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Abstract 

Understanding anthropogenic–induced changes in catchment water discharge and 

nutrient loads is critical for eutrophication assessment and sustainable management 

of receiving environments. Anthropogenic activities have increased nutrient export 

from terrestrial systems to lakes, where they may lead to eutrophication. Impacts of 

excess nutrients may be exacerbated by a warming climate. A variety of catchment 

models has been developed to gain insight into the temporal and spatial variations 

in discharge, and suspended sediment and nutrient transport in response to climate 

forcing and rainfall–runoff. These models can be used to predict the effects of 

different land management strategies and climate change on discharge and losses 

of particulate and dissolved constituents of the discharge. The integration of 

individual components of the modelling framework, including climate, catchment 

and aquatic ecosystem models, enables simulation and prediction of present and 

future states of freshwater ecosystems, including their spatial and temporal 

dynamics.  

The study area for this thesis is the Lake Rotorua catchment (~410 km2; Bay 

of Plenty, North Island, New Zealand). Commencement in 1991 of spray irrigation 

of treated wastewater (10 mm d-1) from Rotorua city in the Whakarewarewa Forest 

was envisaged as a solution to eutrophication of Lake Rotorua (surface area 

~80 km2) where treated wastewater (to secondary treatment level) had previously 

been discharged. The Waipa Stream draining the irrigated area (~2 km2) discharges 

to the Puarenga Stream, ultimately entering Lake Rotorua. The Puarenga Stream is 

the second–largest surface inflow to Lake Rotorua and drains a catchment of 77 km2. 

Land use in the Puarenga Stream catchment is mostly plantation forest within which 

there are 16 blocks for spray irrigation of wastewater. The catchment has an area of 

pastoral farmland (8 km2) that is typically fertilised with nitrogen (N) and 

phosphorus (P), as well as being irrigated with cowshed washdown which also 

contributed N and P.  

The overarching aim of this study was to utilize advanced modelling 

technologies to simulate the discharge and sediment and nutrient loads from a 

mixed land use catchment of Puarenga Stream, part of which is spray–irrigated with 

wastewater in Waipa Stream catchment, and to model and understand the impacts 

and effects of different management regimes on the receiving waterbody; a 
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temperate eutrophic lake (Rotorua). To achieve this, the study encompassed three 

main areas of research: 1) a process–based catchment model (Soil and Water 

Assessment Tool) application in the Puarenga catchment of Lake Rotorua under 

different hydrologic conditions, testing the influence of parameter sensitivity; 2) 

improvements to the catchment model (SWAT) to represent high–frequency (daily 

and hourly) variability of nutrient discharges and to simulate different land and 

wastewater irrigation management strategies; and 3) an application of the improved 

catchment model (from (2) above) combined with the lake model (DYRESM–

CAEDYM) to predict the response of Lake Rotorua to future climate in 2090 and 

catchment nutrient discharge. 

The objective of the first research component (Chapter 2) was to examine 

the applicability of SWAT2009 model (version rev488) to the Puarenga catchment. 

The research included quantifying model performance and parameter sensitivity 

during different hydrologic conditions. A Sequential Uncertainty Fitting (SUFI–2) 

procedure was used to auto–calibrate unknown parameter values in the SWAT2009 

model for years 2004–2008. Model validation was performed using: 1) monthly 

instantaneous measurements of suspended sediment (SS), total phosphorus (TP) 

and total nitrogen (TN) concentrations (1994–1997); and 2) daily discharge–

weighted mean concentrations calculated from high–frequency event–based 

samples for concentrations of SS (nine events), TP and TN (both 14 events) at 1 h 

or 2 h frequency (2010–2012). Model error associated with quick–flow was 

underestimated (44% bias for SS, 70% bias for TP) compared with monthly 

measurements derived predominantly from base flow measurements (< 1% bias for 

SS, 24% bias for TP). The use of low–frequency base flow measurements for model 

calibration provided poor simulation results for “flashy” lower–order streams. The 

model results highlight the importance of using high–frequency, event–based 

monitoring data for calibration, to alleviate the potential for underestimation of 

storm–driven fluxes. A manual procedure (one–at–a–time sensitivity analysis) was 

used to quantify parameter sensitivity for the two hydrologically–separated regimes. 

Parameters relating to tuning of main channel processes (e.g., lateral flow slope 

length and travel time) were more sensitive for base flow estimates (particularly 

discharge and SS), while those relating to overland processes (e.g., Manning's n 

value for overland flow) were more sensitive for the quick flow estimates. 

Separating discharge and loads of sediments and nutrients into a base flow and a 
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quick flow component provided important insights into uncertainties in parameter 

values. This research has important implications for performance of hydrological 

models applied to catchments with large fluctuations in stream flow, and in cases 

where models are used to examine scenarios that involve substantial changes to the 

existing flow regime.  

The SWAT2009 model described in Chapter 2 did not have algorithms to 

simulate a complex irrigation operation. The objective of the second research 

chapter (Chapter 3) was therefore to develop a capability to simulate the irrigated 

sub–catchment and examine alternatives for managing the wastewater. A modified 

version of the SWAT2012 code (rev629) using hourly routing algorithms was 

adapted to the Waipa Stream sub–catchment within the Puarenga catchment. A 

similar configuration to Chapter 2 was applied for the modelling except that a finer 

temporal resolution of rainfall records was used in Chapter 3. Hourly records at 

Kaituna rain gauge, which is outside of the irrigated sub–catchment, were used to 

allocate weekly records at Red Stag gauge, which is within the irrigated sub–

catchment, to hourly rainfall values. The modified SWAT2012 model was run at an 

hourly time step for a 10–year (2003–2012) period using the daily irrigation routine, 

then calibrated and validated by comparing weekly average predictions with 

measurements. The optimised values of parameters were different from those in 

Chapter 2. A range of statistical metrics indicated that the SWAT2012 model 

performed well using hourly routing with respect to 10–year (2003–2012) daily 

simulations that were averaged to the weekly measurements for comparison of 

discharge (r ≥ 0.81; p < 0.001) and TN load (r ≥ 0.73; p < 0.001), but it did not 

perform so well for simulations of both SS (0.43 ≤ r ≤ 0.54; p < 0.001) and TP load 

(0.45 ≤ r ≤ 0.54; p < 0.001) in both the calibration and validation periods. Hourly 

routing gave high temporal variability of TN load, although lower than the 

variability of SS and TP loads (i.e., SS > TP > TN variability). Simulations were 

run using daily outputs for an unirrigated scenario and for a range of other 

management options including changes in the area, frequency and amount of 

irrigation. Increasing the irrigation area decreased TP and TN loads in the 

simulation. The impact of changing irrigation frequency from daily to one day each 

week was small for annual TP load simulations. Annual TN load increased 

considerably under weekly irrigation. Compared with low–frequency, high–volume 

wastewater applications (once every seven days), the current strategy of daily 
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wastewater irrigation minimises TN leaching and reduces saturation of the 

subsurface layer. Improvements to the SWAT2012 model and the use of hourly 

routing to capture high–frequency (daily and hourly) variability of nutrient 

discharges and simulations of different wastewater irrigation management regimes 

may assist with future strategies to mitigate P and N losses from the irrigated area 

by refining the area, timing, frequency and amount of irrigation. 

In Chapter 4 the primary objective was to combine the modified SWAT2012 

model from Chapter 3 with the lake model (DYRESM–CAEDYM version 4.0) to 

simulate the trophic state of Lake Rotorua (mean depth 10.8 m), in response to 

nutrient load reductions from wastewater–irrigated forest and farmland in the 

Puarenga Stream catchment under present and future climates. Initial parameter 

values required for the setup of both models were based on the monitoring data that 

were measured close to the start date of the simulation period. A range of statistical 

metrics indicated that the SWAT2012 model performed well (r ≥ 0.88, p < 0.001) 

with respect to comparisons of monthly catchment discharge, TN and TP loads, and 

less so (r = 0.78, p < 0.01) for TN concentration, and not at all well for TP 

concentration (r = 0.17, p > 0.05) for the 4–year (2006–2010) simulation period. 

SWAT2012 model simulations were used for the Puarenga Stream input to the 

DYRESM–CAEDYM model of Lake Rotorua while other inflows used either 

measured data or values derived from other studies. Considering the 1.5–year lake 

residence time for Lake Rotorua, the DYRESM–CAEDYM model was validated 

using monthly data collected at two sites during 2008–2010. The DYRESM–

CAEDYM model performed well (r ≥ 0.63; p < 0.01) for surface water TP and TN 

concentrations in both the calibration and validation periods, but not for bottom–

water nutrient concentrations. Effects of land management practice were then 

examined by simulating four nutrient application scenarios relating to wastewater 

irrigation and farmland fertilisation within the Puarenga catchment. Under the 

scenario of removing nutrient applications from both wastewater irrigation and 

farmland fertilisation, nutrient load reductions were 39.5% for TP and 75.2% for 

TN in the Puarenga catchment but these had much lesser effect on nutrient 

concentrations in the lake, with reduction of 3.5% for TP, 5.7% for TN, and 4.1% 

for chlorophyll a (Chl a; as a proxy for phytoplankton biomass) in surface waters. 

Based on the Intergovernmental Panel on Climate Change Fifth Assessment report, 

for the projected future climate of 2090 under the RCP8.5 scenario (equivalent to a 
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short–wave radiation increase of 8.5 W m-2), annual mean precipitation and solar 

radiation increase by 2.8% and 1.4%, respectively, humidity decreases by 0.6%, 

and air temperature increases by 2.7 °C. Downscaled climate projections for 2090 

were derived from 22 general circulation models and used as input to SWAT and 

DYRESM–CAEDYM models of the catchment and lake, respectively. Simulations 

using a projected climate for 2090 had moderate impact on catchment nutrient loads 

(6% increase for TP, 7.6% decrease for TN), but concentrations in surface waters 

were predicted to increase by 45.9% for TP, 44.5% for TN, and 44.9% for Chl a 

from 2010 to 2090, suggesting that future climate change would increase 

eutrophication. Increased water temperatures would cause more frequent and longer 

periods of thermal stratification in polymictic lakes such as Rotorua, which would 

likely result in greater depletion of dissolved oxygen and possible anoxia of 

hypolimnetic waters. This overarching effect of climate change is likely to be 

through a physical response of the lake in the form of increased stratification and 

greater levels of internal nutrient loading. 

This thesis has demonstrated the effects of different hydrologic conditions 

on SWAT2009 model performance and parameter sensitivity using an application 

to a small, mixed land use catchment, Lake Rotorua, New Zealand. By using the 

hourly routing algorithms and modifying relevant model code to simulate complex 

catchment irrigation operations, the SWAT2012 model performance was improved, 

particularly for high–frequency simulation of SS, TP and TN loads to the receiving 

lake. Finally, the modified SWAT2012 model combined with the lake model 

(DYRESM–CAEDYM) predicted that future climate change should be factored 

into assessments of the future trophic state of Lake Rotorua. 
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1 Introduction 

1.1 Background and motivation 

1.1.1 Climate, catchment and lake interactions 

A lake–based focus of limnology has historically been led by the view of The Lake 

as a Microcosm (Forbes, 1887), with limited consideration of the lake catchment. 

However, the physical combination of climate and catchment (land, streams and 

groundwater), as well as the lake, defines the processes that control lake water 

quantity and water quality (Wetzel, 2001). Land considerations include land cover, 

soil, geology, and topography. Contemporary limnology emphasizes a pluralistic 

view of aquatic ecosystems as connected and interactive elements rather than the 

traditional concept of island–like aquatic ecosystems (Jenkins, 2014). Climate 

variability directly controls lake stratification and mixing through solar radiation, 

air temperature, and wind on a day–to–day basis (Fee et al., 1996). Lake water 

quantity responds to precipitation, discharge of inflows and groundwater recharge, 

while lake water quality responds most strongly to inputs of phosphorus (P) and 

nitrogen (N) from the atmosphere and the associated suspended sediment (SS), P 

and N loads from surface and subsurface inflows from the catchment (Leavitt et al., 

2009). A conceptual framework for the interactions between climate, catchment and 

lake ecosystems which is considered in this thesis is shown in Fig. 1.1. 
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Figure 1.1 A conceptual framework for the connected and interactive elements of climate, catchment (land and stream) and the lake, showing the 

main processes of hydrological and nutrient cycling. After Poole et al. (2002). Land considerations include land cover, soils, geology and topography.  
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1.1.2 Hydrologic cycle and nutrient dynamics 

The main components in the hydrological cycle are precipitation, interception by 

vegetation, evapotranspiration, soil water percolation, lateral flow recharge, 

groundwater recharge, surface runoff, water supply and seepage (Kuchment, 2004). 

Some of these processes are shown in Fig. 1.1. A catchment is a basin–shaped area 

of land that contributes to surface and groundwater (Bogaart and Troch, 2006). It 

receives water from precipitation, and is drained by dendritic stream networks at 

the land surface and by subsurface waters, which transport sediment, nutrients and 

other organic and inorganic compounds (Winter et al., 1998). Smaller streams of 

lower order converge into mainstream systems. The drainage area of a tributary is 

referred to as its sub–catchment, a number of which occur within a whole catchment. 

Water movement driven by rainfall and runoff determines the catchment shape and 

the extent of soil erosion. Soil texture and its drainage capacity, together with 

evaporative fluxes, determine the amount of water lost from the catchment 

(Tarboton, 2003). Inflow water sources and outflow type determine lake 

hydrological types, which can be classified into seepage lakes (mainly fed by 

precipitation), drainage lakes (mainly fed by groundwater or surface runoff and 

groundwater together), and impounded lakes (artificially controlled) (Shaw et al., 

2004). 

Nutrient biogeochemical processes in soils, streams and lakes are similar, 

mediated principally by plant uptake and organic matter processing in soils (Haider 

et al., 1989) and algae and bacteria in streams and lakes (Hickman and Penn 1977). 

Key biogeochemical processes influencing nitrogen cycling include 1) 

decomposition, 2) organic N mineralisation, 3) settling, 4) ammonium nitrification, 

5) sediment release, 6) sediment adsorption, 7) plant uptake, 8) volatilisation, 9) 

nitrate denitrification, and 10) leaching (Fig. 1.2; Amatya et al., 2013). Key 

biogeochemical processes influencing phosphorus cycling include 1) 

decomposition, 2) organic P mineralisation, 3) settling, 4) mineral P sediment 

desorption/release, 5) adsorption, 6) plant uptake and 7) leaching (Fig. 1.3; 

Radcliffe et al., 2015).  
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Figure 1.2 Key biogeochemical processes for nitrogen in soils, streams and lakes (dashed line indicates nitrate leaching only in water movement 

through soils). Adapted from Amatya et al. (2013). 
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Figure 1.3 Key biogeochemical processes for phosphorus in soils, streams and lakes 

(dashed line indicates soluble phosphorus leaching only in water movement in soils). 

Adapted from Radcliffe et al. (2015). 

 

Hydrological and biogeochemical processes in both terrestrial and in–

stream environments are affected by a number of different meteorological and 

physical conditions (Abell et al., 2013). Drainage patterns of catchments are also 

determined by the spatial variances of geomorphology and land use (Mulligan, 

2004), which can result in spatial differences between lakes (Chen et al., 2012). 

Temporal variations in climate affect surface runoff and groundwater recharge in a 

catchment, and the resultant discharges to the lake. In turn, lake water density 

controls water column mixing and stratification, which largely control the internal 

distribution of nutrients (Shaw et al., 2004).  

1.1.3 Impacts of climate change on the lake catchment 

Projections of future climate include increasing air temperature coupled with 

changes in the seasonality of precipitation (IPCC, 2013). These changes will affect 

the hydrological cycle and nutrient biogeochemical cycling for both catchment 
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(land and stream) and lake environments (Schneiderman et al., 2010) (see Fig. 1.1). 

Warmer air temperatures will warm lake water and increase phytoplankton growth 

in surface waters, leading to changes in in–lake nutrient dynamics (Arnell et al., 

2015). They will also increase soil and in–stream water temperature, which will 

influence terrestrial and in–stream nutrient processing, indirectly affecting lake 

water quality by altering the magnitude and seasonality of nutrient delivery to lakes 

(Whitehead et al., 2009). Future climate impacts may have a synergistic effect on 

in–lake nutrient dynamics through potential increases of nutrient loadings from 

catchment, increases of phytoplankton growth and greater strength and duration of 

stratification in lakes (Hamilton et al., 2016). However, nutrient loadings from 

catchments may decrease with climate warming because warmer air temperatures 

increase evaporation, resulting in less runoff (e.g., Robertson et al., 2016). There 

may also be potential for antagonistic interactions amongst lakes and catchments in 

terms of responses to climate change. 

1.1.4 Catchment and lake models 

The growing availability of advanced modelling technologies makes it possible to 

better replicate and simulate the natural hydro–biogeochemical system (Bouwman 

et al., 2013). Individual modelling components include the climate, catchment and 

aquatic ecosystem. The integration of these tools enables the simulation and 

prediction of present and future states of freshwater ecosystems, including their 

spatial and temporal dynamics, however, there is potential for uncertainties from 

the catchment model output to be amplified in lake model simulations (Couture et 

al., 2014).  

Various catchment models have been developed and applied to evaluate the 

effects of variability in climate and soil properties on catchment hydrology and 

nutrient mass export (Devi et al., 2015). Generally, there are four types of catchment 

models (Pechlivanidis et al., 2011); empirically–based, conceptually–simplified, 

process–based, and semi–empirical process–based (i.e., intermediate between 

empirically–based and process–based). Relevant examples of four types of 

catchment models are shown in Table 1.1. Catchment information required for 

empirical models can vary with the questions being asked of the model but is mostly 

fairly simple. For other model types, the data requirements generally include 1) 

climate data including precipitation, air temperature, solar radiation, relative 
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humidity, and wind; 2) catchment topographic information; 3) soil properties; 4) 

land use type; 5) land management practices; 6) point sources nutrient discharges; 

and 7) other physical parameters representing specific catchment properties, some 

of which may be specific to a model. 

Model selection largely depends on the relationship between the 

predictability of each individual model and the specific research objectives 

(Marshall et al., 2006). Empirically–based catchment models use statistical 

relationships in the observed data (Merz et al., 2006). These relationships are 

commonly calculated using statistical or neural network methods between the 

variables of interest and other environmental factors related to climate conditions, 

land use types and soil properties. Empirically–based catchment models may have 

difficulty when spatial and temporal variances fall outside of those tested by the 

model and there will be limited confidence for predictions in other catchments 

(Bouwman et al., 2013). TOPMODEL (Topography MODEL) is a simplified 

rainfall–runoff conceptual model (Beven et al., 1995). It estimates water content in 

saturated soils by assuming that the gradient of hydraulic conductivity is equal to 

the surface land slope. However, the application of TOPMODEL is limited to 

catchments that have moderate slope and short dry periods (Piñol et al., 1997). 

Process–based models reflect the temporal variances arising from different climatic 

conditions (such as low rainfall or storm events) and the spatial distributions of 

different geomorphologies, land uses and soil characteristics throughout the 

simulated catchment (Garambois et al., 2013). Process–based models predict values 

of state variables for simulations over a range of time scales from hourly, daily and 

monthly to annual time. Borah and Bera (2003) verified that process–based models 

of MIKE SHE (MIKE Système Hydrologique Européen; Refsgaard and Storm, 

1995), SWAT (Soil and Water Assessment Tool; Arnold et al., 1998) and HSPF 

(Hydrologic Simulation Program FORTRAN; Donigian et al., 1995) can be used to 

predict hydrology and sediment and nutrient loadings from large and complex 

catchments. 

MIKE SHE is a commercial model that uses numerical methods to simulate 

the interactions between stream flow and groundwater flow (Refsgaard and Storm, 

1995). The model is used for long–term simulations and large–size catchments 

(Graham and Butts, 2005). It requires large amounts of input data and a large 

number of physical parameters. Similarly, the HSPF model also requires extensive 
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input data information but also has lumped parameters, which results in time–

consuming model calibration procedures (Im et al., 2003). The HSPF model does 

not include spatially explicit calibration for land use and soil datasets, and depends 

on the empirical relationships for physical process simulations (Yang and Wang, 

2010). This could limit HSPF applications to catchments with coarse resolution of 

spatial datasets or gaps in hydrologic or climate data. By contrast, the SWAT model 

requires moderate amounts of information for model configuration and calibration. 

It includes spatially–distributed land use and soil datasets and can be applied for 

different sizes of catchments (e.g., Ostojski et al., 2014). The SWAT model is more 

effective for applications to catchments where available data are scarce (Xie and 

Lian, 2013) and it is better suited for extending optimised parameters from one 

catchment to other similar catchments or to future climate projections (van Liew 

and Garbrecht, 2003). Both SWAT and HSPF models use a Hydrologic Response 

Unit (HRU) concept to divide sub–catchments into smaller units. The SWAT model 

predicts runoff and nutrient transport independently for each HRU, with predictions 

summed to obtain the total for each sub–catchment (Bryant et al., 2006). By contrast, 

HSPF simulates discharge and nutrients by routing successively to downslope 

HRUs (Yang and Wang, 2010). Saleh and Du (2004) compared the performance of 

the SWAT and HSPF models on an intensive dairy area in central Texas and 

verified that the SWAT model provided better simulations of daily mean nutrient 

load than the HSPF simulations. 

Semi–empirical process–based models (e.g., SPARROW; SPAtially 

Referenced Regression on Watershed attributes) combine statistical regression with 

model physical structure to generate relationships between in–stream measured data 

and catchment spatial data (Smith et al., 1997). However, the SPARROW does not 

deal with temporal variances of different simulated variables. Model simulations 

are suitable for long time periods and large–size catchment where there can be a 

steady state approximation (Preston et al., 2011). 

The SWAT model was selected for this thesis due to its ability to simulate 

different catchment land management practices and to reproduce the temporal and 

spatial variability in catchment discharge and nutrient loadings (Neitsch et al., 

2011). The SWAT model was developed by the Agricultural Research Services of 

the United States Department of Agriculture (USDA ARS, Arnold et al., 1998). It 

requires a digital elevation model (DEM), spatially–distributed land use and soil 



 

9 

information, and meteorological data for simulations. The minimum meteorological 

data requirements to run SWAT are hourly or daily precipitation, and daily 

minimum and maximum air temperature. The SWAT model integrates spatially–

distributed information into a GIS (Geographic Information System) platform. 

SWAT delineates a study catchment and divides it into sub–catchments based on 

DEM data and a stream digital map is used to “burn–in” channel locations to create 

accurate flow routings. The model then creates numerous HRUs, each based on 

specific topographic conditions, land use types and soil properties. Model 

simulations are at the HRU level, with temporal (ranging from hourly to annual) 

and spatial (ranging unlimited) variances then summarised for each sub–catchment. 

SWAT passes sub–catchment output to the relevant stream channel and calculates 

the in–stream discharge and nutrient transport to the catchment outlet. The main 

hydrological components in SWAT are interception by vegetation, 

evapotranspiration, soil water percolation, lateral flow recharge, groundwater 

recharge, surface runoff, water supply and seepage. 

Two methods can be chosen for the calculation of surface runoff in SWAT. 

The use of Green−Ampt (Green and Ampt, 1911) infiltration method is used in this 

thesis for surface runoff simulations. Alternately, a semi–empirical the Soil 

Conservation Service (SCS) curve number (CN) method (USDA−SCS, 2004) can 

be used for surface runoff simulations. Sediment yield is estimated using the 

modified universal soil loss equation (MUSLE; Williams, 1975). Different forms 

of nitrogen and phosphorus within soil profiles are also simulated based on soil 

temperature, which the key factor for nutrient cycling in SWAT. Temperature of a 

soil layer is estimated as a function of minimum and maximum air temperature, soil 

surface temperature, and damping depth (i.e., the soil depth at which soil 

temperature no longer varies with climate). SWAT also has decay functions for in–

stream nutrient transport simulations where water temperature determines nutrient 

biogeochemical processes in stream flows.  

Two sets of routing algorithms (hourly and daily) can be used to calculate 

hydrological and nutrient transport processes in SWAT. The use of each set of 

algorithms is related to the temporal resolution (daily and hourly) of hydrological 

forcing data. Daily routing is commonly used and fits with most hydrological 

forcing data available at daily scale. Hourly routing is required for both hourly 

hydrological forcing data and the Green and Ampt infiltration method (Green and 
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Ampt, 1911), to simulate flow routing at an hourly time step. Hourly routing has 

been tested in simulating discharge and sediment load at hourly intervals (Jeong et 

al., 2010; Jeong et al., 2011). The SWAT model has also been used to evaluate 

impacts of land management practices on discharge and nutrient transport from 

agricultural areas (White et al., 2009; Aouissi et al., 2014). Our study site, a 

wastewater–irrigated forestry area in Rotorua, New Zealand, is steep and the 

discharge responds rapidly to rainfall events. Hourly routing algorithms in the 

SWAT model were therefore applied to simulate discharge and both dissolved and 

total nutrient species fluxes. Forcing data at hourly time steps may be able to better 

represent the dynamics of nutrients transported in steep areas of small catchments 

(Jeong et al., 2011).  

With regards to modelling nutrient concentrations and the response in 

receiving water bodies to catchment inputs, the traditional approach has been to use 

a mass balance with empirically based parameters and an assumption of steady–

state equilibrium (Vollenweider, 1975). These models assume the lake is mixed 

completely with invariant concentrations, which is applicable only to a subset of 

the entire time. For New Zealand, complete lake mixing occurs in winter. The 

assumption of equilibrium is also contrary to the real system which is dynamic 

according to changes in, for example, climate and invasive species (Rahel and 

Olden, 2008). By contrast, process–based aquatic ecosystem models use numerical 

equations to examine the effects of internal and external nutrient dynamics on in–

lake biogeochemical processes (Kim et al., 2014). Relevant examples of 

empirically–based and process–based aquatic ecosystem models are shown in Table 

1.2. The input–output lake model (Vollenweider, 1975) is empirically–based, using 

input and output loads as a basis for calculations. CE–QUAL–W2 model is a two–

dimensional (longitudinal and vertical) process–based ecosystem model with 

hydrodynamic and water quality components (Cole and Wells, 2006). It assumes 

lateral homogeneity and hydrostatic approximation for the vertical momentum 

equation, and it is designed for long and narrow water bodies which may considered 

as laterally invariant in water quality constituents. Another water quality model, 

WASP (Water Quality Analysis Simulation Program) runs with spatial delineation 

from one to three dimensions (Di Toro et al., 1983), however, it assumes complete 

lake mixing and requires extensive data information for model calibration (Kannel 

et al., 2011).  
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DYRESM–CAEDYM is a one–dimensional (1–D) hydrodynamic–

biogeochemical aquatic ecosystem model and can be used to simulate vertical 

gradients of lake water characteristics (Hamilton and Schladow, 1997) such as Lake 

Rotorua which has simple morphometry. The DYRESM model was developed at 

the Centre for Water Research of the University of Western Australia (Imberger et 

al., 1978). DYRESM–CAEDYM comprises DYRESM (DYnamic REservoir 

Simulation Model) and CAEDYM (Computational Aquatic Ecosystem DYnamics 

Model) and can be run over the time periods varying from hours to decades. 

DYRESM uses the horizontal Lagrangian layer structure, i.e., the thickness of 

horizontal layers remains homogeneous within the user–defined limits. Layer 

mixing is driven by the surface wind causing both momentum and turbulent kinetic 

energy to be transmitted to each horizontal layer. CAEDYM simulates nutrient 

concentrations, dissolved oxygen, suspended sediments and phytoplankton biomass. 

DYRESM–CAEDYM requires information on lake morphology, meteorological 

data, inflow information (e.g., water temperature, discharge volume, nutrient 

concentrations), and withdrawal water volume to calculate a water balance. 

DYRESM–CAEDYM is used in this thesis because of its ability to accurately 

simulate vertical distributions of lake water temperature and density and ecological 

interactions between phytoplankton species and other biogeochemical variables 

over long (i.e., multi–annual) time scales (Hamilton and Schladow, 1997).  

DYRESM–CAEDYM has not been previously integrated with outputs from 

the SWAT model for New Zealand lakes. Offline coupling of these two models (i.e., 

output from SWAT as input for DYRESM–CAEDYM to simulate variables of 

interest) would enable evaluation of the impacts of catchment–based land use 

practices on water quality and trophic state of receiving lakes (Hamilton et al., 

2016). Initial parameter values required for both models were based on the 

monitoring data that were measured close to the start date of the simulation period. 

For the study catchment in this thesis, some catchment hydrological and nutrient 

parameters in SWAT were derived from existing data or knowledge gained in other 

studies. Others were assigned during a calibration process. For the DYRESM–

CAEDYM application to the study lake in this thesis, lake water quality parameters 

were derived with reference to previous work done for Lake Rotorua (Rutherford 

et al., 1996; Burger et al., 2008; Hamilton et al., 2012; Abell et al., 2015). 
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Table 1.1 Comparisons of a selection of catchment models. The SWAT model was applied in this thesis 

Model type Empirically–based 
Conceptually–

simplified 
Process–based 

Semi–empirical 

process–based 

Catchment 

model 
ANN TOPMODEL MIKE SHE HSPF SWAT SPARROW 

Model 

description 

Artificial Neural 

Network 

(backpropagation 

algorithm) 

Topography 

MODEL 

MIKE Système 

Hydrologique 

Européen 

Hydrologic 

Simulation 

Program 

FORTRAN 

Soil and Water 

Assessment Tool 

SPAtially 

Referenced 

Regression on 

Watershed 

attributes 

Model 

source 

Rumelhart and 

McClelland (1986) 

Beven and 

Kirkby (1979) 

Refsgaard and 

Storm (1995) 

Donigian et al. 

(1995) 
Arnold et al. (1998) Smith et al. (1997) 

Method 

Statistical 

relationships 

between the 

variable of interest 

and other 

environmental 

factors 

Assuming the 

gradient of 

hydraulic 

conductivity is 

equal to the 

surface land 

slope 

Numerical methods 

for simulating the 

interactions 

between stream 

flow and 

groundwater flow 

Numerical 

methods: 

Hydrologic 

Response Unit 

(HRU) 

Numerical 

methods: HRU 

concept 

Combines 

statistical 

regression with 

model physical 

structure 

Limitations 

and 

strengths 

1) Not able to 

reproduce the 

spatial and 

temporal variances 

of simulations; 

2) Not applicable 

to other catchments 

without re–

calibration 

Limited to the 

catchment that 

has moderate 

geomorphology 

and brief dry 

periods 

1) Requires large 

amounts of input 

data and model 

physical 

parameters; 

2) Suitable for 

long–term period 

and large–size 

catchment 

1) Numerous 

parameters for 

model setup; 

2) Time consuming 

in calibrations 

3) Not able to 

apply to the 

catchment where 

there are gaps or 

coarse resolution of 

datasets 

1) Open source 

code 

2) Able to apply for 

short–term periods 

and for small or 

moderate–size 

catchment 

3) Able to apply to 

catchments where 

data are sparse 

1) Not able to 

reproduce the 

temporal variances 

of simulations; 

2) Suitable for 

long time periods 

and large–size 

catchments to 

provide a steady 

state condition 
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Table 1.2 Comparisons of a selection of lake models. DYRESM–CAEDYM was applied in this thesis. 

Model type Empirically–based Process–based 

Lake model 
The input–output 

model 
CE–QUAL–W2 DYRESM–CAEDYM WASP 

Model 

description 

Reference to the 

phosphorus loading 

concept in limnology 

Hydrodynamic and water 

quality model 

DYnamic REservoir Simulation 

Model–Computational Aquatic 

Ecosystem DYnamics Model 

Water Quality Analysis 

Simulation Program 

Model 

source 
Vollenweider (1975) Cole and Wells (2006) 

Imberger et al. (1978) 

Hipsey et al. (2006) 
Di Toro et al. (1983) 

Method 

Mass balance approach 

under a steady–state 

equilibrium 

Two dimensional 

(longitudinal and vertical) 
One dimensional (vertical) 

Three dimensional 

(horizontal, longitudinal 

and vertical) 

Limitations 

and 

strengths 

Assuming complete 

lake mixing with no 

spatial variations in 

concentration 

1) Assuming lateral 

homogeneity and 

hydrostatic for vertical 

momentum equation; 

2) Designed for long and 

narrow water bodies 

1) Assuming the thickness of 

horizontal layers remains 

homogeneous; 

2) Model running from hours to 

decades 

 

1) Assuming lake 

complete mixing; 

2) Requires extensive 

data information for 

model calibration 
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1.1.5 Study area 

The study area for this thesis is the Lake Rotorua catchment (Bay of Plenty, 

North Island, New Zealand), the results of which form the focus of Chapters 2–4. 

The Rotorua area is located in North Island, New Zealand and has a warm, 

temperate climate. Annual mean precipitation of 1252 mm, air temperature 12.6 °C, 

relative humidity 81%, short–wave radiation 170 W m-2 and wind speed 3.6 m s-1 

(at 10 m above the water surface) for Lake Rotorua were estimated for July 2006 – 

June 2010 (National Climatic Database; available at http://cliflo.niwa.co.nz/). Lake 

Rotorua is a large (area 80.8 km2), shallow (mean depth 10.8 m), polymictic lake 

with nine major inflows (mean annual discharge, 0.3–2.6 m3 s-1) and nine minor 

inflows (mean annual discharge, 0.01–0.06 m3 s-1). The only outflow (mean annual 

discharge 18.5 m3 s-1) is the Ōhau Channel (Hoare, 1980). Mean annual discharge 

of inflows and the outflow were based on the measured or estimated hydrologic 

data in Abell et al. (2015). The residence time of Lake Rotorua is 1.5 year, provided 

by multiplying lake area by mean depth and dividing by the outflow discharge. 

As a nationally–iconic water body, Lake Rotorua plays a significant role in 

recreation and tourism in New Zealand (Hamilton et al., 2012). However, the water 

quality of Lake Rotorua has declined over several decades due to increasing inputs 

of N and P (Mueller et al., 2015). The Rotorua City sewage treatment plant was one 

of the contributors to this water quality decline through direct inputs of treated 

wastewater into the lake prior to 1991. The Rotorua Lakes Council commenced a 

scheme of spray irrigation disposal of treated municipal wastewater within the 

Whakarewarewa Forest in 1991, aiming to reduce loads of N and P entering Lake 

Rotorua (Lowe et al., 2007). The average municipal wastewater (10 mm d-1) from 

Rotorua City is first treated at the Rotorua Wastewater Treatment Plant and is then 

pumped to holding ponds before being spray–irrigated through above–ground 

sprinklers onto a forest area of 193 ha. The applied N is partially removed by plant 

uptake and microbial denitrification (Barton et al., 2005), while the applied P is 

mostly removed through the highly adsorptive soil that has a high P retention (Beets 

et al., 2013). Nutrients not removed from these processes will generally be 

discharged from the Waipa Stream sub–catchment, ultimately entering Lake 

Rotorua via the Puarenga Stream. The Puarenga Stream is the second–largest 

surface inflow to Lake Rotorua and drains a catchment of 77 km2. It has an area of 

pastoral farmland (8 km2) that is typically fertilised with N and P to increase 

productivity (Anastasiadis et al., 2011).  
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1.2 Thesis objectives 

The objective of this thesis was to use numerical model applications to enhance 

understanding of the temporal dynamics of N and P loads to Lake Rotorua, to 

investigate how delivery of these nutrients affects water quality of the lake, and to 

examine the effect of different catchment nutrient management regimes and 

projected climate change. To achieve this, the study encompassed 1) a process–

based catchment model (SWAT) application to the Puarenga catchment of Lake 

Rotorua under different hydrologic conditions, testing the influence of parameter 

sensitivity; 2) improvements to the SWAT model to represent high–frequency (daily 

and hourly) variability of nutrient discharges and to simulate different land 

management and wastewater irrigation management strategies; and 3) an 

application of the improved catchment model (from (2) above) combined with the 

lake model to predict the response of eutrophic, temperate Lake Rotorua to future 

climate and catchment nutrient discharge. 

 

1.3 Thesis overview 

This thesis encompasses three main research chapters (Chapters 2–4), which have 

been written individually in a style of scientific papers.  

Chapter 2 quantifies SWAT model performance and parameter sensitivity 

during different hydrologic conditions. Model evaluation was performed using two 

data sets: low–frequency data collected from monthly instantaneous measurements 

and high–frequency data measured during rainfall events. Simulated discharge, SS, 

total P (TP) and total N (TN) loads were partitioned into base flow and quick flow 

components. Parameter sensitivity for the two hydrologically–separated regimes 

was quantified.  

Chapter 3 further develops the catchment model used in Chapter 2 to 

investigate the impacts of wastewater irrigation on discharge and water quality of 

the major stream draining the irrigated area. This study developed a sub–catchment 

modelling approach to allow for examination of high–frequency (daily and hourly) 

variability of nutrient discharges and alternatives for managing the wastewater. 

Scenario simulations were designed to improve the understanding of the impacts of 

wastewater irrigation by refining the area, timing and frequency of irrigation. 

Chapter 4 applies the catchment model from Chapter 3 and simulates effects 

of nutrient reductions and future climate on Lake Rotorua. The objective of this 

study was to use combined climate–catchment–lake models to simulate the effect 
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on lake trophic state of nutrient load reductions from wastewater–irrigated forest 

and farmland under present and future climates. Downscaled climate projections 

for 2090–2099 were used as input to the improved catchment model and one–

dimensional lake water quality model. 

The SWAT model was used in Chapters 2–4 for the catchment simulations, 

and the lake model (DYRESM–CAEDYM) was used in Chapter 4 for the temporal 

assessments of receiving environment responses to catchment inputs. A description 

of data used to configure and calibrate the SWAT model for each chapter is shown 

in Table 1.3. This comparison allows the reader to assess the differences in 

optimised parameter values between chapters and the statistical values used to 

indicate model performance. 

The source code of the catchment model (SWAT) has undergone major 

improvements since the thesis commenced in 2012. The original source code of 

SWAT2009_rev488 version (released in November 2011) was applied in Chapter 2 

to provide insights into the parameter sensitivity and model performance varying 

for two hydrologically–separated regimes. Along with the development of SWAT 

and GIS user interfaces, the latest version of SWAT2012_rev629 source code 

(released in July 2014) was then applied in the further chapters. However, neither 

the original SWAT2012_rev629 source code was found to be able to simulate a 

complex irrigation operation. Therefore, SWAT2012_rev629 source code was 

modified and applied in Chapter 3 for two purposes; 1) to simulate the complex 

irrigation schedules and 2) to examine the high–frequency variability of discharge 

and nutrient mass export from the catchment using hourly routing algorithms. 

Optimised parameter values were also re–examined with the modified 

SWAT2012_rev629 executable code which was applied in Chapter 4 and combined 

with the lake model (DYRESM–CAEDYM, version 4.0) to simulate the effects of 

catchment land use and management changes on the lake trophic state under both 

present and future climate. 

The statistic Nash–Sutcliffe efficiency (NSE) used in Chapter 2 was 

substituted by root mean square error (RMSE) and mean absolute error (MAE) in 

Chapters 3–4 because of the findings in Krause et al. (2005) and Price et al. (2012). 

They recommended modified forms of NSE should be used for model evaluation 

based on the measurements and simulations that are driven by different climate 

conditions (e.g., low rainfall versus storm events). The scientific objectives in 

Chapters 3–4 were to use RMSE and MAE to provide statistical measures of model 

fit (e.g., Abell et al., 2015). 
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Table 1.3 Description of data used to configure, calibrate and validate the SWAT model for each chapter. SS: suspended sediment; DRP: dissolved 

reactive phosphorus; TP: total phosphorus; NO3–N: nitrate–nitrogen; NH4–N: ammonium–nitrogen; TKN: total Kjeldahl nitrogen (NH4–N + 

organic N); TN: total nitrogen.  

 (I) Catchment measured data 

 Chapter 2 Chapter 3 Chapter 4 

Study catchment 
Both Puarenga Stream catchment 

and Waipa Stream catchment 
Waipa Stream catchment 

Puarenga Stream catchment 

and Waipa Stream 

catchment separately 

Rain gauge used Kaituna rain gauge 
Red Stag rain gauge 

and Kaituna rain gauge 

Red Stag rain gauge 

and Kaituna rain gauge 

Rainfall data 

frequency 
Hourly records 

Hourly records at Kaituna 

rain gauge used to proportion 

weekly records at Red Stag 

to hourly rainfall 

Hourly records at Kaituna 

rain gauge used to 

proportion weekly records at 

Red Stag to hourly rainfall 

Key land 

management area 

Wastewater–irrigated area 

and pastoral farmland 
Wastewater–irrigated area 

Wastewater–irrigated area 

and pastoral farmland 

Soil properties Allophanic and pumice soils Allophanic soils Allophanic and pumice soils 

Monitoring site used FRI stream–gauge Waipa downstream station FRI stream–gauge 

Stream discharge 

measurements used 

15–min stream discharge data aggregated as 

daily mean values (1994–1997; 2004–2008) 

Weekly flow–proportional 

samplings converted to 

weekly mean discharge data 

(2003–2012) 

15–min stream discharge 

data aggregated as daily 

mean values (2006–2010) 

Stream water quality 

measurements used 

1) Monthly samples of SS, TP and TN 

concentrations assumed constant for the 

month (1994–1997; 2004–2008); 

2) Daily discharge–weighted mean 

concentrations calculated from high–

frequency event–based samples for 

concentrations of SS (nine events), TP and 

TN (both 14 events) at 1–2 h frequency 

(2010–2012) 

Weekly mean load calculated 

from weekly flow–

proportional measurements 

of SS, DRP, TP, NO3–N, 

NH4–N, TKN, and TN 

concentrations (2003–2012) 

Monthly samples of SS, 

DRP, TP, NO3–N, NH4–N, 

TKN, and TN 

concentrations assumed 

constant for the month 

(2006–2010) 
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Table 1.3 (continued) Description of data used to configure, calibrate and validate the SWAT model for each chapter. r: Pearson product moment 

correlation coefficient; NSE: Nash–Sutcliffe efficiency; RMSE: root mean square error; MAE: mean absolute error; PBIAS: percent bias. 

 (II) Catchment model used data 

 Chapter 2 Chapter 3 Chapter 4 

Study catchment 
Both Puarenga Stream catchment 

and Waipa Stream catchment 
Waipa Stream catchment 

Puarenga Stream catchment and 

Waipa Stream catchment 

separately 

Model code used 
SWAT2009_rev488 unmodified 

code 

SWAT2012_rev629 modified 

code 

SWAT2012_rev629 modified 

code 

Model routing used Hourly routing Hourly routing Hourly routing 

Calibration period 2004–2008 2003–2010 2006–2009 

Validation period 1) 1994–1997; 2) 2010–2012 2011–2012 2009–2010 

Modelled data 

frequency  

Daily mean discharge and nutrient 

load simulations from which 

nutrient concentrations calculated 

Daily mean discharge and 

nutrient load simulations 

averaged to weekly time scale 

Daily and hourly mean discharge 

and nutrient load simulations 

from which nutrient 

concentrations calculated 

Statistics used for 

model performance 
r, NSE, PBIAS r, RMSE, MAE, PBIAS r, RMSE, MAE, PBIAS 
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Table 1.3 (continued) Description of data sources used to configure, calibrate and validate the SWAT model for each chapter. 

Data Source 

Digital elevation model (DEM) and digitised stream 

network 
Bay of Plenty Regional Council (BoPRC) 

Meteorological data and rainfall data National Climate Database (available at http://cliflo.niwa.co.nz/); BoPRC 

Land use New Zealand Land Cover Database Version 2; BoPRC 

Soil characteristics 
New Zealand Land Resource Inventory & digital soil map (available at 

http://smap.landcareresearch.co.nz) 

Stream discharge and water quality measurements BoPRC; Abell et al., 2013 
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2 Effects of hydrologic conditions on SWAT model 

performance and parameter sensitivity for a small, 

mixed land use catchment in New Zealand 

2.1 Abstract 

The Soil Water Assessment Tool (SWAT, version rev488) was configured for the 

Puarenga Stream catchment (77 km2), Rotorua, New Zealand. The configuration 

was used to quantify model performance and parameter sensitivity during different 

hydrologic conditions. A Sequential Uncertainty Fitting (SUFI–2) procedure was 

used to auto–calibrate unknown parameter values in the SWAT2009 model for 

years 2004–2008. Model validation was performed using: 1) monthly instantaneous 

measurements of suspended sediment (SS), total phosphorus (TP) and total nitrogen 

(TN) concentrations (1994–1997); and 2) daily discharge–weighted mean 

concentrations calculated from high–frequency event–based samples for 

concentrations of SS (nine events), TP and TN (both 14 events) at 1–2 h frequency 

(2010–2012). Model error associated with quick–flow was underestimated (44% 

bias for SS, 70% bias for TP) compared with monthly measurements derived 

predominantly from base flow measurements (< 1% bias for SS, 24% bias for TP). 

The use of low–frequency base flow measurements for model calibration provided 

poor simulation results for “flashy” lower–order streams. The model results 

highlight the importance of using high–frequency, event–based monitoring data for 

calibration, to alleviate the potential for underestimation of storm–driven fluxes. A 

manual procedure (one–at–a–time sensitivity analysis) was used to quantify 

parameter sensitivity for the two hydrologically–separated regimes. Parameters 

relating to tuning of main channel processes (e.g., lateral flow slope length and 

travel time) were more sensitive for base flow estimates (particularly discharge and 

SS), while those relating to overland processes (e.g., Manning’s n value for 

overland flow) were more sensitive for the quick flow estimates. Separating 

discharge and loads of sediments and nutrients into a base flow and a quick flow 

component provided important insights into uncertainties in parameter values. This 

research has important implications for performance of hydrological models 

applied to catchments with large fluctuations in stream flow, and in cases where 

models are used to examine scenarios that involve substantial changes to the 
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existing flow regime. Antecedent hydrologic conditions should be considered in 

calibration of parameters and application of hydrologic models. 

 

2.2 Introduction 

Catchment models are valuable tools for understanding natural processes occurring 

at basin scales and for simulating the effects of different management regimes on 

soil and water resources (e.g., Cao et al., 2006). Model applications may have 

uncertainties as a result of errors associated with the forcing variables, 

measurements used for calibration, and conceptualisation of the model itself 

(Lindenschmidt et al., 2007). The ability of catchment models to simulate 

hydrological processes and pollutant loads can be assessed through analysis of 

uncertainty or errors during a calibration process that is specific to the application 

domain (White and Chaubey, 2005).  

The SWAT model is increasingly used to predict discharge, sediment and 

nutrient loads on a temporally resolved basis, and to quantify material fluxes from 

a catchment to the downstream receiving environment such as a lake (e.g., Nielsen 

et al., 2013). The SWAT model can provide distributed descriptions of hydrologic 

processes at sub–basin scale (Arnold et al., 1998). It is physically–based if the 

Green−Ampt infiltration method (Green and Ampt, 1911) is used for the calculation 

of surface runoff (Neitsch et al., 2011). It has numerous parameters but not all are 

physically–based, i.e., some can be fixed on the basis of pre–existing catchment 

data (e.g., soil maps) or knowledge gained in other studies. However, values for 

other parameters need to be assigned during a calibration process as a result of 

complex spatial and temporal variations that are not readily captured either through 

measurements or within the model algorithms themselves (Boyle et al., 2000). Such 

parameter values assigned during calibration are therefore lumped, i.e., they 

integrate variations in space and/or time and thus provide an approximation for real 

values which often vary widely within a study catchment. Model calibration is an 

iterative process whereby parameters are adjusted to the system of interest by 

refining model predictions to fit closely with observations under a given set of 

conditions (Moriasi et al., 2007). Manual calibration depends on knowledge of the 

catchment or the system used for model application, the experience in using the 

model, and knowledge of the model algorithms. It tends to be subjective and time–
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consuming. By contrast, auto–calibration provides a less labour–intensive approach 

by using optimisation algorithms (Eckhardt and Arnold, 2001). The SUFI–2 

procedure (with a fitting function) has previously been applied to auto–calibrate 

discharge parameters in a SWAT application for the Thur River, Switzerland 

(Abbaspour et al., 2007), as well as for groundwater recharge, evapotranspiration 

and soil storage water considerations in West Africa (Schuol et al., 2008). Model 

validation is subsequently performed using measured data that are independent of 

those used for calibration. 

Values for hydrological parameter values in the SWAT model can vary 

temporally. Cibin et al. (2010) found that the optimum calibrated values for 

hydrological parameters varied with different flow regimes (low, medium and high), 

thus suggesting that SWAT model performance can be optimised by assigning 

parameter values based on hydrological regimes. Other work has similarly 

demonstrated benefits from assigning separate parameter values to low, medium, 

and high discharge periods (Yilmaz et al., 2008), or based on whether a catchment 

is in a dry, drying, wet or wetting state (Choi and Beven, 2007). Such temporal 

dependence of model parameterisation on hydrologic conditions has implications 

for model performance. Krause et al. (2005) compared different statistical metrics 

of hydrological model performance separately for base flow periods and storm 

events to evaluate the performance. The authors found that the logarithmic form of 

the Nash–Sutcliffe efficiency (NSE) value provided more information on the 

sensitivity of model performance for discharge simulations during storm events, 

while another modified form of NSE based on relative deviations was better for 

base flow periods. Similarly, Guse et al. (2014) investigated sensitivity of SWAT 

hydrological parameters using Fourier amplitude sensitivity test (Reusser et al., 

2011) and examined temporal dynamics of model performance using cluster 

analysis (Reusser et al., 2009). Guse et al. (2014) found that three groundwater 

parameters were highly sensitive during quick flow, while one evaporation 

parameter was most sensitive during base flow, and model performance was also 

found to vary significantly for the two flow regimes. Zhang et al. (2011) calibrated 

SWAT hydrological parameters for periods separated on the basis of six climatic 

indexes. Model performance improved when different values were assigned to 

parameters based on six hydroclimatic periods. Similarly, Pfannerstill et al. (2014) 

found that assessment of model performance was improved by considering an 
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additional performance statistic for very low–flow simulations amongst five 

hydrologically–separated regimes. 

To date, analysis of temporal dynamics of SWAT parameters has 

predominantly focused on simulations of discharge rather than water quality 

constituents. This partly reflects the paucity of comprehensive water quality data 

for many catchments; near–continuous discharge data can readily be collected but 

this is not the case for water quality parameters such as suspended sediment or 

nutrient concentrations. Data collected in monitoring programmes that involve 

sampling at regular time intervals (e.g., monthly) are often used to calibrate water 

quality models, but these are unlikely to fully represent the range of hydrologic 

conditions in a catchment (Bieroza et al., 2014). In particular, water quality data 

collected during storm flow periods are rarely available in lower–order catchments 

(e.g., Chiwa et al., 2010; Abell et al., 2013), thus prohibiting opportunities to 

calibrate SWAT parameters and investigate how parameter sensitivity varies under 

conditions which can contribute disproportionately to nutrient or sediment transport. 

Failure to fully consider storm flow processes could therefore result in an 

unsatisfactory model performance. Thus, further research is required to examine 

how water quality parameters vary during different flow regimes and to understand 

how model uncertainty may vary under future climatic conditions that affect flow 

regimes (Brigode et al., 2013).  

In this study, the SWAT model was configured to a relatively small, mixed 

land use catchment in New Zealand that has been the subject of an intensive water 

quality sampling programme designed to target a wide range of hydrologic 

conditions. A catchment–wide set of parameters was calibrated using the SUFI–2 

procedure which is integrated into the SWAT Calibration and Uncertainty Program 

(SWAT–CUP). The objectives of this study were to: (1) quantify the performance 

of the model in simulating discharge and fluxes of suspended sediments and 

nutrients at the catchment outlet; (2) rigorously evaluate model performance by 

comparing daily simulation output with monitoring water quality data collected 

under a range of hydrologic conditions; and (3) quantify whether parameter 

sensitivity varies between base flow and quick flow conditions. 
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2.3 Methods 

2.3.1 Study area 

The Puarenga Stream is the second–largest surface inflow to Lake Rotorua (Bay of 

Plenty, New Zealand) and drains a catchment of 77 km2. The catchment is situated 

in the central North Island of New Zealand, which has a warm temperate climate. 

Annual mean temperature at Rotorua Airport (Fig. 2.1a) is 15±4 °C and annual 

mean evapotranspiration is 714 mm yr-1 (1993–2012; National Climatic Database; 

available at http://cliflo.niwa.co.nz/). Annual mean precipitation at Kaituna rain 

gauge (Fig. 2.1a) is 1500 mm yr-1 (1993–2012; Bay of Plenty Regional Council; 

BoPRC). The catchment is relatively steep (mean slope = 9%; derived from the 

digital elevation model; BoPRC), resulting in substantial sub–surface lateral flow 

contributions to stream channels. The dominant soil type is pumice that has high 

macroporosity and infiltration rates (New Zealand Land Resource Inventory & 

digital soil map; available at http://smap.landcareresearch.co.nz). Two cold–water 

springs (Waipa Spring and Hemo Spring) and one geothermal spring (Fig. 2.1b) are 

located in the catchment area. The two cold–water springs have annual mean 

discharge of ~0.19 m3 s-1 (Rotorua District Council) and the geothermal spring has 

annual mean discharge of ~0.12 m3 s-1 (White et al., 2004).  

The dominant land use (47%) is exotic forest (Pinus radiata). 

Approximately 26% is managed pastoral farmland, 11% mixed scrub and 9% 

indigenous forest (New Zealand Land Cover Database Version 2; BoPRC). Since 

1991, treated wastewater (10 mm d-1) has been pumped from the Rotorua 

Wastewater Treatment Plant and spray–irrigated over 16 blocks of total area of 

1.93 km2 in the Whakarewarewa Forest (Fig. 2.1a). Groundwater level increased by 

0.11 m after four years of irrigation (Tomer et al., 1999) and elevated nitrate 

concentrations (c. 0.44 mg L-1) were also found in the receiving waters of the 

Puarenga Stream (Paku, 2001). Prior to 2002, the irrigation schedule entailed 

applying wastewater to two blocks per day so that each block was irrigated 

approximately weekly. Since 2002, 10 to 14 blocks have been irrigated 

simultaneously at a frequency of 2 h d-1 with irrigation rate of 5 mm hr-1 (Lowe et 

al., 2007). Over the entire period of irrigation, nutrient concentrations in the 

irrigated water have gradually decreased as improvements in treatment of the 

wastewater have been made (Lowe et al., 2007). 
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Measurements from the Forest Research Institute (FRI) stream–gauge 

(1.7 km upstream of Lake Rotorua; Fig. 2.1b) were considered representative of the 

downstream/outlet conditions of the Puarenga Stream. The FRI stream–gauge was 

discontinued in mid 1997, then restarted late in 2004 (Environment Bay of Plenty, 

2007). Annual mean discharge at this site is 2.0 m3 s-1 (1994–1997 and 2004–2008; 

BoPRC). The Puarenga Stream receives a high proportion of flow from 

groundwater and has only moderate seasonality in discharge. On average, the 

lowest mean daily discharge is during summer (December to February; 1.7 m3 s-1) 

and the highest mean daily discharge is during winter (June to August; 2.4 m3 s-1). 

Discharge records during 1998–2004 were intermittent and this precluded a detailed 

comparison of measured and simulated discharge during that period. In July 2010, 

the gauge was repositioned 720 m downstream to the State Highway 30 (SH 30) 

bridge (Fig. 2.1b). 

 

Figure 2.1 (a) Location of Puarenga Stream surface catchment in New Zealand, Kaituna 

rain gauge, climate station and managed land areas for which management schedules were 

prescribed in SWAT, and (b) location of the Puarenga Stream, major tributaries, monitoring 

stream–gauges, two cold–water springs and the Whakarewarewa geothermal contribution. 

Measurement data (Table 2.3) used to calibrate the SWAT model were from the Forest 

Research Institute (FRI) stream–gauge and were considered representative of the 

downstream/outlet conditions of the Puarenga Stream. 

 



 

33 

2.3.2 Model configuration 

SWAT input data requirements included a digital elevation model (DEM), 

meteorological records, records of springs and water abstractions, soil 

characteristics, land use classification, and management schedules for key land uses 

(pastoral farming, wastewater irrigation, and timber harvesting). The SWAT model 

(version SWAT2009_rev488) was run on an hourly time step, but daily mean 

simulation outputs were used for this study. 

The DEM was used to delineate boundaries of the whole catchment and 

individual sub–catchments, with a stream map used to “burn–in” channel locations 

to create accurate flow routings. Hourly rainfall estimates were used as hydrologic 

forcing data. The Penman–Monteith method (Monteith, 1965) was used to calculate 

evapotranspiration (ET) and potential ET. The Green and Ampt (1911) method was 

used to calculate infiltration and the hourly rainfall/Green & Ampt 

infiltration/hourly routing method was chosen to simulate surface runoff, soil 

erosion and in–stream sediment transport (Neitsch et al., 2011). Ten sub–

catchments were represented in the Puarenga Stream catchment, each comprising 

numerous Hydrologic Response Units (HRUs). Each HRU aggregates cells with 

the same combination of land cover, soil, and slope. A total of 404 HRUs was 

defined in the model. Runoff and nutrient transport were predicted separately within 

SWAT for each HRU, with predictions summed to obtain the total for each sub–

catchment. 

Descriptions and sources of the data used to configure the SWAT model are 

given in Table 2.1. There were a total of 197 model parameters. Values of SWAT 

parameters were assigned based on: i) measured data (e.g., some of the soil 

parameters; Table 2.1); ii) literature values from published studies of similar 

catchments (e.g., parameters for dominant land uses; Table 2.2); or iii) by 

calibration where parameters were not otherwise prescribed. Initial parameter 

values required for model configuration were based on the monitoring data that was 

measured around the start date of the simulation period.  
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Table 2.1 Description of data used to configure the SWAT model. 

Data Application Data description and configuration details Source 

Digital elevation 

model (DEM) & 

digitised stream 

network 

Sub–basin 

delineation 

(Fig. 2.1b) 

25 m resolution. Used to define five slope classes: 0–

4%, 4–10%, 10–17%, 17–26% and > 26%. 

Bay of Plenty Regional Council 

(BoPRC) 

Spring discharge 

and nutrient loads  

Point source 

(Fig. 2.1b)  

Constant daily discharge and nutrient concentrations 

assigned to two cold–water springs (Waipa Spring and 

Hemo Spring) and one geothermal spring.  

White et al., 2004; Proffit, 2009 

(Unpublished Site Visit Report); 

Paku, 2001; Mahon, 1985; Glover, 

1993; Rotorua District Council 

(pers. comm.) 

Water abstraction 

volumes 
Water use 

Monthly water abstraction assigned to two cold–water 

springs. 

Kusabs and Shaw, 2008; Jowett, 

2008 

Land use  
HRU 

definition 

25 m resolution, 10 basic land–cover categories 

derived from New Zealand Land Cover Database 

(version 2). Some specific land–cover parameters were 

prior–estimated (Table 2.2). 

BoPRC 

Soil 

characteristics 

HRU 

definition 

22 soil types. Properties were quantified based on 

measurements (if available) or estimated using 

regression analysis to estimate properties for 

unmeasured functional horizons.  

New Zealand Land Resource 

Inventory & digital soil map 

(available at 

http://smap.landcareresearch.co.nz) 

Meteorological 

data 

Meteorological 

forcing 

Daily maximum and minimum temperature, daily 

mean relative humidity, daily global solar radiation, 

daily (9 am) surface wind speed, derived from Rotorua 

Airport Automatic Weather Station (Fig. 2.1a). 

National Climate Database 

(available at 

http://cliflo.niwa.co.nz/) 

  
Hourly precipitation derived from Kaituna rain gauge 

(Fig. 2.1a). 
BoPRC 
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Table 2.1 (continued) Description of data used to configure the SWAT model. Note that some of the agricultural management data obtained in 

certain years was assumed constant or interpolated for the whole simulation period.  

Data Application Data description and configuration details Source 

  Stock density 
Statistics New Zealand, 2006; 

Ledgard and Thorrold, 1998 

Agricultural 

management 

practices 

Agricultural 

management 

schedules 

Applications of urea and di–ammonium phosphate 
Statistics New Zealand, 2006; Fert 

Research, 2009 

  Applications of manure–associated nutrients 
Dairying Research Corporation, 

1999 

Nutrient loading 

by wastewater 

application 

Nonpoint–source 

from land treatment 

irrigation 

Wastewater application rates and effluent 

composition (TN and TP concentration) for 16 

spray blocks from 1996–2012. Each spray block 

was assigned an individual management schedule 

specifying daily application rates.  

Rotorua District Council, 2006 

Forest stand map 

and harvest dates 

Forestry planting 

and harvesting 

operations 

Planting and harvesting data for 472 ha forestry 

stands. Prior to 2007 we assumed stands were 

cleared one–year prior to the establishment year. 

Post 2007, harvesting date was assigned to the 

first day of harvesting month. 

Timberlands Limited, Rotorua, 

New Zealand (pers. comm.) 
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Table 2.2 Prior–estimated parameter values for three dominant types of land–cover in the Puarenga Stream catchment. Values of other land use 

parameters were based on the default values in the SWAT database. 

Land–cover type Parameter Definition Value Source 

 HVSTI Percentage of biomass harvested 0.65 (Ximenes et al., 2008) 

 T_OPT (℃) Optimal temperature for plant growth  15 (Kirschbaum and Watt 2011) 

 T_BASE (℃) Minimum temperature for plant growth  4 (Kirschbaum and Watt 2011) 

 
MAT_YRS 

Number of years to reach full 

development 
30 (Kirschbaum and Watt 2011) 

PINE BMX_TREES (tonnes ha-1) Maximum biomass for a forest 400 (Bi et al., 2010) 

(Pinus radiata) GSI (m s-1) Maximum stomatal conductance 0.00198 (Whitehead et al., 1994) 

 BLAI (m2 m-2) Maximum leaf area index 5.2 (Watt et al., 2008) 

 
BP3 

Proportion of phosphorus in biomass at 

maturity 
0.000163 (Hopmans and Elms 2009) 

 
BN3 

Proportion of nitrogen in biomass at 

maturity 
0.00139 (Hopmans and Elms 2009) 

 HVSTI Percentage of biomass harvested 0 – 

FRSE BMX_TREES (tonnes ha-1) Maximum biomass for a forest 372 (Hall et al., 2001) 

(Evergreen forest) 
MAT_YRS (years) 

Number of years for tree to reach full 

development 
100 – 

PAST T_OPT (℃) Optimal temperature for plant growth 25 (McKenzie et al., 1999) 

(Pastoral farm) T_BASE (℃) Minimum temperature for plant growth 5 (McKenzie et al., 1999) 
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SWAT simulates hydrological pathways including direct runoff, lateral 

flow, shallow aquifer and deep aquifer recharge. These components contribute to 

streamflow that is then used to compare with measurements taken at the in–stream 

monitoring station. Detailed descriptions of the various model components are 

given in Neitsch et al. (2011). Sediment yield was estimated using the modified 

universal soil loss equation (MUSLE; Williams, 1975) in SWAT. 

SWAT simulates loads of “mineral phosphorus” (MINP) and “organic 

phosphorus” (ORGP) of which the sum is TP. The MINP fraction represents soluble 

P either in mineral or in organic form, while ORGP refers to particulate P bound 

either by algae or by sediment (White et al., 2014). Soluble P may be taken up 

during algae growth, or released from benthic sediment. This fraction can be 

transformed to particulate P contained in algae or sediment.  

SWAT simulates loads of nitrate–nitrogen (NO3–N), ammonium–nitrogen 

(NH4–N) and organic nitrogen (ORGN), the sum of which is TN. Nitrogen 

parameters were auto–calibrated for each N fraction. The SWAT model does not 

account for the initial nitrate concentration in shallow aquifers, as also noted by 

Conan et al. (2003). Ekanayake and Davie (2005) indicated that SWAT 

underestimated N loading from groundwater and suggested a modification by 

adding a background concentration of nitrate in streamflow to represent 

groundwater nitrate contributions. Over the period of the first four years (1991–

1994) of wastewater irrigation, nitrate concentrations in shallow groundwater 

draining the Waipa Stream sub–catchment were estimated to have increased by 

c. 0.44 mg L-1 (Paku, 2001). SWAT has no capability to dynamically adjust the 

groundwater concentration during a simulation run. Therefore, we added 

0.44 mg N L-1 to all model simulations of TN concentration and assumed that 

groundwater concentrations had equilibrated with the applied wastewater nitrogen 

since 1994. 

2.3.3 Model calibration and validation 

Daily mean discharge was first calibrated based on daily mean values of 15–minute 

measurements (Table 2.3). Water quality variables were then calibrated in the 

sequence: SS, TP and TN. Modelled daily mean concentrations were compared with 

concentrations measured during monthly grab sampling, with monthly 

instantaneous measurements assumed equal to concentrations on the corresponding 
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day (Table 2.3). The first year (1993) was used for model warm–up to a steady state 

for the subsequent simulated period of interest. The calibration period was from 

2004 to 2008 and the validation period was from 1994 to 1997. A validation period 

that pre–dated the calibration period was chosen because discharge records were 

available for two separate periods (1994–1997 and post 2004). In addition, the 

operational regime for the wastewater irrigation has varied since operations began 

in 1991, with a marked change occurring in 2002 when operations switched from 

applying the wastewater load to two blocks (rotated daily for a total of 14 blocks in 

a week; i.e., each block irrigated weekly), to 10–14 blocks each irrigated daily. This 

operational regime continues today and we therefore decided to assign the most 

recent (post 2002) period (2004–2008) to calibration to ensure that the model was 

configured to reflect current operations. 

Parameter values that were not derived from measurements or the literature 

were assigned based on either automated or manual calibration (Table 2.4). Manual 

calibration was undertaken for 11 parameters related to TP, while a Sequential 

Uncertainty Fitting (SUFI–2) procedure was applied to auto–calibrate 21 

parameters for discharge simulations, nine parameters for SS simulations, and 17 

parameters related to TN. The SUFI–2 procedure has been integrated into the 

SWAT Calibration and Uncertainty Program (SWAT–CUP). SUFI–2 is a 

procedure that efficiently quantifies and constrains parameter uncertainties/ranges 

from default ranges with the fewest number of iterations (Abbaspour et al., 2004), 

and has been shown to provide optimal results relative to the use of alternative 

algorithms (Wu and Chen, 2015). SUFI–2 involves Latin hypercube sampling 

(LHS), which is a method that generates a sample of plausible parameter values 

from a multidimensional distribution and ensures that samples cover the entire 

parameter space, therefore ensuring that the optimum solution is not a local 

minimum (Marino et al., 2008). 
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Table 2.3 Description of data used to calibrate the SWAT model. Data were measured at the Forest Research Institute (FRI) stream–gauge and 

were considered representative of the downstream/outlet conditions of the Puarenga Stream. 

Data Application Measurement data details Source 

Stream discharge 

measurements 

Calibration 

(2004–2008) 

Validation 

(1994–1997)  

15–min stream discharge data were measured at FRI 

stream–gauge (Fig. 2.1b) within the catchment and 

aggregated as daily mean values (1994–1997; 2004–2008).  

BoPRC; Abell et al., 2013 

Stream water quality 

measurements 

Calibration 

(2004–2008) 

Validation1 

(1994–1997; 

2010–2012)  

Monthly grab samples for determination of suspended 

sediment (SS), total phosphorus (TP) and total nitrogen 

(TN) concentrations (1994–1997; 2004–2008), and high–

frequency event–based samples for concentrations of SS 

(nine events), TP and TN (both 14 events) at 1–2 h 

frequency (2010–2012), were also measured at FRI 

stream–gauge (Fig. 2.1b) within the catchment. 

BoPRC; Abell et al., 2013 

 

                                                 

1 Model validation was undertaken using two different datasets. The monthly measurements (1994–1997) were predominantly collected when base 

flow was the dominant contributor to stream discharge. Data from high–frequency sampling during rain events (2010–2012) were also used to 

validate model performance during periods when quick flow was high. 
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The SUFI–2 procedure analyses relative sensitivities of parameters by 

randomly generating combinations of values for model parameters (Abbaspour et 

al., 2014). A sample size of 1000 was chosen for each iteration of LHS, resulting in 

1000 combinations of parameters and 1000 simulations. Model performance was 

quantified for each simulation based on the Nash–Sutcliffe efficiency (NSE). An 

objective function was defined as a linear regression of a combination of parameter 

values generated by each LHS against the NSE value calculated from each 

simulation. Each compartment was not given weight to formulate the objective 

function because only one variable was specifically focused on at each time. A 

parameter sensitivity matrix was then computed based on the changes in the 

objective function after 1000 simulations. Parameter sensitivity was quantified 

based on the p value from a Student’s t–test, which was used to compare the mean 

of simulated values with the mean value of measurements (Rice, 2006). A 

parameter was deemed sensitive if p ≤ 0.05 after 1000 simulations (one iteration). 

Numerous iterations of LHS were conducted. Values of p from numerous iterations 

were averaged for each parameter, and the frequency of iterations where a 

parameter was deemed sensitive was summed. Rankings of relative sensitivities of 

parameters were developed based on how frequently the sensitive parameter was 

identified and the averaged value of p calculated from several iterations. The most 

sensitive parameter was determined based on the frequency that the parameter was 

deemed sensitive, and the smallest average p–value from all iterations.  

SUFI–2 considers two criteria to constrain uncertainty in each iteration. One 

is the P–factor, the percentage of measured data bracketed by 95% prediction 

uncertainty (95PPU). Another is the R–factor, the average thickness of the 95PPU 

band divided by the standard deviation of measured data. A range was first defined 

for each parameter based on a synthesis of ranges from similar studies or from the 

SWAT default range. Parameter ranges were updated after each iteration based on 

the computation of upper and lower 95% confidence limits. The 95% confidence 

interval and the standard deviation of a parameter value were derived from the 

diagonal elements of the covariance matrix, which was calculated from the 

sensitivity matrix and the variance of the objective function. Steps and equations 

used in the SUFI–2 procedure to constrain parameter ranges are outlined by 

Abbaspour et al. (2004). 
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The total numbers of iterations performed for each simulated variable (Q, 

SS, MINP, ORGN, NH4–N and NO3–N) reflected the numbers required to ensure 

that > 90% of measured data were bracketed by simulated output and the R–factor 

was close to one. The “optimal” parameter value was obtained when the Nash–

Sutcliffe efficiency (NSE) criterion was satisfied (NSE > 0.5; Moriasi et al., 2007). 

Auto–calibrated parameters for simulations of Q, SS, and TN were changed by 

absolute values within the given ranges. Some of those given ranges were restricted 

based on the optimum values calibrated in similar studies. Parameter values for TP 

simulations were manually–calibrated based on the relative percent deviation from 

the predetermined values of those auto–calibrated parameters for MINP simulations, 

given by the objective functions (e.g., NSE). Parameters related to the physical 

characteristics of the catchment were not changed because their values were 

considered to be representative of the catchment characteristics. In addition, high–

frequency (1–2 h) water quality sampling was undertaken at the FRI stream–gauge 

during 2010–2012 (Abell et al., 2013; Table 2.3) to derive estimates of daily mean 

contaminant loads during storm events. Samples were analysed for SS (nine events), 

TP and TN (both 14 events) over sampling periods of 24–73 h. The sampling 

programme was designed to encompass pre–event base flow, storm generated quick 

flow and post–event base flow. These data permitted calculation of daily discharge–

weighted (Q–weighted) mean concentrations to compare with modelled daily mean 

estimates. We did not use the high–frequency observations to calibrate the model, 

because of the limited number of high–frequency (1–2 h) samples (nine events for 

SS and 14 events for TP and TN in 2010–2012). The use of the high–frequency 

observations for model validation allowed us to examine how the model performed 

during short (1–3 day) high flow periods. The Q–weighted mean concentrations 

CQWM were calculated as:  

𝐶QWM =
∑ 𝐶i𝑄i

n
i=1

∑ 𝑄i
n
i=1

    (1) 

where n is the number of samples, Ci is the contaminant concentration measured at 

time i, and Qi is the discharge measured at time i. 
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Table 2.4 Summary of calibrated SWAT parameters. Discharge (Q), suspended sediment (SS) and total nitrogen (TN) parameter values were 

assigned using auto–calibration, while total phosphorus (TP) parameters were manually calibrated. SWAT default ranges and input file extensions 

are shown for each parameter. Parameters are unitless unless otherwise specified. “revap” indicates water movement into the overlying unsaturated 

layers.  

Parameter Definition Unit Default range 
Calibrated 
value 

Q 

EVRCH.bsn Reach evaporation adjustment factor  0.5–1 0.9 

SURLAG.bsn Surface runoff lag coefficient  0.05–24 15 

ALPHA_BF.gw Base flow alpha factor (0–1)  0.0071–0.0161 0.01 

GW_DELAY.gw Groundwater delay d 0–500 500 

GW_REVAP.gw Groundwater “revap” coefficient  0.02–0.2 0.08 

GW_SPYLD.gw Special yield of the shallow aquifer m3 m-3 0–0.4 0.13 

GWHT.gw Initial groundwater height m 0–25 14 

GWQMN.gw 
Threshold depth of water in the shallow aquifer required for return 
flow to occur 

mm 0–5000 372 

RCHRG_DP.gw Deep aquifer percolation fraction  0–1 0.87 

REVAPMN.gw 
Threshold depth of water in the shallow aquifer required for “revap” 
to occur 

mm 0–500 260 

CANMX.hru Maximum canopy storage mm 0–100 0.6 

EPCO.hru Plant uptake compensation factor  0–1 0.34 

ESCO.hru Soil evaporation compensation factor  0–1 0.9 

HRU_SLP.hru Average slope steepness m m-1 0–0.6 0.5 

LAT_TTIME.hru Lateral flow travel time d 0–180 3 

RSDIN.hru Initial residue cover kg ha-1 0–10000 1 

SLSOIL.hru Slope length for lateral subsurface flow m 0–150 40 

CH_K2.rte Effective hydraulic conductivity in the main channel alluvium mm h-1 0–500 20 

CH_N2.rte Manning’s n value for the main channel  0–0.3 0.16 

CH_K1.sub Effective hydraulic conductivity in the tributary channel alluvium mm h-1 0–300 100 

CH_N1.sub Manning’s n value for the tributary channel  0.01–30 20 
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Parameter Definition Unit Default range 
Calibrated 

value 

SS 

USLE_P.mgt USLE equation support practice factor  0–1 0.5 

PRF.bsn Peak rate adjustment factor for sediment routing in the main channel  0–2 1.9 

SPCON.bsn 
Linear parameter for calculating the maximum amount of sediment 

that can be re–entrained during channel sediment routing 
 0.0001–0.01 0.001 

SPEXP.bsn 
Exponent parameter for calculating sediment re–entrained in 

channel sediment routing 
 1–1.5 1.26 

LAT_SED.hru Sediment concentration in lateral flow and groundwater flow mg L-1 0–5000 5.7 

OV_N.hru Manning’s n value for overland flow  0.01–30 28 

SLSUBBSN.hru Average slope length m 10–150 92 

CH_COV1.rte Channel erodibility factor  0–0.6 0.17 

CH_COV2.rte Channel cover factor  0–1 0.6 

TP 

P_UPDIS.bsn Phosphorus uptake distribution parameter  0–100 0.5 

PHOSKD.bsn Phosphorus soil partitioning coefficient  100–200 174 

PPERCO.bsn Phosphorus percolation coefficient  10–17.5 14 

PSP.bsn Phosphorus sorption coefficient   0.01–0.7 0.5 

GWSOLP.gw Soluble phosphorus concentration in groundwater loading  mg P L-1 0–1000 0.063 

LAT_ORGP.gw Organic phosphorus in the base flow mg P L-1 0–200 10 

ERORGP.hru Organic phosphorus enrichment ratio  0–5 2.5 

CH_OPCO.rte Organic phosphorus concentration in the channel mg P L-1 0–100 0.02 

BC4.swq 
Rate constant for mineralisation of organic phosphorus to dissolved 

phosphorus in the reach at 20 ℃ 
d-1 0.01–0.7 0.3 

RS2.swq 
Benthic (sediment) source rate for dissolved phosphorus in the reach 

at 20 ℃   
mg m-2 d-1 0.001–0.1 0.02 

RS5.swq Organic phosphorus settling rate in the reach at 20 ℃ d-1 0.001–0.1 0.05 
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Parameter Definition Unit 
Default 

range 

Calibrated 

value 

TN 

RSDCO.bsn Residue decomposition coefficient  0.02–0.1 0.09 

CDN.bsn Denitrification exponential rate coefficient  0–3 0.3 

CMN.bsn Rate factor for humus mineralisation of active organic nitrogen  0.001–0.003 0.002 

N_UPDIS.bsn Nitrogen uptake distribution parameter  0–100 0.5 

NPERCO.bsn Nitrogen percolation coefficient  0–1 0.0003 

RCN.bsn Concentration of nitrogen in rainfall mg N L-1 0–15 0.34 

SDNCO.bsn Denitrification threshold water content  0–1 0.02 

HLIFE_NGW.gw Half–life of nitrate–nitrogen in the shallow aquifer d 0–200 195 

LAT_ORGN.gw Organic nitrogen in the base flow mg N L-1 0–200 55 

SHALLST_N.gw Nitrate–nitrogen concentration in the shallow aquifer mg N L-1 0–1000 1 

ERORGN.hru Organic nitrogen enrichment ratio  0–5 3 

CH_ONCO.rte Organic nitrogen concentration in the channel mg N L-1 0–100 0.01 

BC1.swq 
Rate constant for biological oxidation of ammonium–nitrogen to 

nitrite–nitrogen in the reach at 20 ℃ 
d-1 0.1–1 1 

BC2.swq 
Rate constant for biological oxidation of nitrite–nitrogen to nitrate–

nitrogen in the reach at 20 ℃ 
d-1 0.2–2 0.7 

BC3.swq 
Rate constant for hydrolysis of organic nitrogen to ammonium–

nitrogen in the reach at 20 ℃ 
d-1 0.2–0.4 0.4 

RS3.swq 
Benthic (sediment) source rate for ammonium–nitrogen in the reach 

at 20 ℃  
mg m-2 d-1 0–1 0.2 

RS4.swq Rate coefficient for organic nitrogen settling in the reach at 20 ℃  d-1 0.001–0.1 0.05 
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2.3.4 Hydrograph and contaminant load separation 

The Web–based Hydrograph Analysis Tool (Lim et al., 2005) was applied to 

partition measured and simulated discharges into base flow (Qb) and quick flow 

(Qq). Two default parameters values required by the Hydrograph Analysis Tool: an 

Eckhardt filter parameter of 0.98 and ratio of base flow to total discharge of 0.8 (cf. 

Lim et al., 2005). There was a total of 60 days without quick flow during the 

calibration period (2004–2008) and 1379 days for which hydrograph separation was 

used to define base flow and quick flow. For those 60 days without quick flow, base 

flow recession was the only contributor to the discharge. For those 1379 days with 

both base flow and quick flow, direct runoff during extensive rainfall and base flow 

recession due to the preceding rainfall were both taken into account for discharge 

estimations. 

Contaminant (SS, TP and TN) concentrations (Csep) were partitioned into 

base flow (Cb
’) and quick flow components (Cq

’; cf. Rimmer and Hartmann, 2014) 

to separately examine the sensitivity of water quality parameters during base flow 

and quick flow: 

𝐶sep =
𝑄q×𝐶q

′ + 𝑄b×𝐶b
′

𝑄q + 𝑄b
    (2) 

Cb
’ for each contaminant was estimated as the average concentration for the 

60 days with no quick flow. Cq
’ for each contaminant was calculated by rearranging 

Eq. (2).  

To ensure that Cq
’ is positive, Cb

’ is constrained to be the minimum of C
_

sep 

and Csep. Measured and simulated base flow and quick flow contaminant loads were 

then calculated. 

A one–at–a–time (OAT) routine proposed by Morris (1991) was applied to 

investigate how parameter sensitivity varied between the two flow regimes (base 

flow and quick flow), based on the ranking of relative sensitivities of parameters 

that were identified by randomly generating combinations of values for model 

parameters for each individual variable using the SUFI–2 procedure. OAT 

sensitivity analysis was then employed by varying the parameter of interest among 

ten equidistant values within the default range. The natural logarithm was used by 

Krause et al. (2005) and therefore the standard deviation (STD) of the ln–
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transformed NSE was used to indicate parameter sensitivity for the two flow 

regimes.  

Parameters were ranked from most to least sensitive on the basis of the 

sensitivity metric (STD of ln–transformed NSE), using a value of 0.2 as a threshold 

above which parameters were deemed particularly “sensitive”. The threshold value 

of 0.2 was chosen in this study, based on the median value derived from the 

calculations of the STD of ln–transformed NSE. Methods used to separate the two 

flow constituents and to quantify parameter sensitivity are illustrated in Fig. 2.2. 

2.3.5 Model evaluation 

Model goodness–of–fit was assessed graphically and quantified using Pearson 

product moment correlation coefficient (r), Nash–Sutcliffe efficiency (NSE) and 

percent bias (PBIAS; Table 2.5). Values of r (range -1 to 1) indicate the degree of 

linear relationship between simulated and measured data. Values of r were deemed 

statistically significant for values of p < 0.05 (Bewick et al., 2003). Value of NSE 

(range -∞ to 1) is commonly used to evaluate SWAT model performance (Gassman 

et al., 2007). PBIAS value indicates the average tendency of simulated outputs to 

be larger or smaller than observations (Gupta et al., 1999).  

Model uncertainty was evaluated with two criteria: R–factor and P–factor 

(see Section 2.3.3). They were used to constrain parameter ranges during the 

calibration using measured Q and loads of SS, MINP, ORGN, NH4–N and NO3–N 

in the SUFI–2 procedure. The R software (R Development Core Team, 1997) was 

used to graphically show the 95% confidence and prediction intervals for 

measurement data (Neyman, 1937) and model prediction intervals (Seymour, 1993) 

for Q and concentrations of SS, TP and TN during the calibration period (2004–

2008). 
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Figure 2.2 Flow chart of methods used to separate hydrograph and contaminant loads and to quantify parameter sensitivities for: Q (discharge), SS 

(suspended sediment), MINP (mineral phosphorus), ORGN (organic nitrogen), NH4–N (ammonium–nitrogen), and NO3–N (nitrate–nitrogen). NSE: 

Nash–Sutcliffe efficiency. 
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Table 2.5 Criteria for model performance. Note: on is the nth observed datum, sn is the nth simulated datum, o
_

 is the observed mean value, s
_

 is the 

simulated daily mean value, and N is the total number of observed data. Performance rating criteria are based on Moriasi et al. (2007) for Q: 

discharge, SS: suspended sediment, TP: total phosphorus and TN: total nitrogen. Moriasi et al. (2007) derived these criteria based on extensive 

literature review and analysing the reported performance ratings for recommended model evaluation statistics. r: Pearson product moment 

correlation coefficient; NSE: Nash–Sutcliffe efficiency; PBIAS: percent bias. 

Statistic equation Constituent 
Performance ratings 

Unsatisfactory Satisfactory Good Very good 

𝑟 =
∑ [(𝑜n − o̅)(𝑠n − s̅)]N

n=1

√∑ (𝑜n − o̅)2× ∑ (𝑠n − s̅)2N
n=1

N
n=1

    (3) 
All – – – – 

NSE = 1 −
∑ (𝑜n − 𝑠n)iN

n=1

∑ (𝑜n − o̅)iN
n=1

    i = 2    (4) All < 0.5 0.5 – 0.65 0.65 – 0.75 0.75 – 1 

 Q > 25 15 – 25 10 – 15 < 10 

PBIAS% =
∑ (𝑜n − 𝑠n)N

n=1

∑ 𝑜n
N
n=1

×100%    (5) SS > 55 30 – 55 15 – 30 < 15 

 TP, TN > 70 40 – 70 25 – 40 < 25 

 



 

49 

2.4 Results 

2.4.1 Model performance and uncertainty 

Numerous rounds (each comprising 1000 iterations) of LHS were conducted for 

each simulated variable until the performance criteria were satisfied. The total 

number of rounds of LHS for each simulated variable was as follows (number in 

parentheses): Q (7), SS (7), MINP (11), ORGN (10), NH4–N (4) and NO3–N (4). 

The parameters that provided the best statistical outcomes (i.e., best match to 

observed data) are given in Table 2.4. Two criteria (R–factor and P–factor) were 

used to show model uncertainties for simulations of discharge and contaminant 

loads, with values as follows: Q (0.97, 0.43), SS (0.48, 0.19), MINP (2.64, 0.14), 

ORGN (0.47, 0.17), NH4–N (1.16, 0.56) and NO3–N (1.2, 0.29). Model 

uncertainties for simulations of Q and SS, TP and TN concentrations are shown in 

Fig. 2.3.  

Modelled and measured base flow showed high correspondence, although 

measured daily mean discharge during storm peaks was often underestimated (Fig. 

2.4a, e). Annual mean percentages of lateral flow recharge, shallow aquifer 

recharge and deep aquifer recharge to total water yield were predicted by SWAT as 

30%, 10%, 58%, respectively. Modelled SS concentrations overestimated 

measurements of monthly grab samples by an average of 18.3% during calibration 

and 0.32% during validation (Fig. 2.4b, f). Measured TP concentrations in monthly 

grab samples were underestimated by 23.8% during calibration (Fig. 2.4c) and 24.5% 

during validation (Fig. 2.4g). Similarly, measured TP loads were underestimated by 

34.5% and 38.4%, during calibration and validation, respectively. Modelled and 

measured TN concentrations were generally better aligned during base flow (Fig. 

2.4d), apart from a mismatch prior to 1996 when monthly measured TN 

concentrations were substantially lower than model predictions, although the 

concentrations gradually increased (Fig. 2.4h) during the validation period (1994–

1997). The average measured TN load increased from 134 kg N d-1 prior to 1996, 

to 190 kg N d-1 post 1996. The comparable increase in modelled TN load was 

167 kg N d-1 to 205 kg N d-1, respectively. 
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Figure 2.3 Regression of measured and simulated (a) discharge (Q), concentrations of (b) 

suspended sediment (SS), (c) total phosphorus (TP), and (d) total nitrogen (TN) including 

lower and upper 95% confidence limits (LCL and UCL) and lower and upper 95% 

prediction limits (LPL and UPL). Note that the “choppy” shape of confidence limits shown 

in figures b–d resulted from the few data points (< 50) in the regressions of measured and 

simulated SS, TP and TN concentrations. 

 

Statistical evaluations of goodness–of–fit are shown in Table 2.6. The r 

values for daily mean discharge were 0.88 for calibration (p < 0.001) and 0.83 for 

validation (p < 0.001). The NSE values for daily mean discharge were 0.73 for 

calibration and 0.62 for validation, corresponding to model performance ratings (cf. 

Moriasi et al., 2007) of “good” and “satisfactory” (Table 2.5). Positive PBIAS (7.8% 

for calibration and 8.8% for validation) indicated a tendency for underestimation of 

daily mean discharge, however, the low magnitude of PBIAS values corresponded 

to a performance rating of “very good”. The r values for SS were 0.65 for 

calibration (p < 0.001) and 0.90 for validation (p < 0.001). The NSE values for SS 

were -0.08 (unsatisfactory) for calibration and 0.76 (very good) for validation. The 

model did not simulate trends well for monthly measured TP and TN concentrations. 

The r values for TP and TN were both < 0.3 (p > 0.05) during calibration and 
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validation and NSE values were both < 0 (unsatisfactory). Values of PBIAS 

corresponded to “good” or “very good” performance ratings for TP and TN. 

Observed Q–weighted daily mean concentrations derived from hourly 

measurements and simulated daily mean concentrations of SS, TP and TN during 

an example two–day storm event are shown in Fig. 2.5a–c. The simulations of SS 

and TN concentrations were somewhat better than for TP. Comparisons of Q–

weighted daily mean concentrations (CQWM) during storm events from 2010 to 2012 

are shown in Fig. 2.5d–f for SS (nine events), TP and TN (both 14 events). The 

CQWM of TP exceeded the simulated daily mean by between 0.02 and 0.2 mg P L-1, 

and on average, the model underestimated measurements by 69.4% (Fig. 2.5e). 

Although NSE value for CQWM of TN was unsatisfactory (Table 2.6), it was close 

to the threshold for satisfactory performance (0.5), and the r value was 0.68 

(p < 0.05). For CQWM of SS and TP, NSE values indicated that the model 

performance was unsatisfactory and negative r value for TP, although the r value 

was 0.61 (p < 0.05) for SS. The PBIAS value of -0.87 for CQWM of TN corresponded 

to model performance ratings of “very good”, while the PBIAS values for CQWM of 

SS and TP were 43.9 and 69.4, respectively, indicating satisfactory model 

performance.  

Measured and simulated discharge and contaminant loads separated for the 

two flow regimes (base flow and quick flow) are shown in Fig. 2.6. Model 

performance statistics differed between the two flow regimes (Table 2.7). 

Simulations of discharge and constituent loads under quick flow were more closely 

related to the measurements (i.e., higher values of r and NSE) than simulations 

under base flow. Base flow TN load simulations during the validation period 

showed better model performance than simulations under quick flow. Additionally, 

measurements under quick flow were better reproduced by the model than the 

measurements for the whole simulation period. Simulations of contaminant loads 

matched measurements much better than for contaminant concentrations, as 

indicated by statistical values for model performance given in Table 2.6 and 2.7. 
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Figure 2.4 Measurements and daily mean simulated values of discharge, suspended sediment (SS), total phosphorus (TP) and total nitrogen (TN) 

during calibration (a–d) and validation (e–h). Measured daily mean discharge was calculated from 15–min observations and measured 

concentrations of SS, TP and TN correspond to monthly grab samples. 
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Table 2.6 Model performance ratings for simulations of discharge (Q), concentrations of suspended sediment (SS), total phosphorus (TP) and total 

nitrogen (TN). n indicates the number of measurements. Q–weighted mean concentrations were calculated using Eq. (1). r: Pearson product moment 

correlation coefficient; NSE: Nash–Sutcliffe efficiency; PBIAS: percent bias. The significance of correlations between simulations and 

measurements was quantified based on the p value (see Section 2.3.5). *p < 0.05; **p < 0.01; ***p < 0.001. 

Model performance Statistics Q SS TP TN 

  n = 1439 n = 43 n = 45 n = 39 

Calibration with r 0.88*** 0.65*** -0.12 0.28 

instantaneous measurements 

(2004–2008) 
NSE 

0.73 

(Good) 

-0.08 

(Unsatisfactory) 

-1.31 

(Unsatisfactory) 

-0.30 

(Unsatisfactory) 

 
±PBIAS% 

7.8 

(Very good) 

-18.3 

(Very good) 

23.8 

(Very good) 

-0.05 

(Very good) 

  n = 1294 n = 37 n = 37 n = 36 

Validation with r 0.83*** 0.90*** 0.10 -0.09 

instantaneous measurements 

(1994–1997) 
NSE 

0.62 

(Satisfactory) 

0.76 

(Very good) 

-0.97 

(Unsatisfactory) 

-2.67 

(Unsatisfactory) 

 
±PBIAS% 

8.8 

(Very good) 

-0.32 

(Very good) 

24.5 

(Very good) 

-26.7 

(Good) 

  – n = 12 n = 18 n = 18 

Validation with r – 0.61* -0.24 0.68* 

Q–weighted mean measurements 

(2010–2012) 
NSE – 

-0.03 

(Unsatisfactory) 

-4.88 

(Unsatisfactory) 

0.42 

(Unsatisfactory) 

 
±PBIAS% – 

43.9 

(Satisfactory) 

69.4 

(Satisfactory) 

-0.87 

(Very good) 
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Figure 2.5 Example of a storm event showing derivation of discharge (Q)–weighted daily 

mean concentrations (dashed horizontal line) based on hourly measured concentrations 

(black dots) of suspended sediment (SS), total phosphorus (TP) and total nitrogen (TN) 

over two days (a–c). Comparisons of Q–weighted daily mean concentrations with 

simulated daily mean estimates of SS, TP and TN (scatter plot, d–f). The horizontal bars 

show the ranges in hourly measurements during each storm event in 2010–2012. 
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Figure 2.6 Measurements and simulations derived using the calibrated set of parameter values. Data are shown separately for base flow and quick 

flow. (a) Daily mean base flow and quick flow; (b) suspended sediment (SS) load; (c) total phosphorus (TP) load; (d) total nitrogen (TN) load. 

Vertical lines in b–d show the contaminant load in quick flow. Time series relate to calibration (2004–2008) and validation (1994–1997) periods 

(note time discontinuity). Measured instantaneous loads of SS, TP, and TN correspond to monthly grab samples. 
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Table 2.7 Model performance statistics for simulations of discharge (Q), and loads of suspended sediment (SS), total phosphorus (TP) and total 

nitrogen (TN). Statistics were calculated for both overall and separated simulations. Qall and Lall indicate the overall simulations; Qb and Lb indicate 

the base flow simulations; Qq and Lq indicate the quick flow simulations. r: Pearson product moment correlation coefficient; NSE: Nash–Sutcliffe 

efficiency; PBIAS: percent bias. The significance of correlations between simulations and measurements was quantified based on the p value (see 

Section 2.3.5). *p < 0.05; **p < 0.01; ***p < 0.001. 

Model 

performance 
Statistics 

Q SS TP TN 

Qb Qq Qall Lb Lq Lall Lb Lq Lall Lb Lq Lall 

Calibration r 0.84*** 0.84*** 0.88*** 0.66*** 0.68*** 0.61*** 0.24 0.65*** 0.39** 0.72*** 0.97*** 0.95*** 

(2004– NSE 0.6 0.71 0.73 0.33 0.33 0.27 -6.2 0.09 -0.17 0.5 0.89 0.85 

2008) ±PBIAS% 7.5 8.7 7.8 7.57 -23.4 -3.6 45.4 40.1 43.6 0.8 6.6 2.7 

Validation r 0.87*** 0.81*** 0.83*** 0.36* 0.98*** 0.95*** 0.27 0.27 0.06 0.79*** 0.33* 0.58*** 

(1994– NSE 0.56 0.62 0.62 -0.03 0.43 0.85 -1.9 0.04 -0.64 0.58 -0.07 0.33 

1997) ±PBIAS% 11.3 -1.2 8.8 34.5 -79.7 11.1 45.8 -9.3 37 -7.6 14.3 -2.5 
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2.4.2 Separated parameter sensitivity 

Based on the ranking of relative sensitivities of hydrological and water quality 

parameters derived from the SUFI–2 procedure (see Table 2.8), the OAT sensitivity 

analysis undertaken separately for base flow and quick flow identified three 

parameters that most influenced the quick flow estimates, and five parameters that 

most influenced the base flow estimates (parameters above the dashed line in 

Fig. 2.7a). Channel hydraulic conductivity (CH_K2) is used to estimate the peak 

runoff rate (Lane, 1983). Lateral flow slope length (SLSOIL) and lateral flow travel 

time (LAT_TIME) have an important controlling effect on the amount of lateral 

flow entering the stream reach during quick flow. Both slope (HRU_SLP) and soil 

available water content (SOL_AWC) were particularly sensitive for the base flow 

simulation because they affect lateral flow within the kinematic storage model in 

SWAT (Sloan and Moore, 1984). The aquifer percolation coefficient (RCHRG_DP) 

and the base flow alpha factor (ALPHA_BF) strongly influenced base flow 

calculations (Sangrey et al., 1984), as did the channel Manning’s n value (CH_N2) 

which is used to estimate channel flow (Chow, 2008).  

For SS loads, 12 and four parameters, respectively, were identified as 

sensitive in relation to the simulations of base flow and quick flow (parameters 

above the dashed line in Fig. 2.7b). Parameters that control main channel processes 

(e.g., CH_K2 and CH_N2) and subsurface water transport processes (e.g., 

LAT_TIME and SLSOIL) were found to be much more sensitive for base flow SS 

load estimations. Exclusive parameters for SS estimations, such as SPCON (linear 

parameter), PRF (peak rate adjustment factor), SPEXP (exponent parameter), 

CH_COV1 (channel erodibility factor), and CH_COV2 (channel cover factor) were 

found to be much more sensitive in base flow SS load, while LAT_SED (SS 

concentration in lateral flow and groundwater flow) was more sensitive in quick 

flow SS load. Parameters that control overland processes, e.g., CN2 (the curve 

number), OV_N (overland flow Manning’s n value) and SLSUBBSN (sub–basin 

slope length), were found to be much more sensitive for quick flow SS load 

estimations. 

Of the sensitive parameters, BC4 (ORGP mineralisation rate) was 

particularly sensitive for the simulation of base flow MINP load (Fig. 2.7c). RCN 

(nitrogen concentration in rainfall) related specifically to the dynamics of the base 

flow NO3–N load and NPERCO (nitrogen percolation coefficient) significantly 

affected quick flow NO3–N load (Fig. 2.7d). Parameter CH_ONCO (channel 

ORGN concentration) similarly affected both flow components of ORGN load (Fig. 

2.7e) and SOL_CBN (organic carbon content) was most sensitive for the 

simulations of quick flow ORGN and NH4–N loads. Parameter BC1 (nitrification 

rate in reach) was particularly sensitive for the simulation of base flow NH4–N load 

(Fig. 2.7f).



 

58 

 

Figure 2.7 The standard deviation (STD) of the ln–transformed Nash–Sutcliffe efficiency (NSE) used to indicate parameter sensitivity based on one–at–a–time (OAT) sensitivity analysis for separate base and quick flow 

components: (a) Q (discharge); (b) SS (suspended sediment); (c) MINP (mineral phosphorus); (d) NO3–N (nitrate–nitrogen); (e) ORGN (organic nitrogen); (f) NH4–N (ammonium–nitrogen). A median value (0.2) derived from 

the STD of ln–transformed NSE was chosen as a threshold above which parameters were deemed to be “sensitive”. Definitions of each parameter are shown in Table 2.4. 
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Table 2.8 Rankings of relative sensitivities of parameters (from most to least) for variables (header row) of Q (discharge), SS (suspended sediment), 

MINP (mineral phosphorus), ORGN (organic nitrogen), NH4–N (ammonium–nitrogen), and NO3–N (nitrate–nitrogen). Relative sensitivities were 

identified by randomly generating combinations of values for model parameters and comparing modelled and measured data with a Student’s t test 

(p ≤ 0.05). Bold text denotes that a parameter was deemed sensitive relative to more than one simulated variable. Shaded text denotes that parameter 

deemed insensitive to any of the two flow components (base and quick flow; see Figure 2.7) using one–at–a–time sensitivity analysis. Definitions 

and units for each parameter are shown in Table 2.4. 

Q SS MINP ORGN NH4–N NO3–N 

SLSOIL LAT_SED CH_OPCO CH_ONCO CH_ONCO NPERCO 

CH_K2 CH_N2 BC4 BC3 BC1 CDN 

HRU_SLP SLSUBBSN RS5 SOL_CBN(1) CDN ERORGN 

LAT_TTIME SPCON ERORGP RS4 RS3 CMN 

SOL_AWC(1) ESCO PPERCO RCN RCN RCN 

RCHRG_DP OV_N RS2 N_UPDIS  
RSDCO 

GWQMN SLSOIL PHOSKD USLE_P   

GW_REVAP LAT_TTIME GWSOLP SDNCO   

GW_DELAY SOL_AWC(1) LAT_ORGP SOL_NO3(1)   

CH_COV1 EPCO 
 

CMN 
  

CH_COV2 CANMX 
 HLIFE_NGW   

EPCO CH_K2 
 

RSDCO 
  

SPEXP GW_DELAY 
 USLE_K(1)   

CANMX ALPHA_BF     

CH_N1 GW_REVAP 
    

PRF CH_COV1 
    

SURLAG  
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2.5 Discussion 

This study examined temporal dynamics of model performance and parameter 

sensitivity in a SWAT model application that was configured for a small, relatively 

steep and lower order stream catchment in New Zealand. This country faces 

increasing pressures on freshwater resources (Parliamentary Commissioner for the 

Environment, 2013) and models such as SWAT potentially offer valuable tools to 

inform management of water resources although, to date, the SWAT model has 

received limited consideration in New Zealand (Cao et al., 2006). Model evaluation 

on the basis of the data collected during an extended monitoring programme 

enabled a detailed examination of how model performance varied during different 

flow regimes. It also permitted error in daily mean estimates of contaminant loads 

to be quantified with relative precision, allowing assessment of the ability of the 

SWAT model to simulate contaminant loads during storm events when lower–order 

streams typically exhibit considerable sub–daily variability in both discharge and 

contaminant concentrations (Zhang et al., 2010). Separating discharge and loads of 

sediments and nutrients into those associated with base flow and quick flow for 

separate OAT sensitivity analyses provided important insights into the varying 

dependency of parameter sensitivity on hydrologic conditions. 

2.5.1 Temporal dynamics of model performance 

The modelled estimates of deep aquifer recharge (58%) and combined lateral flow 

and shallow aquifer recharge (40%) were comparable with estimates derived by 

Rutherford et al. (2011), who used an alternative catchment model to derive 

respective estimates of 30% and 70% for these two fluxes. Our decision to 

deliberately select a validation period (1994–1997) during which the boundary 

conditions of the system (specifically anthropogenic nutrient loading) differed 

considerably from the calibration period allowed us to rigorously assess the 

capability of SWAT to accurately predict water quality under an altered 

management scenario (i.e., the purpose of most SWAT applications). 

Overestimation of TN concentrations prior to 1996 reflects higher NO3–N 

concentrations in groundwater during the calibration period (2004–2008) due to the 

wastewater irrigation operation. Nitrate concentrations appeared to reach a new 

quasi–steady state as wastewater loads and in–stream attenuation came into balance. 
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SWAT may not adequately represent the dynamics of groundwater nutrient 

concentrations (Bain et al., 2012) particularly in the presence of changes in 

catchment inputs (e.g., with start–up of wastewater irrigation). The groundwater 

delay parameter was set to five years (cf. Rotorua District Council, 2006), but this 

did not appear to capture adequately the lag in response to increases in stream nitrate 

concentrations following wastewater irrigation from 1991. 

The poor fit between simulated daily mean TP concentrations and monthly 

instantaneous measurements may partly reflect a mismatch between the dominant 

processes affecting phosphorus cycling in the stream and those represented in 

SWAT. The ORGP fraction that is simulated in SWAT includes both organic and 

inorganic forms of particulate phosphorus, however, the representation of 

particulate phosphorus cycling only focusses on organic phosphorus cycling, with 

limited consideration of interactions between inorganic streambed sediments and 

dissolved reactive phosphorus in the overlying water (White et al., 2014). This 

contrasts with phosphorus cycling in the study stream where it has been shown that 

dynamic sorption processes between the dissolved and particulate inorganic 

phosphorus pools exert major control on phosphorus cycling (Abell and Hamilton, 

2013). 

Our finding that measured Q–weighted mean concentrations (CQWM) of TP 

and SS during storm events (2010–2012) were greatly underestimated relative to 

simulated daily mean TP and SS concentrations has important implications for 

studies that examine effects of altered flow regimes on contaminant transport. For 

example, studies which simulate scenarios comprising more frequent large rainfall 

events (associated with climate change predictions for many regions; IPCC, 2013) 

may considerably underestimate projected future loads of SS and associated 

particulate nutrients if only base flow water quality measurements (i.e., those 

predominantly collected during “state of environment” monitoring) are used for 

calibration/validation (see Radcliffe et al., 2009 for a discussion of this issue in 

relation to phosphorus). This is also reflected by the model performance statistics 

relating to validation of modelled SS concentrations using monthly grab samples 

(predominantly base flow; “very good”) and CQWM estimated during storm 

sampling (“unsatisfactory”) based on NSE values.  



 

62 

2.5.2 Key uncertainties  

Model uncertainty in this study may arise from four main factors: 1) model 

parameters; 2) forcing data; 3) measurements used for evaluation of model fit, and; 

4) model structure or algorithms that represent the catchment (Lindenschmidt et al., 

2007). The values of most parameters assigned for model calibration, although 

specific to different soil types (e.g., soil parameters), were lumped across land uses 

and slopes in this study. They integrated spatial and temporal variations, thus 

neglecting any variability throughout the study catchment during a study period. 

Furthermore, the “assumed” steady state after the one–year model warm–up might 

not have been reached. In terms of forcing data, the assumption of constant values 

of spring discharge rate and nutrient concentrations may inadequately reflect the 

temporal variability and therefore increase model uncertainty, although this should 

contribute little to the model error term.  

Most water quality data used for model calibration comprised monthly 

instantaneous samples taken during base flow conditions. The use of those 

measurements for model calibration would likely lead to considerable 

underestimation of constituent concentrations (notably SS and TP) due to failure to 

account for short–duration high flow events. The disparity in goodness–of–fit 

statistics between discharge (typically “good” or “very good”) and nutrient 

variables (often “unsatisfactory”) highlights the potential for catchment models 

which inadequately represent contaminant cycling processes (manifest in 

unsatisfactory concentration estimates) to nevertheless produce satisfactorily load 

predictions (e.g., compare model performance statistics for prediction of nutrient 

concentrations in Table 2.6 with statistics for prediction of loads in Table 2.7). This 

highlights the potential for model uncertainty to be underestimated in studies which 

aim to predict the effects of scenarios associated with changes in contaminant 

cycling, such as increases in fertiliser application rates.  

Inadequate representation of groundwater processes in the model structure 

is another key factor that is likely to affect model uncertainty, particularly for 

nitrogen simulations. The analysis of model performance based on datasets 

separated into base flow and quick flow constituents enabled uncertainties in the 

structure of hydrological models to be identified, denoted by different model 

performance between these two flow constituents.  
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2.5.3 Temporal dynamics of parameter sensitivity 

To date, studies of temporal variability in parameters have focused on hydrological 

parameters, rather than on water quality parameters. The characteristics of 

concentration–discharge relationships for SS and TP are different to that for TN 

(Abell et al., 2013). In quick flow, there is a positive relationship between Q and 

concentrations of SS and TP, reflecting mobilisation of sediments and associated 

particulate P. Total nitrogen concentrations declined slightly in quick flow, 

reflecting the dilution of nitrate from surface runoff. Defining separate contaminant 

concentrations in base flow and quick flow enabled us to examine how the 

sensitivity of water quality parameters varied depending on hydrologic conditions.  

In a study of a lowland catchment (481 km2), Guse et al. (2014) found that 

three groundwater parameters, RCHRG_DP (aquifer percolation coefficient), 

GW_DELAY (groundwater delay) and ALPHA_BF (base flow alpha factor) were 

highly sensitive in relation to simulating discharge during quick flow, while ESCO 

(soil evaporation compensation factor) was most sensitive during base flow. This is 

counter to the findings of this study for which the base–flow discharge simulation 

was sensitive to RCHRG_DP and ALPHA_BF. This result may reflect that, relative 

to our study catchment, the catchment studied by Guse et al. (2014) had moderate 

precipitation (884 mm yr-1) with less forest cover and flatter topography. Although 

the GW_DELAY parameter reflects the time lag that it takes water in the soil water 

to enter the shallow aquifers, its lack of sensitivity under both base flow and quick 

flow conditions in this study is a reflection of higher water infiltration rates and 

steeper slopes. The ESCO parameter controls the upwards movement of water from 

lower soil layers to meet evaporative demand (Neitsch et al., 2011). Its lack of 

sensitivity in our study may reflect relatively high and seasonally–consistent 

rainfall (1500 mm yr-1), in addition to extensive forest cover in the Puarenga Stream 

catchment, which reduces soil evaporative demand by shading. Soil texture is also 

likely a contributor to this result. The predominant soil horizon type in the Puarenga 

Stream catchment was “A” (referring to “topsoil”), indicating high macroporosity 

which promotes high water infiltration rate and inhibits upward transport of water 

by capillary action (Neitsch et al., 2011). The variability in the sensitivity of the 

parameter SURLAG (surface runoff lag coefficient) between this study (relatively 

insensitive) and that of Cibin et al. (2010; relatively sensitive) likely reflects 
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differences in catchment size. The Puarenga Stream catchment (77 km2) is much 

smaller than the study catchment (St Joseph River; 2800 km2) of Cibin et al. (2010) 

and, consequently, distances to the main channel are much shorter, with less 

potential for attenuation of surface runoff in off–channel storage sites. The curve 

number (CN2) parameter was found to be insensitive in both this study and Shen et 

al. (2012), because surface runoff was simulated based on the Green and Ampt 

method (1911) requiring the hourly rainfall inputs, rather than the curve number 

equation which is an empirical model. By contrast, the most sensitive parameters 

in our study are those that determine the extent of lateral flow, an important 

contributor to streamflow in the catchment, due to a general lack of ground cover 

under plantation trees and formation of gully networks on steep terrain.  

Parameters that control surface water transport processes (e.g., LAT_TIME 

and SLSOIL) were found to be much more sensitive for base flow SS load 

estimation than parameters that control groundwater processes (e.g., ALPHA_BF 

and RCHRG_DP), reflecting the importance of surface flow processes for sediment 

transport. Sensitive parameters for quick flow SS load estimation related to 

overland flow processes (e.g., OV_N and SLSUBBSN), thus reflecting the fact that 

sediment transport is largely dependent on rainfall–driven processes, as is typical 

of steep and lower–order catchments. Modelled base flow NO3–N loads were most 

sensitive to the nitrogen concentration in rainfall (RCN) because of rainfall as a 

predominant contributor to recharging base flow. The nitrogen percolation 

coefficient (NPERCO) was more influential for quick flow NO3–N load estimation, 

probably indicating that the quick flow NO3–N load is more influenced by the 

mobilisation of concentrated nitrogen sources associated with agriculture or treated 

wastewater distribution. High sensitivity of the organic carbon content (SOL_CBN) 

for quick flow ORGN load estimates likely reflects mobilisation of N associated 

with organic material following rainfall. The finding that base flow NH4–N load 

was more sensitive to nitrification rate in reach (BC1) likely reflects that base flow 

provides more favourable conditions to complete this oxidation reaction, as NH4–

N is less readily leached and transported. Similarly, the ORGP mineralisation rate 

(BC4) strongly influenced base flow MINP load estimation, reflecting that base 

flow phosphorus transport is relatively more influenced by cycling from channel 

bed stores, whereas quick flow phosphorus transport predominantly reflects the 

transport of phosphorus that originated from sources distant from the channel.  
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3 Water quality effects of treated municipal wastewater 

application to a temperate forested catchment: Insights 

from SWAT modelling 

3.1 Abstract 

Spray irrigation of treated wastewater (10 mm d-1) in plots in the Whakarewarewa 

Forest (193 ha), Rotorua, New Zealand, was envisaged as a solution to address 

eutrophication of Lake Rotorua. We investigated the impacts of wastewater 

irrigation on discharge and water quality of the Waipa Stream, which drains the 

irrigated area. Our objective was to simulate the effects of irrigation of the sub–

catchment and examine alternatives for managing the wastewater. A modified 

version of Soil and Water Assessment Tool (SWAT2012 rev629) with hourly 

routing algorithms was adapted to the sub–catchment, which drains the wider 

Puarenga catchment. The SWAT2012 model was run at an hourly time step for a 

10–year (2003–2012) period and validated by comparing weekly average 

predictions with measurements of the stream discharge and water quality using a 

range of statistical metrics. The model performed well for simulating discharge 

(r = 0.83; p < 0.001) and total nitrogen (TN) load (r = 0.82; p < 0.001). Performance 

was satisfactory but generally lower (e.g., r ≥ 0.54; p < 0.001) for simulating 

suspended sediment (SS) and total phosphorus (TP) loads. Hourly load predictions 

had high temporal variability (SS > TP > TN), consistent with the pattern observed 

in field measurements downstream. A range of scenarios was simulated that 

included ceasing irrigation and changing the area and frequency of irrigation, while 

keeping the annual irrigation volume constant. Increasing the irrigation area 

decreased simulated TP and TN loads. The impact of changing irrigation frequency 

from daily to one day each week was small for annual TP load simulations but 

annual TN load increased considerably under weekly irrigation, reflecting increased 

N leaching rate. Compared with low–frequency, high–volume wastewater 

applications (once every seven days), the current strategy of daily wastewater 

irrigation minimises TN leaching and reduces saturation of the subsurface layer. 

Our improvements to the SWAT2012 model and the use of hourly routing to 

capture high–frequency (daily and hourly) variability of nutrient discharges under 

different land management regimes can assist with developing strategies to manage 
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the effects of nutrient and sediment pollution from the irrigated area by refining the 

area, timing and frequency of irrigation. 

 

3.2 Introduction 

Across the world, inland cities have sought ways to treat their municipal wastewater 

effectively and avoid direct disposal of treated effluent into sensitive receiving 

waters (Raschid–Sally and Jayakody, 2008). As treatment technology has improved, 

attention has increasingly been focused on the management of nitrogen and 

phosphorus, nutrients that can promote excessive growth of algae and result in 

eutrophication of receiving waters. For example, diverting municipal wastewater 

discharge away from Lake Washington (Seattle, USA) in the early 1970s resulted 

in reduced levels of phosphorus (by 83%) in the lake (Krebs, 2008). Similarly, there 

has been marked decrease in total phosphorus concentrations in Lake Constance 

(Germany) following wastewater diversion out of the lake catchment in the late 

1970s, coupled with greater use of phosphate–free detergents since c. 1980 (OECD, 

2001). An alternate approach to diversion of wastewater from sensitive ecosystems 

is to implement tertiary treatment to remove nutrients to levels so that the 

wastewater can still be discharged within the catchment of the affected water body 

without significantly impairing water quality. The use of agricultural crops and 

forestry areas for wastewater irrigation has increasingly been adopted for this 

purpose in India, resulting in 25–50% reduction of N and P fertiliser use and 15–

27% increase in crop productivity (Kaur et al., 2012). Despite the benefits 

associated with controlled wastewater irrigation, there are potential disadvantages 

related to soil waterlogging and enrichment, which could increase nutrient leaching 

(Farahat and Linderholm, 2015). Forest harvesting can also aggravate erosion and 

nutrient losses from soils in irrigated areas (Carpenter et al., 1998). For land–based 

treatment to be sustainable, it is necessary to balance the amount of wastewater 

applied with uptake rates from trees and losses from processes such as 

denitrification (Mussely and Goodwin, 2012), so that losses to runoff and leaching 

are minimised.  

The evaluation of the long–term effectiveness of wastewater irrigation is 

also very important. Because field experiments are not often feasible, modelling is 

generally used to predict potential impacts from a range of irrigation management 
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strategies (Behera and Panda, 2006). Models that combine hydrological and 

biogeochemical components of a system, and which capture the dominant temporal 

and spatial variability, may be a valuable tool for this purpose. Vieritz et al. (2003) 

for example, applied the MEDLI model (Model for Effluent Disposal using Land 

Irrigation) to investigate the sustainability of irrigating a grass crop (Monto Vetiver 

grass) with effluent in Queensland, Australia, with focus on capturing the dynamics 

of grass growth, nutrient uptake and hydrogeology. Another model used for this 

purpose is SPASMO (Soil Plant Atmosphere System), which simulates water and 

solute movement through soil profiles (Green et al., 2003). This model was applied 

to simulate effects of varying irrigation rates of effluent applied on pine trees in 

Rotorua, New Zealand (Vogeler et al., 2004). These two case studies did not 

examine the broader implications of the wastewater irrigation, including nutrient 

losses through surface runoff or to groundwater, which are not simulated by these 

two models. 

The SWAT model simulates hydrological and biogeochemical processes in 

both terrestrial and in–stream phases (Arnold et al., 1998). It integrates a large 

amount of spatially distributed information into a GIS (Geographic Information 

System) platform, providing a tool to estimate the contribution of nutrient sources 

distributed throughout a catchment to loading of receiving waters (e.g., Dabrowski, 

2014). The SWAT model has been used to evaluate impacts of treated wastewater 

irrigation from agricultural areas on catchment hydrology (Cau and Paniconi, 2007) 

and nitrogen transport (e.g., Pisinaras et al., 2010; Aouissi et al., 2014). Dechmi et 

al. (2012) adapted SWAT2005 code to estimate return flow from irrigated 

wastewater originating from a water source outside of the catchment. The adapted 

code (termed SWAT–IRRIG) was used to evaluate impacts of management 

practices on the water balance and phosphorus yield for a small (~ 19 km2) 

catchment in Spain (Dechmi and Skhiri, 2013). These adjustments have since been 

incorporated in both SWAT2009 and SWAT2012 code for agriculture and forestry 

area simulations. However, the SWAT2009 model used in Me et al. (2015) was 

found not to be able to simulate the detail of a complex irrigation operation, as 

evidenced by poor statistical fit of simulations for P. Therefore, the SWAT2012 

model, along with the relevant modified code, was used in this study to extend the 

study of Me et al. (2015) and evaluate the impacts of treated wastewater irrigation 

on the forestry area. 
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The SWAT2012 code encompasses two sets of flow routing algorithms 

(hourly and daily). The use of each set of algorithms is dependent on the temporal 

resolution (daily and hourly) of hydrological forcing data. For example, hourly 

hydrological forcing data require the Green and Ampt infiltration method (Green 

and Ampt, 1911) to be used to simulate flow routing at hourly time step. 

Alternatively, hourly rainfall data could also be converted to the daily data in 

SWAT using daily routing algorithms to simulate surface runoff (Arnold et al., 

2013). Yang et al. (2016) applied SWAT2012 code and evaluated the impacts of 

different temporal resolution (daily and hourly) of hydrological forcing data on 

SWAT2012 model performance for daily streamflow simulations. The authors 

found that the hourly time step version (i.e., hourly routing algorithms) of 

SWAT2012 model driven with the hourly rainfall data performed better for daily 

predictions, in particular, during high rainfall–runoff events. Yang et al. (2015) 

optimised parameter values separately for both the hourly and daily models, which 

suggests time–step dependence. Ideally, parameter values should be identical 

between hourly routing and daily routing algorithms. Time–step independence of 

parameter values may reflect parameter uncertainties, potentially being associated 

with an issue of equifinality where it is difficult to validate model parameters 

through measurements (Shen et al., 2012).  

Jeong et al. (2010) developed hourly rainfall–runoff algorithms in 

SWAT2005 and applied these to water infiltration, surface runoff and hydrological 

lags for in–stream flow routing in a small catchment (1.9 km2) near Riesel, Texas. 

Although evapotranspiration, soil water movement, base flow and lateral flow 

routings were still simulated on a daily basis, the hourly model improved 

simulations at high discharge during intensive rainfall. Jeong et al. (2011) modified 

hourly routing algorithms for soil erosion and in–stream sediment transport based 

on the hourly rainfall–runoff algorithms developed in SWAT2005. They found that 

the hourly model (aggregated to daily output) predicted annual sediment yield better 

than the daily model (daily output). Although nutrient biogeochemical processes in 

soils were still simulated at daily interval, forcing data (e.g., rainfall) at hourly 

resolution may better allow the model to represent the dynamics of nutrients 

transported in steep areas of small catchments (Jeong et al., 2011). 

The study site is a wastewater–irrigated forestry area in Rotorua, New 

Zealand. It is steep (max slope = 26%; derived from the digital elevation model; 
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BoPRC) and the discharge responds rapidly to rainfall events. Hourly routing 

algorithms in the SWAT2012 code (rev629) were applied to simulate discharge and 

both dissolved and total nutrient species fluxes. Modelled results are presented at 

two time scales; hourly and weekly mean (aggregated from a simulations at daily 

time scale). Using a single parameter set, the model performance was compared 

between hourly and daily routing algorithms. The effect of hourly routing on the 

variability of each simulated variable was also examined during the course of a day. 

The objectives of the study were to: (1) increase the model capability to simulate 

complex irrigation operations; (2) simulate the hourly variability of downstream 

discharge and nutrient fluxes during treated wastewater application to the Rotorua 

Land Treatment System, and; (3) quantify differences in daily simulations of total 

annual nutrient loads in the receiving stream under four possible management 

scenarios. A key task was to modify the SWAT2012 code to simulate the effects of 

irrigation and rainfall on the variability of contaminant loads using the hourly 

routing algorithms. 

 

3.3 Methods 

3.3.1 Study catchment 

The Waipa Stream catchment (16 km2) is 4.5 km southeast of the Rotorua City and 

is comprised of 80% exotic pine forest (Pinus radiata). The soil of the catchment 

is mainly allophanic, sandy and well drained, with 85–95% P retention capacity 

(Beets et al., 2013). The Waipa Stream flows into the Puarenga Stream, which is a 

major inflow to Lake Rotorua (surface area 80 km2; Fig. 3.1). Lake Rotorua is a 

nationally–iconic water body and minimizing eutrophication is a priority for lake 

managers. Municipal wastewater (10 mm d-1) from Rotorua City is treated by the 

Rotorua Wastewater Treatment Plant to secondary level. The treated municipal 

wastewater contained up to 28 tonnes yr-1 TP and 51 tonnes yr-1 TN which were 

discharged directly to Lake Rotorua until 1991 (Lowe et al., 2007). The treated 

wastewater has since been irrigated in the land treatment system (LTS) in the 

Whakarewarewa Forest, located in the southern part of the lake catchment and 

drained by the Waipa Stream. The LTS covers an area of 193 ha and consists of 14 

spray–irrigated blocks. Prior to 2002, the irrigation schedule entailed applying 

wastewater to two blocks per day so that each block was irrigated approximately 
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weekly. Since 2002, 10 to 14 blocks have been irrigated simultaneously at for 

duration of 2 h d-1 at an irrigation rate of 5 mm hr-1 (Lowe et al., 2007). Over recent 

years of irrigation, nutrient concentrations in the irrigated water have gradually 

decreased as improvements have been made in treatment of the wastewater (Lowe 

et al., 2007). The LTS was designed to reduce the mass load of nitrogen in irrigated 

wastewater using plant uptake or microbial denitrification, and for most of the 

wastewater phosphorus the majority would be retained in the soil by adsorption (Hu 

et al., 2007). Nutrients not removed by these processes would leach into the Waipa 

Stream, which flows into Lake Rotorua via the Puarenga Stream (Fig. 3.1). 

Resource consent limits exist in the Puarenga Stream for the contributions of 

wastewater; 3 tonnes yr-1 for TP and 30 tonnes yr-1 for TN (Park and Holst, 2009).  

3.3.2 Sampling measurements 

Monthly instantaneous discharge was measured at the Waipa D/S hydrometric 

station (Fig. 3.1) at the catchment outlet. Weekly mean discharge (Q) and weekly 

flow–proportional concentrations of the following analytes were also measured at 

the same location by Bay of Plenty Regional Council: SS, dissolved reactive 

phosphorus (DRP), TP, nitrate–nitrogen (NO3–N), ammonium–nitrogen (NH4–N), 

total Kjeldahl nitrogen (TKN; NH4–N + organic N), and TN. A weekly flow–

proportional sampling programme is carried out by Rotorua Lakes Council using 

an automatic sampler to collect a single weekly composite sample. For Waipa D/S 

hydrometric station, the weekly composite sample was typically comprised of ~200 

sub–samples and each sub–sample was collected every 1800 m3 of discharge. 

Weekly contaminant loads were calculated based on weekly flow–proportional 

concentrations multiplied by weekly mean discharge, and the product was then used 

to compare against measurements, for model evaluation purposes. 
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Figure 3.1 Study catchment drained by the Waipa Stream, Rotorua, New Zealand. Treated 

wastewater is spray–irrigated onto 14 blocks within the Whakarewarewa Forest, upstream 

of Lake Rotorua. 

 

3.3.3 Model configuration and code modification 

The details used for model configuration and parameterisation are given in Me et 

al. (2015). Briefly, key SWAT input data requirements include: a digital elevation 

model (DEM; 25 m horizontal resolution); meteorological records (obtained from 

National Climatic Database; available at http://cliflo.niwa.co.nz/); records of spring 

locations, discharge and water abstraction; a stream map (obtained from Bay of 

http://cliflo.niwa.co.nz/
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Plenty Regional Council, BoPRC); physical soil characteristics derived from S–

map (developed by Landcare Research; available at 

http://smap.landcareresearch.co.nz/home); land use classifications (obtained from 

New Zealand Land Cover Database Version 2, BoPRC), and; management 

schedules (obtained from BoPRC) for key land uses (i.e., wastewater irrigation and 

timber harvesting).  

Initial parameter values required for model configuration were based on the 

monitoring data that were measured close to the start date of the simulation period. 

Parameter values related to plant growth and nutrient uptake were taken from Me 

et al. (2015) for the dominant land use category (PINE, representing Pinus radiata) 

identified in this study. Soil chemical properties were derived from Beets et al. 

(2013) who measured N and P at six permanent soil sampling sites inside the study 

catchment in 2012. 

The DEM was used to delineate boundaries for the whole catchment and 

individual sub–catchments, with a stream map used to “burn–in” channel locations 

to create accurate flow routings. The Waipa D/S hydrometric station (Fig. 3.1; 

downstream of the LTS, 537 m upstream of the confluence with the Puarenga 

Stream), was specified as the most downstream location in the model. Twenty–one 

sub–catchments were represented in the Waipa Stream catchment, each comprising 

numerous Hydrologic Response Units (HRUs). Each HRU aggregates cells with 

the same combination of land cover, soil, and slope. A total of 441 HRUs was 

defined in the model.  

Weekly total precipitation (hereafter “rainfall”) data were obtained from the 

Red Stag rain gauge (Fig. 3.1) located within the study catchment. These data were 

used together with hourly rainfall measured at the Kaituna rain gauge (Fig. 3.1; 

~2 km to the north of the Waipa Stream catchment) to derive an hourly distribution 

of rainfall for the Red Stag rain gauge. Hourly rainfall estimates were used as 

hydrologic forcing data and the hourly rainfall/Green & Ampt infiltration/hourly 

routing method (Arnold et al., 2013) was used to simulate upland and in–stream 

hydrological processes and nutrient transport for each HRU, with hourly or daily 

predictions summed to obtain the total for each sub–catchment.  

http://smap.landcareresearch.co.nz/home
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3.3.3.1 Sediment erosion 

Estimation of sediment routing and channel erosion in SWAT was based on the 

simplified Bagnold Equation (Bagnold, 1977). The original SWAT2012 code was 

not functional for SS load simulations when the hourly routing algorithms were 

used. Therefore, adjustments were made in four FORTRAN files (“rthsed.f”, 

“rtout.f”, “route.f”, “ysed.f”) to permit: 1) hourly initialisation of peak runoff rate 

in each reach; 2) hourly simulations of SS loads in each reach; 3) summation of 

modelled reach SS loads at hourly intervals; and 4) daily predictions of SS loss 

caused by erosion. 

3.3.3.2 Management schedules 

The forested blocks where wastewater is spray–irrigated were manually digitised 

based on maps provided by the LTS operators. Daily management schedules used 

as input to SWAT, including wastewater irrigation and forestry operations, were 

configured for each block. Wastewater irrigation was represented in SWAT by 

defining separate irrigation and fertilisation management schedules as part of the 

input of water and nutrients, respectively, to the model. The source of irrigation was 

specified in the model as outside of the catchment. The required daily irrigation 

depths were based on daily irrigation volumes for each block. The fraction of daily 

surface runoff from the irrigated wastewater draining from the sprayed block was 

estimated based on a digital filter method (Eckhardt filter) and using the 

Hydrograph Analysis Tool (Lim et al., 2005). This tool has been used to separate 

daily streamflow into base flow and surface runoff, and was also used in this study 

for the separation of daily irrigated wastewater (plus daily rainfall) into surface 

runoff and subsurface infiltration. The fraction of the separated daily surface runoff 

was then estimated (multi–year daily mean = 0.6), which meant the remaining 

irrigated–wastewater was assumed to have infiltrated the soil. In addition to daily 

excess rainfall, daily excess irrigation depths have also been added to account for 

daily water percolation below the bottom of the soil profile in the SWAT2012 code, 

as done in Dechmi et al. (2012). 

Nutrients in the irrigated wastewater were represented in SWAT as fertiliser 

inputs, with a daily composition configured from monthly mean concentrations 

measured in 7–day composite samples of the irrigated–wastewater. The daily 

irrigated fertiliser was input in kg ha-1 d-1 where the area unit represents the irrigated 
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block. The deficiencies of the original SWAT2012 code were 1) omission of the 

area of each irrigated block, 2) applied organic N in wastewater was added in both 

fresh and active organic N pools, and 3) omission of the summations of NH4–N 

load in the soil. Adjustments were therefore made in the FORTRAN files 

“sched_mgt.f”, “fert.f” and “soil_write.f” to address these deficiencies. 

Configuration of forest harvest operations was based on annual harvesting 

data provided by forestry managers. Each block was deemed mature at the start of 

the modelling period. Harvesting of each block was a clear–fell operation and was 

assigned in the model as taking one year to complete, during which time no 

irrigation was carried out. A total of 14 blocks was configured on daily intervals for 

the three operations (irrigation, fertiliser application and tree harvesting) over the 

modelling period of 10 years. An additional variable “iopera” was added in the 

FORTRAN file “allocate_parms.f” of the SWAT2012 source code to indicate the 

management schedule. A dimension of 12,000 (~10 years × 365 days × 3 operations) 

was assigned to this variable.  

3.3.3.3 Nutrient simulations 

The QUAL2E model (Brown and Barnwell, 1987) linked with SWAT was used to 

simulate the in–stream nitrogen and phosphorus dynamics. SWAT simulates loads 

of NO3–N, NH4–N and organic N (ORGN), the sum of which is TN load (nitrite is 

assumed negligible), and loads of mineral P (MINP) and organic P (ORGP), the 

sum of which is TP load. The MINP fraction represents soluble P in mineral and 

organic form. Due to the small proportion of soluble organic P observed at the 

Waipa D/S hydrometric station, the MINP fraction was presumed to be directly 

comparable to DRP measured in stream water samples. The ORGP represents 

particulate organic P (e.g., P in phytoplankton) and inorganic P bound to sediments 

adsorbed to sediments (White et al., 2014).  

Adjustments were also made in the source code files “orgn.f” (unit 

corrections), “nminrl.f” (constants corrected) and “nitvol.f” (nitrification and 

volatilisation calculations) to permit 1) the calculation of ORGN load lost from the 

soil in surface runoff; 2) the calculation of N mineralisation and immobilisation; 

and 3) the calculation of rates of N nitrification and volatilisation. Adjustments 

made in “soil_chem.f”, “psed.f”, “enrsb.f”, and “solp.f” (unit corrections) to permit 

1) the initialisation of soil chemical properties; 2) the calculation of MINP and 
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ORGP loads in surface runoff; 3) calculation of the “enrichment ratio”, which is the 

ratio of the phosphorus concentration associated with fine suspended sediments to 

the concentration in surface soil; and 4) the calculation of MINP load lost from the 

soil in either surface runoff or leaching to groundwater. 

A diagrammatic representation of all the required modifications of 

SWAT2012 code is shown in Fig. 3.2, followed by detailed descriptions of these 

modifications in Appendix 1. 

 

Figure 3.2 Diagram of the modification of SWAT2012 code required for the Waipa 

irrigated forestry catchment. Components in the first row indicate the processes for which 

code modifications were required. Components in the second row describe each process. 

Components in the third row indicate the specific FORTRAN files where the SWAT2012 

code was modified (see Appendix 1). 

 

3.3.4 Parameter sensitivity and calibration 

Values of SWAT parameters were assigned based on (i) measured data (e.g., soil 

parameters), (ii) literature values from published studies of similar catchments (e.g., 

land use parameters), or (iii) manual adjustment where parameters were not 

otherwise prescribed. Hydrological parameters were calibrated manually based on 

the weekly mean measurements of discharge. Water quality parameters for 

simulations of SS, ORGP, MINP, ORGN, NH4–N, and NO3–N loads were also 

manually calibrated using weekly flow–proportional sampling loads. 

The SWAT2012 model was run from 2002 to 2012, i.e., for the period 

following a change from daily to weekly irrigation of each block (see Section 3.3.1). 
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The first year (2002) was used for model “warm–up”. The calibration period was 

from 2003 to 2010 and the validation period was from 2011 to 2012. A one–at–a–

time (OAT) routine proposed by Morris (1991) was applied to examine parameter 

sensitivity for each simulated variable (Q, SS, ORGP, MINP, ORGN, NH4–N, and 

NO3–N).  

3.3.5 Model evaluation 

Hourly routing and daily routing model performances were evaluated in this study 

using a common parameter set. Model evaluation was based on the comparisons 

between weekly mean simulations and measurements for discharge, SS, ORGP, 

MINP, TP, ORGN, NH4–N, NO3–N, and TN loads. Weekly means were aggregated 

for the daily output using both the hourly and daily routing models. Model 

goodness–of–fit between simulated outputs and observations was initially assessed 

graphically and then quantified using four commonly–used model evaluation 

statistics (Moriasi et al., 2007): Pearson product moment correlation coefficient (r), 

root mean square error (RMSE), mean absolute error (MAE), and percent bias 

(PBIAS). Values of r indicate the degree of linear relationship between simulated 

and measured data. Values of r were deemed statistically significant for values of 

p < 0.05 (Bewick et al., 2003). Values of RMSE and MAE reflect the model error 

in units of the variables of interest. PBIAS indicates the average tendency for model 

predictions to be larger or smaller than observations. Definitions and statistical 

inferences are shown in Table 3.1.  

Hourly simulations of discharge, SS, TP and TN loads were also used for 

model evaluation during short (1–3 day) high rainfall days (i.e., storm events). The 

period 10–12 October 2011 was chosen to include the pre, during and post storm 

event (max. rainfall 7.67 mm h-1). This period also corresponded to the sampling 

period given in Abell et al. (2013), where high–frequency (1–2 h) water quality 

sampling was undertaken (nine events for SS and 14 events for TP and TN) during 

2010–2012 at the downstream FRI stream–gauge (FRI; Fig. 3.1). The use of hourly 

simulations for model evaluation in this study allowed examination of the range of 

variation in each simulated variable over the course of one day. 
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Table 3.1 Statistics used to evaluate model performance. Note: on is the nth observed datum, 

sn is the nth simulated datum, o
_

 is the observed mean value, s
_

 is the simulated daily mean 

value, and N is the total number of observed data. 

Statistic Definition Features 

Pearson 

product 

moment 

correlation 

coefficient 

𝑟

=
∑ [(𝑜n − o̅)(𝑠n − s̅)]N

n=1

√∑ (𝑜n − o̅)2× ∑ (𝑠n − s̅)2N
n=1

N
n=1

 

Range from -1 to 1. The value 

of 0 indicates no linear 

relationship, while the value of 

1 or -1 indicates a perfect 

positive or negative linear 

relationship between simulated 

and measured data. 

Root 

mean 

square 

error 

RMSE = √
∑ (𝑠n − 𝑜n)2𝑁

𝑛=1

𝑁
 

A value of 0 indicates a perfect 

fit. This measure is 

disproportionately affected by 

large errors. 

Mean 

absolute 

error 
MAE =

∑ |𝑠n − 𝑜n|𝑁
𝑛=1

𝑁
 

A value of 0 indicates a perfect 

fit. A measure of the average 

of all model errors. 

Percent 

bias 

Statistic 
PBIAS% =

∑ (𝑜n − 𝑠n)N
n=1

∑ 𝑜n
N
n=1

×100% 

A value of 0 indicates a perfect 

fit. Positive values indicate 

model underestimates and 

negative values indicate model 

overestimates. 

 

3.3.6 Irrigation scenarios 

Five different treated municipal wastewater irrigation scenarios were simulated 

using the hourly routing to evaluate impacts of 10–14 blocks irrigated daily (actual 

irrigation scenario; S0), decreasing the irrigated area (eight, four or two blocks 

irrigated while keeping the total irrigation volume unchanged; S1), reassigning the 

same amount of irrigated wastewater from high rainfall days (≥ 20 mm d-1) to low 

rainfall days (< 20 mm d-1; S2), reducing irrigation frequency (e.g., total weekly 

irrigation applied on one day each week; S3), and no irrigation (S4). Specifications 

for each of these scenarios are given in Table 3.2. Fertilisation schedules were also 

varied accordingly. The effects of different treated municipal wastewater irrigation 

scenarios on nutrient yields from the Waipa Stream catchment were analysed using 

the percentage change of a multi–year mean of annual nutrient loads aggregated 

from SWAT2012 daily outputs, compared with the simulations under scenario S0 

(the current irrigation regime). 
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Table 3.2 Descriptions and specifications of treated municipal wastewater irrigation scenarios used for SWAT2012 simulations. 

Scenario Purpose Specification 

S0: 10–14 blocks 

irrigated daily 

Evaluate effects of the 

actual irrigation scenario. 

Wastewater applied to 10 blocks or 14 blocks on different soil types within the 

land treatment system in 2003–2012. 

S1: Decreased 

irrigated area 

Evaluate effects of 

decreasing the size of the 

irrigated area. 

Wastewater applied to eight blocks (122 ha), four blocks (61 ha) or two blocks 

(26 ha) on the same soil type (“Haparangi 1 and 2”) in 2003–2012. To allow 

upland and in–stream nutrient cycling and transport processes, wastewater was 

applied only to the blocks that were furthest upstream of the Waipa Stream. The 

total volume of wastewater applied was unchanged for each simulation. 

S2: Irrigation on 

low rainfall days 

Evaluate interactions 

between irrigation and 

rainfall. 

Irrigation during high rainfall days (≥ 20 mm d-1) in 2003–2012 reassigned to the 

first subsequent low rainfall day (< 20 mm d-1). For periods with multiple 

consecutive high rainfall days (maximum = three days), the combined total 

irrigation was reassigned from high rainfall days to the first subsequent low 

rainfall day. The total volume of wastewater applied within three days was 

unchanged. 

S3: Weekly 

irrigation 

Evaluate effect of reducing 

irrigation frequency. 

A weekly irrigation frequency was applied in 2003–2012, i.e., total weekly 

wastewater was irrigated on the first day of a week and no irrigation was 

undertaken on the remaining days in that week. The total volume of wastewater 

applied within a week was unchanged. 

S4: No irrigation Examine effect of no 

irrigation. 

No irrigation for the period 2003–2012. 
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3.4 Results 

3.4.1 Sensitive and optimised parameters 

The optimised values of the most sensitive parameters, based on (i) measured data 

(e.g., soil parameters), ii) fixed values from the literature of similar catchments, or 

iii) auto–calibration followed by manual adjustment, are shown in Table 3.3 for the 

following variables: Q, SS, ORGP, MINP, ORGN, NH4–N, and NO3–N. Some 

nutrient parameters with file extension of “bsn” can only be given one value for the 

whole catchment (Arnold et al., 2013). Values for the remaining parameters were 

also assigned for the whole catchment in this study. 

The value of the parameter channel erodibility factor (CH_COV1) was 

optimised for the hourly routing to estimate the net amount of sediment re–

entrained by deposition and degradation in the channel. The optimised value was 

relatively high (0.15; Table 3.3). The soil P parameter values used in this study were 

mainly derived from data in Beets et al. (2013), who measured P storage through 

soil depths at six sampling sites within the Waipa Stream catchment. They found 

mean measured P retention rates at 0–20 cm soil depth of 70% for the control 

(unirrigated) sites and 45% for irrigated sites. In SWAT, the soil P adsorption 

coefficient (PSP; P retention rate or P availability index) was not spatially 

distributed or dependent on soil depth (Arnold et al., 2013). It was therefore 

assigned as the average of 70% and 45% for the whole catchment (PSP; ~0.6; 

Table 3.3).  

The optimised parameter values generally fall within the SWAT default 

ranges except for two parameters related to MINP load simulations; PHOSKD 

(phosphorus soil partitioning coefficient) and PPERCO (phosphorus percolation 

coefficient), and one parameter for NH4–N load simulations; RS3 (benthic sediment 

source rate for NH4–N in a reach at 20 ℃). Parameter PHOSKD is the ratio of 

soluble P concentration in topsoil (10 mm) to that dissolved in discharge through 

surface runoff. The SWAT default range is 100 to 200 m3 t-1 (Neitsch et al., 2011). 

A larger value of 400 optimised for PHOSKD in this study may relate to large 

proportions of soluble P retained in topsoil as opposed to being discharged through 

surface runoff (Beets et al., 2013). Parameter PPERCO assigns the ratio of soluble 

P concentration in topsoil (10 mm) to that infiltrated into the subsurface soil layers. 

The SWAT default range is 100 to 175 m3 t-1 (Neitsch et al., 2011). A unit 
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conversion for PPERCO was taken out in code modifications, to be consistent with 

the equations in the manual documentation, so the adjusted default range is between 

0.01 and 0.0175. The lower value of 0.01 optimised for PPERCO in this study 

indicated higher soluble P in infiltration than that in the topsoil (10 mm). 

The optimised value for the parameter stream benthic (sediment) flux of 

NH4–N (RS3) of 10 mg m-2 d-1 exceeded the SWAT default range from 

0 to 1 mg m-2 d-1. The high value of this optimised parameter was nevertheless less 

than the value from Gabriele et al. (2013) who investigated headwater streams from 

an Austrian agricultural catchment and the authors found RS3 values between 

24 and 48 mg m-2 d-1. 

3.4.2 Model performance 

Hourly routing of discharge averaged to weekly time scale showed larger 

fluctuations than daily routing simulations (Fig. 3.2a, b). Both model simulations 

provided strong correlations with weekly mean discharge measurements (r > 0.8; 

p < 0.001; Table 3.4). Weekly mean discharge peaks corresponding to high rainfall 

(weekly mean ≥ 20 mm d-1) tended to be overestimated by the hourly routing model 

(see PBIAS in Table 3.4). 

Hourly routing underestimated several peaks of weekly mean SS load 

during high rainfall events. The underestimates were found either during or after a 

large number of blocks had been harvested (Fig. 3.3c). Both routings gave positive 

correlations with the measured weekly mean SS load (r > 0.4; p < 0.001; Table 3.4). 

However, daily routing of SS load averaged to weekly time scale was considerably 

higher than the hourly routing simulations (Fig. 3.3d; PBIAS in Table 3.4). 
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Table 3.3 Optimised values and default ranges for the most sensitive parameters for discharge (Q), suspended sediment (SS), organic phosphorus 

(ORGP), mineral phosphorus (MINP), organic nitrogen (ORGN), ammonium–nitrogen (NH4–N), and nitrate–nitrogen (NO3–N) load simulations 

using a modified SWAT2012 code. The parameters marked with an asterisk have an optimised value outside of the SWAT default range. Parameters 

are unitless unless otherwise specified. 

Parameter Optimum Min Max Definition Unit 

Q 

SLSOIL.hru 15 0 150 Slope length for lateral subsurface flow m 

CH_K2.rte 250 0 500 Effective hydraulic conductivity in the main channel alluvium mm h-1 

CH_N2.rte 0.01 0 0.3 Manning's N value for the main channel 
 

HRU_SLP.hru 0.6 0 1 Average slope steepness m m-1 

LAT_TTIME.hru 14 0 180 Lateral flow travel time d 

GWQMN.gw 400 0 5000 Threshold depth of water in the shallow aquifer required for return 

flow to occur 

mm 

RCHRG_DP.gw 0.65 0 1 Deep aquifer percolation fraction 
 

ALPHA_BF.gw 0.01 0 1 Base flow alpha factor  
 

SS 

CH_COV1.rte 0.15 0 0.6 Channel erodibility factor 
 

CH_COV2.rte 0.15 0 1 Channel cover factor 
 

LAT_SED.hru 5 0 5000 Sediment concentration in lateral flow and groundwater flow mg L-1 

PRF.bsn 2 0 2 Peak rate adjustment factor for sediment routing in the main 

channel 

 

SPCON.bsn 0.003 0.0001 0.01 Linear parameter for calculating the maximum amount of 

sediment that can be re–entrained during channel sediment routing 

 

SPEXP.bsn 2 1 2 Exponent for calculating sediment re–entrained in channel 

sediment routing 

 

OV_N.hru 20 0.01 30 Manning's N value for overland flow 
 

SLSUBBSN.hru 83 10 150 Average slope length m 
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Parameter Optimum Min Max Definition Unit 

ORGP 

LAT_ORGP.gw 10 0 200 Organic P in base flow mg P L-1 

BC4.swq 0.7 0.01 0.7 Rate constant for mineralisation of organic phosphorus to 

dissolved phosphorus in the reach at 20 ℃ 

d-1 

RS4.swq 0.001 0.001 0.1 Organic phosphorus settling rate in the reach at 20 ℃ d-1 

MINP 

PSP.bsn 0.6 0.01 0.7 Phosphorus availability index  
*PHOSKD.bsn 400 100 500 Phosphorus soil partitioning coefficient m3 t-1 
*PPERCO.bsn 0.01 0.01 0.0175 Phosphorus percolation coefficient m3 t-1 

ORGN & NH4–N 

SURLAG.bsn 1 0.05 24 Surface runoff lag coefficient 
 

LAT_ORGN.gw 55 0 200 Organic nitrogen in the base flow mg N L-1 

BC3.swq 0.4 0.2 0.4 Rate constant for hydrolysis of organic nitrogen to ammonium–

nitrogen in the reach at 20 ℃ 

d-1 

RS4.swq 0.001 0.001 0.1 Rate constant for organic nitrogen settling in the reach at 20 ℃  d-1 

NH4–N 

BC1.swq 0.1 0.1 1 Rate constant for biological oxidation of ammonium–nitrogen to 

nitrite–nitrogen in the reach at 20 ℃ 

d-1 

*RS3.swq 10 0 50 Benthic (sediment) source rate for ammonium–nitrogen in the 

reach at 20 ℃  

mg m-2 d-1 

NO3–N 

CDN.bsn 0.01 0 3 Denitrification exponential rate coefficient 
 

CMN.bsn 0.001 0.001 0.003 Rate factor for humus mineralisation of active organic nitrogen 
 

NPERCO.bsn 0.001 0 1 Nitrogen percolation coefficient 
 

SDNCO.bsn 0.95 0 1 Denitrification threshold water content 
 

HLIFE_NGW.gw 500 0 5000 Half–life of nitrate in the shallow aquifer d 
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Fig. 3.4a–f shows that simulated loads of P species averaged to weekly time 

scale using hourly routing aligned well with the measurements prior to 2007, 

however the hourly model underestimated the weekly mean measurements after 

2007. Underestimates of weekly mean MINP and ORGP peaks appeared to be 

related to extreme rainfall (weekly mean ≥ 40 mm d-1) and harvesting operations 

(i.e., ≥ three forestry blocks harvested). Underestimates of weekly mean TP peaks 

appeared to be a lagged response to high rainfall, high TP in wastewater or several 

blocks harvested concurrently. Hourly routing simulations of MINP load averaged 

to weekly values showed positive correlation with measurements during calibration 

and validation (r > 0; p < 0.05), while daily routing gave negative correlations 

(Table 3.4). Hourly routing gave underestimates of weekly mean MINP load by 

13.9% during calibration and 27.3% during validation, while these underestimates 

increased for the daily routing simulations. By contrast, weekly mean ORGP load 

was underestimated using hourly routing compared with the daily routing 

simulation output of this variable (see PBIAS in Table 3.4). However, daily 

simulations of TP load averaged to weekly values were identical using hourly and 

daily routing models (Fig. 3.4e–f).  

Fig. 3.5a–d indicates that for hourly routing averaged to weekly time scale, 

fluctuations in ORGN and NH4–N loads were related to high rainfall. Most peaks 

in hourly routing of NO3–N and TN loads averaged to weekly time scale also 

corresponded to high rainfall as well as to high TN loads in wastewater (Fig. 3.6a–

d). Hourly routing of NH4–N load averaged to weekly time scale showed high 

correlations with the measured values (r = 0.53; p < 0.001), while daily routing 

simulations were less accurate (r = 0.34; p < 0.001) and tended to underestimate 

measurements (see PBIAS in Table 3.4). By contrast, weekly mean ORGN load 

was underestimated using the hourly routing compared with the daily routing 

simulation. As for NO3–N and TN loads, daily simulations averaged to weekly 

values using both hourly and daily routings were strongly correlated (r > 0.5; 

p < 0.001) with measurements during calibration and validation (Table 3.4).  

The hourly routing model yielded better statistical fit to the measurements 

at weekly time scale and was therefore used in for further simulations. Fig. 3.7 

shows an example of hourly simulations of discharge, SS, TP and TN loads for 10–

12 October 2011. Fluctuations in simulated discharge and SS, TP and TN loads at 

hourly time scale are closely related to variations in rainfall (Fig. 3.7). Monthly 

mean discharge, SS, TP and TN loads aggregated from hourly simulations are 

shown in Table 3.5. The standard deviation (Std.Dev.) for hourly simulations of 

each variable is mostly larger than the mean (Table 3.5), indicating high variability 

at hourly time scale. 
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Figure 3.3 Weekly mean values derived from simulated daily outputs for (a–b) discharge (Q) and (c–d) suspended sediment (SS) load, compared 

with weekly flow–proportional measurements at the Waipa D/S hydrometric station. The comparisons were undertaken by using a modified 

SWAT2012 code based on hourly routing (left) and daily routing (right). The calibration period was from 2003 to 2010 and the validation period 

was from 2011 to 2012. The model underestimated SS peaks when high rainfall occurred either during (A1–A3) or after (B) harvest of multiple 

blocks, as indicated by the number of harvested blocks in the upper panel of (c).  
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Figure 3.4 Weekly mean values derived from simulated daily outputs for loads of (a–b) mineral phosphorus (MINP), (c–d) organic phosphorus 

(ORGP), and (e–f) total phosphorus (TP), compared with weekly flow–proportional measurements at the Waipa D/S hydrometric station. The 

comparisons were undertaken by using a modified SWAT2012 code based on hourly routing (left) and daily routing (right). Calibration was from 

2003 to 2010 and validation from 2011 to 2012. Underestimates of TP peaks were related to a lagged response to high rainfall only (C), high rainfall 

following (D) or during (E) harvest of more blocks, only during harvest of more blocks without high rainfall (F), and high TP in wastewater during 

harvest of multiple blocks at once (G), as indicated by the number of harvested blocks in the upper panel of (c). 
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Figure 3.5 Weekly mean values derived from simulated daily outputs for loads of (a–b) organic nitrogen (ORGN) and (c–d) ammonium–nitrogen 

(NH4–N), compared with weekly flow–proportional measurements at the Waipa D/S hydrometric station. The comparisons were undertaken by 

using a modified SWAT2012 code based on hourly routing (left) and daily routing (right). The calibration period was from 2003 to 2010 and the 

validation period was from 2011 to 2012.  
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Figure 3.6 Weekly average values derived from simulated daily outputs for loads of (a–b) nitrate–nitrogen (NO3–N) and (c–d) total nitrogen (TN), 

compared with weekly flow–proportional measurements at the Waipa D/S hydrometric station. The comparisons were undertaken by using a 

modified SWAT2012 code based on hourly routing (left) and daily routing (right). The calibration period was from 2003 to 2010 and the validation 

period was from 2011 to 2012. Several underestimates of peaks in TN load were related to consecutive wet days (H1–H3) and high TN in wastewater 

(I).  
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Table 3.4 Statistical values of Pearson product moment correlation coefficient (r), root mean square error (RMSE), mean absolute error (MAE), 

and percent bias (PBIAS), used to indicate the SWAT model performance for daily simulations averaged to weekly time scale of discharge (Q), 

loads of suspended sediment (SS), mineral phosphorus (MINP), organic phosphorus (ORGP), total phosphorus (TP), organic nitrogen (ORGN), 

ammonium–nitrogen (NH4–N), nitrate–nitrogen (NO3–N) and total nitrogen (TN). The statistical values were calculated using a modified 

SWAT2012 code based on (I) hourly routing and (II) daily routing. The significance of correlation is asterisked where p < 0.05, otherwise p < 0.001. 

Units are relevant to RMSE and MAE values. 

Simulation 

period 
Statistics 

Processes 

calculation 

Q 

(m3 s-1) 

SS 

(tonne d-1) 

MINP 

(kg d-1) 

ORGP 

(kg d-1) 

TP 

(kg d-1) 

ORGN 

(kg d-1) 

NH4–N 

(kg d-1) 

NO3–N 

(kg d-1) 

TN 

(kg d-1) 

 r I 0.81 0.43 0.11* 0.42 0.45 0.61 0.53 0.57 0.73 

  II 0.84 0.45 -0.14* 0.40 0.45 0.60 0.34 0.48 0.70 

 RMSE I 0.16 1.2 1.5 2.8 3.4 11.2 1.5 25.0 28.2 

Calibration  II 0.12 393.2 1.9 2.8 3.3 11.1 2.6 25.4 27.5 

(2003– MAE I 0.12 0.9 1.0 2.0 2.4 8.5 1.1 19.7 22.3 

2010)  II 0.08 361.8 1.3 2.0 2.3 8.3 2.3 20.9 21.8 

 PBIAS% I -7.4 -17.9 13.9 31.8 22.5 17.8 5.5 11.3 12.4 

  II -6.2 -22,682 32.1 17.6 22.9 8.4 83.7 10.4 11.8 

 r I 0.83 0.54 0.24* 0.6 0.54 0.63 0.71 0.63 0.82 

  II 0.83 0.54 -0.22* 0.59 0.54 0.64 0.67 0.66 0.85 

 RMSE I 0.15 1.5 2.4 3.4 4.9 12.5 1.8 26.4 26.3 

Validation  II 0.10 499.9 2.9 3.3 4.9 13.8 3.8 25.2 23.7 

(2011– MAE I 0.10 1.1 1.5 2.2 3.3 9.0 1.3 20.2 20.9 

2012)  II 0.10 452.6 2.0 2.2 3.2 10.3 3.2 20 18.8 

 PBIAS% I -5.2 -21.7 27.3 29.4 26.9 -3.3 11.3 13.1 10.1 

  II -4.8 -24,860 46.9 12.4 27.0 -17.5 86.8 13.2 10.1 
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Figure 3.7 Example of a storm event for the period 10–12 October 2011 showing variability of hourly SWAT2012 simulations of (a) discharge 

(Q), (b) suspended sediment (SS), (c) total phosphorus (TP) and (d) total nitrogen (TN) loads over three days. The horizontal red lines show daily 

mean values. Rainfall (inverted scale) is shown in (a). 
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Table 3.5 Multi–year monthly mean aggregated from SWAT2012 hourly simulations for discharge (Q), suspended sediment (SS), total phosphorus 

(TP) and total nitrogen (TN) loads. Std.Dev. is standard deviation. 

Month 
Q (m3 s-1)  SS (tonne d-1)  TP (kg d-1)  TN (kg d-1) 

Mean Std.Dev.  Mean Std.Dev.  Mean Std.Dev.  Mean Std.Dev. 

Jan 0.63 0.83  1.7 5.3  4.9 10.1  78.9 133.9 

Feb 0.62 0.64  1.6 2.8  4.7 7.2  75.5 112.2 

Mar 0.59 0.42  1.6 1.6  4.3 4.7  80.9 100.5 

Apr 0.60 0.48  1.6 2.2  4.6 6.2  90.5 110.1 

May 0.79 1.04  2.3 5.6  6.6 11.5  110.5 188.1 

Jun 0.84 1.05  2.4 5.4  6.5 10.2  105.7 171.7 

Jul 0.87 1.10  2.6 5.8  6.8 10.8  113.3 199.2 

Aug 0.94 1.34  2.9 7.7  7.2 12.7  123.4 221.2 

Sep 0.81 0.92  2.3 4.7  5.8 8.8  110.3 165.4 

Oct 0.80 0.97  2.3 5.2  6.2 10.1  109.8 176.5 

Nov 0.64 0.47  1.7 2.0  4.3 4.5  89.1 89.7 

Dec 0.61 0.59  1.6 2.8  4.8 7.0  85.7 115.3 
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3.4.3 Irrigation scenarios simulations 

Irrigation scenarios are presented in Fig. 3.8 as multi–year (2003–2012) means of 

annual nutrient loads aggregated from SWAT2012 daily outputs using hourly 

routing algorithms. Under the actual irrigation scenario (S0: 10–14 blocks irrigated 

daily), simulated multi–year mean TP load was 2 t yr-1 and TN load was 35.8 t yr-1 

in the Waipa Stream (Fig. 3.8). Compared with the measurements in the Waipa 

Stream, annual TP load was underestimated by 26% and annual TN load was 

underestimated by 12%.  

The highest simulated nutrient loads occurred with decreasing the irrigated 

area from 10–14 blocks to two blocks (Fig. 3.8). Compared with the simulations 

under scenario S0, irrigation applied on two upstream blocks accounted for the 

largest increase in the annual nutrient load, i.e., annual TP load increased by 20% 

and annual TN load increased by 88%. The smallest increase in scenario S0 

occurred for the wasterwater application on eight blocks. 

Simulations of annual mean nutrient loads under scenario S2, i.e., irrigation 

reassigned from high rainfall days (≥ 20 mm d-1) to low rainfall days (< 20 mm d-1) 

showed an unexpected small increase compared with the scenario S0. For example, 

annual TP load increased by 5% and annual TN load by 2.5% (Table 3.6).  

Simulations of multiyear mean nutrient loads under scenario S3, i.e., 

reducing irrigation frequency to weekly on one day each week, increased TN load 

by 2.5% from the simulations under scenario S0, while almost no change was found 

in TP load (Fig. 3.8). Interannual variability in TP load simulations was relatively 

small, while large increases in annual TN load were found under scenario S3 

(Table 3.6).  

Simulations of multiyear mean nutrient loads under scenario S4 of no 

irrigation gave a major decrease in TN load (66%) and less so for TP load (10%), 

compared with the scenario S0 (Fig. 3.8). A visual inspection of Fig. 3.9 shows that 

it took around nine months for NO3–N load to decrease to within about 20% of its 

pre–irrigation values after irrigation ceased. Interannual variability in nutrient loads 

was relatively small (Table 3.6). 
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Figure 3.8 Multiyear (2003–2012) mean of total annual measured and simulated (a) total 

phosphorus (TP) and (b) total nitrogen (TN). S0 is 10–14 blocks irrigated daily, S1 is 

decreased irrigated area, S2 is reassigned irrigation from high rainfall (≥ 20 mm d-1) days 

to low rainfall days, S3 is reduced irrigation frequency to one day per week and S4 is no 

irrigation. Boxes denote interquartile ranges (i.e., 25% and 75%); whiskers denote 

minimum and maximum values; horizontal lines denote median values. 
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Table 3.6 Change of annual total phosphorus (TP) and total nitrogen (TN) loads under four different irrigation scenarios from the simulations under 

the actual irrigation scenario (S0: 10–14 blocks irrigated daily) during 2003–2012. 

Scenario Description 
Change in annual TP load (%) 

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

 Two blocks 26.3 17.8 16.8 16.6 26.2 22.8 18.2 10.3 10.9 13.4 

S1 Four blocks 11.6 11.6 9.8 10.7 13.3 11.0 8.4 4.9 7.0 6.6 

 Eight blocks 7.7 10.1 9.5 11.0 11.0 7.7 6.9 5.5 8.5 6.3 

S2 Irrigation on low rainfall days 0.2 1.1 1.2 1.6 1.0 1.6 1.3 1.0 1.1 1.3 

S3 Weekly irrigation -3.2 0.6 -0.4 0.0 -0.9 -1.4 0.8 1.2 2.4 2.5 

S4 No irrigation -10.9 -9.7 -13.2 -13.1 -14.8 -12.9 -16.2 -15 -9.2 -13.2 

  Change in annual TN load (%) 

  2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

 Two blocks 109.9 109.8 98.0 94.4 95.7 73.4 83.7 72.0 74.3 79.0 

S1 Four blocks 60.6 68.0 60.9 60.9 59.0 42.1 46.8 40.4 42.8 47.2 

 Eight blocks 18.7 28.6 26.3 30.4 24.4 9.5 12.8 11.1 12.2 18.1 

S2 Irrigation on low rainfall days 1.0 3.8 3.1 4.6 3.2 2.9 2.2 1.5 1.8 2.3 

S3 Weekly irrigation 9.2 13.6 16.2 14.2 16.7 7.8 8.2 9.7 7.3 8.7 

S4 No irrigation -49.2 -70.2 -72.1 -61.9 -69.2 -68.5 -71.4 -68.0 -65.8 -60.0 
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Figure 3.9 Daily mean load simulations of (a) mineral phosphorus (MINP), (b) total phosphorus (TP), (c) nitrate–nitrogen (NO3–N), and (d) total 

nitrogen (TN) under actual irrigation and no irrigation. 
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3.5 Discussion 

The reuse of treated wastewater for forest irrigation has become commonplace 

around the world (Braatz and Kandiah, 1996), however, there are few modelling 

evaluations of its downstream environmental impacts (e.g., Pisinaras et al., 2010; 

Aouissi et al., 2014). Variability in stream discharge and nutrients will be impacted 

by the relative area of irrigation. Abell et al. (2013) showed high–frequency 

variability of discharge and nutrient concentrations in the Puarenga Stream 

downstream of the Waipa Stream that drains the wastewater–irrigated forest area 

(193 ha) which was the subject of this study. The hourly routing algorithms in the 

SWAT2012 model used in this study to model the Waipa Stream catchment were 

required to capture this variability (see Jeong et al., 2011). The SWAT2012 code 

was also modified to simulate a complex irrigation operation involving different 

spatial and temporal irrigation regimes. Simulated and measured weekly mean 

discharge, SS, TP and TN loads were in reasonable agreement and improved upon 

the statistical fit of the hourly routing algorithms, enabling the SWAT2012 model 

to be utilised with confidence to evaluate impacts of alternate management regimes 

for wastewater irrigation. 

3.5.1 Effectiveness and uncertainties of modified SWAT2012 code  

In this study parameters were optimised at Waipa downstream hydrometric station 

using hourly routing and an identical set of parameters was then used for daily 

routing. The hourly model, with output aggregated to weekly, overestimated 

observed peaks of discharge more than the daily model but tended to underestimate 

base flow. Overestimates of surface runoff and underestimates of base flow were 

also found in SWAT2005 model application by Jeong et al. (2010). Based on the 

same set of parameters tuned for the hourly algorithms in SWAT2005, Jeong et al. 

(2011) predicted annual SS yield of 1.46 t ha-1 yr-1 for a small catchment (1.9 km2), 

which was about one–half of that predicted using daily routing (2.89 t ha-1 yr-1). 

They excluded hourly routings in calculations of soil water movement, base flow 

and lateral flow. A similar outcome in our study suggests that parameter values may 

vary between daily and hourly routings (Jeong et al., 2011). Higher standard 

deviations in the hourly routing model appear to be related to capturing the high 

variability of SS in small catchments that may tend to be “flashy” (Abell et al., 

2013). 
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The hourly routing improved simulations of MINP loads and gave high 

temporal variability of TP load compared with the daily routing. This may also 

suggest that the hourly routing is able to capture the mobilisation of TP during high 

flows, giving a positive relationship between discharge and TP concentrations 

during high flows (Abell et al., 2013). Both hourly and daily routing underestimated 

observed loads of P species in the stream after 2007. Harvesting operations have 

been widely varied amongst different harvest blocks since that time. Neither the 

hourly or daily routing models captured the observed increases in stream TP loads 

during or following harvest of several forest blocks concurrently. This suggests that 

algorithms for overland erosion processes that mobilise P may need to be developed 

or refined for this purpose, i.e., in response to temporal and spatial variance in 

episodic events. Wastewater application decreased after 2008, however, measured 

TP load in the stream increased. Both the hourly or daily routing models 

underestimated TP load in the stream post 2008, suggesting the algorithms may not 

represent certain processes associated with extended periods of wastewater 

irrigation, e.g., the build–up of P in the soil, the potential leaching of P into the 

groundwater system, and ultimately into the stream receiving waters (Beets et al., 

2013). Some phosphorus parameters, e.g., PSP (soil P adsorption rate or P retention 

rate), PHOSKD (the ratio of P in topsoil to that discharged through surface runoff) 

and PPERCO (the ratio of P in topsoil to that infiltrated into subsurface soils), can 

be only given one value in a SWAT model applicable over the whole catchment 

(Arnold et al., 2013). Fixed parameter values are not temporally and spatially varied 

to reflect the rapid “flushing” of P from soils in response to shifting harvest areas 

and the legacy of soil P which builds up and may ultimately enter groundwater in 

long–term wastewater applications. 

Despite optimisation of parameters for the hourly routing model, it would 

likely still be expected to perform better than the daily routing model because of 

ability to replicate rapid “flushing” of NH4–N from soils in response to high rainfall 

events (Abell et al., 2013). The optimised value of the parameter for NH4–N release 

rate from stream sediments (RS3; 10 mg N m-2 d-1) was found to increase NH4–N 

loads to levels comparable to those of the observations. However, this optimised 

value exceeded the SWAT default range (0–1 mg N m-2 d-1; see Section 3.4.1). 

Other model parameters affecting NH4–N loads, e.g., mineralisation, nitrification 

and volatilisation rates in both terrestrial and channel processes, were constrained 



 

103 

within their theoretical limits in this study. Taking a parameter value beyond its 

default range could mean, for example, that 1) some nutrient sources in the 

catchment might not be accounted for (e.g., NH4–enriched geothermal springs; 

Abell et al., 2013), or 2) the model is missing some key processes related to 

unconsumed NH4–N (e.g., ammonia movement in groundwater, Böhlke et al., 2006) 

or NH4–N losses (e.g., ANAMMOX; anaerobic ammonia oxidation, Sliekers et al., 

2003). The hourly routing also gave high temporal variability of NO3–N and TN 

loads compared with the daily routing, although lower than the variability of SS and 

TP loads, suggesting that the hourly routing captured high–flow flushing of 

sediment and nutrients, i.e., in terms of variability: SS > TP > TN. This revealed 

different mass export mechanisms operating in the catchment between base flow 

and high rainfall–runoff events (Zhang et al., 2016). 

3.5.2 Impacts of temporal and spatial variations in management 

practices 

In terms of model scenarios, the greatest increase in nutrient loads occurred with 

decreasing the irrigated area from 10–14 blocks to two blocks. Using the reverse 

argument, increasing the irrigation area could be expected to decrease nutrient loads. 

In the SWAT model the value of parameter PSP (soil P adsorption rate or P 

retention rate) is not distributed through soil profiles (Arnold et al., 2013), i.e., it 

likely had little effect on soil P adsorption rate. It is not unexpected that there was 

little change in P percolation and leaching into the stream for annual TP load 

simulations with changing irrigation frequency from daily to one day each week. 

By contrast, hydraulic conductivity varied through the soil profile in SWAT 

(Arnold et al., 2013) and therefore P leaching can be expected to increase with 

weekly irrigation and saturation of surface soils, resulting in increases in stream TP 

load. Results of reassigning irrigation during high rainfall days (maximum = three 

days) to the first subsequent low rainfall day produced results similar to the scenario 

of low–frequency and/or high–rate wastewater application. Surface soil layers 

become saturated at higher application rates, leading to increased P percolation and 

leaching into the stream, producing small increases in annual TP load. 

Annual TN load increased considerably under weekly irrigation due to rapid 

leaching of NO3–N through the soil profile. Compared with low–frequency, high–

volume applications (once every seven days), the current strategy of daily 
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wastewater irrigation minimises leaching and reduces saturation of the subsurface 

layer. Magesan et al. (1998) investigated nitrate leaching through volcanic and 

allophanic soil in the study catchment (the wastewater irrigated forestry area) 

during 1992–1996, when the irrigation frequency was weekly. They estimated 

about one–half of the NO3–N load was leached and the rest was adsorbed by the 

allophanic soils which have a net positive charge. In this study, during the 

modelling period of 2003–2012 when wastewater was irrigated daily on the forestry 

area, downstream measurements showed that about 30% of N load from wastewater 

was lost to the stream. This is a lower amount than recorded in measurements by 

Magesan et al. (1998) but comparable to SWAT2012 simulations (35% lost to the 

stream). The differences between in–stream nitrogen measurements undertaken 

during two irrigation regimes (weekly vs. daily) are consistent with modelling, 

showing decreased in–stream TN loads under daily irrigation. Decreases in stream 

TN load could also be contributed by increasing irrigated area and facilitating losses 

to plant uptake and denitrification.  

Me et al. (2015) applied the SWAT2009 parameter set optimised for 

nutrient simulations under daily irrigation, to the period of weekly irrigation (1994–

1997). They overestimated in–stream TN concentrations. They suggested that the 

SWAT2009 model may not adequately represent the dynamics of groundwater 

nutrient concentrations, particularly in the presence of changes in catchment inputs 

(e.g., with start–up of wastewater irrigation). Under the present regime of daily 

irrigation of treated wastewater, soil sorption capacity and plant uptake rates of N 

may ultimately reach some quasi equilibrium, with minimal adsorption and high 

rates of N percolation to the groundwater. Therefore, an embedded groundwater 

module could be used to simulate the temporal dynamics of N leaching to 

groundwater and to give opportunities to explicitly account for the dynamics of the 

subsurface zone. 

Rotorua District Council consent conditions restrict nutrient inputs into the 

Waipa Stream (TN: 30 tonnes yr-1; TP: 3 tonnes yr-1; Park and Holst, 2009). Non–

compliance with the nutrient limits in the study catchment has been increasing 

because of the irrigated wastewater application and increasing volumes of 

wastewater coming into the treatment plant as sewage reticulation of widely 

dispersed settlements has expanded. Removing irrigation completely was modelled 

in this study as the most effective strategy reduce nutrient loads. The simulation 
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result showed that it took around nine months for NO3–N load to decrease to within 

about 20% of its pre–irrigation values after irrigation ceased. The Rotorua District 

Council has made a decision to cease irrigation to the Whakarewarewa Forest by 

2019 although there has been no decision on an alternate method of disposal of 

wastewater. Thus the no–irrigation scenario will be directly relevant to the situation 

in 2019. Observations following irrigation removal can be expected to provide a 

robust test of model performance, particularly with respect to the duration on which 

NO3–N concentrations can be expected to decrease in the Waipa Stream. 
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4 Simulating variations in discharge and nutrient loads 

from a mixed land use catchment to a eutrophic lake: 

Effects of nutrient reductions and future climate 

4.1 Abstract 

Understanding anthropogenic changes to catchment nutrient transport and climate–

induced changes in lake processes is critical for eutrophication assessment and 

sustainable management of lakes. The objective of this study was to combine the 

catchment model Soil and Water Assessment Tool (SWAT2012 rev629) with the 

one–dimensional lake water quality model DYRESM–CAEDYM (DYnamic 

REservoir Simulation Model – Computational Aquatic Ecosystem DYnamics 

Model version 4.0) to simulate the trophic state of Lake Rotorua, in response to 

nutrient load reductions from wastewater–irrigated forest and farmland in a major 

sub–catchment (the Puarenga Stream) under present and future climates. A range 

of statistical metrics indicated that the SWAT2012 model performed well (r ≥ 0.88, 

p < 0.001) with respect to daily catchment discharge, and monthly total nitrogen 

(TN) and total phosphorus (TP) loads for the 4–year (2006–2010) simulation period. 

The model simulated TN concentrations (r = 0.78, p < 0.01) better than TP 

concentrations (r = 0.17, p > 0.5). SWAT2012 model simulations were used for the 

Puarenga Stream input to the DYRESM–CAEDYM model of Lake Rotorua while 

other inflows used measured data. Considering the 1.5–year lake residence time for 

Lake Rotorua, the DYRESM–CAEDYM model was validated using monthly data 

collected at two sites during 2008–2010. The performance of the lake model was 

satisfactory (r ≥ 0.63; p < 0.01) for surface water TP and TN concentrations in both 

the calibration and validation periods, providing confidence that the key processes 

that affect trophic status variables were adequately represented, but the performance 

was not as good for bottom–water nutrient concentrations. Effects of changes to 

land management in one sub–catchment were then examined by using three 

scenarios of nutrient loading reduction relating to cessation of current wastewater 

irrigation and/or cessation of pastoral fertilisation. Simulating removal of both 

pastoral and irrigation nutrient sources yielded nutrient load reductions of 39.5% 

for TP and 75.2% for TN in the Puarenga Stream but these had little effect on 

nutrient concentrations in the lake, with reductions of 3.5% for TP, 5.7% for TN, 



 

110 

and 4.1% for chlorophyll a (Chl a) in surface waters. To simulate effects due to 

projected climate change, downscaled climate projections for 2090 were derived 

from 22 general circulation models and used as input to SWAT2012 and 

DYRESM–CAEDYM. For the projected future climate of 2090, annual mean 

precipitation and solar radiation increase by 2.8% and 1.4%, respectively, humidity 

decreases by 0.6%, and air temperature increases by 2.7 °C. Simulations using a 

projected climate for 2090 had moderate impact on catchment nutrient loads (6% 

increase for TP, 7.6% decrease for TN) but large impacts on lake surface water 

quality, with predicted increases of 45.9% for TP, 44.5% for TN, and 44.9% for 

Chl a concentrations from 2010 to 2090. This suggests that future climate change 

would exacerbate eutrophication, primarily due to effects on in–lake processes 

rather than catchment processes. Increased water temperatures would cause more 

frequent and prolonged periods of thermal stratification in polymictic lakes such as 

Lake Rotorua, which would likely result in greater depletion of dissolved oxygen 

and potential for anoxia of bottom waters. This overarching effect of climate change 

is likely to be through a physical response of the lake in the form of increased 

stratification and greater levels of internal nutrient loading. The combined climate–

catchment–lake modelling results suggest that increased internal loads and higher 

rates of phytoplankton growth may increase eutrophication more than changes in 

external loading, but the two effects will act synergistically to increase the potential 

for eutrophication of lake ecosystems. 

 

4.2 Introduction 

Increased nutrient loads from agricultural and municipal wastewater sources have 

dramatically reduced the ecological quality of receiving waterbodies in many lake 

catchments (Foote et al., 2015; Hussain et al., 2002). In many catchments, actions 

are underway to address point and diffuse sources of nutrient pollution, as mandated 

by environmental regulation and community concerns regarding water quality 

(Scavia et al., 2014; Hamilton et al., 2016). Examples of such actions include the 

diversion of wastewater discharges (OECD, 2001; Krebs, 2008), changes to 

farming practices and agricultural land use (Abell et al., 2011), or the use of a range 

of geo–engineering techniques (e.g., Spears et al., 2013), including the application 

of alum (aluminium sulphate) to lake inflows (Smith et al., 2016). 
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In addition to the management changes described above, changes in climate 

are predicted to affect the hydrological cycle and thus also modify nutrient 

transformation and transport processes in terrestrial and aquatic environments. For 

example, an increase in total phosphorus (TP) loads of 3.3% to 16.5% in Danish 

streams in the next century was predicted by Jeppesen et al. (2009), mostly in 

response to increased precipitation in winter. A climate–induced increase in the loss 

of total nitrogen (TN) from a small Mediterranean catchment (30 km2) in Slovenia 

was predicted by Glavan et al. (2015), who applied six climate scenarios for three 

future periods (2030s, 2060s, 2090s). Their modelled changes in TN loads (2061–

2090) ranged from 5.3% to 80.2%, mostly in response to increasing precipitation. 

On the contrary, other studies have indicated that nutrient loading for the catchment 

may actually go down with climate warming primarily because warmer air 

temperatures increase evaporation, resulting in less runoff. Robertson et al. (2016) 

projected decreases in total annual streamflow (-1.8% average, ranging from -21.2% 

to +8.9%) and TP loads (-3.1% average, ranging from -21.2% to +8.9%) for the 

Lake Michigan Basin by 2045–2065, in consideration of the projected variability 

in total annual precipitation (+5.1% average, ranging from -5.1% to +16.7%) and 

average annual air temperature (+2.6 °C average, ranging from +2.1 to +4.0 °C).  

Climate change also directly influences lake water temperature and 

stratification, which may in turn modify in–lake nutrient dynamics (Arnell et al., 

2015). A modelling study of three New Zealand lakes (Trolle et al., 2011) showed 

that the effect on water quality of a mid–range climate warming projection for 2100 

would equate to increasing external nutrient loads by 25–50%. Similarly, 

Hamilton et al. (2012) showed negative effects of future climate on lake water 

quality, including increased trophic state and frequency of cyanobacteria blooms. 

Climate change could also affect the transport and processing of nutrients in lake 

catchments, as well as processes within receiving waters. Some of these processes 

may be synergistic whereby increased catchment nutrient loads interact with higher 

water temperatures to stimulate growth of bloom–forming cyanobacteria 

(Hamilton et al., 2016). 

Few studies have connected climate, catchment and lake models to provide 

ecosystem–scale assessments of hydrological and water quality responses to 

climate and land use changes. General circulation models (GCMs), downscaled by 

pattern scaling methods (Santer et al., 1990) provide future climate scenarios at a 
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regional scale (Tebaldi and Arblaster, 2014; Herger et al., 2015) and have been 

applied to examine impacts on freshwater resources (Todd et al., 2011) and 

terrestrial processes (Huntingford et al., 2010). The main assumption underlying 

the pattern scaling method is that the local response of a climate variable is linearly 

related to the global mean temperature change (Mitchell, 2003). This theory has 

some limitations in projecting future extreme events (Lustenberger et al., 2014) and 

the spatial variability of climate data (Tebaldi and Arblaster, 2014). To overcome 

these limitations, ensemble simulations using multiple GCMs is recommended for 

the assessment of climate change impacts (Murphy et al., 2007; Lopez et al., 2014). 

To assess temporal responses of receiving environments to catchment inputs, 

studies have been undertaken that link outputs from a catchment model (e.g., 

SWAT: Soil Water and Assessment Tool) to a water quality model (e.g., CE–

QUAL–W2; Debele et al., 2008, WASP; Narasimhan et al., 2010, or DYRESM–

CAEDYM; Copetti et al., 2006). The process–based catchment model SWAT 

provides the ability to simulate time–varying land management practices in 

catchments (Neitsch et al., 2011), and has been applied to a small number of New 

Zealand catchments (e.g., Cao et al., 2006; Morcom, 2013; Me et al., 2015). 

DYRESM–CAEDYM, a process–based, one–dimensional hydrodynamic–

biogeochemical aquatic ecosystem model, can be used to simulate in–lake 

processing of nutrients and biological responses (Hamilton and Schladow, 1997). 

It has been applied to lakes across the globe (Bruce et al., 2006; Trolle et al., 2008) 

and to several New Zealand lakes to predict water quality and trophic state 

(Rutherford et al., 1996; Burger et al., 2008; Trolle et al., 2011). DYRESM–

CAEDYM has been supplied with inflow data from simulations using the SWAT 

model for a catchment in North Italy (Copetti et al., 2006) to examine seasonal 

trends in lake surface water temperature, water column thermal gradients and 

dynamics of phosphorus and phytoplankton. 

Lake Rotorua, located in the Bay of Plenty Region of the North Island of 

New Zealand, is a nationally–iconic water body and plays a significant role in 

recreation and tourism at national scale (Hamilton et al., 2012). However, pastoral 

land has been progressively developed throughout the lake catchment over recent 

decades, and eutrophication has increased due to the resulting intensification of 

catchment land use (e.g., Mueller et al., 2015). Urban wastewater was discharged 

to the lake until 1991 after which time forest blocks in one lake sub–catchment 
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(Puarenga) have been irrigated with treated municipal wastewater. Resource 

consent conditions for wastewater disposal to the forest blocks restrict TN and TP 

wastewater losses to the receiving stream to 30 t yr-1 and 3 t yr-1, respectively. 

Previous assessments of nutrient losses have indicated some non–compliance with 

the TN consent limit and there is some indication of an increase in TP loading to 

the receiving stream since 2002 (Me et al., 2017). These increases may be caused 

by a number of factors including the application rate of wastewater, increases in the 

nutrient load from non–irrigated areas within the catchment, forest operations not 

associated with wastewater irrigation and altered rainfall patterns. The SWAT2012 

model was used in this study to simulate discharge and nutrient loads from the 

Puarenga Stream to the lake under current land use practices and climate, to provide 

a “reference” condition. An essential task was to assess how a suite of scenarios of 

nutrient reductions and climate change might affect nutrient loads in the Puarenga 

Stream (using SWAT2012 rev629) and water quality in Lake Rotorua (using 

DYRESM–CAEDYM version 4.0). Coupling of these two models (i.e., output from 

SWAT2012 as input for DYRESM–CAEDYM to simulate common variables) was 

used in this study to better understand the potential for synergistic or antagonistic 

interactions between climate and land use in Lake Rotorua. 

 

4.3 Methods 

4.3.1 Study area and measured data 

Lake Rotorua is located in the North Island of New Zealand (Fig. 4.1) and is 

subjected to a warm temperate climate. Annual mean precipitation of 1252 mm, air 

temperature 12.6 °C, relative humidity 81%, short–wave radiation 170 W m-2 and 

wind speed 3.6 m s-1 (at 10 m above the water surface) for Lake Rotorua were 

calculated for the period July 2006 – June 2010 (Fig. 4.1; National Climatic 

Database; available at http://cliflo.niwa.co.nz/). 

http://cliflo.niwa.co.nz/
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Figure 4.1 Lake Rotorua surface topographic catchment showing the major sub–

catchments. The Puarenga Stream catchment modelled in this study is located in the south. 

The only outlet from Lake Rotorua is the Ōhau Channel. Inset: Map of New Zealand 

showing location of Rotorua. 

 

Lake Rotorua (surface area 80.8 km2, mean depth 10.8 m) is a polymictic, 

temperate lake which receives inflow from nine major surface streams and nine 

smaller surface streams (Fig. 4.1; Hoare, 1980). The only surface outflow (mean 

annual discharge 18.5 m3 s-1) is the Ōhau Channel (Fig. 4.1; Hoare, 1980). The 

residence time of Lake Rotorua is 1.5 years. Surface water temperature at 0.5 m in 

Lake Rotorua ranges from 10 °C to 22 °C for 2006–2010 (Abell et al., 2015). The 

regional management authority, Bay of Plenty Regional Council (BoPRC), has 

assigned a target Trophic Level Index (TLI) for Lake Rotorua of 4.2. The TLI is 

commonly used in New Zealand to quantify trophic state and integrates annual 
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mean values of four variables: Secchi disc depth (a measure of transparency) and 

concentrations of Chl a, TP, and TN (Burns et al., 1999). The target value of 4.2 for 

Lake Rotorua corresponds to a eutrophic status (i.e., between 4 and 5) and is based 

on historical data for around 1970, when the lake was deemed to have acceptable 

water quality (Scholes 2011). Alum dosing of two inflows has been used to reduce 

TP in Lake Rotorua and correspondingly, the TLI (Smith et al., 2016). The first 

dosing station commenced operation in the Utuhina Stream in June 2006 and the 

second dosing commenced in the Puarenga Stream in January 2010 (Fig. 4.1). 

Measured data for Lake Rotorua during January 2008 – June 2010 were used for 

DYRESM–CAEDYM baseline simulations. Concentrations of phosphate (PO4–P), 

ammonium–nitrogen (NH4–N), nitrate–nitrogen (NO3–N), TP, TN and Chl a are 

monitored monthly at two depths (integrated 0–6 m and 19 m) in Lake Rotorua by 

BoPRC. 

The Puarenga Stream is the second largest surface inflow to Lake Rotorua 

and drains a catchment of 77 km2 (Fig. 4.1). The Puarenga Stream catchment is 

moderately steep (mean slope = 9%; equal to 5.7 degrees slope) and the 

predominant land uses are exotic Pinus radiata forest (47%) and pastoral farmland 

(26%; New Zealand Land Cover Database Version 2, BoPRC). There are two cold–

water springs (Waipa Spring and Hemo Spring) and one geothermal spring within 

the catchment area (Fig. 4.1). Cold–water springs in the Puarenga catchment 

originate from aquifers in the underlying volcanic geology (Morgenstern et al., 

2015) and contribute a high TP load (8.75 t P yr-1) to the Puarenga Stream (Kim 

Lockie; Rotorua Lakes Council; personal communication). Fertiliser (~40 t yr-1 of 

P and 127 t yr-1 of N) has been applied to 8 km2 of pastoral farmland (Fig. 4.1) in 

the Puarenga Stream catchment since about 1950 (Anastasiadis et al., 2011). Urea 

is typically applied twice, in winter and spring, and four times during summer and 

autumn, at a total rate of ~200 kg ha-1 yr-1 of N; di–ammonium phosphate is applied 

once or twice, in spring and autumn, at a total rate equivalent to ~50 kg ha-1 yr-1 of 

P (Alastair McCormick; BoPRC; personal communication). Treated municipal 

wastewater has been applied to up to 16 forestry blocks (~2 km2 in total; Fig. 4.1) 

since 1991, at a rate of ~19,000 m3 d-1, which equates to approximately 25 t yr-1 of 

P and 53 t yr-1 of N. The initial irrigation schedule involved applying wastewater to 

two blocks with a daily rotation (i.e., a total of 14 blocks were irrigated weekly). 

Since 2002, wastewater has been irrigated daily on 10–14 blocks (Lowe et al., 2007). 
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The irrigated land treatment area has allophanic soils which retain 85–95% of the 

irrigated P (Beets et al., 2013), and the unirrigated area has mostly pumice soils that 

have moderate (50–60%) soil sorption capacity for P (Saunders, 1965; Fertiliser & 

Lime Research Centre, 2014). 

Puarenga Stream water samples were collected at the Forest Research 

Institute (FRI) stream–gauge (1.7 km upstream of Lake Rotorua; Fig. 4.1) by 

BoPRC. Measurements at the FRI stream–gauge were considered representative of 

the contribution of the Puarenga Stream catchment to Lake Rotorua. Discharge data 

were collected by BoPRC at 15–minute intervals for the period 2005 through 2010 

(annual mean 2.2 m3 s-1). Discharge records of the Puarenga Stream during 1998–

2004 were intermittent because the FRI stream–gauge was closed in mid–1997 and 

reopened late in 2004 (Environment Bay of Plenty, 2007). Measured data for the 

Puarenga Stream before June 2010 were used for the SWAT2012 model baseline 

simulation as the FRI stream–gauge was thereafter repositioned 720 m downstream 

to the State Highway 30 (SH 30) (Fig. 4.1). Concentrations of suspended sediment 

(SS), dissolved reactive phosphorus (DRP), organic phosphorus (ORGP), NH4–N, 

NO3–N, organic nitrogen (ORGN), TP and TN were measured monthly in the 

Puarenga Stream (Scholes, 2011). Daily surface inflow and nutrient concentrations 

of eight other major inflows of Lake Rotorua were measured and nine minor inflows 

were estimated by Abell et al. (2015; see Table 4.1) for the same period as the 

Puarenga Stream. Based on these data the Puarenga Stream contributes 16.5% of 

total inflow volume, 15.6% of TP load, and 16.2% of TN load to Lake Rotorua 

(Table 4.1). The locations of contributing catchments are shown in Fig. 4.1. 

4.3.2 Model configuration 

Key SWAT input data requirements included: a digital elevation model (DEM; 

25 m horizontal resolution); meteorological records obtained from Rotorua Airport 

Weather Station; rainfall data from the Kaituna and Red Stag rain gauges; records 

of two cold–water springs and one geothermal spring, water abstraction and nutrient 

concentrations in spring discharges; a stream digital map obtained from BoPRC; 

soil characteristics obtained from S–map (developed by Landcare Research; see 

http://smap.landcareresearch.co.nz/home); land use classifications (obtained from 

New Zealand Land Cover Database Version 2, BoPRC); and management 

schedules (obtained from BoPRC) for key land uses (i.e., pasture fertilisation, 
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wastewater irrigation and timber harvesting). The delineation of the Puarenga 

Stream catchment (Me et al., 2015) included ten sub–catchments (Fig. 4.1) and 622 

hydrological response units (HRUs). The SWAT2012_rev629 code was used which 

includes modifications to hourly simulations of SS loads in–stream, nutrient 

applications in management practice, and some unit corrections in soil 

nutrient cycling calculations. Further details of code modifications are outlined in 

Appendix 1.  

The SWAT2012 model was not set up for eight other major catchments or 

nine minor catchments because the information required for model setup was 

limited and a key objective of the study was to examine the effects of treated 

wastewater irrigation (specific to the Puarenga Stream) on lake water quality. 

Instead, other inflow input data used either measurements or values derived from 

other studies. 

The DYRESM–CAEDYM model (version 4.0) was used to simulate 

hydrodynamic and biogeochemical processes in Lake Rotorua. Key forcing data 

were climate, bathymetry, inflow volume and nutrient concentrations, and outflow 

volume. The nine major inflows were classified into surface water–dominated or 

groundwater–dominated based on the variability of daily inflow water temperature. 

Catchments where mainstream water temperatures ranged > ±25% of their multi–

year daily mean water temperature were defined as surface water–dominated and 

the remainder as groundwater–dominated (see Table 4.1). The remaining nine 

minor streams were represented as a single inflow representing the residual term of 

the lake water balance used in DYRESM–CAEDYM. A lake water balance to 

estimate additional residual inflow was calculated after the method described in 

Hamilton et al. (2012). The inflow from minor streams was assumed to be 

predominantly surface waters. Outflow via the Ōhau Channel represented in the 

lake model was based on daily mean discharge measurements provided by Abell et 

al. (2015). 
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Table 4.1 Inflows to Lake Rotorua represented in the model. Six inflows were classified as surface (S) water–dominated catchments 

and four as groundwater (G)–dominated catchments (see Section 4.3.2). Mean annual inflow water temperature (Tinf), discharge, 

concentrations of total phosphorus (TP) and total nitrogen (TN), and percentage of inflow volume, TP and TN load contributions were 

derived from Abell et al. (2015) for July 2006 to June 2010. 

Stream name 
Water 

source 

Catchment area 

(km2) 

Tinf 

(°C) 

Discharge 

(m3 s-1) 

Inflow volume 

(%) 

TP 

(mg L-1) 

TP load 

(%) 

TN 

(mg L-1) 

TN load 

(%) 

Awahou G 19.9 15.4 1.9 14.3 0.065 14.6 1.38 17.3 

Hamarana G 16.0 12.4 2.6 19.6 0.077 23.7 0.77 13.2 

Ngongotaha S 77.4 11.0 2.0 15.0 0.043 10.2 0.98 12.9 

Puarenga S 77.0 14.5 2.2 16.5 0.060 15.6 1.12 16.2 

Utuhina S 61.0 12.8 1.8 13.5 0.057 12.1 0.95 11.3 

Waingaehe G 11.0 15.4 0.3 2.3 0.106 3.8 1.60 3.2 

Waiohewa S 11.7 13.4 0.4 3.0 0.067 3.2 2.56 6.8 

Waiowhiro S 13.6 12.7 0.3 2.3 0.057 2.0 0.95 1.9 

Waiteti G 61.9 11.8 1.4 10.5 0.052 8.6 1.41 13.0 

Minor streams S 61.1 16.0 0.4 3.0 0.130 6.2 1.61 4.2 
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4.3.3 Model calibration and validation 

Simulation results were generated at daily interval from SWAT2012 for the four–

hydrological–year baseline period from July 2006 to June 2010. The calibration 

period was July 2006 to June 2009, and the validation period was July 2009 to June 

2010. This period coincided with when alum dosing started in June 2006 (Smith et 

al., 2016) and the stream gauge repositioning in July 2010. One year was for the 

SWAT2012 model warm–up and its simulations from July 2006 were used to drive 

DYRESM–CAEDYM. The lake model warm–up was from June 2006 to December 

2007, corresponding to the 1.5–year lake residence time and a transition period of 

water quality first responding to alum dosing. The calibration period for the 

DYRESM–CAEDYM model was January 2008 to June 2009, and the validation 

period was July 2009 to June 2010. 

Initial parameter values required for the setup of both models were based on 

observed monitoring data that were measured close to the start date of the 

simulation period. Parameter values for the lake model (DYRESM–CAEDYM) 

were based on previous applications of the model for Lake Rotorua with subsequent 

adjustments of parameters for nutrient release rates from the bottom sediment 

(Burger et al., 2008) and particulate organic matter size and density (to increase 

sedimentation rates) to account for the in–lake effects of alum dosing (Hamilton et 

al., 2012; Abell et al., 2015). Minor adjustments were made based on one–at–a–

time (OAT) calibration (Morris, 1991) using the mean values of measurements 

collected at the two lake sampling sites (see Section 4.3.1). For the SWAT2012 

model, the OAT routine was also applied to manually calibrate the parameter values 

for each simulated variable (Q, SS, ORGP, DRP, ORGN, NH4–N, and NO3–N) 

based on measurements collected at the FRI stream–gauge (Fig. 4.1). One 

parameter set was used for the whole Puarenga Stream catchment for the 

SWAT2012 application.  

Daily mean values of 15–min discharge measurements (see Section 4.3.1) 

were used to calibrate SWAT parameters to simulate daily mean discharge in the 

Puarenga Stream. Measured nutrient and SS concentrations from monthly samples 

were converted to loads based on total discharge volume on the corresponding day. 

The measured monthly loads were then used to calibrate parameters by comparing 

with the simulations of nutrient loads from SWAT2012 on that sampling day.  
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Daily mean simulated discharge and nutrient concentrations for Puarenga 

Stream were used to evaluate the catchment model performance and then provide 

inputs to the lake model (DYRESM–CAEDYM). Inflow volume and nutrient 

concentrations for eight other major inflows and nine minor inflows of Lake 

Rotorua used in DYRESM–CAEDYM were based on the measured or estimated 

hydrologic and water quality data in Abell et al. (2015). Daily simulated 

concentrations from DYRESM–CAEDYM were compared with monthly mean 

values measured in the lake on that sampling day, and then used to evaluate the lake 

model performance. A modified “TLI3” (a three–variable TLI that excludes Secchi 

depth) is compared with model output because Secchi depth is not explicitly 

estimated by DYRESM–CAEDYM. The TLI target of 4.2 for Lake Rotorua is 

equivalent to a TLI3 value of 4.32 (Hamilton et al. 2015). 

For both the catchment model (SWAT2012) and lake model (DYRESM–

CAEDYM), model outputs from the “warm–up” period were not further considered 

for model evaluation. Model goodness–of–fit between simulated outputs and 

observations was initially assessed graphically and then quantified using four 

commonly–used model evaluation statistics (Moriasi et al., 2007): Pearson product 

moment correlation coefficient (r), root mean square error (RMSE), mean absolute 

error (MAE), and percent bias (PBIAS) (Table 4.2). 

4.3.4 Model scenarios 

4.3.4.1 Nutrient applications 

Nutrient inputs to the Puarenga Stream catchment from treated municipal 

wastewater irrigation (Irr) and fertiliser applied on pastoral land (Pas) were assigned 

separately in the SWAT2012 model (see Section 4.3.1). Four nutrient scenarios 

were compared: 1) the current (“reference”) scenario, with both nutrient sources 

(S1–Irr1Pas1), 2) pasture fertilisation only (S2–Irr0Pas1), 3) wastewater irrigation 

only (S3–Irr1Pas0), and 4) no nutrient applications (S4–Irr0Pas0). Nutrient 

loadings from other catchments remained unchanged, i.e., simulations of different 

nutrient application scenarios were only undertaken for the Puarenga Stream 

catchment. The effects of nutrient reduction scenarios (S2–S4) on loads from the 

Puarenga Stream catchment and the water quality of Lake Rotorua (both surface 

and bottom waters) were analysed by calculating the percentage change relative to 

the reference scenario (S1) simulation. 
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Table 4.2 Statistics used to evaluate model performance. Note: on is the nth observed datum, 

sn is the nth simulated datum, o
_

 is the observed mean value, s
_

 is the simulated daily mean 

value, and N is the total number of observed data. 

Statistic Definition Features 

Pearson 

product 

moment 

correlation 

coefficient 

𝑟

=
∑ [(𝑜n − o̅)(𝑠n − s̅)]N

n=1

√∑ (𝑜n − o̅)2× ∑ (𝑠n − s̅)2N
n=1

N
n=1

 

Range from -1 to 1. A value 

of 0 indicates no linear 

relationship and 1 or -1 

indicates a perfect positive 

or negative linear 

relationship. Significance of 

relationship commonly 

judged by p value (< 0.05; 

Bewick et al., 2003).  

Root mean 

square 

error 
RMSE = √

∑ (𝑠n − 𝑜n)2𝑁
𝑛=1

𝑁
 

A value of 0 indicates a 

perfect fit. This measure is 

disproportionately affected 

by large errors. 

Mean 

absolute 

error 
MAE =

∑ |𝑠n − 𝑜n|𝑁
𝑛=1

𝑁
 

A value of 0 indicates a 

perfect fit. A measure of the 

mean of the model error. 

Percent 

bias 
PBIAS% =

∑ (𝑜n − 𝑠n)N
n=1

∑ 𝑜n
N
n=1

×100% 

A value of 0 indicates a 

perfect fit. Positive values 

indicate model 

underestimates and negative 

values indicate model 

overestimates. 

4.3.4.2 Future climate projection 

Future climate projections were determined with SimCLIM, a software package 

used for generating regional scenarios of future climate (Yin et al., 2013). The 

scenarios are based on the Intergovernmental Panel on Climate Change Fifth 

Assessment report (IPCC, 2013). The RCP8.5 scenario was chosen, which 

corresponds to climate change equivalent to a short–wave radiation increase of 

8.5 W m-2 in 2100 due to increased levels of anthropogenic greenhouse gas 

emissions (Van Vuuren et al., 2011). Amongst the 40 GCMs presented in SimCLIM, 

22 simulate all of the climate variables (Yin et al., 2013) required as input by SWAT 

and DYRESM–CAEDYM (Table 4.3). 

A pattern scaling method (Santer et al., 1990) in SimCLIM produces 

regional change factors that were used in this study according to the SimCLIM 2013 

Data Manual (Yin et al., 2013). Climate change perturbations were downscaled to 
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regional scale using linear functions of the global annual mean temperature change 

using a method described in Mitchell (2003). Monthly median change factors 

(Touma et al., 2015) derived from the downscaled climate projections (Fig. 4.2) 

were used in the present climate data by adding to air temperature or by applying 

as a multiplicative factor to the other climate variables. Future changes in wind 

speed were not considered in this study because there is high uncertainty about 

relative change based on GCMs.  

The current climate (hereafter CC0) was represented by the period from July 

2005 to June 2010. SWAT baseline simulations used a subset of this period from 

July 2006 to June 2010 and DYRESM–CAEDYM used January 2008 to June 2010. 

Regional projections of global mean temperature change were derived for the 

period 2090–2099. The projected future climate of 2090 shows that precipitation 

will be higher from January to August (mid–summer to late winter) and lower from 

September to December (early spring to early summer), with annual mean air 

temperature increases of 2.7 °C (see Fig. 4.2). 

Downscaled 2090 climate data were input to the SWAT2012 model to 

predict future (hereafter CC1) nutrient loadings from the Puarenga Stream 

catchment under the four scenarios of nutrient application (S1–S4). The future 

2090 climate responses of Puarenga Stream to the lake examined the changes 

relative to reference scenario S1–Irr1Pas1 simulations. For other streams, scenario 

S2–Irr0Pas1, with no wastewater irrigation, was applied for the future climate 

impact on the lake (hereafter CC2). Climate change interactions with S2–Irr0Pas1 

were considered because 1) other streams catchments did not have treated 

wastewater application; and 2) the Rotorua District Council has made a decision to 

cease irrigation to the Whakarewarewa Forest by 2019. For surface water–

dominated sub–catchments (see Section 4.3.2), the temperatures of major stream 

inflows were increased based on the increases predicted for the Puarenga Stream. 

For groundwater–dominated catchments, stream water temperatures were increased 

by adding 88% of the projected increase in air temperature, based on Kurylyk et al. 

(2013). 
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Table 4.3 The 22 general circulation models (GCMs) used in this study and the country 

where each GCM originated. See IPCC (2013). 

No. GCM Country  No. GCM Country 

1 ACCESS1–0 Australia  12 HADCM3 UK 

2 ACCESS1–3 Australia  13 HADGEM2–CC UK 

3 CANESM2 Canada  14 HADGEM2–ES UK 

4 CSIRO–MK3–6–0 Australia  15 INMCM4 Russia 

5 GFDL–CM3 USA  16 IPSL–CM5A–LR France 

6 GFDL–ESM2G USA  17 IPSL–CM5A–MR France 

7 GFDL–ESM2M USA  18 IPSL–CM5B–LR France 

8 GISS–E2–H USA  19 MIROC–ESM Japan 

9 GISS–E2–H–CC USA  20 MIROC–ESM–CHEM Japan 

10 GISS–E2–R USA  21 MIROC5 Japan 

11 GISS–E2–R–CC USA  22 MRI–CGCM3 Japan 

 

 

Figure 4.2 Monthly median change factors (square marker) applied in 22 general 
circulation models (GCMs) that were used to generate 2090 regional climate data for 
modelling the Puarenga Stream catchment and Lake Rotorua. (a) precipitation; (b) solar 
radiation; (c) mean air temperature; (d) relative humidity; (e) maximum temperature; and 
(f) minimum temperature. Error bars indicate the range of monthly changes derived from 
the 22 GCMs. 
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4.4 Results 

4.4.1 Calibration and model performance 

4.4.1.1 SWAT2012 model of the Puarenga Stream catchment 

Optimised parameter values for the SWAT2012 model are presented in Table 4.4 

for the whole Puarenga Stream catchment. Differences in some parameter values 

from previous SWAT2009 model runs in Me et al. (2015) reflected the modified 

SWAT2012 source code used in this study. Three parameter values were adjusted 

beyond the SWAT default range (Table 4.4): (1) the number of days for 

groundwater delay (GW_DELAY), (2) the phosphorus percolation coefficient 

(PPERCO), and (3) benthic (sediment) release rate for NH4–N in the stream reach 

at 20 °C (RS3). 

The parameter GW_DELAY (groundwater delay days) was set to 1825 days 

(five years) for the Waipa Stream sub–catchment, which was the value of mean 

groundwater residence time reported in Rutherford et al. (2009). This value was set 

as five years because in–stream nitrate concentrations appeared to reach a new 

equilibrium five years after treated wastewater was spray–irrigated within the 

Waipa Stream sub–catchment in 1991, which would be consistent with nitrate 

transport times in shallow groundwater (Rutherford et al., 2009). Recently, 

Morgenstern et al. (2015) re–examined the mean groundwater residence times for 

the wider Puarenga Stream catchment which has a more complex groundwater 

system, and reported a mean value of c. 40 years.  

The parameter PPERCO (phosphorus percolation coefficient) was adjusted 

because the Puarenga Stream catchment outside of the irrigation area has pumice 

soils with moderate levels of P adsorption capacity (50–60%) and the wastewater 

spray blocks drained by the Waipa Stream have allophanic soil with high P 

adsorption capacity (85–95%) (see Section 4.3.1). The parameter value for RS3 

(sediment release rate for in–stream NH4–N, 50 mg m-2 d-1) was based on Gabriele 

et al. (2013) who investigated headwater streams from an Austrian catchment where 

there is intensive agriculture and the stream channel is rich in organic material. 

Gabriele et al. (2013) estimated RS3 in the range 24 to 48 mg m-2 d-1, so our value 

reflected high NH4–N inputs and may have been reflective of some geothermal 

source inputs to the Puarenga Stream. 
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Simulations of discharge from the Puarenga Stream catchment showed high 

correspondence with measured values (Fig. 4.3a). Discharge peaks during high 

rainfall events were reasonably well simulated by the SWAT2012 model, although 

a few peaks were underestimated. Discharge after high rainfall events was 

overestimated, in particular during winter. Overall, the SWAT2012 model 

overestimated discharge by 3.9% during calibration (July 2006 – June 2009) and 

14.4% during validation (July 2009 – June 2010) but with high values of r (> 0.8, 

p < 0.001; Table 4.5).  

The range of concentrations of SS simulated by SWAT2012 was smaller 

than that of measured data from the Puarenga Stream catchment (Fig. 4.3b). 

Simulated and measured SS concentrations were positively correlated during 

calibration (r = 0.45, p < 0.05) but negative during validation (r = -0.23, p > 0.05; 

Table 4.5). Base flow SS concentrations were generally overestimated, and several 

peaks of SS concentrations were underestimated, contributing to an underestimate 

of SS concentrations of 4.3% during calibration and an overestimate of 5.3% during 

validation. The correlations between simulated and measured SS load were positive 

during calibration (r = 0.52, p < 0.01) and validation (r = 0.30, p > 0.05), with an 

underestimate of 3.9% during calibration and an overestimate of 17.2% during 

validation (Table 4.5). 

Concentrations of P species were generally not simulated accurately for the 

Puarenga Stream catchment (Fig. 4.3c–e). The correlations were weak for both 

ORGP and DRP during calibration (r ≤ 0.25, p > 0.05; Table 4.5) but were stronger 

during validation (r = 0.70, p < 0.05 for ORGP; r = 0.68, p < 0.05 for DRP). 

Concentrations of ORGP were overestimated by 27.9% and concentrations of DRP 

were underestimated by 9.8% during calibration, while during validation ORGP 

concentrations were underestimated by 23% and DRP concentrations were 

overestimated by 37.2% (Table 4.5). Concentrations of TP were overestimated by 

11.3% during calibration and 0.3% during validation, with poor correlation 

statistics (r = 0.05, p > 0.05 for calibration; r = 0.17, p > 0.05 for validation; 

Table 4.5). However, simulated and measured ORGP and TP loads were positively 

correlated during calibration (r = 0.48, p < 0.05 for ORGP; r = 0.59, p < 0.001 for 

TP) and validation (r = 0.89, p < 0.001 for both; Table 4.5), reflecting the major 

impact of discharge on loads. Correlations between simulated and measured DRP 

loads were weak during calibration (r = 0.12, p > 0.05) and validation (r = 0.22, 

p > 0.05; Table 4.5). 
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Table 4.4 Optimised parameter values with input file extensions for the whole Puarenga Stream catchment for discharge (Q), suspended sediment 

(SS), total phosphorus (TP), and total nitrogen (TN) concentration simulations. The asterisked values were adjusted beyond the SWAT default 

range (see text). Input file extensions are shown for each parameter. Parameters are unitless unless otherwise specified. “revap” indicates water 

movement into the overlying unsaturated layers.  

Parameter Definition Unit Default range Optimal value 

Q 

EVRCH.bsn Reach evaporation adjustment factor  0.5–1 0.7 

CH_K2.rte Effective hydraulic conductivity in the main channel alluvium mm h-1 0–500 20 

CH_N2.rte Manning’s n value for the main channel  0–0.3 0.01 

CH_K1.sub Effective hydraulic conductivity in the tributary channel alluvium mm h-1 0–300 62 

CH_N1.sub Manning’s n value for the tributary channel  0.01–30 12.5 

ALPHA_BF.gw Base flow alpha factor (0–1)  0–1 0.01 

GW_DELAY.gw Groundwater delay d 0–500 1825* 

GW_REVAP.gw Groundwater “revap” coefficient  0.02–0.2 0.07 

GW_SPYLD.gw Special yield of the shallow aquifer m3 m-3 0–0.4 0.2 

GWHT.gw Initial groundwater height m 0–25 12 

GWQMN.gw 
Threshold depth of water in the shallow aquifer required for return 

flow to occur 
mm 0–5000 400 

RCHRG_DP.gw Deep aquifer percolation fraction  0–1 0.1 

REVAPMN.gw 
Threshold depth of water in the shallow aquifer required for 

“revap” to occur 
mm 0–500 344 

CANMX.hru Maximum canopy storage mm 0–100 0.6 

EPCO.hru Plant uptake compensation factor  0–1 0.34 

ESCO.hru Soil evaporation compensation factor  0–1 0.5 

HRU_SLP.hru Average slope steepness m m-1 0–0.6 0.1 

LAT_TTIME.hru Lateral flow travel time d 0–180 3 

RSDIN.hru Initial residue cover kg ha-1 0–10000 1 
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Parameter Definition Unit Default range Optimal value 

SS 

SLSOIL.hru Slope length for lateral subsurface flow m 0–150 15 

CH_COV1.rte Channel erodibility factor  0–0.6 0.1 

CH_COV2.rte Channel cover factor  0–1 0.1 

LAT_SED.hru Sediment concentration in lateral flow and groundwater flow mg L-1 0–5000 5 

OV_N.hru Manning’s n value for overland flow  0.01–30 20 

SLSUBBSN.hru Average slope length m 10–150 83 

SURLAG.bsn Surface runoff lag coefficient  0.05–24 1 

SPCON.bsn 
Linear parameter for calculating the maximum amount of sediment 

that can be re-entrained during channel sediment routing 
 0.0001–0.01 0.003 

SPEXP.bsn 
Exponent parameter for calculating sediment re-entrained in 

channel sediment routing 
 1–2 1.8 

TP 

P_UPDIS.bsn Phosphorus uptake distribution parameter  0–100 0.5 

PHOSKD.bsn Phosphorus soil partitioning coefficient m3 t-1 100–500 100 

PPERCO.bsn Phosphorus percolation coefficient m3 t-1 0.01–0.0175 0.005* 

PSP.bsn Phosphorus availability index  0.01–0.7 0.6 

GWSOLP.gw Soluble phosphorus concentration in groundwater loading mg P L-1 0–1000 0.03 

LAT_ORGP.gw Organic phosphorus in the base flow mg P L-1 0–200 5 

ERORGP.hru Organic phosphorus enrichment ratio  0–5 0.1 

CH_OPCO.rte Organic phosphorus concentration in the channel mg P L-1 0–100 0.066 

BC4.swq 
Rate constant for mineralisation of organic phosphorus to 

dissolved phosphorus in the reach at 20 °C 
d-1 0.01–0.7 0.3 

RS2.swq 
Benthic (sediment) source rate for dissolved phosphorus in the 

reach at 20 °C 
mg m-2 d-1 0.001–0.1 0.02 

RS5.swq Organic phosphorus settling rate in the reach at 20 °C d-1 0.001–0.1 0.05 

USLE_P.mgt Universal Soil Loss Equation (USLE) support practice factor  0–1 0.5 
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Parameter Definition Unit Default range Optimal value 

TN 

RSDCO.bsn Residue decomposition coefficient  0.02–0.1 0.1 

CDN.bsn Denitrification exponential rate coefficient  0–3 0.09 

CMN.bsn Rate factor for humus mineralisation of active organic nitrogen  0.001–0.003 0.001 

N_UPDIS.bsn Nitrogen uptake distribution parameter  0–100 0.5 

NPERCO.bsn Nitrogen percolation coefficient  0–1 0.05 

RCN.bsn Concentration of nitrogen in rainfall mg N L-1 0–15 0.34 

SDNCO.bsn Denitrification threshold water content  0–1 0.05 

HLIFE_NGW.gw Half–life of nitrate–nitrogen in the shallow aquifer d 0–200 200 

LAT_ORGN.gw Organic nitrogen in the base flow mg N L-1 0–200 25 

SHALLST_N.gw Nitrate–nitrogen concentration in the shallow aquifer mg N L-1 0–1000 1 

ERORGN.hru Organic nitrogen enrichment ratio  0–5 0.1 

CH_ONCO.rte Organic nitrogen concentration in the channel mg N L-1 0–100 0.34 

BC1.swq 
Rate constant for biological oxidation of ammonium–nitrogen to 

nitrite–nitrogen in the reach at 20 °C 
d-1 0.1–1 0.55 

BC2.swq 
Rate constant for biological oxidation of nitrite–nitrogen to 

nitrate–nitrogen in the reach at 20 °C 
d-1 0.2–2 1.1 

BC3.swq 
Rate constant for hydrolysis of organic nitrogen to ammonium–

nitrogen in the reach at 20 °C 
d-1 0.2–0.4 0.21 

RS3.swq 
Benthic (sediment) source rate for ammonium–nitrogen in the 

reach at 20 °C 
mg m-2 d-1 0–1 50* 

RS4.swq Rate coefficient for organic nitrogen settling in the reach at 20 °C d-1 0.001–0.1 0.05 
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The simulated concentrations of N species from the Puarenga Stream 

catchment showed high seasonal variability (Fig. 4.3f–i), with concentrations 

typically higher during the drier periods of summer and autumn, and lower during 

the wetter periods of winter and spring. Simulations of ORGN concentrations were 

generally within the range of measured data (Fig. 4.3f), although several measured 

peaks were underestimated during calibration (PBIAS = 0.5%), while base flow 

concentrations were overestimated during validation (PBIAS = -19.8%; Table 4.5). 

The correlations between simulated and measured ORGN concentrations were 

positive during calibration (r = 0.47, p < 0.05) and validation (r = 0.75, p < 0.01; 

Table 4.5). By contrast, correlations between simulated and measured NH4–N 

concentrations were negative, with underestimates of 12.8% during calibration 

(r = -0.47, p < 0.05) and 15% during validation (r = -0.31, p > 0.05; Table 4.5). 

Simulations of NO3–N and TN concentrations were strongly correlated with 

measurements during calibration (r ≥ 0.40, p < 0.05) and validation (r ≥ 0.67, 

p < 0.05), although NO3–N and TN concentrations were underestimated by ~10% 

(see PBIAS in Table 4.5). Catchment loads of NO3–N and TN were generally 

underestimated during calibration (9.3% for NO3–N, 9.1% for TN) and 

overestimated during validation (4.9% for NO3–N, 7.6% for TN; Table 4.5). Higher 

r values for simulations of NO3–N and TN loads during calibration (r ≥ 0.52, 

p < 0.01) and validation (r ≥ 0.93, p < 0.001) were again indicative of the 

importance of discharge. 

4.4.1.2 DYRESM–CAEDYM model of Lake Rotorua 

Most DYRESM–CAEDYM parameter values used in this study were taken from 

the latest modelling study of Lake Rotorua in Abell et al. (2015) but two were 

adjusted to better fit observed data. The adjusted parameters included the 

maximum denitrification rate coefficient, altered from 0.8 to 0.5 d-1, and release 

rate of NH4–N from the sediment, altered from 0.2 to 0.3 g m-2 d-1. A summary of 

key parameter values that were optimised by manual calibration in both Abell et al. 

(2015) and this study is shown in Table 4.6. 
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Figure 4.3 Comparison of measurements taken at the FRI stream–gauge and SWAT2012 model outputs of (a) discharge (Q), concentrations of (b) suspended sediment (SS), (c) organic phosphorus (ORGP), (d) dissolved 

reactive phosphorus (DRP), (e) total phosphorus (TP), (f) organic nitrogen (ORGN), (g) ammonium–nitrogen (NH4–N), (h) nitrate–nitrogen (NO3–N) and (i) total nitrogen (TN) during calibration (July 2006 to June 2009) and 

validation (July 2009 to June 2010) periods. 
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Table 4.5 Statistical values of Pearson product moment correlation coefficient (r), root mean square error (RMSE), mean absolute error (MAE), 

and percent bias (PBIAS), used to assess SWAT2012 model performance for daily mean simulations of discharge (Q), loads and concentrations of 

suspended sediment (SS), organic phosphorus (ORGP), dissolved reactive phosphorus (DRP), total phosphorus (TP), organic nitrogen (ORGN), 

ammonium–nitrogen (NH4–N), nitrate–nitrogen (NO3–N) and total nitrogen (TN) from the Puarenga Stream catchment. The significance of 

correlations between simulations and measurements was quantified based on the p value (see Section 4.3.2). *p < 0.05; **p < 0.01; ***p < 0.001. 

Units are relevant to RMSE and MAE values only. 

Modelling period Statistics Q SS ORGP DRP TP ORGN NH4–N NO3–N TN 

  (m3 s-1) Concentration (mg L-1) 

 r 0.81*** 0.45* 0.00 0.25 0.05 0.47* -0.47* 0.40* 0.66*** 

 RMSE 0.476 1.883 0.018 0.016 0.018 0.058 0.032 0.174 0.176 

 MAE 0.254 1.419 0.015 0.013 0.016 0.046 0.027 0.139 0.149 

Calibration PBIAS% -3.9 4.3 -27.9 9.8 -11.3 0.5 12.8 9.3 9.1 

(July 2006 – June 2009)   Load (t d-1) Load (kg d-1) 

 r  0.52** 0.48* 0.12 0.59*** 0.71*** -0.44* 0.52** 0.62*** 

 RMSE  0.4 2.4 2.2 2.3 9.0 4.2 39.5 42.9 

 MAE  0.3 1.9 1.8 2.0 6.4 3.5 29.4 33.1 

 PBIAS%  3.9 -30.2 9.4 -10.4 2.5 15.1 9.2 7.6 

  (m3 s-1) Concentration (mg L-1) 

 r 0.88*** -0.23 0.70* 0.68* 0.17 0.75** -0.31 0.67* 0.78** 

 RMSE 0.479 1.656 0.012 0.012 0.008 0.065 0.025 0.159 0.156 

 MAE 0.278 1.372 0.011 0.011 0.007 0.060 0.021 0.109 0.097 

Validation PBIAS% -14.4 -5.3 23.0 -37.2 -0.3 -19.8 15.0 10.8 7.4 

(July 2009 – June 2010)   Load (t d-1) Load (kg d-1) 

 r  0.30 0.89*** 0.22 0.89*** 0.63* -0.36 0.93*** 0.94*** 

 RMSE  0.3 1.2 2.1 1.9 12.8 3.1 28.5 30.9 

 MAE  0.3 1.1 2.0 1.5 9.9 2.7 18.8 20.6 

 PBIAS%  -17.2 8.9 -54.9 -14.5 -37.4 10.9 -4.9 -7.6 
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In surface waters of Lake Rotorua (0–6 m deep), variations in nutrient 

concentrations were generally well reproduced by DYRESM–CAEDYM, including 

increases in winter and decreases in summer for PO4–P (identical to the variable 

DRP simulated by SWAT), NH4–N and NO3–N (Fig. 4.4a, e and g). Simulations of 

PO4–P and NH4–N showed low or negative r values during calibration (January 

2008 – June 2009) and validation (July 2009 – June 2010) and tended to be 

overestimated (PBIAS ≤ -38.1%) during validation (Table 4.7). However, the 

modelled TP concentrations showed reasonable agreement with the observations 

during calibration (r = 0.63; p < 0.01) and validation (r = 0.79; p < 0.01), although 

concentrations were slightly underestimated, by 12.1% during calibration and 16.5% 

during validation (Table 4.7). A highly positive correlation (r = 0.74; p < 0.01) 

between simulated and observed concentrations of NO3–N was found during 

validation, although values were overestimated (PBIAS = -72.3%; Table 4.7). 

Simulated TN concentrations also showed good agreement with observations 

during both calibration (r = 0.73; p < 0.01) and validation (r = 0.81; p < 0.01), with 

low bias (+6.1% and -2.4%, respectively, Table 4.7).  

Model performance for lake surface Chl a concentrations (Fig. 4.4k) was 

poor, showing low r values during calibration (r = 0.09, p > 0.05) and validation 

(r = 0.38, p > 0.05) and tended to underestimate during calibration (PBIAS = 24.1%) 

and validation (PBIAS = 10.8%; Table 4.7). The mean TLI3 value was 4.54 for July 

2009 to June 2010 based on the measured concentrations of Chl a, TP and TN in 

surface waters of Lake Rotorua, compared to 4.47 based on the DYRESM–

CAEDYM simulation under baseline conditions of both wastewater irrgation and 

pasture fertilisation (Table 4.8). 

At 19 m depth (“bottom”), simulated nutrient concentrations showed large 

variations, with peaks corresponding either to periods of hypoxia in the 

hypolimnion during stratified periods, or intervening isothermal periods, depending 

on the analyte (Fig. 4.4). However, the DYRESM–CAEDYM model simulations 

showed only modest statistical performance with most of the measured nutrient 

concentrations (range in r values of -0.38 to 0.37 during calibration and validation; 

Table 4.7). Simulated concentrations of PO4–P and NH4–N in bottom waters were 

highest during summer thermal stratification (Fig. 4.4b, f), which coincided with 

the period of occasional hypolimnetic anoxia. A positive correlation 

(r = 0.37; p > 0.05) between simulated and observed concentrations of NO3–N 
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(PBIAS = 3.4%) was found during validation (Table 4.7). The highest simulated 

concentrations of NO3–N occurred in winter when the water column was 

continuously well mixed (Fig. 4.4h). When the water column was stratified for 

periods of up to several days, both modelled and observed TP at 19 m depth 

predominantly comprised PO4–P (Fig. 4.4b, d) and TN predominantly comprised 

NH4–N (Fig. 4.4f, j). Modelled TP concentrations showed poor agreement with the 

observations (r = 0.19; p > 0.05) during calibration and were underestimated by 

29.0% (Table 4.7). 

Measurements at monthly intervals and simulated concentrations on 

corresponding days in the surface and bottom waters of Lake Rotorua under the 

current climate (CC0) during calibration (January 2008 – June 2009) and validation 

(July 2009 – June 2010) are also compared in Fig. 4.5, showing larger variances in 

the measured data than the simulated results. 

 

Table 4.6 Sensitive DYRESM–CAEDYM parameter values that were adjusted from 

Abell et al. (2015). 

Parameter Unit Calibrated 

value 

Dissolved organic nutrients 

Max. rate of mineralisation of labile dissolved 

organic phosphorus (DOPL) to phosphate (PO4–P) 

d-1 0.01 

Max. rate of mineralisation of labile dissolved 

organic nitrogen (DONL) to ammonium (NH4–N) 

d-1 0.01 

Dissolved inorganic nutrients 

Denitrification rate coefficient d-1 0.50 

Nitrification rate coefficient d-1 0.10 

Nutrient fluxes in sediment 

Release rate of PO4–P g m-2 d-1 0.02 

Release rate of NH4–N g m-2 d-1 0.30 

Release rate of nitrate (NO3–N) g m-2 d-1 -0.10 
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Figure 4.4 Comparisons of concentrations simulated with DYRESM–CAEDYM of (a–b) phosphate (PO4–P), (c–d) total phosphorus (TP), (e–f) 

ammonium–nitrogen (NH4–N), (g–h) nitrate–nitrogen (NO3–N), (i–j) total nitrogen (TN), and (k) chlorophyll a (Chl a) with the measurements 

taken at the surface (0–6 m) and the bottom (19 m) water of Lake Rotorua, during calibration (January 2008 to June 2009) and validation (July 

2009 to June 2010) period. 
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Table 4.7 Model performance of DYRESM–CAEDYM for daily mean concentrations of phosphate (PO4–P), total phosphorus (TP), ammonium–

nitrogen (NH4–N), nitrate–nitrogen (NO3–N) and total nitrogen (TN) for surface (0–6 m) and bottom (19 m) waters of Lake Rotorua and surface 

water chlorophyll a (Chl a) during calibration (January 2008 to June 2009) and validation (July 2009 to June 2010). Values of Pearson product 

moment correlation coefficient (r), level of significance (p), root mean square error (RMSE), mean absolute error (MAE), and percent bias (PBIAS) 

were used to indicate model performance. **p < 0.01. Units are relevant to RMSE and MAE values only. 

Model 

performance 
Statistics 

Lake surface waters (0–6 m)  Lake bottom waters (19 m) 

PO4–P TP NH4–N NO3–N TN Chl a  PO4–P TP NH4–N NO3–N TN 

  mg L-1 µg L-1  mg L-1 

Calibration r 0.10 0.63** -0.15 0.14 0.73** 0.09  0.00 0.19 0.20 -0.38 0.16 

(January RMSE 0.002 0.010 0.018 0.011 0.074 9.280  0.016 0.020 0.138 0.011 0.136 

2008 –  MAE 0.002 0.007 0.014 0.006 0.057 7.425  0.008 0.015 0.075 0.007 0.136 

June 2009) PBIAS% -63.0 12.1 13.8 -40.1 6.1 24.1  25.3 29.0 25.0 -312.7 17.0 

Validation r -0.24 0.79** 0.28 0.74** 0.81** 0.38  -0.16 -0.10 -0.12 0.37 -0.07 

(July RMSE 0.002 0.008 0.012 0.009 0.035 6.338  0.023 0.024 0.273 0.012 0.281 

2009 –  MAE 0.002 0.006 0.009 0.006 0.029 5.054  0.012 0.017 0.132 0.008 0.150 

June 2010) PBIAS% -76.1 16.5 -38.1 -72.3 -2.4 10.8  -60.2 0.9 -109.6 3.4 -26.5 
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4.4.2 Catchment and lake scenarios: current climate 

Under the reference scenario (S1–Irr1Pas1) corresponding to current climate, 

65 t yr-1 of P was applied to the Puarenga catchment from July 2006 to June 2010; 

61.5% (40 t yr-1) as pastoral fertiliser and 38.5% (25 t yr-1) as irrigated wastewater 

(Table 4.9). As part of these applications, 180 t yr-1 of N was also applied; 70.6% 

(127 t yr-1) as pastoral fertiliser and 29.4% (53 t yr-1) as irrigated wastewater 

(Table 4.9).  

Mean TP and TN loads at the FRI stream–gauge for the four years of the 

SWAT simulation (July 2006 – June 2010; baseline period) varied among the four 

nutrient application scenarios relative to the current climate condition (CC0). For 

S1–Irr1Pas1, the TP load at the FRI stream–gauge was 4.3 t yr-1 (Table 4.9), 

indicating that 93.4% of the 65 t yr-1 applied to land from wastewater irrigation and 

pasture fertilisation was attenuated and therefore not exported downstream during 

that period. The application of pastoral fertiliser alone (S2–Irr0Pas1) resulted in an 

in–stream TP load of 3.7 t yr-1 (Table 4.9), a reduction of 14.0% from the 

simulations under S1–Irr1Pas1. The scenario comprising only wastewater irrigation 

(S3–Irr1Pas0) resulted in an annual TP load of 2.9 t yr-1 (Table 4.9), a 32.6% 

reduction from simulations of TP under S1–Irr1Pas1. Simulations with no 

nutrient application (S4–Irr0Pas0) reduced the in–stream annual TP load by 39.5% 

(2.6 t yr-1; Table 4.9) from the load under S1–Irr1Pas1.  

The mean simulated in–stream TN load at the FRI stream–gauge over the 

four–year simulation for S1–Irr1Pas1 was 62.9 t yr-1 (Table 4.9), representing an 

attenuation of 65.1% of the TN load applied from wastewater irrigation and 

pasture fertilisation (S1–Irr1Pas1; 53 and 127 t yr-1, respectively). The applications 

of S2–Irr0Pas1, S3–Irr1Pas0, S4–Irr0Pas0 resulted in a four–year annual mean in–

stream TN load of 46.7, 31.8 and 15.6 t yr-1, respectively (Table 4.9). These three 

scenarios represent respective reductions of 25.8%, 49.4%, and 75.2% (Table 4.9) 

relative to simulations under the reference scenario S1–Irr1Pas1.
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Table 4.8 Measured sampling days and corresponding simulation days with changes in surface and bottom water temperature (ΔT) > 0.5 °C, with bottom water dissolved oxygen (DO) concentrations < 2 mg L-1, and with surface 

water chlorophyll a (Chl a) concentrations > 15 μg L-1, and TLI3 values under the current climate during calibration (2008–2009) and validation (2009–2010); daily simulated number of days with ΔT > 0.5 °C, DO < 2 mg L-1, 

Chl a > 15 μg L-1, and mean TLI3 values under current climate (CC0) relative to four nutrient load scenarios (S1–S4) during baseline period (2008–2010), and under 2090 climate changes to catchment only (CC1) and changes 

to both catchment and lake (CC2). Nutrient load scenarios are described in the Methods. The TLI3 is a three–variable Trophic Level Index function derived from concentrations of total nitrogen, total phosphorus and Chl a, 

which is used to indicate the lake trophic state (Burns et al., 1999). 

 

 CC0: S1–Irr1Pas1 

(monthly values) 
 

CC0: S1–S4 

(daily values) 
 

CC1: catchment only 

(daily values) 
 

CC2: catchment & lake 

(daily values) 
 Calibration: 2008–2009  Validation: 2009–2010  Baseline: 2008–2010  Future: 2090  Future: 2090 
 Measured Simulated  Measured Simulated  S1–Irr1Pas1 S2–Irr0Pas1 S3–Irr1Pas0 S4–Irr0Pas0  S2–Irr0Pas1  S2–Irr0Pas1 

 Number of days (d)  Number of days (d)  Number of days (d)  Number of days (d)  Number of days (d) 

ΔT > 0.5 °C 5 3  1 2  316 294 308 291  303  345 

Bottom DO < 2 mg L-1 1 1  1 1  75 58 62 53  70  141 

Surface Chl a > 15 μg L-1 10 4  4 1  306 291 296 291  301  446 

mean TLI3 4.68 4.5  4.54 4.47  4.49 4.46 4.46 4.44  4.46  4.88 
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Figure 4.5 Measurements at monthly intervals and simulated concentrations on corresponding days in the surface and bottom waters of Lake 

Rotorua under the current climate (CC0) during calibration (2008–2009) and validation (2009–2010); daily simulated concentrations in the surface 

and bottom waters of Lake Rotorua under current climate (CC0) relative to four nutrient load scenarios (S1–S4) during a baseline period (2008–

2010), and under 2090 climate changes to catchment only (CC1) and changes to both catchment and lake (CC2). (a)–(b) TP: total phosphorus, (c)–

(d) TN: total nitrogen, and (e) Chl a: chlorophyll a. Nutrient load scenarios are described in the Methods. Boxes denote interquartile ranges (i.e., 

25% and 75%); whiskers denote minimum and maximum values; horizontal lines denote median values. 
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For the DYRESM–CAEDYM simulations of 2.5 years (January 2008 – June 

2010; baseline period), annual mean concentrations of TP and TN in the surface 

and bottom waters and Chl a in surface waters are similar for the different nutrient 

application scenarios (S1–S4) under current climate (CC0) (see Fig. 4.5), as well as 

the mean TLI3 value (see Table 4.8). 

Annual mean TP concentrations at the lake surface under the catchment 

scenarios of S2–Irr0Pas1, S3–Irr1Pas0, and S4–Irr0Pas0 were slightly reduced, by 

2.4%, 2.4%, and 3.5% (Table 4.9), respectively, compared with the annual mean 

(0.0254 mg L-1) under S1–Irr1Pas1 (Table 4.9). Annual mean TP concentration at 

the lake bottom under the catchment scenarios of S2–Irr0Pas1, S3–Irr1Pas0, and 

S4–Irr0Pas0 declined slightly, by 4.7%, 4.4%, and 6.9% (Table 4.9), respectively, 

compared with the value of 0.0275 mg L-1 at the lake bottom under S1–Irr1Pas1 

(Table 4.9). 

Annual mean TN concentrations at the lake surface under the catchment 

scenarios of S2–Irr0Pas1, S3–Irr1Pas0, and S4–Irr0Pas0 declined slightly, by 2.7%, 

4.1%, and 5.7% (Table 4.9), respectively, compared with 0.0368 mg L-1 at the lake 

surface under S1–Irr1Pas1 (Table 4.9). Annual mean TN concentrations at the lake 

bottom under the catchment scenarios of S2–Irr0Pas1, S3–Irr1Pas0, and S4–

Irr0Pas0 also declined slightly, by 5.3%, 6.3%, and 9.4% (Table 4.9), respectively, 

compared with 0.0394 mg L-1 at the lake bottom under S1–Irr1Pas1 (Table 4.9).  

Annual mean Chl a concentration at the lake surface under the catchment 

scenarios of S2–Irr0Pas1, S3–Irr1Pas0, and S4–Irr0Pas0 declined slightly, by 3.2%, 

2.8%, and 4.1% (Table 4.9), respectively, compared with 14.178 µg L-1 at the lake 

surface under S1–Irr1Pas1 (Table 4.9). 

Decreases in nutrient loads in the Puarenga Stream under scenario S4–

Irr0Pas0 gave reductions in total external loads from the whole Rotorua catchment 

of only 6.2% for TP and 11.3% for TN. Given that the changes were only made to 

15.6% of TP load and 16.2% of TN load contributing to Lake Rotorua, large 

changes in water quality of the whole lake would not be expected, i.e., ~84% of the 

TP and TN input remained unchanged.  
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Table 4.9 Model results under current climate (CC0) for four nutrient load scenarios comprising changes to total phosphorus (TP) and total nitrogen 

(TN) loads from the Puarenga Stream catchment and in–stream TP and TN loads during baseline period (July 2006 to June 2010); changes to TP 

and TN concentrations in surface and bottom waters, and surface water chlorophyll a (Chl a) concentrations of Lake Rotorua during the baseline 

period (January 2008 to June 2010). Percentage change denotes changes to the simulations under scenarios S2–S4 relative to the simulations under 

the “reference” scenario S1. Nutrient load scenarios (S1–S4) are described in the Methods. S1–Irr1Pas1: both nutrient applications, S2–Irr0Pas1: 

pasture fertilisation only, S3–Irr1Pas0: wastewater irrigation only, S4–Irr0Pas0: no nutrient applications. 

Scenarios 

TP  TN  Chl a 

Applied  

to 

catchment 

(t yr-1) 

In–stream 

load to 

lake 

(t yr-1) 

Surface 

of lake 

(mg L-1) 

Bottom 

of lake 

(mg L-1) 

 

Applied 

to 

catchment 

(t yr-1) 

In–stream  

load to 

lake 

(t yr-1) 

Surface 

of lake 

(mg L-1) 

Bottom

of lake  

(mg L-1) 

 

Surface 

of lake 

(µg L-1) 

S1–Irr1Pas1 65 4.3 0.0254 0.0275  180 62.9 0.368 0.394  14.178 

S2–Irr0Pas1 40 3.7 0.0248 0.0262  127 46.7 0.358 0.373  13.731 

S3–Irr1Pas0 25 2.9 0.0248 0.0263  53 31.8 0.353 0.369  13.775 

S4–Irr0Pas0 0 2.6 0.0245 0.0256  0 15.6 0.347 0.357  13.597 

 % change  % change  
% 

change 

S1–Irr1Pas1 vs. 

S2–Irr0Pas1 
-38.5 -14.0 -2.4 -4.7  -29.4 -25.8 -2.7 -5.3  -3.2 

S1–Irr1Pas1 vs. 

S3–Irr1Pas0 
-61.5 -32.6 -2.4 -4.4  -70.6 -49.4 -4.1 -6.3  -2.8 

S1–Irr1Pas1 vs. 

S4–Irr0Pas0 
-100.0 -39.5 -3.5 -6.9  -100.0 -75.2 -5.7 -9.4  -4.1 
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4.4.3 Catchment and lake scenarios: 2090 climate 

Two climate change scenarios were simulated to predict changes to lake trophic 

state in response to a projected future climate of 2090. The first considered the 

effects of 2090 climate forcing on discharge and nutrient loadings from the 

catchment but simulated the lake with meteorological input data from a current 

(2006–10) climate. The second used 2090 climate data as input to both the 

catchment and the lake models. This study design was intended to isolate the impact 

on lake water quality of projected future climate effects on catchment processes 

(e.g., altered discharge and nutrient fluxes) from projected future climate effects 

directly on the lake (e.g., increased phytoplankton growth rates due to elevated 

temperature). For the 2090 climate impact on the catchment only (CC1) and on both 

catchment and lake (CC2), scenario S2–Irr0Pas1 was applied for other streams and 

on the lake (see details in Section 4.3.4.2). 

4.4.3.1 Effects of climate change on catchment discharge, suspended solids 

and nutrient loads 

For the projected future climate of 2090 (IPCC, 2013), annual mean precipitation 

and solar radiation are projected to increase by 2.8% and 1.4%, respectively, 

humidity to decrease by 0.6%, and air temperature to increase by 2.7 °C. For 

precipitation, the largest increase will be in the month of March and the largest 

decrease will be in October, although total annual precipitation is predicted to 

change negligibly.  

Relative to the scenario S2–Irr0Pas1, for each sub–catchment discharge and 

SS loads increased by 4.6% and 3.8%, respectively, under the 2090 climate scenario 

(Table 4.10). Nutrient loads increased with the exception of NO3–N and TN. The 

largest load increases were 14.4% for NH4–N load, followed by 6% for DRP, ORGP, 

TP and 5.8% for ORGN. The largest load decrease was 13.4% for NO3–N, which 

was mostly responsible for a load decrease in TN by 7.6%. A 2090 climate generally 

resulted in large increases in discharge, suspended solids and nutrients from January 

to April, and small increases from May to September (Table 4.10). Increases were 

greatest in March; 11.1% for discharge, 11.5% for SS load, 15.3% for ORGP, 10.4% 

for TP, and 14.3% for ORGN. For dissolved nutrient species loads, decreases 

of NO3–N were greatest in September (28%), and increases of DRP (7.5%) and 

NH4–N (15.7%) were greatest in July. 
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Table 4.10 Changes in inflow (Q) and nutrient loadings of suspended sediment (SS), mineral phosphorus (MINP), organic P (ORGP), ammonium–

N (NH4–N), nitrate–N (NO3–N), organic N (ORGN), total P (TP), and total N (TN) in response to the 2090 climate impacts on catchment only, and 

changes of nutrient concentrations in Lake Rotorua. The value of TLI3, the three–variable Trophic Level Index calculated by concentrations of TN, 

TP and chlorophyll a (Chl a), is used to indicate the lake trophic state (Burns et al., 1999). The colour scale was specified for each variable in each 

column and indicates the range of % changes. 

Month 
Changes in inflow discharge and loadings (%)  Changes in lake concentrations (%) 

TLI3 Surface (0–6 m) Bottom (19 m) 

Q SS DRP ORGP NH4–N NO3–N ORGN TP TN  TP TN Chl a TP TN 

Jan 9.5 9.7 5.8 10.2 14.6 -1.3 9.8 7.9 3.5  0.4 -2.5 4.5 -3.6 -6.3  

Feb 9.1 9.4 6.7 13.9 13.6 -6.7 12.8 10.0 0.9  1.1 -1.4 5.2 6.8 4.3  

Mar 11.1 11.5 6.5 15.3 15.7 -10.5 14.3 10.4 -1.7  1.4 -1.3 3.5 1.6 -1.1  

Apr 8.8 10.0 5.8 13.0 15.2 -11.5 12.3 9.3 -4.2  0.3 -2.1 0.1 0.4 -2.1  

May 2.9 2.0 5.9 5.0 15.0 -10.7 4.9 5.4 -6.3  0.1 -2.6 -1.3 0.2 -2.6  

Jun 2.0 1.2 5.6 2.5 14.7 -11.5 2.6 3.8 -7.8  0.2 -3.0 -1.0 0.2 -3.0  

Jul 3.1 2.0 7.5 4.2 15.7 -12.7 4.2 5.5 -8.4  -0.4 -4.1 0.1 -0.4 -4.0  

Aug 4.2 3.3 7.0 4.7 15.1 -14.1 4.7 5.6 -9.6  -0.4 -4.8 -0.6 -0.9 -4.8  

Sep 2.0 0.2 6.3 3.7 13.1 -28.0 3.6 4.9 -19.5  -0.5 -5.6 -0.6 -0.8 -5.1  

Oct -1.3 -3.5 5.1 -1.4 14.0 -22.6 -1.1 1.6 -17.2  -0.3 -5.5 1.0 1.2 -3.6  

Nov 5.1 3.8 4.4 4.7 13.2 -3.2 4.5 4.6 0.6  0.0 -4.1 0.6 1.2 -3.1  

Dec 4.8 3.5 5.0 6.3 13.2 -5.1 6.0 5.6 -0.4  -0.1 -3.4 4.1 5.8 1.5  

Annual 4.6 3.8 6.0 6.0 14.4 -13.4 5.8 6.0 -7.6   0.2 -3.0 1.9 0.9 -2.3 4.46 
                 

% -30              30  
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Relative to the scenario S2–Irr0Pas1, the 2090 climate scenario (i.e., 2090 

climate applied to the catchment model but current climate applied to the lake 

model; CC1) was predicted by DYRESM–CAEDYM to cause relatively minor 

changes in Lake Rotorua water quality (see Table 4.8 and 4.10). Periods of lake 

thermal stratification indicated by the number of days with changes in surface and 

bottom water temperatures (ΔT) greater than 0.5 °C (Losordo and Piedrahita, 1991) 

under current climate (CC0) were similar to the periods of thermal stratification 

under 2090 climate applied only to the catchment (CC1) (see Table 4.8). Minimal 

changes were also found to the number of days with dissolved oxygen (DO) 

concentrations in bottom waters < 2 mg L-1 (i.e., a threshold for depletion of DO; 

Stuber et al., 1982) and the number of days with Chl a concentrations in surface 

waters >15 μg L-1 (i.e., a threshold for cold water fisheries; McGhee, 1983) under 

CC0 and CC1 for the catchment (Table 4.8). 

Under the 2090 climate scenario (CC1), annual mean TN concentration 

decreased by 3.0% in lake surface waters and 2.3% in bottom waters (Table 4.10), 

with the largest monthly decrease in surface waters in September (5.6%) and in 

bottom waters in January (6.3%). Small increases were predicted in annual mean 

TP concentrations in the lake surface (0.2%) and bottom (0.9%) waters. Small 

increases (1.9%) were predicted in annual mean Chl a concentrations in the lake 

surface by 2090 (Table 4.10). Relative to the scenario S2–Irr0Pas1, applying the 

climate change scenario (CC1) to the catchment model (but not the lake model) 

yielded a negligible change in the mean TLI3 value (Table 4.8). 

4.4.3.2 Effects of climate change on catchment and lake water quality 

Under the projected future climate of 2090, annual mean evaporation is predicted 

by the lake model to increase by 10.6% (Table 4.11). For the surface water 

catchment, annual mean inflow water temperature simulated by the SWAT2012 

model increases by 2 °C. For the groundwater recharge catchment, inflow water 

temperature increases by 2.4 °C (quantified by 88% of the projected increase in air 

temperature; Kurylyk et al., 2013). Generally, largest increases in water 

temperatures for surface water and groundwater were found from January to April 

(Table 4.11).  
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Relative to the scenario S2–Irr0Pas1, more frequent and longer periods of 

thermal stratification were simulated by DYRESM–CAEDYM for Lake Rotorua in 

2090 (see Table 4.8), indicated by the number of days with ΔT > 0.5 °C increasing 

from 294 (under CC0) to 345 (under CC2). The number of days with DO 

concentrations in bottom waters < 2 mg L-1 was predicted to increase 2.4–fold from 

58 (under CC0) to 141 (under CC2), while the number of days with Chl a 

concentrations in surface waters >15 μg L-1 was predicted to increase 1.5–fold from 

291 (under CC0) to 446 (under CC2). 

Applying the combined catchment–lake model simulations using forcing 

data for a projected 2090 climate gave an increase in annual mean TP, TN and Chl a 

concentrations in lake surface waters of 45.9%, 44.5% and 44.9%, respectively 

(Table 4.11), compared with concentrations under the current climate (CC0). The 

largest increase was in March for TP (57.5%) and February for TN (56.9%) in lake 

surface waters. For Chl a in surface waters, the largest increase was in January 

(109%) and the smallest increase was in July (4.2%). For bottom waters TP and TN 

concentrations increased by 56.4% and 56.8%, respectively (Table 4.11). The 

largest increase occurred in February for TP (141.1%) and TN (152.0%) in bottom 

waters.  

The 2090 climate scenario applied to the catchment and the lake model gave 

a substantial increase in the mean TLI3 value from 4.46 (current climate) to 4.88 

(Table 4.8). Figure 4.5 shows the major changes in annual mean concentrations of 

TP and TN in the surface and bottom waters and Chl a in surface waters of Lake 

Rotorua between the 2090 climate on the catchment only (CC1) and on both the 

catchment and lake (CC2).  
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Table 4.11 Precipitation (PCP), solar radiation (SLR), air temperature (Ta), humidity (HMD), evaporation (Ea), water temperatures of inflows from 

groundwater discharge sub–catchments (Tgw) and from surface water sub–catchments (Tsw), and changes in nutrient concentrations in Lake Rotorua 

in response to a projected 2090 climate, for both Lake Rotorua catchment and lake. The increase in Tgw was 88% of the increase in Ta while the 

increase in Tsw was from the SWAT output. The TLI3 is a three–variable Trophic Level Index function derived from concentrations of total nitrogen 

(TN), total phosphorus (TP) and chlorophyll a (Chl a), which used to indicate the lake trophic state (Burns et al., 1999). The colour scale was 

specified for each variable in each column and indicates the range of % change. 

Month 

Absolute changes in 

inflow water temperature 

(°C) 

  
Changes for water balance calculations 

(%) 
  

Changes of concentrations (%) 

TLI3  Lake surface Lake bottom 

*Tgw *Tsw  *Ta SLR HMD Ea PCP  TP TN Chl a TP TN 

Jan 2.8 2.4  3.2 1.1 -0.7 8.6 5.0  48.0 46.3 109.9 56.0 58.7  

Feb 2.6 2.3  3.0 0.7 -1.4 7.7 6.0  56.9 56.9 98.7 141.1 152.0  

Mar 2.7 2.3  3.1 0.7 0.0 10.0 12.7  57.5 56.3 52.2 61.1 60.1  

Apr 2.5 2.1  2.8 1.2 -0.7 20.4 6.9  51.7 52.8 28.1 52.6 53.7  

May 2.4 2.0  2.7 1.8 -0.4 21.5 3.4  48.4 49.8 17.5 48.4 49.9  

Jun 2.3 1.9  2.6 2.2 -0.3 20.9 3.6  45.6 46.3 9.0 45.6 46.3  

Jul 2.4 2.0  2.7 0.9 -0.3 12.2 2.2  39.7 38.5 4.2 39.7 38.5  

Aug 2.4 2.0  2.7 1.0 0.0 12.8 4.9  36.9 32.2 16.6 36.8 32.8  

Sep 2.1 1.8  2.4 2.4 -0.1 9.6 -4.1  34.5 28.7 9.4 32.9 28.8  

Oct 2.2 1.9  2.5 2.8 -0.6 5.9 -7.8  34.2 28.1 6.2 35.5 30.4  

Nov 2.1 1.8  2.4 1.4 -1.1 8.1 -0.5  33.2 29.0 15.8 37.7 32.3  

Dec 2.3 1.9  2.6 1.0 -1.2 7.1 -1.7  38.2 35.1 42.6 45.1 42.0   

Annual 2.4 2.0   2.7 1.4 -0.6 10.6 2.8   45.9 44.5 44.9 56.4 56.8 4.88 

                             

% -3 3   -25       25   -150       150  
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4.5 Discussion 

This study integrated catchment discharge and nutrient concentrations from the 

SWAT2012 model with lake water quality modelled by DYRESM–CAEDYM, 

yielding a quantitative assessment of the effects of land management practices and 

future climate change on trophic state of a nationally iconic lake in New Zealand. 

Simulation of a range of nutrient load and climate scenarios using a factorial study 

design allowed the relative effects of land management and projected climate 

change to be examined. Further, the effects of projected climate change on lake 

water quality were then examined to isolate the effects due to catchment processes, 

from those due to in–lake processes. The results show that the effects on lake water 

quality due to major changes to nutrient loading in one sub–catchment are minor 

relative to the effects due to changes to in–lake processes associated with projected 

climate change. 

4.5.1 Model performance and sensitivity 

Concentrations of TN and TP in the Puarenga Stream simulated with the improved 

SWAT2012 model were better than those using SWAT2009 (see Me et al., 2015). 

For the validation period, discharge and TP and TN loads from the Puarenga Stream 

catchment simulated using the SWAT2012 model generally showed positive 

correlations (r ≥ 0.88, p < 0.001) with the measured data, but less so for in–stream 

concentrations of TN (r = 0.78, p < 0.01) and TP (r = 0.17, p > 0.05). Overestimates 

of discharge in Puarenga Stream during high rainfall in winter could be due to 

overestimates of lateral flow contributions (Cartwright et al., 2014). The relatively 

high value of parameter slope steepness (HRU_SLP), assigned as 0.1 (equal to 5.7 

degrees slope) and integrated over the entire catchment in this study, may have 

resulted in overestimates of lateral flow contributions from shallow aquifers to 

stream channels (Ward et al., 2012).  

Periods of elevated discharge are also important because they correspond to 

increased nutrient mobilisation and erosive processes operating at the landscape 

scale (Abell et al., 2013). Poor model performance for simulations of DRP and TP 

concentrations could be partly related to the SWAT2012 soil P parameters, which 

are lumped for the catchment, such as PSP (P availability index), PHOSKD (soil P 

partitioning coefficient) and PPERCO (soil P percolation coefficient) (Arnold et al., 
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2013). Ideally, parameter values should also be optimised with regard to episodic 

events (Zhang et al., 2015) and for dry and wet periods or different upland irrigation 

regimes such as in the forestry–harvested area in this study. It is possible therefore, 

that the values of these parameters do not accurately represent P transport on the 

landscape following rainfall.  

Seasonal variations in concentrations of N species from the Puarenga 

Stream catchment were well simulated by SWAT2012. Higher simulated 

concentrations of NH4–N occurred in summer, likely due to the increased 

temperature in this season, which enhances rates of organic mineralisation 

processes (Hien et al., 2016). The underestimation of NH4–N concentrations in 

winter could have also resulted from overestimates of discharge in Puarenga Stream 

during high rainfall in winter. Higher concentrations of NO3–N simulated in winter 

were probably caused by the higher leaching rates of NO3–N when the soils become 

saturated in winter during high rainfall, resulting in high rates of lateral flow to the 

stream. Simulated NO3–N concentrations were lower than observed values in 

summer, probably because of the inability of SWAT to adequately replicate the 

relative increase in groundwater, with elevated NO3–N concentrations, contributing 

to the stream discharge (Bain et al., 2012). This highlights the importance of 

enhancing SWAT predictions by simulating interactions between the groundwater 

aquifer and river channel, which represents a critical area for nutrient dynamics 

(Guzman et al., 2015). 

The lake model (DYRESM–CAEDYM) predictions for surface waters 

showed strong seasonality that was similar to the measured data, with high positive 

correlations for measured and simulated TP and TN concentrations. Small increases 

in TP and TN concentrations observed in lake surface waters in spring were well 

reproduced by DYRESM–CAEDYM, and this was associated with bottom 

nutrients being transported to surface waters during mixing (Shaw et al., 2004). 

Polymictic, temperate lakes mix intermittently during the summer stratified period 

in response to wind (Kourzeneva et al., 2012) and this was both observed and 

simulated in this study. Brief spikes of PO4–P and NH4–N concentrations observed 

in lake surface waters in summer were also well simulated due to the ability of the 

model to capture wind–driven lake–turnover events. The accumulated nutrients and 

increased temperature during this period concurrently accelerated phytoplankton 

growth, resulting concentrations of Chl a (as a proxy for phytoplankton biomass) 
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in lake surface waters were simulated high in summer. However, poor model 

performance for Chl a concentrations could be attributed that changes to 

phytoplankton assemblages (e.g., the proportion of cyanobacteria) responding 

differently to nutrient enrichment and temperature were not considered in this study. 

In general, DYRESM–CAEDYM reproduces well the temporary stratification and 

deoxygenation events that lead to release of PO4–P and NH4–N from the bottom 

sediments (Hamilton et al., 2004; Burger et al. 2007a). The annual maximum of 

PO4–P, NO3–N and NH4–N concentrations in surface waters was both observed and 

simulated during winter, which could be attributed to higher rainfall during this 

season, transporting more nutrients into the lake (Abell et al., 2013), as well as 

lower nutrient uptake rates associated with lower temperature and reduced light 

availability. 

4.5.2 Reducing nutrient loads to the Puarenga Stream catchment 

Nutrient loads to the Puarenga Stream decreased as expected under the 

different nutrient load reduction scenarios. Under the scenario of wastewater 

removal (S2–Irr0Pas1), the reduction (38.5%) in the applied TP load was larger 

than the reduction (14.0%) in in–stream TP load. This finding could be explained 

by the high soil P adsorption rate (PSP was set to 0.6; mean value derived from 

Beets et al., 2013). Loads of TN in the farmland–applied fertiliser were 2.4 times 

higher than those associated with the applied wastewater, and consequently 

simulations of in–stream annual TN loads under the scenario S2–Irr0Pas1 were 1.5 

times higher than those under the scenario of farmland–applied fertiliser removal 

(S3–Irr1Pas0). The difference indicates there is also some loss of N between the 

stream and where it is applied, which may be attributed to processes such as plant 

uptake and export of N in production, as well as denitrification. Without any 

anthropogenic nutrient loadings (S4–Irr0Pas0), there was a moderate reduction of 

in–stream annual TP load (39.5%) and a large reduction of in–stream annual TN 

load (75.2%). The difference between N and P may be attributed to the high soil P 

adsorption rate (PSP; 0.6), resulting in a legacy of P (see Sharpley et al., 2014) 

being retained in the catchment soils. By contrast, the relatively rapid leaching of 

N reflects the mobile nature of this nutrient (Zogg et al., 2000) with high N 

percolation rate assigned in the SWAT model (NPERCO; 0.05). 
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The scenario without any anthropogenic nutrient loadings from the 

Puarenga Stream catchment (i.e., S4–Irr0Pas0) was predicted to cause minimal 

improvement to lake water quality. Simulated nutrient reductions in the Puarenga 

Stream catchment are a minor fraction of total catchment nutrient load to Lake 

Rotorua and TP and TN loads remain largely unchanged. In the short term, the 

benefits from external nutrient load reductions may be difficult to decipher unless 

they are large in magnitude relative to internal loading. For shallow, polymictic 

Lake Rotorua, periods of thermal stratification, of sufficient duration to generate 

hypoxia, lead to large nutrient releases to bottom waters (Burger et al., 2007a) and 

are interspersed with mixing events that make these nutrients available to support 

phytoplankton production in euphotic waters. 

4.5.3 Climate change impacts on catchment and lake 

Predictions from the combined climate–catchment model indicate that there would 

be increases in discharge, and loads of SS, and especially particulate N and P, 

mostly from January to April for a 2090 climate. This could be explained by the 

elevated rates of soil erosion and mobilisation of particulate P and N associated 

with increased frequency of intense rainfall events which generate quick flow. 

Decreases in simulated discharge during October reflect small projected declines in 

precipitation during the Austral spring. The finding that discharge goes up by 4.6% 

when precipitation only increases by 2.8% could be explained by the fact that the 

Puarenga Stream catchment is covered extensively by forest (47%) and reflects 

relatively high and seasonally–consistent rainfall (1252 mm yr-1), which reduces 

soil evaporative demand through tree shading. 

Elevated soil temperature and in–stream water temperature in 2090 would 

increase decomposition and mineralisation of organic matter, which would then 

increase DRP and NH4–N loads. Hien et al. (2016) predicted that NH4–N loads 

would increase in almost all months of the year in response to projected future 

climate warming, an effect that they attributed to organic mineralisation processes. 

Large decreases in NO3–N load exported from the Puarenga Stream catchment 

occurred in September and October under projected climate change compared with 

current climate, which corresponded to a period of decreased precipitation in these 

months. Loads of NO3–N also decreased from January to August 2090 during a 

period of increased precipitation, revealing that elevated soil temperature due to 
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warming would increase plant uptake and denitrification processes, causing a 

decrease in NO3–N losses and leaching from the catchment. This is consistent with 

N simulation results in Arheimer et al. (2012), who modeled climate change 

impacts on riverine nutrient loads to the Baltic Sea. They similarly predicted 

decreased NO3–N losses associated with climate change, which they attributed to 

plant uptake and denitrification processes.  

Donnelly et al. (2011) predicted that TN load from the Vistula River 

catchment (Poland; 325 km2; 63% agricultural land use) would decrease by 4% 

under increased temperature due to global warming. In the Puarenga Stream 

catchment, 47% of the land use is exotic Pinus radiata forest, and therefore plant 

uptake could play the primary role in reducing TN loads from the catchment; TN 

loads decreased 7.6% under the 2090 climate in our study. For 10 catchments (areas 

4.36 to 41.91 km2) in the north of Denmark with similar rainfall to our study area, 

predicted increases in TP loads ranged from 3.3% to 16.5% by 2100 (Jeppesen et 

al., 2009). Increases in TP load (6%) predicted for the Puarenga Stream catchment 

in 2090 were small compared to values given by Jeppesen et al (2009), and may 

reflect high soil P adsorption in soils of this catchment (Beets et al., 2013) and 

correspondingly high P adsorption rate (0.6) in the model. The contrasting response 

of catchment TN and TP loads to projected climate change likely reflects the 

relatively rapid mobilisation of N through leaching, while P is mostly retained in 

the soils. Under the 2090 climate applied to the catchment only, there was a 

decrease (3.0%) in annual mean TN concentration in lake surface waters but an 

increase (1.9%) in annual mean Chl a concentrations, highlighting the potential that 

redox dynamics of N in the bottom waters could be changed by the decreased 

external NO3–N load (Burger et al., 2008).  

For shallow, polymictic Lake Rotorua, increased water temperatures in 

2090, with frequent and longer periods of summer thermal stratification and bottom 

water deoxygenation, are consistent with previous models of this lake (Özkundakci 

et al., 2012) and lakes elsewhere (e.g., Wilhelm and Adrian, 2008). The 

stratification–deoxygenation effect was well predicted by DYRESM–CAEDYM 

under base conditions. An increase in temperature will also enhance the 

mineralisation of organic matter as well as causing higher rates of sediment nutrient 

release (e.g., NH4–N and PO4–P) from bottom sediments (Adrian et al., 2009). 

These two inorganic nutrient species (NH4–N and PO4–P) have been found by 
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Burger et al. (2008) to be the dominant source of increases in N and P 

concentrations in surface waters of Lake Rotorua when there are mixing events 

following extended stratification periods during summer. Burger et al. (2008) also 

found that nutrients released from the bottom sediments contributed a major 

proportion of nutrients inputs to the lake compared with external loadings. 

Increasing water temperature in 2090 and more stratification produced simulations 

with higher concentrations of TP and TN from January to April in particular, in the 

climate warming scenarios. Following the release from bottom sediments, nutrients, 

i.e., NH4–N and PO4–P forms readily assimilated by phytoplankton (Burger et al., 

2008), accumulate in bottom waters and accelerate phytoplankton growth when 

subsequently mixed through the water column (Hamilton et al., 2012). Concurrently, 

increased temperature directly stimulates growth of phytoplankton, which 

explained that concentrations of Chl a (as a proxy for phytoplankton biomass) in 

lake surface waters were simulated to increase from January to March with 

increased temperature under a 2090 climate, compared with the baseline climate. 

Catchment TN loadings (dominated by NO3–N) decreased by 7.6% while lake 

surface TN concentrations (dominated by NH4–N) increased by 44.5% under a 

2090 climate, highlighting that careful consideration of the different forms of 

nitrogen is required to better understand responses to climate change. 

Increases in external nutrient loads and increasing temperature in a future 

climate are likely to act synergistically to negatively impact on lake water quality 

(e.g., Komatsu et al., 2007). Although external nitrogen load was predicted in this 

study to decline moderately, by 7.6% with future climate warming of 2090, TN 

concentrations were much higher for the lake (> 40%), implying that direct effects 

of climate change dominate in this eutrophic ploymictic lake. Although changes to 

phytoplankton assemblages (e.g., the proportion of cyanobacteria) were not 

considered in this study, potential for changes in species composition have also 

been noted in many studies (e.g., Carey et al., 2012). Trolle et al. (2011) modelled 

mean Chl a concentrations dominated by chlorophytes and diatoms in a shallow 

and eutrophic lake (Lake Ellesmere, Canterbury, South Island) using DYRESM–

CAEDYM and found that chlorophytes increasingly dominated diatoms with water 

temperature increases. In eutrophic Lake Rotoehu (maximum depth ~ 13 m) in the 

Bay of Plenty Region near Lake Rotorua, Trolle et al. (2011) found that 

cyanophytes increased substantially in summer months under a warmer climate. 
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Lower diatom biomass was also predicted during future winter climates by Mooij 

et al. (2007), who examined the impacts of increasing water temperature on a 

shallow lake in Europe using the PCLake model. These studies indicate that 

different groups of phytoplankton will respond differently to N and P enrichment, 

as well as climate change. Variations in internal nutrient loads may also influence 

the succession of phytoplankton, as noted by Burger et al. (2007b). 

The predictions of water quality in lake surface waters with climate change 

may have some degree of uncertainty because future changes in wind speed were 

not considered in this study. Water column stratification is highly sensitive to this 

variable (Adrian et al., 2009). Furthermore, long–term variability of bottom–

sediment composition was not considered in DYRESM–CAEDYM simulations in 

this study. Rather, fixed sediment release rate parameters were input to the model, 

with rates adjusted within model simulations according to overlying water 

temperature and DO. Ӧzkundakci et al. (2012) provide an empirical attempt to 

modify sediment composition of Lake Rotorua according to lake trophic status but 

more information would ideally be required to apply this in our study. Nutrient 

releases will continue to be highly important for lake management but the model 

simulations have clearly identified that there is potential for major increases in 

trophic state in Lake Rotorua without adoption of more stringent nutrient control 

measures for the catchment. 

In summary, simulations using the lake model (DYRESM–CAEDYM) 

showed that lake water quality effects caused by large reductions to nutrient loads 

in the Puarenga Stream were relatively small as the stream contributes only ~16% 

of total nutrient loads to Lake Rotorua. Lake water quality effects caused by climate 

change arise primarily from changes in internal nutrient loads as a result of changes 

in thermal stratification. For shallow, polymictic Lake Rotorua, by 2090 there are 

likely to be more extended periods of thermal stratification in summer. In the short 

term (i.e., months to a few years) internal lake nutrient dynamics (i.e., sediment–

water exchanges) affect water quality considerably more than external nutrient 

loadings from the catchment. 
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5 Concluding discussion and synthesis 

5.1 Overview 

This thesis firstly described the applicability of a process–based catchment model 

(SWAT) to a small, mixed land use catchment of Lake Rotorua, New Zealand. The 

effects were examined of different hydrologic conditions on model performance 

and parameter sensitivity. By using the hourly routing algorithms and modifying 

relevant model code to simulate complex catchment irrigation operations, the 

SWAT2012 model performance was improved, as indicated by better predictions 

of high–frequency variations in SS, TP and TN loadings in the major catchment 

drainage stream. Finally, the modified SWAT2012 model was combined with the 

lake model (DYRESM–CAEDYM) to predict the effects on lake nutrient 

concentrations and trophic states of different land management scenarios, including 

removal of wastewater irrigation, under present and future climate projections. The 

objectives of this chapter are to bring together the key findings of each research 

chapter, to examine any deficiencies and to make suggestions for future research. 

 

5.2 Key findings and recommendations 

The objective of Chapter 2 was to examine the SWAT2009 model (version rev488) 

applicability to a small, mixed land use catchment (the Puarenga catchment) of 

Lake Rotorua under different hydrologic conditions, and also to test model 

parameter sensitivity. Monthly instantaneous TP and TN concentrations were 

generally not reproduced well, indicating that the use of low–frequency base flow 

measurements for model calibration can lead to poor predictions of composition for 

“flashy” lower–order streams. Model error increased during periods of quick–flow 

for discharge–weighted mean concentrations of TP and SS. Use of high–frequency, 

event–based monitoring data for model calibration can help to alleviate the potential 

for underestimating storm–driven fluxes. Model error also arises parameter values 

that are lumped (i.e., assigned one value) across the whole catchment in the 

calibration process (Lindenschmidt et al., 2007), but values may vary spatially or 

temporally depending on the model configuration and the parameter concerned 

(Niraula et al., 2012). 
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Inadequate representation of groundwater processes in the SWAT2009 

model structure is another factor explaining some of the deviation of simulated 

output from measurements (Rostamian et al., 2008). Variability in N applications 

to the catchment likely contributes to a non–steady state condition (Bain et al., 

2012) and this was reflected most in NO3–N and TN due to preferential leaching of 

NO3–N compared with other dissolved nutrient species. Improvements in 

groundwater processes in the SWAT2009 model structure (e.g., an embedded 

groundwater module MODFLOW) would likely capture the leaching process 

(Guzman et al., 2015), some of the attenuation of NO3–N and the lag times 

associated with movement through the unsaturated zone to the groundwater aquifer 

(Schmalz et al., 2008). 

The relative input of groundwater flow to stream discharge tends to be 

greater under base flow conditions (Neitsch et al., 2011), and therefore parameters 

relating to tuning of the stream channel processes (e.g., average slope steepness) 

also tend to be more sensitive under base flow conditions. Surface runoff is 

determined mostly by overland processes, and therefore parameters controlling 

overland flow (e.g., Manning’s n value for overland flow) are more sensitive under 

quick flow conditions. Several SWAT parameters have no degree of temporal 

variability because model algorithms fail to adjust them with environmental 

conditions (Guse et al., 2014). Modification of model algorithms or opportunities 

to vary SWAT parameters may help to better capture some of the temporal 

dynamics of “flashy” streams such as Puarenga. 

The objective of Chapter 3 was to improve the SWAT2012 model (version 

rev629) applicability for capturing high–frequency (daily and hourly) variability of 

water and nutrient discharges and for simulating the effects of long–term 

wastewater irrigation in the forested sub–catchment of Chapter 2. Comparing daily 

and hourly routing models, and a fixed parameter set for each case, the hourly 

routing model performed better in reproducing the dynamics of stormflows which 

contributed to the inherent variability in the weekly aggregated measurements. 

Jeong et al. (2010) noted that the hourly routing model in SWAT2012 applies 

hourly algorithms for calculations of infiltration, surface runoff and channel 

routings, but daily algorithms for soil water movement, base flow and lateral flow. 

Therefore, variability caused by stormflows cannot be expected to be captured with 

these daily algorithms. Higher variability of SS and TP loads than TN loads was 
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found in the hourly routing model because SS and TP are predominantly mobilized 

in storm flows (Abell et al., 2013), while the denitrification and volatilisation 

processes which facilitate N losses have less flow dependence (Zhang et al., 2016). 

The increases in TP load observed during or following forest block 

harvesting were underestimated by both hourly and daily routing models. 

Parameters relevant to soil enrichment by P determine the amount of both organic 

and mineral P which is attached to sediments that are eroded and enter the stream 

channel. This erosion will vary temporally and spatially, particularly in response to 

environmental drivers such as forest harvesting. The constant value of the soil 

erodibility factor used to simulate SS losses through surface runoff may not be 

adequate in representing these complex harvesting operations. This suggests that 

algorithms for overland erosion processes that mobilise P may need to be developed 

or refined for this purpose, i.e., in response to temporal and spatial variance in 

episodic events. 

The optimised value of parameter for ammonium release rate 

from stream sediments (RS3; 10 mg N m-2 d-1) was beyond the SWAT default 

range (0–1 mg N m-2 d-1). This value of RS3 is nevertheless lower than the values 

of 24 to 48 mg m-2 d-1 given in Gabriele et al. (2013) who investigated headwater 

streams from an Austrian agricultural catchment. Sources of NH4 input to the 

Puarenga Stream (receiving nutrient discharges from the Waipa stream) may be 

related to enriched geothermal springs; Abell et al., 2013), which may help to 

explain why RS3 was high in this study. Alternately, or in addition, some key 

processes might not have been accounted for, such as NH4–N movement through 

the aquifer and recharge to the stream. Böhlke et al., (2006) stated that anaerobic 

degradation of organic matter and organic waste disposal resulted in the presence 

of NH4
+ in groundwater that exceeded NH4

+ sorption and nitrification processes. It 

should be noted, however, that in the Waipa Stream NH4–N makes up only a small 

proportion of TN, compared with NO3–N as the dominant N source. 

Alternatives for managing and optimising the wastewater irrigation were 

examined in Chapter 3, with respect to reducing nutrient losses to waterways from 

the irrigation area. Wastewater irrigation at daily frequency was the most effective 

way to reduce nutrient leaching and avoid soil saturation, compared with irrigation 

at weekly frequency (i.e., identical total volume on a weekly basis). The higher 

volume of each wastewater application for weekly irrigation increased nutrient 
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percolation and leaching into the stream (see also Beets et al., 2013). No irrigation 

on high rainfall days, with reassignment to the first subsequent low–rainfall day, 

also reduced nutrient losses from the irrigated area despite the increase in volume 

immediately following rainfall delay. Other cases of increasing the irrigated area or 

ceasing irrigation altogether produced the expected reduction in nutrient loads to 

the Waipa Stream which drains the irrigated area. 

The objective of Chapter 4 was to combine the improved hourly–routing 

catchment model (SWAT2012 rev629 from Chapter 3) with a lake model 

(DYRESM–CAEDYM version 4.0) to predict the response of polymictic, eutrophic 

Lake Rotorua to a projected 2090 climate and changes in catchment nutrient 

discharges. The Puarenga catchment was modelled using SWAT2012 and other 

catchments used measured hydrologic and water quality data as the lake model 

input. Concentrations of TN and TP in the Puarenga Stream simulated with the 

improved SWAT2012 model were better than those using SWAT2009 (from 

Chapter 2). However, in winter, after high rainfall events, discharge was 

overestimated by the SWAT2012 model, suggesting that it might not adequately 

represent exchanges between the river channel and the recently inundated area 

following the flood–water recession. Representation of water discharge from the 

river channel to the groundwater aquifer should be considered in the SWAT2012 

model structure in order to better capture surface–groundwater exchanges generally 

(see discussion on this topic by Sun et al., 2016). 

Precipitation from projected climate warming scenarios (2090) increased 

most in the months of January through April. This resulted in elevated rates of soil 

erosion and mobilisation of SS and particulate P and N in the model simulations of 

Puarenga Stream during quick flow in particular. Decreased precipitation from 

September to December caused a lagged response of discharge and decreases of 

discharge were found in October in particular. Elevated annual mean air 

temperature (2.7 °C in 2090) stimulated plant uptake of NO3–N, NH4–N and DRP 

from associated projected increases in soil temperature (annual mean 2.1 °C) but 

was counteracted by increased decomposition and mineralisation of organic matter. 

The net result was small increases in annual mean simulated DRP and NH4–N loads 

while increased denitrification likely contributed to the net balance of decreases in 

annual mean simulated NO3–N loads from the Puarenga catchment. 
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Simulations using the lake model (DYRESM–CAEDYM) showed that the 

combined effects of changes from catchment nutrient loadings and higher 

temperatures in a future (2090) climate would generally have negative impact on 

the water quality of Lake Rotorua. Lake Rotorua is shallow and polymictic, so 

mixing can occur throughout the year (Burger et al., 2008). Increased water 

temperatures should cause more extended periods (i.e., a few weeks) of thermal 

stratification in summer, resulting in an increase in anoxia of water adjacent to the 

bottom sediments (Wilhelm and Adrian, 2008; Özkundakci et al., 2012). An 

increase of thermal stratification may exacerbate internal sediment releases, 

resulting in greater nutrient supply to the water column to promote phytoplankton 

production (Burger et al., 2007; Adrian et al., 2009). Thus increased thermal 

stratification is the critical determinant of changes in trophic state of polymictic 

lake under the influence of climate warming. Our findings support work by 

Wilhelm and Adrian (2008) who studied the effects of increasing summer air 

temperature on thermal stratification in a polymictic German lake and found that 

longer thermal stratification resulted in increased anoxia and nutrient release as well 

as greater phytoplankton growth. A similar conclusion was also drawn in Adrian et 

al. (2009) where a polymictic lake was found to response in the short term (i.e., 

months to a few years) to internal lake nutrient dynamics (i.e., sediment–water 

exchanges) to a greater extent than external nutrient loadings from the catchment. 

 

5.3 Environmental implications 

The overarching outcomes of this thesis are: 

(1) the application of advanced modelling technologies, i.e., a process–based 

catchment model (SWAT) combined with the lake model (DYRESM–CAEDYM), 

to represent high–frequency (daily and hourly) variability of nutrient discharges; 

(2) application of the model to a mixed land use catchment (the Puarenga Stream) 

which includes an area which is spray–irrigated with wastewater to improve 

understanding of the relative effects of the spray irrigation, forestry and climate on 

stream discharge and nutrient and sediment loads; and  

(3) simulation of different land and wastewater irrigation management strategies, 

and predicting the response of the receiving waterbody (Lake Rotorua) to future 

climate and catchment nutrient discharge. 
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This thesis improves high–frequency simulation of suspended solids and 

nutrient loads from stream discharges to a receiving lake. It has important 

implications for the application of hydrological models to other catchments that 

have large fluctuations in stream discharge, particularly where there are substantial 

changes to the flow regime during the calibration period. High–frequency 

simulations will help to better identify the sources of sediments and nutrients 

entering streams and the lake, and target these areas as part of an overall strategy 

for eutrophication control in the lake. 

This thesis proves the effectiveness of linking climate, catchment and lake 

models in better replicating hydro–biogeochemical processes and demonstrating 

opportunities to improve freshwater ecosystem management. The simulation results 

support the current strategy of reducing both N and P loads to Lake Rotorua. 

Although alum dosing of two inflows has reduced TP loads to the lake and the 

trophic level has improved (Smith et al., 2016), long–term dosing may not be 

sustainable due to the potential for adverse environmental consequences, e.g., 

ecotoxicological responses to alum (Tempero et al., 2015). 

This thesis has also demonstrated how a lake responds both in terms of 

external loads and how it reacts internally, driven by climate, stratification and 

internal loads. Despite small changes in catchment nutrient loads with a projected 

2090 climate, increased lake water temperatures could cause more frequent and 

longer periods of summer thermal stratification and anoxia generation, which 

enhances bottom sediment release of nutrients and accelerates phytoplankton 

production. These effects may intensify with a changing climate even though there 

are not obvious or consistent directional changes in catchment nutrient loading with 

climate change. This work has helped to identify how external restoration efforts 

(e.g., in the terrestrial catchment) may need to be taken of sufficient scale to offset 

the adverse in–lake effects of climate change. 
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Appendix 1 Code modifications made in 

SWAT2012_rev629 
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