expressed as the ratios of the non-preferred to the preferred alternatives, without a sensitivity parameter (which is not necessary because matching must be obtained before this equation can be used), and with bias subtracted rather than added.

It appears that the presence of position biases prevents the use of the above equation. Baum et al. (1999) noted that such an analysis was only possible for their data because there were no apparent position biases for any of their subjects. Just as biases towards the preferred or non-preferred alternative result in deviations from matching with the traditional GML, biases towards the left and right alternatives will result in deviations from matching when using Baum et al.'s modified matching law. Using Baum et al.'s equation, then, it would be difficult (although not impossible) to study the effects of experimentally manipulated biasers other than the reinforcer rate.

Figure 5.2. An approximation of the figures presented by Baum et al. (1999) when separate regression lines were fitted to the concurrent schedule data where the schedules associated with the left key were rich, and where the schedules associated with the right key were rich.

Baum et al. (1999) initially proposed plotting concurrent VI VI schedule data in terms of preferred versus non-preferred alternatives based on data from pigeons which showed that when two separate regression lines were fitted, one to the data where the preferred alternative was on the left, and one to the data where the preferred alternative was on the right, each line had a slope of approximately 1.0, with biases in the direction of the non-preferred alternative. This is illustrated above in Figure 5.2.

This analysis was carried out with the data from Experiment 2. Figure 5.3 shows the data from each of the COD lengths. For each subject, the logarithms of the response ratios are plotted against the logarithms of the reinforcer ratios. The data from the conditions in which the schedules were equal are not included here. The dotted line on each graph represents strict matching. The solid and dashed lines on each graph are the lines fitted through the two data points for the conditions where the preferred alternative was on the right (left side of the graphs) and left (right side of the graphs) respectively. When Baum et al. did this analysis with their pigeon data, the lines of best fit were parallel to the strict matching line in all cases. In five cases in Experiment 2, one of the lines was approximately parallel to strict matching, however, this was not the case for both sets of data for any of the subjects with any of the COD lengths in Experiment 2.

Table 5.2 gives the slopes and intercepts of each of the lines presented in Figure 5.3, as well as the slopes and intercepts of the overall regression lines (including the data from the equal-schedule conditions). Baum et al. suggested that a values of around 0.8 were the result of a bias towards the non-preferred alternative. Therefore, this method of analysing concurrent-schedule data may not be appropriate here, since a values of around 0.8 were generally not observed.

Temple et al. (1995) studied the behaviour of hens over a wide range of COD values, and did find sensitivity estimates of approximately 0.8, therefore, the above analysis was also carried out on their data. Figure 5.4 shows the data from three of the COD lengths used by Temple et al. For each subject, the logarithms of the response ratios are plotted against the logarithms of the reinforcer ratios when there was no COD (left panel), a 2-s COD (centre panel), and a 4-s COD (right panel). Again, the data from the conditions in which the schedules were equal are not included here. The dotted line on each graph represents strict

Log Reinforcer Ratio

<u>Figure 5.3</u>. The logarithms of the response ratios plotted against the logarithms of the reinforcer ratios for the data from Experiment 2. The dotted line represents perfect matching, and the solid and dashed lines are the lines of best fit for the conditions where the preferred alternative was on the right (left side of the graphs) and left (right side of the graphs) respectively.

Table 5.2

Slopes (a) and y-intercepts $(\log c)$ of the lines of best fit from Figure 5.4. Lines were fitted to the data from conditions in Experiment 2 where the preferred alternative was associated with the left and right levers separately. Also presented are the slopes and intercepts from the original GML analysis.

	Left		R	light	Overall	
	Slope	Intercept	Slope	Intercept	Slope	Intercept
Possum	(<i>a</i>)	$(\log c)$	(<i>a</i>)	(log <i>c</i>)	(<i>a</i>)	$(\log c)$
	0-s COD					
Static	0.49	-0.07	0.68	0.05	0.51	-0.09
Jasper	1.39	-0.73	0.40	-0.20	0.56	-0.10
Izzie	0.34	0.12	0.15	-0.24	0.48	-0.01
Benny	0.46	-0.02	0.35	-0.08	0.45	-0.02
Emma	0.42	-0.01	0.96	0.29	0.51	-0.07
MEAN	0.62	-0.14	0.51	-0.04	0.50	-0.06
			2-s	COD		
Static	0.90	-0.30	0.30	-0.27	0.58	-0.05
Jasper	0.94	-0.45	0.38	-0.07	0.43	-0.05
Izzie	-0.61	1.10	1.28	0.83	0.50	0.22
Benny	0.27	0.18	0.23	-0.17	0.47	0.05
Emma	1.07	-0.16	0.81	0.21	0.71	0.12
MEAN	0.52	0.07	0.60	0.10	0.54	0.06
			4-s	COD		
Static	0.55	-0.12	0.48	-0.06	0.48	-0.02
Jasper	1.41	-0.55	0.48	-0.10	0.65	0.00
Izzie	-	-	-	-	0.84	0.53
Benny	0.40	0.03	0.33	0.12	0.31	0.12
Emma	1.04	-0.06	0.44	-0.04	0.73	0.18
MEAN	0.85	-0.18	0.43	-0.02	0.60	0.16
	6-s COD					
Static	0.69	-0.13	0.68	-0.08	0.66	-0.10
Jasper	0.90	-0.20	0.59	-0.05	0.66	-0.02
Putzy	0.08	0.21	0.77	0.14	0.48	-0.09
Benny	-0.16	0.48	0.59	0.39	0.28	0.17
Emma	0.82	0.00	0.89	0.23	0.72	0.11
MEAN	0.47	0.07	0.71	0.12	0.56	0.01

<u>Figure 5.4</u>. The logarithms of the response ratios plotted against the logarithms of the reinforcer ratios for the data from the no COD (left panel), 2 s COD (centre panel), and 4 s COD (right panel) conditions of Temple et al.'s (1995) experiment. The dotted line represents perfect matching, and the solid and dashed lines are the lines of best fit for the conditions where the preferred alternative was on the right (left side of the graphs) and left (right side of the graphs) respectively.

matching. The solid and dashed lines on each graph are the lines fitted to the data for the conditions where the preferred alternative was on the right (left side of the graphs) and left (right side of the graphs), respectively. Again, unlike Baum et al.'s data, the lines were not parallel to the strict matching line for any of the subjects with any of the COD lengths in Temple et al.'s experiment (although the data from the 7.5-s and 15-s COD conditions are not presented here, this was also true of those sets of conditions).

Table 5.3 gives the slopes and intercepts of each of the lines presented in Figure 5.4, as well as the slopes and intercepts of the overall regression lines (including the data from the equal-schedule conditions). The data from Temple et al.'s experiment using hens clearly show that the finding of a values of around 0.8 was not the result of a bias towards the non-preferred alternative. In several cases, a values of around 0.8 were obtained with the overall response-allocation data, however, fitting two separate regression lines did not indicate matching in terms of the preferred and non-preferred alternatives in any of these cases.

In most cases in Figures 5.3 and 5.4, the lines were fitted to only two data points. It is possible that a larger number of conditions, over a wider range of reinforcer-rate ratios would have shown a closer approximation to matching with hens. However, in the cases where three data points were used, the slopes of the lines were not closer to 1.0 (in fact, in two cases, the slopes were actually negative).

The GML vs. the C-D model

One of the aims of this thesis was to examine the suitability of the GML and the C-D model for the analysis of concurrent VI VI schedule behaviour. Five attributes were identified in the General Introduction which are desirable in such a model: 1. It must fit the data well; 2. The parameters must be logical and defensible; 3. The inclusion of parameters should depend on theory, not data; 4. The parameter values should be reasonable in terms of the assumptions; 5. The model should be predictive of changes in the data with changes in the

Tabl	le 5	.3

Slopes (a) and intercepts (log c) of the lines of best fit from Figure 5.5. Lines were fitted to the data from conditions where the preferred alternative was associated with the left and right key seperately. Also presented are the slopes and intercepts from the original analysis by Temple et al. (1995).

	Left		Right		Overall			
Subject	а	log c	а	log c	а	log c		
		No COD						
11	0.09	0.41	0.25	-0.11	0.65	0.15		
12	1.04	-0.06	0.51	0.04	0.64	0.11		
13	0.17	0.28	0.98	0.20	0.68	0.07		
14	1.43	0.65	0.53	-0.43	0.74	-0.25		
15	0.32	0.11	0.35	0.14	0.31	0.10		
16	0.76	-0.20	0.91	-0.11	0.78	-0.21		
			2 s (COD				
11	-0.27	0.54	0.22	-0.50	0.85	-0.07		
12	-0.38	0.65	0.89	-0.24	0.98	-0.09		
13	1.07	-0.11	1.25	0.31	0.80	0.06		
14	0.51	0.12	0.44	-0.26	0.78	-0.04		
15	0.89	-0.05	0.48	-0.05	0.69	0.03		
16	0.46	0.10	0.08	-0.27	0.64	-0.07		
	4 s COD							
11	0.51	0.41	0.62	-0.28	0.99	0.01		
12	-0.10	0.68	0.77	-0.07	0.94	0.07		
13	1.30	-0.10	0.97	0.20	0.93	0.16		
14	1.20	-0.24	0.71	-0.56	1.05	-0.21		
15	0.50	0.37	0.59	-0.18	0.93	0.02		
16	0.69	0.00	0.98	0.05	0.84	-0.05		

experimental conditions. These will be discussed in turn for both the GML and the C-D model, and in places, Baum et al.'s model.

- Both the GML and the C-D model fulfilled this criterion. The %VAC by both of these models was above 90% in all cases for both response- (overall and post-COD) and time-allocation data. In addition, analyses of the data from Experiment 4 indicated that the patterns of the deviations of the data from the lines predicted by the two models were similar. While Baum et al.'s model appeared to fit their data well, the failure of Temple et al.'s (1995) data to conform to two separate matching lines suggests that this model, in general, would not provide a good fit for concurrent VI VI schedule data.
- 2. As the sensitivity to reinforcement parameter (a) in the GML increases from 0 to 1.0, behaviour becomes closer to matching, while further increases in *a* result in overmatching. Therefore, as sensitivity increases, behaviour becomes more extreme. On one level, then, the logic of *a* appears reasonable. However, the sensitivity parameter was invented because behaviour frequently deviates from matching, and therefore is post-hoc (i.e., there was no a priori reason to expect such a relation). The parameter d_r in the C-D model has logical appeal, in that assumptions about how discriminability might affect behaviour can be made in the absence of data. In this case, as discriminability of the responsereinforcer contingencies (i.e., the schedules of reinforcement associated with each of the discriminative stimuli) improves, the behaviour ratio becomes more similar to the reinforcer-rate ratio. It is easy to see how reduced discriminability could lead to responding which is closer to indifference. However, no provision is made here for explaining behaviour which is more extreme than the reinforcer-rate ratio. The parameter w in the punishment version of the C-D model is described as the

perceived number of reinforcers lost per second due to changing over between the schedules. The logic here is that when a changeover delay (or similar procedure) is in effect, the act of changing over results in time-out from reinforcement. Therefore, the subject has 'lost' reinforcers by essentially taking time-out from the schedules of reinforcement. The parameter *w*, then, seems also to have logical appeal, although when it is to be used raises some questions.

- 3. While it could be argued that the parameters of the GML were introduced because strict matching was not always found in concurrent VI VI schedule data, these parameters are used in all cases where the model is used. Therefore the inclusion of the parameters is in no way dependent on the individual data set. This is not the case with the C-D model. Only in cases where the original version of the model gives *d_r* values outside the range 1.0 to ∞ from post-COD data, Davison (personal communication) suggests that the punishment version of the model be used instead (i.e., the C-D model with *w* included). Therefore, the inclusion of *w* in the model is based purely on the individual data set. Since post-COD responding does not consistently give values of *d_r* outside this range, and there is no way of predicting when it will do so, it is difficult to defend the logic of this parameter.
- 4. The GML's *a* parameter has no restrictions on the possible values. The basic assumption here is simply that there is some type of relation between response and reinforcer-rate ratios. While low or high values of *a* may seem odd, the GML cannot predict what values should be expected (see below). The original version of the C-D model gives reasonable values of *d_r* most of the time. The only exception is when the data show overmatching (which unfortunately is reasonably common). The punishment version of the C-D model is capable of giving

unreasonable d_r values, and in this case overmatching does not have to be present (although Davison, in a personal communication, suggested that this equation should not be used in such cases). The parameter w also sometimes takes on unusual values. In several cases in the present experiments, large negative w values were obtained, indicating that large numbers of reinforcers were apparently gained due to changing over. This is not consistent with the logic behind the w parameter.

5. The GML is purely a descriptive model. This model cannot predict what effect changes in the experimental conditions should have on the data. On the other hand, the C-D model predicts that changes to the experimental procedure which would be expected to improve the discriminability of the response-reinforcer contingencies should increase the value of dr. This has been shown to be the case in experiments which have changed the stimuli associated with the two schedules of reinforcement (Alsop & Davison, 1991; Davison & Jenkins, 1985). However, since the use of the punishment version of the C-D model is supposed to be restricted to those cases where the data require it (Davison, personal communication), this indicates a failure of the model to predict when changing over between the schedules is going to be punishing. Baum et al.'s model appears to make no predictions about the data. This model is suitable only if the subjects' behaviour matches the reinforcer-rate ratio, but gives no indication of the experimental conditions with which this might be expected. Baum et al. do, however, suggest that when matching is not found, a slightly modified version the C-D model (with preferred and non-preferred alternatives replacing left and right alternatives) should be used instead of their model, suggesting that they agree with Davison and his colleagues suggestion that matching is the result of perfect discriminability.
It appears that, while the GML is not ideal for analysing data from experiments employing concurrent VI VI schedules of reinforcement, it is far less problematic than the C-D model. It seems Baum et al.'s model may be of limited value in the analysis of concurrent-schedule behaviour, given that it has been shown here to be unsuitable for the analysis of the limited data sets from possums and hens.

Conclusion

In conclusion, it has been demonstrated here that concurrent schedules of reinforcement are suitable for the study of possums' behaviour both with and without experimentally introduced biasers. The Generalised Matching Law has been shown to provide a good description of possums' behaviour under concurrent schedules, although it lacks predictive power. While the Contingency-Discriminability model also provided a good description of possums' behaviour, in many cases, it was shown to be unsuitable for the analyses of data where overmatching occurs. The addition of a punishment parameter did not assist in the analysis of such data. Although the theory behind the C-D model suggests that it should be a good predictor of behaviour under concurrent schedules, this was not found to be the case in the present experiments, when either the COD length or the type of reinforcer was manipulated.

REFERENCES

- Allison, T. S., & Lloyd, K. E. (1971). Concurrent schedules of reinforcement: Effects of gradual and abrupt increases in changeover delay. <u>Journal of the</u> <u>Experimental Analysis of Behavior</u>, <u>16</u>, 67-73.
- Alsop, B., & Davison, M. (1991). Effects of varying stimulus disparity and the reinforcer ratio in concurrent-schedule and signal-detection procedures. Journal of the Experimental Analysis of Behavior, 56, 67-80.
- Alsop, B., & Elliffe, D. (1988). Concurrent-schedule performance: Effects of relative and overall reinforcer rate. Journal of the Experimental Analysis of Behavior, <u>49</u>, 21-36.
- Baum, W. M. (1974). On two types of deviation from the matching law: Bias and undermatching. Journal of the Experimental Analysis of Behavior, 22, 231-242.
- Baum, W. M. (1976). Time-based and count-based measurement of preference. Journal of the Experimental Analysis of Behavior, 26, 27-35.
- Baum, W. M. (1979). Matching, undermatching, and overmatching in studies of choice. Journal of the Experimental Analysis of Behavior, 32, 269-281.
- Baum, W. M. (1982). Choice, changeover, and travel. Journal of the Experimental Analysis of Behavior, <u>38</u>, 35-49.
- Baum, W. M., Schwendiman, J. W., & Bell, K. E. (1999). Choice, contingency discrimination and foraging theory. <u>Journal of the Experimental Analysis</u> of Behavior, 71, 355-373.
- Bourland, G., & Miller, J. T. (1978). Role of discriminative stimuli in concurrent performances: Duration of changeover delay. <u>The Psychological Record</u>, 28, 263-271.
- Bradshaw, C. M., Szabadi, E., & Bevan, P. (1979). The effect of punishment on free-operant choice behavior in humans. Journal of the Experimental <u>Analysis of Behavior</u>, <u>31</u>, 71-81.
- Catania, A. C. (1962). Independence of concurrent responding maintained by interval schedules of reinforcement. Journal of the Experimental Analysis

of Behavior, 5, 175-184.

- Catania, A. C. (1963). Concurrent performance: A baseline for the study of reinforcement magnitude. <u>Journal of the Experimental Analysis of</u> Behavior, 6, 299-300.
- Catania, A. C. (1966). Concurrent operants. In W. K. Honig (Ed.), <u>Operant</u> <u>behavior: Areas of research and application</u> (pp. 213-270). New York: Appleton-Century-Crofts.
- Chung, S., & Herrnstein, R. J. (1967). Choice and delay of reinforcement. Journal of the Experimental Analysis of Behavior, 10, 67-74.
- Davison, M. (1991). Choice, changeover, and travel: A quantitative model. Journal of the Experimental Analysis of Behavior, 55, 47-61
- Davison, M., & Ferguson, A. (1978). The effects of different component response requirements in multiple and concurrent schedules. <u>Journal of the</u> <u>Experimental Analysis of Behavior</u>, <u>29</u>, 283-295.
- Davison, M. C., & Hunter, I. W. (1976). Performance on variable-interval schedules arranged singly and concurrently. <u>Journal of the Experimental</u> <u>Analysis of Behavior</u>, <u>25</u>, 335-345.
- Davison, M., & Jenkins, P. E. (1985). Stimulus discriminability, contingency discriminability, and schedule performance. <u>Animal Learning &</u> <u>Behavior</u>, <u>13</u>, 77-84.
- Davison, M., & Jones, B. M. (1995). A quantitative analysis of extreme choice. Journal of the Experimental Analysis of Behavior, 64, 147-162.
- Davison, M., & Jones, B. M. (1998). Performance on concurrent variable-interval extinction schedules. <u>Journal of the Experimental Analysis of Behavior</u>, 69, 49-57.
- Davison, M. C., & McCarthy, D. (1988). <u>The matching law: A research review</u>. Hillsdale NJ: Erlbaum.
- Davison, M., & McCarthy, D. (1994). Effects of the discriminability of alternatives in three alternative concurrent-schedule performance. <u>Journal</u> of the Experimental Analysis of Behavior, <u>61</u>, 45-63.

Davison, M., & Nevin, J. A. (1999). Stimuli, reinforcers, and behavior: An

integration. Journal of the Experimental Analysis of Behavior, 71, 439-482.

- de Villiers, P. (1977). Choice in concurrent schedules and a quantitative formulation of the law of effect. In W. K. Honig & J. E. R. Staddon (Eds.), <u>Handbook of operant behavior</u>. (pp. 233-287). Englewood Cliffs, NJ: Prentice-Hall Inc.
- de Villiers, P. A. (1980). Toward a quantitative theory of punishment. Journal of the Experimental Analysis of Behavior, 33, 15-25.
- Dougherty, D. M., & Lewis, P. (1992). Matching by horses on several concurrent variable-interval schedules. <u>Behavioural Processes</u>, <u>26</u>(2-3), 69-76.
- Dreyfus, L. R., Dorman, L. G., Fetterman, J. G., & Stubbs, D. A. (1982). An invariant relation between changing over and reinforcement. <u>Journal of</u> <u>the Experimental Analysis of Behavior</u>, <u>38</u>, 327-338.
- Farley, J. (1980)/ Reinforcement and punishment effects in concurrent schedules: A test of two models. Journal of the Experimental Analysis of Behavior, 33, 311-326.
- Ferster, C. B., & Skinner, B. F. (1957). <u>Schedules of reinforcement</u>. New York: Appleton-Century-Crofts.
- Findley, J. D. (1958). Preference and switching under concurrent scheduling. Journal of the Experimental Analysis of Behavior, <u>1</u>, 123-144.
- Fitzgerald, A. E. (1981). Some effects of the feeding habits of the possum Trichosurus Vulpecula. In B. D. Bell (Ed.). <u>Proceedings of the first</u> <u>symposium on marsupials in New Zealand</u> (pp. 163-174). Zoology publications from Victoria University of Wellington, Number 74.
- Foster, T. M., Matthews, L. R., Temple, W., & Poling, A. (1997). Concurrent schedule performance in domestic goats: persistent undermatching. Behavioural Processes, 40, 231-237.
- Foster, T. M., Temple, W., Robertson, B., Nair, V., & Poling, A. (1996).
 Concurrent schedule performance in dairy cows: Persistent undermatching. Journal of the Experimental Analysis of Behavior, 65, 57-80.

- Herrnstein, R. J. (1961). Relative and absolute strength of response as a function of frequency of reinforcement. Journal of the Experimental Analysis of <u>Behavior</u>, <u>4</u>, 267-272.
- Herrnstein, R. J. (1970). On the law of effect. Journal of the Experimental Analysis of Behavior, 13, 243-266.
- Heyman, G. M. (1979). A markov model description of changeover probabilities on concurrent variable-interval schedules. <u>Journal of the Experimental</u> <u>Analysis of Behavior, 31</u>, 41-51.
- Hollard, V., & Davison, M. C. (1971). Preference for qualitatively different reinforcers. <u>Journal of the Experimental Analysis of Behavior</u>, <u>16</u>, 375-380.
- Hudson, D. M. (1996). <u>Fixed-ratio responding in the possum (Trichosurus</u>
 <u>vulpecula</u>). Unpublished masters thesis, University of Waikato: Hamilton, N.Z.
- Hudson, D., Foster, T. M., & Temple, W. (1999). Fixed-ratio schedule performance of possum (Trichosurus Vulpecula). <u>New Zealand Journal of</u> <u>Psychology, 28</u>, 79-85.
- Hunter, I. W., & Davison, M. C. (1978). Response rate and changeover performance on concurrent variable-interval schedules. <u>Journal of the</u> <u>Experimental Analysis of Behavior</u>, 29, 535-556.
- Jones, B. M., & Davison, M. (1998). Reporting contingencies of reinforcement in concurrent schedules. Journal of the Experimental Analysis of Behavior, 69, 161-183.
- Julian, A. F. (1981). Tuberculosis in the possum T. vulpecula. In B. D. Bell (Ed.). <u>Proceedings of the first symposium on marsupials in New Zealand</u> (pp. 163-174). Zoology publications from Victoria University of Wellington, Number 74.
- Lobb, B., & Davison, M. C. (1975). Performance in concurrent interval schedules: A systematic replication. Journal of the Experimental Analysis of Behavior, 24, 191-197.

Logue, A. W., & de Villiers, P. A. (1978). Matching in concurrent variable-

interval avoidance schedules. Journal of the Experimental Analysis of Behavior, 29, 61-66.

- Mace, F. C., Neef, N. A., Shade D., & Mauro, B. C. (1994). Limited matching on concurrent-schedule reinforcement of academic behavior. <u>Journal of</u> Applied Behavior Analysis, 27(4), 585-596.
- Matthews, L. R. (1983). <u>Measurement and scaling of food preferences in dairy</u> <u>cows: Concurrent schedule and free-access techniques</u>. Unpublished Doctorate Thesis, University of Waikato: Hamilton, N.Z.
- Matthews, L. R., & Temple, W. (1979). Concurrent schedule assessment of food preference in cows. <u>Journal of the Experimental Analysis of Behavior</u>, <u>32</u>, 245-254.
- McAdie, T. M., Foster, T. M., & Temple, W. (1996). Concurrent schedules: Quantifying the aversiveness of noise. Journal of the Experimental <u>Analysis of Behavior, 65</u>, 37-55.
- McSweeney, F. K., Hinson, J. M., Cannon, C. B. (1996). Sensitizationhabituation may occur during operant conditioning. <u>Psychological</u> Bulletin, 120, 256-271.
- McSweeney, F. K., Weatherly, J. N., & Swindell, S. (1996). Within-session changes in responding during concurrent variable-interval schedules. Journal of the Experimental Analysis of Behavior, <u>66</u>, 75-79.
- Miller, H. L. (1976). Matching based hedonic scaling in the pigeon. Journal of the Experimental Analysis of Behavior, 26, 335-347.
- Miller, J. T., Saunders, S. S., & Bourland, G. (1980). The role of stimulus disparity in concurrently available reinforcement schedules. <u>Animal</u> Learning & Behavior, 8, 635-641.
- Morgan, D. R. (1990). Behavioural response of brushtail possums, Trichosurus vulpecula, to baits used in pest control. <u>Australian Wildlife Research</u>, <u>17</u>, 601-613.
- Morse, W. H. (1966). Intermittent reinforcement. In W. K. Honig (Ed.), <u>Operant</u> <u>behavior: Areas of research and application</u> (pp. 52-108). New York: Appleton-Century-Crofts

- Muir, K. M. (1997). <u>Multiple-concurrent schedule performance of the New</u> <u>Zealand brushtail possum</u>. Unpublished masters thesis. University of Waikato: Hamilton, N.Z.
- Norman, W. D., & McSweeney, F. K. (1978). Matching, contrast, and equalizing in the concurrent lever-press responding of rats. Journal of the Experimental Analysis of Behavior, 29, 453-462.
- Pliskoff, S. S. (1971). Effects of symmetrical and asymmetrical changeover delays on concurrent performances. <u>Journal of the Experimental Analysis</u> of Behavior, <u>16</u>, 249-256.
- Pliskoff, S. S., Cicerone, R., & Nelson, T. D. (1978). Local response-rate constancy on concurrent variable-interval schedules of reinforcement. Journal of the Experimental Analysis of Behavior, 29, 431-446.
- Pracy, L. T. & Kean, R. I. (1969). <u>The opossum in New Zealand</u>. <u>Habits and</u> trapping. New Zealand Forest Service, Wellington.
- Roll, J. M., McSweeney, F. K., Johnson, K. S., & Weatherly, J. N. (1995). Satiety contributes little to within-session decreases in responding. <u>Learning and</u> <u>Motivation</u>, <u>26</u>, 323-341.
- Ruddle, H., Bradshaw, C. M., Szabadi, E., & Bevan, P. (1979). Behaviour of humans in concurrent schedules programmed on spatially separated operanda. Quarterly Journal of Experimental Psychology, 31, 509-517.
- Schroeder, S. R., & Holland, J. G. (1969). Reinforcement of eye movement with concurrent schedules. Journal of the Experimental Analysis of Behavior, 12, 677-903.
- Seitzer, S. (1992). Possum: An ecological nightmare. <u>New Zealand Geographic</u>, <u>13</u>, 42-70.
- Shahan, T. A., & Lattal, K. A. (1998). On the functions of the changeover delay. Journal of the Experimental Analysis of Behavior, 69, 141-160.
- Shahan, T. A., & Lattal, K. A. (2000). Choice, changing over, and reinforcement delays. <u>Journal of the Experimental Analysis of Behavior</u>, 74, 311-330.
- Shull, R. L., & Pliskoff, S. S. (1967). Changeover delay and concurrent schedules: Some effects on relative performance measures. <u>Journal of the</u>

Experimental Analysis of Behavior, 10, 517-527.

- Silberberg, A., & Fantino, E. (1970). Choice, rate of reinforcement, and the changeover delay. <u>Journal of the Experimental Analysis of Behavior</u>, <u>13</u>, 187-197.
- Silberberg, A., & Schrot, J. (1974). A yoked-chamber comparison of concurrent and multiple schedules: The relationship between component duration and responding. Journal of the Experimental Analysis of Behavior, 22, 21-30.
- Stubbs, D. A., & Pliskoff, S. S. (1969). Concurrent responding with fixed relative rate of reinforcement. <u>Journal of the Experimental Analysis of Behavior</u>, 12, 887-895.
- Sumpter, C. E. (1996). <u>Differing response requirements: Effects on measures of</u> <u>preference and demand</u>. Unpublished Doctorate Thesis, University of Waikato: Hamilton, N.Z.
- Sumpter, C. E., Foster, T. M., & Temple, W. (1995). Predicting and scaling hens' preferences for topographically different responses. <u>Journal of the</u> Experimental Analysis of Behavior, 63, 71-95.
- Sumpter, C. E., Temple, W., & Foster, T. M. (1998). Response form, force, and number: Effects on concurrent schedule performance. <u>Journal of the</u> Experimental Analysis of Behavior, 70, 45-68.
- Swan, K. (1996). Hello, Goodbye possums. How to deal with New Zealands public enemy no. 1. Auckland: The Halycon Press.
- Taylor, R., & Davison, M. C. (1983). Sensitivity to reinforcement in concurrent arithmetic and exponential schedules. <u>Journal of the Experimental</u> <u>Analysis of Behavior</u>, <u>39</u>, 191-198.
- Temple, W. Scown, J. M., & Foster, T. M. (1995). Changeover delay and concurrent-schedule performance in domestic hens. <u>Journal of the</u> Experimental Analysis of Behavior, <u>63</u>, 71-95.
- Todd, J. H. (1995). Evaluation of odour preferences in the brushtail possum (Trichosurus vulpecula). Unpublished masters thesis. University of Waikato: Hamilton, N.Z.

Todorov, J. C. (1973). Interaction of frequency and magnitude of reinforcement

on concurrent performances. Journal of the Experimental Analysis of Behavior, 19, 451-458.

- Todorov, J. C., Oliveira Castro, J. M., Hanna, E. S., Bittencourt de Sa, M. C. N., & Barreto, M. de Q. (1983). Choice, experience, and the generalized matching law. <u>Journal of the Experimental Analysis of Behavior</u>, <u>40</u>, 99-111.
- Wearden, J. H., & Burgess, I. S. (1982). Matching since Baum (1979). Journal of the Experimental Analysis of Behavior, 38, 339-348.
- Williams, B. A. (1988). Reinforcement, choice, and response strength. In R. C. Atkinson, R. J. Herrnstein, G. Lindzey, & R. D. Luce (Eds.). <u>Stevens'</u> <u>handbook of experimental psychology: Vol 2. Learning and cognition</u> (pp. 167-244). New York: Wiley.

APPENDIX A

The raw data from the last five sessions from each condition of Experiment 1 are presented for each possum. Total session data is presented from Condition 1. For all other conditions, data is presented separately from the first and second half of the session. The subject (S, 2 = George; 3 = Arthur; 4 = Timmy; 5 = Holly; 6 = Sylvester), condition (C), left responses (RL), right responses (RR), time allocated to the left (TL) and right levers (TR), the reinforcers obtained for responses to the left (RfL) and right levers (RfR), the number of changeovers (CO) the number of responses during the COD on the left (R>L) and right levers (L>R), and the post-reinforcement pause times on the following reinforcers for responses on the left (PTL) and right levers (PTR), are presented.

				Fi	irst Hal	lf								S	econd	Half							
S	с	RL	RR	TL	TR	RfL	RfR	со	R>L	L>R	PTL	PTR	RL	RR	TL	TR	RfL	RfR	co	R>L	L>R	PTL	PTR
2	1	690	511	938	1460	37	38	217	376	131													
2	1	666	543	1002	1395	40	37	207	355	136													
2	1	638	449	842	1555	39	38	185	345	112													
2	1	613	528	865	1535	39	37	188	363	113													
2	1	627	508	926	1470	39	37	183	322	128													
2	2	286	66	1012	182	37	4	46	68	17			235	53	1064	121	36	3	33	43	11		
2	2	349	80	1009	181	36	5	55	73	23			330	85	1017	182	36	4	58	82	14		
2	2	348	107	952	240	34	5	64	93	31			319	91	1026	174	37	3	50	63	20		
2	2	157	26	1125	70	23	1	28	28	5			111	16	1134	49	21	1	13	13	4		
2	2	322	85	1022	175	36	4	57	66	16			261	57	1037	143	32	4	36	45	13		
					1040			24				260	(2)	1/2	120	1000		24	24	42	~		224
2	3	87	176	153	1040	4	31	34	04 34	27	>> 67	308	02	162	120	1080	4	30	20	42	24	41	320
2	3	48	14/	118	1080	4	32	10	30	12	37	497 550	95 77	108	109	1031	4	37	30	/0 51	24	54	451
2	3 2	104	202	120	1039	5	34	36	44 74	33	40	461	100	208	196	1029	4	32	30	72	20	50	401
2	2	104	137	172	1022	4	27	23	40	33	53	507	50	111	174	1014	4	37	20	12 AA	13	110	506
2	5	55	15,	122	10/0	-	21	25	40	• •	55	571	57		1/4	1020	1	52	20		15		570
2	4	319	214	561	636	18	21	99	192	84	181	238	310	196	622	578	22	19	93	172	81	173	216
2	4	264	172	569	621	19	18	86	159	60	215	247	263	165	588	612	19	19	79	149	54	204	244
2	4	264	181	593	585	20	18	90	156	78	209	225	260	171	578	622	19	20	78	149	71	207	275
2	4	236	183	484	696	18	19	73	145	64	181	327	216	141	646	554	16	15	62	110	55	322	234
2	4	238	157	596	600	20	17	71	132	54	293	264	209	130	568	632	15	16	68	116	47	265	309
3	1	497	659	1224	1167	38	38	207	138	331													
3	1	538	804	1200	1194	41	40	237	189	409													
3	1	573	766	1224	1173	40	39	217	189	392													
3	1	678	887	1196	1203	41	42	264	243	453													
3	1	709	927	1180	1218	42	43	249	241	474													
3	2	322	114	1061	130	39	3	41	50	50			332	143	1033	162	33	5	42	56	66		
3	2	366	154	1027	172	38	3	48	57	66			349	205	985	214	38	2	52	65	72		

3	2	329	141	1019	177	39	3	48	50	42			301	177	993	195	39	3	46	50	52		
3	2	277	163	986	212	37	4	46	35	48			344	212	951	246	38	4	54	67	70		
3	2	372	198	960	236	35	6	56	64	69			324	228	927	269	35	4	64	59	72		
3	3	153	352	265	932	3	38	60	62	69	19	164	124	381	278	922	7	38	52	54	86	52	137
3	3	156	323	289	890	5	36	62	67	69	50	151	160	331	295	905	4	35	65	60	72	40	119
3	3	147	368	260	937	5	35	70	67	86	49	126	137	370	261	939	4	39	76	70	102	25	122
3	3	136	393	218	982	4	34	69	79	117	21	73	150	382	251	949	4	36	76	88	127	17	89
3	3	145	416	249	941	3	38	72	77	101	24	126	150	342	372	828	7	34	81	74	111	61	99
-	-																						
3	4	281	227	704	477	18	19	65	82	111	222	161	281	211	719	481	19	17	68	76	83	153	135
3	4	279	244	685	515	21	20	75	99	115	158	120	292	265	641	559	20	21	63	81	103	157	141
3	4	320	203	653	546	18	20	72	96	70	168	188	291	290	585	615	20	20	78	103	83	143	102
3	4	286	303	599	599	20	22	76	101	109	157	123	349	307	661	539	18	18	84	118	126	138	86
3	4	228	194	598	600	18	18	79	85	63	190	225	215	155	673	527	18	18	74	81	63	279	208
2	•		•••																	•••			
4	1	716	585	1153	1247	27	28	139	298	275													
4	1	780	615	1177	1216	33	33	139	305	289													
4	1	728	517	1220	1177	34	33	146	296	266													
4	1	509	439	1191	1209	31	31	123	206	227													
4	1	601	479	1108	1273	30	32	128	226	255													
	-																						
4	2	156	40	1045	82	31	3	20	14	19			87	20	1140	47	26	2	8	6	10		
4	2	142	39	1081	111	30	4	16	7	24			123	31	1109	65	26	2	16	20	18		
4	2	127	33	1035	141	28	2	14	14	16			152	71	1085	103	30	2	24	29	39		
4	2	45	13	1127	40	6	1	6	5	8			20	0	583	0	4	0	0	0	0		
4	2	70	22	1124	72	12	2	8	3	12			86	24	1104	61	23	2	8	7	14		
4	3	74	169	140	1034	4	31	30	56	62	80	593	73	151	121	1079	4	30	22	48	34	71	490
4	3	92	170	182	876	5	28	34	63	54	112	460	49	117	95	1105	4	31	20	37	24	46	365
4	3	87	182	139	1057	4	32	35	62	53	64	615	89	209	103	1097	2	32	29	53	62	33	571
4	3	113	262	140	1013	3	30	38	69	84	62	609	79	213	105	1095	4	34	26	58	48	52	625
4	3	101	228	142	1052	4	32	30	68	62	77	578	66	138	113	1087	3	30	32	48	51	48	695
4	4	171	195	541	654	14	15	52	95	119	356	425	197	183	579	621	16	17	70	124	119	354	372
4	4	232	187	629	551	16	16	63	136	117	383	324	196	212	648	552	17	15	66	122	133	435	264
4	4	229	207	565	632	15	15	72	144	128	325	317	187	164	536	664	16	15	54	129	87	353	345
4	4	202	171	515	668	16	16	65	125	103	328	359	226	260	571	629	17	18	73	138	152	321	305
4	4	219	205	592	599	15	16	66	114	120	332	357	199	157	528	672	12	13	64	119	97	293	314
5	1	194	166	1760	621	17	15	55	119	35													
5	1	363	288	1447	945	24	25	95	187	66													
5	1	452	369	1404	989	29	29	117	239	73													
5	1	649	530	1232	1167	35	36	148	331	117													
5	1	548	434	1297	1099	32	33	146	303	99													
5	2	175	41	1135	58	30	1	14	24	5			96	30	542	45	16	1	10	18	5		
5	2	186	19	1126	56	33	2	8	12	7			89	4	1124	44	16	2	4	1	0		
5	2	200	38	1118	72	32	2	18	13	15			109	13	1137	42	16	2	8	6	6		

5	2	142	23	534	57	13	2	12	21	10			50	3	558	22	14	1	2	0	1		
5	2	110	16	539	60	15	2	8	10	7			19	0	580	0	9	0	0	0	0		
5	3	65	182	236	962	5	32	37	40	47	116	581	14	52	50	1150	1	12	8	7	8	23	233
5	3	51	157	143	1053	3	33	29	31	33	39	650	29	97	180	1020	3	26	13	14	15	125	637
5	3	61	158	159	1032	3	31	28	31	34	50	610	24	95	91	1109	2	27	12	14	17	41	801
5	3	14	49	86	1066	2	16	6	9	7	66	476	0	5	0	1200	0	0	0	0	0	0	0
5	3	24	95	60	1140	1	28	13	13	20	23	689	0	0	0	1200	0	0	0	0	0	0	0
5	4	114	100	675	516	13	14	39	48	50	455	333	86	90	679	521	13	14	38	53	43	542	377
5	4	116	110	588	554	12	12	38	55	50	367	401	31	44	300	900	5	6	13	14	22	190	810
5	4	121	142	571	577	14	14	47	65	69	395	401	78	55	505	695	12	9	23	33	26	380	611
5	4	104	97	423	728	10	11	38	52	58	243	454	8	12	49	1151	1	1	4	6	8	33	621
5	4	159	142	611	574	15	15	52	82	72	398	364	109	123	460	740	13	14	39	58	48	303	537
6	1	604	609	1323	1075	24	22	98	256	207													
6	1	532	512	1702	696	23	21	103	271	179													
6	1	897	904	1069	1330	33	32	165	394	371													
6	1	853	873	868	1529	31	31	172	429	316													
6	1	773	961	940	1457	32	32	175	383	384													
6	2	406	26	534	64	16	3	18	42	12			212	19	551	37	16	1	10	25	12		
6	2	554	67	886	67	29	2	25	72	34			266	41	1112	79	19	2	13	39	11		
6	2	531	133	1094	104	34	2	41	120	47			214	65	552	48	17	1	16	48	25		
6	2	491	25	1092	77	32	3	20	48	8			517	44	1125	60	26	2	30	87	22		
6	2	657	123	1024	169	33	5	50	157	67			359	42	1107	55	20	1	22	69	20		
6	3	153	291	112	1088	4	37	38	125	52	36	437	156	198	124	1076	5	29	42	119	45	36	328
6	3	185	382	111	1089	4	36	40	139	68	33	386	94	198	80	1120	4	26	24	74	32	33	292
6	3	145	380	110	1089	5	34	38	116	56	48	371	64	147	70	1130	3	19	14	33	19	22	203
6	3	168	394	97	1103	5	36	39	131	47	31	396	57	149	62	1138	2	25	13	44	19	32	275
6	3	161	402	125	1075	6	35	40	127	48	53	363	122	200	82	1118	4	30	26	91	34	27	417
6	4	541	621	522	677	18	18	98	364	190	129	146	299	331	367	833	14	13	57	189	115	147	141
6	4	433	430	532	665	18	18	77	265	148	144	182	64	56	301	899	6	4	13	44	20	68	82
6	4	596	546	488	712	20	19	107	388	216	162	168	371	344	360	8 40	15	18	67	211	144	123	273
6	4	144	138	308	878	6	6	30	91	47	193	60	9	15	40	1160	1	3	4	8	3	14	33
6	4	525	489	471	728	20	20	93	314	181	168	193	196	191	199	1001	6	8	37	110	73	94	77

APPENDIX B

The raw data from the last five sessions from each condition of Experiment 2 are presented for each possum. Data is presented separately from the first and second half of the session. The subject (S, 7 = Static; 8 = Jasper; 9 = Izzie; 10 = Benny; 11 = Emma; 12 = Putzy), condition (C), left responses (RL), right responses (RR), time allocated to the left (TL) and right levers (TR), the reinforcers obtained for responses to the left (RfL) and right levers (RfR), the number of changeovers (CO) the number of responses during the COD on the left (R>L) and right levers (L>R), and the post-reinforcement pause times on the following reinforcers for responses on the left (PTL) and right levers (PTR), are presented.

					Firs	t half									S	econd	half							
S	С	L	RL.	RR	TL	TR	RfL	RfR	со	R>L	L>R	PTL	PTR	RL	RR	TL	TR	RfL	RfR	со	R>L	L>R	PTL	PTR
7	1	0	127	156	606	594	16	19	94	47	47	285	320	30	34	535	665	7	7	22	11	11	165	626
7	1	0	93	119	712	487	14	15	70	35	35	407	310	15	24	523	677	5	6	13	7	6	335	645
7	1	0	210	246	577	623	20	21	157	7 9	78	229	296	147	92	426	774	10	8	58	123	31	210	481
7	1	0	120	130	498	702	12	14	80	40	40	255	440	21	17	749	451	4	2	13	7	6	232	401
7	1	0	126	182	630	570	17	16	95	48	47	300	267	12	8	1104	96	1	1	8	4	4	22	89
7	2	0	100	296	170	1030	4	39	66	33	33	70	525	35	108	74	1126	1	19	28	14	14	10	317
7	2	0	46	304	92	1108	3	34	39	20	19	44	523	22	113	133	1067	3	26	21	10	11	62	791
7	2	0	81	270	185	1015	5	38	65	33	32	56	584	23	73	188	1012	3	17	19	9	10	117	802
7	2	0	72	284	125	1075	4	37	57	29	28	50	611	21	103	78	1122	1	20	16	8	8	41	384
7	2	0	75	328	147	1053	5	37	54	27	27	/5	542	14	49	309	891	2	15	10	5	5	287	690
7	2	0	271	136	905	295	35	5	90	50	49	517	88	111	44	1012	188	26	4	34	17	17	614	77
7	3	0	239	114	927	275	38	5	88	44	44	591	96	159	60	1012	158	20	4	50	25	25	504	74
7	3	0	260	110	975	275	37	5	84	42	42	540	73	103	28	1092	108	20	7	24	12	12	725	40
7	3	õ	212	94	958	242	36	4	70	35	35	586	74	130	54	1053	147	32	4	40	20	20	669	79
7	3	0	248	119	951	249	36	3	87	43	44	591	42	159	64	982	218	33	5	51	26	25	668	78
-	-							-											-		20			
7	4	0	168	430	202	998	10	35	128	64	64	101	375	127	293	202	998	8	35	92	46	46	107	506
7	4	0	168	382	250	950	10	35	130	65	65	154	432	135	298	162	1038	7	34	107	54	53	77	554
7	4	0	131	300	201	999	8	34	100	50	50	120	521	94	190	208	992	8	31	72	36	36	133	642
7	4	0	173	372	221	979	10	36	130	65	65	116	407	68	146	293	907	5	32	52	26	26	107	555
7	4	0	151	350	229	971	10	36	120	60	60	104	432	73	191	201	999	7	31	58	29	29	122	567
7	5	0	245	124	8 63	337	33	9	88	44	44	433	137	145	68	935	265	23	5	60	30	30	416	128
7	5	0	258	179	777	423	34	7	119	59	60	441	102	8 6	49	564	636	17	4	33	17	16	329	79
7	5	0	253	149	833	367	32	9	108	54	54	417	142	112	67	933	267	28	6	52	26	26	707	133
7	5	0	225	152	869	331	36	7	102	51	51	533	84	144	76	876	324	24	8	58	29	29	612	185
7	5	0	193	107	913	287	32	6	72	36	36	463	109	51	29	766	434	15	5	22	11	11	648	366
7	6	0	194	248	524	676	20	19	125	62	63	287	288	87	130	613	587	15	15	64	32	32	386	323
7	6	0	190	293	454	746	20	21	130	65	65	281	320	114	169	635	565	19	18	81	41	40	457	332

7	6	0	183	298	515	685	22	21	134	67	67	312	285	138	179	604	596	17	18	96	48	48	390	364
7	6	0	169	231	590	610	21	20	115	57	58	369	300	115	139	643	557	17	17	80	40	40	400	397
7	6	0	198	286	542	658	19	21	134	67	67	299	297	158	216	566	634	21	19	107	54	53	393	367
7	7	2	229	289	570	630	17	18	92	160	163	325	316	215	170	650	550	16	16	77	164	110	376	350
7	7	2	212	214	534	666	16	18	77	159	124	357	398	183	184	593	607	16	15	64	121	107	397	405
7	7	2	193	227	545	655	18	17	78	148	139	374	352	136	147	553	647	14	13	51	103	87	303	371
7	7	2	221	236	520	680	16	17	88	161	141	293	311	179	166	595	605	12	12	66	131	103	379	335
7	7	2	180	213	583	617	17	15	65	129	110	377	299	173	198	578	622	16	15	61	119	108	305	345
		-														570	022	10	15	01	,	100	575	545
7	8	2	60	232	116	1084	4	35	26	49	44	67	A A A	50	168	116	1094	2	24	74	27	45	4 1	677
7	8	2	65	230	106	1094		33	27	48	53	48	460	48	194	80	1111	2	24	10	24	45	54	544
, 7	•	2	64	200	115	1094	-	34	27	40	10	40	407	40	164	102	1008	3	34	19	34	35	54	500
, ,	。 。	2	66	220		1005	2	24	20	40	47	24	507	33	122	102	1098	4	20	10	24	25	00	5/3
, ,	•	2	40	195	147	1052	ر ء	24	32	30	60	34	507	21	124	8/	1113	4	30	12	20	13	60	547
'	٥	2	08	103	147	1033	J	32	28	43	50	80	212	3	41	19	1181	1	10	4	4	2	9	900
-	•	•				107		•					• •											
7	9	2	243	97	1094	106	34	3	32	27	00	469	36	183	66	1090	110	30	5	21	13	48	573	58
7	9	2	215	87	1072	128	32	5	32	30	66	478	52	189	41	1106	94	31	4	14	13	34	592	61
7	9	2	187	62	1110	90	33	3	18	16	43	576	42	190	45	1111	89	33	4	18	14	38	569	49
7	9	2	208	47	1091	109	33	4	18	12	37	458	57	189	23	1150	50	33	2	14	10	20	625	28
7	9	2	204	66	1081	119	34	5	26	17	48	423	60	191	43	1118	82	36	3	14	10	30	598	53
7	10	2	107	249	257	943	8	27	60	69	101	110	416	68	188	206	994	6	27	43	40	65	93	482
7	10	2	55	168	167	1033	6	32	32	33	47	90	548	53	110	244	956	7	22	36	33	38	127	577
7	10	2	75	188	255	945	9	27	47	43	62	135	444	27	101	156	1044	6	26	20	15	30	112	543
7	10	2	58	175	236	964	7	28	44	39	74	139	529	32	115	166	1034	4	24	24	14	39	56	600
7	10	2	72	218	219	981	7	27	52	49	86	111	479	36	130	196	1004	6	22	28	25	34	126	549
7	11	2	200	134	955	245	28	8	42	39	98	417	103	126	57	1051	149	25	6	22	16	46	629	93
7	11	2	208	114	993	207	29	8	36	35	82	421	93	63	29	1106	94	18	3	10	9	20	414	59
7	11	2	203	107	1022	178	29	7	35	29	81	404	6 8	102	46	1048	152	26	5	17	20	35	611	95
7	11	2	255	153	954	246	29	9	46	45	111	407	118	66	42	1100	100	13	3	14	16	29	283	57
7	11	2	206	123	1001	199	30	5	38	51	83	475	65	75	42	1050	150	12	4	18	23	35	264	76
7	12	2	0	76	0	1201	0	29	0	0	0	0	811	0	0	0	1200	0	0	0	0	0	0	1200
7	12	2	0	145	0	1200	0	39	0	0	0	0	647	0	25	0	1200	0	11	0	0	0	0	765
7	12	2	0	65	0	1200	0	32	0	0	0	0	822	0	3	0	1200	0	1	0	0	0	0	754
7	12	2	0	100	1	1199	0	32	0	0	0	0	555	0	4	0	1200	0	2	0	0	0	0	63
7	12	2	0	144	0	1200	0	37	0	0	0	0	594	0	41	0	1200	0	19	0	0	0	0	532
7	13	2	202	292	473	727	14	15	72	123	123	264	262	129	157	589	611	14	14	52	72	74	426	398
7	13	2	159	182	522	678	15	15	56	100	76	355	336	106	110	535	665	14	14	45	63	47	403	433
7	13	2	175	162	561	639	16	16	62	100	81	381	323	113	127	530	670	14	14	50	72	68	412	477
,	13	2	150	202	523	677	17	18	70	88	104	321	318	59	88	598	602	10	8	31	40	39	516	405
, 7	13	- 2	164	212	553	647	15	16	64	91	94	376	321	151	180	504	696	15	15	66	85	Q1	320	312
'	.,	2	104	212					5.			2.0			. 50	504	070	. ,	.,	50	35	71	520	510
7	14	٨	250	200	575	675	16	15	55	190	103	780	787	218	149	517	693	16	15	∦ ⊃	170	60	277	307
' 7	14	•	233	209	105	705	14	15	49	101	.05 QQ	265	317	167	121	517	672	14	12	72 20	120	67 67	350	200
'	14	4	100	213	47J 607	607	14	17	70 20	122	57	200	367	202	1.71	521	675	13	12	39 44	130	,, ,,	200	202
1	14	4	182	125	202	09/	13	17	20	122	50	222	וכנ	203	140	520	0/4	14	13	44	121	15	208	221

7	14	4	260	180	536	664	14	14	49	168	100	284	307	88	61	360	840	9	8	27	73	28	248	653
7	14	4	217	170	561	639	14	14	54	148	99	307	313	114	123	759	441	10	9	33	72	66	595	219
7	15	4	24	136	104	1096	4	29	8	20	4	75	541	39	117	108	1092	3	26	12	30	16	58	677
7	15	4	49	181	138	1062	3	29	14	32	22	53	543	27	115	78	1122	2	32	6	16	10	48	688
7	15	4	40	171	111	1089	4	30	11	28	14	69	548	69	120	213	987	5	28	15	37	28	102	564
7	15	4	41	139	108	1092	4	32	10	30	8	64	577	37	109	107	1093	3	31	12	28	14	69	643
7	15	4	62	172	128	1072	4	31	16	41	22	58	502	65	172	138	1062	4	30	18	40	44	70	590
7	16	4	146	38	1102	98	32	2	12	13	33	406	20	68	19	1157	43	18	2	4	3	17	385	28
7	16	4	196	118	1017	183	28	5	24	24	93	352	69	124	54	1107	93	32	3	14	23	46	707	47
7	16	4	260	129	1020	180	32	4	46	100	100	443	38	112	40	1092	108	26	4	8	8	36	790	79
, ,	16	4	184	35	1138	62	34	2	10	6	31	459	19	132	59	1054	146	28	5	14	23	53	634	98
7	16	4	179	54	1100	100	32	3	12	13	47	532	41	31	25	1173	. 10	4	0	8		19	74	<u></u> 0
'	10	7	1/7	54	1100	100	52	5			••	552		51	25	1175	21	-	Ŭ	0	0	17	/4	Ŭ
7	17	4	86	187	176	1024	6	26	18	62	28	98	550	54	127	204	996	6	25	16	47	25	142	502
, 7	17	- -	05	211	170	1024	6	20	24	66	54	01	445	61	144	108	1002	7	23	17	51	25	135	610
, ,	17	4	103	211	197	1021	6	27	24	60	71	86	457	72	174	211	080	, 7	22	20	54	20	129	594
, ,	17	4	103	208	107	1015	6	27	26	70	67	80	407	05	125	211	909 071	, 7	25	20	69	52 60	136	J64 466
, ,	17	4	51	105	150	1005	7	20	18	10	10	07	407	79	145	106	1004	6	25	20	52	55	1120	400
'	17	4	51	195	152	1047	,	21	10	42	17	30	402	/0	145	190	1004	U	20	24	55	55	115	550
-	10		174	100	1012	197	24	7	21	21	01	270		172	76	1015	195	76	4	17	17	45	\$75	122
, ,	10	,	1/4	103	1013	107	27	, ,	19	21	72	500	51	123	100	006	204	20	•	17	20	05	530	122
, ,	10	4	190	140	002	209	27	5	10	65	117	302 476	21	122	100	990	204	24	•	22	20	107	540	141
,	10	4	2/3	140	992	208	27	د د	20	71	117	4/0	دہ 17	1/9	129	1020	170	25	。 7	23	32	107	549	141
,	18	4	285	185	943	257	27	0	30	/1	140	401	71	108	95	1030	170	25		19	21	82	347	95
'	18	4	220	115	1019	101	29	0	30	09	93	401	15	105	98	1000	194	10	0	22	23	83	399	91
-	10		245	242	(20	672	10	10	04	202	-	162	202	226	222		644	10			100	226	107	170
, ,	19	4	220	242	544	676	10	19	90	202	105	162	203	350	300	020	295	10	10	91	199	230	10/	1/8
7	19	4	320	297	567	642	15	10	90	195	195	103	195	255	300	515	640	17	10	/0	18/	100	215	210
' -	19	4	293	320	571	620	10	10	77 72	165	190	220	210	200	101	632	240 472	16	10	80 66	170	1/4	297	223
<i>'</i>	19	4	229	1//	571	649	15	15	73	128	140	248	240	233	101	527	0/3	10	10	22	1/1	101	289	296
'	19	4	280	230	557	003	17	15	73	104	140	101	210	200	203	330	004	10	10	00	150	100	289	290
-	20	,	201	201	40.0	702	16	16	= (176	164	126	166	107	201	400	710	14		~	100		107	100
-	20	0 /	201	281	498	/02	15	15	50	135	120	120	100	18/	300	490	710	10	10	52	123	113	19/	185
<i>'</i>	20	0	183	340	372	828	15	15	44	133	/3	141	165	220	281	500	/00	15	15	54	108	114	210	231
7	20	0	240	298	490	/10	10	10	20	1/4		150	109	225	204	551	649	15	15	71	153	129	200	204
7	20	6	178	244	500	700	15	15	20	104	92	169	182	140	236	527	673	14	14	46	78	79	247	243
7	20	6	194	266	498	702	15	15	57	120	83	159	190	131	233	543	657	15	15	50	82	78	251	219
_										••				•										
7	21	6	38	237	100	1100	3	29	10	25	14	44	386	26	170	77	1123	2	32	10	19	13	27	497
7	21	6	13	202	74	1126	2	21	8	11	11	32	331	0	12	0	1200	0	0	0	0	0	0	0
7	21	6	23	172	92	1108	4	28	7	19	4	54	454	29	115	113	1087	4	25	8	25	7	75	458
7	21	6	46	180	110	1090	3	26	12	30	22	44	505	48	96	144	1056	2	23	14	25	19	47	630
7	21	6	6	142	52	1148	1	27	6	5	6	18	425	0	13	0	1200	0	0	0	0	0	0	0
7	22	6	268	59	1100	100	31	2	14	20	51	394	21	169	62	1093	107	31	3	14	14	54	465	39
7	22	6	266	66	1101	99	31	5	13	11	61	348	47	210	75	1056	144	30	4	17	25	64	449	63
7	22	6	231	77	1044	130	33	4	17	29	63	410	49	187	75	1110	90	32	2	12	26	57	588	26
7	22	6	246	83	1072	128	30	3	20	37	69	411	32	206	37	1141	59	35	3	6	6	34	515	31

7	22	6	276	32	1126	74	31	2	14	21	30	365	19	188	78	1054	146	28	5	14	14	69	469	81
_							_																	
7	23	6	79 57	320	156	1044	7	26 20	14	71	28	85	351	115	276	180	1020	6	24	20	89	31	69	419
7	23	6	37 89	298	127	1073	5	29	12	72	20	73	353	108	271	188	1012	8 6	24	18	8/ 0/	25	76	435
, 7	23	6	117	317	205	995	7	21	17	82	26	105	323	74	278	138	1042	5	30	13	59	22	76	546
7	23	6	102	343	161	1039	7	28	16	85	27	82	314	75	260	190	1010	7	26	16	68	28	119	468
7	24	6	211	113	990	210	23	5	24	33	87	278	61	229	150	977	223	26	6	31	54	119	355	85
7	24	6	268	91	1040	160	27	5	23	38	78	295	57	225	110	1000	200	21	6	26	42	92	240	82
7	24	6	248	145	904	296	22	5	25	39	108	267	57	211	91	1042	158	26	7	16	18	84	39 0	79
7	24	6	203	69	1066	134	24	4	14	25	60	323	60	175	130	952	248	17	6	24	40	103	230	127
7	24	6	281	153	987	213	25	7	28	52	124	353	63	189	75	1083	117	28	6	12	8	69	555	63
_		,					10		20		40		• • •									• ·		
7	25	0 4	141	130	4/5	795	12	13	30	80	40	192	200	135	124	573	627 724	14	11	37	91	36 40	313	236
' 7	25	6	140	171	382	818	13	14	30	82	40	162	200 224	62	110	470 296	724 904	6	7	30 24	51	49	128	2/2
7	25	6	179	188	432	768	14	14	35	122	47	160	238	150	128	516	684	11	12	39	108	49	254	312
7	25	6	161	188	506	694	13	13	40	114	73	211	288	177	183	514	686	13	12	48	131	73	219	294
8	1	0	218	365	454	746	21	23	178	89	89	278	327	109	197	437	763	17	16	100	50	50	277	287
8	1	0	262	413	519	681	22	23	201	101	100	312	295	136	228	669	531	18	16	112	56	56	504	236
8	1	0	249	384	517	683	23	22	194	97	97	347	312	186	307	479	721	19	19	168	97	112	285	289
8	1	0	203	367	489	711	23	22	183	92	91	341	295	138	239	434	766	18	18	119	59	60	323	299
8	1	0	189	289	499	701	20	20	158	79	79	337	306	71	124	545	655	10	10	63	32	31	193	164
	_																	-			• •	•		
8	2	0	167	612	108	1092	4	43	158	79	79	58 21	463	124	463	95 576	624	5	40	112	20	20	48	473
ð	2	0	193	516	215	1084	3	33 27	134	65	65	10	246	11 2	10	501	699	0	י ו	, 1	2	4 2	0	132
8	2	0	181	751	77	1123	4	44	170	85	85	33	525	132	567	132	1068	7	41	123	62	61	93	508
8	2	0	190	764	109	1091	7	42	164	82	82	53	452	18	43	529	671	0	5	16	8	8	0	42
8	3	0	236	61	965	235	21	3	55	27	28	91	9	134	25	974	226	17	1	25	13	12	197	1
8	3	0	385	112	911	289	26	3	88	44	44	158	18	41	31	853	347	10	2	13	6	7	111	50
8	3	0	366	120	883	317	28	4	94	47	47	321	39	524	141	1108	92	39	3	108	54	54	376	33
8	3	0	642	145	1072	128	37	3	144	72	72	187	22	366	85	1052	148	30	5	86	43	43	376	60
8	3	0	682	216	1013	187	41	6	184	92	92	539	75	484	175	1015	185	40	5	162	81	81	583	90
0		0	106	655	204	006	•	27	197	01	01	110	514	122	207	211	080	•	36	119	50	50	134	600
٥ و	4	0	158	464	204	990	0 8	31	130	91 65	65	146	609	133	205	211	907	° 7	30	58	29 29	29 29	154	728
8	4	0 0	157	380	277	923	10	33	124	62	62	187	588	77	263	180	1020	7	30	58	29	29	135	664
8	4	ů 0	175	418	219	981	8	33	118	59	59	143	589	83	225	250	950	8	30	62	31	31	179	600
8	4	0	146	316	218	982	7	31	101	51	50	114	644	30	62	167	1033	5	16	27	13	14	132	806
8	5	0	205	179	509	691	21	6	105	52	53	353	115	33	11	1029	171	8	3	13	7	6	427	101
8	5	0	236	178	958	242	19	3	120	60	60	293	53	34	16	912	288	8	3	16	8	8	827	45
8	5	0	268	204	439	761	20	4	129	64	65	265	54	124	75	665	535	15	3	61	31	30	224	46
8	5	0	128	80	814	386	18	2	64	32	32	642	31	22	13	735	465	4	2	11	5	6	318	21
8	5	0	206	150	674	526	29	8	100	50	50	425	125	31	15	820	380	8	1	10	5	5	332	24

8	22	6	457	141	1024	176	30	2	18	128	75	431	25	407	93	1018	182	29	4	18	114	62	476	58
8	22	6	526	121	971	229	29	4	27	178	85	390	68	401	104	1008	192	30	3	15	107	66	469	50
8	22	6	630	217	966	234	31	4	23	174	126	449	41	467	126	1019	181	29	4	18	125	81	428	56
8	22	6	559	91	98 1	219	27	4	19	137	58	337	55	410	60	1071	129	29	3	8	45	37	401	37
•	~~	,	260	422	427	767		25	20	102	227	24	142	172	467	204	904	-	24	26		140		217
8 0	23	0 4	259	432	437	026	4	23	39	08	150	34 22	207	175	402	204	070 072	, 8	20	20	105	100	78	374
0 0	23	٥ ۲	1/0	440	2/4	920	4	20	21	55	141	42	207	137	400	220	033	6	24	20	66	137	90 90	314
•	23	٥ ۲	209	671	240	932	7	24	41	173	200	42 67	206	244	477 602	338	862	7	24	22	138	267	53	267
ō 0	23	0 4	308	664	372	020 874	, 8	29	40	169	306	40	200	244	521	267	033	, ,	20	22	130	207	20	108
0	25	0	208	004	520	0/4	0	20	40	107	500	47	255	225	521	207	,,,,	-	20	55	127	247	20	170
8	24	6	431	144	814	386	22	4	15	94	110	273	46	452	87	1049	151	22	4	11	67	68	368	55
8	24	6	522	282	824	376	22	6	29	190	182	326	89	365	231	841	359	25	6	26	153	165	393	95
8	24	6	366	261	651	549	18	6	30	174	173	228	83	380	127	1002	198	22	5	17	98	107	338	75
8	24	6	238	97	584	616	16	2	13	64	63	250	43	338	99	974	226	22	7	18	99	83	335	103
8	24	6	478	238	865	335	24	7	30	165	171	388	107	390	158	8 66	334	24	5	22	146	110	443	92
8	25	6	48	82	146	1054	3	3	7	17	54	52	42	181	221	634	566	15	14	23	82	145	270	237
8	25	6	31	105	1018	182	5	2	9	18	29	86	34	89	166	914	286	3	6	11	45	72	49	107
8	25	6	233	295	531	669	12	14	27	115	181	198	298	96	99	230	970	4	3	12	35	66	75	54
8	25	6	235	254	458	742	10	12	21	133	136	154	244	187	202	676	524	12	10	19	111	128	225	238
8	25	6	243	320	539	661	10	10	24	79	182	171	162	206	296	516	684	10	11	26	87	198	180	209
9	1	0	200	2 9 0	545	655	19	21	158	79	79	362	376	95	131	554	646	14	12	77	39	38	443	504
9	1	0	195	214	594	606	20	22	133	67	66	379	408	51	95	813	387	9	7	38	19	19	753	295
9	1	0	249	252	592	608	22	21	149	75	74	365	395	164	54	1015	185	6	5	48	36	24	300	148
9	1	0	235	204	662	538	19	18	145	73	72	406	350	90	85	533	667	13	13	66	33	33	354	315
9	1	0	199	194	604	596	19	19	128	64	64	382	388	96	104	804	396	10	10	60	30	30	608	288
•	•	•	120	227	171	1020	ç	2 7	140	74	74	80	620	41	114	110	1001			54	27	77		005
9	2	0	139	321	1/1	1029	5	37	140	74 54	74 54	80 80	650	10	76	20	1081	4	22	10	21	21	21	905
, 0	2	0	174	273	177	1038	5	37	114	57	57	106	633	77	160	126	1074	י ר	37	60	25	34	70	240
ó	2	ñ	107	252	170	1020	5	35	83	41	47	91	683	94	216	142	1058	4	34	87	41	41	87	736
ý	2	0	110	297	136	1064	4	36	98	49	49	76	697	46	100	82	1118	2	25	40	20	20	57	939
ĺ	-	Ŭ					-											-			20	20	5.	,,,,
9	3	0	444	165	992	208	39	6	158	79	79	573	100	39	15	1193	7	8	0	14	7	7	1141	0
9	3	0	417	150	1039	161	39	5	130	65	65	639	66	135	47	465	735	16	2	37	18	19	317	71
9	3	0	420	149	1004	196	38	6	111	56	55	623	104	59	27	1178	22	5	1	20	10	10	117	7
9	3	0	502	225	965	235	40	6	163	82	81	510	62	13	7	1197	3	3	0	4	2	2	1177	0
9	3	0	160	54	1109	91	27	4	50	25	25	822	54	87	41	903	297	16	2	33	16	17	575	33
9	4	0	143	364	188	1012	7	36	118	59	59	102	576	14	52	1116	84	1	1	15	8	7	1105	23
9	4	0	74	144	604	596	6	14	63	32	31	128	418	4	3	649	551	0	2	1	0	1	0	544
9	4	0	132	272	120	1080	4	22	102	51	51	56	782	23	44	8 6	1114	2	12	18	9	9	31	967
9	4	0	134	225	316	884	5	16	128	64	64	42	307	5	7	551	649	1	2	3	2	1	3	514
9	4	0	145	341	209	991	8	33	130	65	65	125	592	85	189	218	982	7	30	74	37	37	162	714
9	5	0	342	144	960	240	32	9	116	58	58	622	131	253	119	698	502	20	5	88	44	44	357	51
9	5	0	529	278	897	303	38	10	187	94	93	482	127	124	70	1053	147	16	4	50	25	25	836	84

9	5	0	521	238	889	311	37	10	186	93	93	444	142	299	140	940	260	29	6	108	54	54	646	136
9	5	0	484	203	958	242	37	8	163	81	82	530	103	201	87	953	247	27	8	75	38	37	577	175
9	5	0	497	260	935	265	37	9	190	95	95	500	95	401	200	965	235	30	8	154	77	77	616	78
9	6	0	263	312	560	640	19	19	166	83	83	381	388	157	193	471	729	14	14	110	55	55	339	597
9	6	0	220	275	511	689	18	18	156	78	78	337	472	0	0	0	1200	0	0	0	0	0	0	1200
9	6	0	287	330	630	570	22	20	193	97	96	402	347	208	223	651	549	18	17	132	66	66	461	401
9	6	0	230	272	609	591	21	21	149	75	74	416	391	191	217	687	513	17	16	116	58	58	482	363
9	6	0	244	303	563	637	19	19	164	82	82	352	409	177	238	614	586	18	17	120	60	60	438	357
9	7	2	533	511	588	612	18	20	108	343	305	318	317	272	245	897	303	10	9	53	166	140	755	144
9	7	2	521	462	563	637	19	19	105	323	262	285	310	421	346	570	630	15	16	79	225	202	220	377
9	7	2	550	395	643	557	17	17	99	295	263	331	277	0	0	0	1200	0	0	0	0	0	0	1200
9	7	2	458	460	579	621	16	16	86	276	237	331	334	84	107	939	261	5	6	27	65	62	887	170
9	7	2	320	277	658	542	15	14	60	180	159	477	230	0	0	1200	0	0	0	0	0	0	1200	0
9	8	2	124	321	178	1022	5	27	30	91	80	118	702	107	176	102	1098	2	19	22	68	54	52	923
9	8	2	105	315	141	1059	4	33	25	77	69	88	752	115	216	88	1112	1	24	25	76	70	40	910
9	8	2	68	166	75	1125	2	23	18	56	42	44	925	100	170	364	836	4	21	26	86	58	317	620
9	8	2	265	521	168	1032	3	36	66	195	174	49	575	115	282	101	1099	3	29	34	92	87	39	624
9	8	2	132	295	208	992	6	29	42	108	85	135	655	54	84	52	1148	1	9	14	39	32	29	364
9	9	2	476	132	1045	155	33	4	42	135	92	690	77	264	83	1010	190	28	5	26	91	58	788	137
9	9	2	377	108	1039	161	32	4	30	97	78	762	85	342	113	1074	126	31	2	32	111	71	684	63
9	9	2	312	68	1049	151	29	3	24	81	50	815	87	268	69	1073	127	29	3	20	65	47	851	85
9	9	2	323	75	1061	139	28	4	24	79	61	812	86	281	76	1054	146	28	4	22	67	51	822	86
9	9	2	374	114	1022	178	31	5	38	128	89	759	114	230	67	1062	138	28	3	22	75	50	852	94
	·	-																						
9	10	2	223	241	258	942	6	31	55	142	83	127	593	271	247	357	843	9	27	62	185	83	196	521
9	10	2	338	303	342	858	10	31	73	233	80	152	443	236	192	181	1019	4	23	51	156	66	63	714
9	10	2	376	273	309	891	7	32	77	256	89	111	470	290	275	316	884	9	33	63	203	73	178	449
9	10	2	221	207	371	829	8	27	49	152	53	254	540	162	116	398	802	5	23	39	113	40	289	608
9	10	2	344	282	331	869	7	30	76	229	92	135	476	161	103	217	983	5	17	34	101	42	116	826
-	• •	-																						
9	11	2	392	78	988	212	26	6	40	131	48	674	124	255	59	985	215	27	6	34	97	30	745	139
9	11	2	365	80	963	237	29	8	39	129	38	692	125	316	61	998	202	28	4	37	139	32	746	124
9	11	2	569	84	1005	195	31	6	44	147	41	528	73	296	57	1080	120	16	3	28	84	28	320	50
9	11	2	447	94	913	287	30	8	48	157	45	544	143	46	5	1195	5	2	0	2	7	2	21	0
9	11	2	468	115	975	225	31	5	53	168	58	515	72	153	40	1100	100	14	3	19	46	21	451	50
9	12	2	0	99	1	1199	0	16	0	0	0	0	952	0	45	0	1200	0	11	0	0	0	0	1121
9	12	2	1	33	56	1144	0	9	2	1	2	0	139	4	16	673	527	0	7	1	1	0	0	405
9	12	2	0	89	0	1200	0	27	0	0	0	0	890	0	1	0	1200	0	1	0	0	0	0	1196
9	12	2	3	164	7	1193	0	33	4	2	5	0	867	0	5	0	1200	0	2	0	0	0	0	1186
ģ	12	2	2	235	2	1198	0	39	2	2	2	0	713	0	64	0	1200	0	14	0	0	0	0	1031
1	• 4	-	2		-		•		-	-	-	v		v	34	5		Ū		v	v	v	J	
9	13	,	375	202	676	574	14	12	77	230	71	459	274	417	168	578	622	16	17	80	264	60	380	388
ý		- 2	354	158	651	549	16	16	69	227	74	477	357	204		887	318	11	 بر	30	134	34	771	236
ý	13	2	434	207	650	550	16	16	71	247	89	447	334	264	87	873	377	12	9	33	117	37	674	285
1		-		-07						- • •						525							2.1	200

9	13	2	473	216	5 8 6	614	17	17	68	234	81	357	388	270	170	774	426	11	11	54	178	59	648	253
9	13	2	409	228	599	601	16	16	79	241	93	330	353	186	84	183	1017	6	6	34	120	37	99	115
9	14	4	470	117	623	577	12	12	36	245	60	430	426	429	87	642	558	11	12	32	224	54	469	440
9	14	4	513	144	650	550	14	13	57	344	86	424	355	381	116	658	542	13	13	45	306	55	491	384
9	14	4	417	109	649	551	12	12	39	246	72	459	409	326	130	590	610	10	9	40	229	68	442	460
9	14	4	415	120	588	612	12	13	45	276	67	391	406	174	66	554	646	8	8	24	121	38	408	469
9	14	4	481	148	579	621	14	14	41	260	74	357	394	386	137	654	546	14	12	41	259	65	468	375
9	15	4	74	204	147	1053	4	27	18	65	31	71	662	26	77	41	1159	1	17	4	20	7	27	490
9	15	4	219	291	204	996	3	31	30	159	44	104	588	109	192	137	1063	4	25	18	86	30	81	656
9	15	4	113	193	175	1025	4	24	19	87	32	111	658	85	137	162	1038	3	23	13	63	18	117	698
9	15	4	64	172	197	1003	3	28	12	53	24	158	636	13	23	41	1159	1	6	2	12	2	34	153
9	15	4	58	111	121	1079	1	27	12	41	19	53	653	0	0	0	1200	0	0	0	0	0	0	0
10	1	0	170	167	577	623	15	16	90	45	45	383	443	40	32	1044	156	6	4	25	13	12	150	127
10	1	0	105	106	641	559	17	15	61	31	30	469	461	13	14	1141	59	4	2	8	4	4	257	45
10	1	0	124	130	624	576	17	15	79	40	39	454	429	195	87	733	467	12	13	64	32	32	394	375
10	1	0	94	124	602	598	16	15	75	38	37	438	459	40	37	1023	177	7	4	28	14	14	307	141
10	1	0	108	127	618	582	18	18	69	35	34	451	463	82	67	769	431	12	11	46	23	23	410	359
10	2	0	43	124	196	1004	5	31	36	18	18	143	778	37	112	122	1078	3	31	32	16	16	74	866
10	2	0	42	110	165	1035	4	27	40	20	20	107	795	36	51	199	1001	2	18	24	12	12	72	877
10	2	0	29	92	169	1031	4	27	26	13	13	115	826	3	21	33	1167	1	7	4	2	2	22	530
10	2	0	80	168	176	1024	4	31	54	27	27	52	734	58	129	164	1036	3	29	38	19	19	107	801
10	2	0	33	130	99	1101	2	31	34	17	17	55	852	58	128	169	1031	3	29	35	18	17	74	809
10	3	0	138	49	1036	164	30	3	44	22	22	803	81	40	5	609	591	15	1	5	2	3	478	28
10	3	0	253	108	669	531	20	3	69	34	35	240	43	46	27	678	522	8	1	21	11	10	613	2
10	3	0	164	51	1097	103	31	3	41	21	20	783	65	154	46	851	349	23	3	33	16	17	628	9 7
10	3	0	130	54	1036	164	29	4	38	19	19	834	120	103	38	1097	103	27	3	32	16	16	923	76
10	3	0	376	152	1036	164	36	3	86	43	43	578	71	173	69	1052	148	18	3	36	18	18	574	84
10	4	0	84	149	306	894	7	26	54	27	27	228	721	62	104	246	954	6	23	40	20	20	192	830
10	4	0	82	168	131	1069	2	17	55	27	28	12	583	47	74	284	916	3	10	28	14	14	212	241
10	4	0	40	82	277	923	7	26	32	16	16	206	780	67	118	255	945	6	24	43	22	21	190	781
10	4	0	74	128	265	935	7	24	61	31	30	181	735	41	107	200	1000	4	25	37	18	19	150	827
10	4	0	76	182	284	916	8	26	60	30	30	204	658	40	92	240	960	6	27	34	17	17	192	808
10	5	0	456	215	962	238	32	8	156	78	79	391	44	588	299	901	299	37	9	194	97	97	270	94
10	5	0	250	127	951	249	33	8	91	46	45	634	154	175	104	960	240	29	7	68	34	34	734	186
10	5	0	246	135	914	286	30	8	93	47	46	644	200	139	99	962	238	28	6	56	28	28	768	176
10	5	0	188	112	966	234	30	7	69	35	34	692	175	86	47	932	268	22	6	34	17	17	736	231
10	5	0	186	110	951	249	25	5	66	33	33	722	189	137	86	924	276	25	8	59	29	30	710	223
10	6	0	148	188	608	592	18	17	85	43	42	451	420	62	101	627	573	16	15	42	21	21	546	461
10	6	0	87	130	605	595	16	16	66	33	33	486	458	125	145	606	594	16	16	79	40	39	459	484
10	6	0	111	128	543	657	15	16	71	35	36	433	472	86	105	588	612	15	14	50	25	25	493	500
10	6	0	94	121	516	684	15	15	69	35	34	422	502	69	96	608	592	14	15	45	22	23	534	463

10	6	0	86	134	547	653	15	15	68	34	34	453	493	63	75	551	649	14	14	45	23	22	467	516
10	7	2	246	270	608	597	14	14	63	103	173	470	443	270	271	612	588	13	13	56	178	185	477	440
10	, 7	2	334	295	591	609	15	16	70	226	211	409	433	251	256	603	597	13	13	53	168	163	447	470
10	7	2	203	264	585	615	14	14	53	152	158	453	468	201	267	619	581	13	13	49	141	167	503	461
10	7	2	309	293	566	634	13	14	71	199	216	381	459	279	264	580	620	13	12	60	182	185	434	483
10	7	2	298	283	595	605	13	13	70	203	198	428	445	245	269	584	616	12	13	50	143	179	447	502
10	8	2	21	36	57	1143	1	4	8	19	18	44	180	0	0	0	1200	0	0	0	0	0	0	0
10	8	2	29	110	101	1099	2	23	12	26	35	72	940	1	13	8	1192	0	3	2	1	1	0	195
10	8	2	66	144	186	1014	3	21	24	55	57	142	768	27	80	112	1088	3	22	8	22	21	93	886
10	ð	2	74 90	140	181	1019	4	25	20	00 70	50	140	802	32	89 54	154	1040	د ۱	23	10	20	23	132	900
10	0	2	90	177	170	1024	5	25	20	70	00	119	029	,	74	55	1145	1	23	4	0	11	44	930
10	9	2	160	47	1099	101	28	2	18	55	32	918	60	82	38	985	215	19	4	16	37	30	866	182
10	9	2	165	58	1052	148	27	3	20	59	47	873	97	59	14	1115	85	25	2	5	9	12	956	72
10	9	2	78	35	1100	100	25	2	8	21	24	930	65	52	13	1098	102	21	2	4	9	11	98 6	91
10	9	2	153	51	1042	158	25	4	19	55	37	841	109	80	40	1004	196	21	3	11	30	28	864	173
10	9	2	155	54	1045	155	27	3	18	54	41	852	112	115	55	940	260	20	4	20	52	41	736	225
									• •							• • •				•				
10	10	2	66	185	192	1008	4	24	26	54	65	129	786	73	146	245	955	6	22	26	58	61	183	805
10	10	2	88 82	189	219	981	7	22	30	66	04 76	205	732	76	139	204	990	5	21	27	59	55 67	178	781
10	10	2	51	120	135	1065	3	20	18	41	41	98	725	32	103	192	1008	4	13	14	28	34	161	516
10	10	2	119	212	191	1009	4	23	34	102	69	123	743	59	111	268	932	4	16	19	51	49	220	749
10	11	2	243	94	912	288	24	7	30	90	69	658	192	171	88	963	237	25	4	27	77	57	722	181
10	11	2	138	45	1013	187	26	4	18	47	35	791	124	179	71	914	286	21	7	24	62	51	685	223
10	11	2	150	69	944	256	23	6	24	49	54	680	187	130	50	938	262	21	6	18	42	38	742	214
10	11	2	189	83	930	270	25	7	28	67	51	642	171	105	67	963	237	22	5	20	49	44	729	183
10	11	2	167	92	930	270	23	0	33	/4	64	000	163	140	61	982	218	17	4	18	50	30	/1/	109
10	12	2	0	44	0	1200	0	31	0	0	0	0	1028	0	46	0	1200	0	28	0	0	0	0	1082
10	12	2	0	51	1	1199	0	30	0	0	0	0	1018	0	78	0	1200	0	33	0	0	0	0	1009
10	12	2	0	61	0	1200	0	35	0	0	0	0	985	1	59	1	1199	0	31	2	1	6	0	1050
10	12	2	1	88	3	1197	0	34	2	1	5	0	966	0	48	0	1200	0	29	0	0	0	0	1077
10	12	2	0	54	0	1200	0	32	0	0	0	0	1035	0	85	0	1200	0	30	0	0	0	0	913
10	13	2	226	115	616	584	12	12	50	125	62	456	453	147	89	602	598	11	10	36	86	42	483	457
10	13	2	107	96	470	730	10	12	35	74	52	384	601	145	98	527	673	11	10	36	86	51	407	548
10	13	2	193	113	620	580	14	13	45	123	59 60	4/3	428	110	76	549 621	570	10	10	27	02 72	34 41	400	302
10	13	2	200	127	586	614	14	14	54	129	72	433	460	114	79	609	591	, 11	10	32	87	39	527	508
10		~	202		200	••••	•••	••	5.								••••							
10	14	4	208	117	608	592	11	10	38	180	73	472	462	189	88	624	576	12	9	37	149	56	497	479
10	14	4	211	120	555	645	10	11	38	182	76	445	482	160	74	689	511	7	8	25	107	47	596	435
10	14	4	276	108	639	561	11	10	37	203	75	497	437	180	75	552	648	7	7	26	139	54	463	573
10	14	4	161	82	578	622	10	10	29	142	52	484	503	70	61	412	788	7	7	18	60	38	357	705
10	14	4	218	122	565	635	10	11	30	162	78	452	511	177	101	457	743	9	8	26	111	68	347	646

10	23	6	140	103	304	896	7	18	17	129	32	229	668	40	51	198	1002	3	18	7	37	9	170	658
10	23	6	108	98	314	886	5	20	17	77	32	180	662	76	54	273	927	5	16	16	69	14	211	742
10	23	6	60	98	207	993	5	21	11	55	21	160	715	38	65	264	936	5	17	11	33	16	218	666
10	23	6	159	9 9	282	918	6	19	20	128	38	178	696	57	58	267	933	4	17	13	49	18	210	752
10	23	6	162	119	281	919	5	22	22	128	29	164	628	51	54	192	1008	4	20	10	47	11	144	822
10	24	6	125	42	897	303	12	4	22	66	25	418	144	63	32	982	218	15	3	13	30	25	548	170
10	24	6	83	26	990	210	21	4	9	13	19	713	136	79	46	939	261	15	4	17	32	42	598	170
10	24	6	147	93	896	304	20	4	30	77	52	583	123	87	31	1008	192	15	4	14	34	27	522	135
10	24	6	105	27	1014	186	17	4	10	21	23	544	130	70	27	1035	165	16	3	12	16	24	659	120
10	24	6	157	56	878	322	17	6	24	84	41	536	203	60	26	1024	176	13	3	8	21	17	567	138
10	25	6	91	75	645	555	13	11	24	53	52	448	427	77	56	732	468	8	9	20	47	34	355	360
10	25	6	123	92	668	532	11	10	30	86	60	419	337	165	96	639	561	7	9	28	127	70	296	439
10	25	6	162	104	568	632	10	11	28	128	57	329	438	99	73	747	453	8	7	23	75	50	417	275
10	25	6	179	130	603	597	11	10	30	135	71	334	345	51	41	800	400	9	8	15	17	32	366	315
10	25	6	140	118	603	597	9	11	29	96	94	336	426	51	41	826	374	7	6	13	16	35	307	321
11	1	0	263	338	527	673	18	20	136	68	68	133	189	272	306	631	569	22	20	131	65	66	186	221
11	1	0	252	300	573	627	21	20	120	60	61	192	244	213	265	513	687	18	18	120	60	60	182	254
11	1	0	202	284	598	602	18	18	120	60	60	196	267	200	234	591	609	18	20	119	59	60	231	286
11	1	0	146	179	714	486	15	17	85	42	43	266	267	51	78	703	497	11	8	35	18	17	472	364
11	1	0	236	350	653	547	21	20	152	76	76	187	227	200	278	671	529	17	18	133	66	67	260	225
11	2	0	119	617	166	1034	6	40	108	54	54	26	354	154	648	173	1027	5	41	136	68	68	16	320
11	2	0	93	415	141	1058	3	38	83	42	41	40	482	100	349	139	1061	6	36	86	43	43	41	467
11	2	0	132	569	129	1071	3	41	100	50	50	13	405	121	447	142	1058	5	36	102	51	51	27	334
11	2	0	88	463	148	1052	4	37	78	40	39	35	354	114	409	124	1076	3	39	88	45	44	19	378
11	2	0	110	587	129	1071	4	39	90	45	45	21	376	197	596	209	991	6	43	138	69	69	22	305
11	3	0	345	158	872	328	34	4	124	62	62	316	31	323	172	950	250	37	5	112	56	56	437	37
11	3	0	296	118	1023	177	37	5	78	39	39	447	61	342	162	981	219	37	4	106	53	54	338	34
11	3	0	351	137	954	246	37	4	104	52	52	317	36	290	101	1051	149	37	4	66	33	33	442	62
11	3	0	319	148	1011	189	31	3	102	51	51	545	16	387	118	1028	172	39	4	84	42	42	333	43
11	3	0	306	121	840	360	30	2	98	49	49	351	44	391	139	1001	199	40	6	116	58	58	338	55
		_																			• •			
11	4	0	109	245	170	1030	6	28	93	47	46	57	455	84	183	269	931	0	25	73	30	37	151	471
11	4	0	106	214	186	1014	7	26	91	45	46	61	465	66	110	203	997	2	25	58	29	29	122	605
	4	0	126	283	261	939	8	29	102	51	53	112	390	140	303	243	957	7	31	104	52	52	53	466
11	4	0	127	264	207	993	1	30	102	53	51	66	430	68	132	211	989	0	22	50	28	28	104	493
11	4	0	123	232	194	1006	6	28	100	50	50	39	376	47	110	218	982	4	19	48	24	24	72	433
		•					24									0.2.6		20	•			~ ~		
11	5	0	122	01	828	3/2	26	د م	46	23	23	392	25	228	101	925	2/5	30 2-	8	08	34	54	404	97
11	5	0	284	173	891	309	54	9	104	52	52	440	101	347	258	803	397	55	8	101	/5 	/6	281	98
11	5	0	414	292	/92	408	57	7	191	75	96	242	37	357	146	931	269	16	10	109	> >	54	295	84
11	5	0	369	205	908	292	34	8	141	70	71	239	43	365	179	919	281	32	10	117	59	58	267	72
11	5	0	385	260	841	359	54	8	160	80	80	264	54	313	144	970	230	54	8	98	49	49	415	94
	,	~	260	201	(12	\$00	74	24	107	01	01	100	100	747	170	600	\$17	10	10	114	£ 0	£0	221	101
11	0	v	200	201	012	200	24	∠4	102	71	71	107	100	24/	220	000	214	10	10	110	20	20	221	104

11	6	0	401	454	593	607	22	23	225	113	112	105	156	233	244	740	460	17	16	123	61	62	245	144
11	6	0	384	395	578	622	24	23	194	97	97	167	193	243	244	650	550	19	19	126	63	63	227	185
11	6	0	308	333	538	662	21	22	166	83	83	161	149	334	424	596	604	22	21	194	97	97	165	114
11	6	0	336	340	572	622	22	22	182	91	91	138	219	273	281	619	581	20	22	152	76	76	215	187
	7	n	206	376	116	754	13	14	60	173	141	127	180	301	377	687	513	10	18	85	199	150	210	100
11	, 7	2	250	216	473	727	13	11	52	139	98	180	114	383	369	727	473	15	18	80	189	174	315	180
11	7	2	357	381	603	597	17	17	82	193	183	193	250	263	263	648	552	15	16	65	143	155	263	283
	, 7	2	227	193	820	380	14	14	49	105	98	137	194	175	167	791	409	13	13	52	92	109	282	269
	, 7	2	229	176	809	391	12	13	56	98	114	253	270	295	337	600	600	14	15	83	164	179	189	200
••	•	Ĩ			•••								-									••••		
11	8	2	140	563	130	1070	4	36	50	106	71	18	365	181	58 0	168	1032	3	36	64	127	73	16	347
11	8	2	125	515	130	1070	3	33	56	92	83	8	291	131	577	158	1042	5	36	52	91	81	20	322
11	8	2	19	161	198	1002	1	16	12	17	15	21	464	93	403	145	1055	3	30	43	70	49	28	415
11	8	2	159	409	165	1035	4	33	58	114	73	19	435	191	537	202	998	3	33	76	147	123	17	319
11	8	2	73	402	101	1099	3	30	40	59	70	26	325	126	528	193	1007	5	37	62	102	102	79	333
11	9	2	464	115	1041	159	36	3	50	83	76	345	27	563	95	1049	151	36	5	38	85	60	205	51
11	9	2	541	47	976	224	29	4	22	48	29	208	146	423	46	1119	81	31	5	17	40	35	301	36
11	9	2	372	58	1083	117	35	3	22	38	28	346	36	396	87	1065	135	32	6	28	54	54	342	63
11	9	2	210	17	942	258	21	2	8	17	11	401	41	377	43	1108	92	28	4	18	36	33	308	41
11	9	2	414	69	1077	123	31	4	30	59	48	318	42	373	75	1025	175	31	3	32	61	47	205	33
11	10	2	126	184	224	976	3	17	50	70	71	50	650	175	307	341	859	7	28	76	104	81	60	343
11	10	2	146	314	242	958	6	24	71	92	99	42	307	120	347	160	1040	5	28	52	67	74	35	340
11	10	2	133	261	325	875	6	19	68	82	92	60	271	91	189	263	937	4	25	52	59	83	69	482
										01	63		401	63	154	109	1091	2	• •	24			-	
11	10	2	130	284	213	987	7	24	48	81	05	00	401	05			1071	4	16	26	37	46	5	775
11 11	10 10	2 2	130 38	284 122	213 215	987 985	7 4	24 13	48 23	81 30	25	65 149	401 257	99	161	227	973	4	16 21	26 39	37 62	46 42	5 57	321
11 11	10 10	2 2	130 38	284 122	213 215	987 985	7 4	24 13	48 23	30	25	65 149	257	99	161	227	973	4	16 21	26 39	37 62	46 42	5 57	321
11 11 11	10 10 11	2 2 2	130 38 544	284 122 135	213 215 779	987 985 421	7 4 25	24 13 8	48 23 62	30 129	25 72	63 149 184	401 257 87	99 637	161 231	227 859	973 341	4	16 21 8	26 39 75	37 62 159	46 42 92	5 57 157	321 81
11 11 11 11	10 10 11 11	2 2 2 2	130 38 544 475	284 122 135 134	213 215 779 974	987 985 421 226	7 4 25 28	24 13 8 6	48 23 62 50	30 129 112	25 72 54	63 149 184 362	401 257 87 62	99 637 635	161 231 203	227 859 902	973 341 298	4 33 34	16 21 8 10	26 39 75 69	37 62 159 136	46 42 92 94	5 57 157 206	775 321 81 81
11 11 11 11 11	10 10 11 11 11	2 2 2 2 2 2	130 38 544 475 590	284 122 135 134 242	213215779974853	987 985 421 226 347	7 4 25 28 33	24 13 8 6 8	48 23 62 50 82	30 129 112 178	25 72 54 107	 63 149 184 362 203 	401 257 87 62 77	99 637 635 573	161 231 203 266	227 859 902 840	973 341 298 360	4 33 34 32	16 21 8 10 7	26 39 75 69 76	37 62 159 136 166	46 42 92 94 101	5 57 157 206 203	775 321 81 81 78
11 11 11 11 11	10 10 11 11 11	2 2 2 2 2 2 2	130 38 544 475 590 656	284 122 135 134 242 204	 213 215 779 974 853 861 	 987 985 421 226 347 339 	7 4 25 28 33 32	24 13 8 6 8 7	48 23 62 50 82 81	30 129 112 178 176	25 72 54 107 106	 63 149 184 362 203 168 	401 257 87 62 77 72	99 637 635 573 695	161 231 203 266 227	227 859 902 840 883	973 341 298 360 317	4 33 34 32 33	16 21 8 10 7 9	26 39 75 69 76 75	37 62 159 136 166 172	46 42 92 94 101 89	5 57 157 206 203 182	775 321 81 81 78 67
11 11 11 11 11 11	10 10 11 11 11 11	2 2 2 2 2 2 2 2	130 38 544 475 590 656 435	284 122 135 134 242 204 132	 213 215 779 974 853 861 933 	 987 985 421 226 347 339 267 	7 4 25 28 33 32 27	24 13 8 6 8 7 6	48 23 62 50 82 81 50	30 129 112 178 176 112	25 72 54 107 106 61	 63 149 184 362 203 168 441 	401 257 87 62 77 72 55	 99 637 635 573 695 650 	161 231 203 266 227 154	227 859 902 840 883 900	973 341 298 360 317 300	4 33 34 32 33 32	16 21 8 10 7 9 8	26 39 75 69 76 75 60	37 62 159 136 166 172 128	46 42 92 94 101 89 76	5 57 157 206 203 182 167	775 321 81 81 78 67 134
11 11 11 11 11	10 10 11 11 11 11 11	2 2 2 2 2 2 2 2 2	130 38 544 475 590 656 435	284 122 135 134 242 204 132	 213 215 779 974 853 861 933 5 	987 985 421 226 347 339 267	7 4 25 28 33 32 27	24 13 8 6 8 7 6 47	48 23 62 50 82 81 50 4	 81 30 129 112 178 176 112 4 	25 72 54 107 106 61	 63 149 184 362 203 168 441 0 	401 257 87 62 77 72 55 288	 99 637 635 573 695 650 14 	 161 231 203 266 227 154 595 	227 859 902 840 883 900	973 341 298 360 317 300	4 33 34 32 33 32 0	16 21 8 10 7 9 8	26 39 75 69 76 75 60 20	37 62 159 136 166 172 128	46 42 92 94 101 89 76 23	5 57 157 206 203 182 167	775 321 81 81 78 67 134
11 11 11 11 11 11	10 10 11 11 11 11 11 12 12	2 2 2 2 2 2 2 2 2 2 2 2 2 2	130 38 544 475 590 656 435 4	284 122 135 134 242 204 132 637 218	213 215 779 974 853 861 933 5 5	987 985 421 226 347 339 267 1192 1195	7 4 25 28 33 32 27 0 0	24 13 8 6 8 7 6 47 34	48 23 62 50 82 81 50 4	30 129 112 178 176 112 4 4	25 72 54 107 106 61 6	 63 149 184 362 203 168 441 0 0 0 	401 257 87 62 77 72 55 288 398	 99 637 635 573 695 650 14 5 	 161 231 203 266 227 154 595 195 	227 859 902 840 883 900 18	973 341 298 360 317 300 1182 1190	4 33 34 32 33 32 0 0	16 21 8 10 7 9 8 45 34	26 39 75 69 76 75 60 20 8	37 62 159 136 166 172 128 13 5	46 42 92 94 101 89 76 23 9	5 57 157 206 203 182 167 0 0	775 321 81 81 78 67 134 330 512
11 11 11 11 11 11 11	10 10 11 11 11 11 11 12 12 12	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	130 38 544 475 590 656 435 4 4 5	284 122 135 134 242 204 132 637 218 168	213 215 779 974 853 861 933 5 5 5	987 985 421 226 347 339 267 1192 1195 1182	7 4 25 28 33 32 27 0 0 0	24 13 8 6 8 7 6 47 34 34	48 23 62 50 82 81 50 4 8 6	30 129 112 178 176 112 4 4 5	25 72 54 107 106 61 6 6 8	 63 149 184 362 203 168 441 0 0 0 0 	257 87 62 77 72 55 288 398 718	 63 99 637 635 573 695 650 14 5 9 	161 231 203 266 227 154 595 195	227 859 902 840 883 900 18 10 41	973 341 298 360 317 300 1182 1190 1159	4 33 34 32 33 32 0 0 0	16 21 8 10 7 9 8 45 34 33	26 39 75 69 76 75 60 20 8 8	37 62 159 136 166 172 128 13 5 7	46 42 92 94 101 89 76 23 9 12	5 57 157 206 203 182 167 0 0	81 81 88 67 134 330 512 587
11 11 11 11 11 11 11 11	10 10 11 11 11 11 11 12 12 12 12	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	130 38 544 475 590 656 435 4 4 5 13	284 122 135 134 242 204 132 637 218 168 201	213 215 779 974 853 861 933 5 5 18 25	 987 985 421 226 347 339 267 1192 1195 1182 1175 	7 4 25 28 33 32 27 0 0 0 0 0	24 13 8 6 8 7 6 47 34 34 34	48 23 62 50 82 81 50 4 8 6 16	81 30 129 112 178 176 112 4 4 5 12	25 72 54 107 106 61 6 8 20	 63 149 184 362 203 168 441 0 0 0 0 0 0 0 0 	401 257 87 62 77 72 55 288 398 718 558	 637 635 635 650 14 5 9 2 	 161 231 203 266 227 154 595 195 191 257 	227 859 902 840 883 900 18 10 41	973 341 298 360 317 300 1182 1190 1159 1199	4 33 34 32 33 32 0 0 0 0	16 21 8 10 7 9 8 45 34 33 43	26 39 75 69 76 75 60 20 8 8 8 4	37 62 159 136 166 172 128 13 5 7 2	46 42 92 94 101 89 76 23 9 12 2	5 57 157 206 203 182 167 0 0 0 0	 775 321 81 81 78 67 134 330 512 587 457
11 11 11 11 11 11 11 11 11	10 10 11 11 11 11 11 12 12 12 12 12	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	130 38 544 475 590 656 435 4 4 5 13 9	284 122 135 134 242 204 132 637 218 168 201 431	213 215 779 974 853 861 933 5 5 18 25 6	 987 985 421 226 347 339 267 1192 1195 1182 1175 1194 	7 4 25 28 33 32 27 0 0 0 0 0 0	24 13 8 6 8 7 6 47 34 34 40 44	48 23 62 50 82 81 50 4 8 6 16 12	 81 30 129 112 178 176 112 4 4 5 12 9 	25 72 54 107 106 61 6 6 8 20 8	 63 149 184 362 203 168 441 0 	 401 257 87 62 77 72 55 288 398 718 558 464 	637 635 573 695 650 14 5 9 2 5	 161 231 203 266 227 154 595 195 191 257 451 	227 859 902 840 883 900 18 10 41	973 341 298 360 317 300 1182 1190 1159 1199 1196	4 33 34 32 33 32 0 0 0 0 0 0 0	16 21 8 10 7 9 8 45 34 33 43 43	26 39 75 69 76 75 60 20 8 8 4 6	37 62 159 136 166 172 128 13 5 7 2 5	46 42 92 94 101 89 76 23 9 12 2 10	5 57 157 206 203 182 167 0 0 0 0 0 0	 775 321 81 81 78 67 134 330 512 587 457 396
11 11 11 11 11 11 11 11 11	10 10 11 11 11 11 11 12 12 12 12 12	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	130 38 544 475 590 656 435 4 4 5 13 9	284 122 135 134 242 204 132 637 218 637 218 168 201 431	213 215 779 974 853 861 933 5 5 18 25 6	987 985 421 226 347 339 267 1192 1195 1182 1175 1194	7 4 25 28 33 32 27 0 0 0 0 0 0	24 13 8 6 8 7 6 47 34 34 40 44	48 23 62 50 82 81 50 4 8 6 16 12	 81 30 129 112 178 176 112 4 4 5 12 9 	25 72 54 107 106 61 6 8 20 8	 63 149 184 362 203 168 441 0 	 401 257 87 62 77 72 55 288 398 718 558 464 	 63 99 637 635 573 695 650 14 5 9 2 5 	 161 231 203 266 227 154 595 195 191 257 451 	227 859 902 840 883 900 18 10 41 1 4	973 341 298 360 317 300 1182 1190 1159 1199	4 33 34 32 33 32 0 0 0 0 0 0	16 21 8 10 7 9 8 45 34 33 43 43	26 39 75 69 76 75 60 20 8 8 4 6	37 62 159 136 166 172 128 13 5 7 2 5	46 42 92 94 101 89 76 23 9 12 2 10	5 57 157 206 203 182 167 0 0 0 0 0 0	 775 321 81 81 78 67 134 330 512 587 457 396
11 11 11 11 11 11 11 11 11 11	10 10 11 11 11 11 12 12 12 12 12 12	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	130 38 544 475 590 656 435 4 4 5 13 9 348	284 122 135 134 242 204 132 637 218 168 201 431 206	213 215 779 974 853 861 933 5 5 5 18 25 6 6	987 985 421 226 347 339 267 1192 1195 1182 1175 1194 582	7 4 25 28 33 32 27 0 0 0 0 0 0 18	24 13 8 6 8 7 6 47 34 40 44 16	48 23 62 50 82 81 50 4 8 6 16 12 71	 81 30 129 112 178 176 112 4 4 5 12 9 185 	25 72 54 107 106 61 6 8 20 8 65	 63 149 184 362 203 168 441 0 0 0 0 0 0 0 0 336 	 401 257 87 62 77 72 55 288 398 718 558 464 199 	 63 99 637 635 573 695 650 14 5 9 2 5 457 	 161 231 203 266 227 154 595 191 257 451 280 	227 859 902 840 883 900 18 10 41 1 4 570	973 341 298 360 317 300 1182 1190 1159 1196 630	4 33 34 32 33 32 0 0 0 0 0 19	16 21 8 10 7 9 8 45 34 33 45 34 33 46 23	26 39 75 69 76 75 60 20 8 8 4 6 93	 37 62 159 136 166 172 128 13 5 7 2 5 250 	46 42 92 94 101 89 76 23 9 12 2 10 85	5 57 157 206 203 182 167 0 0 0 0 0 0 176	 775 321 81 81 78 67 134 330 512 587 457 396 226
11 11 11 11 11 11 11 11 11 11	10 10 11 11 11 11 12 12 12 12 12 12 12 13	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	130 38 544 475 590 656 435 4 4 5 13 9 348 284	284 122 135 134 242 204 132 637 218 168 201 431 206 163	213 215 779 974 853 861 933 5 5 18 25 6 616 535	987 985 421 226 347 339 267 1192 1195 1182 1175 1194 582 665	7 4 25 28 33 32 27 0 0 0 0 0 0 0 18 16	24 13 8 6 8 7 6 47 34 34 40 44 16 15	48 23 62 50 82 81 50 4 8 6 16 12 71 59	81 30 129 112 178 176 112 4 4 5 12 9 185 155	25 72 54 107 106 61 6 6 8 20 8 65 59	 63 149 184 362 203 168 441 0 0 0 0 0 0 0 3336 231 	 401 257 87 62 77 72 55 288 398 718 558 464 199 239 	 63 99 637 635 573 695 650 14 5 9 2 5 457 342 	 161 231 203 266 227 154 595 195 191 257 451 280 220 	227 859 902 840 883 900 18 10 41 1 4 570 553	973 341 298 360 317 300 1182 1190 1159 1199 1196 630 647	4 33 34 32 33 32 0 0 0 0 0 0 19 15	16 21 8 10 7 9 8 45 34 33 43 43 43 46 23 15	26 39 75 69 76 75 60 20 8 8 4 6 93 78	 37 62 159 136 166 172 128 13 5 7 2 5 250 178 	46 42 92 94 101 89 76 23 9 12 2 10 85 78	5 57 157 206 203 182 167 0 0 0 0 0 176 129	 775 321 81 81 78 67 134 330 512 587 457 396 226 320
11 11 11 11 11 11 11 11 11 11	10 10 11 11 11 11 11 12 12 12 12 12 12 13 13	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	130 38 544 475 590 656 435 4 4 5 13 9 348 284 189	284 122 135 134 242 204 132 637 218 168 201 431 206 163 96	213 215 779 974 853 861 933 5 5 18 25 6 616 535 423	987 985 421 226 347 339 267 1192 1195 1182 1175 1182 1175 1194 582 665 777	7 4 25 28 33 32 27 0 0 0 0 0 0 0 18 16 11	24 13 8 6 8 7 6 47 34 34 40 44 16 15 9	48 23 62 50 82 81 50 4 8 6 16 12 71 59 40	 81 30 129 112 178 176 112 4 4 5 12 9 185 155 107 	25 72 54 107 106 61 6 6 8 20 8 65 59 31	 65 149 184 362 203 168 441 0 	 401 257 87 62 77 72 55 288 398 718 558 464 199 239 261 	637 637 635 573 695 650 14 5 9 2 5 457 342 416	 161 231 203 266 227 154 595 195 191 257 451 280 220 205 	227 859 902 840 883 900 18 10 41 1 4 570 553 540	973 341 298 360 317 300 1182 1190 1159 1199 1196 630 647 660	4 33 34 32 33 32 0 0 0 0 0 0 19 15 16	16 21 8 10 7 9 8 45 34 33 45 34 33 45 23 15 19	26 39 75 69 76 75 60 20 8 8 4 6 93 78 77	 37 62 159 136 166 172 128 13 5 7 2 5 250 178 196 	46 42 92 94 101 89 76 23 9 12 2 10 85 78 73	5 57 157 206 203 182 167 0 0 0 0 0 0 176 129 218	 775 321 81 81 78 67 134 330 512 587 457 396 226 320 297
11 11 11 11 11 11 11 11 11 11 11 11	10 10 11 11 11 11 12 12 12 12 12 12 13 13 13	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	130 38 544 475 590 656 435 435 435 435 13 9 348 284 189 422	284 122 135 134 242 204 132 637 218 168 201 431 206 163 96 214	213 215 779 974 853 861 933 5 5 5 18 25 6 616 535 623 423 465	987 985 421 226 347 339 267 1192 1195 1182 1175 1194 582 665 777 735	7 4 25 28 33 32 27 0 0 0 0 0 0 0 18 16 11 17	24 13 8 6 8 7 6 47 34 40 44 16 15 9 17	48 23 62 50 82 81 50 4 8 6 16 12 71 59 40 78	 81 30 129 112 178 176 112 4 4 5 12 9 185 155 107 214 	25 72 54 107 106 61 6 6 8 20 8 65 59 31 77	 63 149 184 362 203 168 441 0 	 401 257 87 62 77 72 55 288 398 718 558 464 199 239 261 422 	637 635 573 695 650 14 5 9 2 5 457 342 416 429	 161 231 203 266 227 154 595 195 191 257 451 280 220 246 	227 859 902 840 883 900 18 10 41 1 4 570 553 540 537	973 341 298 360 317 300 1182 1190 1159 1199 1196 630 647 660 663	4 33 34 32 33 32 0 0 0 0 0 0 19 15 16 16	16 21 8 10 7 9 8 45 34 33 45 34 33 45 23 15 19 16	26 39 75 69 76 75 60 20 8 8 4 6 93 78 77 93	37 62 159 136 166 172 128 13 5 7 2 5 250 178 196 226	46 42 92 94 101 89 76 23 9 12 2 10 85 78 73 93	5 57 157 206 203 182 167 0 0 0 0 0 0 176 129 218 193	 775 321 81 81 78 67 134 330 512 587 457 396 226 320 297 207
11 11 11 11 11 11 11 11 11 11	10 10 11 11 11 11 12 12 12 12 12 12 12 13 13 13 13	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	130 38 544 475 590 656 435 4 4 5 13 9 348 284 189 422 43	284 122 135 134 242 204 132 637 218 168 201 431 206 163 96 214 46	213 215 779 974 853 861 933 5 5 18 25 6 6 616 535 423 465 260	987 985 421 226 347 339 267 1192 1195 1182 1175 1194 582 665 777 735 940	7 4 25 28 33 32 27 0 0 0 0 0 0 0 0 18 16 11 17 5	24 13 8 6 8 7 6 47 34 34 40 44 16 15 9 17 5	48 23 62 50 82 81 50 4 8 6 16 12 71 59 40 78 13	 81 30 129 112 178 176 112 4 4 5 12 9 185 155 107 214 31 	25 72 54 107 106 61 6 8 20 8 65 59 31 77 11	 63 149 184 362 203 168 441 0 0 0 0 0 0 0 0 336 231 274 158 129 	 401 257 87 62 77 72 55 288 398 718 558 464 199 239 261 422 183 	637 637 635 573 695 650 14 5 9 2 5 457 342 416 429 121	 161 231 203 266 227 154 595 195 191 257 451 280 220 205 246 74 	227 859 902 840 883 900 18 10 41 1 4 5570 553 540 5337 610	973 341 298 360 317 300 1182 1190 1159 1199 1196 630 647 660 663 590	4 33 34 32 33 32 0 0 0 0 0 0 0 0 19 15 16 16 12	16 21 8 10 7 9 8 45 34 33 45 34 33 45 34 33 45 23 15 19 16 11	26 39 75 69 76 75 60 20 8 8 4 6 93 78 78 77 93 32	37 62 159 136 166 172 128 13 5 7 2 5 250 178 196 226 73	46 42 92 94 101 89 76 23 9 12 2 10 85 78 73 93 30	5 57 157 206 203 182 167 0 0 0 0 0 0 176 129 218 193 370	 775 321 81 81 78 67 134 330 512 587 457 396 226 320 297 207 324
11 11 11 11 11 11 11 11 11 11	10 10 11 11 11 11 12 12 12 12 12 12 13 13 13 13 13	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	130 38 544 475 590 656 435 4 4 5 13 9 348 284 189 422 43	284 122 135 134 242 204 132 637 218 637 218 201 431 206 163 96 214 46	213 215 779 974 853 861 933 5 5 5 18 25 6 6 616 535 6 616 535 423 465 260	987 985 421 226 347 339 267 1192 1195 1182 1195 1182 1175 1194 582 665 777 735 940	7 4 25 28 33 32 27 0 0 0 0 0 0 0 0 0 18 16 11 17 5	24 13 8 6 8 7 6 47 34 40 44 16 15 9 17 5	48 23 62 50 82 81 50 4 8 6 16 12 71 59 40 78 13	81 30 129 112 178 176 112 4 4 5 12 9 185 155 107 214 31	25 72 54 107 106 61 6 6 8 20 8 65 59 31 77 11	 63 149 184 362 203 168 441 0 129 	 401 257 87 62 77 72 55 288 398 718 558 464 199 239 261 422 183 	637 635 573 695 650 14 5 9 2 5 457 342 416 429 121	 161 231 203 266 227 154 595 191 257 451 280 220 226 246 74 	227 859 902 840 883 900 18 10 41 1 4 570 553 540 537 610	973 341 298 360 317 300 1182 1190 1159 1196 630 647 660 643 590	4 33 34 32 33 32 0 0 0 0 0 0 0 0 19 15 16 16 12	16 21 8 10 7 9 8 45 34 45 34 33 45 34 33 46 23 15 19 16 11	26 39 75 69 76 75 60 20 8 8 4 6 93 78 77 93 32	 37 62 159 136 166 172 128 13 5 7 2 5 250 178 196 226 73 	46 42 92 94 101 89 76 23 9 12 2 10 85 78 73 93 30	5 57 157 206 203 182 167 0 0 0 0 0 0 0 176 129 218 193 370	 775 321 81 81 78 67 134 330 512 587 457 396 226 320 297 207 324
11 11 11 11 11 11 11 11 11 11	10 10 11 11 11 11 12 12 12 12 12 12 12 13 13 13 13 13 13	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	130 38 544 475 590 656 435 4 4 5 13 9 348 284 189 422 43	284 122 135 134 242 204 132 637 218 168 201 431 206 163 96 214 46 331	213 215 779 974 853 861 933 5 5 18 25 6 6 616 535 423 465 260 598	987 985 421 226 347 339 267 1192 1195 1182 1175 1194 582 665 777 735 940 602	7 4 25 28 33 32 27 0 0 0 0 0 0 0 0 18 16 11 17 5 16	24 13 8 6 8 7 6 47 34 34 40 44 16 15 9 17 5 16	48 23 62 50 82 81 50 4 8 6 16 12 71 59 40 78 13 70	 81 30 129 112 178 176 112 4 4 4 5 12 9 185 155 107 214 31 328 	25 72 54 107 106 61 6 8 20 8 65 59 31 77 11 172	 63 149 184 362 203 168 441 0 0 0 0 0 0 0 0 336 231 274 158 129 128 	 401 257 87 62 77 72 55 288 398 718 358 464 199 239 261 422 183 150 	637 635 573 695 650 14 5 9 2 5 457 342 416 429 121 540	 161 231 203 266 227 154 595 195 195 191 257 451 280 220 205 246 74 363 	227 859 902 840 883 900 18 10 41 1 4 570 553 540 537 610	973 341 298 360 317 300 1182 1190 1199 1199 1199 630 647 660 663 590 657	4 33 34 32 33 32 0 0 0 0 0 0 0 0 0 19 15 16 16 12 18	16 21 8 10 7 9 8 45 34 33 45 34 33 45 34 33 45 15 19 16 11	26 39 75 69 76 75 60 20 8 8 4 6 93 78 77 93 32 76	37 62 159 136 166 172 128 13 5 7 2 5 250 178 196 226 73 362	46 42 92 94 101 89 76 23 9 12 2 10 85 78 73 93 30 176	5 57 157 206 203 182 167 0 0 0 0 0 0 176 129 218 193 370 88	 775 321 81 81 78 67 134 330 512 587 457 396 226 320 297 207 324 192

11	14	4	536	409	541	659	17	16	71	340	173	159	139	628	366	573	627	19	19	82	402	189	90	114
11	14	4	515	296	544	656	18	17	69	321	145	132	166	411	236	802	398	12	12	44	200	106	81	86
11	14	4	501	358	512	688	15	16	60	281	136	97	202	549	418	611	589	18	17	69	295	179	120	113
11	15	4	159	537	205	995	6	27	33	138	67	66	262	252	493	213	987	3	34	45	207	105	43	278
11	15	4	184	583	144	1056	3	37	35	151	66	24	347	232	535	195	1005	5	30	37	185	81	53	366
11	15	4	235	572	219	981	4	33	44	185	103	52	277	181	534	135	1065	3	36	30	143	78	21	392
11	15	4	172	622	147	1043	5	35	32	148	81	37	318	230	576	202	998	5	37	38	175	90	39	285
	15	4	235	612	224	976	6	31	42	188	100	53	160	248	658	178	1022	4	33	44	203	109	26	205
••		•	200	0.12			·							2.0	050		TOLL	-	55		205	107	20	252
11	16	4	656	88	006	204	28	4	74	122	64	220	12	715	115	1003	107	77	ç	26	101	40	170	60
11	16	4	749	100	1001	100	30	י ז	34	157	54	223	14	612	02	1005	100	21	5	24	171	60	170	60
11	16	4	670	60	1079	177	20	2	16	137	12	223	24	640	122	1010	202	24	ر ۸	34 24	1//	00	324	59
	10	4	407	62	10/6	122	20	- -	10	00	40	207	34	640	122	398	202	30	4	20	100	80	224	50
	10	4	497	22	1034	140	32	2	22	91	38	297	37	549	03	1000	200	30	4	22	110	40	244	105
11	16	4	335	33	1049	151	23	2	18	70	27	262	26	398	40	1010	190	27	3	16	51	24	130	85
							_																	
11	17	4	160	457	153	1047	5	26	54	127	142	19	210	118	272	236	964	4	19	34	81	72	11	207
11	17	4	227	273	320	880	4	22	51	158	98	20	283	112	292	209	991	6	19	31	90	78	29	146
11	17	4	54	168	96	1104	2	11	36	47	57	7	227	103	231	152	1048	4	17	23	82	46	29	182
11	17	4	107	260	128	1072	6	18	17	79	34	51	297	108	234	119	1081	4	18	19	74	40	20	196
11	17	4	216	307	336	864	5	22	36	150	78	33	244	176	399	262	938	6	25	33	133	87	52	259
11	18	4	306	71	813	387	21	4	18	56	38	165	41	365	116	890	310	26	7	36	119	63	133	85
11	18	4	458	94	948	252	28	5	29	148	51	220	73	541	126	917	283	25	8	42	184	81	158	90
11	18	4	443	111	839	361	22	4	31	133	61	239	63	512	150	845	355	30	9	41	202	70	204	100
11	18	4	414	134	910	290	23	4	36	166	70	363	22	426	116	806	394	23	6	40	176	53	215	157
11	18	4	310	82	955	245	24	5	22	101	39	227	48	508	124	862	338	28	8	36	164	69	119	116
11	19	4	411	208	632	568	15	14	46	236	73	122	141	566	396	519	681	19	20	61	30 8	140	94	177
п	19	4	396	300	506	694	14	15	48	239	83	68	161	482	338	487	713	15	15	56	270	107	49	166
11	19	4	346	275	447	753	16	15	43	219	83	147	149	331	243	507	693	15	16	45	172	78	78	185
11	19	4	299	201	401	7 9 9	11	11	36	156	76	79	161	363	164	570	630	13	15	34	165	66	43	187
11	19	4	145	112	521	679	7	5	22	91	39	33	147	242	184	406	794	11	12	34	147	69	61	154
11	20	6	346	197	625	575	10	9	34	227	93	251	86	468	295	525	675	16	16	40	282	114	91	129
11	20	6	406	298	447	753	14	14	39	277	123	111	114	486	372	511	689	16	16	48	310	145	87	130
11	20	6	500	341	539	661	15	15	49	290	148	95	143	459	329	506	694	15	14	47	306	134	74	94
11	20	6	131	18	970	230	4	3	13	61	13	128	60	346	247	583	617	10	10	32	177	74	44	75
11	20	6	483	376	512	688	15	15	47	329	155	84	81	468	375	546	654	16	16	38	287	129	110	96
11	21	6	103	352	147	1053	4	28	18	91	46	17	341	50	189	75	1125	1	16	10	39	27	2	91
	21	6	104	235	161	1039	3	21	22	80	44	62	214	20	56	95	1105	0	0	4	2		-	0
11	21	6	133	435	168	1032	4	30	20	100	50	32	216	120	410	123	1077	ŝ	20	. 17	<u>م</u>	25	11	210
11	21 21	6	152	679	100	11052	7	30	14	112	24	14	210	120	710	125	1045	2	27	1/ 20	100		11	120
11	י ב רב	4	124	620	101	1070	2	26	17	110	20	10	199	147	, 10 647	120	1005	ر ۸		10	110	43	10	107
11	21	0	134	030	121	10/9	3	30	17	110	38	19	100	120	502	128	10/2	4	20	19	119	43	18	107
	•••	,			1012	107			~	100		140		700		1001	100	~ .	•		17.	~~	100	••
11	22	0	/44	140	1013	18/	52	4	20	139	13	102	12	129	1/1	1001	199	54	2	28	101	/5	188	10
11	22	6	797	163	991	209	34	3	35	236	90	161	16	867	83	1060	140	34	4	23	138	50	206	27
11	22	6	821	124	1035	165	28	3	25	148	70	143	15	844	158	987	213	29	6	30	189	96	141	20

11 22	6	705	77	1056	143	34	2	20	101	51	257	17	924	99	1046	154	22	4	25	138	73	135	40
11 22	6	932	84	1060	140	30	3	28	190	63	178	23	858	220	987	213	35	3	42	264	140	197	9
11 23	6	208	584	187	1013	7	27	19	160	52	29	198	209	520	232	968	6	24	23	146	59	43	273
11 23	6	141	487	140	1045	4	28	16	104	36	39	406	233	484	268	932	8	23	26	160	73	93	341
11 23	6	365	549	339	861	8	27	34	253	87	82	217	335	496	300	900	5	27	34	234	85	63	279
11 23	6	276	588	257	943	6	26	28	194	81	43	201	263	444	258	942	7	24	24	164	63	50	335
11 23	6	288	536	239	961	6	29	30	216	74	34	286	187	471	200	1000	7	24	20	130	49	58	317
	Ū					-																	
11.24	6	601	138	769	431	26	5	38	221	76	173	27	888	234	868	332	28	8	44	274	129	84	51
11 24	6	906	780	805	395	25	6	48	309	152	88	27	792	312	796	404	26	8	40	287	137	130	37
11 24	6	073	373	746	454	30	7	49	397	151	102	50	1112	353	754	446	28	8	50	462	160	114	60
11 24	· · ·	775	197	740	420	25	5	30	210	97	102	20	808	101	002	707	20		21	-02 	95	161	55
11 24	· 0	121	10/	701	437	25	•	50	400	160	107	22	000	171	903	297	20	°	31	223	140	101	55
11 24	0	800	381	/50	44 /	28	•	50	409	139	125	39	843	337	804	390	27	0	40	331	149	107	52
				<i></i>	(***				205	124			400			(0)							100
11 25	6	509	372	541	639	15	15	40	305	120	82	80	489	3/4	514	080	10	1/	46	295	121	/6	109
11 25	6	341	273	557	643	13	14	38	194	101	135	155	381	293	5/7	623	16	16	41	197	102	137	125
11 25	6	316	258	504	696	14	14	42	194	90	124	142	371	241	605	595	17	16	45	191	103	129	126
11 25	6	385	260	550	650	16	17	42	225	104	166	138	326	245	512	688	16	16	36	171	88	124	136
11 25	6	507	296	593	607	16	17	40	265	115	133	137	423	340	524	676	18	17	39	249	106	125	126
12 20	6	276	333	583	617	15	14	58	175	171	246	187	157	253	476	724	14	15	35	111	122	275	330
12 20	6	262	355	545	655	15	16	54	163	214	226	251	222	315	539	661	14	14	46	125	182	250	207
12 20	6	256	392	561	639	16	17	58	172	216	219	200	275	334	536	664	16	18	52	155	193	197	267
12 20	6	246	336	635	565	17	16	58	166	213	302	190	243	394	549	651	16	17	51	152	197	239	219
12 20	6	261	406	574	626	17	16	53	164	200	263	177	294	387	647	553	15	15	63	209	226	326	135
12 21	6	53	284	97	1103	3	26	20	42	61	33	269	0	0	0	1200	0	0	0	0	0	0	0
12 21	6	63	415	108	1091	3	32	26	49	87	31	383	0	36	0	1200	0	6	0	0	0	0	110
12 21	6	96	420	176	1024	4	33	32	67	109	63	316	41	155	849	351	2	10	11	32	39	26	121
12 21	6	123	403	230	970	5	33	32	91	113	78	304	54	126	87	1113	1	17	12	31	46	15	276
12 21	6	146	451	221	979	4	34	41	98	149	59	337	98	323	139	1061	3	27	23	67	94	33	258
12 22	6	246	148	947	253	32	4	35	118	83	400	75	89	72	1113	87	10	1	14	44	40	121	5
12 22	6	320	169	913	287	29	6	38	123	101	339	92	46	15	1185	15	9	0	4	12	12	114	0
12 22	6	314	175	930	270	31	5	44	131	122	278	58	98	37	1127	73	18	1	10	30	27	211	30
12 22	6	314	171	904	295	30	6	43	134	123	322	82	212	93	1030	170	30	3	25	76	60	347	54
12 22	6	386	205	916	284	33	3	51	167	130	251	50	101	39	1101	99	13	3	12	25	30	171	50
12 23	6	120	340	237	963	5	30	36	84	106	72	391	10	15	22	1178	1	1	2	7	3	10	3
12 23	6	196	364	303	897	7	30	42	132	122	91	279	32	54	67	1133	2	5	6	22	17	25	76
12 23	6	177	438	257	943	6	29	44	125	147	71	322	90	198	164	1036	4	14	20	65	64	60	160
12 23	6	204	408	358	842	9	27	48	145	158	132	283	136	295	231	969	5	28	38	84	123	58	365
12 23	6	192	446	278	922	5	32	47	150	171	75	364	148	324	309	891	9	27	38	99	110	104	290
	-					-				• •							-						
12 24	6	371	255	851	349	29	7	63	185	152	249	51	256	137	974	226	24	7	38	99	98	354	57
12 24	- 6	344	195	900	300	30	7	57	148	118	251	57	214	133	991	209	20	5	34	81	79	185	38
12 24	6	348	181	979	271	27	5	60	158	125	225	37	213	112	1008	197	25	- 7	34	64	84	226	56
12 24	۰ ت ۲	309	140	020	280	25	6	40	125	100	266	60	175	57	1121	70	10	י ר	14	26	22	- 20	10
12 24	0	200	170	720	200	ر ۲	0	77	. 25	107	200	07	125	55	1121	13	10	4	14	50	55	33	12

12	24	6	431	225	916	284	31	5	58	190	155	283	42	368	206	911	289	25	9	53	156	160	209	75
12	25	6	173	184	801	399	12	12	39	94	86	136	130	53	51	1100	100	4	3	10	27	29	46	36
12	25	6	253	269	654	546	19	18	50	130	126	215	158	48	45	1099	101	3	4	7	17	19	31	38
12	25	6	233	246	591	609	17	15	45	123	101	205	189	2	0	1200	0	0	0	0	0	0	0	0
12	25	6	250	272	590	610	19	18	53	135	118	192	177	33	32	1092	108	3	4	8	14	20	29	43
12	25	6	271	283	669	531	17	17	51	141	140	221	157	79	71	1072	128	3	4	12	35	38	32	41

APPENDIX C

The raw data from the last five sessions from each condition of Experiment 3 are presented for each possum. Data is presented separately from the first and second half of the session. The subject (S, 2 = George; 3 = Arthur; 4 = Timmy; 5 = Holly; 6 = Sylvester; 7 = Maggie), condition (C), left responses (RL), right responses (RR), time allocated to the left (TL) and right levers (TR), the reinforcers obtained for responses to the left (RfL) and right levers (RfR), the number of changeovers (CO) the number of responses during the COD on the left (R>L) and right levers (L>R), and the post-reinforcement pause times on the following reinforcers for responses on the left (PTL) and right levers (PTR), are presented.

			F	irst h	alf										Seco	nd ha	alf						
S	С	RL	RR	TL	TR	RfL	RfR	со	R>L	L>R	PTL	PTR	RL	RR	TL	TR	RfL	RfR	со	R>L	l>r	PTL	PTR
2	1	268	168	613	575	17	16	81	168	63	163	249	224	148	593	607	16	17	72	130	61	158	305
2	1	79	59	947	208	6	4	23	53	20	7 8 6	62	21	9	687	513	1	1	7	15	4	654	11
2	1	161	107	614	568	17	15	55	95	52	196	361	189	116	598	602	16	16	61	116	47	173	332
2	1	221	144	422	777	14	13	66	149	52	83	175	224	112	597	603	18	18	63	139	46	130	251
2	1	271	154	596	600	18	18	79	157	62	124	256	243	134	651	549	19	16	71	145	59	113	279
2	2	285	209	624	574	19	18	101	175	83	152	144	216	138	704	496	19	19	72	113	48	199	197
2	2	321	225	626	556	21	20	103	173	78	161	122	332	186	673	527	20	19	90	171	67	173	137
2	2	274	190	598	591	20	21	8 6	135	70	128	176	304	201	577	623	19	20	95	181	71	122	180
2	2	360	252	589	608	22	20	105	198	88	127	117	299	206	636	564	19	20	98	154	82	137	133
2	2	346	264	565	630	19	21	107	202	90	97	124	254	146	761	439	19	18	72	120	51	117	142
_	_																						
2	3	313	183	627	571	19	19	88	198	73	103	223	263	139	690	510	19	18	70	127	53	186	209
2	3	257	133	649	524	17	18	68	147	57	136	214	230	130	689	511	19	18	64	108	51	155	219
2	3	278	143	679	516	19	19	74	169	61	149	211	237	128	649	551	19	19	59	113	46	180	266
2	3	305	153	670	513	19	18	83	172	65	170	192	232	132	669	531	17	17	65	114	57	184	229
2	3	375	189	656	535	18	18	89	232	71	119	140	259	141	689	511	19	18	70	120	60	182	213
2	,	202	147	200	80.4	17	20	70	145	47	05	204	114	126	206	016		12	62	02	20	121	220
2	4	203	10/	300	894	17	20	70	145	47	83 97	304	110	120	285	1007	14	13	52	82	29	121	239
2	4	108	100	280	070 705	10	17	57	00	40	0/ 101	212	40	27	103	604	,	0	10	20	14	37	121
2 2	4	133	138	301	795 807	14	14	61	128	34	171	271	42	18	55	1145	4	4	19	50	11	232	43
2	4	1/7	136	256	704	14	14	60	120	J0 16	70	212	16	72	534	666	1 0	6	25	29	14	471	172
2	7	147	150	250	/04	14	14	00	100	40	/ 3	211	40	12	554	000	0	0	25	20	14	4/1	175
2	5	402	103	868	323	16	17	77	136	56	205	83	311	68	968	232	16	15	51	83	38	275	70
2	5	402	122	881	313	18	19	84	176	64	219	61	450	83	961	230	15	15	76	128	49	153	54
2	5	471		887	304	16	18	77	143	57	232	100	437	86	965	235	15	14	66	142	46	193	59
2	5	305	79	931	263	17	16	56	112	47	245	86	158	29	1115	85		6	23	48	17	72	21
2	5	346	109	846	328	16	18	69	115	53	267	88	292	67	992	208	15	15	52	70	36	294	60
-	-	2.2	•••											- /		•				. 5	20	(
3	1	240	213	694	506	18	17	55	77	78	246	194	153	146	755	445	15	15	35	43	55	410	210
3	1	144	178	673	527	16	15	39	56	59	391	284	143	158	726	474	15	16	39	55	57	425	242
																							-

3	1	144	186	648	551	17	17	44	65	63	319	293	154	275	465	735	16	16	52	69	81	157	337
3	1	177	191	672	526	16	16	45	64	75	302	266	170	164	689	511	15	15	40	56	57	347	282
3	1	209	229	643	556	20	19	57	76	90	258	258	172	156	704	496	17	18	40	60	65	356	287
3	2	276	321	531	667	18	20	73	139	136	165	160	201	216	624	576	17	16	53	95	103	238	131
3	2	232	282	543	656	18	18	64	117	108	195	145	219	246	565	635	16	17	58	96	103	173	139
3	2	335	377	553	644	20	22	89	168	168	169	111	247	255	579	621	20	18	65	113	129	176	129
3	2	333	293	639	560	22	19	75	136	137	209	102	226	199	645	555	18	19	55	91	102	256	147
3	2	328	332	573	625	19	21	76	147	147	168	160	261	297	609	591	16	17	70	123	155	159	113
																		•				,	
3	3	221	292	472	726	19	21	70	101	128	120	348	213	267	483	717	18	19	62	96	103	112	396
3	3	343	307	618	578	20	21	82	135	144	116	165	230	226	708	492	19	17	60	86	96	191	188
3	3	259	258	576	594	19	19	71	120	125	114	230	220	200	657	543	19	18	57	89	105	126	257
1	2	258	250	630	568	19	19	62	102	97	183	197	220	200	663	537	18	10	56	90	103	123	237
2	2	210	202	632	566	10	20	70	136	142	120	176	107	219	620	561	10	10	50	90	04	123	217
3	5	213	505	052	500	19	20	13	150	142	139	170	197	210	039	501	19	19	57	04	04	157	210
,		250	250	567	422	20	10	4 0	114	07	100	262	103	100	600	(1)	10	10	62		70	220	205
, ,	4	250	200	540	033	20	10	09	114	97	109	203	182	100	505	612	18	10	52	84	19	228	305
د م	4	203	293	540	644	19	20	/4 00	129	105	128	194	212	258	397	603	18	19	70	104	103	140	200
3	4	297	367	532	657	20	21	82	152	143	138	183	243	255	600	594	20	19	12	121	98	1/6	209
3	4	208	262	485	088	18	18	65	9/	94	140	229	215	253	222	041	18	17	63	90	84	142	180
3	4	185	213	434	761	18	18	62	98	79	108	273	164	177	473	727	17	17	49	75	52	154	348
	_					_											_						
3	5	203	52	879	204	8	10	31	52	28	184	33	161	18	1144	56	8	5	12	20	10	158	16
3	5	347	56	1062	128	11	11	34	59	32	195	26	334	39	1101	99	8	7	28	41	21	134	22
3	5	327	70	1055	131	10	9	41	76	49	179	31	282	57	1029	171	11	12	35	69	29	244	55
3	5	276	66	966	176	13	13	42	72	37	217	56	223	32	1053	147	9	7	24	30	20	178	26
3	5	294	75	1010	175	15	14	32	59	40	308	54	297	68	1038	162	12	13	30	42	40	251	53
4	1	188	200	716	482	16	16	60	92	131	398	277	199	138	775	425	16	15	49	78	105	453	288
4	1	84	96	344	848	7	9	30	35	65	182	744	3	9	29	1171	1	1	2	1	6	21	1151
4	1	207	161	695	503	15	15	44	76	102	414	337	225	147	782	418	15	15	51	75	108	431	274
4	1	158	138	719	467	17	15	47	59	97	447	332	161	125	715	485	15	16	40	55	83	468	335
4	1	170	143	694	500	16	17	51	78	93	425	326	215	223	668	532	15	16	63	93	141	381	331
4	2	241	301	649	526	17	17	69	131	184	422	178	181	240	675	525	17	16	56	101	147	494	220
4	2	267	338	647	544	17	18	81	145	195	406	198	180	187	711	489	18	16	55	88	111	465	167
4	2	199	239	590	608	19	17	59	122	136	384	215	217	276	580	620	16	17	72	129	178	338	221
4	2	260	350	585	610	16	17	82	145	214	320	174	160	200	574	626	15	16	60	89	128	380	200
4	2	243	277	614	585	19	17	71	135	175	353	172	195	239	563	637	16	16	66	116	163	344	233
4	3	317	212	689	501	16	15	64	102	133	278	301	202	181	623	577	16	16	55	76	95	286	348
4	3	257	239	599	598	17	16	66	110	149	243	386	189	174	675	525	18	19	52	85	115	378	358
4	3	265	230	633	555	16	16	68	130	131	227	350	219	182	624	576	15	16	60	96	120	260	381
4	3	275	228	684	504	17	17	72	115	153	272	284	284	223	598	602	18	19	63	123	128	213	353
4	3	274	238	640	555	18	16	72	125	159	249	337	189	181	594	606	14	15	60	83	120	259	382
4	4	200	285	482	718	17	18	75	125	160	217	403	214	321	485	715	18	17	77	137	178	262	392
4	4	189	276	433	759	17	17	66	105	146	218	404	272	322	470	730	17	19	89	153	200	220	381
4	4	242	328	426	770	16	16	84	161	176	228	365	249	284	494	706	19	17	78	153	169	294	385

4	4	203	247	408	726	17	16	67	131	150	237	405	211	270	483	717	17	18	72	129	175	266	382
4	4	134	195	363	815	15	15	52	75	111	196	359	35	62	672	528	6	5	13	17	34	626	135
4	5	267	225	805	377	15	15	70	112	166	425	190	305	265	864	336	17	16	78	128	187	489	161
4	5	270	191	899	294	18	16	58	84	141	431	160	281	193	886	314	15	17	53	83	131	452	177
4	5	282	167	915	272	15	16	55	82	122	487	138	274	150	923	277	13	13	61	95	112	509	145
4	5	299	228	852	332	15	15	65	124	147	416	129	248	193	869	331	14	14	58	107	131	498	175
4	5	269	168	874	306	15	15	58	90	110	416	151	222	129	943	257	15	15	46	63	90	400	144
5	1	157	108	625	570	11	13	37	59	64	351	368	104	61	938	262	11	6	23	42	32	455	180
5	1	132	125	682	504	14	14	41	61	72	431	357	59	50	674	526	10	8	17	28	23	373	285
5	1	129	132	626	501	14	15	37	57	64	413	299	111	106	674	526	12	12	29	47	45	456	326
5	1	147	146	635	565	14	14	48	81	80	419	317	115	91	611	589	14	15	30	64	42	464	457
5	1	119	79	670	458	11	12	35	53	56	311	316	116	75	618	582	11	9	30	48	30	303	435
5		117	.,	0/0	450			55	55	50	511	510	110	15	010	502		,	50	40	57	505	455
ç	2	100	212	622	540	15	17	57	04	86	306	100	129	107	575	675	12	12	44	76	77	206	146
5	2	107	212	665	510	16	17	54	96	106	106	190	155	110	601	500	12	12	44	75	56	500	275
5	2	17/	217	703	490	16	19	50	05	92	400	140	155	110	721	460	17	17	40	75 73	50	510	2/3
د د	2	215	210	703	489	10	10	50	105	107	417	149	101	100	701	409	17	17	44	75	00 70	120	191
2	2	279	253	/33	400	10	10	04	105	107	38/	155	199	151	701	499	15	14	50	/0	/2	420	1/1
2	2	10/	231	670	524	15	10	4/	/8	/5	439	231	149	127	/93	407	17	15	31	64	48	282	182
	•	•		60 0	(00		20		120		1.00						• /			100	<i>(</i> -		
5	3	269	246	580	608	17	20	00	120	122	158	339	210	150	506	694	10	10	50	109	6/	251	405
5	3	265	193	618	579	19	19	55	109	88	234	329	218	120	577	623	16	15	47	93	59	298	424
5	3	166	132	542	641	16	17	43	81	68	271	483	146	92	562	638	15	15	34	63	44	341	480
5	3	254	162	607	581	17	18	52	105	77	213	348	150	95	759	441	14	12	34	61	42	535	292
5	3	195	122	653	546	15	16	39	69	66	347	401	124	91	645	555	13	12	33	57	49	445	426
5	4	159	241	423	776	16	16	53	98	83	203	448	68	127	576	624	10	10	23	49	30	494	364
5	4	229	246	514	683	16	17	67	120	111	224	338	124	122	638	562	13	11	31	66	42	151	342
5	4	145	174	470	707	15	15	47	86	64	280	364	83	171	463	737	13	12	30	63	45	343	384
5	4	141	217	357	7 8 6	15	15	44	83	66	176	348	33	71	824	376	5	3	14	25	15	788	124
5	4	187	230	404	764	15	15	60	106	84	165	374	66	104	699	501	7	7	30	47	39	245	227
5	5	346	159	878	313	16	17	56	91	97	448	143	177	87	772	428	13	12	36	52	54	484	208
5	5	230	111	8 66	327	14	13	46	71	64	499	195	170	76	972	228	12	12	34	49	46	471	127
5	5	249	147	877	316	14	14	54	75	83	429	164	153	54	1048	152	8	7	26	27	34	254	77
5	5	252	100	881	243	14	13	44	57	65	411	120	131	56	983	217	8	9	26	39	34	269	137
5	5	238	129	89 0	301	15	14	50	75	66	476	151	221	94	873	327	11	12	40	68	55	471	214
6	1	626	490	539	660	21	20	106	421	228	213	204	475	314	515	685	18	18	78	322	161	277	279
6	1	719	456	602	596	18	18	113	459	223	199	173	406	308	542	658	19	18	75	268	137	258	192
6	1	639	462	601	599	20	18	110	419	224	263	226	417	329	496	704	16	17	70	264	146	263	250
6	1	531	412	533	666	18	20	94	347	192	246	226	340	262	520	680	19	18	56	221	115	309	289
6	1	409	330	557	639	20	21	73	255	157	295	293	328	240	534	666	18	17	60	204	106	296	331
6	2	820	412	659	540	19	21	125	447	235	224	88	668	376	681	519	21	19	102	405	194	327	78
6	2	821	466	681	515	22	21	129	497	257	262	79	517	345	629	571	20	21	88	326	168	361	138
6	2	733	363	702	498	21	20	111	420	203	307	76	259	109	770	430	9	10	35	125	54	187	65
6	- 2	628	322	753	447	18	18	 80	320	175	322	147	211	174	711	489	Ó	10	35	122	67	160	120
0	4	020	555			10	10	,	520	1/5	222			. 44			,	10	55	122	57	107	100

6	2	705	360	699	501	19	21	100	408	190	317	117	314	213	396	804	14	14	51	189	89	213	384
6	3	572	472	447	753	20	21	103	364	174	76	200	396	300	416	784	17	19	75	273	104	107	340
6	3	659	459	466	726	22	19	109	443	165	112	232	456	269	440	760	17	18	77	304	114	98	319
6	3	522	335	498	699	18	20	102	341	144	98	238	303	136	682	518	12	10	51	193	59	64	193
6	3	529	305	484	710	21	18	89	356	130	101	251	298	212	642	558	13	14	50	178	79	47	228
6	3	651	408	494	700	19	19	105	391	137	93	259	373	211	475	725	14	15	61	226	90	112	298
6	4	325	656	313	884	18	16	67	247	97	134	207	112	407	136	1064	8	12	27	82	40	65	202
6	4	240	363	352	835	14	14	51	179	75	205	253	76	142	184	1016	6	6	18	60	25	134	112
6	4	95	182	118	1069	5	8	21	74	31	54	153	24	52	23	1177	1	0	8	19	10	10	0
6	4	162	343	188	994	11	13	38	128	52	84	194	2	2	317	883	0	0	1	2	0	0	842
6	4	137	314	166	1020	10	9	30	107	49	92	179	0	6	0	1200	0	0	0	0	0	0	0
6	5	854	141	1018	173	14	12	70	253	95	236	50	502	78	817	383	7	7	35	127	52	152	26
6	5	909	119	1028	167	12	11	61	227	84	221	29	251	28	1154	46	3	3	13	46	20	44	15
6	5	773	123	981	203	15	14	68	249	79	279	68	158	14	806	394	1	2	10	29	12	21	7
6	5	924	120	1016	176	15	14	76	280	91	271	57	531	51	1067	133	6	6	29	100	41	96	22
6	5	1067	113	1021	175	12	12	60	207	72	183	49	513	49	1097	103	11	10	28	102	38	222	41

APPENDIX D

The raw data from the last five sessions from each condition of Experiment 4 are presented for each possum. Data is presented separately from the first and second half of the session. The subject (S, 2 = George; 3 = Arthur; 4 = Timmy; 5 = Holly; 6 = Sylvester; 7 = Maggie), condition (C), left responses (RL), right responses (RR), time allocated to the left (TL) and right levers (TR), the reinforcers obtained for responses to the left (RfL) and right levers (RfR), the number of changeovers (CO) the number of responses during the COD on the left (R>L) and right levers (L>R), and the post-reinforcement pause times on the following reinforcers for responses on the left (PTL) and right levers (PTR), are presented.

					First	half									9	Secon	d hal	f						
S	С	%	RL	RR	π	TR	RfL	RfR	со	R>L	L>R	PTL	PTR	RL	RR	TL	TR	RfL	RfR	со	R>L	L>R	PTL	PTR
2	1	0	236	118	620	569	17	17	66	102	61	192	220	223	99	642	558	16	17	53	92	42	197	235
2	1	0	304	135	649	544	20	19	72	131	59	156	233	216	87	777	423	17	16	44	80	38	289	172
2	ł	0	289	144	628	562	18	18	74	136	64	136	222	161	73	702	498	16	17	42	65	34	299	252
2	1	0	284	136	678	516	19	18	72	131	65	161	222	198	84	744	456	16	16	48	74	43	269	236
2	1	0	305	179	625	569	18	19	87	152	83	123	200	241	98	741	459	16	16	61	105	42	159	195
_	_	_																						
2	2	0	246	152	583	596	20	18	78		63	142	217	215	125	603	597	18	18	65	87	47	124	217
2	2	0	162	105	582 400	684	17	19	84 60	71	/0	113	207	251	119	508	540	18	18	70 54	71	23	153	257
2	2	0	205	107	546	642	17	19	60	97	46	152	255	196	105	621	579	17	17	57	78	30	157	227
2	2	0	205	122	585	605	20	19	70	102	50	133	235	251	105	670	530	18	18	70	105	44	159	211
-	-	Ũ	200					.,															,	210
2	4	2	328	138	617	569	18	20	87	161	68	124	191	233	118	607	593	18	17	61	114	44	197	189
2	4	2	265	126	681	508	18	17	69	117	48	211	194	207	102	693	507	15	15	52	89	40	278	198
2	4	2	411	167	690	490	20	18	96	179	80	110	115	262	115	719	481	19	17	63	126	45	162	173
2	4	2	307	167	641	536	20	18	83	155	67	105	170	301	136	629	571	18	21	76	141	56	120	180
2	4	2	306	179	653	536	20	19	9 0	150	76	112	131	265	141	661	539	19	20	64	131	51	190	175
2	6	2	231	138	669	521	15	15	58	103	45	117	145	288	134	760	440	20	18	62	97	48	158	127
2	6	2	258	148	588	581	19	20	67	120	55	139	185	252	148	567	633	20	19	67	116	55	124	255
2	6	2	284	161	610	546	18	17	61	97	54	113	148	279	185	573	627	18	20	83	120	61	100	161
2	6	2	246	113	767	422	18	18	59	109	47	226	157	196	92	608	592	16	16	46	81	27	198	348
2	6	2	252	143	707	485	16	15	68	123	55	86	113	193	108	744	456	15	15	51	86	39	159	194
2	7	4	309	168	619	560	19	19	79	139	62	115	144	229	139	544	656	16	17	56	97	44	131	184
2	7	4	331	197	592	597	21	20	89	167	77	103	158	239	127	743	457	17	18	56	108	49	198	171
2	7	4	250	162	575	617	18	20	78	126	54	123	218	152	76	865	335	12	11	41	72	24	76	108
2	7	4	301	164	591	601	19	18	82	144	57	99	161	218	100	558	642	16	19	54	104	33	115	311
2	7	4	291	175	580	602	18	21	75	135	62	73	201	239	119	675	525	18	19	54	115	37	128	196
2	0	٨	156	125	510	667	17	17	51	70	27	100	205	177	125	\$10	600	10	20	٩.	74	24	144	205
۔ ب	o g	4	190	125	77		יי י	יי יי	7	, U R	52 5	. 20	205	100	12 <i>5</i> QA	373	877	17	11	36	74 51	30 20	177	203
۔ ک	0 8	- 4	136	132	497	696	16	15	57	73	30	77	180	177	150	570	630	16	18	63	94	42	87	188
4	0	-	150		472	0,0	10		22	.5	55			• • • •		270	050	10	.0	55	74			.00

2	8	4	62	59	480	347	7	5	26	36	19	348	54	0	0	0	1200	0	0	0	0	0	0	0
2	8	4	73	60	465	532	10	11	25	37	20	249	220	130	109	654	546	16	15	38	58	26	183	176
2	9	6	145	9 7	545	633	15	16	47	52	32	187	325	172	111	582	618	19	17	53	74	36	202	254
2	9	6	199	103	755	445	16	17	55	81	40	132	174	274	111	780	420	17	18	59	103	46	152	145
2	9	6	136	104	483	427	14	13	45	53	36	121	150	241	98	667	533	17	18	58	100	47	122	180
2	9	6	45	38	159	1001	5	4	19	15	15	50	33	0	0	0	1200	0	0	0	0	0	0	0
2	9	6	236	114	555	617	16	16	61	79	48	103	356	240	82	872	328	16	15	53	81	36	153	145
2	10	6	180	133	682	491	18	17	61	90	53	149	194	205	144	668	532	15	18	69	106	58	157	196
2	10	6	122	81	758	435	11	10	40	58	28	556	205	0	0	1200	0	0	0	0	0	0	1201	
2	10	6	190	144	614	553	18	17	66	100	50	154	192	165	98	603	597	15	15	56	82	36	140	324
2	10	6	194	150	596	593	17	18	68	97	60	138	198	165	87	666	534	17	16	50	87	34	249	281
2	10	6	203	138	511	583	17	17	65	101	49	104	182	101	96	407	793	14	13	37	58	23	141	202
•		Ũ	200					•										••		5.		25		202
2	11	6	378	165	787	397	34	7	90	142	79	217	72	267	117	864	336	37	٥	63	01	46	212	76
2		6	345	130	812	377	31	ý	78	175	54	157	101	207	106	807	303	20	6	50	86	40	212	70
2	11	6	378	150	815	378	34	7	80	120	68	197	66	235	100	020	280	29	•	55	06	20	229	73 73
2	11	6	245	1/3	777	468	24	, 8	77	107	60	171	00	200	167	670	530	30	6	,, ,,	00	50	176	72
2	11	4	245	145	725	408	20	6	92	107	61	199	57	265	102	770	128		0	71	109	19	250	. 96
2	11	0	250	154	125	470	51	0	65	122	01	100	57	205	129	112	420	29	,	/1	108	40	250	00
2	12		07	226	100	1004	0	20	47	50	26	63	754	77	104	170	1022	4	20	26	42	24	67	704
2	12	٥ ۲	02 04	192	190	080	, 0	30 27	43	57	24	72	200	179	164	212	097	4	20	35	42	24	20	264
2	12	0	04	102	202	707	•	27	44	67	24	73 22	208	120	105	213	207	7	20	40	15	37	39	420
2	12	0	9/	140	230	938	,	29	43	21	39	ננ פר	398	/1	142	208	1020	,	29	31	40	23	55	439
2	12	0	40	177	101	1090	4	27	30	35	25	28	314	88 61	191	180	1020	9	28	48	39	37	34	275
2	12	6	81	173	177	1015	/	25	38	54	32	63	251	51	111	297	903	2	15	25	30	19	180	172
_							•••				•••	•••		• •	•	~~~		,		•				
2	13	0	16/	44	1048	129	28	2	32	4/	20	239	18	34	9	905	235	0	1	9	10	4	13	11
2	13	0	181	59	1039	155	30	4	37	00	30	372	42	128	40	981	219	24	4	32	21	20	237	31
2	13	6	177	78	1009	1/4	29	د	45	64	33	280	24	50	13	1110	84	12	1	12	18	8	283	ð
2	13	6	183	82	919	243	29	4	45	/5	37	282	43	42	17	/89	411	10	1	13	13	8	2/4	0
2	13	0	206	90	929	246	35	0	4/	74	35	244	54	92	42	950	250	15	1	24	32	17	1/6	18
								•••	•			•••	•••	•••					• •	••	••		•	•••
2	14	0	25	195	85	1105	4	28	20	19	15	20	308	28	1/5	92	1108	4	34	18	20	11	30	330
2	14	6	31	100	62	1131	3	31	18	19	13	15	429	48	169	91	1109	3	34	26	30	17	15	434
2	14	6	19	124	105	1088	3	30	14	10	9	13	455	12	170	69	1131	3	32	8	5	6	14	362
2	14	6	55	207	117	1049	3	38	32	35	26	19	326	56	217	134	1066	6	32	30	38	22	22	272
2	14	6	9	181	31	1160	2	36	12	7	7	10	328	30	195	62	1138	5	30	16	25	10	18	288
2	15	6	325	146	690	498	32	9	92	126	64	133	100	240	120	816	384	31	7	58	79	43	269	99
2	15	6	246	115	846	344	34	7	64	84	50	242	93	298	87	922	278	30	8	48	74	42	317	93
2	15	6	320	177	706	488	32	9	92	116	71	151	112	244	111	890	310	33	7	60	78	43	169	73
2	15	6	323	169	741	430	35	7	90	115	68	159	59	293	144	761	439	32	9	77	109	51	120	91
2	15	6	320	180	737	457	33	9	91	117	78	132	103	248	119	834	366	31	8	59	76	44	191	85
2	16	4	264	127	756	433	32	6	82	97	62	206	97	270	122	822	378	31	10	71	111	57	1 8 6	88
2	16	4	245	135	729	462	28	9	79	105	62	169	101	286	134	776	424	34	8	72	108	49	181	114
2	16	4	256	122	803	384	32	9	72	90	52	235	91	245	131	766	434	30	7	65	96	41	188	88
2	16	4	252	155	793	393	34	7	71	93	55	204	81	235	127	833	367	28	8	64	74	50	248	98

2	16	4	298	182	734	461	34	7	88	111	70	201	67	223	119	886	314	30	9	62	69	48	152	75
2	17	4	121	267	246	945	6	33	72	81	62	62	236	73	193	253	947	10	29	43	45	38	107	291
2	17	4	33	203	225	805	4	22	29 56	28 65	20 45	29 47	257	93 22	143	68	1132	ہ 4	29 20	16	14	10	44	247 550
2	17	4	69	200	147	1049	6	31	36	39	32	56	333	58	183	155	1045	8	28	30	28	20	55	359
2	17	4	82	229	174	1009	7	31	44	48	40	49	294	63	202	163	1037	8	32	40	38	31	50	339
-	•	1	02					•••																
2	18	4	292	98	878	242	35	3	62	69	44	207	24	183	83	937	263	31	5	46	54	28	265	61
2	18	4	241	113	859	311	35	5	71	69	39	265	54	192	85	952	248	31	5	48	53	31	385	64
2	18	4	152	44	1001	140	24	2	33	41	22	255	29	43	11	1132	68	7	3	8	7	5	117	41
2	18	4	176	76	918	274	34	5	49	46	33	263	59	145	76	953	247	27	4	46	43	28	379	63
2	18	4	200	51	970	182	33	3	41	40	24	352	49	177	75	979	221	34	4	44	40	25	385	49
2	19	4	22	123	65	1033	3	23	14	15	8	22	302	10	40	39	1161	1	10	6	5	4	12	194
2	19	4	18	130	167	1001	4	30	12	10	7	125	346	42	14	1069	131	1	3	1	1	0	32	60
2	19	4	53	144	142	1051	4	29	28	24	18	42	338	19	136	95	1105	3	35	18	12	12	44	500
2	19	4	5	135	21	862	2	26	4	3	4	11	317	18	224	62	1138	4	27	16	13	10	28	269
2	19	4	10	120	83	1007	3	28	12	12	/	22	4//	19	09	33	1105	I	21	8	/	0	0	/40
2	20	4	211	113	774	416	29	9	62	50	43	196	138	221	110	846	354	28	5	64	65	39	302	78
2	20	4	241	111	772	406	30	8	71	58	47	210	.50	178	133	790	410	28	4	63	57	42	148	77
2	20	4	143	60	406	184	16	5	40	45	27	109	54	212	104	892	308	33	7	66	49	44	195	78
2	20	4	77	45	898	178	15	4	29	27	21	695	81	0	0	1200	0	0	0	0	0	0	1200	0
2	20	4	125	78	904	238	23	5	53	43	38	560	51	17	14	1142	58	4	2	8	5	4	1045	21
2	21	4	217	126	607	491	16	17	68	87	42	165	193	186	122	679	521	19	18	54	59	39	122	245
2	21	4	222	127	521	550	19	17	73	99	44	120	204	241	145	581	619	17	17	70	99	36	67	199
2	21	4	258	174	539	658	20	21	79	92	55	116	240	246	139	666	534	19	19	74	100	52	107	188
2	21	4	210	173	553	642	19	20	77	79	52	130	234	142	116	615	585	18	17	49	56	32	104	290
2	21	4	223	155	564	619	21	20	75	86	44	122	238	261	184	619	581	19	20	84	111	47	113	152
2	,	^	202	04	740	417	15	15	40	67	29	144	210	167	00	625	565	15	16	41		25	161	277
2	1	0	202	105	632	417	15	15	40	68	38 42	144	218	225	90	708	402	15	10	41	55	33	121	107
3	1	0	200	129	751	408	17	17	50	82	53	174	165	190	113	822	378	17	17	44	61	51	316	184
3	1	0	247	100	823	346	15	16	43	77	44	201	158	230	95	909	291	15	14	47	76	49	158	99
3	1	0	302	110	880	284	15	15	53	80	51	226	102	263	135	878	322	17	16	49	80	55	247	127
3	2	0	168	218	512	679	18	17	58	69	61	187	321	96	108	565	635	15	15	33	40	29	304	415
3	2	0	130	185	494	689	18	16	41	60	44	231	373	90	108	592	608	16	17	28	37	38	311	418
3	2	0	173	224	486	703	18	16	51	63	55	176	348	67	83	606	594	15	15	24	22	26	388	440
3	2	0	98	159	481	705	17	16	35	40	37	226	427	80	104	585	615	14	14	28	29	30	292	407
3	2	0	119	171	485	702	16	17	41	49	37	183	387	81	93	622	578	14	13	33	35	30	389	397
3	4	2	174	276	537	654	19	18	57	66	67	202	223	113	194	546	654	18	18	44	41	48	294	238
3	4	2	127	277	439	750	17	19 1-	52	67	59	182	229	127	262	510	690	16	17	46	55	50	267	193
3	4	2	128	276	488	712	17	17	46	52	54	228	255	197	313	667	533	19	17	55	71	54	299	52
3 2	4	2	121	316	570	612	10	17	20 20	20	/0	131	209	88 00	111	489	/11 560	15	14	36 21	40	36 20	224	354
2	-+	4	70	1/1	510	013	1/	1/	20	37	-+0	220	200	20		~~~~	202	10	13	21	31	20	400	554
4	1	0	165	172	656	526	17	15	56	71	114	364	371	143	111	696	504	12	13	39	49	73	424	363
---	--------	--------	----------	-----	-------------	------	----	-----	----	-----	-----	-----	-------	-----	-----	-------------	-----	----------	----	--------	------------	-----	------	-----
		Ň	107	170	620	521	15	15	52	79	104	347	341	07	54	905	205	10	7	20	32	41	348	230
•			197	170	029	551		15		/0	104	342	341	~~~			275	10		20	52		340	257
4	1	0	154	126	648	517	15	16	44	63	92	344	364	250	141	695	505	17	17	50	80	89	340	330
4	1	0	209	184	696	487	16	16	47	72	107	333	303	325	224	746	454	17	17	63	112	126	327	260
4	1	0	172	94	734	436	15	15	42	66	60	395	296	235	141	791	409	16	15	41	64	101	454	290
4	2	0	86	101	310	235	7	7	26	37	50	182	123	68	77	839	361	8	7	25	30	38	725	175
4	2	0	304	190	963	202	15	15	65	112	120	450	21	298	106	1066	134	9	10	52	75	72	253	29
4	2	0	80	119	662	513	12	11	32	46	49	549	293	30	25	443	757	5	7	10	13	12	196	608
	2	Ň	167	162	772	420	15	15	55	75	07	140	272	52	04	761	130	7	د	 วว	27	22	664	100
4	2	0	107	105	723	439	15	15		, j		449	227			/01	437	,,		12	21	55	(004	109
4	2	0	134	151	/11	463	15	10	41	50	93	4/1	282	139	142	825	3/3	12	10	42	20	/8	023	122
4	4	2	133	158	690	438	14	13	42	59	79	396	223	171	197	693	507	14	14	50	79	99	436	297
4	4	2	64	109	531	646	12	13	30	30	42	361	390	85	69	643	557	14	14	24	37	38	395	400
4	4	2	102	138	642	534	15	14	39	58	72	461	364	91	124	546	654	12	14	32	42	75	272	481
4	4	2	127	182	550	573	14	15	44	73	97	363	365	158	137	757	443	15	13	39	90	87	559	294
4	4	2	94	152	681	487	14	13	33	53	66	433	246	85	120	530	670	11	11	30	46	50	394	232
4	6	2	119	210	631	554	15	18	46	60	112	357	305	157	186	671	529	17	17	52	73	112	352	296
	6	- 2	140	216	524	650	15	15	50	69	127	283	306	184	237	532	668	16	17	54	92	139	255	437
	, ,	2	140	210	529	600	12	1.4	26		.27	205	422	104	175	594	616	10	17	47	<i>(</i> 2	104	240	437
4	0	2	93	150	5//	604	12	14	35	44	92	270	433	129	175	584	010	10	17	43	02	104	342	414
4	6	2	148	181	560	613	16	16	47	74	114	281	386	131	166	638	562	17	17	39	66	98	374	340
4	6	2	148	205	647	519	17	15	49	64	109	346	293	119	149	626	574	15	15	34	60	86	366	404
4	7	4	132	182	485	709	15	14	39	69	91	291	355	153	159	642	558	15	16	37	64	99	401	314
4	7	4	145	153	659	472	17	15	37	54	87	375	253	137	118	823	377	11	11	34	75	77	611	225
4	7	4	90	81	659	446	13	11	26	39	56	315	323	114	141	657	543	12	12	34	61	78	313	295
4	7	4	116	158	572	566	14	15	36	63	82	350	340	112	131	676	524	14	12	35	58	83	504	340
4	7	4	100	206	449	715	14	15	38	63	101	291	385	120	145	725	475	15	12	35	56	97	295	291
4	8	4	140	248	491	686	15	16	48	83	128	328	325	140	213	598	602	15	14	47	83	98	422	263
4	8	4	137	199	547	614	16	15	47	84	111	365	335	149	205	641	559	16	16	46	86	118	428	268
Å	8		115	212	486	691	15	15	45	75	105	333	326	127	225	498	702	15	14	48	80	121	334	330
	•		114	246	516	663	15	14	13	66	111	355	343	125	226	587	613	15	15	18	72	125	421	226
	•		114	240	510	6005	15	14	43	70	111	200	243	125	230	567	(40	15	15	40	100	120	921	320
4	8	4	143	220	337	398	10	15	42	/0	115	303	341	100	243	221	049	15	15	54	100	139	309	319
4	9	6	120	118	535	600	13	14	32	65	68	370	354	173	144	688	512	15	14	37	73	87	404	312
4	9	6	121	114	639	518	15	15	35	56	79	434	355	169	158	665	535	14	14	46	66	100	398	324
4	9	6	108	98	573	591	12	13	26	40	61	365	391	106	141	637	563	12	13	31	51	84	397	351
4	9	6	118	110	585	563	11	12	33	52	70	352	403	130	111	700	500	12	13	31	47	73	404	355
4	9	6	124	123	598	582	14	15	30	57	73	369	367	119	112	66 8	532	15	13	33	61	65	458	309
4	10	6	76	226	389	776	12	12	39	49	84	261	262	69	134	769	431	8	9	30	45	69	688	224
4	10	6	104	153	486	562	14	14	37	50	88	345	267	81	150	437	763	11	12	33	50	70	284	369
4	10	6	88	141	616	547	13	13	40	46	83	399	321	87	157	534	666	13	14	38	49	94	395	362
۸	10	6	82	165	540	647	14	14	36	49	80	379	343	103	157	498	702	16	16	30	56	81	348	368
-	10	4	02 01	104	J-10	724	12	14	20	52	94	271	274	.05	150	\$72	677	12	14	26	27	61	340	204
4	10	0	ō2	194	451	154	13	14	30	22	00	521	210	/4	עני	523	0//	15	14	50	51	03	000	790
								-			••		• • •					.	-	-			(
4	Н	6	111	101	7 87	392	23	7	25	44	58	567	208	115	108	921	279	26	5	29	49	67	678	126

4	11	6	135	149	781	365	27	5	39	66	80	537	178	102	120	779	421	24	8	32	46	71	563	217
4	11	6	140	202	773	392	26	5	41	72	105	534	141	84	92	792	408	22	7	23	36	55	595	197
4	11	6	9 0	112	759	425	19	7	26	42	59	597	168	125	153	877	323	26	4	31	61	84	610	153
4	11	6	128	136	859	314	24	7	34	59	88	599	172	69	57	1007	193	25	4	14	20	38	751	108
4	12	6	39	174	98	1083	4	24	16	26	37	54	599	55	181	112	1088	6	22	24	36	54	47	605
4	12	6	50	201	197	978	6	23	20	32	42	141	504	65	171	205	995	7	22	30	43	56	137	541
4	12	6	40	131	140	1031	6	24	18	32	23	98	610	37	102	140	1060	4	19	14	27	20	102	669
4	12	6	32	176	140	1034	8	25	18	22	32	84	585	41	153	129	1071	5	26	20	27	41	79	586
4	12	6	45	166	133	1054	4	26	20	31	45	87	648	44	185	196	1004	7	21	22	33	45	144	568
																							••••	
4	13	6	101	93	940	237	28	1	23	30	50	676	39	110	70	1039	161	20	3	20	29	44	729	92
4	13	6	48	34	909	256	17	1	9	16	17	716	35	99	77	962	238	29	3	20	30	49	735	73
4	13	6	142	126	640	530	24	3	35	53	74	324	120	76	105	956	244	20	2	26	32	60	687	113
4	13	6	79	73	831	337	25	3	23	27	43	582	104	96	102	634	566	19	2	23	31	64	408	57
4	13	6	112	101	909	246	25	3	25	30	64	635	85	56	64	1088	112	12	1	14	20	30	900	27
-	15	v			,0,	210		5	23	57	04	055	05	50	04	1000	112	12		14	20	57	740	25
	14	6	14	138	19	1161	2	22	9	11	10	2	577	15	103	25	1175	'n	12	12	12	21	2	260
4	14	6	22	162	20	1125	2	24	10	12	24	7	511 604	19	221	155	1045	2	10	12	12	74	2	500
4	14	٥ د	22	105	30	1155	2	24	20	15	53	,	604	40	172	100	1045	4	19	30	30	74	2	337
4	14	0	28	208	40	1150	2	24	20	25	33	4	030	15	1/3	50	1102	2	22	10	12	37	9 (302
4	14	0	11	151	20	110/	1	28	10	10	24	1	/28	38	284	29	1141	د	19	28	31	69	0	400
4	14	0	28	248	45	1154	3	22	20	25	52	3	230	19	140	28	11/2	3	10	10	15	20	3	384
	1.5	,		120	746	200	26		20	41	75	602	202	114		971	220	24		24	20			100
4	15	0	113	138	/40	388	20	0	30	41	75	302	202	110	100	801	339	20	2	34	39	85	222	180
4	15	0	100	117	003	495	20	2	30	32	38	382	231	109	127	/90	410	19	0	30	42	63	549	223
4	15	0	/9	92	084	4/0	19	3	22	20	49	4/1	249	104	144	/28	4/2	19	0	34	44	/2	503	218
4	15	6	132	132	/69	390	27	0	38	44	/0	458	214	/6	8/	936	244	12	3	20	23	43	267	144
4	15	6	94	102	475	214	10	د	24	33	51	289	115	94	91	917	283	19	4	22	26	47	456	169
	• •		50	(0)			16	-		20		(2)			•••					•••				
4	16	4	58	60	775	323	16	3	15	20	28	626	141	58	90	677	523	16	5	20	22	52	520	299
4	16	4	104	138	802	359	21	4	31	48	69	579	127	90	85	784	416	19	6	20	34	46	594	257
4	16	4	89	95	822	337	21	3	23	41	49	635	143	75	58	904	296	13	6	21	29	40	380	191
4	16	4	32	51	581	504	10	2	11	13	23	504	102	49	62	912	288	15	4	13	14	38	732	193
4	16	4	107	105	804	363	21	4	25	39	54	566	215	77	82	746	454	22	6	18	27	47	507	322
4	17	4	37	129	85	1029	6	15	20	26	47	20	652	30	142	74	1126	2	13	22	24	42	18	624
4	17	4	42	138	85	1074	4	16	18	23	30	30	601	35	77	88	1112	3	19	14	19	25	9	792
4	17	4	35	109	180	1017	5	16	18	19	35	110	624	20	112	49	1151	3	18	14	12	30	13	810
4	17	4	22	119	34	1112	3	17	10	14	28	6	577	33	100	202	998	5	17	16	19	26	105	623
4	17	4	18	82	98	1100	2	16	8	11	15	74	636	35	118	148	1052	6	20	22	20	35	68	673
4	18	4	34	20	962	66	20	1	4	3	11	815	40	49	38	849	351	17	4	10	15	26	702	256
4	18	4	49	33	856	251	15	2	9	10	18	645	93	89	45	1054	146	25	3	16	25	26	741	102
4	18	4	54	44	863	276	16	2	13 :	14	25	484	128	0	0	1200	0	0	0	0	0	0	0	0
4	18	4	55	31	902	236	21	2	11	12	19	675	99	80	87	991	209	25	2	20	24	47	720	85
4	18	4	57	58	661	436	16	1	15	19	28	488	38	74	58	868	332	21	4	16	19	32	621	256
4	19	4	25	70	93	1058	3	15	13	15	18	41	472	16	91	75	1125	3	23	7	7	20	36	662
4	19	4	9	84	18	1137	2	19	4	7	6	6	655	14	55	583	617	3	8	7	10	10	562	236

4	19	4	9	64	88	1043	2	16	6	6	13	62	532	8	56	564	636	3	15	6	4	7	67	453
4	19	4	5	60	35	1135	1	20	2	4	4	30	604	18	71	52	1148	2	18	8	9	17	28	591
4	19	4	21	66	49	676	2	14	10	9	21	10	451	2	41	13	1187	0	13	2	1	6	0	304
4	20	4	29	36	663	481	9	1	7	8	11	264	30	48	51	665	535	12	3	12	15	27	354	89
4	20	4	52	49	540	290	14	5	12	14	29	385	94	76	107	833	367	22	4	23	32	54	645	162
4	20	4	102	108	820	355	22	5	22	34	60	532	205	66	62	684	516	17	6	13	17	37	444	144
4	20	4	45	55	594	567	12	2	13	19	31	374	84	77	30	978	222	20	5	10	16	19	596	169
4	20	4	45	49	974	177	18	2	11	12	21	729	45	29	24	756	444	8	3	5	6	15	654	119
4	21	4	40	103	422	755	12	11	19	23	44	339	473	47	205	486	714	11	11	38	30	86	351	419
4	21	4	53	121	463	688	12	13	24	28	53	327	433	40	193	474	726	12	11	30	25	77	361	393
4	21	4	53	140	538	661	13	14	27	33	64	381	407	52	170	521	679	14	12	31	35	71	420	378
4	21	4	48	144	408	771	10	12	32	29	66	287	446	55	147	598	602	13	12	30	31	60	443	320
4	21	4	78	136	489	670	12	12	34	43	72	360	399	70	159	505	695	13	12	32	36	72	377	440
5	1	0	179	125	701	484	17	16	46	96	62	461	328	114	89	699	501	14	14	30	69	36	538	388
5	1	0	199	142	670	518	17	16	47	93	58	406	351	117	106	632	568	13	15	33	55	44	450	431
5	1	0	133	88	680	502	16	15	30	81	39	476	377	54	47	584	616	13	14	16	34	19	489	522
5	1	0	197	136	665	517	15	14	51	106	57	403	346	99	75	640	560	13	13	30	60	35	476	413
5	I	0	130	111	658	526	14	15	41	66	49	432	376	117	97	681	519	15	12	35	65	36	493	372
5	2	0	250	105	737	455	16	15	56	94	46	431	286	165	96	645	555	12	13	41	65	41	452	405
5	2	0	209	106	679	509	15	16	49	97	40	430	341	150	87	669	531	13	12	41	63	34	475	386
5	2	0	198	105	665	514	15	16	49	89	40	415	354	96	52	619	581	15	14	26	53	24	481	479
5	2	0	169	104	673	515	17	16	47	84	44	441	357	169	67	639	561	14	14	39	78	30	445	436
5	2	0	192	99	683	510	15	14	48	99	38	438	338	96	48	626	574	11	14	30	53	20	450	459
5	4	2	143	78	713	473	16	16	45	55	32	491	315	86	37	729	471	13	12	27	30	16	569	368
5	4	2	150	87	705	483	15	14	50	64	41	446	323	82	41	607	593	10	10	28	42	17	471	470
5	4	2	138	78	674	506	15	16	45	51	35	449	358	83	33	656	544	11	11	28	36	16	493	466
5	4	2	186	69	732	447	15	14	46	64	37	413	316	62	31	958	242	6	7	22	24	17	247	174
5	4	2	137	59	730	463	15	14	38	52	25	455	338	79	30	577	623	8	9	25	37	17	392	281
5	6	2	142	107	655	517	15	14	48	67	42	400	305	91	74	728	472	12	12	32	48	26	534	337
5	6	2	169	166	664	524	17	17	56	84	64	408	295	107	60	664	536	13	13	31	50	30	469	431
5	6	2	201	145	632	558	16	16	64	ш	63	355	340	145	94	690	510	14	15	43	58	42	476	339
5	6	2	184	119	674	510	17	17	54	86	59	411	332	101	76	647	553	15	15	35	50	33	481	413
5	6	2	133	96	668	517	16	18	39	63	43	454	374	103	68	675	525	15	14	32	48	29	521	403
5	7	4	133	98	591	591	17	15	48	60	34	403	431	53	52	593	607	12	13	27	24	18	455	506
5	7	4	115	95	555	631	15	15	48	45	30	364	456	49	66	507	693	11	13	29	24	19	382	551
5	7	4	106	101	567	618	16	15	43	64	26	406	448	58	48	738	462	11	11	26	21	19	635	365
5	7	4	107	104	574	609	14	14	47	54	29	397	417	71	56	751	449	10	9	35	38	19	646	334
5	7	4	161	120	587	599	16	16	56	67	35	385	412	75	58	691	509	10	13	31	32	20	583	401
																			-	-	_			
5	8	4	148	119	604	588	15	15	50	75	49	377	419	72	73	617	583	14	15	27	33	26	480	443
5	8	4	152	280	391	792	16	15	80	83	64	157	374	68	361	113	1087	9	11	66	55	61	4	405
5	8	4	155	145	580	607	16	16	61	73	42	350	379	79	95	599	601	14	14	33	41	26	458	414
-	-						- •			-														

5	8	4	116	95	604	567	16	15	38	52	33	418	428	82	63	609	591	13	13	27	29	27	456	490
5	8	4	110	83	581	602	14	15	37	48	35	399	450	78	71	614	586	13	12	29	33	25	462	473
5	9	6	168	121	608	572	16	15	51	75	50	370	366	123	51	646	554	12	14	30	41	26	421	429
5	9	6	134	83	656	523	16	16	38	55	35	411	362	87	49	654	546	13	13	25	37	22	498	431
5	9	6	127	58	627	559	14	13	35	45	27	413	439	159	42	720	480	12	12	31	48	26	458	403
5	9	6	155	58	646	534	14	14	36	55	27	428	430	114	50	722	478	11	12	33	47	26	481	363
5	9	6	132	56	668	515	15	14	36	54	23	427	407	75	30	658	542	12	12	22	30	15	478	468
5	10	6	102	85	641	544	13	13	44	60 26	27	504	355	31	33	775	425	6	8	16	15	12	726	297
5	10	6	63	41	721	442	10	10	25	35	10	621	338	42	26	978	222	6	5	16	15	12	882	167
د د	10	0 2	124	20	293	645	9 16	0	25	51	20	182	811	11	14	291	909	3	3	4	3	3	258	786
د د	10	6	124	95 84	573	609	15	15	40	54	30	401	390 450	92	74	620	493	12	12	28	33	25	590	382
3	10	0	117	04	575	009	15	10	43	74	50	401	437	63	/4	020	380	15	12	35	43	20	503	411
5	п	6	123	71	490	703	16	4	35	56	33	287	619	50	38	563	637	14	5	17	21	18	463	584
5	11	6	42	24	321	596	10	3	11	14	10	219	563	81	60	994	206	24	5	25	34	26	838	134
5	11	6	117	71	926	251	26	6	35	43	37	641	161	63	39	897	303	23	7	18	15	19	730	240
5	11	6	146	89	867	319	25	8	41	49	39	593	199	95	75	957	243	26	5	34	35	32	749	143
5	11	6	67	50	327	855	10	3	21	23	22	193	795	20	11	337	863	9	1	4	5	3	283	803
5	12	6	9	29	26	1145	1	7	6	8	6	12	1097	43	97	188	1012	5	16	26	23	25	110	839
5	12	6	83	177	206	980	5	29	54	52	37	72	686	42	94	242	95 8	7	25	26	23	21	172	738
5	12	6	116	225	235	945	6	29	62	76	47	95	622	63	112	216	984	6	21	36	46	26	131	767
5	12	6	67	136	176	1011	5	23	43	55	34	83	697	83	128	224	976	6	29	44	45	34	118	737
5	12	6	95	184	273	910	8	29	59	60	49	130	634	63	101	213	987	6	27	30	30	25	117	785
5	13	6	120	78	996	188	32	3	33	41	32	683	106	33	23	475	725	12	1	12	13	9	381	694
5	13	6	103	66	983	194	28	4	31	35	29	753	113	42	40	1018	182	19	2	19	16	16	913	118
5	13	6	117	76	952	231	28	4	40	44	34	694	125	27	22	1048	152	12	2	12	10	11	988	106
5	13	6	117	60	985	192	27	2	35	43	34	741	102	34	9	1112	88	14	1	8	10	6	1031	54
5	13	6	139	61	1034	151	32	2	32	38	26	719	56	32	15	818	382	9	2	9	6	8	549	87
_		,	22			1050	•	••						,						-				
د ب	14	0	22	81	120	1050	د	24	18	15	17	72	202	0	24	517	683	1	9	2	2	1	503	270
5	14	6	25	103	127	1003	3	20	19	19	17	/0	700	2	29	41	1109	ו ר	9	2	2	1	35	539
ر د	14	6	35	04 78	155	1166	4	25	20	22	17	0	1000	15	55 60	70 94	1114	2	14	14	10	4	54	508
5	14	6	43	125	136	1048	3	0 70	- 26	26	17	80	709	13	70	66	1134	2	10	6	10	4	51	522
2		Ū	15	125	150	1040	5	27	20	20	.,	30	/00		12	00	1154	2	10	Ū	'	-	51	555
5	15	6	171	129	801	385	29	8	62	70	55	515	227	59	71	966	234	18	3	31	28	22	830	139
5	15	6	234	171	856	334	31	6	80	100	75	494	135	74	74	762	438	 22	7	33	32	28	612	322
5	15	6	145	110	817	364	28	6	54	51	50	521	222	63	81	786	414	20	7	33	27	26	650	271
5	15	6	133	108	766	416	26	7	53	58	38	517	243	57	86	842	358	19	5	32	27	27	725	223
5	15	6	153	121	816	370	27	8	56	55	56	545	223	71	83	909	291	21	4	34	30	29	768	164
	-																	-						
5	16	4	72	29	426	763	12	5	17	16	18	240	724	53	28	829	371	14	3	16	14	17	615	322
5	16	4	100	38	948	240	25	7	21	22	21	598	184	61	40	918	282	20	5	19	19	21	723	216
5	16	4	84	49	955	219	26	5	22	17	22	641	157	58	33	967	233	16	5	16	16	15	767	175
5	16	4	104	81	917	270	19	6	32	41	38	439	149	51	29	1017	183	19	4	14	9	14	504	135

5	16	4	130	81	939	253	26	6	40	34	36	537	140	33	23	1013	187	14	5	11	7	8	826	141
ç	17	4	20	64	130	1050	3		20	22	15	60	045	7	26	00	1101	2	8	6	5	3	87	802
5 5	17	4	39 70	119	325	854	7	22	33	33	26	184	554	19	61	325	875	5	19	13	12	10	275	568
5	17	4	28	46	121	1061	3	8	12	18	12	58	899	3	20	34	1166	1	9	2	2	2	27	1058
5	17	4	60	112	182	1008	4	22	33	37	34	84	766	30	69	196	1004	4	11	15	19	15	131	806
5	17	4	81	146	326	861	7	24	44	49	42	156	536	29	79	207	993	6	21	16	14	16	140	690
5	18	4	91	24	1096	94	22	2	16	19	14	462	58	7	0	1200	0	6	0	0	0	0	163	0
5	18	4	129	71	940	251	30	6	34	45	37	614	154	54	18	1070	130	26	3	10	10	9	871	91
5	18	4	116	40	1103	84	33	2	22	27	26	713	37	51	23	870	330	23	3	12	13	9	701	285
5	18	4	52	19	613	559	20	1	8	11	10	441	536	17	6	141	1059	2	2	3	2	3	87	1043
5	18	4	96	28	1068	121	32	3	16	13	14	762	79	47	24	1083	117	21	2	12	9	8	758	80
_							_	•••	•••	•										_	_			
5	19	4	36	141	145	1038	3	29	24	24	19	97	739	10	75	117	1083	3	25	8	7	6	97	824
د ء	19	4	8	52	41	1016	1	4	10	0	د •	121	851	0	3	0	1200	0	3	0	0	0	24	1190
5	19	4	14 21	61	103	1010	4	20	10	12	•	80	634	10	33 78	137	1063	1	15	0 6	0 6	د ۲	54 116	405
5	19	4	16	73	151	1019	3	22	17	8	10	125	789	7	19	467	733	1	13	6	6	5	47	652
2	.,	·					2			•					••			•	·	·	Ū		••	
5	20	4	70	31	936	240	22	5	18	15	16	709	178	11	6	1110	90	5	2	4	3	2	829	68
5	20	4	67	47	915	256	24	6	24	20	27	703	184	17	7	1154	46	11	1	4	3	4	1099	32
5	20	4	18	7	243	912	7	1	5	4	3	164	90 0	19	11	270	930	4	2	7	3	9	187	914
5	20	4	62	35	394	789	11	3	17	13	16	224	741	17	12	224	976	5	2	6	5	4	176	950
5	20	4	98	51	643	533	18	5	26	21	25	372	460	0	0	0	1200	0	0	0	0	0	0	1200
5	21	4	39	28	913	262	11	7	16	13	13	462	200	7	12	893	307	2	5	5	3	3	8 63	269
5	21	4	26	28	246	934	5	7	12	9	8	181	781	16	12	334	866	6	3	7	7	3	278	107
5	21	4	58	64	543	634	13	13	28	27	20	379	453	4	18	116	1084	2	3	5	2	4	104	794
5	21	4	42	57	554	623	10	11	27	20	25	432	452	8	6	1103	97	3	2	5	4	3	1073	81
5	21	4	74	71	643	53/	14	14	33	23	25	401	41/	8	9	208	992	2	2	2	3	3	100	964
6	1	0	546	220	701	491	19	19	86	285	105	312	236	397	130	873	327	11	10	46	170	59	214	139
6		0	471	205	671	500	18	18	69	236	102	311	249	297	106	737	463	16	15	45	157	61	335	257
6	1	0	417	155	700	487	16	17	54	189	75	314	298	130	19	1043	157	7	5	11	37	12	127	127
6	1	0	519	233	663	529	19	19	72	263	97	300	248	137	43	940	260	9	10	18	61	24	167	189
6	1	0	542	206	715	478	19	18	76	264	105	320	257	210	67	938	262	10	10	26	85	37	186	176
6	2	0	120	69	353	832	9	9	25	71	26	224	177	38	10	1018	182	4	3	7	20	5	61	64
6	2	0	353	191	606	578	17	17	60	211	64	340	223	94	78	483	717	7	4	17	51	23	382	42
6	2	0	373	234	581	610	17	19	65	233	74	304	212	178	9 0	814	386	11	9	25	92	34	257	108
6	2	0	304	133	740	446	14	14	44	158	55	268	189	123	78	275	925	9	9	21	72	27	143	141
6	2	0	333	207	605	582	20	20	60	193	82	326	238	182	122	617	583	13	14	29	90	41	249	261
6	4	2	254	292	390	804	15	16	54	182	111	229	205	65	65	684	516	7	5	13	46	22	635	78
6	4	2	74	68	1008	179	5	4	13	49	22	963	95	0	0	1200	0	0	0	0	0	0	1201	0
6	4	2	221	171	361	825	11	13	40	134	61	186	221	0	3	0	1200	0	0	0	0	0	U C	0
6	4	2	233	221	700	484	12	11	43	151	120	203	149	U 2	140	80 A	1132	U A	U 1	۱ ۸	U 2	1	U A	U 1¢
0	4	7	220	4/4	243	740	14	14	00	£12	127	31	174	5	147	+		0		0	5	0	0	1

6	14	6	53	366	107	1083	4	31	36	42	47	48	615	11	57	19	1181	1	10	8	10	8	9	242
6	14	6	19	292	36	1152	2	33	10	17	13	19	696	7	93	17	1183	1	7	6	6	8	10	202
6	14	6	11	235	32	1157	2	26	6	9	10	18	550	0	25	0	1200	0	2	0	0	0	0	67
6	14	6	39	381	60	1129	3	23	20	36	28	30	466	1	46	1	1199	0	3	2	1	1	0	81
6	14	6	21	335	37	1151	2	33	16	19	22	22	618	0	0	0	1200	0	0	0	0	0	0	0
Ŭ	••	Ũ			•••		-																	•
4	16	4	260	277	605	480	20	7	74	1/3	107	200	165	130	240	541	650	22	4	40	60	70	282	110
0	15	0	209	322	095	407	50	,	/4	145	107	290	105	130	240	541	(22	22	-	47	00	19	202	118
6	15	6	211	248	/14	408	31		08	130	94	314	188	95	143	508	032	24	'	35	•••	43	297	203
6	15	6	231	235	709	480	30	8	58	99	68	314	209	48	84	814	386	12	3	20	26	24	723	75
6	15	6	229	263	693	498	32	8	66	110	85	299	190	81	224	437	763	18	3	41	37	64	241	92
6	15	6	240	348	643	540	30	7	70	119	85	270	186	104	137	780	420	25	7	38	36	38	539	227
6	16	4	173	221	704	483	28	8	46	63	69	318	168	61	66	903	297	14	3	12	12	17	244	70
6	16	4	144	194	708	460	28	6	44	51	62	352	128	111	149	666	534	18	5	31	32	44	269	110
6	16	4	131	162	632	552	25	6	36	36	46	304	118	71	98	917	283	18	4	24	24	31	663	104
6	16	4	188	210	771	420	26	6	53	60	86	321	149	51	81	498	702	13	4	20	22	31	382	537
6	16	4	188	226	731	455	29	5	53	80	74	343	112	74	68	985	215	14	4	19	29	23	782	80
-		·						-											-					
4	17	4	46	264	176	1023	7	10	20	20	12	08	210	19	101	218	082	2	11	12	12	12	10	105
2	17	-	40	462	170	1025	,	15	29	23	42	20	427	10	101	210	1154	2	14	12	12	13	19	740
0	17	4	0/	455	1/3	1018	•	25	30	44	43	0U 40	427	21	100	44	1150	,	10	12	10	15	19	208
0	17	4	30	2//	100	1085	4	25	22	20	33	49	413	17	95	40	1154	1	2		9	2		27
6	17	4	31	258	118	1067	4	20	18	24	20	68	312	4	153	29	1171	2	12	4	2	6	18	232
6	17	4	31	291	214	975	7	21	20	24	27	168	300	4	105	90	1110	1	11	6	3	6	74	175
6	18	4	271	219	907	277	36	5	56	96	124	454	94	293	305	902	298	37	3	72	102	164	399	47
6	18	4	176	140	1004	183	21	3	36	54	83	247	66	20	22	1186	14	2	0	5	10	15	18	0
6	18	4	366	212	923	221	35	4	64 ·	137	133	395	60	211	197	908	292	34	5	51	92	111	539	116
6	18	4	156	182	955	245	36	3	38	54	85	565	68	109	200	984	216	18	1	36	44	70	350	32
6	18	4	280	253	908	277	35	3	57	95	122	439	71	98	148	939	261	23	4	30	36	60	679	98
6	19	4	9	411	37	1147	2	28	6	7	7	22	557	2	91	29	1171	1	15	2	1	1	22	379
6	19	4	17	539	60	1121	4	26	12	13	16	34	506	4	215	14	1186	1	10	2	3	3	9	231
6	10		0	467	47	1136	3	30	6	6	8	31	590	11	330	41	1159	3	31	6	8	9	24	740
4	10	4	, ,	167	44	1110	2	0	6	5	•	20	199		220		1200	0	51	0	0	, 0	24	171
0	19	4	•	102	00	1110	2	, 	0		10	20	100		27		1200	0	10		0	0		1/1
0	19	4	18	308	54	1130	3	20	ō	15	12	22	520	8	148	57	1145	2	15	4	2	2	34	320
6	20	4	183	112	875	306	28	7	36	47	54	362	158	0	0	1200	0	0	0	0	0	0	0	0
6	20	4	162	152	908	279	31	5	32	34	60	426	106	3	0	1200	0	1	0	0	0	0	13	0
6	20	4	258	368	838	347	30	6	48	55	131	29 0	119	51	111	965	235	15	3	14	11	25	732	68
6	20	4	138	232	835	340	26	7	29	34	66	337	159	77	157	580	620	19	3	19	17	32	192	77
6	20	4	228	197	800	380	30	6	51	69	68	330	139	129	179	748	452	23	8	36	41	53	295	230
6	21	4	98	329	384	796	14	13	36	53	43	242	293	38	235	226	974	9	11	18	24	24	163	273
6	21	4	63	312	347	826	13	13	28	36	53	238	312	22	162	99	1101	5	3	12	13	20	58	97
ě ř	 21		27	250	409	779	16	17	34	41	57	246	435	52	252	746	954	10	10	24	22	43	155	291
ں د	21 21	,	01	200	400	757	14	14	24	۲۲ ۲۱	51	270	201	12	40	110	1092	.0	. U c		ر در	10		100
0	21	4	100	212	430	752	14	14	30	10	54	211	294	13	49	116	1082	4	5	0 1./	, ,	12	74	120
6	21	4	102	234	440	135	15	15	96	22	57	279	352	34	150	194	1006	8	/	10	21	26	121	208
																				_				
7	18	4	256	85	1006	182	31	5	38	82	57	601	91	182	129	963	237	30	4	52	102	81	693	76

7	18	4	251	106	1010	176	30	3	53	108	78	642	66	186	112	98 3	217	29	3	43	97	6 8	716	98
7	18	4	186	74	1028	168	23	3	32	73	52	760	75	0	0	1200	0	0	0	0	0	0	1200	0
7	18	4	244	98	996	204	29	4	55	107	72	635	84	84	70	1058	142	16	2	28	41	44	345	59
7	18	4	155	67	800	160	25	4	28	57	42	577	97	124	54	1086	114	26	3	30	50	39	856	47
7	19	4	47	149	123	1071	3	30	18	33	29	76	501	14	29	12	1188	0	3	4	9	9	0	21
7	19	4	63	110	134	1059	3	22	20	41	25	76	375	26	78	122	1078	3	16	8	17	10	89	257
7	19	4	45	82	108	1076	2	15	14	27	25	59	279	30	63	89	1111	2	15	10	22	12	42	296
7	19	4	69	122	171	753	3	22	23	46	35	83	339	0	0	1200	0	0	0	0	0	0	0	0
7	19	4	46	128	87	1064	2	33	14	32	24	51	633	10	70	76	1124	2	17	4	8	4	63	271
7	20	4	133	62	1014	167	23	5	22	48	44	596	111	0	0	1200	0	0	0	0	0	0	0	0
7	20	4	162	70	1032	154	21	4	30	64	54	541	88	56	17	1152	48	12	2	8	19	14	331	29
7	20	4	167	89	1014	170	26	6	34	81	69	622	97	21	4	1181	19	9	1	2	4	3	235	14
7	20	4	107	56	988	156	18	4	28	57	42	410	84	0	0	1200	0	0	0	0	0	0	0	0
7	20	4	113	61	1015	171	22	4	28	49	45	498	104	0	0	1200	0	0	0	0	0	0	0	0
7	21	4	150	149	730	438	15	15	47	86	87	461	271	158	136	822	378	15	15	45	88	78	588	198
7	21	4	166	121	772	416	15	16	50	96	78	542	252	210	151	848	352	16	16	59	99	90	520	152
7	21	4	316	212	965	235	12	12	81	154	133	351	8	195	70	1110	90	11	9	34	71	56	314	. 5
7	21	4	166	123	774	420	16	16	45	80	80	419	259	134	120	797	403	17	18	37	68	70	565	246
7	21	4	201	192	737	456	16	15	58	125	109	505	255	163	138	842	358	15	15	44	93	80	630	194