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ABSTRACT 
 

Tin-copper-antimony (pewter) alloys have been traditionally produced by a 

casting process which consumes large amounts of energy, time and as a result is 

expensive. This research aims to investigate the possibilities of implementing 

powder metallurgy for pewter production through a sintering process using 

microwave energy. The optimum sintering conditions using microwave sintering 

are also of interest. Pewter alloys were examined to determine the effect of green 

density, sintering time, and sintering temperature on the mechanical and structural 

properties of the sintered compacts. Samples were prepared by hydraulic pressing 

of a well mixed and blended tin alloy powder with three different compositions; 

97wt%Sn 2wt%Cu 1wt%Sb, 94wt%Sn 4wt%Cu 2wt%Sb and 91wt%Sn 6wt%Cu 

3wt%Sb. Two compaction loads were used to produce the samples with different 

green densities. Pellets pressed at 96 MPa had an average relative density of 

80.7%, while those pressed at 129 MPa had an average green density of 84.6%.   

 

Sixteen different time-temperature combinations were used for the heat 

treatments at 160 and 220°C for both conventional and microwave sintering. 

However, the sintering times had to be restricted to 15 and 30 minutes for 

microwave heating. Meanwhile, 60 and 120 minutes were used for conventional 

heating. It was found that for all three compositions, samples with a higher green 

density had a higher sintered density, compared to samples with lower green 

density, for the same sintering time and temperature. The relative density of 

sintered pewter alloys increased on average by 13% after conventional sintering 

and by about 14% after microwave sintering, when the sintering was carried out 

for the longer of the two sintering times and at the higher of the sintering 

temperatures selected, for all three compositions.  

 

Moreover, the hardness increased by 25.6%, 23.5% and 7.0% when 

microwave sintered relative to the conventional sintering for 97Sn2Cu1Sb, 

94Sn4Cu2Sb and 91Sn6Cu3Sb alloys respectively. Nevertheless, the grain size 

remained similar for all three compositions under the same sintering conditions. 

The degree of grain growth in microwave sintered samples was marginally 



 iii

smaller (up to 23-24 μm) than in conventionally sintered samples which reached a 

grain size of 26-27 μm.  

 

In terms of strength, microwave sintering produced samples with similar 

properties to those conventionally sintered under the same sintering conditions for 

all three compositions. The tensile strengths obtained compared well with the 

strengths obtained from the casting process. Nonetheless, tensile strengths for 

both conventionally and microwave sintered material was higher in the transverse 

direction than in the longitudinal direction. In conventionally sintered material, 

there was an increase in transverse strength of about 6.9%, 5% and 4%, while for 

the microwave sintered material, the strength increase was 9.1%, 5.6% and 4.5% 

for 97Sn2Cu1Sb, 94Sn4Cu2Sb and 91Sn6Cu3Sb alloys respectively when 

compared to the longitudinal direction.  

 

The microwave sintered samples in general have improved hardness, 

better densification and a finer microstructure compared with the conventionally 

sintered samples and traditionally cast pewter. Increasing the Cu and Sb content 

increases the hardness and strength but in return, decreases its ductility. Hence, a 

pewter alloy with a moderate amount of Cu and Sb, i.e. 97Sn2Cu1Sb, microwave 

sintered at 220°C for 30 minutes would be the best choice for optimum 

mechanical properties.  
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CHAPTER 1  

INTRODUCTION 

       

1.1 General Background  

Powder metallurgy is a cost effective method for producing simple or complex 

parts at, or close to, final dimensions at a variety of production rates ranging from 

a few hundred to several thousand parts per hour. In comparison with material 

production processes in general, powder metallurgy is a small but important 

process. It has an advantage of minimizing machining and hence scrap losses, 

because it is a near net-shape process. It gives good surface finishes and facilitates 

the manufacture of complex or unique shapes which would be difficult or 

impossible to make using other metal-working processes. Examples include semi-

porous self-lubricating bearings, brake pads with embedded ceramic fibers, or 

brushes for electric motors combining copper with graphite [1].  Powder 

Metallurgy is capable of producing near net shape or net shape parts; hence its 

principal application is in the manufacture of small-to-medium size parts of 

complex shape such as gears, cams and levers.  

Microwave heating is a sensitive function of the material being processed, 

where heating of the material is very much dependent on the capability of the 

material to couple in the microwave field. Microwave technology is successfully 

being used to sinter various powder metal components including small cylinders, 

rods, gears and automotive components in just 30 to 90 minutes [2]. Additionally, 

microwave technology is also used for melting metals and casting the melt into 

various shapes. Microwave sintering of powder metals (already in final net shape) 

has been demonstrated with a variety of metals and alloys; copper, iron, steel, 

aluminium, nickel, silver, gold, molybdenum, cobalt, tungsten, tin, titanium, etc. 

[2]. 

Microwave sintering is a method of heating that involves energy 

conversion which is different from the conventional sintering that concerns energy 
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transfer. In microwave sintering, the heat is generated internally within the 

material instead of originating from external sources. In the process of microwave 

heating, the materials absorb microwave energy themselves and then transform it 

into heat within the sample volume [3]. The energy is directly transferred to the 

material through the interaction of electromagnetic waves with atoms and 

molecules leading to heating [4]. Microwave sintering has the potential for rapid 

processing with refinements in microstructure and enhanced properties. 

Microwave sintering is much more uniform and effective compared to 

conventional sintering. This results in a reduction of processing time and energy 

consumption. 

 

1.2 The importance of this study 

Microwave heating is a function of the material being processed, and there is 

almost 100% conversion of electromagnetic energy into heat, largely within the 

sample itself, unlike conventional heating, where there are significant thermal 

energy losses. Bulk metals are excellent reflectors of microwaves and in general 

are not heated significantly. But in a powdered or unsintered form, all metals, 

alloys or intermetallics will couple in a microwave field efficiently and effectively 

to produce highly sintered bodies with improved mechanical properties [5,6]. 

 
Figure 1.1: Schematic of tube microwave processing setup [2] 

  

 The microwave process has many advantages over conventional heating   

             methods [6]: 

i) Time and energy saving which leads to lower cost 

ii) High heating rates which minimizes grain growth 
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iii) Uniform and volumetric internal heating which leads to uniform 

microstructures 

iv) Lower sintering time and temperature which leads to energy 

savings 

v) Finer microstructures with improved mechanical properties 

vi) Synthesis of new and special materials which leads to new 

market potential 

vii) Improvement in the product performance 

viii) Controlled inert atmosphere which is an environmentally 

friendly process 

Since 1984, the Materials Research Institute at The Pennsylvania State 

University has been a pioneer institution in the microwave processing of a whole 

range of ceramics, composites, and metallic materials. The 1980s saw successes in 

sintering and synthesizing of many traditional ceramics such as alumina, zirconia, 

ZnO, [NZP], hydroxyapatite, zeolites, mullite, silica, etc. The focus in the 1990s 

was aimed at new materials and in new directions [2].  

      Many electroceramics such as PZT, BaTiO3, Ba(Mg1/3Ta2/3)O3 and transparent 

ceramics were successfully synthesized, fabricated and sintered in microwave 

fields. Following this, programs were launched to sinter non-oxides, especially 

WC/Co based products. The success made in this area led to the innovative 

approach of continuous microwave sintering, which made it possible to 

successfully commercialize the developed technology for WC/Co based products 

applied in the cutting and drilling industry. Another advancement in 1996 was the 

successful sintering of powder metal parts (steel) with improved performance and 

better mechanical properties, which opened up completely new avenues of 

research and commercial exploitation of microwave technology in new 

applications. Some of these achievements are discussed in the literature review. 

      A review of the research undertaken in the field of microwave sintering 

reveals a significant amount of work on oxide ceramics and semi-metals like 

carbides and nitrides. The applicability of microwave sintering to metals has been 

overlooked because most metals are known to reflect microwaves [6]. Roy et al. 

[7] discussed the use of microwave sintering and noted that few experiments have 
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been done with metal powders. Green laboratory and commercial compacts were 

microwave sintered, typically, at 1100°C to 1300°C for 5 to 30 minutes. The 

sintered compacts were reported to have uniformly distributed porosity with 

improved properties in comparison with conventionally processed materials. 

  

1.3 Problem Statement 

 
Tin was one of the first metals known to man. Throughout ancient history, various 

cultures recognized the virtues of tin in coatings, alloys and compounds, and use 

of the metal increased with advancing technology. Mostly, tin is used as a 

protective coating or as an alloy with other metals such as lead or zinc.  Tin is 

used in coatings for steel containers, in solders for joining pipes or 

electrical/electronic circuits, in bearing alloys, in glass-making, and in a wide 

range of tin chemical applications.   Secondary, or scrap, tin is an important 

source of tin supply.  The bulk of the world's tin is produced by Malaysia, 

Indonesia, Thailand and Bolivia. The largest producer was once Malaysia. Now it 

is the third largest producer after Bolivia and Indonesia. The most important uses 

of tin are in cans and in solder, but substitutes, such as plastics and aluminium, 

have become more and more important for containers, while the resmelting of tin 

scrap has increased [8]. 

 

At present, the tin-based manufacturing industry in Malaysia consists of 

three main product sectors namely solder, tinplate and pewter. Domestic 

consumption of primary tin metal for the first four months of 2007 was 8% lower 

than that in the comparable period of 2006. During this period, solder remained 

the leading consumption category, followed by chemicals, tinplate, brass and 

bronze [9]. Despite progress in the local downstream tin-based manufacturing 

industry, as reflected by the modest growth in the domestic tin metal 

consumption, the industry is at present still relatively small in terms of its 

contribution to the nation's manufacturing value-added activities. However, the 

potential for the advancement of the industry is considerable, especially in the 

field of tin chemicals [8]. 
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 In an era of globalization, the production and consumption of materials 

symbolises or encapsulates aspects of national identity. For example, when 

Sydney staged the 2000 Olympic Games, certain businesses had the "rights" to 

produce particular icons that were promoted as depicting "Australia". Similarly, in 

1998 when the Commonwealth Games were staged in Kuala Lumpur, Malaysia 

was promoted to the outside world with a wide range of artefacts that represented 

the modern aspects of Malaysian identity. Royal Selangor produced trophies and 

gifts to international dignitaries. Sociological dynamics is broadened by national 

material cultural identities [10].   

 Malaysia is home to the world's finest pewter and Royal Selangor is its 

most well known name. Royal Selangor, an Icon of Malaysia, is a Malaysian 

pewter manufacturer and retailer, the largest of its type in the world. Royal 

Selangor is the most well-known brand in pewter. Royal Selangor offers over 

thousands of different varieties of tableware and gift items, ranging from 

traditional tankards, elegant tea sets, photo frames and handsome desk 

accessories. Malaysian pewter is composed of tin, with a small fraction of copper 

and antimony added to strengthen it. Unlike pewter in the olden days, modern 

pewter produced in Malaysia, for health reasons does not contain lead, and 

adheres to international standards [11]. 

 As pewter has a low melting point and is relatively soft, it is an ideal 

material for craftsmen and designers to work with. Designers at Royal Selangor 

are able to express the individuality, beauty and character of the material in a 

variety of finishes and forms. The material also lends itself to different 

manufacturing techniques, some of which have been handed down through many 

generations. Today, tin is an important metal in industries even though the annual 

tonnage used is much smaller than that of many other metals. One reason for the 

small tonnage is that, in most applications, only very small amounts of tin are 

used at a time. Tin has a low melting point (232°C) and is therefore sintered at a 

low temperature.  

The pewter produced in Malaysia is produced by the casting process 

where tin, copper and antimony are melted and mixed in the liquid phase to form 

the pewter alloy. This consumes large amounts of energy, as a result of furnace 
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time and high production costs. This research investigates alternatives for modern 

pewter production through a powder metallurgy process and also takes a step 

further by exploring the possibilities of implementing microwave sintering into 

processing as a substitute for the conventional sintering method, as a means of 

further reducing processing costs.  

Manufacturing industry in the 21st century will have to reduce its 

consumption of energy in order to protect the environment.  Since the pewter 

industry uses traditional casting processes to make its products, the use of high 

temperatures requires large quantities of energy.  However, a significant 

proportion of the energy is consumed in maintaining the temperature of the 

surrounding furnace material or container rather than being used in product 

manufacturing.  If energy can be efficiently used in the manufacturing of products 

by improving the sintering process, less energy will be consumed, which will in 

turn save energy. 

Microwave processing has been applied to a wide variety of materials. 

Microwave heating is fundamentally different from conventional furnace heating. 

The latter involves radiant/resistance heating followed by transfer of thermal 

energy via conduction to the inside of the body being processed. Microwave 

heating, on the other hand, is a volumetric process involving instantaneous, rapid 

and highly efficient conversion of electromagnetic energy into thermal energy. 

Thus, the use of microwave energy for materials processing has major potential 

and advantages over conventional heating. For example, microwaves allow 

enhanced densification at lower processing temperature and with shorter 

processing time. 

 From the literature survey, it has been observed that no microwave 

sintering work has been done on pewter alloys. There exists a great need for 

investigating the effect of microwave sintering of pewter alloy on density, 

porosity, dimensional changes, tensile strength, grain size, microstructure, and 

degree of densification. 
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1.4 Hypothesis, Aims and Objectives of the study 

 

The aim of this study is to analyze the mechanical and structural properties of 

microwave sintered tin-copper-antimony alloys. Therefore the hypothetical 

questions for this research are: 

 

i) Will the mechanical properties of microwave sintered tin-copper-

antimony (pewter) alloys be as good as or better than those produced 

by casting? 

ii) Will the microstructure of the microwave sintered tin-copper-antimony 

(pewter) alloys be improved through enhanced homogeneity and a 

more uniform microstructure? 

iii) Will the microwave sintered pewter alloys have a significant impact on 

the Malaysian pewter production when compared to the current pewter 

industry which uses a casting process? 

   

The main aim of this research is to find optimum conditions that best suits 

sintering behaviour of tin-copper-antimony alloys.  

 

The objectives of this study are: 

 

i) To study the influence of microwave sintering on the pewter’s 

hardness, tensile strength, density, porosity, dimensional changes, 

densification parameter, grain size and shape.  

ii) To compare microwave sintering of pewter alloys with conventional 

sintering of pewter alloys. 

iii) To analyze the difference between modern pewter, produced through 

microwave sintering, with the pewter produced through traditional 

casting processes. 

iv) To investigate the influence of three different compositions of tin, 

copper and antimony in the pewter composition, on the structure and 

properties relationship.  
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1.5 The Scope of this Study 

 

In a limited time period, it was not possible to cover the implementation of a 

wider range of parameters. Of course, the main aim and goal would be to improve 

the overall mechanical and structural properties of tin-copper-antimony (pewter) 

alloys. Therefore, only the most relevant and appropriate parameters were chosen 

for the purpose of experimentation. However, there were only three different 

compositions of tin alloys that were investigated for a specified range of 

parameters. The three sets of alloys used in experimental work based on 

percentage of weight composition, were as follows:  

1. 97wt%Sn 2wt%Cu 1wt%Sb 

2. 94wt%Sn 4wt%Cu 2wt%Sb 

3. 91wt%Sn 6wt%Cu 3wt%Sb 

 

Table 1.1: Control Factor Allocation 

Type of Heating Compaction Load Sintering 
Temperature 

Sintering Time 

Hybrid Microwave 
Heating 

96 MPa, 129 MPa 160°C, 220°C 15 min, 30 min 

Conventional Vacuum 
Heating 

96 MPa, 129 MPa 160°C, 220°C 60 min, 120 min 

 
 

This research however, does have some limitations and constraints. The size of 

the microwave oven and the thermal pod itself is designed for small or medium 

sample sizes. Thus, very large samples could not be used. Graphite pellets were 

used as susceptors in the crucible to allow a controlled two-directional sintering 

process for low sintering temperature instead of SiC since this caused thermal 

runaways due to excessive energy being stored during heating. SiC is meant for 

high temperature application and is unsuitable for low temperatures. Only a type 

K thermocouple could be used because it is designed for low temperature 

applications. Moreover, oxidation could not be totally prevented by purging the 

microwave oven with argon gas. Microwave sintering the sample in a vacuumed 

capsule was not possible due to the inability of monitoring temperature inside the 

capsule itself.  
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1.6 Report Structure  
 

This thesis is divided into five chapters. The literature review presented in 

Chapter 2 covers various aspects of microwave sintering on materials such as 

metals, ceramics, and composites. Some of the related research work in previous 

years are quoted in this chapter to further support and reinforce the author’s ideas 

in terms of the application of microwave energy as an alternative method of 

sintering compared with conventional sintering in powder metallurgy.   

 

Chapter 2 also discusses the importance of microwave sintering in various 

research areas and its benefits in terms of mechanical, structural, and economic 

aspects, particularly in the manufacturing sector where energy consumption and 

processing time play an important role in cost effectiveness. This chapter also 

discloses the positive and negative characteristics of materials, sintered by 

microwave energy.  

  

 Chapter 3 describes the research methodology for the preparation of the 

samples, the sintering process, the measurement of density, porosity, hardness and 

tensile properties, X-Ray Diffraction (XRD), Scanning Electron Microscope 

(SEM), and Electron Dispersive X-Ray Spectrometer (EDS) analysis.  

  

 Chapter 4 compiles all the experimental results and discusses them in 

terms of mechanical properties and structural characteristics. The effect of green 

density, compaction load, sintering time and temperature on the mechanical and 

structural properties of the conventional and microwave sintered samples are 

discussed.   This chapter also includes a study on diffusion, based on a separate 

experiment which involved couples of Sn-Cu and Sn-Sb with the aim of verifying 

the diffusion behaviour using microwave energy. Furthermore, an application of 

mathematical modelling during microwave sintering is included in this chapter to 

quantify the effects of microwave energy for sintering purposes. 
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 The research is concluded in Chapter 5 which outlines the most 

appropriate conditions for the application of microwave sintering for the 

manufacturing of pewter artefacts. Moreover, this chapter also mentions how the 

findings of this research might have an impact on the Malaysian pewter industry, 

by considering powder metallurgy as an alternative method of production instead 

of the traditional casting process. Additionally, this chapter includes ideas for 

possible future work and recommendations in this area of research.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

11 
 

CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 
 
Recent developments in the field of microwave sintering have been driven by its 

potential use for a wide range of materials ranging from wood, bacon and potato 

chips to rubber, ceramics and semiconductors [12 - 15]. Microwave technology 

has had a positive impact on many industrial processes through lower energy costs 

and faster processing times. It is used for synthesis, drying, calcination, debinding 

and sintering of materials. The Microwave Research Group at the Materials 

Research Institute of the Pennsylvania State University was the first to 

demonstrate very rapid sintering in time intervals varying from 3-20 min on many 

traditional and advanced ceramic materials such as alumina, mullite and 

hydroxyapatite [7, 16].  

 
“New developments (and innovative ideas) in materials processing have the 

most profound and wide-ranging impact on the emergence of new materials and 

technologies. Microwave processing is one such emerging technology of the 

future.” [2]  

 
 Due to specific new developments, especially at Pennsylvania State 

University and in Japan, microwave processing has become an innovative 

technology for a wide variety of real materials and is attracting worldwide 

attention. Initially, successes in microwave heating and sintering were confined to 

mainly oxide and some non-oxide ceramics. Today, this has been extended to 

cemented carbides for cutting and drilling applications with improved 

performance, and has been successfully commercialized. Additionally, microwave 

processing has been effectively and efficiently applied to the sintering of powder 

metals [2]. 
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The efficacy of microwave heating is a sensitive function of the material 

being processed; only those materials that couple in microwave fields will get 

heated. Microwave heating is different from conventional heating because the 

heat is generated internally during microwave heating, so the thermal gradients 

are the opposite of those observed in conventional heating. The electrical and 

magnetic properties of a material determine whether microwave radiation is 

reflected, absorbed or transmitted. Most materials transmit and/or absorb 

microwaves to varying degrees. Many ceramics are transparent or poor absorbers 

of microwave energy but when heated to a critical temperature, they become good 

microwave absorbers [17]. While it is well recognized that bulk metals are opaque 

to microwaves and good reflectors, metallic materials in powder or porous form 

are very good absorbers of microwaves and can be heated very rapidly [2].  

 

The main aim of this research was to determine the feasibility of using 

microwave heating to sinter pewter alloy effectively and efficiently. Artefacts 

made from pewter alloy are traditionally made by melting and casting. 

Furthermore, the effect of green density, sintering time, sintering temperature and 

percentage content of alloying elements; copper and antimony into the tin alloy on 

the mechanical and structural properties were studied. The following sections give 

an overview of microwave sintering on various materials but they mainly focus on 

the effects on density, hardness, tensile strength, microstructural evolution and 

grain growth. 
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2.2 The Microwave Sintering of Metallic Materials  
 

Current work on the microwave sintering of metallic materials is largely based on 

a laboratory scale. However, the Fraunhofer IFAM Institute in Dresden, Germany, 

in partnership with the University of Bayreuth are studying microwave sintering 

of PM ferrous and aluminium alloys and special materials to evaluate the potential 

for industrial scale production [18]. Their results indicate that lower sintering 

temperatures, shorter process time and improved material properties may result 

from effects created by the electro-magnetic field of microwaves.  

 

Microwave sintering has been widely recognized as one such technique 

and has been extensively used for the consolidation of ceramics and hard metals 

[14 - 19]. Roy et al. [7, 20] were the first to prove that metallic materials can be 

coupled with microwaves as long as they are in powder form. Rodiger et al. [19] 

reported that sintering of hardmetal with microwaves leads to a finer 

microstructure because of lower sintering temperatures and shorter processing 

times compared to conventional sintering. A more recent sintering of premixed 

and pre-alloyed Cu-12Sn bronze for temperatures corresponding to transient, 

solid-state, and supersolidus sintering were done by Sethi, Upadhyaya and 

Agrawal [21]. The study has shown that the hardness of the premixed microwave 

samples is higher than for the corresponding conventional premixed samples. In 

addition, the microstructure in the case of microwave sintered samples is more 

uniform than the conventionally sintered ones.  

 

Subsequently, microwave heating and sintering of several other metal 

powder compacts has been demonstrated [22 -30]. Recently, Gupta and Wong 

[31, 32] have revealed the possibilities of consolidating a range of particulate 

metallic materials (Al-, Mg- and Pb-free solders) and the synthesis of Mg-Al2O3 

and Mg-Cu composites using two-directional microwave-assisted rapid sintering. 

These studies have shown that there is an enhancement of the overall mechanical 

performance of metallic materials.  Tensile testing of microwave synthesized 

materials revealed superior mechanical properties compared with conventionally 

sintered materials. 



 
 

14 
 

There has been some uncertainty among researchers about the benefits of 

using susceptors in microwave heating. Gupta and Wong [31] implemented the 

two-directional microwave sintering methodology which uses silicon carbide 

(SiC) as a susceptor material in an experimental arrangement shown in Figure 2.1. 

This can be considered as hybrid sintering with direct heating/sintering of the 

compacts from microwaves forming one component and the radiative 

heating/sintering from the SiC susceptor forming the second component of the 

total heat imparted into the compacts. In an earlier study by Roy et al. [20], there 

were indications that susceptors such as SiC may not be useful in sintering and the 

use of susceptors, separated from the microwave source by only a ceramic wall, 

was not attempted. In another study, Roy, Agrawal and Cheng [23], used 

microwaves, without susceptors to sinter their materials but claimed and proved 

that it was 100% microwave sintering. Gupta and Wong [31] however realized 

that microwaves assisted the sintering from the inside to the outside of a compact 

while a SiC-susceptor assisted the sintering from the outside to the inside. This 

concept of two-directional sintering is shown in Figure 2.2. 

 

 

 

Figure 2.1: Schematic diagram of the experimental set-up used in microwave sintering  
using SiC (susceptor) heating [31] 
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Figure 2.2: Schematic diagram showing the concept of two-directional  
sintering [31]  

 
 

Although there is evidence of enhanced mechanical properties after 

microwave sintering, the influence of heating rate should not be overlooked. In 

order to avoid thermal shock in conventional heating, the heating rate seldom 

exceeds 10°C/min. In contrast, in microwave heating, the compact itself acts as a 

heat source and is subjected to a more rapid and uniform heating which minimizes 

microstructural coarsening. One of the concerns in microwave heating is the 

influence of high heating rates on the microstructural homogeneity during 

sintering. Studies have shown that when compared with conventional sintering, 

the microwave sintered compacts were denser and exhibited less grain coarsening 

[28, 29]. These studies have also shown that bronze alloys and W-Ni-Fe alloys 

can be consolidated through microwave sintering with a significant (~75%) 

reduction in processing time. 

 

Sorescu et al. [3] have found evidence for microwave-induced 

recrystallization in NiZn ferrites.  In another study, comparing the effect of 

heating mode on the densification, microstructure, strength and hardness of 

austenitic and ferritic stainless steel, Panda et al. [26] reported that while the 

microwave sintered compacts exhibit a finer microstructure, there was no 

corresponding improvement found in densification and mechanical properties. 

This has been correlated with an elongated and irregular pore structure.   
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In addition to research findings relevant to mechanical and structural 

properties, several studies [33 - 39] have investigated the synthesis of ferrite 

materials using the microwave technique. Characterizations of the structural and 

magnetic properties were carried out successfully. Most significantly, ferrite 

samples sintered in a microwave field, generally, showed lower dielectric constant 

values compared with conventionally sintered samples, making microwave 

sintering particularly suitable for high frequency applications. These results 

demonstrate the beneficial effect of microwave sintering processes on enhancing 

the densification of ferrites, as compared with the conventional processes.  The 

authors have reported that the degradation of the magnetic properties was 

attributed to the strain induced in the ferrites. Figure 2.3 shows the uniform grain 

size distribution for both conventional and microwave sintered MnZn-ferrites 

where the former showed larger grains (~10 μm ) and the latter smaller grains 

(~6.5 μm). 

  

 

Figure 2.3: Typical SEM microstructure of MnZn-ferrites densified by (a) conventional 
furnace sintering, cs (b) microwave sintering, ms [34]  
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2.3 The Microwave Sintering of Ceramic Materials 
 

 

 It is well known that microwaves are widely used in many industrial 

applications including meat tempering, processing of potato chips, drying of 

pharmaceutical products and vulcanization of rubber. However, in the case of 

ceramic processing, microwave energy has been used since the late 1940’s with a 

big push later in the 1980’s. The application of microwaves has been limited, but 

not restricted to process control, drying of ceramic sanitary wares, calcination, 

decomposition of gaseous species and the sintering of oxide ceramics by 

microwave plasma [5].  

 

Microwave processing of ceramics is fast emerging as a new field of 

ceramic processing and material synthesis. In recent years there has been 

significant progress in the aspect of commercialization and application of the 

technology to new areas. The most significant developments have been the use of 

microwaves in the sintering of non-oxides, such as tungsten carbide-based 

components and powdered metals, the fabrication of transparent ceramics and the 

design of continuous microwave systems [5]. 

 

 The use of microwave energy for processing ceramics and ceramic matrix 

composites has been extensively investigated. The range of materials and 

processes that have been investigated is shown in Table 2.1 [40]. The potential 

advantages of microwave processing over conventional methods for ceramics 

include: 

• Reduced processing time 

• Improved product uniformity 

• Improved microstructure 
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   Table 2.1: Examples of ceramics microwave processing research and development [40]    
                                                                  Processes 
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Advanced 
Ceramics 

 X  X  X  X X X   

Cements            X 

Composites      X  X     

Ferroelectrics X X X     X     

Ferrites        X     

Glasses     X  X   X   

Minerals   X X    X     

Refractories   X X   X X     

Superconductors X   X    X  X   

Whitewares    X    X   X  

 

 

The microwave processing of ceramics can be used as an alternative 

method to conventional sintering of ceramics because of the potential advantages 

that exist, such as rapid heating, more uniform microstructures, penetrating 

radiation, and higher densities [41-45]. Several studies have been directed towards 

a comparison of the dielectric behaviour of microwave and conventionally 

sintered ceramics [46- 53]. All of these studies showed that the microstructure and 

superconducting properties of microwave sintered material is close to those 

observed for conventionally sintered ceramic material. Xie et al. [52] have 

reported that green compacts of ferroelectric ceramics achieved more than 98% 

theoretical density at 960°C. The authors discovered that smaller grain sizes and a 

more uniform microstructure were developed due to volumetric heating and rapid 
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sintering during microwave processing. Figure 2.4 shows that the dielectric 

properties obtained after microwave sintering are comparable to those obtained 

after conventional sintering at two different temperatures. 

 

 

Figure 2.4: Dielectric properties of the samples sintered by microwave  
and conventional method [52]  

 
  

 

 Nevertheless, there is evidence of microwave sintered ceramic samples 

with improved dielectric properties [54-56]. Thakur, Prakash and Agrawal [54,55] 

carried out a detailed dielectric study on a Barium strontium titanate (BST) (95:5) 

composition. The material was synthesized conventionally and by microwave 

processing. The latter technique resulted in material with high density, improved 

microstructure and dielectric properties. The dielectric properties were studied as 

a function of frequency and temperature and well-defined ferroelectric behaviour 

of the first order transition was observed. It followed the Curie–Weiss law above 

the transition temperature (paraelectric region) where the Curie temperature was 

found to be slightly higher for microwave sintered material. 
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 In addition to the previous studies mentioned above, Singh et al. [57] 

carried out a research to compare the influence of conventional and microwave 

sintering techniques on the structural, electrical and piezoelectric properties of 

PCT ceramics. It was observed that the microwave sintered PCT ceramics showed 

better densification, a fine and uniform grain size, low dielectric loss and 

improved dielectric – piezoelectric constant (kt/kp) ratio. The microwave sintering 

resulted in energy-saving, rapid processing and a uniform temperature distribution 

throughout the sample. The value of coercive field, Ec was slightly higher for a 

microwave sintered sample.  

 

Microwave sintering was performed in a modified microwave kitchen 

oven (2.45 GHz, 1.2 kW) as shown in Figure 2.5. Sintering was done at 1100 °C 

for 30 min and the total cycle time was 135 min. The temperature–time profile for 

conventionally sintered and microwave sintered material is shown in Figure 2.6. 

A specially designed thermocouple (Pt–PT–Rh 13%) was kept close to the sample 

for measurement of temperature in the microwave oven. To avoid interaction with 

the high electric field, a platinum tube was used to shield the sheathed 

thermocouple.  

 

 

 

Figure 2.5: Schematic of the microwave sintering system [57] 
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Figure 2.6: Comparison of the time–temperature profiles for modified PT synthesis in 
microwave and conventional process [57] 

 

Figure 2.7 shows the microstructures of conventionally and microwave 

sintered PCT ceramics. The grain size distribution for microwave sintered 

samples is more uniform than that for a conventionally sintered sample. This 

suggests that the rate of grain growth during microwave sintering is markedly 

enhanced without inducing abnormal grain growth, which is desired to get the 

better electrical and electromechanical properties. In addition, the authors also 

reported that the average grain size is smaller after microwave sintering. 

 

Experiments to examine the feasibility of densifying α-silicon carbide 

powder compacts based by the use of microwave powered furnaces were 

attempted [58,59]. The authors discovered that while microwave sintering of 

silicon carbide (SiC) is feasible, it does not seem to generate practical advantages 

over conventional heating. The authors have observed that the particle size of SiC 

did not change with the increase in reaction temperatures.  
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Figure 2.7: Scanning electron micrographs for (a) Conventional Sintered and (b) Microwave 
Sintered samples of PCT ceramics [57] 

   

 Despite various implementations of microwave sintering on ceramic 

materials, a great deal of work has been done on the research and development of 

hydroxyapaptite (HAp) ceramics as biomaterials. Hydroxyapatite has a great 

potential for biomedical applications since it is the main component of bones and 

teeth.  Several studies have been conducted on the fabrication of transparent 

ceramics using hydroxyapatite. These studies led to the first fabrication of 

hydroxyapatite by Fang et al. [16] using microwave processing. It was shown that 

useful bodies could be sintered in less than 15 minutes and that the densification 

was dependent on the starting materials. More recent studies have revealed that 

microwave processing has been successfully used to fabricate transparent 

ceramics due to its ability to minimise grain growth and produce a fully dense 

ceramic in a very short period of time [60-65].   
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 There have been extensive investigations on titanium based ceramics over 

the last decade. Studies have included observations on the effects of microwave 

sintering on resistivity, phase transformations, mullitizations, dielectric properties, 

microcrystal structure, densification and hardness [66-77]. Hart et al. [78] faced 

challenges in producing TiO2 films by microwave heating. Microwave processing 

is an attractive alternative to conventional furnace treatment for sintering of TiO2 

nanostructured thin films, but problems arose when they were heated with 2.45-

GHz microwaves. It was found that the conducting glass cracked (Figure 2.8) at 

temperatures above 200°C. By coating a 20-μm-thick film of nanostructured TiO2 

on the transparent conducting oxide (TCO) glass (using a commercially available 

powder), the temperature at which cracking occurred was raised to about 400°C. 

When a sol–gel method was used to produce TiO2, difficulties were encountered 

in the production of 10-μm-thick films, including cracking of films during 

drying.  

 

 

Figure 2.8: Optical micrograph of cracked TCO glass after a microwave heat  
treatment to 220 °C [78]  

 

 A more recent study performed by Mahboob et al. [79], on the dielectric 

behaviour of microwave sintered rare-earth doped BaTiO3 ceramics, revealed that 

high values of dielectric constant had been obtained in most of the samples. This 

was attributed to the effect of microwave sintering. Impedance measurements 

were also carried out between room temperature and 600 °C over a wide 
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frequency range. Some interesting features of the samples were reported, such as 

the separation of grain, grain boundary and electrode effects. Figure 2.9 shows the 

variation of dielectric constant with temperature for microwave sintered BaTiO3 

samples comparing the different doped elements. Results clearly indicate that a Pr 

doped sample has the largest dielectric constant followed by Ce and Nd. 

 

 

 
Figure 2.9: (a–c) Variation of dielectric constant with temperature for microwave sintered 

Ce, Nd and Pr doped BaTiO3 samples respectively [79]  
 

 

Zirconia based ceramics possess properties which are of interest to 

engineers. They include high strength, high fracture toughness, wear resistance 

and good frictional behaviour. The implementation of microwave processing to 

zirconia based ceramics has not been overlooked. Many experiments have been 

conducted and these have successfully produced high quality samples with high 

densification, smaller grain size, more uniform grain structure and higher hardness 

[80-83].   

   

 Huang et al. [84] carried out a comparative study on microwave and 

conventional sintering of CeO2 and Y2O3 co-stabilised ZrO2 from stabiliser-coated 

nanopowders. The influence of the composition and the sintering methods on the 

final phase composition and microstructure were also investigated. Fully dense 

material grades were obtained by both sintering methods. They observed finer and 

more uniform microstructures in the microwave sintered ceramics compared with 

conventionally sintered samples. As expected, average grain size increases with 

increasing sintering temperatures as shown in Table 2.2. However, the authors 
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concluded that the fracture toughness increases with decreasing stabiliser content, 

whereas a reverse relation was found for the Vickers hardness. Comparable 

toughness and hardness values were obtained for the microwave and 

conventionally sintered samples. 
 
Table 2.2: Average grain size of 0.7MgTiO3–0.3MgTa2O6 ceramics with different sintering 
temperature [84] 

Temperature (°C) Average grain size (μm) 

1370 4.8 

1400 6.6 

1430 11.6 

1460 13.3 

1490 16.1 

 

 

Despite numerous advantages of microwave sintering on physical and 

mechanical properties, microwave sintering has also proven to have some 

negative effects. Goldstein and Kravchik [85] conducted a study on the feasibility 

of sintering PZT powder compacts by direct microwave heating using multimode 

applicators at 2.45 GHz. PbO loss and an electromagnetic field intensity with a 

non-uniform spatial distribution were the main factors with a negative influence 

on sintering. Cracking-warpage propensity was shown to be a strong function of 

specimen shape, size and the heating chamber set up. However, dielectric and 

piezoelectric properties of MW and conventionally sintered specimens appeared 

to be similar.  

 

 To overcome the problem of cracking, Goldstein et al. [86] used yttria-

stabilized zirconia instead and managed to obtain uncracked fully dense zirconia 

ceramics. It was found that such a sintering approach can be used in the case of 

ZrO2(Y2O3) powder compacts. Sintered bulk densities close to the theoretical 

were obtained after firing cycles of about 2 hours. Sintering rate enhancement in 

the microwave furnace resulted in a reduction of about 100°C in the minimal 

temperature required for full densification. However, they reported that the 

mechanical properties of microwave and conventionally sintered specimens were 

not significantly different. 
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 Aluminium Oxide (Al2O3) is an important engineering material. It offers a 

combination of good mechanical properties and electrical properties leading to a 

wide range of applications which include seal rings, medical prostheses, laser 

tubes, thermocouple tubes and electrical insulators. Alumina can be produced in a 

range of purities with additives designed to enhance properties.  Producing 

alumina based ceramics using microwave technology has helped to enhance 

densification and the initiation of nucleation and growth driven phase 

transformations at lower sintering temperatures [87-92]. 

 

Another comparative study of microwave and conventional processing of 

ceramic materials based on MgAl2O4 was performed by Gomez et al. [93]. 

According to semi-quantitative X-ray diffraction analysis, approximately 90% of 

MgAl2O4 was produced with both processing methods. Scanning electron 

microscope (SEM) images of the microstructure shown in Figure 2.10 reveal a 

similar grain morphology for the two methods, but the grain size is much smaller 

after microwave sintering. A more heterogeneous microstructure was observed in 

the specimen processed by microwaves.  

 

Figure 2.10: SEM images of MgAl2O4 obtained by conventional (above) and  
microwave (below) heating [93]  
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 Studies mentioned earlier have indicated smaller grain growth for 

microwave sintering due to shorter sintering times relative to conventional 

sintering. However, although improved densification (>95% theoretical density) 

and grain growth have been observed when sintering UO2 using microwave 

energy over short sintering times [94-96], in experimental work carried out by Jae 

et al. [96] on a comparison between microwave and conventional sintering of 

uranium oxide (UO2) pellets, the variation of grain size and holding time with 

temperature shown in Figures 2.11 and 2.12, was obtained. The grain size of 

microwave-sintered pellets is found to be larger than that for the conventionally 

sintered pellets for the same sintering temperature and after the same holding 

time.    

 

Figure 2.11: Grain size of sintered UO2 pellets as a function of sintering temperature.                                    
Sintering time: 1 h [96] 

 
 

 
 

Figure 2.12: Grain size of sintered UO2 pellets as a function of sintering time.                                               
Sintering temperature: 1700°C [96] 
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2.4 The Microwave Sintering of Composite Materials 
 

 Microwave processing has received some attention by workers in the field 

of composite materials. Studies of the effects of microwave sintering on 

densification, grain size and the morphological changes have been analysed [98-

108]. Results from these studies show that improvements in densification, grain 

growth, strength and toughness can be achieved. Figure 2.13 shows the influence 

of sintering temperature on the bulk density of microwave and conventionally 

sintered Y-TZP/20wt.%Al2O3 composites, as reported by Travitzky et al. [99]. 

The microwave sintered composites attain a higher bulk density of about 97% 

theoretical density (T.D.) at 1200°C, while the conventionally fired materials 

attained only 95% T.D. at 1500°C. The average bulk density of the specimens, 

made by microwave sintering at 1500°C, was about 99% T.D. The authors have 

reported that at a given sintering temperature, microwave fabricated composites 

exhibited superior bending strength, fracture toughness and hardness (Vickers) 

when compared with conventionally sintered materials due to the  better 

densification of the MW-sintered specimens. 

 

 

Figure 2.13: Influence of sintering temperature on the bulk density of microwave and 
conventionally fabricated Y-TZP/20 wt.% Al2O3 composites [99] 
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More recent findings from Tun and Gupta [108] on the fabrication of 

magnesium nanocomposites using magnesium as the matrix and nano-yttria as a 

reinforcement revealed a uniform distribution of Y2O3 particulates in the matrix 

and the presence of nanopores. Meanwhile, hardness, 0.2% yield strength, 

ultimate tensile strength, work of fracture and ductility increased with increasing 

amount of reinforcement from 0.5 to 2.0 wt%. Further studies by the authors on 

the effect of heating rate during hybrid microwave sintering on the tensile 

properties of Mg and Mg/Y2O3 revealed that average hardness and strengths of 

both samples were higher when they were sintered at higher heating rate. The 

ductility of pure Mg was reduced at a higher heating rate while it remained similar 

for Mg /Y2O3 [109]. 

   

 Despite positive densification results obtained from researchers mentioned 

above, there is also some contrary evidence reported [110-111]. Li et al. [110] 

produced porous C3S samples after microwave sintering at 1500°C, but the 

formation of C3S was achieved at temperatures as low as 1350°C when using 

Al2O3 additions. The use of Fe2O3 as an additive was not as effective in promoting 

C3S formation as expected. Its morphological observation by scanning electron 

microscopy is shown in Figure 2.14.  

 

 

Figure 2.14: Microwave sintered sample at 1400°C. Al2O3 = 2.0% [110] 
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Meanwhile, Oh et al. [111] produced porous composites of Al2O3/ZrO2 

with improved mechanical properties by microwave sintering. The composite 

exhibited higher elastic modulus, fracture strength and improved mechanical 

properties than those prepared by conventional sintering. It is reasonable to 

suggest that a small particle size in the starting powders and low sintered 

densities, as shown in Table 2.3, contributed to the distribution of fine pores in the 

sintered specimens.  

 

Table 2.3: Relative density of the conventional and microwave sintered composites [111] 

 

 

   

 Because of their unique combination of hardness, toughness and strength, 

hard metal composites, especially tungsten (WC) based composites are widely 

used for cutting tools and drilling operations worldwide. Conventional methods 

for sintering WC with cobalt (Co) as a binder phase, involves high temperatures 

and long sintering times. In a conventional sintering method, the carbide is 

subjected to high temperatures (up to 1500°C) for long periods in order to achieve 

a high degree of sintering. Such conditions, however, lead to undesirable WC 

grain growth in the presence of Co liquids [4]. Consequently, the hardness and 

other mechanical properties of the tool will be lower. 

 

WC/Co samples sintered in a microwave field differ radically in terms of 

phases, chemistry, and microstructure when compared with conventionally 

sintered samples. Breval et al. [112] did a comparison study between microwave 

and conventionally sintered WC/Co composites. Microstructural investigations by 

TEM showed that in microwave sintered material the cobalt phase dissolved a 

little tungsten, whereas in conventionally sintered samples up to 20 wt% tungsten 

was dissolved.  
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It was also observed that smaller WC grains and a finer and more uniform 

distribution of cobalt binder were formed in microwave sintered samples as 

shown in Figure 2.15. This resulted in a harder material, which also exhibited 

better resistance towards both corrosion and erosion. The authors have reported 

that microwave sintered samples also have a three-dimensional uniform 

shrinkage, whereas conventionally sintered samples showed a greater vertical 

shrinkage. It is possible to microwave sinter WC/Co at a lower surface 

temperature and in much shorter times than is normally needed in a conventional 

furnace to obtain the same degree of densification.  

 

Figure 2.15: SEM images of WC/Co (Specimen E). (a) Fractured green sample, (b) the same 
material, conventionally sintered and polished, (c) the same material, microwave sintered 

and polished, (d) the same material, conventionally sintered, polished and etched 
H2O2/HNO3, 12 min/60 °C, and (e) the same material, microwave sintered, polished and 

etched H2O2/HNO3, 12 min/60 °C [112]   
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  VaradaRajan et al. [113] have attempted to improve the performance of 

cemented tungsten carbide tools with a post treatment by subjecting them to 

microwave radiations. Results from this study showed that an irradiated tool 

performs better during machining of MMC’s, suggesting that microwave radiation 

is a potential post sintering technique for cemented carbide tools to improve 

machining ability. Typically observed parametric influences on cutting force 

components are illustrated in Figure 2.16 (a) and (b).  

 
 

 
 

Figure 2.16: Typical variation of machining force components with cutting velocity: (a) 
untreated tool; (b) microwave irradiated tool (DOC = 0.5 mm) [113]  
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2.5 Microwave Sintering on Dental Applications 
 
 

Microwave sintering has also penetrated into dental applications. Any successful 

implant should be biocompatible, strong and contain surface pores to promote 

osseointegration. A one-step microwave sintering procedure of titanium powders 

was attempted by Kutty, Bhaduri S., and Bhaduri S.B [114] in this work. The idea 

was to take advantage of the peculiar way microwaves couple with metallic 

powders, i.e. generating heat in the interior of the sample and dissipating it away 

through the surface. This non-conventional heating of titanium powder produced a 

dense core with surface porosity.  

 

 The authors have revealed that the dense core provides the strength while 

the surface pores promote bone growth. Microstructural characterization which 

was carried out by a Scanning Electron Microscope showed that the sintered 

titanium had gradient porosity on the surface with a thickness of about 100-200 

µm depending on the microwave power. The pores were interconnected with size 

ranging from 30 to 100 µm. This kind of microstructure is favorable for cell 

growth. Tensile strength values as high as 400 MPa were obtained for these 

samples. 

 

 Other investigations by Pan and Ravaev [115], who were looking for 

better performance and improvements in dental materials, were concerned with 

increasing the adherence of ceramics and alloys in metal-ceramic structures. It has 

been found that microwave sintering of porcelain ceramics on Ni-Cr substrates 

leads to a two or threefold increase in adherence, compared with conventional 

sintering. A schematic diagram showing the experimental equipment used by the 

authors is shown in Figure 2.17.  

 



 
 

34 
 

 
Figure 2.17: Simplified scheme of the experiment: waveguide microwave chamber and its 

components [115] 
  

 

2.6  Economics of Microwave Processing 
 
 

The economic benefits of microwave processing are difficult to define in a 

general way. The decision or need for microwave processing over other traditional 

methods for a particular application has to be based on an analysis of a specific 

process. There are several factors that can influence the usage of microwave 

processing over other traditional methods of production. They include the location 

of the processing facility, the product requirements, possible property 

improvements, alternative sources of energy, availability of capital, the balance 

between energy costs, labour costs, capital costs and the value added to the 

product [116]. Other factors besides energy savings account for selecting 

microwave processing over other conventional methods, like shorter processing 

times, smaller equipment and space, improvement in productivity and material 

properties. Moreover, hybrid microwave systems have resulted in providing more 

savings compared with either direct microwave or conventional systems on their 

own [116]. 
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2.7 Summary 
 

Powder metallurgy competes with other, more conventional metalworking 

methods in the fabrication of parts, such as casting, machining, and stamping. 

Characteristic advantages of powder metallurgy are close tolerances, low cost, net 

shaping, high production rates, and controlled properties. Other attractive features 

include compositional flexibility, low tooling costs, available shape complexity, 

and a relatively small number of steps in most powder metallurgy production 

operations. New developments in the area of material processing have led to the 

discovery of new useful materials with interesting properties. Furthermore, they 

have also advanced into the development of new improved technologies which are 

much faster, cheaper, better and greener.  

 

            Significant developments and advances have taken place in the field of 

microwave processing of ceramics over the last decade. In the case of composites, 

particularly tungsten/cobalt composites, the cycle time using microwave 

processing can be reduced to about one tenth of that needed for conventional 

processing. The microwave coupling causes extremely rapid reaction kinetics and 

new reaction paths leading to materials processing at much lower temperatures 

than normally obtained by conventional heating. The most significant 

development in microwave processing is in the sintering of powdered metals and 

transparent ceramics in a single step process. Microwave processing has 

succeeded in producing materials with rapid densification, enhanced mechanical 

properties and improved microstructures. There exists a great future for 

microwave technology for the commercialization of metallic materials.  

 

From literature review, it is quite clear that beneficial results in terms of 

improved density, hardness, strengths, finer grain size and uniform 

microstructures have been obtained from microwave sintering. However, the 

authors have not mentioned whether or not there exists any microwave or 

‘athermal’ effect. All the authors on the other hand did clearly state or indicate 

that the results obtained from microwave sintering are due to the rapid heating 

effect or simply thermal in nature. There still exists a debate as to whether there 

are any athermal effects during microwave sintering.   
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CHAPTER 3  

EXPERIMENTAL PROCEDURE 

 

3.1 Preparation of sample 
 

3.1.1      Mixing 
 

1. There were three sets of experiments prepared for the following  

compositions: 

• 97wt% Sn, 2wt% Cu and 1wt% Sb, 

• 94wt% Sn, 4wt% Cu and 2wt% Sb, 

• 91wt% Sn, 6wt% Cu and 3wt% Sb. 

 

2. Tin powder with 99.5% purity (-100 mesh), copper powder with 99% 

purity (<75 µm) and antimony powder with 99.5% purity (-100 mesh) 

were used (supplied from Sigma Aldrich). 

 

3. These powders were first weighed accordingly and placed into their 

respective containers which were then evacuated in a glove box to remove 

oxygen to less than 100 ppm and then mixed using a roller mixer (ABB 

ABS 100) shown in Figure 3.1; for about 12 hours at a frequency of 40 

Hz. 

 
Figure 3.1: Roller mixer (ABB ABS 100) used for mixing the tin alloy powder 
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4. Each set of experiments had sixteen different conditions (see Table 3.1). 

 

5. Sixteen samples from 80 g of powder were prepared from the same die to 

produce samples with a cross section of 10.1 mm in width and 30.8 mm in 

length with the height of 42 mm on average. This was the largest 

obtainable size from the selected die from which tensile specimens from 

both the transverse and longitudinal directions were obtained. 

 

 

3.1.2      Compaction 
 

1. Using the percentage of powder and its respective weights, a total of 48 

samples for the 3 sets of experiments were prepared from the die shown in 

Figure 3.2.   

 

 
Figure 3.2: Die used to prepare the tin alloy compacts   

 

2. Two different pressing pressures were applied to prepare samples for this 

study. Samples were compacted at 96 MPa and at 129 MPa using the 10 

ton Hydraulic Floor Press Machine (D2003K) with a holding time of 5 

minutes (see Figure 3.3).  
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3. Between these limits, samples were defect-free and had sufficient green 

strength for handling. 

 

 

 
Figure 3.3: The 10 ton Hydraulic Floor Press Machine (D2003K) used for  

compacting the tin alloy powder 
 
 

4. Below 96 MPa, it was difficult to reproduce the load on the press, 

resulting in variations in green density. Furthermore, the samples broke 

and cracked upon removal due to insufficient green strength. On the other 

hand, it was difficult and almost impossible to produce samples above 129 

MPa, either as the pressure applied was almost at a maximum for the 

equipment, making samples hard to press. 
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3.2 Sintering 
 

1. Out of the 16 samples prepared from the die, 8 samples were sintered 

using the vacuum furnace and the other 8 sintered using the microwave 

furnace for each set of experiment. 

 

2. Following the experimental conditions as stated in Table 3.1, the samples       

were sintered at two different temperatures (160°C and 220°C)  for 

different durations. 

 
Table 3.1: The experimental conditions for each experiment 

Sample 
No:  

Sample 
Name  Sintering 

Compaction 
Pressure  

Sintering 
Temperature 

Sintering 
Time 

1 CS1 conventional 96 MPa 160°C 60 min 
2 CS2 conventional 96 MPa 160°C 120 min 
3 CS3 conventional 96 MPa 220°C 60 min 
4 CS4 conventional 96 MPa 220°C 120 min 
5 CS5 conventional 129 MPa 160°C 60 min 
6 CS6 conventional 129 MPa 160°C 120 min 
7 CS7 conventional 129 MPa 220°C 60 min 
8 CS8 conventional 129 MPa 220°C 120 min 
9 MW1 microwave 96 MPa 160°C 15 min 

10 MW2 microwave 96 MPa 160°C 30 min 
11 MW3 microwave 96 MPa 220°C 15 min 
12 MW4 microwave 96 MPa 220°C 30min 
13 MW5 microwave 129 MPa 160°C 15 min 
14 MW6 microwave 129 MPa 160°C 30 min 
15 MW7 microwave 129 MPa 220°C 15 min 
16 MW8 microwave 129 MPa 220°C 30min 
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3.2.1 Conventional Sintering 

 
1. A conventional furnace with a cavity size of 5cm x 110cm under vacuum 

conditions was used as shown in Figure 3.4 below. 

 

2. Temperatures of 160ºC and 220ºC as listed in Table 3.1 were used for 

sintering the tin-copper-antimony samples. 

 

3. The heating rate for the conventional sintering was maintained at 6ºC/min 

in order to avoid thermal shock to the equipment. 

 

4. It was ensured that the vacuum pressure reached 10-6 MPa before 

sintering. 

 

 

 
Figure 3.4: The conventional vacuum furnace used for conventional sintering 
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3.2.2  Microwave Sintering 

 
1. A Panasonic Thermwave Mod.111 multimode microwave system (1.3kW, 

2.45GHz, 47cm x 61cm x 64 cm) with a water cooling system, designed 

for the high temperature processing of materials in a laboratory or small-

scale industrial manufacturing, was used for this study (see Figure 3.5). 

 

 
Figure 3.5: Panasonic Thermwave Mod.111 multimode microwave system  

used for hybrid microwave sintering 
 

2. The green compacts were placed in a cylindrical thermal box / thermal pod 

made from ceramic fibre (see Figure 3.6). 

 

3. The sample was sintered with a few (14 pieces) graphite pellets (in the 

range of 1 to 1.5 cm in length) placed around the sample at the base of the 

thermal pod which were used as susceptors to ensure a controlled two-

directional sintering process took place and that excessive heat and energy 

did not build up in the system.  This helped to give a better control of 

temperature since low sintering temperatures were used (see Figure 3.7). 

The number of graphite pellets used was always kept consistent for each 

experimental run. 
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Figure 3.6: Schematic diagram of sample in the multimode microwave system 

used for hybrid microwave sintering 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7: Schematic diagram of the susceptors used around the sample in the multimode 
microwave system (top view) 

 

 

Susceptors have the capability of absorbing microwave energy, since they 

comprise a particulate substrate which is substantially non-reflective of 

microwave energy. Susceptors are typically particles having a thin-film 

coating. The matrix typically comprises of ceramic materials that are 

stable at high temperatures.  The composition allows reuse of the 

susceptors, eliminates a decline in heating rate, eliminates arcing, allows 

the heating rate to be controlled, and also allows overheating to be 

controlled when operating at high temperatures. Figure 3.8 shows the 

effects on the heating rate in the microwave furnace with and without 

susceptors. 

 

Thermocouple 

Thermal pod 

Graphite pellets 

Sample 

Microwave  
furnace 

Graphite 
pellets 
(susceptors) 

Sample 
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Figure 3.8: The effect of susceptors in the heating behaviour in microwaves  

 

4. The crucible was filled with argon gas (due to the fact that the microwave 

system could not be operated under vacuum conditions) before the 

sintering process with a flow rate of 50mL /min and was maintained at this 

flow rate throughout the sintering process. This hybrid microwave 

sintering had an average heating rate of 15°C/min. 

 

5. The power dial at the controller was adjusted manually from an output 

energy level of 50% and the microwave unit was set to 70% input power 

level to allow high and uniform heating rates since a low temperature 

application was used.  

 

6. The temperature of the sample in the crucible was measured using a Type 

K thermocouple shown in Figure 3.9. Once the targeted temperature was 

achieved, the output power level on the microwave unit was reduced to 

30% in order to maintain the sintering temperature and the sintering time 

was set. 
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Figure 3.9: Type K thermocouple used for measuring temperature of the  

sample during microwave sintering 
 

 

This is a crucial step in the microwave sintering process as failing to do so 

would result in instability of the desired temperature leading to a 

temperature overshoot. The following diagram in Figure 3.10 shows the 

heating profiles for both microwave and conventional furnace. 
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Figure 3.10: The heating profiles obtained from the microwave furnace and  

conventional vacuum furnace 
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3.3 Grinding and Polishing of Samples 
 
 

1. During grinding, new sheets of abrasive papers and excessive pressure was 

avoided, to prevent pick-up of loose silicon carbide particles which can be 

easily embedded in relatively soft tin alloys.  

 

2. Grinding with worn abrasive papers with grits of 2000 and 4000 was 

carried out using the rotary polishing and grinding machine (Struers 

RotoPol – 21). Coarser papers of 500 and 1000 grit were avoided since 

they caused too many deep scratches and enabled penetration of SiC 

particles into the tin alloy. 

 

3. Scratches from the final abrasive papers were removed by polishing for 

several minutes on a wheel covered with nap cloth impregnated with 0.3 

µm agglomerated alpha alumina suspension. 

 

4. Care was taken to make sure that the polishing wheels were free from dust 

and grit from the previous polishing step. 

 

5. A 2% nital solution, consisting of 2% by volume nitric acid in ethanol, 

was used for etching. A good etch was achieved after 1 to 2 minutes 

immersion. 

 

 

3.4 Measurement of density 
 

3.4.1 Green Compact 

1.        Accurate density measurements are an important part of characterizing  

                 the physical properties of samples. In this experiment, the density of as-  

                 pressed pellets was calculated from the sample mass and volume. 
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      2.        Mass was measured using a digital balance and sample volume was   

                 calculated from the external dimensions of the samples, which were   

                 rectangular in shape. 

 

3.4.2 Sintered Samples  

         
 

1. A liquid displacement method, based on Archimedes’ principle, was used 

to determine the density of the sintered samples. Experiments were carried 

out at room temperature using distilled water. 

 

Archimedes’ principle states that an object immersed in a liquid 

will be supported by a pressure equal to the weight of the liquid displaced 

by the object. Buoyancy acts against the force of gravity and so makes 

objects seem lighter with respect to gravity. To represent this effect, which 

is important for sedimentation, it is common to define a buoyant mass, mb 

that represents the effective mass of the object with respect to gravity 

 

                                 (3.1) 
  

 where mobject is the true (vacuum) mass of the object, whereas ρobject and  

ρfluid are the average densities of the object and the surrounding fluid, 

respectively. The weight of the displaced fluid is directly proportional to 

the volume of the displaced fluid (specifically if the surrounding fluid is of 

uniform density). 

 

2. The sintered sample was weighed in air first and then in water. The density 

of the immersed object relative to the density of the fluid is easily 

calculated without measuring any volumes: 

weightimmersedApparentWeight
WeightdensityRelative

−
=                     (3.2) 
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3. To take into account the influence of the variation in the initial as-pressed 

density, the compact sinterability was also determined through a 

densification parameter, which is expressed as:  

     
densitygreendensityltheoretica

densitygreendensitysinteredparameterionDensificat
−
−

=                 

(3.3) 
where a negative densification parameter implies compact swelling. 

 

 

3.5      Measurement of Porosity 
 

1. The volume of open and closed pores can also be calculated using                   

Archimedes' measurements [117]. The volume of open  pores,  VO, is 

given by: 

density

ww
V

liq
o

drysat −=                                           (3.4) 

 Where wsat = saturated weight 

             wdry = weight of dry sample 

 
2. The volume of closed pores can be calculated only if the theoretical   

density, TD, of the material is known.  

 

3. The dry weight divided by the theoretical density gives the true volume, 

Vt.  True volume is the volume of solid in the pellet. The volume of closed   

pores,  Vcp, is then:            

         

  Vcp =Vb-Vo- Vt                                              

(3.5)            
                       Where: Bulk volume (Vb) = (wsat - wsusp)/ρliq. 
                                                          wsusp = weight of suspended sample 
                                                           ρliq. = density of liquid used    
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3.6 Microhardness Testing 
 

1. In this work, a LECO Microhardness Tester (LM 700) was used where the 

diamond indenter is forced into the surface of the material using a 

calibrated machine with a test load of 25–100 gf to give a micro-

indentation. 

 

2. When micro-hardness testing was performed, care was taken to avoid 

porosity, as the micro-indenter will make a larger impression and record a 

lower hardness in porous material, compared with fully dense material of 

the same composition. This is because the pores offer no resistance to 

deformation. 

 

3. A highly polished, pointed, square-based pyramidal diamond indenter with 

face angles of 136º between opposite faces was forced into the material 

under a load F.  

 

4. The micro-indentation left in the surface of the material after removal of 

the load was measured using the diagonals d1 and d2 by means of 

microscope. Their arithmetic mean d automatically calculated and the 

micro Vickers hardness value computed. 

 

5. A 25 gf load with a dwell time of 15 seconds was used each time. 

 

6. Five different microhardness readings were taken from five different 

locations on the sample and the average result was taken for each sample. 
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  3.7 Tensile Testing  
 

 

1. Tensile testing was used to determine the yield and tensile strength of 

samples. A tensile testing machine (INSTRON 4204) with a 5 kN load cell 

and crosshead speed of 1 mm/min was used for testing. 

 

2. The test pieces were cut directly from the sintered material using a metal 

cutter and then filed manually to its tensile profile. The typical tensile 

specimen prepared is shown in Figure 3.11. It has enlarged ends or 

shoulders of 5 mm for gripping.  

 

3. An important part of the specimen is the gauge section. The cross-

sectional area of the gauge section (2 mm x 4 mm) is reduced relative to 

that of the remainder of the specimen so that deformation and failure will 

be localized in this region.  

 

4. The gauge length (15 mm) is the region over which measurements are 

made and is centred within the reduced section. The gauge lengths are 

marked and measured before and after the tensile test in order to obtain 

percentage of strain to fracture. 

 

5. The distances between the ends of the gauge section and the shoulders 

should be great enough so that the larger ends do not constrain 

deformation within the gauge section, and the gauge length should be great 

relative to its diameter. Otherwise, the stress state will be more complex 

than simple tension. 

 
Figure 3.11: Standard shape for the tensile test specimens used [118] 
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3.8 Characterization of Sample 

3.8.1 Scanning Electron Microscopy (SEM) 
 

1. A scanning electron microscope creates high resolution, two dimensional 

images of a sample’s surface.  The cross-sections of the polished and 

etched solid samples which are already conductive were bombarded with a 

focused beam of electrons which liberates secondary electrons from the 

sample’s surface.   

 

2. A detector in the microscope systematically “counts” these electrons, 

recording data on their origin and emission intensity which can then be 

assembled into a high contrast, high resolution image. An SEM S-4700 

Hitachi Scanning Electron Microscope, with SIS Ultrascan 2 image 

acquisition software, was used to generate high quality digital images.     

 
 

3.8.2 Optical Microscope  
 

1. Grain size was measured using the Lineal Intercept Technique, where lines 

are drawn in the photomicrograph obtained from an optical microscope 

(Olympus BX 60), and the number of grain-boundary intercepts, Nl, along 

a line is counted.   

 

2. The mean lineal intercept is then given as: 

 
                                  

(3.6) 
 

where L is the length of the line and M is the magnification in the 

photomicrograph of the material. 

 

3. The most correct way to express the grain size (D) from lineal 

intercept measurements is: 

 
                                            (3.7) 
 

MN
L

l
l =
−

lD
−

=
2
3
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3.9     Electron Dispersive X-Ray Spectrometer (EDS) 
 

1.  The SEM used in this work also features a Kevex electron dispersive x-ray 

spectrometer (EDS) which can be used to ascertain the elemental 

composition of the portion of a sample being visualized.   

2. When a sample is struck by the SEM’s electron beam it emits x-rays 

which are picked up by the EDS.   

3. Because each element emits x-rays of characteristic energies and 

wavelengths, the EDS unit is able to determine which element is 

responsible for the emission.   

4. These data can be overlaid onto an SEM image to produce a virtual 

elemental map of a sample’s surface. 

 

3.10    X-Ray Diffraction (XRD) 
 

1. X-ray diffraction (XRD) was used to characterize the composition of 

sintered samples and also to determine the phase constitution of samples 

after sintering (using CuKα radiation). 

 

2. The peaks also were used to verify the diffusion process occurring during 

sintering. 

 

3. Gonio scan axis with a step scan of 0.02° and 1.5 second time per step for 

the scan range from 20°-100° was employed using a Philips X’PERT 

System.  
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CHAPTER 4 

RESULTS AND DISCUSSION 
 
 

4.1 Introduction 
 
This chapter aims to identify the optimum processing parameters for sintering tin 

alloys with varying compositions (97Sn2Cu1Sb, 94Sn4Cu2Sb and 91Sn6Cu3Sb). 

The variables investigated were sintering temperatures (160°C and 220°C), 

sintering time (15, 30, 60 and 120 minutes), compaction pressures (96 MPa and 

129 MPa) and sintering methods (microwave and conventional sintering). The 

effect of each variable was assessed by mechanical and structural analysis. 

Mechanical analysis comprised density measurements, microhardness testing and 

tensile testing.  

 

Structural analysis was carried out using Scanning Electron Microscopy 

(SEM) and optical microscopy for structural characterisation and grain size 

measurement, Electron Dispersive X-Ray Spectroscopy (EDS), X-Ray mapping 

and X-Ray Diffraction (XRD) were used for elemental dispersion after sintering 

and phase identification. Such results are used to justify the possibility of using a 

powder metallurgy method, such as microwave sintering instead of conventional 

sintering, as an alternative to a casting process.  

 
 

4.2 Results 

4.2.1 Mechanical Analysis 
 
Mechanical testing (tensile testing and hardness testing) was used to determine 

whether the mechanical properties of microwave sintered tin alloys (pewter) falls 

within the specified range for cast pewter. The most influential parameters would 

include sintering time, sintering temperature and compaction load for both 

sintering methods. 
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Density  

Of interest in this work is the relationship between the powder compact pressing 

force, the resulting green density and subsequent sintered density and their effect 

on mechanical properties. The green compacts pressed at 96 MPa produced an 

average green density (relative to theoretical density) of 80.66% to 80.76% while 

those pressed at 129 MPa produced an average green density of  84.49% to 

84.67% for all the three compositions; 97Sn2Cu1Sb, 94Sn4Cu2Sb and 

91Sn6Cu3Sb (see Tables A1 –A6 in the appendix).  

 

Conventional Sintering 

Figure 4.1 (a) – (d) shows the densification behaviour for all the three 

compositions for varying sintering times and temperatures by conventional 

vacuum sintering (see Tables A7-A12 in the appendix). There are significant 

increases in density for all three compositions when the sintering time and 

temperature are increased. By increasing the sintering time from 60 to 120 

minutes at 160°C, the bulk density for the composition of 97Sn2Cu1Sb had 

reached 86.64% and 88.10% for the 96 MPa and 129 MPa compaction pressures 

respectively.  While increasing the temperature from 160°C to 220°C for the same 

composition, the samples compacted at 96 MPa produced bulk density of 94.65% 

while those compacted at 129 MPa produced samples with 98.28% bulk density. 

 

The composition of 94Sn4Cu2Sb showed a more significant increase in 

the density values upon sintering. At 160°C, doubling the sintering time from 60 

to 120 minutes has produced samples with bulk densities of 90.38% and 91.17% 

for the lower and the higher compaction loads respectively. Meanwhile, the bulk 

densities have increased to 95.05% and 98.46% when the sintering temperature 

was increased from 160°C to 220°C for both compaction loads. 
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Figure 4.1: Bar charts of density measurements for the conventionally sintered samples for 
97Sn2Cu1Sb, 94Sn4Cu2Sb and 91Sn6Cu3Sb compositions 

 

 

Similarly, the 91Sn6Cu3Sb composition has also shown comparable 

results with respect to change in bulk density. The samples compacted at 96 MPa 

and 129 MPa achieved densities with 90.8% and 91.27% of theoretical density 

respectively when sintered at 160°C for 120 minutes. By increasing the sintering 

temperature to 220°C, higher densities were reached using both compaction loads 

after sintering for 120 minutes. The former (96 MPa) increased by 15.4% and the 

latter (129 MPa) by 13.7%.  

 

Microwave Sintering 

Figure 4.2 (a) – (d) shows the densification behaviour for all the three 

compositions produced by microwave sintering. The sample for the 97Sn2Cu1Sb 

composition showed a large increase in bulk density, reaching 92.98% and 

95.95% of theoretical density for the 96 MPa and 129 MPa compaction pressures 

respectively when sintered at 160°C. This is higher than the conventionally 

sintered powder. Doubling the sintering time from 15 minutes to 30 minutes 
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increased the density by only a small percentage. The lower compaction load 

increased by 1% and the higher compaction load increased by 2%.  Microwave 

sintering may have showed a low percentage increase but it produced a much 

higher density at 15 minutes compared with conventional sintering at 60 minutes.  
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Figure 4.2: Bar charts for the microwave sintered samples for 97Sn2Cu1Sb, 94Sn4Cu2Sb 
and 91Sn6Cu3Sb compositions  

 

 Meanwhile, 94Sn4Cu2Sb and 91Sn6Cu3Sb compositions have 

produced slightly higher density values after sintering under the same conditions. 

The former reached sintered densities of 95.78% and 98.75% for the 96 MPa and 

129 MPa compaction pressures respectively when sintered for only 30 minutes at 

220°C. Similarly, the latter reached 95.95% and 98.79% under the same sintering 

conditions. Furthermore, Tables A7 – A12, from the appendix, show positive 

densification values for the sintered compacts which are a clear indication that 

there was no compact swelling occurring for both the conventional vacuum 

sintering and the microwave sintering method. 
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Conventional vs. Microwave Sintering  
 

Both microwave sintering and conventional sintering produced significantly 

higher density samples by increasing the sintering temperature from 160ºC to 

220ºC and also by doubling the sintering time. For conventional sintering, the 

densification occurs gradually with time. However, for microwave sintering, the 

densification is quite rapid and sudden. Figure 4.3 shows the densification of 

microwave sintered and conventionally vacuum sintered powder for the three 

different compositions. It can be seen that the density values for the microwave 

sintering have increased marginally by increasing the copper and antimony 

content since no statistical difference in density was noticed. Meanwhile, the 

densities for the conventionally sintered samples have increased slightly more 

than the microwave sintered samples which is evident from the slope of the graph 

itself. 

 

Microwave sintering produced samples with higher densities (98.7%TD) 

than conventionally sintered samples (98.28%TD) and traditionally cast pewter 

from Royal Selangor (98.4%TD) after shorter times (30 minutes). Tables A13-

A15 (refer to appendix) also indicate that the percentage of porosity existing in 

the samples decreases with increasing sintering time and temperature. Moreover, 

the degree of porosity has decreased significantly with increased Cu and Sb 

content and this has further enhanced densification. 
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Figure 4.3: Graph of density measurements for microwave (30 min) and conventional  
(120 min) sintering for 97Sn2Cu1Sb, 94Sn4Cu2Sb and 91Sn6Cu3Sb compositions 

pressed at 129 MPa and sintered at 220°C  
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Microhardness  

Microhardness testing is useful for measuring the surface hardness of the tin alloy 

samples or for measuring the hardness of different microstructures by making a 

series of indentations to describe a profile of the change in hardness. It is another 

method of characterizing mechanical properties within the sintered pewter alloys. 

Conventional Sintering 
 
Figure 4.4 (a) – (d) displays the microhardness values for all three compositions 

which have been conventionally sintered. Hardness values in the material increase 

with an increase in sintering time, sintering temperature and compaction load. 

Higher compaction loads generally result in higher hardness values and higher 

densities. The conventionally sintered powder increased by about 48% in 

hardness, from 12.9 HV to 19.1 HV   under varying conditions of cold 

compaction load, sintering temperature and composition. The 94Sn4Cu2Sb and 

91Sn6Cu3Sb compositions showed an increase in hardness of 45% from 13.8 HV 

to 20 HV and 44% from 16.8 HV to 24.2 HV respectively. In general, increasing 

the Cu and Sb content of the alloy increases the hardness of the material as 

expected.  
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Figure 4.4: Bar charts of microhardness for the conventionally sintered samples for 

97Sn2Cu1Sb, 94Sn4Cu2Sb and 91Sn6Cu3Sb compositions 
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Microwave Sintering 
 
Figure 4.5 (a) – (d) shows the microhardness values of microwave sintered 

samples for all three compositions. Microwave sintering gave an increase in 

hardness of 38%, 42% and 46% for the compositions of 97Sn2Cu1Sb, 

94Sn4Cu2Sb and 91Sn6Cu3Sb respectively under varying conditions of cold 

compaction load, sintering temperature and composition. Hardness values have 

increased with increasing sintering time, temperature and compaction load.  A 

higher percentage increase in hardness is found with the increasing Cu and Sb 

content. In comparison to conventional sintering, microwave sintered materials 

lead to improved hardness in shorter sintering times. The hardness level achieved 

after conventional sintering for 120 minutes, is slightly improved on by 

microwave sintering for 30 minutes. 
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Figure 4.5: Bar charts of microhardness for the microwave sintered samples for  
97Sn2Cu1Sb, 94Sn4Cu2Sb and 91Sn6Cu3Sb compositions 
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Conventional vs. Microwave Sintering  
 
Figure 4.6 clearly shows that microwave sintering produces samples with higher 

hardness values compared to conventional sintering. Higher green strengths, 

longer sintering times and higher sintering temperatures result in samples with 

higher densities and hardness values for both conventional and microwave 

sintering. The hardness value for microwave sintering was generally about 7 to 

25% higher than that for conventional sintering for all three compositions. 

 

By doubling and tripling the amount of Cu and Sb in the alloy, the 

hardness values increased by 4.7% and 26.7% respectively when conventionally 

sintered. However when microwave sintered, the hardness of the samples 

increased by 2.9% and 7.9% respectively. This is attributed to solid solution 

strengthening from the Cu and Sb additions. The higher the percentage of Cu and 

Sb added results in higher hardness values. In conclusion, microwave sintering 

produces pewter samples with higher hardness (24-25.9 HV) compared with the 

conventionally sintered samples (19.1-24.2 HV) and traditionally cast pewter 

from Royal Selangor (17-20 HV).  

 

The hardness values obtained can be said to be increasing with increasing 

density of the pewter alloys (see Figure 4.7). The relationship of hardness with 

density for the varying sintering conditions for both conventional and microwave 

sintering gives a clear understanding that the hardness is a function of density. It 

is interesting to note that the percentage change in hardness after microwave 

sintering is smaller than that for conventional sintering. Enhanced densification is 

achieved in microwave sintering as compared to conventional sintering which 

attributes to the improvement in hardness. 
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Figure 4.6: Graph of microhardness for microwave (30 min) and conventional (120 min) 

sintering for 97Sn2Cu1Sb, 94Sn4Cu2Sb and 91Sn6Cu3Sb compositions pressed at 129 MPa 
and sintered at 220°C  
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Figure 4.7:  Relationship of hardness with density for conventionally sintered  

(160°C/ 60 min), (160°C/ 120 min), (220°C/ 60 min) and (220°C/ 120 min) and microwave 
sintered (160°C/ 15 min), (160°C/ 30 min), (220°C/ 15 min) and (220°C/ 30 min)  

97Sn2Cu1Sb samples pressed at 129 MPa   
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Tensile Strength 

Tensile strength is an important parameter in engineering materials that are used 

in structures and mechanical devices. Even though pewter is not used for 

mechanical devices, tensile strength can still be a good way to characterize the 

effectiveness of sintering on powder consolidation. In this work longitudinal and 

transverse strength was determined as a function of the most influential 

parameters; i.e. sintering time, sintering temperature, sintering method and 

compaction load.  

 

Conventional Sintering 

Tensile properties for samples from both longitudinal and transverse direction 

indicated that the overall tensile strength for the transverse direction is slightly 

higher than that for the longitudinal direction. This is found to be true for both 

sintering methods. This is in accordance with the direction of force applied per 

unit area across the cross section. Non-uniform pressure is experienced during the 

compaction. The unidirectional pressure applied on the powder compact from the 

top of the die is higher across the cross section rather than along the longitudinal 

direction. By increasing the sintering time and temperature, the tensile strength 

had increased as well. Nevertheless, the ductility has improved (based on the 

percentage of strain to fracture) for samples from the transverse direction than 

from the samples in the longitudinal direction (refer to Tables D1- D6 in the 

appendix). By increasing the compaction load, an improvement in tensile strength 

is noticed as well.  

 

For an alloy composition 97Sn2Cu1Sb sintered at 160°C, there was an 

18% increase in tensile strength along the transverse direction when the sintering 

time was increased from 60 minutes to 120 minutes. For samples sintered at 

220°C, the increase was 11%. In the longitudinal direction, the samples when 

sintered at 160°C and 220°C, the tensile strengths were found to be about 2% and 

7% lower than in the transverse direction for the same processing conditions. For 

the other two alloys, a composition of 94Sn4Cu2Sb gave an increase of 11% at 

160°C and 15% at 220°C, while a composition of 91Sn6Cu3Sb gave a tensile 
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strength 20% higher at 160°C and 12% higher at 220°C for the same sintering 

conditions by doubling the sintering times from 60 minutes to 120 minutes. For 

the latter two alloys, the longitudinal tensile strengths were 4.6% to 5.6% lower 

than that for the transverse direction. These can be seen from Figure 4.8 below. 
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Figure 4.8: Bar charts showing tensile strength properties for the conventional sintered 
samples for 97Sn2Cu1Sb, 94Sn4Cu2Sb and 91Sn6Cu3Sb compositions 

 
 
 

Microwave Sintering 

For the 94Sn4Cu2Sb alloy, the tensile strength in the longitudinal direction for the 

conventionally sintered sample, 94CS8 (220°C/120 min/129 MPa) and the 

microwave sintered sample, 94MW8 (220°C/30 min/129 MPa) reached values of 

44.4 MPa and 43.8 MPa respectively (see Figure 4.9). This was not achievable for 

the composition of 97Sn2Cu1Sb containing a higher percentage of Sn.  However, 

the tensile strength from the transverse direction was higher with values of 46.9 

MPa and 46.0 MPa. These strength values are within the range for cast pewter 

from Royal Selangor (44 MPa-51 MPa).  
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The microwave sintered alloy of composition 91Sn6Cu3Sb gave a higher 

tensile strength than compositions 97Sn2Cu1Sb and 94Sn4Cu2Sb. Tripling the 

amount of Cu and Sb resulted in higher tensile strength but lower ductility values, 

with the percentage strain to fracture decreasing by 4-18%.  
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Figure 4.9: Bar charts showing tensile strength properties for the microwave sintered 
samples for 97Sn2Cu1Sb, 94Sn4Cu2Sb and 91Sn6Cu3Sb compositions 

 
 

 The conventionally sintered sample, 91CS8 (220°C/120 min/129 MPa) 

and the microwave sintered sample 91MW8 (220°C/30 min/129 MPa), sintered 

under the same conditions, reached tensile strength values of 46.0 MPa and 46.5 

MPa respectively in the longitudinal direction, which is a 4% increase in values 

obtained for a 94Sn4Cu2Sb alloy composition.  However, the same samples in the 

transverse direction gave tensile strengths of 47.9 MPa and 48.6 MPa 

respectively.  
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Conventional vs. Microwave Sintering  

 
The microwave sintered samples in general have produced similar tensile 

properties to conventionally sintered samples particularly for the compositions 

94Sn4Cu2Sb and 91Sn6Cu3Sb as can be seen in Figure 4.10. This may be 

regarded as an advantage where reasonably similar results can be obtained in a 

shorter duration of time. The transverse samples sintered at 220°C for both 

microwave and conventional sintering, produced tensile strengths within the range 

for cast pewter (44 MPa – 51 MPa).  

 

Figure 4.10 shows the stress-strain curves for microwave and 

conventionally sintered samples. The tensile data is similar for both 

conventionally and microwave sintered samples with the same nominal 

composition. The increase in yield stress with increasing alloying content is 

apparent. The higher density and hardness in microwave sintered samples are due 

to the fact that hardness is a function of underlying pores rather than yield point or 

tensile strength. 

 

From the tensile data given in Tables D1-D6 (refer to appendix), it is clear 

that the tensile strength for material of composition 91Sn6Cu3Sb, with increased 

Cu and Sb, is higher than that for the other compositions investigated. Tripling the 

percentage of Cu and Sb has resulted in a 5-15% increase in tensile strength. 

However, the ductility, as measured by strain to fracture, has decreased by 3-9% 

with the addition of Cu and Sb (refer to Tables D1-D6 in the appendix).  
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Figure 4.10: Graph showing tensile strength properties for the microwave (30 min) sintered 
samples and conventionally (120 min) sintered samples for 97Sn2Cu1Sb, 94Sn4Cu2Sb and 

91Sn6Cu3Sb compositions pressed at 129 MPa and sintered at 220°C  
 

 
 

 
Figure 4.11: Stress – strain curve comparing conventionally sintered (120 min) and 

microwave sintered (30 min) samples for 91Sn6Cu3Sb, 94Sn4Cu2Sb and 97Sn2Cu1Sb alloys 
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4.2.2 Structural Analysis 

Scanning Electron Microscope (SEM) 
 

This section describes the morphology of samples from SEM images obtained for 

various sintering conditions for all three compositions; 97Sn2Cu1Sb, 

94Sn4Cu2Sb and 91Sn6Cu3Sb. The effects of these sintering conditions and 

compaction loads on grain growth, pore size and densification are discussed.  

 
 
 

Alloy with composition 97Sn2Cu1Sb 
                                                                 
Samples from the 97Sn2Cu1Sb alloy that were pressed at 96 MPa (see Figure 

4.12 (a)) appeared to have uniformly distributed pores with irregular shape and 

size when compared with samples that were pressed at 129 MPa (see Figure 4.13 

(a)). This is due to the higher compaction load and better densification. The 

conventionally sintered samples (pressed at 96 MPa) particularly 97CS1 (160°C/ 

60 min) and 97CS2 (160°C/ 120 min) had much more porosity and larger sized 

pores when compared with samples 97CS3 (220°C/60 min) and 97CS4 

(220°C/120 min) (see Figure 4.12).  

 

The conventionally sintered samples that were pressed at 129 MPa had 

less porosity and smaller sized pores as shown in Figure 4.13, particularly for 

samples 97CS7 (220°C/60min) and 97CS8 (220°C/120min).  Table B1 (refer to 

appendix) gives the estimated percentage of porosity existing in the samples. As 

the sintering time and temperature increased, the amount of porosity decreased for 

both compaction loads. When the sintering time was doubled from 60 minutes to 

120 minutes, the density increased by 3% when sintered at 160ºC and 8% when 

sintered at 220ºC.  

 

The microwave sintered samples pressed at 96 MPa produced fewer larger 

sized pores when sintered at 160ºC (sample 97MW1 (15 min) and 97MW2 (30 

min)) compared with conventional sintering. However, when microwave sintered 

at 220ºC, particularly sample 97MW4 (30 min), the size and quantity of pores had 

significantly decreased under the same compaction load. For the microwave 
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sintered samples pressed at 129 MPa (sample 97MW7 (15 min) and sample 

97MW8 (30 min)), the size and distribution of porosity was significantly reduced 

compared with microwave sintered samples pressed at 96 MPa. Even at 160ºC, 

there were fewer pores and these had a more uniform distribution compared to 

conventionally sintered material. Moreover, the pores were more regularly 

shaped. This is due to the fact that the sample is heated from outside to inside 

using hybrid microwave sintering, unlike conventional sintering that has a reverse 

heating direction. The uniform distribution of microstructures from the microwave 

sintered samples is attributed to the uniform volumetric heating. The powder 

particles which were visible for 97MW3 (220ºC/ 15 min/ 96 MPa) (see Figure 

4.14(d)) disappeared as the sintering time was increased to 30 min (97MW4) (see 

Figure 4.14(e)). As the sintering temperature increased from 160ºC to 220ºC, the 

sample appeared to have minimal porosity; only 2.8% and 1.31% of porosity was 

found after 15 and 30 minutes of sintering time respectively. These can be seen 

clearly in Figures 4.14-4.15. 

 

Microwave sintering in general produced a finer microstructure compared 

to a conventional sintering process which contributed to the higher density and 

microhardness. This is attributed to the rapid heating effect of microwave 

sintering which did not allow sufficient time for grain growth to occur. Sintering 

temperatures and sintering time had significant effects on the density and porosity 

of the sintered samples. The pores were generally smaller and were fewer in 

quantity as the compaction load, sintering time and sintering temperature 

increased. 
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     (a) 

         

      
(b)                                                               (c) 

 

      
                                           (d)                                                                         (e) 
 

 
 
 

Figure 4.12: Samples of 97Sn2Cu1Sb composition pressed at 96 MPa and conventionally 
sintered (a) Green compact (b) CS1 (160°C/ 60 min) (c) CS2 (160°C/ 120 min)  

(d) CS3 (220°C/ 60 min) (e) CS4 (220°C/ 120 min) 
 
 
 
 
 
 

 
   54.5µm 
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(a) 
 

     
(b) (c) 
 

      
                               (d)                                                                  (e) 

 
 
 
                                                                            54.5µm 
 

Figure 4.13: Samples of 97Sn2Cu1Sb composition pressed at 129 MPa and conventionally 
sintered (a) Green compact (b) CS5 (160°C/ 60 min)  (c) CS6 (160°C/ 120 min) 

(d) CS7 (220°C/ 60 min) (e) CS8 (220°C/ 120 min) 
 
 
 

 

54.5µm 
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(a) 
 

    
(b) (c)         
 

    
       (d)        (e) 
 
 

54.5µm  
 

Figure 4.14: Samples of 97Sn2Cu1Sb composition pressed at 96 MPa and microwave 
sintered (a) Green compact (b) MW1 (160°C/ 15 min) (c) MW2 (160°C/ 30 min)  

(d) MW3 (220°C/ 15 min) (e) MW4 (220°C/ 30 min) 
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         (a) 
 
 

        
        (b)                                                                     (c) 
 
 

       
                              (d)                                                                    (e) 
 
 

54.5µm 
 

Figure 4.15: Samples of 97Sn2Cu1Sb composition pressed at 129 MPa and microwave 
sintered (a) Green compact (b) MW5 (160°C/ 15 min) (c) MW6 (160°C/ 30 min)  

(d) MW7 (220°C/ 15 min) (e) MW8 (220°C/ 30 min) 
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Alloy with composition 94Sn4Cu2Sb 
  
Green compacts of 94Sn4Cu2Sb alloy appeared to have uniformly distributed 

pores with irregular shape. Samples pressed at 96 MPa (see Figure 4.16(a)) have 

larger pores compared with samples that were pressed at 129 MPa (see Figure 

4.17(a)). Figures 4.16-4.19 are the SEM images of samples sintered by both 

microwave and conventional sintering for the composition 94Sn4Cu2Sb. It can be 

clearly seen that the conventionally sintered samples, particularly 94CS1 

(160°C/60 min) and 94CS2 (160°C/120 min), which had lower green densities, 

have many large pores (refer to Figure 4.16 (b) and (c)). The size of the pores 

tends to decrease with increasing sintering time at a higher temperature as shown 

in Figure 4.16 (d) and (e) for samples 94CS3 (220°C/60 min)  and 94CS4 

(220°C/120  min) respectively. 

 

 Samples with higher green densities naturally had smaller pores due to the 

higher compaction load which led to better densification. Conventionally sintered 

samples 94CS5 (160°C/60 min) and 94CS6 (160°C/120 min), as shown in Figure 

4.17 (b) and (c), appeared to have fewer larger pores. By increasing the 

temperature to 220°C, the estimated porosity value from Table B3 (refer to 

appendix) had decreased from 9.69% (sample 94CS6) to 6.01% for the sample 

94CS7 (220°C/60 min). These can be seen in Figure 4.17 (d) and (e). By doubling 

the sintering time from 60 minutes to 120 minutes, further enhancement in 

densification was found and the porosity decreased to 1.57% for the sample 

94CS8(220°C/120 min). 

 

 Microwave sintering on the other hand was more effective in achieving 

higher densification in a shorter duration of time compared with conventional 

sintering. From Table B4 (refer to appendix), the porosity for the microwave 

sintered sample, 94MW1 (160°C/15 min) appeared to have an estimated porosity 

value of only 7.56%. Meanwhile, the conventionally sintered sample, 94CS1 

(160°C/60 min) produced a porosity value of 17.34%. This is a large difference 

after just 15 minutes.  
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 Microwave sintering produced samples with less porosity and smaller 

pores than those conventionally sintered. By increasing the sintering time and 

temperature, microwave sintering led to 1.29% of porosity after 30 minutes for the 

sample 94MW8 (129 MPa/220°C) while conventional sintering gave 1.57% of 

porosity after 120 minutes for the sample 94CS8(129 MPa/220°C). 

 

 
(a) 

      
(b) (c) 

      
(c) (e) 

 
54.5µm 

Figure 4.16: Samples of 94Sn4Cu2Sb composition pressed at 96 MPa and conventionally 
sintered (a) Green compact (b) CS1 (160°C/ 60 min) (c) CS2 (160°C/ 120 min)  

(d) CS3 (220°C/ 60 min) (e) CS4 (220°C/ 120 min) 
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(a) 
 
 

      
(b) (c) 

 
 

      
(d)                                                          (e) 
 
 54.5µm                                                              50.0µm 
 

Figure 4.17: Samples of 94Sn4Cu2Sb composition pressed at 129 MPa and conventionally 
sintered (a) Green compact (b) CS5 (160°C/ 60 min) (c) CS6 (160°C/ 120 min)  

(d) CS7 (220°C/ 60 min) (e) CS8 (220°C/ 120 min) 
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(a) 

 
 

      
(b) (c) 
 
 

      
(d)                                                                    (e) 
                             

                                   50.0µm 
 

Figure 4.18: Samples of 94Sn4Cu2Sb pressed at 96 MPa and microwave sintered  
(a) Green compact (b) MW1 (160°C/ 15 min) (c) MW2 (160°C/ 30 min)  

(d) MW3 (220°C/ 15 min) (e) MW4 (220°C/ 30 min) 
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(a) 
 
 

     
(b) (c) 
 
 

      
(d)                                                                       (e) 
 

                                   50.0µm 
 

Figure 4.19: Samples of 94Sn4Cu2Sb composition pressed at 129 MPa and microwave 
sintered (a) Green compact (b) MW5 (160°C/ 15 min) (c) MW6 (160°C/ 30 min)  

(d) MW7 (220°C/ 15 min) (e) MW8 (220°C/ 30 min) 
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Alloy with composition 91Sn6Cu3Sb 
  
Samples of 91Sn6Cu3Sb alloy appear to have irregularly shaped pores which is 

uniformly distributed. Samples pressed at 96 MPa have larger sized pores (see 

Figure 4.10 (a)) compared with samples pressed at 129 MPa (see Figure 4.21 (a)). 

Figures 4.20 to 4.23 are the SEM images of the samples obtained from a 

91Sn6Cu3Sb composition. The samples with a lower green density had relatively 

larger pores than the samples with a higher green density. The percentage of 

porosity decreases from 16.27% to 4.45% with increasing sintering time and 

temperature for the samples 91CS1 (160°C/60 min) and 91CS4 (220°C/120 min)  

respectively. Table B5 (refer to appendix) displays the porosity values for these 

samples. Meanwhile, samples with a higher green density have decreased porosity 

from 11.47% to 1.54% with increasing sintering time and temperature for the 

samples 91CS5 (160°C/60 min)  and 91CS8 (220°C/120 min) respectively. 

 

 However, after microwave sintering, there are fewer smaller round pores 

compared with conventional sintering. The microwave sintered samples look 

more dense and Table B6 (refer to appendix) displays the values of estimated 

porosity values for the microwave sintered samples. The percentage of porosity 

for the lower green density  samples had decreased from 7.26% to 4.21% with 

increasing sintering time and temperature. However, for the higher compaction 

load, the samples show better densification. Porosity for samples 91MW5 

(160°C/15 min)  and 91MW8 (220°C/30 min) decreased to 7.25% and 1.25% 

respectively. 

 

 Compared with the previous compositions ; 97Sn2Cu1Sb and 

94Sn4Cu2Sb, the composition of 91Sn6Cu3Sb with increased content of Cu and 

Sb, seems to have produced samples with slightly improved microstructural 

properties  i.e.better densification and less porosity.  
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(a) 
 
 

      
(b)                                                    (c) 
 
 

     
                                       (d)                                                                             (e) 

 
                                    50.0µm 

 
Figure 4.20: Samples of 91Sn6Cu3Sb composition pressed at 96 MPa and conventionally 

sintered (a) Green compact (b) CS1 (160°C/ 60 min) (c) CS2 (160°C/ 120 min)  
(d) CS3 (220°C/ 60 min) (e) CS4 (220°C/ 120 min) 
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(a) 
 
 
 

      
(b) (c) 

 
 
 

      
(d)                                                             (e) 
 
                                     50.0µm 
 

Figure 4.21: Samples of 91Sn4Cu2Sb composition pressed at 129 MPa and conventionally 
sintered (a) Green compact (b) CS5 (160°C/ 60 min)  (c) CS6 (160°C/ 120 min)  

(d) CS7 (220°C/ 60 min) (e) CS8 (220°C/ 120 min) 
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(a) 
 
 

      
(b) (c) 
 
 

      
(d)                                                                      (e) 
                             

                                    50.0µm 
 

Figure 4.22: Samples of 91Sn6Cu3Sb composition pressed at 96 MPa and microwave 
sintered (a) Green compact (b) MW1 (160°C/ 15 min) (c) MW2 (160°C/ 30 min)  

(d) MW3 (220°C/ 15 min) (e) MW4 (220°C/ 30 min) 
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(a) 
 
 
 

      
(b)                          (c) 

 
 
 

      
(d)                                                                      (e) 
 

                                   50.0µm 
 

Figure 4.23: Samples of 91Sn6Cu3Sb composition pressed at 129 MPa and microwave 
sintered (a) Green compact (b) MW5 (160°C/ 15 min) (c) MW6 (160°C/ 30 min)  

(d) MW7 (220°C/ 15 min) (e) MW8 (220°C/ 30 min) 
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Microstructural Evolution and Grain Growth 

The effect on grain growth of variations in sintering temperature, sintering time, 

sintering method, compaction load and different percentages of Cu and Sb in the 

alloy is analyzed in this section. This analysis helps to characterize 

microstructural properties of the tin alloys. 

 

 

Conventional Sintering 
 
In the previous section, the densities of microwave and conventionally sintered 

samples were compared at various temperatures. However, sintering to full 

density does not guarantee that the resulting microstructure is desirable. 

Microstructural features such as the size and shape of the grains and the 

distribution of pores must all be controlled to achieve the desired properties of the 

sintered pewter alloy. Grain growth and microstructural evolution of microwave 

and conventionally sintered samples are compared in this section to determine 

whether microwave sintering results in any differences in the microstructure and 

grain size. 

  

Tables A3, A4, A7, A8, A11 and 12 (refer to appendix) show the 

densification for the conventional and microwave sintered samples for all three 

compositions. After sintering for 30 minutes at 220ºC, near full density was 

reached after microwave sintering for all three compositions; 98.71% theoretical 

density (TD) (97Sn2Cu1Sb), 98.75%TD (94Sn4Cu2Sb) and 98.79% TD 

(91Sn6Cu3Sb), while it took 120 minutes to reach 98.28% TD(97Sn2Cu1Sb), 

98.46%TD (94Sn4Cu2Sb) and 98.51%TD (91Sn6Cu3Sb) with conventional 

sintering. However, at 160ºC, near full densification was not obtained after 

conventional sintering. After microwave sintering, near full densification was 

achieved. For example, densities of 92.26%TD and 94.24%TD were obtained 

after 15 and 30 minutes respectively in samples cold pressed using the higher 

compaction load and sintered at 160ºC.  
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From Tables E1-E3 (refer to appendix), it can be seen that a reasonable 

amount of grain growth has occurred in the samples with a lower green density 

when conventionally sintered. This is true for all three compositions of 

97Sn2Cu1Sb, 94Sn4Cu2Sb and 91Sn6Cu3Sb. The grain sizes of the green 

compacts were very similar for all of them; ranging from 15.3 µm to 15.5 µm and 

14.1 µm to 14.8 µm for the materials cold pressed at 96 MPa and 129 MPa 

respectively. 

 

It can be seen from Figure 4.24 (a)-(b), the average grain size for the 

97Sn2Cu1Sb alloy increased from 23 µm to 26 µm by doubling the sintering time 

from 60 minutes to 120 minutes at 160ºC. Using a higher sintering temperature 

(220ºC), the grain size increased from 27 µm to 29 µm (see Figure 4.24 (c)-(d)). 

A similar observation was found for samples sintered with higher green densities.  

 

Meanwhile, a 94Sn4Cu2Sb alloy composition had slightly smaller grain 

growth and smaller average grain size. Samples prepared at a lower compaction 

load and sintered at 160°C in the conventional furnace resulted in a grain growth 

from 22 µm to 24 µm when the sintering time was doubled from 60 minutes to 

120 minutes. When the sintering temperature was increased to 220°C, the average 

grain size increased from 26 µm to 28 µm. The higher compaction load samples 

showed similar results. These can be clearly seen in Figure 4.24 (a)-(d). 

 

The alloy with composition 91Sn6Cu3Sb had smaller grain size and 

slightly reduced grain growth in general. Conventionally sintering a sample with 

lower green density at 160°C resulted in a grain growth from 20 µm – 23 µm 

when the sintering time was doubled to 120 minutes. Meanwhile, sintering at 

220°C increased the grain size from 25 µm – 28 µm, which is very similar to 

those described earlier.  
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Figure 4.24: Bar charts showing the effect of increasing sintering time and temperature on 

the grain size for conventional sintered samples for 97Sn2Cu1Sb, 94Sn4Cu2Sb and 
91Sn6Cu3Sb compositions  

 

 

 

Microwave Sintering 
 
During microwave sintering, the grain growth appeared to be very similar to the 

grain growth of conventionally sintered samples with increasing sintering time 

and temperature (see Figure 4.25). An alloy of composition 97Sn2Cu1Sb, cold 

compacted at 96 MPa, experienced grain growth from an average grain size of 17 

µm (sample 97MW1) to 25 µm (sample 97MW4) after microwave sintering with 

increasing sintering time and temperature. Also, for material cold compacted at 

129 MPa, similar observations were noted. Grain growth increased the average 

grain size from 16 µm (sample 97MW5) to 18 µm (sample 97MW6) after 

sintering at 160°C and 21 µm (sample 97MW7) to 24 µm (97MW8) after 

sintering at 220°C. 
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An alloy of composition 94Sn4Cu2Sb, on the other hand, showed less 

grain growth compared with alloy composition 97Sn2Cu1Sb. A lower compaction 

load resulted in slightly more grain growth from an average grain size of 17 µm 

(sample 94MW1) to 25 µm (sample 94MW4), while the higher compaction load 

resulted in similar grain growth from 16 µm (sample 94MW5) to 24 µm (sample 

94MW8) with increasing sintering time and temperature. 

 

For the alloy composition 91Sn6Cu3Sb, the grain growth during 

microwave sintering was a little less than that for the alloy with composition 

94Sn4Cu2Sb. Material cold compacted at 96 MPa had grain growth from an 

average grain size of 16µm (sample 91MW1) to 24µm (sample 91MW4) while 

material cold compacted at 129 MPa had grain growth of 16µm (sample 91MW5) 

to 23µm (sample 91MW8). 
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Figure 4.25: Bar charts showing the effect of increasing sintering time and temperature on 
the grain size for microwave sintered samples for 97Sn2Cu1Sb, 94Sn4Cu2Sb and 

91Sn6Cu3Sb compositions  
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Conventional vs. Microwave Sintering  
   
 
When compared with conventional sintering, microwave sintering resulted in 

slightly smaller or similar grain growth as can be seen in Figure 4.26. SEM 

images from Figures 4.12-4.23 revealed that pores are generally smaller in size as 

the green density, sintering temperature and sintering time increases. This is 

noticed in all the three compositions; 97Sn2Cu1Sb, 94Sn4Cu2Sb and 

91Sn6Cu3Sb. With increasing percentages of Cu and Sb in the tin alloy, the 

starting grain size is slightly smaller (14.1 µm). This accounts for improved 

hardness and strength. The grain sizes that appear in conventionally sintered 

samples are basically very similar (slightly larger) to the grain size obtained in 

microwave sintered samples (see Figure 4.27).  
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Figure 4.26: Graph of grain size for microwave (30 min) and conventional (120 min) sintered 
samples for 97Sn2Cu1Sb, 94Sn4Cu2Sb and 91Sn6Cu3Sb compositions pressed at 129 MPa 

and sintered at 220°C 
 

   
(a)                                                                       (b) 

Figure 4.27: Micrographs showing a (a) conventionally sintered sample (120 min) and  
(b) microwave sintered sample (30 min) for 91Sn6Cu3Sb alloy pressed at  

129 MPa and sintered at 220°C 

30µm 30µm 
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Electron Dispersive X-Ray Spectroscopy (EDS) 

 

EDS was performed on all the tin alloy compositions for each individual sample 

for the purpose of determining the elemental composition at various selected 

points. The compositional values obtained are given as percentages and are 

tabulated accordingly to show the degree to which Cu and Sb have diffused into 

the base material (Sn). Additionally, the EDS spectrums from an area scan done 

on the sample have also been included. These EDS spectra reveal the peak of 

every element detected. This was further verified with the X-Ray maps to clearly 

see the distribution of Cu and Sb in the alloy. The effects of sintering time, 

sintering temperature, compaction load and sintering method on the diffusion 

process were analyzed. 

 

Green Compact 
 
Green compacts pressed at 96 MPa and 129 MPa showed evidence of a 

homogeneous distribution of Sb which occurred during the mixing process for all 

three compositions. This can be clearly seen from the X-Ray maps in Figure 4.28. 

This is further justified by the EDS report from the SEM images (see Figure 4.29) 

in Tables 4.1-4.3 where the percentages of Sb detected for the three compositions 

were in the range of 3% or less. This does not indicate any signs of diffusion 

taking place but indicates a fairly homogeneous distribution of the Sb in the tin 

alloy. The EDS spectrums (see Figure 4.30) also indicate the presence of tin, 

copper and antimony in the sample. 

 

 The distribution of Cu, on the other hand, did not seem as uniform as the 

distribution of Sb in all three compositions of 97Sn2Cu1Sb, 94Sn4Cu2Sb and 

91Sn6Cu3Sb. The X-Ray maps in Figure 4.28 show some prominent Cu rich 

areas which have not been uniformly distributed. The EDS report shows evidence 

of elemental Cu and Sb in green compacts produced at 96 MPa and 129 MPa, 

which is a clear indication that diffusion has not yet taken place, which is 

expected since compacts are still in the green and unsintered form.   
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          SEM                    Cu                        Sn                      Sb 

   
             (a)  

      
     SEM                     Cu                         Sn                    Sb                

 
                          (b) 
 

SEM                    Cu                     Sn                         Sb                                                          

 
     (c)  

 
                                   SEM                 Cu                       Sn                      Sb             

 
(d) 

 
                                    SEM                 Cu                    Sn                       Sb            

   
     (e) 

    
       SEM                   Cu                     Sn                      Sb 

 
           (f)         

 
25µm 

Figure 4.28: X-Ray map of (a) 96 MPa  (b) 129 MPa green compact for 97Sn2Cu1Sb 
composition (c) 96 MPa (d) 129 MPa green compact for 94Sn4Cu2Sb composition 

(e) 96 MPa (f) 129 MPa for 91Sn6Cu3Sb composition 
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(a) (b) 
 

    
(c)               (d) 
 

    
(e)         (f) 

 
Figure 4.29: SEM image of (a) 96 MPa (b) 129 MPa pressed green compact for 97Sn2Cu1Sb 
composition (c) 96 MPa  (d) 129 MPa pressed green compact  for 94Sn4Cu2Sb composition 

(e) 96 MPa  (f) 129 MPa  pressed green compact  for 91Sn6Cu3Sb composition 
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(a)                                      (b) 

  
            (c)        (d) 

 
(e) 

 
(f) 

Figure 4.30: EDS Spectrum from an area scan for (a) 96 MPa (b) 129 MPa green compact 
for 97Sn2Cu1Sb composition (c) 96 MPa (d) 129 MPa  green compact for 94Sn4Cu2Sb 

composition  (e) 96 MPa (f) 129 MPa  for 91Sn6Cu3Sb composition 
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Table 4.1: EDS report for green compact of 97Sn2Cu1Sb composition 
          weight%  
  Cu-K Sn-L Sb-L 
97Sn green 96 MPa_pt1 1.79 97.23 0.98 
97Sn green 96 MPa_pt2 1.83 97.21 0.96 
97Sn green 96 MPa_pt3 1.87 97.18 0.95 
97Sn green 96 MPa_pt4 1.93 97.11 0.96 
97Sn green 96 MPa_pt5 1.89 97.18 0.93 
97Sn green 129 MPa_pt1 1.96 97.06 0.98 
97Sn green 129 MPa_pt2 1.95 97.11 0.94 
97Sn green 129 MPa_pt3 1.92 97.17 0.91 
97Sn green 129 Mpa_pt4 1.90 97.19 0.91 
97Sn green 129 MPa_pt5 1.95 97.06 0.99 
 
 
 
Table 4.2: EDS report for green compact of 94Sn4Cu2Sb composition 
      weight%  
  Cu-K Sn-L Sb-L 
94Sn green 96 MPa_pt1 3.87 94.23 1.90 
94Sn green 96 MPa_pt2 3.96 94.24 1.80 
94Sn green 96 MPa_pt3 3.65 94.46 1.89 
94Sn green 96 MPa_pt4 3.94 94.21 1.85 
94Sn green 96 MPa_pt5 3.82 94.21 1.97 
94Sn green 129 MPa_pt1 3.81 94.24 1.95 
94Sn green 129 MPa_pt2 3.79 94.32 1.89 
94Sn green 129 MPa_pt3 3.89 94.22 1.89 
94Sn green 129 Mpa_pt4 3.76 94.28 1.96 
94Sn green 129 MPa_pt5 3.94 94.26 1.80 
 
 
 
Table 4.3: EDS report for green compact of 91Sn6Cu3Sb composition 
            weight%  
  Cu-K Sn-L Sb-L 
91Sn green 96 MPa_pt1 5.88 91.27 2.85 
91Sn green 96 MPa_pt2 5.83 91.22 2.95 
91Sn green 96 MPa_pt3 5.72 91.29 2.99 
91Sn green 96 MPa_pt4 5.76 91.39 2.85 
91Sn green 96 MPa_pt5 5.84 91.27 2.89 
91Sn green 129 MPa_pt1 5.89 91.49 2.62 
91Sn green 129 MPa_pt2 5.73 91.29 2.98 
91Sn green 129 MPa_pt3 5.95 91.31 2.74 
91Sn green 129 Mpa_pt4 5.87 91.32 2.81 
91Sn green 129 MPa_pt5 5.87 91.27 2.86 
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Conventional vs. microwave sintering  
 
 
The X-Ray maps in Figure 4.31 and Figure 4.32 were obtained for conventionally 

sintered materials (for all three compositions) pressed at 96MPa and sintered at 

160ºC and 220ºC respectively. Meanwhile, the X-Ray maps for samples pressed 

at 129 MPa are shown in Figure 4.33 (160ºC) and Figure 4.34 (220ºC). Both 

compaction loads reveal similar distributions from the elemental maps, 

particularly Sn and Sb which appeared to be homogeneously distributed 

throughout the sample. Cu on the other hand, is reasonably well distributed 

although there are small clusters of Cu visible in certain parts of the sample 

particularly for 97Sn2Cu1Sb and 94Sn4Cu2Sb alloys. However, a more 

homogeneous Cu distribution has been observed in 91Sn6Cu3Sb composition 

when compared with 97Sn2Cu1Sb and 94Sn4Cu2Sb compositions. This may be 

due to the fact that a larger amount of Cu (6%) was used and this resulted in a 

better distribution during mixing. 

 

 Similar observations were noticed in microwave sintered samples (see 

Figures 4.35 - 4.38) when compared with conventionally sintered samples under 

the same sintering conditions. However, a lesser degree of homogenization of Cu 

is noticed for the microwave sintered samples when compared with the 

conventional sintered samples. By increasing the sintering time and temperature, a 

more homogeneous distribution of Cu is found. The EDS report (refer to Tables 

F1- F24 in the appendix) obtained from elemental spot analysis performed on 

these samples (refer to Figures F1- F16 in the appendix) further justifies the 

distribution of each element.  

 

These X-Ray maps are not evidence to justify diffusion of Cu and Sb into 

Sn since the green compact had also revealed similar observations and EDS 

readings. Thus, at this stage, EDS was used as a tool to verify the distribution of 

each element in the alloy. Diffusion of Cu and Sb into Sn are verified through X-

Ray Diffraction (refer to XRD section, page 101). 
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                                  SEM                      Cu                        Sn                     Sb                    

  
      (e)  

                            SEM                     Cu                         Sn                     Sb 

  
                     (f) 
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Figure 4.31: X-Ray map for CS samples 96 MPa/160°C (a) 60 min (b) 120 min for 

97Sn2Cu1Sb composition (c) 60 min (d) 120 min for 94Sn4Cu2Sb composition (e) 60 min (f) 
120 min for 91Sn6Cu3Sb composition 

 

 

 



 
 

94 
 

                                  SEM                      Cu                      Sn                        Sb   

   
        (a)  

           SEM                      Cu                        Sn                    Sb 

  
                (b) 
                                   SEM                     Cu                       Sn                      Sb      

   
         (c)  

                                 SEM                       Cu                        Sn                     Sb 

 
                                     (d) 
                                  SEM                      Cu                         Sn                     Sb     

  
       (e)  

SEM             Cu              Sn              Sb 

  
           (f) 

 
25µm 

 
Figure 4.32: X-Ray map for CS samples 96 MPa/220°C (a) 60 min (b) 120 min for 

97Sn2Cu1Sb composition (c) 60 min (d) 120 min for 94Sn4Cu2Sb composition (e) 60 min (f) 
120 min for 91Sn6Cu3Sb composition 
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Figure 4.33: X-Ray map for CS  samples 129 MPa/160°C (a) 60min (b) 120min for 

97Sn2Cu1Sb composition (c) 60min (d) 120min for 94Sn4Cu2Sb composition (e) 60min (f) 
120 min for 91Sn6Cu3Sb composition 
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Figure 4.34: X-Ray map for CS samples 129 MPa/220°C (a) 60min (b) 120min for 
97Sn2Cu1Sb composition (c) 60min (d) 120min for 94Sn4Cu2Sb composition (e) 60min (f) 

120 min for 91Sn6Cu3Sb composition 
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Figure 4.35: X-Ray map for MW samples 96 MPa/160°C (a) 15min (b) 30min for 

97Sn2Cu1Sb composition (c) 15min (d) 30min for 94Sn4Cu2Sb composition (e) 15min (f) 30 
min for 91Sn6Cu3Sb composition 
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Figure 4.36: X-Ray map for MW samples 96 MPa/220°C (a) 15min (b) 30min for 

97Sn2Cu1Sb composition (c) 15min (d) 30min for 94Sn4Cu2Sb composition (e) 15min (f) 30 
min for 91Sn6Cu3Sb composition 
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Figure 4.37: X-Ray map for MW samples 129 MPa/160°C (a) 15min (b) 30min for 

97Sn2Cu1Sb composition (c) 15min (d) 30min for 94Sn4Cu2Sb composition (e) 15min (f) 30 
min for 91Sn6Cu3Sb composition 
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Figure 4.38: X-Ray map for MW samples 129 MPa/220°C (a) 15min (b) 30min for 

97Sn2Cu1Sb composition (c) 15min (d) 30min for 94Sn4Cu2Sb composition (e) 15min (f) 30 
min for 91Sn6Cu3Sb composition 
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X-Ray Diffraction (XRD) 

This section presents data from XRD analysis which is used for identifying the 

elements present within the samples and also to determine if any new phases are 

present in the alloys after the sintering process has been completed. 

 

Green compacts 

Figure 4.39 shows the XRD peaks for the mixed tin alloy powder for all three 

compositions of 97Sn2Cu1Sb, 94Sn4Cu2Sb and 91Sn6Cu3Sb.  Sn peaks are the 

most prominent ones for all the three compositions since it is a Sn-based alloy. 

Additionally, Sb and Cu peaks appear to be visible in all of the compositions 

because Cu and Sb still exist in their elemental form at this stage, since the Sb and 

Cu atoms have not diffused during the compaction process.  Similar peak patterns 

were obtained from the green compacts for both compaction loads (refer to 

Figures G1 – G3 in the appendix). 

XRD Peaks for Tin Alloy Powder

20 30 40 50 60 70 80 90 100

2 Theta

91Sn6Cu3Sb
94Sn4Cu2Sb
97Sn2Cu1Sb

 °  * *             *̂ *       ̂    *         * **          **       *             *       ***

* Sn
^ Cu
° Sb

 
Figure 4.39: XRD peaks for the mixed 91Sn6Cu3Sb, 94Sn4Cu2Sb and 97Sn2Cu1Sb 

tin alloy powder before compaction 
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Conventional vs. Microwave Sintering 
 
From Figure 4.40, the XRD peaks for conventional sintering at 160ºC and 220ºC 

showed similar patterns for all the samples at different sintering times (60 min and 

120 min). Since this alloy is a Sn based alloy, only Sn peaks are prominent. Sb 

atoms completely diffused during the sintering process. This explains why Sb 

peaks at 2θ value of 28º were not visible at all in the sintered samples. Cu peaks 

are relatively small, as expected from the small weight percentage in the alloys. 

The Cu peaks at 2θ values of 43º and 52º were observed to have gradually 

decreased in its intensity after sintering at 160ºC for 120 minutes.  

 

However, when sintered at 220ºC, the Cu peaks eventually disappeared 

after sintering for 120 minutes. The higher sintering temperature and longer 

sintering time results in better diffusion of Cu into the Sn lattice. The XRD results 

for microwave sintered materials (see Figure 4.41) were similar to those observed 

in conventionally sintered materials. A reasonably uniform distribution of Sb was 

found in the tin alloy powder after mixing (from X-Ray maps and EDS reports). 

However, during cold compaction, there is no evidence of Sb diffusing into Sn. It 

was evident that the Cu alloying addition formed a solid solution with the Sn. The 

Sb probably went into solid solution also, but there was no clear XRD evidence to 

support this. 

 

As for Cu, very small peaks (with decreased intensities) were noticed at 2θ 

values of 43° and 52°. These Cu peaks were still prominent after microwave 

sintering at 160ºC as can be seen in Figure 4.41. The peaks did not disappear even 

after sintering for 30 minutes. However, when microwave sintered at a higher 

temperature (220ºC), Cu peaks were not visible at all even after sintering for 15 

minutes. However, the Cu peaks eventually disappeared with increasing sintering 

time and temperature. Cu atoms had gradually diffused into Sn lattice and formed 

a Sn based solid solution with a tetragonal structure. A slight shift in the Sn peaks 

to smaller angles (to the left in the range of 0.2-0.3°) was noticed for the 

microwave sintering, while for the conventional sintering, the shift was even 

smaller than that of microwave sintering (see Figure 4.42).  The shift in Sn peaks 

may be due to the fact that the lattice parameter of the Sn has increased as a result 



 
 

103 
 

of the diffusion process of Sb and Cu into Sn. The larger angles of shift in Sn 

peaks for the microwave sintering justifies that solid solution formation is more 

pronounced after microwave sintering due to more efficient heating. 

 

 
Figure 4.40: XRD peaks comparing different sintering temperatures and sintering 

times for conventionally sintered 97Sn2Cu1Sb alloy pressed at 129 MPa 
 

 
Figure 4.41: XRD peaks comparing different sintering temperatures and sintering times for 

microwave sintered 97Sn2Cu1Sb alloy pressed at 129 MPa 
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The XRD peaks for all the other sintered samples for both microwave and 

conventional sintering have similar peak patterns (refer to Figures G4-G13 at the 

appendix). However, with different compositions; increasing Cu and Sb content, 

the shift appeared to be slightly more (~0.5°). From the XRD peaks it was evident 

that none of the additional phases seen in cast pewter were formed in both 

microwave and conventionally sintered material. This is further verified by the 

Sn-Cu-Sb phase diagrams in Figures J1-J3 (refer to appendix) where sintering 

below the melting point of Sn (232°C) does not form this additional new phase 

(Cu6Sn5). However, for the cast pewter from Royal Selangor, Cu6Sn5 (refer to 

Figure K5 – K6 in the appendix) is formed within the pewter due to higher casting 

temperature in the range of 275 – 315°C.  

 

 

      

(a)                                                                        (b) 
                                                  
Figure 4.42: Shift in XRD peaks for (a) conventionally sintered and (b) microwave sintered 

97Sn2Cu1Sb alloy pressed at 129 MPa at different sintering times 

 
 

Microwave Sintering 
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4.2.3 Diffusion Couple Experiments  
 
This section aims to discuss the efficacy of microwave sintering in promoting 

diffusion, based on separate experiments with Cu-Sn couples and Sb-Sn couples, 

in order to study the diffusion process at the interface of Cu into Sn and Sb into 

Sn under various sintering conditions. The most influential parameters to take into 

account for this part of the study are the sintering time and sintering method i.e. 

conventional or microwave sintering.  

 
 
Theory 

1. It is well known that for diffusion of a couple in this case Cu-Sn and 

Sb-Sn, the concentration gradient at a specific point along the diffusion 

path and the diffusion flux changes with time, t. This is a non-steady 

state condition because the diffusion profile is time dependent.  In this 

experiment, assuming diffusion into a body from a constant surface 

source along one dimension, after diffusion for time t, the concentration 

at a distance x from the surface is [119];  
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where Co= initial bulk concentration of the diffusing species ,  

Cs = constant surface concentration of the diffusing species and  

Cx = concentration at distance x from the interface.  

Then modifying it by taking C0 = 0 and C/Cs = concentration of solute 

atoms’ in this case Cu or Sb respectively would give; 
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2. The error function is given by [119]; 

 

                                                            ( ) ∫
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             By taking; 

                                                         
tD

x
z

2
=                                                   (4.4) 

               

             and plotting the data obtained into a graph of z against x,   the          

             diffusion coefficient, D can be determined graphically from the slope; 

 

                                                           
tD

slope
2

1
=                                                  (4.5) 

 

3.         The coefficient of diffusion, D is assumed to be constant at a fixed    

            temperature and can be calculated for comparison purpose using the  

            Arrhenius equation [119]; 

  

                                  D = A exp (-Q/RT)                      (4.6) 

 

where A = pre-exponential constant;  

(ACu = 2.4 x 10-3 cm2/s and ASb= 73 cm2/s ) 

Q = energy required to create a point defect and for the point defect to 

move;  

(QCu= 33.1kJ/mol and QSb=123.1kJ/mol) 

R = Gas constant = 8.314472 J/K.mol 

T = temperature in Kelvin (493K) 
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Diffusion Analysis 

Figure 4.43 shows the Cu-Sn and Sb-Sn couples in the interface region from 

which EDS was used to study the concentration of the atoms diffused into Sn 

across the interface. The values of the elemental concentrations for the Cu and Sb 

at these points are plotted into Figures 4.44 and 4.45 respectively. An 

experimental value for the coefficient of diffusion for Cu and Sb has been 

determined graphically from the slope of the graphs in Figures 4.46 and 4.47 and 

by using Equation 4.5 for both conventional and microwave sintering for 15 

minutes and 30 minutes respectively. These values are tabulated in Table 4.4. The 

results of this experimental work shown in Figures 4.44 and 4.45 give similar 

profiles for both Cu and Sb diffusion in Sn after microwave and conventional 

sintering for both time periods investigated. This indicates that microwave 

sintering is capable of achieving the same degree of diffusion after the same time 

as conventional sintering. 

 

The activation energy for Cu and Sb were assumed to be constant in this 

case since the temperature was fixed at 220°C. It was observed that the diffusion 

rate of Cu and Sb in Sn from microwave heating was very similar to that obtained 

from conventional heating. From Table 4.4, it can be summarized that the average 

value for the coefficient of diffusion for Cu and Sb are 2.15 x 10-12 m2/s and 

9.43x10-15 m2/s respectively. These values are of one order of magnitude different 

from the calculated values under steady state condition (Dcu = 7.46x10-11 m2/s and 

Dsb = 6.61x10-16 m2/s). 

 

 

 
           (a)        (b) 

Figure 4.43: SEM image showing the line scan selected for EDS analysis along the interface 
of (a) Cu-Sn (b) Sb-Sn 
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Figure 4.44: Diffusion profile of Cu into Sn for microwave and conventional sintering 
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Figure 4.45: Diffusion profile of Sb into Sn for microwave and conventional sintering 

 

 Microwaves cause heating within the material through absorption of 

energy in the atoms. This absorbed energy is transformed into heat.  This heat aids 

in the diffusion process with the coupling effect of the microwaves with the 

powder particles.  Hence, microwave sintering promotes the diffusion of Cu and 

Sb, but a faster heating rate shortens the processing time. Studies have reported 

that the diffusivity of Sn into Cu is faster than that of Cu into Sn [30].  However, 

this is true for sintering bronze (a Cu based alloy) at high temperatures. In this 
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study, low sintering temperature (below melting point of Sn) was used and 

diffusion of Sn into Cu or Sn into Sb was not included. Furthermore, pewter alloy 

is a tin-based alloy and only small proportions of Cu and Sb were added into it. 
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Figure 4.46: Graph of z against x showing the diffusion profile of Cu into Sn for microwave 

and conventional sintering at different sintering times  
MW: Microwave sintering CS: Conventional Sintering 
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Figure 4.47: Graph of z against x showing the diffusion profile of Sb into Sn for microwave 

and conventional sintering at different sintering times 
MW: Microwave sintering CS: Conventional Sintering 
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Table 4.4: Diffusivity values for Cu and Sb into Sn via graphical method  
 

 

However, Acharya and Mukunda [120] have reported that holding the 

compacts at 200°C for longer times resulted in significant diffusion of Cu into Sn 

well below 232°C (melting point of Sn). Cu was found to have diffused into the 

Sn even before the Sn melted, to form η and subsequently ε when heating is 

prolonged. Nevertheless, as the temperature rises to 700°C the diffusion of Sn into 

Cu increases, while diffusion of Cu into Sn still continues [120]. Experiments 

carried out in this work for Sn-Cu couples, revealed that at all temperatures, it is 

predominantly Cu that diffuses into the Sn, though at 700°C and above, very slow 

diffusion of Sn into Cu can be detected due to the fact that at high temperatures, 

the Sn rich phases are capable of dissolving Cu [120], and in comparison the 

diffusion of Sn into solid Cu is too small to be detected.  

  
 
Meanwhile, diffusion of Cu and Sb into Sn results in improved 

densification. The low temperature regions are bypassed by the microwaves 

where surface–transport-controlled sintering is dominant and preserves the 

powder surface area to a temperature where bulk transport is significant resulting 

in volumetric heating [121]. Nevertheless, diffusion of Sb into Sn is seen to be 

very homogeneous for both sintering methods at various sintering times.  

 

It has been reported by Asante, Terblans and Roos [122] that the diffusion 

rate of Sn is higher than that of Sb due to activation energy of the atoms, but the 

segregation energy of Sb is higher than Sn resulting in a repulsive interaction with 

Sn atoms. This eventually leads to interstitial diffusion of Sb into Sn with the 

displacement of the Sn atoms. This diffusion process is clearly seen from the X-

Ray maps in Figures 4.48 and 4.49 which show the diffusion of Cu and Sb 

respectively. The diffusion of Sb into Sn is much less than the diffusion of Cu into 

Sn because the Sb has a lower coefficient of diffusion compared with Cu into Sn.  

  CS 15 MW15 CS30 MW30 
Slope (Sb-Sn) 0.1718 0.1716 0.1214 0.1212 
Diffusivity Sb (m2/s) 9.41E-15 9.43E-15 9.42E-15 9.46E-15 
Slope (Cu-Sn) 0.1151 0.1127 0.0804 0.0801 
Diffusivity Cu (m2/s) 2.10E-14 2.19E-14 2.15E-14 2.16E-14 
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(a)                                           (b) 

 
SEM                  Cu                   Sn      SEM                  Cu                   Sn        

  
            (c)      (d) 
 

 
Figure 4.48: X-Ray maps of the Cu-Sn interface couple  

 (a)CS/15min (b)CS/30min (c)MW/15min (d)MW/30min 
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Figure 4.49: X-Ray maps of the Sn-Sb interface couple 
(a)CS/15 min (b)CS/30 min (c)MW/15 min (d)MW/30 min  

 
 

50µm

   50µm 



 
 

112 
 

4.2.4  Application of Mathematical Modelling to Microwave Sintering 
 
This section aims to discuss the microwave interaction with the tin alloy sample 

by analysing the effect of microwaves on the skin depth, the electric field 

distribution, the electromagnetic power density and the absorbed power within the 

material in order to give a clearer understanding of the process to justify the 

uniform sintering that takes place within the sample.  

 
Theory 
 

1. The penetration depth of the microwaves at a given frequency “f” 

depends on the electrical and magnetic properties of the material and it 

is a very important parameter, because it constitutes an upper limit to 

the thickness of the material which can be heated directly by 

microwaves.  

 

2. Microwave interaction with metals is restricted to their surface only. 

This depth of penetration in metals, also known as skin depth (δ), is 

defined as the distance into the material at which the incident power 

drops to 1/e (36.8%) of the surface value [123].  The skin depth is 

mathematically expressed as follows [124]: 

 

 
          

(4.8) 
                                                    

where:  f is the frequency (2.45GHz) 

             μ is the magnetic permeability 

             σe is the electrical conductivity 

             ρ is the electrical resistivity 

             λ0 is the incident wavelength (12.24cm for 2.45GHz waves)    

 

3. At the beginning of the microwave assisted sintering, the green part 

can behave like a dielectric material. In this case, the power 

penetration depth “Dp” is defined as the depth into the material at 

0029.01 ρλ
μσπ

δ ==
f
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which the power flux has fallen to 1/e of its surface value, given by the 

simplified equation [124]:  

 

   

 
   (4.9)                                      

      where ε’= permittivity of free space = 8.85x10-12   F/m 

            ε” = dielectric loss factor 

            λ0 = wavelength, measured in, λ0 =c / f 

                  f = frequency, measured in Hz 

                  c =  3x1010cm/s  speed of light 

                

 

4. The skin depth of the metal plays an important role in monitoring the 

power loss during the microwave –metal interaction, which leads to its 

heating [125]. The tangential component of the magnetic field, Ht, of 

microwaves induces an electric field, E, at the metal powder surface.  

 

5. The electric field is assumed to decay (at a position x) within the 

sample according to [126]: 

 
         

(4.10)                                  
 

where d is the skin depth and E0 is the electric field in the unloaded 

cavity (143 V/m). For a multimode microwave source, the magnetic 

field properties can be considered as equivalent to the electric field 

[127]. 

 

6. The power lost during the interaction of microwave with metal can be 

related to its surface impedance. The power absorbed per unit area of 

the conductive surface, P, is expressed as [125]: 
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(4.11) 
 

 

7. From the surface current , Js,  which is expressed as [123]:  

 

 
                      

(4.12) 
 

       The power can be further derived as [123]: 
 

 
 
 

        
(4.13) 

 

      where  Rs  is the surface resistivity (Rs = 1/σδ ) 

                              σe  is the electrical conductivity 

                              δ is the skin depth 

                              E0  is the electrical field amplitude at the surface 

                              η0 is the impedance of free space (377Ω) 

 H is the magnetic field 

 

        Assuming spherical metal powder of radius, rp , the electromagnetic  

                   power density (PEM) can be expressed as [123]: 

 
 

     
(4.14)      

 
 
 

8. An energy balance, expressed in terms of power transfers is used to 

determine the temperature rise in the metal powder which is expressed 

as [123]:  

 
                                 

       
(4.15) 
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        where PEM  is electromagnetic power density 

                              Pconv is power loss per unit volume due to convection 

                             Prad  is power loss per unit volume due to radiation 

 
 

9. Similarly,  Pconv  and Prad   are expressed as [123]: 
  
                        

      
(4.16) 

 
 

      
(4.17) 

 
where h is the convective heat-transfer coefficient of incoming gas                             

                      A/V is the surface area to volume ratio for compact 

                      σ is the Stefan-Boltzman constant 

                      ε is the effective emissivity of metal powder 

                      Ta is the surrounding temperature 

                      n  is the  interval  

       

10. The heat transfer coefficient for the argon gas used can be found using 

the following equation after simplification [128]: 

h = 0.882 Pr0.33       (4.18) 

 

11. The Prandtl Number for this application can be found using [128]: 

Pr= Cpμ/k         (4.19) 

       where Cp=specific heat 

       μ=viscosity and  

       k=thermal conductivity 

 

12. Temperature rise as a function of incremental time domain (Δt) can be  

       written as [123]:     

                      
(4.20) 

)(/ radconvEMprise PPPCtT −−Δ= ρ

)(/)( 44
1 a

TTVAnP nrad −= −σε

)(/)( 1 anconv TTVhAnP −= −
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Skin Depth 

It is well known that the microwave heating of metals is different from that of 

dielectric materials. An electric field is not induced in metals since metals in 

general are good electrical conductors. Thus, the induced electric charge remains 

at the surface of the sample [123]. Microwave interaction with metals is restricted 

to its surface only. Figure 4.50 shows the variations in skin depth with 

temperature for Sn, Cu and Sb (calculated from Equation 4.8 shown below) upon 

interaction with 2.45GHz microwaves. The respective electrical resistivity for 

each element are summarized in Table G1 (refer to appendix).  

  
          

 

 

It is evident that metals with higher electrical conductivity have lower skin 

depths. For metals, skin depths increase with increasing temperature. This 

correlates with increasing resistivity as temperature increases. Generally, the skin 

depth is relatively small in metals. However, the portion of the metal powder that 

couples with microwaves is high enough to contribute to its heating, which results 

in volumetric heating in some of the metal powders, provided that they are either 

submicron or nanosized. However, if coarse powders are used (>100μm), then the 

heating may be conductive from outside to the interior of the sample [123]. Thus, 

as the particle size decreases, more uniform heating can be achieved compared 

with conventional heating. 
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Relationship of Skin Depth with Temperature
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Figure 4.50: Effect of temperature on the calculated skin depth of tin, copper and antimony 

in 2.45 GHz microwaves 
 

  

The skin depth of metals plays an important role in determining the power 

loss during the microwave-metal interaction, which eventually leads to its heating. 

The tangential component of the magnetic field, Ht, of microwaves induces an 

electric field, E, at the metal powder surface which then generates surface current. 

The power lost during the interaction of microwaves with a metal can be related to 

its surface impedance [125].  
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Electric Field 

The electric field (143V/m) is assumed to decay from the surface of the sample 

according to Equation 4.10 shown below. The electric field distribution with Sn, 

Cu and Sb separately at 160°C and 220°C appear to be decaying for these 

materials as the microwaves penetrate into the sample.   

 
                   

 
  

The electric field for Sb decays the least followed by Sn and Cu. 

Nevertheless, at higher temperature (220°C), the electric field amplitude is 

slightly higher than at 160°C. The variation of electric field within the sample is 

very much dependant on the type of material and the sintering temperature used. 

The higher the conductivity of the material, the faster the decay in the electric 

field. 

 

 

Electromagnetic Power Density and Absorbed Power 

Figure 4.51 shows the effect of the power absorbed per unit area and 

electromagnetic power density which were calculated from Equation 4.13 and 

4.14 respectively as shown below (refer to Table G2 in the appendix). As the 

sintering temperature increases, both the absorbed power per unit area and the 

electromagnetic power density increase as well. This is due to the increasing 

resistivity with temperature.  
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Relationship of Electromagnetic Power Density and 
Absorbed Power with Temperature
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Figure 4.51: The relationship of electromagnetic power density and the absorbed power with 

temperature in the tin alloy sample 
 
 

 

 

However, the electromagnetic power density for this tin alloy gradually 

decreases with distance along the furnace. Calculations show that there is very 

little, or no change in the electromagnetic power density and absorbed power at 

160°C and 220°C for the sample region in the furnace. Therefore, there should be 

no difference in the sintering efficacy in the samples. The calculated 

electromagnetic power density was 1498.6 Wm-3 and the absorbed power was 

12.48 mW. The highest values of the power density exist at the surface and 

eventually decrease further into the tin alloy sample. The decrement in the 

electromagnetic power density and absorbed power is small. Sintering at higher 

temperature generates higher values of electromagnetic power density within the 

sample since it is very much dependent on the surface resistivity. These values 

were obtained based on the interaction of Sn powder only with microwaves since 

the pewter alloy is a Sn-based alloy, and consists of more than 90 wt% Sn. Cu and 

Sb were not included in this calculation. 
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Heat Losses  

In microwave heating, susceptors are used to assist heating in the initial stage. 

Susceptors are also used to prevent heat loss from the powder compact to the 

surroundings through radiation. Heat loss through convection also takes place 

from the sample. Power loss per unit volume due to convection and radiation were 

calculated using Equation 4.16 and 4.17 respectively as shown below (refer to 

Tables G3-G4 in the appendix) and the relationship of the power losses with 

temperature can be seen in Figure 4.52. The power losses seem to increase with 

increasing temperature. However, the power loss due radiation is far much less 

than the power loss due to convection. 

 
           

 

           

 

Relationship of Power Losses with Temperature
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Figure 4.52: The effect of temperature on the power losses due to convection and radiation 

while sintering the tin alloy using microwave energy 
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Temperature Rise 

The temperature rise is the amount by which the temperature of the sample rises 

above that of the furnace. Figure 4.53 shows the theoretical temperature rise 

profile for the microwave sintering of tin alloys used in this experiment. The 

values were calculated from Equation 4.20 shown below (refer to Table G5 at the 

appendix). Typically, in the initial stages of heating, the metal powder compacts 

require susceptor heating [129]. The susceptors aid in a fast temperature rise since 

they couple with the microwaves. The contribution of the graphite pellets in this 

case was assumed to be the same as the compacts being heated in the microwave 

furnace. In other words, the temperature rise of the sample was assumed to be the 

same as the temperature rise in the pellets because the temperature of the pellets 

could not be measured with the thermocouple. The thermocouple could only 

measure the temperature of the sample right in the middle of the microwave 

furnace. The temperature rise appears to increase exponentially with increasing 

temperature and remained almost constant after the targeted temperature had been 

reached.  
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Figure 4.53: The temperature rise for the tin-based alloy sample for microwave sintering at 

various heating points 

)(/1 radconvEMpnn PPPCtTT −−Δ+=+ ρ



 
 

122 
 

4.3 Overall Discussion 
 
 
The experimental work on the sintering of Sn alloys, presented in this thesis, has 

shown that cold pressed Sn-alloy compacts can be effectively sintered to almost 

full density. The rate of heating during microwave sintering is significantly faster 

than for conventional sintering. There are a few factors that affect the heating 

behaviour of materials in microwave sintering that require further discussion. 

Firstly, the size of the powder particles is important. In this research, the Sn alloy 

powder particle size used had an initial average starting size of 10 µm. The finer 

the powder size, the higher the heating rate in microwaves since the effective 

microwave-metal interactive surface is higher [123]. Vaidhyanathan and Rao 

[130] have also revealed faster heating in finer powder compacts compared with 

coarser powder compacts. In this experiment, the effect of powder size was not 

taken into consideration.  

 

Secondly, is the emissivity and conductivity of the metal powder 

compacts; a maximum attainable temperature increases with decreasing 

emissivity. Figure 4.50 shows how the skin depth varies with increasing electrical 

conductivity. Metals with higher electrical conductivity resulted in lower skin 

depths. However, a more precise experimental determination would be required to 

predict the heating profiles more accurately. Thirdly, the use of susceptors along 

with the powder compacts. The rate of heating is increased by using susceptors.  

Figure 3.8 shows that it takes much longer to reach the targeted temperature 

without susceptors than with susceptors. In this research, hybrid microwave 

sintering was applied rather than just direct microwave sintering in order to 

produce a uniform volumetric two-directional heating.  

 

Finally, the type of susceptors used. The susceptor material also plays an 

important role. Graphite pellets were selected instead of silicon carbide because 

silicon carbide was found to absorb too much microwave energy in a short time 

resulting in a rapid temperature rise. Furthermore, the targeted temperature could 

not be maintained when sintering at low temperature and an overshoot in 

temperature occurred when using silicon carbide. The surface area of the 
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susceptors exposed to microwave energy matters too. The larger the surface area, 

the more coupling effect takes place between the susceptor material and the 

microwaves.   

 

Work carried out by Takayama et al. [131] has shown that in less dense 

green parts, microwave heating effects are more volumetric and penetrating. Other 

authors [132-136] have shown that complex phenomena intervene during 

microwave assisted sintering of metallic powders, in particular local 

concentrations of electric field can occur, in excess of the dielectric strength of the 

medium (air, polymer or glass), leading to arcing, localized melting or very rapid 

evaporation. Consequently, microwave sintering can proceed at greater speed than 

conventional heating by virtue of the presence of a more efficient mechanism of 

mass transport, in the presence of liquid or vapour phases. Moreover, the 

microwave assisted sintering process can be self-regulating, because the neck 

formation between powder particles progressively generates longer and longer 

conductive paths. These lead to a reduction in the electromagnetic field 

concentration compared with the initial dispersion of particles. 

 

Microwave sintering at 220°C for 30 minutes produced samples with 

improved densities, hardness values and strengths compared with sintering at 

160°C for 30 minutes. Samples sintered at 160°C produced samples with more 

porosity and less dense parts. Sintering very close to the melting point of the Sn 

did enhance densification, hardness, strength and resulted in better diffusion of Cu 

into Sn. This is a known phenomenon whereby, diffusion is very much dependent 

on the sintering temperature and sintering time. This is verified through the 

diffusion couple experiments (see Figures 4.44 and 4.45) where longer sintering 

times have resulted in better diffusion of Cu and Sb into Sn.  Conventional 

sintering on the other hand also produced reasonably good results in terms of 

density, hardness and tensile strengths. Microwave sintering gave slightly better 

samples or parity with conventional sintering (in a shorter sintering time), and 

better than casting. Moreover, more dense green parts did produce slightly better 

density, hardness and tensile strengths compared with the less dense green parts.  
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Despite the increase of hardness and tensile strength, with increasing Cu 

and Sb solute atoms, the samples were found to be brittle as evidenced by 

negligible plastic deformation at the point of fracture and the low strains to 

fracture. Sn is probably brittle because it has a tetragonal crystal structure and 

hence few slip systems for plastic deformation. Increasing the concentration of 

solute atoms will increase the yield strength of a material. However, there is a 

limit to how much solute should be added by referring to the phase diagram (refer 

to Figures J1-J3 in the appendix) in order to avoid forming a second phase. The 

highest quality pewter contains only a small percentage of Cu and Sb. 

Nevertheless, in the cast pewter produced by Royal Selangor, a second phase, 

Cu6Sn5, is present because of the higher temperature (275°C – 315°C) of the 

molten alloy. However, by using powder metallurgy, temperatures are below the 

melting point of tin and an intermetallic phase does not form under these 

conditions.  

 

Sintering at 220°C resulted in Sb and Cu diffusing into Sn for microwave 

sintering which is evident from the XRD peaks (see Figure 4.41). The Sb and Cu 

peaks have disappeared at higher sintering temperatures and longer sintering 

times. Additionally, there was a shift in the Sn peaks to lower 2θ angles indicating 

an increase in the Sn d spacing caused by solid solution formation (see Figure 

4.42). It is known from Fick’s Law that the amount of diffusion depends on 

sintering time. However, the work carried out on the Sn-Cu and Sn-Sb couples 

indicated that there is no difference in the diffusivity of Cu and Sb during 

microwave sintering and conventional sintering.  

 

However, because the heating profile for microwave sintering (see Figure 

3.10) allows for faster heating, microwave sintering is a much faster process for 

achieving the similar end results in terms of grain size and tensile strengths (refer 

to Tables D1-D6 and Tables E1-E3 in the appendix). The grain size in the 

microwave sintered material was slightly smaller than that found after 

conventional sintering. For example 97MW8 (220ºC/30min/129MPa) produced 

23.8µm and 97CS8 (220ºC/120min/129MPa) produced 26.9µm.  Meanwhile, 

there was almost no improvement in terms of tensile strength in microwave 

sintered samples and the conventionally sintered ones. 94MW8 (220ºC/30min/129 
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MPa) produced a transverse strength of 46.9 MPa and 94CS8 

(220ºC/120min/129MPa) produced a transverse strength of 47 MPa.  

 

Microwave sintering has produced slightly improved results in terms of 

density and hardness when compared with conventional sintering (refer to Tables 

A1-A12 and C1-C3 in the appendix). 97MW8 (220ºC/30min/129MPa) has 

produced a theoretical density of 98.28% while 97CS8 (220ºC/120min/129MPa) 

has produced a theoretical density of 98.71%. Meanwhile, the hardness values for 

97MW8 (220ºC/30min/129MPa) and 97CS8 (220ºC/120min/129MPa) are 24.0 

HV and 19.1 HV respectively. Grain growth is very much dependent on sintering 

time and temperature. It is interesting to note that there was little variation in grain 

size after microwave sintering at 220oC for the three alloy compositions. There 

was slightly more grain size variation after conventional sintering but this was not 

significant.   

 

Since the grain sizes obtained from the microwave sintering, after a shorter 

sintering time, were similar (perhaps marginally smaller) than those obtained after 

conventional sintering for the same sintering temperatures, improved hardness 

after microwave sintering is most likely a result of the improved density 

achievable as a result of volumetric heating. However, the tensile strength of the 

microwave sintered samples was no better than that found in conventionally 

sintered samples. This is perhaps not unexpected since hardness measurements are 

more sensitive to the presence of underlying pores than yield strength. 

 

This investigation has shown that microwave sintering of pewter alloys, 

prepared using elemental powders, rather than pre-alloyed powders is essentially 

thermal in nature, rather than the result of an athermal or ‘microwave’ effect.  The 

differences between conventionally sintered samples and microwave sintered 

samples are largely attributed to the directions of heating i.e. volumetric versus 

surface heating. This has been partly verified through the diffusion couple 

experiments whereby microwave and conventionally sintered couples have 

reached the same levels of diffusion for the same time duration of sintering. 

However, it is the sintering of the Sn powder, rather than the diffusivities of Cu 

and Sb, which is important in establishing the final sintered density.  
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The diffusion of Cu and Sb are important for producing a homogeneous 

structure and composition. The sintering mechanism involves the replacement of 

high energy solid-gas interfaces by lower energy solid-solid interfaces, such as 

grain boundaries. This reduction in interfacial energy is the driving force for 

sintering, but the mechanism leading to transport of atoms leading to an increase 

in contact area between powder particles is diffusion, either through the crystal 

lattice or at the particle surfaces. The contact area between powder particles 

depends on time and temperature. The rate of sintering decreases with time but 

increases with increased temperature, since the diffusion coefficient increases 

with temperature.  

 

Comparing the densities of samples after conventional sintering and 

microwave sintering at both 160°C and 220°C (refer to Tables A3 and A4 at the 

appendix), it is clearly evident that there is significantly improved density after 

shorter sintering time as a result of microwave sintering at 160°C compared with 

conventional sintering. The differences at 220°C are not quite so marked. This 

suggests that microwave sintering is more effective in reducing the porosity in the 

Sn at 160°C and at 220°C achieves a similar density as conventionally sintered 

material, but after one quarter of the sintering time.  

 

 The results from the diffusion couple experiments shown in Figures 4.44 

and 4.45 show similar diffusion profiles for the diffusion of copper and antimony 

after conventional and microwave sintering. The diffusivities of copper and 

antimony in tin, reported in Table 4.4, give similar values after sintering for 15 

minutes and 30 minutes at 220°C. This indicates that there is not a microwave 

effect that enhances the diffusion process. The achievement of densities after 

microwave sintering equivalent to those obtained after conventional sintering is 

almost certain to be a result of the efficient and rapid volumetric heating occurring 

during microwave sintering.  

 

Microwave sintering of tin alloy samples is effective in producing samples 

with improved mechanical properties (density, hardness and strength) and 

structural characteristics (uniform grain size and smaller pores). Through 

mathematical modelling, it is evident that microwave sintering of tin alloy was 
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successful because of the sufficient electric field amplitude generated within the 

sample as a result of the microwave coupling with the material. Moreover, the 

amount of power losses was quite low.  This electric field then generates heat 

from within the material and promotes volumetric heating and aids the sintering 

process. The rapid heating in microwave sintered samples and high energy 

generated inside causes improved densification, and hence, results in higher 

hardness.  
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CHAPTER 5  

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 
 
 
It is expected that in the near future microwave heating could be a promising 

substitute for conventional processing methods due to its significant advantages, 

including more rapid heating rate, shortened sintering time, superfine grain size, 

improved microstructure and much less expensive equipment. In this work a 

positive outcome has been achieved using both conventional and microwave 

sintering. This is summarised below: 

  

1. The higher the green density, the higher the sintered bulk density for both 

sintering methods. 

 

2. Samples conventionally sintered at lower sintering temperature (160ºC), 

did not achieve any significant improvement when compared with 

microwave sintered samples in terms of mechanical or structural 

properties, therefore sintering temperature is an important criteria.  

 

3. Samples conventionally sintered at a higher sintering temperature (220ºC) 

and for a longer sintering time (120 minutes) resulted in better mechanical 

and structural properties achieving parity with traditionally cast pewter 

(from Royal Selangor). 

 

4. Samples microwave sintered at a relatively low sintering temperature 

(160ºC) achieved similar mechanical properties compared with cast 

pewter, even at a lower green density. 
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5. Microwave sintered samples pressed at 129 MPa and sintered for 15 

minutes at a higher sintering temperature (220ºC) resulted in improved 

mechanical and structural properties when compared to both conventional 

sintering and casting.  

 

6. The diffusion of Cu into Sn is very much influenced by sintering 

temperature and sintering time. The higher the sintering temperature and 

the longer the sintering time, the better the diffusion process. 

 

7. Microwave sintering supposedly leads to a finer grain size compared with 

conventional sintering, but in this research, the difference in grain size 

between microwave and conventionally sintered samples is marginally 

small. Grain growth appears to be slightly slower during microwave 

heating. On the other hand, there is more grain growth during conventional 

sintering creating a coarser microstructure. 

 

8. Increasing the Cu and Sb content of the pewter alloy simply increases the 

hardness and strength of the material but at the expense of toughness. 

 

 9. A pewter alloy with composition 97%Sn 2%Cu 1%Sb can be consolidated 

through microwave sintering with a 75% reduction in processing time. 

Microwave sintering results in higher density and hardness for pewter 

alloy when compared with conventional sintering,  
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5.2 Recommendations 

Microwave research currently involves a broad range of activity and a wide 

variety of materials and powders. While there has been much research in 

microwave processing of metals and alloys, not much has been commercialized 

mainly due to the limitations and difficulties faced in scaling up operations. The 

success achieved so far in the laboratory should be exploited for 

commercialization. Several microwave systems have been developed at the 

Pennsylvania State University that can circumvent these problems and can be 

used for commercialization of the technology [137]. Therefore, the future goal 

will be to convert our laboratory microwave technology successes into 

commercial successes in specialty material synthesis and sintering.   

The following suggestions are recommended for future work: 

1. Other material properties such as wear resistance, radial crushing 

strength and impact testing should be investigated after microwave 

sintering and find the optimum combination of input parameters. 

 

2. The behaviour of finer powder particle size should be investigated to 

compare the effect of particle size on microwave sintering efficiency 

and mechanical properties. 

 

3. Using pre-alloyed pewter powder should also be considered for further 

work to investigate whether there is any improvement in the diffusion 

effect. 

 

4. Evacuating the sample in a glass capsule prior to sintering in the 

microwave should be implemented. However, further study on how to 

control and monitor the temperature inside the capsule should also be 

investigated. 
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5. Attempt to sinter these materials using high heating rate in the 

conventional furnace as compared to the heating rate used in 

microwave furnace should be investigated to justify the thermal effects 

during sintering. 

 

6. A modified design of the microwave should be implemented to the 

present experimental setup to accommodate larger specimens and to 

facilitate temperature control. 
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APPENDICES 
 

A. Density 
 

A1. 97Sn2Cu1Sb 

Table A1: Green density for 30kN press load for 97Sn2Cu1Sb 

Sample Sintering Mass Length  Width  Height  
Green 
density 

% 
Theoretical 

Name Type (g) (mm) (mm) (mm)  (g/cm3) Density 
97CS1  78.83 30.8 10.1 43.01 5.89 80.34 
97CS2 Conventional  78.79 30.8 10.1 42.98 5.89 80.61 
97CS3 Sintering 78.55 30.8 10.1 42.50 5.94 81.21 
97CS4  78.76 30.8 10.1 41.87 6.05 81.73 

97MW1  78.81 30.8 10.1 43.25 5.86 80.58 
97MW2 Microwave  78.91 30.8 10.1 42.85 5.92 80.23 
97MW3 Sintering 78.87 30.8 10.1 43.25 5.86 80.34 
97MW4  78.89 30.8 10.1 42.79 5.93 80.27 

 
 
Table A2: Green density for 40kN press load for 97Sn2Cu1Sb 

Sample Sample Mass Length  Width  Height  
Green 
density 

% 
Theoretical 

Number Name (g) (mm) (mm) (mm)  (g/cm3) Density 
97CS5  78.92 30.8 10.1 41.09 6.17 84.46 
97CS6 Conventional  78.97 30.8 10.1 41.12 6.17 84.45 
97CS7 Sintering 78.75 30.8 10.1 40.98 6.18 84.51 
97CS8  78.86 30.8 10.1 41.05 6.18 84.48 

97MW5  78.89 30.8 10.1 41.07 6.17 84.47 

97MW6 Microwave  78.73 30.8 10.1 40.95 6.18 84.55 
97MW7 Sintering 78.93 30.8 10.1 41.08 6.18 84.49 
97MW8  78.98 30.8 10.1 41.11 6.18 84.49 

 
 
Table A3: Sintered density at 160°C for 97Sn2Cu1Sb 

Sample Sintering Sintering 
Mass 
(g) Mass (g) 

Sintered 
density 

% 
Theoretical  Densification 

Name Type Condition (air) (suspended)  (g/cm3) Density Parameter 
97CS1  30kN/60min 1.89 1.58 6.10 83.40 0.16 
97CS2 Conventional 30kN/120min 1.33 1.12 6.33 86.64 0.31 
97CS5 Sintering 40kN/60min 2.23 1.87 6.19 84.74 0.02 
97CS6  40kN/120min 2.05 1.73 6.41 87.64 0.21 

97MW1  30kN/15min 2.78 2.37 6.78 92.76 0.63 
97MW2 Microwave 30kN/30min 2.87 2.45 6.83 93.48 0.67 
97MW5 Sintering 40kN/15min 2.9 2.47 6.74 92.26 0.50 
97MW6  40kN/30min 3.1 2.65 6.89 94.24 0.63 
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Table A4: Sintered density at 220°C for 97Sn2Cu1Sb 

Sample Sintering Sintering 
Mass 
(g) Mass (g) 

Sintered 
density 

% 
Theoretical  Densification 

Name Type Condition (air) (suspended)  (g/cm3) Density Parameter 

97CS3  30kN/60min 1.96 1.66 6.53 89.38 0.42 
97CS4 Conventional 30kN/120min 2.56 2.19 6.92 94.65 0.72 
97CS7 Sintering 40kN/60min 1.78 1.51 6.59 90.19 0.36 
97CS8  40kN/120min 1.64 1.41 7.18 98.28 0.88 

97MW3  30kN/15min 2.89 2.47 6.88 94.13 0.70 
97MW4 Microwave 30kN/30min 3.13 2.68 6.96 95.15 0.76 
97MW7 Sintering 40kN/15min 2.94 2.53 7.11 97.28 0.82 
97MW8  40kN/30min 3.15 2.71 7.22 98.71 0.92 
 
 
 

A2. 94Sn4Cu2Sb 
 
Table A5: Green density for 30kN press load for 94Sn4Cu2Sb 

Sample Mass Length  Width  Height  Green density % Theoretical  
Name (g) (mm) (mm) (mm)  (g/cm3) Density 
94CS1 78.86 30.8 10.1 42.93 5.91 80.56 
94CS2 78.84 30.8 10.1 42.58 5.95 81.20 
94CS3 78.82 30.8 10.1 42.65 5.94 81.05 
94CS4 78.89 30.8 10.1 42.87 5.92 80.70 

94MW1 78.88 30.8 10.1 42.85 5.92 80.73 
94MW2 78.93 30.8 10.1 42.98 5.90 80.54 
94MW3 78.95 30.8 10.1 43.05 5.90 80.43 
94MW4 78.96 30.8 10.1 43.08 5.89 80.38 

 
 
TableA6: Green density for 40kN press load for 94Sn4Cu2Sb 

Sample Mass Length  Width  Height  Green density % Theoretical  
Name (g) (mm) (mm) (mm)  (g/cm3) Density 
94CS5 78.96 30.8 10.1 41.27 6.15 83.91 
94CS6 78.94 30.8 10.1 41.14 6.17 84.15 
94CS7 78.87 30.8 10.1 40.68 6.23 85.03 
94CS8 78.89 30.8 10.1 41.05 6.18 84.28 

94MW5 78.79 30.8 10.1 40.39 6.27 85.55 
94MW6 78.86 30.8 10.1 40.66 6.23 85.06 
94MW7 78.87 30.8 10.1 40.74 6.22 84.90 
94MW8 78.95 30.8 10.1 41.21 6.16 84.02 
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Table A7: Sintered density at 160°C for 94Sn4Cu2Sb 

Sample Sintering Sintering  
Mass 
(g) Mass (g) 

Sintered 
density 

% 
Theoretical  Densification 

Name Type Conditions (air) (suspended) 
 

(g/cm3) Density parameter 
94CS1  30kN/60min 3.5837 3.01 6.14 83.76 0.16 
94CS2 Conventional 30kN/120min 3.4156 2.91 6.63 90.38 0.49 
94CS5 Sintering 40kN/60min 3.7789 3.20 6.53 89.05 0.32 
94CS6  40kN/120min 3.5044 2.98 6.68 91.17 0.44 

94MW1  30kN/15min 4.0562 3.46 6.80 92.82 0.62 
94MW2 Microwave 30kN/30min 4.0145 3.43 6.87 93.70 0.68 
94MW5 Sintering 40kN/15min 3.7865 3.23 6.80 92.83 0.50 
94MW6  40kN/30min 3.6394 3.12 7.01 95.59 0.71 
 
 
 TableA8: Sintered density at 220°C for 94Sn4Cu2Sb 

 
 
 

A3. 91Sn6Cu3Sb 
 
Table A9: Green density for 30kN press load for 91Sn6Cu3Sb 

Sample Mass Length  Width  Height  Green density % Theoretical  
Name (g) (mm) (mm) (mm)  (g/cm3) Density 
91CS1 78.93 30.8 10.1 42.83 5.92 80.60 
91CS2 78.86 30.8 10.1 42.31 5.99 81.52 
91CS3 78.82 30.8 10.1 42.62 5.94 80.88 
91CS4 78.96 30.8 10.1 42.97 5.91 80.37 

91MW1 78.92 30.8 10.1 42.81 5.93 80.63 
91MW2 78.96 30.8 10.1 42.99 5.90 80.33 
91MW3 78.95 30.8 10.1 42.96 5.91 80.38 
91MW4 78.89 30.8 10.1 42.42 5.98 81.34 

 
 
 
 
 
 
 

Sample Sintering Sintering  
Mass 
(g) Mass (g) 

Sintered 
density 

% 
Theoretical  Densification 

Name Type Conditions (air) (suspended)
 

(g/cm3) Density Parameter 
94CS3  30kN/60min 3.4140 2.92 6.76 92.26 0.59 
94CS4 Conventional 30kN/120min 3.4102 2.93 6.97 95.05 0.74 
94CS7 Sintering 40kN/60min 3.9281 3.36 6.91 94.33 0.62 
94CS8  40kN/120min 3.529 3.04 7.22 98.46 0.90 

94MW3  30kN/15min 3.9369 3.37 6.94 94.74 0.73 
94MW4 Microwave 30kN/30min 3.7670 3.23 7.02 95.78 0.78 
94MW7 Sintering 40kN/15min 3.3611 2.89 7.13 97.33 0.82 
94MW8  40kN/30min 3.5519 3.06 7.24 98.75 0.92 
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Table A10: Green density for 40kN press load for 91Sn6Cu3Sb 
Sample Mass Length  Width  Height  Green density % Theoretical  
Name (g) (mm) (mm) (mm)  (g/cm3) Density 
91CS5 78.98 30.8 10.1 40.85 6.22 84.56 
91CS6 78.99 30.8 10.1 40.93 6.20 84.41 
91CS7 78.95 30.8 10.1 40.74 6.23 84.76 
91CS8 78.92 30.8 10.1 40.71 6.23 84.79 

91MW5 78.96 30.8 10.1 40.77 6.23 84.70 
91MW6 78.97 30.8 10.1 40.83 6.22 84.59 
91MW7 78.96 30.8 10.1 40.75 6.23 84.75 
91MW8 78.95 30.8 10.1 40.73 6.23 84.78 

 
 
 
 
TableA11: Sintered density at 160°C for 91Sn6Cu3Sb 

Sample Sintering Sintering  Mass (g) Mass (g) 
Sintered 
density 

% 
Theoretical  Densification 

Name Type Conditions (air) (suspended) 
 

(g/cm3) Density parameter 
91CS1  30kN/60min 3.9352 3.30 6.20 84.29 0.20 
91CS2 Conventional 30kN/120min 3.9757 3.38 6.67 90.80 0.50 
91CS5 Sintering 40kN/60min 21.1222 17.90 6.56 89.19 0.30 
91CS6  40kN/120min 21.1417 17.99 6.71 91.27 0.44 

91MW1  30kN/15min 3.8141 3.256 6.83 92.98 0.63 
91MW2 Microwave 30kN/30min 3.8725 3.311 6.89 93.75 0.68 
91MW5 Sintering 40kN/15min 19.6725 16.789 6.82 92.82 0.53 
91MW6  40kN/30min 19.5852 16.758 6.93 94.25 0.63 
 
 
 
 
 TableA12: Sintered density at 220°C for 91Sn6Cu3Sb 

 

 

 

Sample Sintering Sintering  Mass (g) Mass (g) 
Sintered 
density 

% 
Theoretical  Densification 

Name Type Conditions (air) (suspended)
 

(g/cm3) Density parameter 
91CS3  30kN/60min 4.9232 4.20 6.81 92.62 0.62 
91CS4 Conventional 30kN/120min 20.4443 17.54 7.04 95.77 0.78 
91CS7 Sintering 40kN/60min 22.4221 19.19 6.94 94.39 0.63 
91CS8  40kN/120min 21.8707 18.85 7.24 98.51 0.90 

91MW3  30kN/15min 11.272 9.654 6.97 94.78 0.74 
91MW4 Microwave 30kN/30min 8.244 7.075 7.05 95.95 0.78 
91MW7 Sintering 40kN/15min 19.1004 16.438 7.17 97.61 0.84 
91MW8  40kN/30min 22.4998 19.401 7.26 98.79 0.92 
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B. Porosity 

B1. 97Sn2Cu1Sb 
 

Table B1: Porosity for conventional sintered samples for 97Sn2Cu1Sb 

Sample 
Dry 

weight Saturated  Suspended 
 Volume of 
open pores 

Bulk 
volume 

True 
volume 

Volume of 
closed pores Porosity  

Name (g) 
 weight 

(g)  weight (g) Vo (cm3) Vb (cm3) Vt (cm3)  Vcp (cm3)  (%) 

97CS1 1.890 1.924 1.58 0.0340 0.34 0.2585 0.0515 19.90 

97CS2 1.330 1.456 1.12 0.1260 0.34 0.1819 0.0281 15.42 

97CS3 1.960 2.094 1.66 0.1340 0.43 0.2681 0.0319 11.89 

97CS4 2.560 2.685 2.19 0.1250 0.50 0.3502 0.0198 5.65 

97CS5 2.229 2.368 1.87 0.1390 0.50 0.3049 0.0541 17.73 

97CS6 2.048 2.115 1.73 0.0674 0.39 0.2802 0.0378 13.50 

97CS7 1.777 1.852 1.51 0.0750 0.34 0.2431 0.0239 9.84 

97CS8 1.638 1.741 1.41 0.1030 0.33 0.2241 0.0039 1.75 
 
 
Table B2: Porosity for microwave sintered samples for 97Sn2Cu1Sb 

Sample 
Dry 

weight Saturated  Suspended 
 Volume of 
open pores 

Bulk 
volume 

True 
volume 

Volume of 
closed pores Porosity  

Name (g) 
 weight 

(g)  weight (g) Vo (cm3) Vb (cm3) Vt (cm3)  Vcp (cm3)  (%) 

97MW1 2.780 2.869 2.37 0.0890 0.50 0.3803 0.0297 7.81 
97MW2 2.870 2.953 2.45 0.0830 0.50 0.3926 0.0274 6.98 
97MW3 2.890 3.011 2.47 0.1210 0.54 0.3953 0.0247 6.24 
97MW4 3.130 3.268 2.68 0.1380 0.59 0.4282 0.0218 5.10 
97MW5 2.900 3.022 2.47 0.1220 0.55 0.3967 0.0333 8.39 
97MW6 3.100 3.246 2.65 0.1460 0.60 0.4241 0.0259 6.11 
97MW7 2.944 3.051 2.53 0.1070 0.52 0.4027 0.0113 2.80 
97MW8 3.146 3.252 2.71 0.1060 0.54 0.4304 0.0056 1.31 
 
 

B2. 94Sn4Cu2Sb 
 
Table B3: Porosity for conventional sintered samples for 94Sn4Cu2Sb 

Sample 
Dry 

weight Saturated  Suspended 
 Volume of 
open pores 

Bulk 
volume 

True 
volume 

Volume of 
closed pores Porosity  

Name (g) 
 weight 

(g)  weight (g) Vo (cm3) Vb (cm3) Vt (cm3)  Vcp (cm3)  (%) 
94CS1 3.584 3.646 3.01 0.0620 0.64 0.4889 0.0848 17.34 
94CS2 3.416 3.522 2.90 0.1061 0.62 0.4660 0.0496 10.65 
94CS3 3.414 3.512 2.91 0.0975 0.60 0.4658 0.0382 8.21 
94CS4 3.410 3.454 2.92 0.0439 0.53 0.4652 0.0250 5.37 
94CS5 3.779 3.858 3.20 0.0795 0.66 0.5155 0.0634 12.29 
94CS6 3.504 3.665 2.98 0.1607 0.69 0.4781 0.0463 9.69 
94CS7 3.928 4.084 3.36 0.1562 0.72 0.5359 0.0322 6.01 
94CS8 3.529 3.640 3.04 0.1108 0.60 0.4814 0.0076 1.57 
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Table B4: Porosity for microwave sintered samples for 94Sn4Cu2Sb 

Sample 
Dry 

weight Saturated  Suspended 
 Volume of 
open pores 

Bulk 
volume 

True 
volume 

Volume of 
closed pores Porosity  

Name (g) 
 weight 

(g)  weight (g) Vo (cm3) Vb (cm3) Vt (cm3)  Vcp (cm3)  (%) 
94MW1 4.056 4.193 3.46 0.1370 0.73 0.5534 0.0418 7.56 
94MW2 4.015 4.148 3.43 0.1336 0.72 0.5477 0.0348 6.36 
94MW3 3.937 4.064 3.37 0.1266 0.70 0.5371 0.0318 5.92 
94MW4 3.767 3.876 3.23 0.1099 0.65 0.5138 0.0227 4.41 
94MW5 3.787 3.839 3.23 0.0521 0.61 0.5166 0.0379 7.34 
94MW6 3.639 3.762 3.11 0.1230 0.65 0.4965 0.0309 6.22 
94MW7 3.361 3.427 2.89 0.0654 0.54 0.4585 0.0126 2.74 
94MW8 3.552 3.629 3.06 0.0770 0.57 0.4846 0.0062 1.29 
 

 

B3. 91Sn6Cu3Sb 
 
Table B5: Porosity for conventional sintered samples for 91Sn6Cu3Sb 

Sample Dry weight Saturated  Suspended  

 Volume 
of open 
pores 

Bulk 
volume 

True 
volume 

Volume of 
closed pores Porosity  

Name (g) 
 weight 

(g)  weight (g) Vo (cm3) Vb (cm3) Vt (cm3)  Vcp (cm3)  (%) 
91CS1 3.935 4.0263 3.31 0.0911 0.72 0.5369 0.0873 16.27 
91CS2 3.976 4.1132 3.38 0.1375 0.74 0.5424 0.0553 10.20 
91CS3 4.923 5.2214 4.20 0.2982 1.02 0.6717 0.0545 8.12 
91CS4 20.444 20.6487 17.53 0.2044 3.12 2.7891 0.1242 4.45 
91CS5 21.122 21.2548 17.91 0.1326 3.34 2.8816 0.3306 11.47 
91CS6 21.142 21.2696 17.99 0.1279 3.28 2.8843 0.2674 9.27 
91CS7 22.422 22.5982 19.19 0.1761 3.41 3.0589 0.1732 5.66 
91CS8 21.871 22.1859 18.84 0.3152 3.34 2.9837 0.0460 1.54 
 
 
 
Table B6: Porosity for microwave sintered samples for 91Sn6Cu3Sb 

Sample 
Dry 

weight Saturated  Suspended 
 Volume of 
open pores Bulk volume True volume 

Volume of 
closed 
pores Porosity 

Name (g) 
 weight 

(g)  weight (g) Vo (cm3) Vb (cm3) Vt (cm3)  Vcp (cm3)  (%) 
91MW1 3.8141 4.1262 3.26 0.3121 0.87 0.5203 0.0378 7.26 
91MW2 3.8725 4.0989 3.31 0.2264 0.79 0.5283 0.0322 6.09 
91MW3 11.272 11.4184 9.65 0.1464 1.77 1.5378 0.0842 5.48 
91MW4 8.244 8.3985 7.07 0.1545 1.33 1.1247 0.0473 4.21 
91MW5 19.6725 19.9625 16.79 0.2900 3.17 2.6838 0.1947 7.25 
91MW6 19.5852 19.7586 16.75 0.1734 3.01 2.6719 0.1613 6.04 
91MW7 19.1004 19.3687 16.43 0.2683 2.94 2.6058 0.0656 2.52 
91MW8 22.4998 22.6314 19.39 0.1316 3.24 3.0695 0.0383 1.25 
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C. Microhardness  

C1. 97Sn2Cu1Sb 
 
 Table C1: Microhardness value for both conventional and microwave-sintered samples 

 

C2. 94Sn4Cu2Sb 
Table C2: Microhardness value for both conventional and microwave-sintered samples 

 
 
 

Sample  
name 

Sintering 
Type  

Average 
green 
(HV) 

1st 
reading 
(HV) 

2nd 
reading 
(HV) 

3rd 
reading 
(HV) 

4th 
reading 
(HV) 

5th 
reading 
(HV) 

Average 
(HV) 

97CS1    13.4 13.9 13.1 12.9 12.7 13.2 
97CS2  12.4 13.8 14.5 14.8 13.7 13.4 14.0 
97CS3    14.6 14.9 15.7 14.5 15.5 15.0 
97CS4 Conventional   19.6 14.9 16.1 16.3 19.0 17.2 
97CS5 Sintering   15.4 14.9 13.8 14.7 15.6 14.9 
97CS6  14.5 15.9 16.5 15.6 15.7 16.1 16.0 
97CS7    17.4 16.9 17.6 15.9 16.8 16.9 
97CS8    19.6 18.9 19.1 19.3 18.8 19.1 

97MW1    16.5 17.2 16 19.6 17.3 17.3 
97MW2  12.4 20.3 19 15.9 16.6 17.5 17.9 
97MW3    24.9 23.2 15.7 18.1 18.9 20.2 
97MW4 Microwave   25.9 16.7 28.6 15.8 23.5 22.1 
97MW5 Sintering   19.9 21.0 18.8 17.0 21.8 19.7 
97MW6  14.5 28.4 22.5 21.9 20.4 23.3 23.3 
97MW7    24.6 22.6 21.0 22.2 28.2 23.7 
97MW8    20.5 24.3 29.6 23.9 21.5 24.0 

Sample  
name 

Sintering 
Type 

Average 
green 
(HV) 

1st 
reading 
(HV) 

2nd 
reading 
(HV) 

3rd 
reading 
(HV) 

4th 
reading 
(HV) 

5th 
reading 
(HV) 

Average 
(HV) 

94CS1     10.5 11.3 12.6 21.5 13 13.8 
94CS2   12.1 12.6 16.8 12.9 11.5 21.1 15.0 
94CS3     16.9 18.9 18.3 12.1 13.3 15.9 
94CS4 Conventional   18.9 19.6 17.8 20.9 14.3 18.3 
94CS5 Sintering   15.4 14.9 16.1 14.2 13.9 14.9 
94CS6   13.1 16.3 14.6 16.8 15.5 16.3 15.9 
94CS7     19.7 15.8 19.2 14.8 15.6 17.0 
94CS8     20.6 19.8 19.8 21.9 20.5 21.0 

94MW1     18.3 17.8 16.4 18.5 15.9 17.4 
94MW2   12.1 16.8 18.3 18.6 16.3 19.6 17.9 
94MW3     21.8 21.5 19.4 19.6 19.8 20.6 
94MW4 Microwave   23.3 22.8 21.7 21.4 21.8 22.2 
94MW5 Sintering   19.8 18.9 20.6 19.6 19.7 19.7 
94MW6   13.1 21.6 22.9 22.6 23.5 21.2 22.4 
94MW7     22.8 24.9 23.9 24.6 22.7 23.8 
94MW8     26.8 27.9 25.0 24.5 19.3 24.7 
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C3. 91Sn6Cu3Sb 
 
 
Table C3: Microhardness value for both conventional and microwave-sintered samples 

 
 

Sample  
name 

Sintering 
Type 

Average 
green 
(HV) 

1st 
reading 
(HV) 

2nd 
reading 
(HV) 

3rd 
reading 
(HV) 

4th 
reading 
(HV) 

5th 
reading 
(HV) 

Average 
(HV) 

91CS1     17.4 17.1 17.6 16.8 15.1 16.8 
91CS2   14.4 17 21.2 17.5 18.9 16.8 18.3 
91CS3     21.7 19.3 18.5 18.9 20.3 19.7 
91CS4 Conventional   20.4 25.7 19.6 25.1 26.6 23.5 
91CS5 Sintering   19.6 16.1 18.9 18.0 19.4 18.4 
91CS6   15.3 18.2 19.1 18.4 18.9 18.4 18.6 
91CS7     26.2 23.3 21.1 23.9 20.8 23.1 
91CS8     23.8 25.7 23.8 23.3 24.4 24.2 

91MW1     16.8 16.1 19.7 18.1 17.8 17.7 
91MW2   14.4 18.8 17.9 18.2 17.8 20.1 18.6 
91MW3     18.9 23.9 20.2 28.7 19.4 22.2 
91MW4 Microwave   19.4 20.9 24.1 29.2 28.4 24.4 
91MW5 Sintering   15.1 22.3 18.3 18.1 19.7 18.7 
91MW6   15.3 18.8 19.4 18.7 18.5 22.9 19.7 
91MW7     23.2 25.3 24.3 22.4 23.7 23.9 
91MW8     26.3 26.7 25.7 25.9 24.8 25.9 
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D. Tensile Strength 

D1. 97Sn2Cu1Sb 
 
Table D1: Tensile strength values for longitudinal samples of 97Sn2Cu1Sb 

Longitudinal     Maximum Tensile Strength (Mpa) 
Strain to 
fracture 

Sample 1st reading 2nd reading 3rd reading Average (%) 
97CS1 24.351 23.489 20.791 22.9 7.4 
97CS2 26.252 23.263 25.702 25.1 8.2 
97CS3 26.633 28.750 28.295 27.9 10.1 
97CS4 39.536 40.203 37.881 39.2 13.4 
97CS5 26.509 25.490 25.652 25.9 7.5 
97CS6 27.517 26.664 27.132 27.1 8.4 
97CS7 30.066 30.242 30.599 30.3 10.6 
97CS8 46.343 39.754 39.173 41.8 16.3 

97MW1 21.193 20.046 19.587 20.3 7.1 
97MW2 24.450 24.337 23.846 24.2 8.3 
97MW3 26.540 27.110 24.887 26.2 9.5 
97MW4 32.707 37.627 35.361 35.2 13.3 
97MW5 22.442 24.163 22.064 22.9 8.3 
97MW6 25.096 25.648 23.934 24.9 9.3 
97MW7 28.354 28.430 26.712 27.8 11.0 
97MW8 37.488 37.191 36.858 37.2 16.4 

 
 
 
Table D2: Tensile strength values for transverse samples of 97Sn2Cu1Sb 

Transverse     Maximum Tensile Strength (Mpa) 
Strain to 
fracture 

Sample 1st reading 2nd reading 3rd reading Average (%) 
97CS1 24.717 23.842 21.611 23.4 7.4 
97CS2 26.860 27.375 26.442 26.9 8.4 
97CS3 30.888 30.915 27.877 29.9 11.0 
97CS4 43.369 35.721 41.509 40.2 13.8 
97CS5 28.003 26.634 27.549 27.4 7.4 
97CS6 31.913 32.481 31.390 31.9 8.2 
97CS7 33.234 35.491 33.415 34.0 10.9 
97CS8 43.774 47.013 43.219 44.7 16.9 

97MW1 23.779 23.034 21.629 22.8 7.1 
97MW2 25.073 24.106 26.131 25.1 8.3 
97MW3 29.907 28.934 27.624 28.8 9.8 
97MW4 36.678 35.842 37.237 36.6 13.5 
97MW5 22.781 27.563 21.150 23.8 8.6 
97MW6 27.128 25.467 27.549 26.7 9.6 
97MW7 29.507 28.079 29.441 29.0 11.5 
97MW8 37.945 40.765 43.085 40.6 16.7 
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D2. 94Sn4Cu2Sb 
 
 
Table D3: Tensile strength values for longitudinal samples of 94Sn4Cu2Sb 

Longitudinal     Maximum Tensile Strength (Mpa) 
Strain to 
fracture 

Sample 1st reading 2nd reading 3rd reading Average (%) 
94CS1 23.082 23.87 24.936 24.0 7.2 
94CS2 26.862 25.382 25.387 25.9 7.6 
94CS3 28.994 29.859 29.404 29.4 9.4 
94CS4 34.706 43.087 37.518 38.4 12.2 
94CS5 25.185 26.141 27.385 26.2 7.2 
94CS6 28.549 28.845 31.450 29.6 7.9 
94CS7 31.963 33.742 35.463 33.7 10.1 
94CS8 48.049 41.911 43.283 44.4 15.1 

94MW1 22.329 22.143 22.863 22.4 7.1 
94MW2 25.083 24.94 26.109 25.4 7.5 
94MW3 27.93 30.059 29.407 29.1 9.5 
94MW4 38.388 38.549 37.428 38.1 12.1 
94MW5 25.247 28.459 26.201 26.6 7.8 
94MW6 30.722 27.941 31.054 29.9 8.5 
94MW7 34.316 31.996 34.260 33.5 10.3 
94MW8 43.693 44.943 44.899 44.5 14.9 

 
 
 
 
Table D4: Tensile strength values for transverse samples of 94Sn4Cu2Sb 

Transverse     Maximum Tensile Strength (Mpa) 
Strain to 
fracture 

Sample 1st reading 2nd reading 3rd reading Average (%) 
94CS1 25.425 23.801 26.005 25.1 7.2 
94CS2 26.643 26.583 27.155 26.8 7.9 
94CS3 31.304 30.907 31.087 31.1 9.8 
94CS4 40.325 39.581 40.199 40.0 12.9 
94CS5 28.376 30.635 25.871 28.3 7.2 
94CS6 30.72 32.176 32.126 31.7 7.8 
94CS7 34.386 36.342 39.317 36.7 10.2 
94CS8 47.842 43.274 49.499 46.9 15.3 

94MW1 23.412 23.798 23.517 23.6 7.1 
94MW2 27.974 27.496 26.539 27.3 7.5 
94MW3 31.154 30.967 31.078 31.1 9.8 
94MW4 41.336 39.66 39.410 40.1 12.9 
94MW5 29.866 27.237 28.818 28.6 8.1 
94MW6 33.456 32.31 31.083 32.3 9.0 
94MW7 33.821 37.839 37.631 36.4 10.5 
94MW8 46.591 46.682 47.873 47.0 15.2 
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D3. 91Sn 6Cu3Sb 
 
 
Table D5: Tensile strength values for longitudinal samples  

Longitudinal     Maximum Tensile Strength (Mpa) 
Strain to 
fracture 

Sample 1st reading 2nd reading 3rd reading Average (%) 
91CS1 25.554 26.213 24.278 25.3 6.9 
91CS2 27.233 27.270 27.354 27.3 7.3 
91CS3 33.494 32.680 30.238 32.1 9.1 
91CS4 37.622 38.375 40.902 39.0 11.5 
91CS5 29.319 28.521 26.101 28.0 7.0 
91CS6 34.462 29.498 31.859 31.9 7.5 
91CS7 33.567 35.136 40.519 36.4 9.7 
91CS8 50.231 44.640 43.117 46.0 13.7 

91MW1 23.060 22.222 23.969 23.1 6.9 
91MW2 25.927 27.010 27.616 26.9 7.2 
91MW3 33.071 37.080 37.981 36.0 9.1 
91MW4 41.020 45.142 36.281 40.8 11.7 
91MW5 29.266 28.457 28.840 28.9 7.4 
91MW6 34.541 33.789 34.521 34.3 8.1 
91MW7 40.172 38.613 39.230 39.3 9.6 
91MW8 46.754 45.398 47.425 46.5 13.6 

 
 
 
 
Table D6: Tensile strength values for transverse samples  

Transverse     Maximum Tensile Strength (Mpa) 
Strain to 
fracture 

Sample 1st reading 2nd reading 3rd reading Average (%) 
91CS1 26.236 27.886 27.375 27.2 7.1 
91CS2 27.681 30.152 29.427 29.1 7.6 
91CS3 39.642 35.357 36.955 37.3 9.4 
91CS4 43.503 43.848 41.050 42.8 12.1 
91CS5 31.740 32.155 32.250 32.0 7.1 
91CS6 35.089 32.756 37.902 35.2 7.6 
91CS7 39.916 41.137 43.224 41.4 9.9 
91CS8 48.333 47.199 48.032 47.9 13.9 

91MW1 24.701 25.416 22.807 24.3 6.9 
91MW2 29.024 32.658 30.284 30.7 7.3 
91MW3 37.691 40.165 42.161 40.0 9.3 
91MW4 42.668 47.555 47.453 45.9 12.0 
91MW5 31.222 33.662 34.940 33.3 7.7 
91MW6 38.204 36.613 37.717 37.5 8.2 
91MW7 45.051 41.676 45.185 44.0 9.8 
91MW8 46.092 50.778 48.825 48.6 13.8 
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E. Grain Size 
 
Table E1: Grain size calculation for 97 Sn2Cu1Sb 

  l1 l2 l3 l4 l5 l6 lavg D (µm) 
green30kN 10.71 9.23 10.00 11.54 10.00 10.71 10.37 15.5 
green40kN 10.00 11.54 10.00 10.00 7.65 10.00 9.87 14.8 
97CS1 15.00 15.71 13.75 20.00 12.50 16.00 15.49 23.2 
97CS2 12.73 16.25 20.00 18.33 15.00 22.86 17.53 26.3 
97CS3 18.75 20.00 16.67 18.75 20.00 14.44 18.10 27.2 
97CS4 23.33 25.00 20.00 17.14 20.00 10.00 19.25 28.9 
97CS5 15.71 16.67 15.56 17.50 11.67 14.00 15.19 22.8 
97CS6 20.00 23.33 13.33 15.00 8.75 20.00 16.74 25.1 
97CS7 16.67 18.75 15.71 17.14 20.00 15.00 17.21 25.8 
97CS8 20.00 20.00 15.00 15.00 23.30 14.29 17.93 26.9 
97MW1 10.00 10.00 12.50 11.11 11.82 11.54 11.16 16.7 
97MW2 11.54 11.54 10.71 10.56 17.78 11.33 12.24 18.4 
97MW3 14.29 14.29 14.29 12.50 12.50 20.00 14.65 22.0 
97MW4 11.67 20.00 16.67 16.25 18.89 18.00 16.91 25.4 
97MW5 8.75 12.73 10.77 11.67 9.33 12.73 11.00 16.5 
97MW6 10.77 12.00 10.67 10.91 10.00 14.44 12.14 18.2 
97MW7 21.67 11.40 16.25 7.27 14.29 11.00 13.65 20.5 
97MW8 15.56 15.00 13.33 12.50 25.00 13.75 15.86 23.8 

 
 
 
Table E2: Grain size calculation for 94Sn 4Cu 2Sb 

  l1 l2 l3 l4 l5 l6 lavg D (µm) 
green30kN 10.67 10.00 12.50 9.23 10.00 9.38 10.30 15.4 
green40kN 10.00 10.00 9.38 8.82 9.38 10.00 9.60 14.4 
94CS1 14.00 18.75 15.00 15.00 10.77 15.56 14.85 22.3 
94CS2 17.5 14.29 14.29 20.00 14.49 16.67 16.21 24.3 
94CS3 20.00 21.43 12.00 10.00 20.00 20.00 17.24 25.9 
94CS4 21.43 19.17 21.43 15.00 14.29 21.43 18.79 28.2 
94CS5 13.75 9.23 16.67 10.71 15.71 16.00 13.68 20.5 
94CS6 15.00 15.00 17.14 15.00 14.00 13.63 14.96 22.4 
94CS7 16.67 16.67 16.25 12.50 21.43 17.14 16.78 25.2 
94CS8 21.43 20.00 13.64 16.67 18.75 11.54 17.01 25.5 
94MW1 11.54 8.33 11.54 15.00 12.50 8.33 11.21 16.8 
94MW2 11.67 10.00 11.54 10.00 15.00 13.63 11.97 18.0 
94MW3 16.67 12.50 12.22 16.67 14.29 10.00 13.73 20.6 
94MW4 18.75 17.50 14.29 18.75 13.00 16.67 16.49 24.7 
94MW5 11.54 8.33 10.00 10.77 10.71 13.00 10.73 16.1 
94MW6 13.64 14.29 10.00 10.00 12.50 12.00 12.07 18.1 
94MW7 11.54 15.00 12.73 10.71 13.00 15.56 13.09 19.6 
94MW8 15.00 18.75 16.67 15.00 15.00 13.64 15.68 23.5 
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Table E3: Grain size calculation for 91Sn 6Cu 3Sb 

  l1 l2 l3 l4 l5 l6 lavg D (µm) 
green30kN 8.82 10.71 12.50 10.71 8.33 10.71 10.30 15.4 
green40kN 8.82 11.54 8.82 8.33 8.33 10.71 9.43 14.1 

91CS1 11.54 12.50 15.00 15.00 16.67 12.50 13.87 20.8 
91CS2 16.67 15.00 16.67 15.00 15.00 11.54 14.98 22.5 
91CS3 15.00 10.00 21.43 16.67 16.67 18.75 16.42 24.6 
91CS4 16.67 21.43 16.67 16.67 21.43 18.75 18.60 27.9 
91CS5 13.64 11.54 12.50 15.00 15.00 10.71 13.07 19.6 
91CS6 13.64 16.67 12.50 16.67 13.64 15.00 14.69 22.0 
91CS7 15 15 16.67 16.67 18.75 15.00 16.18 24.3 
91CS8 18.75 16.67 13.64 16.67 18.75 21.43 17.65 26.5 

91MW1 10.71 11.54 10.71 10.00 11.33 12.50 10.71 16.1 
91MW2 11.54 11.54 12.50 11.54 10.00 12.50 11.60 17.4 
91MW3 16.67 16.67 12.50 11.54 12.50 13.64 13.92 20.9 
91MW4 16.67 15.00 13.64 18.75 18.75 13.64 16.08 24.1 
91MW5 11.54 11.54 8.82 9.43 11.54 11.54 10.74 16.1 
91MW6 11.54 13.36 12.50 11.54 12.50 11.54 12.16 18.2 
91MW7 13.64 13.64 12.50 13.64 12.50 11.54 12.91 19.4 
91MW8 13.64 11.54 16.67 16.67 15.00 18.75 15.38 23.1 
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F.  Electron Dispersive X-Ray Spectroscopy (EDS) 
 

F1. Conventional Sintering at 160ºC for 96 MPa pressed samples  
 
 

     
   (a)     (b) 
 

    
   (c)     (d) 

 

    
   (e)     (f) 

 
Figure F1: SEM image for conventional sintering at 160°C for the 96 MPa pressed samples  

(a) 60 min  (b) 120 min for  97Sn2Cu1Sb composition (c)  60 min  (d) 120 min for  
94Sn4Cu2Sb composition (e)  60 min (f) 120 min for 91Sn6Cu3Sb composition 
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                          (a)                                                (b) 

   
            (c)       (d) 

 
(e) 

 
(f) 

Figure F2: EDS spectrum for samples 96 MPa/160°C (a) 60 min (b) 120 min for 97Sn2Cu1Sb 
composition (c) 60 min (d) 120 min for 94Sn4Cu2Sb composition (e) 60 min (f) 120 min for 

91Sn6Cu3Sb composition 
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Table F1: EDS report for samples 97CS1 (96 MPa/160°C/60 min) and 97CS2  
(96 MPa/160°C/120 min)  
        weight%  
  Cu-K Sn-L Sb-L 
97CS1_pt1 1.54 97.69 0.77 
97CS1_pt2 1.64 97.45 0.91 
97CS1_pt3 1.42 97.84 0.74 
97CS1_pt4 1.76 97.32 0.92 
97CS1_pt5 1.46 97.86 0.68 
97CS2_pt1 1.52 97.57 0.91 
97CS2_pt2 1.46 97.87 0.67 
97CS2_pt3 1.87 97.65 0.48 
97CS2_pt4 1.36 97.93 0.71 
97CS2_pt5 1.77 97.54 0.69 
 
 
 
 
Table F2: EDS report for samples 94CS1 (96 MPa/160°C/60 min) and 94CS2  
(96 MPa/160°C/120 min)  
      weight%  
  Cu-K Sn-L Sb-L 
94CS1_pt1 3.67 94.54 1.79 
94CS1_pt2 3.34 94.84 1.82 
94CS1_pt3 3.78 94.34 1.88 
94CS1_pt4 3.94 94.65 1.41 
94CS1_pt5 3.53 94.89 1.58 
94CS2_pt1 3.63 94.42 1.95 
94CS2_pt2 3.67 94.89 1.44 
94CS2_pt3 3.35 94.86 1.79 
94CS2_pt4 3.27 94.77 1.96 
94CS2_pt5 3.83 94.84 1.33 
 
 
 
 
Table F3: EDS report for samples 91CS1 (96 MPa/160°C/60 min) and 91CS2  
(96 MPa/160°C/120 min)  
      weight%  
  Cu-K Sn-L Sb-L 
91CS1_pt1 5.33 91.94 2.73 
91CS1_pt2 5.28 91.91 2.81 
91CS1_pt3 5.43 91.96 2.61 
91CS1_pt4 5.25 91.77 2.98 
91CS1_pt5 5.21 91.85 2.94 
91CS2_pt1 5.26 91.86 2.88 
91CS2_pt2 5.32 91.87 2.81 
91CS2_pt3 5.41 91.98 2.61 
91CS2_pt4 5.29 91.99 2.72 
91CS2_pt5 5.32 91.98 2.70 
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F2. Conventional Sintering at 220ºC for 96 MPa pressed samples  
 
 

         
   (a)      (b) 

 

       
   (c)      (d) 

 

      
    (e)        (f) 
 

Figure F3: SEM image of conventional sintering at 220°C for the 96 MPa pressed samples  
(a) 60 min  (b) 120 min for  97Sn2Cu1Sb composition (c)  60 min  (d) 120 min for  

94Sn4Cu2Sb composition (e)  60 min (f) 120 min for 91Sn6Cu3Sb composition 
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         (a)         (b) 

        
                                        (c)          (d) 
 

 
(e) 

 
(f) 

Figure F4: EDS spectrum for samples 96 MPa/220°C (a) 60 min (b) 120 min for 97Sn2Cu1Sb 
composition (c) 60 min (d) 120 min for 94Sn4Cu2Sb composition (e) 60 min (f) 120 min for 

91Sn6Cu3Sb composition 
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Table F4: EDS report for samples 97CS3 (96 MPa/220°C/60 min) and 97CS4  
(96 MPa/220°C/120 min)  
            weight%  
  Cu-K Sn-L Sb-L 
97CS3_pt1 1.21 97.99 0.8 
97CS3_pt2 1.39 97.86 0.75 
97CS3_pt3 1.32 97.72 0.96 
97CS3_pt4 1.11 97.95 0.94 
97CS3_pt5 1.29 97.92 0.79 
97CS4_pt1 1.35 97.89 0.76 
97CS4_pt2 1.67 97.83 0.5 
97CS4_pt3 1.45 97.68 0.87 
97CS4_pt4 1.47 97.85 0.68 
97CS4_pt5 1.66 97.97 0.37 
 
 
 
 Table F5: EDS report for samples 94CS3 (96 MPa/220°C/60 min) and 94CS4  
(96 MPa/220°C/120 min)  
            weight%  
  Cu-K Sn-L Sb-L 
94CS3_pt1 3.21 94.99 1.80 
94CS3_pt2 3.69 94.41 1.90 
94CS3_pt3 3.42 94.75 1.83 
94CS3_pt4 3.71 94.86 1.43 
94CS3_pt5 3.64 94.68 1.68 
94CS4_pt1 3.55 94.87 1.58 
94CS4_pt2 3.42 94.84 1.74 
94CS4_pt3 3.47 94.72 1.81 
94CS4_pt4 3.51 94.53 1.96 
94CS4_pt5 3.48 94.63 1.89 
       
 
Table F6: EDS report for samples 91CS3 (96 MPa/220°C/60 min) and 91CS4  
(96 MPa/220°C/120 min)  
            weight%  
  Cu-K Sn-L Sb-L 
91CS3_pt1 5.31 91.94 2.75 
91CS3_pt2 5.22 91.95 2.83 
91CS3_pt3 5.37 91.96 2.67 
91CS3_pt4 5.29 91.87 2.84 
91CS3_pt5 5.17 91.95 2.88 
91CS4_pt1 5.36 91.97 2.67 
91CS4_pt2 5.26 91.67 3.07 
91CS4_pt3 5.41 91.92 2.67 
91CS4_pt4 5.19 91.96 2.85 
91CS4_pt5 5.36 91.98 2.66 
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F3. Conventional Sintering at 160ºC for 129 MPa pressed samples  
 
 

   
(a) (b) 
 

 

   
   (c)     (d) 

 
 

   
(d) (f) 
 

Figure F5: SEM image of conventional sintering at 160°C for the 40kN pressed samples  
(a) 60min  (b) 120min for  97Sn2Cu1Sb composition (c)  60min  (d) 120min for  94Sn4Cu2Sb 

composition (e)  60min (f) 120min for 91Sn6Cu3Sb composition 
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          (a)        (b) 
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Figure F6: EDS spectrum for samples 40kN/160°C (a) 60min (b) 120min for 97Sn2Cu1Sb 
composition (c) 60min (d) 120min for 94Sn4Cu2Sb composition (e) 60min (f) 120 min for 

91Sn6Cu3Sb composition 
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Table F7:EDS report for samples 97CS5(129 MPa/160°C/60min) and 97CS6 (129 
MPa/160°C/120min)  
            weight%  
  Cu-K Sn-L Sb-L 
97CS5_pt1 1.53 97.55 0.92 
97CS5_pt2 1.52 97.59 0.89 
97CS5_pt3 1.59 97.54 0.87 
97CS5_pt4 1.43 97.59 0.98 
97CS5_pt5 1.36 97.75 0.89 
97CS6_pt1 1.52 97.53 0.95 
97CS6_pt2 1.57 97.55 0.88 
97CS6_pt3 1.38 97.67 0.95 
97CS6_pt4 1.68 97.58 0.74 
97CS6_pt5 1.57 97.53 0.90 
 
 
Table F8:EDS report for samples 94CS5(129 MPa/160°C/60min) and 94CS6 (129 
MPa/160°C/120min)  
            weight%  
  Cu-K Sn-L Sb-L 
94CS5_pt1 3.27 94.87 1.86 
94CS5_pt2 3.32 94.99 1.69 
94CS5_pt3 3.11 94.96 1.93 
94CS5_pt4 3.27 94.83 1.90 
94CS5_pt5 3.19 94.86 1.95 
94CS6_pt1 3.29 94.84 1.87 
94CS6_pt2 3.32 94.88 1.80 
94CS6_pt3 3.45 94.69 1.86 
94CS6_pt4 3.47 94.58 1.95 
94CS6_pt5 3.78 94.67 1.55 
 
 
Table F9:EDS report for samples 91CS5(129 MPa/160°C/60min) and 91CS6 (129 
MPa/160°C/120min)  
            weight%  
  Cu-K Sn-L Sb-L 
91CS5_pt1 5.41 91.97 2.62 
91CS5_pt2 5.24 91.85 2.91 
91CS5_pt3 5.39 91.97 2.64 
91CS5_pt4 5.32 91.89 2.79 
91CS5_pt5 5.42 91.93 2.65 
91CS6_pt1 5.36 91.87 2.77 
91CS6_pt2 5.56 91.97 2.47 
91CS6_pt3 5.44 91.95 2.61 
91CS6_pt4 5.23 91.91 2.86 
91CS6_pt5 5.41 91.94 2.65 
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F4. Conventional Sintering at 220ºC for 129 MPa pressed samples  
 
 

    
(a) (b) 
 
 

   
(c)      (d) 
 
 

   
(e) (f) 
 
 

Figure F7: SEM image of conventional sintering at 220°C for the 40kN pressed samples  
(a) 60min  (b) 120min for  97Sn2Cu1Sb composition (c)  60min  (d) 120min for  94Sn4Cu2Sb 

composition (e)  60min (f) 120min for 91Sn6Cu3Sb composition 
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           (a)                          (b) 
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            (d) 
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Figure F8: EDS spectrum for samples 40kN/160°C (a) 60min (b) 120min for 97Sn2Cu1Sb 
composition (c) 60min (d) 120min for 94Sn4Cu2Sb composition  (e) 60min (f) 120 min for 

91Sn6Cu3Sb composition 
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Table F10:EDS report for samples 97CS7(129 MPa/220°C/60min) and 97CS8 (129 
MPa/220°C/120min)  
            weight%  
  Cu-K Sn-L Sb-L 
97CS7_pt1 1.56 98.05 0.39 
97CS7_pt2 1.45 97.81 0.74 
97CS7_pt3 1.29 97.95 0.76 
97CS7_pt4 1.32 98.23 0.45 
97CS7_pt5 1.86 97.86 0.28 
97CS8_pt1 1.22 98.23 0.55 
97CS8_pt2 1.23 98.35 0.42 
97CS8_pt3 1.42 97.94 0.64 
97CS8_pt4 1.14 98.22 0.64 
97CS8_pt5 1.05 98.62 0.33 
 
 
Table F11:EDS report for samples 94CS7(129 MPa/220°C/60min) and 94CS8 (129 
MPa/220°C/120min)  
            weight%  
  Cu-K Sn-L Sb-L 
94CS7_pt1 3.33 94.94 1.73 
94CS7_pt2 3.27 94.95 1.78 
94CS7_pt3 3.46 94.96 1.58 
94CS7_pt4 3.27 94.87 1.86 
94CS7_pt5 3.19 94.95 1.86 
94CS8_pt1 3.26 94.86 1.88 
94CS8_pt2 3.32 94.87 1.81 
94CS8_pt3 3.41 94.98 1.61 
94CS8_pt4 3.29 94.99 1.72 
94CS8_pt5 3.32 94.98 1.70 
 
 
Table F12:EDS report for samples 91CS7(129 MPa/220°C/60min) and 91CS8 (129 
MPa/220°C/120min)  
            weight%  
  Cu-K Sn-L Sb-L 
91CS7_pt1 5.39 91.97 2.64 
91CS7_pt2 5.34 92.03 2.63 
91CS7_pt3 5.36 91.95 2.69 
91CS7_pt4 5.27 92.09 2.64 
91CS7_pt5 5.42 91.93 2.65 
91CS8_pt1 5.36 91.87 2.77 
91CS8_pt2 5.57 91.97 2.46 
91CS8_pt3 5.48 92.11 2.41 
91CS8_pt4 5.28 91.99 2.73 
91CS8_pt5 5.45 91.97 2.58 
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   F5. Microwave Sintering at 160ºC for 96 MPa pressed samples  
 
 
 

      
(a) (b) 
 
 

   
(c)     (d) 
 
 

   
   (e)      (f) 
 

Figure F9: SEM image of microwave sintering at 160°C for the 30kN pressed samples  
(a) 15min  (b) 30min for  97Sn2Cu1Sb composition (c)  15min  (d) 30min for  94Sn4Cu2Sb 

composition (e)  15min (f) 30min for 91Sn6Cu3Sb composition 
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(a) (b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure F10: EDS spectrum for MW samples 30kN/160°C (a) 15min (b) 30min for 
97Sn2Cu1Sb composition (c) 15min (d)30min for 94Sn4Cu2Sb composition (e)15min (f) 30 

min for 91Sn6Cu3Sb composition 
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Table F13: EDS report for samples 97MW1 (30kN/160°C/15min) and 97MW2 
(30kN/160°C/30min)  
            weight%  
  Cu-K Sn-L Sb-L 
97MW1_pt1 1.52 97.75 0.73 
97MW1_pt2 1.49 97.86 0.65 
97MW1_pt3 1.39 97.71 0.90 
97MW1_pt4 1.35 98.26 0.39 
97MW1_pt5 1.87 97.87 0.26 
97MW2_pt1 1.29 98.25 0.46 
97MW2_pt2 1.33 98.39 0.28 
97MW2_pt3 1.48 97.54 0.98 
97MW2_pt4 1.24 97.79 0.97 
97MW2_pt5 1.47 97.74 0.79 
 
 
Table F14: EDS report for samples 94MW1 (30kN/160°C/15min) and 94MW2 
(30kN/160°C/30min)  
            weight%  
  Cu-K Sn-L Sb-L 
94MW1_pt1 3.31 94.88 1.81 
94MW1_pt2 3.29 94.91 1.80 
94MW1_pt3 3.48 94.92 1.60 
94MW1_pt4 3.27 94.87 1.86 
94MW1_pt5 3.22 94.93 1.85 
94MW2_pt1 3.28 94.89 1.83 
94MW2_pt2 3.35 94.79 1.86 
94MW2_pt3 3.41 94.98 1.61 
94MW2_pt4 3.31 94.99 1.70 
94MW2_pt5 3.38 94.98 1.64 
 
 
Table F15: EDS report for samples 91MW1 (30kN/160°C/15min) and 91MW2 
(30kN/160°C/30min)  
            weight%  
  Cu-K Sn-L Sb-L 
91MW1_pt1 5.29 91.87 2.84 
91MW1_pt2 5.49 91.66 2.85 
91MW1_pt3 5.39 91.95 2.66 
91MW1_pt4 5.38 91.77 2.85 
91MW1_pt5 5.46 91.68 2.86 
91MW2_pt1 5.36 91.85 2.79 
91MW2_pt2 5.67 91.94 2.39 
91MW2_pt3 5.81 92.11 2.08 
91MW2_pt4 5.38 91.99 2.63 
91MW2_pt5 5.47 91.91 2.62 
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F6. Microwave Sintering at 220ºC for 96MPa pressed samples  
 
 
 

     
   (a)     (b) 
 
 

    
   (c)     (d) 
 
 

    
   (e)     (f) 

 
Figure F11: SEM image of microwave sintering at 220°C for the 30kN pressed samples  

(a) 15min  (b) 30min for  97Sn2Cu1Sb composition (c)  15min  (d) 30min for  94Sn4Cu2Sb 
composition (e) 15min (f) 30min for 91Sn6Cu3Sb composition 
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      (a)          (b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure F12: EDS spectrum for MW samples 30kN/220°C (a) 15min (b) 30min for 
97Sn2Cu1Sb composition (c) 15min (d)30min for 94Sn4Cu2Sb composition (e)15min (f) 30 

min for 91Sn6Cu3Sb composition 
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Table F16:EDS report for samples 97MW3 (30kN/220°C/15min) and 97MW4 
(30kN/220°C/30min)  
            weight%  
  Cu-K Sn-L Sb-L 
97MW3_pt1 1.66 97.48 0.86 
97MW3_pt2 1.55 97.56 0.89 
97MW3_pt3 1.29 97.95 0.76 
97MW3_pt4 1.62 97.64 0.74 
97MW3_pt5 1.83 97.77 0.40 
97MW4_pt1 1.62 97.53 0.85 
97MW4_pt2 1.63 97.48 0.89 
97MW4_pt3 1.42 97.91 0.67 
97MW4_pt4 1.14 98.17 0.69 
97MW4_pt5 1.35 97.68 0.97 

 
 
 

Table F17: EDS report for samples 94MW3 (30kN/220°C/15min) and 94MW4 
(30kN/220°C/30min)  
            weight%  
  Cu-K Sn-L Sb-L 
94MW3_pt1 3.38 94.94 1.68 
94MW3_pt2 3.37 94.91 1.72 
94MW3_pt3 3.56 94.86 1.58 
94MW3_pt4 3.39 94.77 1.84 
94MW3_pt5 3.29 94.85 1.86 
94MW4_pt1 3.29 94.86 1.85 
94MW4_pt2 3.42 94.77 1.81 
94MW4_pt3 3.49 94.98 1.53 
94MW4_pt4 3.36 94.87 1.77 
94MW4_pt5 3.56 94.98 1.46 
 
 
Table F18: EDS report for samples 91MW3 (30kN/220°C/15min) and 97MW4 
(30kN/220°C/30min)  
            weight%  
  Cu-K Sn-L Sb-L 
91MW3_pt1 5.39 91.97 2.64 
91MW3_pt2 5.39 91.72 2.89 
91MW3_pt3 5.36 91.89 2.75 
91MW3_pt4 5.29 91.59 3.12 
91MW3_pt5 5.53 91.92 2.55 
91MW4_pt1 5.36 91.77 2.87 
91MW4_pt2 5.59 91.93 2.48 
91MW4_pt3 5.52 91.87 2.61 
91MW4_pt4 5.68 91.78 2.54 
91MW4_pt5 5.49 91.77 2.74 
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F7. Microwave Sintering at 160ºC for 129 MPa pressed samples  
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Figure F13: SEM image of microwave sintering at 160°C for the 40kN pressed samples  

(a) 15min  (b) 30min for  97Sn2Cu1Sb composition (c)  15min  (d) 30min for  94Sn4Cu2Sb 
composition (e) 15min (f) 30min for 91Sn6Cu3Sb composition 
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(a)     (b) 
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Figure F14: EDS spectrum for MW samples 40kN/160°C (a) 15min (b) 30min for 
97Sn2Cu1Sb composition (c) 15min (d) 30min for 94Sn4Cu2Sb composition (e) 15min 

 (f) 30 min for 91Sn6Cu3Sb composition 
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Table F19: EDS report for samples 97MW5 (40kN/160°C/15min) and 97MW6 
(40kN/160°C/30min)  
            weight%  
  Cu-K Sn-L Sb-L 
97MW5_pt1 1.56 97.95 0.49 
97MW5_pt2 1.45 97.81 0.74 
97MW5_pt3 1.29 97.95 0.76 
97MW5_pt4 1.42 98.03 0.55 
97MW5_pt5 1.77 97.86 0.37 
97MW6_pt1 1.21 98.23 0.56 
97MW6_pt2 1.32 98.35 0.33 
97MW6_pt3 1.44 97.94 0.62 
97MW6_pt4 1.22 98.02 0.76 
97MW6_pt5 1.14 98.22 0.64 
 
 
Table F20: EDS report for samples 94MW5 (40kN/160°C/15min) and 94MW6 
(40kN/160°C/30min)  
            weight%  
  Cu-K Sn-L Sb-L 
94MW5_pt1 3.73 94.74 1.53 
94MW5_pt2 3.32 94.85 1.83 
94MW5_pt3 3.51 94.76 1.73 
94MW5_pt4 3.35 94.81 1.84 
94MW5_pt5 3.23 94.95 1.82 
94MW6_pt1 3.26 94.86 1.88 
94MW6_pt2 3.52 94.77 1.71 
94MW6_pt3 3.44 94.98 1.58 
94MW6_pt4 3.49 94.79 1.72 
94MW6_pt5 3.52 94.68 1.80 
 
 
Table F21: EDS report for samples 91MW5 (40kN/160°C/15min) and 91MW6 
(40kN/160°C/30min)  
            weight%  
  Cu-K Sn-L Sb-L 
91MW5_pt1 5.39 91.86 2.75 
91MW5_pt2 5.34 91.73 2.93 
91MW5_pt3 5.46 91.85 2.69 
91MW5_pt4 5.36 92.09 2.55 
91MW5_pt5 5.41 91.91 2.68 
91MW6_pt1 5.36 91.82 2.82 
91MW6_pt2 5.57 91.87 2.56 
91MW6_pt3 5.51 91.61 2.88 
91MW6_pt4 5.32 91.94 2.74 
91MW6_pt5 5.42 91.92 2.66 
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F8. Microwave Sintering at 220ºC for 129 MPa pressed samples  
 
 
 

     
           (a)        (b) 
 
 

     
             (c)     (d) 
 
 

     
   (e)     (f) 
   

Figure F15: SEM image of microwave sintering at 220°C for the 40kN pressed samples  
(a) 15min  (b) 30min for  97Sn2Cu1Sb composition (c)  15min  (d) 30min for  94Sn4Cu2Sb 

composition (e) 15min (f) 30min for 91Sn6Cu3Sb composition 
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Figure F16: EDS spectrum for MW samples 40kN/220°C (a) 15min (b) 30min for 
97Sn2Cu1Sb composition (c) 15min (d) 30min for 94Sn4Cu2Sb composition (e) 15min (f) 30 

min for 91Sn6Cu3Sb composition 
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Table F22: EDS report for samples 97MW7 (40kN/220°C/15min) and 97MW8 
(40kN/220°C/30min)  
            weight%  
  Cu-K Sn-L Sb-L 
97MW7_pt1 1.56 97.87 0.57 
97MW7_pt2 1.45 97.76 0.79 
97MW7_pt3 1.29 98.05 0.66 
97MW7_pt4 1.37 98.10 0.53 
97MW7_pt5 1.86 97.86 0.28 
97MW8_pt1 1.35 97.83 0.82 
97MW8_pt2 1.28 98.05 0.67 
97MW8_pt3 1.49 97.94 0.57 
97MW8_pt4 1.34 97.72 0.94 
97MW8_pt5 1.55 97.51 0.94 
 
 
Table F23: EDS report for samples 94MW7 (40kN/220°C/15min) and 94MW8 
(40kN/220°C/30min)  
            weight%  
  Cu-K Sn-L Sb-L 
94MW7_pt1 3.33 94.79 1.88 
94MW7_pt2 3.39 94.87 1.74 
94MW7_pt3 3.51 94.91 1.58 
94MW7_pt4 3.21 94.79 2.00 
94MW7_pt5 3.15 94.95 1.90 
94MW8_pt1 3.37 94.86 1.77 
94MW8_pt2 3.42 94.87 1.71 
94MW8_pt3 3.53 94.98 1.49 
94MW8_pt4 3.59 94.99 1.42 
94MW8_pt5 3.37 94.98 1.65 
 
 
Table F24: EDS report for samples 91MW7 (40kN/220°C/15min) and 91MW8 
(40kN/220°C/30min)  
            weight%  
  Cu-K Sn-L Sb-L 
91MW7_pt1 5.41 91.92 2.67 
91MW7_pt2 5.27 91.77 2.96 
91MW7_pt3 5.39 91.95 2.66 
91MW7_pt4 5.42 91.89 2.69 
91MW7_pt5 5.43 91.93 2.64 
91MW8_pt1 5.36 91.87 2.77 
91MW8_pt2 5.57 91.97 2.46 
91MW8_pt3 5.48 92.11 2.41 
91MW8_pt4 5.28 91.99 2.73 
91MW8_pt5 5.45 91.97 2.58 
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G. X-Ray Diffraction (XRD) 

 
Figure G1: XRD peaks comparing green compacts of 97Sn2Cu1Sb composition at different  

compaction loads of 96MPa (30kN) and 129MPa (40kN) 
 

 
Figure G2: XRD peaks comparing green compacts of 94Sn4Cu2Sb composition at different  

compaction loads of 96MPa (30kN) and 129MPa (40kN) 
 

 
Figure G3: XRD peaks comparing green compacts of 91Sn6Cu3Sb composition at different  

compaction loads of 96MPa (30kN) and 129MPa (40kN) 
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Figure G4: XRD peaks comparing different sintering temperatures and sintering times for 

conventionally sintered 97Sn2Cu1Sb alloys pressed at 96 MPa 
 
 

 
Figure G5: XRD peaks comparing different sintering temperatures and sintering times for 

microwave sintered 97Sn2Cu1Sb alloys pressed at 96 MPa 
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Figure G6: XRD peaks comparing different sintering temperatures and sintering times for 

conventionally sintered 94Sn4Cu2Sb alloys pressed at 96 MPa 
 
 
 
 

 
Figure G7: XRD peaks comparing different sintering temperatures and sintering times for 

microwave sintered 94Sn4Cu2Sb alloys pressed at 96 MPa 
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Figure G8: XRD peaks comparing different sintering temperatures and sintering times for 

conventionally sintered 94Sn4Cu2Sb alloys pressed at 129 MPa 
 

 
Figure G9: XRD peaks comparing different sintering temperatures and sintering times for 

microwave sintered 94Sn4Cu2Sb alloys pressed at 129 MPa 
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Figure G10: XRD peaks comparing different sintering temperatures and sintering times for 

conventionally sintered 91Sn6Cu3Sb alloys pressed at 96 MPa 
 
 

 

 
Figure G11: XRD peaks comparing different sintering temperatures and sintering times for 

microwave sintered 91Sn6Cu3Sb alloys pressed at 96 MPa 
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Figure G12: XRD peaks comparing different sintering temperatures and sintering times for 

conventionally sintered 91Sn6Cu3Sb alloys pressed at 129 MPa 
 
 
 
 
 

 
Figure G13: XRD peaks comparing different sintering temperatures and sintering times for 

microwave sintered 91Sn6Cu3Sb alloys pressed at 129 MPa 
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H. Diffusion Couple Experiments 
 
Table H1: Values of the concentration for Cu into Sn obtained using EDS at various points 
from the interface for Conventional and Microwave Sintering at 220°C  

x (μm) 

Concentration 
of Cu for CS  

(15 min) 

Concentration 
of Cu for CS 

(30min) 

Concentration 
of Cu for MW 

(15min) 

Concentration 
of Cu for MW 

(30min) 
0 91.22 96.91 90.02 94.36 
4 90.10 95.60 87.60 93.30 
8 86.58 94.08 85.58 92.58 

12 84.54 93.04 83.34 91.04 
16 78.82 87.64 77.65 86.54 
20 69.21 80.00 68.17 78.82 
24 61.07 75.56 63.06 75.57 
28 43.67 70.25 49.72 65.09 
32 38.06 58.13 38.06 55.25 
36 26.39 49.73 28.25 46.21 
40 22.39 43.67 22.93 35.06 
44 17.91 37.30 19.57 30.19 
48 12.32 30.86 11.98 24.62 
52 10.39 25.27 11.01 22.77 
56 5.45 18.05 5.11 16.55 
60 4.46 12.92 4.02 11.42 
64 3.28 8.83 3.16 9.33 
68 1.62 6.41 1.49 6.91 
72 1.09 5.56 1.13 6.06 
76 0.66 4.47 0.71 4.97 
80 0.48 3.22 0.24 3.41 
84 0.23 2.81 0.18 2.77 
88 0.11 2.54 0.09 2.41 
92 0.05 2.00 0.05 1.98 
96 0.04 1.32 0.03 1.82 

100 0.02 1.15 0.01 1.21 
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Table H2: Error function values and the z values obtained for Cu into Sn  
x (μm) erf(z) 

CS15 
erf(z) 
CS30 

erf(z) 
MW15

erf(z) 
MW30

z 
CS15 

z 
CS30 

z 
MW15 

z 
MW30

0 0.0878 0.0309 0.0998 0.0564 0.08 0.03 0.09 0.05 
4 0.0990 0.0440 0.1240 0.0670 0.09 0.04 0.11 0.06 
8 0.1342 0.0592 0.1442 0.0742 0.12 0.05 0.13 0.07 

12 0.1546 0.0696 0.1666 0.0896 0.13 0.06 0.15 0.08 
16 0.2118 0.1236 0.2235 0.1346 0.19 0.11 0.21 0.12 
20 0.3079 0.2000 0.3183 0.2118 0.28 0.18 0.29 0.19 
24 0.3893 0.2444 0.3694 0.2443 0.36 0.22 0.34 0.22 
28 0.5633 0.2975 0.5028 0.3491 0.55 0.27 0.48 0.32 
32 0.6194 0.4187 0.6194 0.4475 0.62 0.39 0.62 0.42 
36 0.7361 0.5027 0.7175 0.5379 0.79 0.48 0.76 0.52 
40 0.7761 0.5633 0.7707 0.6494 0.86 0.55 0.85 0.66 
44 0.8209 0.6270 0.8043 0.6981 0.95 0.63 0.92 0.73 
48 0.8768 0.6914 0.8802 0.7538 1.09 0.72 1.10 0.82 
52 0.8961 0.7473 0.8899 0.7723 1.15 0.81 1.13 0.85 
56 0.9455 0.8195 0.9489 0.8345 1.36 0.94 1.38 0.98 
60 0.9554 0.8708 0.9598 0.8858 1.42 1.06 1.45 1.12 
64 0.9672 0.9117 0.9684 0.9067 1.51 1.20 1.52 1.19 
68 0.9838 0.9359 0.9851 0.9309 1.70 1.31 1.72 1.29 
72 0.9891 0.9444 0.9887 0.9394 1.80 1.36 1.79 1.33 
76 0.9934 0.9553 0.9929 0.9503 1.92 1.42 1.90 1.39 
80 0.9952 0.9678 0.9976 0.9659 1.99 1.51 2.15 1.50 
84 0.9977 0.9719 0.9982 0.9723 2.15 1.55 2.21 1.55 
88 0.9989 0.9746 0.9991 0.9759 2.35 1.57 2.35 1.58 
92 0.9995 0.9800 0.9995 0.9802 2.45 1.68 2.45 1.67 
96 0.9996 0.9868 0.9997 0.9818 2.55 1.75 2.56 1.80 

100 0.9998 0.9885 0.9999 0.9879 2.70 1.79 2.75 1.81 
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H2. Sb-Sn Interface 
 
Table H3: Values of the concentration for Sb into Sn obtained using EDS at various points 
from the interface for Conventional and Microwave Sintering at 220°C  

x (μm) 

Concentration 
of Sb for CS  

(15 min) 

Concentration 
of Sb for CS 

(30min) 

Concentration 
of Sb for MW 

(15min) 

Concentration 
of Sb for MW 

(30min) 
0 86.05 89.90 85.02 89.87 
4 43.67 86.52 39.61 83.21 
8 24.62 82.10 21.86 81.01 

12 12.32 69.21 10.69 72.37 
16 6.81 58.13 5.81 61.07 
20 4.46 37.30 3.39 38.83 
24 2.12 30.86 1.56 29.53 
28 1.23 26.39 0.89 24.05 
32 0.23 13.76 0.15 13.39 
36 0.13 10.39 0.13 9.52 
40 0.08 7.03 0.09 7.71 
44 0.02 6.00 0.02 6.40 
48 0.02 5.10 0.02 5.45 
52 0.01 2.84 0.01 3.05 
56 0.00 1.34 0.00 1.50 
60 0.00 0.89 0.00 1.05 
64 0.00 0.43 0.00 0.49 
68 0.00 0.27 0.00 0.31 
72 0.00 0.14 0.00 0.13 
76 0.00 0.09 0.00 0.11 
80 0.00 0.04 0.00 0.04 
84 0.00 0.03 0.00 0.03 
88 0.00 0.02 0.00 0.02 
92 0.00 0.01 0.00 0.01 
96 0.00 0.01 0.00 0.01 

100 0.00 0.01 0.00 0.01 
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Table H4: Error function values and the z values obtained for Sb into Sn  
x (μm) erf(z) 

CS15 
erf(z) 
CS30 

erf(z) 
MW15

erf(z) 
MW30

z 
CS15 

z 
CS30 

z 
MW15 

z 
MW30

0 0.2227 0.1010 0.2763 0.1013 0.20 0.01 0.25 0.09 
4 0.5633 0.1348 0.6039 0.1679 0.55 0.12 0.60 0.15 
8 0.7538 0.1790 0.7814 0.1899 0.82 0.16 0.87 0.17 

12 0.8768 0.3079 0.8931 0.2763 1.09 0.28 1.14 0.25 
16 0.9319 0.4187 0.9419 0.3893 1.29 0.39 1.34 0.36 
20 0.9554 0.6270 0.9661 0.6117 1.42 0.63 1.50 0.61 
24 0.9788 0.6914 0.9844 0.7047 1.63 0.72 1.71 0.74 
28 0.9877 0.7361 0.9911 0.7595 1.77 0.79 1.85 0.83 
32 0.9977 0.8624 0.9985 0.8661 2.16 1.05 2.24 1.06 
36 0.9987 0.8961 0.9987 0.9048 2.28 1.15 2.27 1.18 
40 0.9992 0.9297 0.9991 0.9229 2.36 1.28 2.35 1.25 
44 0.9998 0.9400 0.9998 0.9360 2.61 1.33 2.60 1.31 
48 0.9998 0.9490 0.9998 0.9455 2.66 1.38 2.68 1.36 
52 0.9999 0.9716 0.9999 0.9695 2.83 1.55 2.85 1.53 
56 1.0000 0.9866 1.0000 0.9850 3.03 1.75 3.23 1.72 
60 1.0000 0.9911 1.0000 0.9895 3.12 1.85 3.32 1.81 
64 1.0000 0.9957 1.0000 0.9951 3.22 2.02 3.45 1.99 
68 1.0000 0.9973 1.0000 0.9969 3.55 2.12 3.54 2.09 
72 1.0000 0.9986 1.0000 0.9987 3.65 2.26 3.64 2.28 
76 1.0000 0.9991 1.0000 0.9989 3.59 2.35 3.68 2.31 
80 1.0000 0.9996 1.0000 0.9996 3.95 2.51 3.98 2.53 
84 1.0000 0.9997 1.0000 0.9997 4.00 2.59 4.20 2.57 
88 1.0000 0.9998 1.0000 0.9998 4.10 2.62 4.30 2.63 
92 1.0000 0.9999 1.0000 0.9999 4.40 2.75 4.50 2.77 
96 1.0000 0.9999 1.0000 0.9999 4.50 2.79 4.65 2.83 

100 1.0000 0.9999 1.0000 0.9999 4.69 2.88 4.70 2.86 
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I. Mathematical Modelling 
 

Table I1: Calculated skin depth values for Sn, Cu and Sb in the microwave 

Temperature 
(°C) 

Electrical 
resistivity 

(Sn), ρ 
(μΩm) 

Skin depth 
(Sn), δ 
(μm) 

Electrical 
resistivity 

(Cu), ρ 
(μΩm) 

Skin depth 
(Cu), δ 
(μm) 

Electrical 
resistivity 

(Sb), ρ 
(μΩm) 

Skin depth 
(Sb), δ 
(μm) 

20 0.120 3.51 0.017 1.32 0.420 6.58 
30 0.125 3.59 0.018 1.35 0.436 6.70 
40 0.131 3.67 0.018 1.37 0.453 6.83 
50 0.136 3.74 0.019 1.40 0.469 6.95 
60 0.142 3.82 0.020 1.42 0.486 7.07 
70 0.147 3.89 0.020 1.45 0.502 7.19 
80 0.152 3.96 0.021 1.47 0.518 7.30 
90 0.158 4.03 0.022 1.49 0.535 7.42 
100 0.163 4.10 0.022 1.52 0.551 7.53 
110 0.169 4.17 0.023 1.54 0.567 7.64 
120 0.174 4.23 0.024 1.56 0.584 7.75 
130 0.179 4.30 0.024 1.58 0.600 7.86 
140 0.185 4.36 0.025 1.60 0.617 7.97 
150 0.190 4.42 0.026 1.62 0.633 8.07 
160 0.196 4.49 0.026 1.64 0.649 8.18 
170 0.201 4.55 0.027 1.67 0.666 8.28 
180 0.206 4.61 0.028 1.69 0.682 8.38 
190 0.212 4.67 0.028 1.71 0.698 8.48 
200 0.217 4.73 0.029 1.73 0.715 8.58 
210 0.223 4.79 0.030 1.75 0.731 8.68 
220 0.228 4.84 0.030 1.76 0.748 8.77 

 
Table I2: Calculated power values at the surface of the sample with respect to temperature 

Temp 
(°C) 

Electrical 
resistivity 
ρ (μΩm) 

Specific Heat 
Capacity Cp 
(J/kgK) 

Skin 
depth 
δ (μm) 

Electrical 
conductivity 
σ (Ω-1m-1) 

Surface 
Resistivity 
Rs (Ω-1) 

Power 
Absorbed
P (mW) 

Pem 
(W/m3) 

20 0.120 220.72 3.51 8369808.7 0.0340 9.78 1174 
30 0.125 222.94 3.59 8009386.3 0.0348 10.00 1200 
40 0.131 225.15 3.67 7678723.6 0.0355 10.21 1226 
50 0.136 227.37 3.74 7374280.8 0.0362 10.42 1251 
60 0.142 229.59 3.82 7093058.2 0.0369 10.63 1275 
70 0.147 231.81 3.89 6832496.9 0.0376 10.83 1299 
80 0.152 234.03 3.96 6590400.6 0.0383 11.02 1323 
90 0.158 236.25 4.03 6364873.6 0.0390 11.22 1346 
100 0.163 238.47 4.10 6154271.1 0.0396 11.41 1369 
110 0.169 240.69 4.17 5957159.2 0.0403 11.59 1391 
120 0.174 242.91 4.23 5772281.9 0.0409 11.78 1413 
130 0.179 245.13 4.30 5598534.3 0.0416 11.96 1435 
140 0.185 247.34 4.36 5434940.7 0.0422 12.14 1457 
150 0.190 249.56 4.42 5280636.4 0.0428 12.32 1478 
160 0.196 251.78 4.49 5134852.0 0.0434 12.49 1499 
170 0.201 254.00 4.55 4996900.7 0.0440 12.66 1519 
180 0.206 256.22 4.61 4866167.9 0.0446 12.83 1539 
190 0.212 258.44 4.67 4742101.3 0.0452 13.00 1559 
200 0.217 260.66 4.73 4624203.7 0.0457 13.16 1579 
210 0.223 262.88 4.79 4512026.3 0.0463 13.32 1599 
220 0.228 265.10 4.84 4405162.5 0.0469 13.48 1618 
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Table I3: Calculated values for power losses due to convection 
Ta 

(°C) 
Cp 

(J/mol.K) 
*Prandtl 
Number 

h 
(W/m2K) 

Area,  
A (m2) 

Volume 
(m3) 

Pconv 
(W/m3) 

20 20.786 0.02666 0.267 0.0012936 1.30654E-05 262 
30 21.161 0.02714 0.268 0.0012936 1.30654E-05 265.0 
40 21.535 0.02762 0.270 0.0012936 1.30654E-05 267.0 
50 21.91 0.02810 0.271 0.0012936 1.30654E-05 268.7 
60 22.285 0.02858 0.273 0.0012936 1.30654E-05 270.2 
70 22.659 0.02906 0.274 0.0012936 1.30654E-05 271.7 
80 23.034 0.02954 0.276 0.0012936 1.30654E-05 273.1 
90 23.408 0.03002 0.277 0.0012936 1.30654E-05 274.6 

100 23.783 0.03050 0.279 0.0012936 1.30654E-05 276.0 
110 24.158 0.03098 0.280 0.0012936 1.30654E-05 277.5 
120 24.532 0.03146 0.282 0.0012936 1.30654E-05 278.9 
130 24.907 0.03194 0.283 0.0012936 1.30654E-05 280.3 
140 25.282 0.03242 0.284 0.0012936 1.30654E-05 281.7 
150 25.656 0.03290 0.286 0.0012936 1.30654E-05 283.0 
160 26.031 0.03338 0.287 0.0012936 1.30654E-05 284.4 
170 26.406 0.03386 0.289 0.0012936 1.30654E-05 285.7 
180 26.78 0.03434 0.290 0.0012936 1.30654E-05 287.1 
190 27.155 0.03482 0.291 0.0012936 1.30654E-05 288.4 
200 27.530 0.03530 0.293 0.0012936 1.30654E-05 289.7 
210 27.904 0.03578 0.294 0.0012936 1.30654E-05 291.0 
220 28.279 0.03626 0.295 0.0012936 1.30654E-05 292.3 

* Prandtl Number, Pr= Cpμ/k where Cp=specific heat, μ=viscosity and k=thermal conductivity 
 
 

Table I4: Calculated values for power losses due to radiation 
Ta (°C) σ (W/m2C4) ε Prad (W/m3) 

20 2.60E-09 0.04 0 
30 2.60E-09 0.04 0.01 
40 2.60E-09 0.04 0.02 
50 2.60E-09 0.04 0.06 
60 2.60E-09 0.04 0.13 
70 2.60E-09 0.04 0.25 
80 2.60E-09 0.04 0.42 
90 2.60E-09 0.04 0.67 

100 2.60E-09 0.04 1.03 
110 2.60E-09 0.04 1.51 
120 2.60E-09 0.04 2.13 
130 2.60E-09 0.04 2.94 
140 2.60E-09 0.04 3.95 
150 2.60E-09 0.04 5.21 
160 2.60E-09 0.04 6.75 
170 2.60E-09 0.04 8.60 
180 2.60E-09 0.04 10.81 
190 2.60E-09 0.04 13.42 
200 2.60E-09 0.04 16.47 
210 2.60E-09 0.04 20.02 
220 2.60E-09 0.04 24.12 
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Table I5: Calculated values for temperature rise in the tin alloy in microwaves 

Ta (°C) 
*Prandtl 
Number Pem ΔP ρ T rise (°C) 

20 0.02666 1174 1174.000 0.120 0.266 
30 0.02714 1200 934.397 0.125 0.631 
40 0.02762 1226 958.839 0.131 0.865 
50 0.02810 1251 982.275 0.136 1.066 
60 0.02858 1275 1004.697 0.142 1.226 
70 0.02906 1299 1027.095 0.147 1.368 
80 0.02954 1323 1049.445 0.152 1.486 
90 0.03002 1346 1070.736 0.158 1.575 
100 0.03050 1369 1091.938 0.163 1.658 
110 0.03098 1391 1112.031 0.169 1.718 
120 0.03146 1413 1131.993 0.174 1.775 
130 0.03194 1435 1151.788 0.179 1.822 
140 0.03242 1457 1171.388 0.185 1.850 
150 0.03290 1478 1189.762 0.190 1.882 
160 0.03338 1499 1207.868 0.196 1.898 
170 0.03386 1519 1224.671 0.201 1.919 
180 0.03434 1539 1241.133 0.206 1.936 
190 0.03482 1559 1257.202 0.212 1.939 
200 0.03530 1579 1272.838 0.217 1.948 
210 0.03578 1599 1287.995 0.223 1.946 
220 0.03626 1618 1301.614 0.228 1.951 

* Prandtl Number, Pr= Cpμ/k where Cp=specific heat, μ=viscosity and k=thermal conductivity 
 
 

 
J. Phase Diagrams 

 
       10         20         30         40          5O      60       70        80         90 
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Figure J1: Cu-Sb-Sn phases present at temperatures below the reactions in the solid state 
[73Bla] (ASME Handbook ) 

(Sn) (Sb) 
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Figure J2: Sn-Cu-Sb liquidus projection [73Bla] (ASME Handbook) 

 
 
 
 
 
 

 
Figure J3: Cu-Sb-Sn (Sn) liquidus projection [73Bla] (ASME Handbook) 

 
 
 
 

   Sn 

Sn 
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K.  Micrographs of Cast Pewter  
 

 
Figure K1: Micrograph of a pewter plate  

(The hole is actually porosity in the cast part)  
(Courtesy of Royal Selangor, Malaysia) 

 
 

 
 

Figure K2: Close up of the dark pit (from Figure J1) which indicate some metallic 
crystallites (Courtesy of Royal Selangor, Malaysia) 
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Figure K3: Optical micrograph showing 200X the microstructure of a pewter piece at the 

edge (Courtesy of Royal Selangor, Malaysia) 
 

 
Figure K4: Optical micrograph showing 200X the microstructure of pewter piece at the 

center (Courtesy of Royal Selangor, Malaysia) 
 

 
Figure K5: Optical micrograph showing 500X the micro structure of a pewter cast piece with 

coarse Sn rich dendrites with needles and small particles of Cu6Sn5  
(Courtesy of Royal Selangor, Malaysia) 
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Figure K6: Optical micrograph showing 200X the center of a pewter cast piece- consisting of 

mainly Sn rich dendrictic grains with fine particles of Cu6Sn5 in tin rich solid solution 
(Courtesy of Royal Selangor, Malaysia) 

 

 
Figure K7: Optical micrograph showing 200X the coarse grains of Sn rich  

dendritic structures in the center of a cast piece  
(Courtesy of Royal Selangor, Malaysia) 
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L.  The Error Function 
The error function, erf is given by:  
 

 
 
The following table gives values of erf(z) for 0<z<2.8. 
 
Table L1: Values of erf (z) 
z erf(z) z erf(z) z erf(z) 
0 0 0.55 0.5633 1.3 0.9340 
0.025 0.0282 0.6 0.6038 1.4 0.9523 
0.05 0.0564 0.65 0.642 1.5 0.9661 
0.1 0.1125 0.7 0.6778 1.6 0.9763 
0.15 0.168 0.75 0.7111 1.7 0.9838 
0.2 0.2227 0.8 0.7421 1.8 0.9891 
0.25 0.2763 0.85 0.7707 1.9 0.9928 
0.3 0.3286 0.9 0.7969 2 0.9953 
0.35 0.3794 0.95 0.8209 2.2 0.9981 
0.4 0.4284 1 0.8427 2.4 0.9993 
0.45 0.4755 1.1 0.8802 2.6 0.9998 
0.5 0.5205 1.2 0.9103 2.8 0.9999 

 

 

Figure L1: Relationship of erf (z) vs z 

 


