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Abstract
For second-language learners, collocational knowledge is very important. Knowing collocational 

phrases allows learners to speak and write in their targeted language naturally and reduce 

dramatically side effect of their first language. In order for learners to learn collocations easily, a 

lot of learning methods have been introduced. Particularly, learning from online-collocational 

corpus has become popular due to its accessibility and massive database. Although, its current 

presentation of information is still simple, it can be improved by using optimized representations

in order to help users learning.  

In this thesis, we represent a suitable way to visualize online collocational dictionary by 

using graph representation in order to facilitate users’ learning and provide flexible exploration. 

Animation is also used to increase level of engagement for users. We use force-directed model 

for the layout, but we develop our own graph component and combine some current algorithms 

in order to create a proper algorithm for our purposes. The implementation is tested by a small 

group of participants and the results are promising. 



Chapter 1 –Introduction

1.1.Chapter overview

In the first chapter, we introduce how important visualization information is and how human 

beings tend to look for potential information. Interactive methods and animation are also

mentioned. Their effects on information visualization and users’ mind are explained in detail.

We also introduce graph visualization and its application on other areas. 

Moreover, in this chapter, collocational knowledge is represented in detail. We also

explain how collocational knowledge is important to second language learners. Major 

disadvantages which these users have to tackle are also explained in detail, especially “side 

effect of the mother language” consciously and unconsciously on their learning process. Online 

collocational corpus is introduced completely by displaying a typical example of an online 

collocational dictionary. 

In second chapter, we look at literature. We introduce force-directed model, the role of 

force-directed model in graph visualization. Some current popular force-directed algorithms, 

such as Eades’s or FR algorithms, are addressed in detail in order to show their advantages and 

drawbacks. They lead to our motivation to develop our force-directed algorithm.

In third chapter, we discuss important requirements on graph layout from our database’s 

structure and the way that users may interact with the system. In fact, these requirements prevent 

us from applying current force-directed algorithms. As a result of this, we develop our force-

directed algorithm and edge component and explain them in detail in this chapter. Moreover, we 

also show fully our interface and all interactive techniques that we implement. Performance tests 

and usability tests are mentioned.

In the fourth chapter, we represent our conclusion and future work. And fifth is our 

reference list.  



1.2.Introduction to Information Visualization

1.2.1. Information Visualization

People usually say “a picture is worth of a thousand words”, it means that complicated 

information can be conveyed with just a single image. Long time ago, people already knew how 

clear and effective when representing data on a drawing. Let consider a classic information 

application which is Mendeleev’s periodic table of elements (Figure 1.1 below).  

Figure 1.1: A basic simple of Mendeleev’s periodic table of the elements.
(Image taken from Steele & Iliinsky (2010))

By studying chemistry in high school, we understand that elements in the table have 

properties that repeat periodically. In detail, Mendeleev arranged them into proper rows and 

columns to order to indicate the periodicity of these properties. Importantly, the arrangement 

also reveals the related, repeating physical properties of the elements. Specially, he also showed 

his very accurate predictions of undiscovered elements by reserving empty places on the table.

The periodic table of the elements is indeed informative and efficient. This neat 

organization not only allows viewers to access quickly a given element and its periodic 



properties, but also indicates relationships between these relational complex elements which we 

might need thousands of words if it were explained by words.

Another notable example which shows the powerful of drawings is “The London 

underground map” designed by Harry Beck in 1933 (Steele & Iliinsky, 2010) (Figure 1.2 

below). In fact, the author mainly used simple graphic components such lines, colors and 

shapes, but the drawing is clear and full of information and seems impossible to be explained 

just by words. Steele & Iliinsky (2010) mention that “the map highlighted the most relevant 

information and stripped away much of the irrelevant information, making the pertinent data 

more easily accessible”. This novel example is praised to have a distinctive and unique 

graphical style and widely recognized as a masterpiece of information visualization.

Figure 1.2: The London underground map (2007 version).
(Image taken from Steele & Iliinsky (2010))

The two classical examples above are typical evidence to prove that how important 

practical information visualization is in our lives. In fact, information visualization has been a 

new distinctive area of research. Because of its great effect on other areas such as digital 

libraries, data mining and human-computer interaction, it quickly becomes an interdisciplinary 



research area (Chen, 2004). Unlike other topics such as data mining which is involved a lot in 

pattern-finding algorithms and computer

involved strongly in computer science theory, information visualization, on t

involved in studying and making use of human perception and concerns about viewers

(Ware, 2004). 

In fact, information visualization quite relates to human

interface designer always concern about inf

that “Information visualization represents one of the latest streams in a long established trend in 

modern user interface. The desire to manipulate objects on a computer screen has been the 

driving force behind many popular user interface design paradigms

“what-you-see-is-what-you-get” and “drag

Information visualization has quite a number of definitions. Stuart

Shneiderman (1999) defined that “

interactive visual representations of abstract data to amplify cognition

acquisition of knowledge. In case of a chart, the cognitive purposes here are to know whic

records have max or min values and importantly the trend which reflects “the whole picture” of 

data. In case of a map, the cognitive problem here is to locate a specific location and how to get 

from the current one to the destination

Figure 1.3: Illustrate 
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(Image taken from Ware (2008))
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However, in order to make an effective visual representation, designers have to study and 

make use of human perceptions. In addition, Ware (2008) provides us a better and detailed 

explanation how information visualization augments human cognition. He explains that humans 

use their eyes to sample the visual world as a very natural basic activity. For cognitive purposes, 

humans pay attention to pieces of potential information. Then, their brains will extract patterns 

which are useful and relevant to their purposes and the patterns will be hold briefly in their 

working memory. He defines important terms “visual thinking” and “visual queries”. “Visual 

thinking consists of a series of acts of attention, driving eye movements and tuning our pattern-

finding circuits. And these acts of attention are called visual queries” (Ware, 2008). With that 

understanding, information visualization role is to exploit human perception to distinguish 

potential useful information, making “visual queries” easier and alleviating pattern-finding 

process by acting as an external memory. 

1.2.2. Interacting with Visualizations

a) Interactive techniques

From the definition of Information visualization of Stuart, Jock and Shneiderman (1999), they 

pointed out that applications of information visualization should support interaction. Moreover, 

according to Ware (2004), he also mentioned that “a good visualization is not just a static picture 

that we can walk through and inspect like a museum full of statues. A good visualization is 

something that allows us to drill down and find more data about anything that seems important”.

Simply speaking, good information visualization should provide interactive techniques that 

support explorations and navigations. 

Nowadays, with the help of computer, a lot of interesting interactions are created. For 

example, traditional interactive techniques are: zooming in to get details, zooming out to get an 

overview and panning to move views. Scrolling is also a popular navigating technique. It 

normally consists of a scroll-bar to control a viewport. Scrolling is commonly implemented in 

document viewer applications such as word processors. Even though, it allows viewers to access 

thoroughly documents, it still has some limits. For example, its showing area is relative smaller 

than the size of the document, so it gives no off-screen information. In addition, if the size of the 

document is particularly large compared to the viewport, the scrolling will become small which 



may reduce usability; moreover, the travelling speed increases rapidly, causing troubles of 

getting properly some positions. In fact, these techniques complement each other, making data 

access easily which directly speeds up finding-pattern process (Herman, Melancon and Marshall, 

2000). 

Zooming in and zooming in are considered as the two separate views; as a result of this, it 

can cause context loss when users change from one to another (Herman, Melancon and Marshall, 

2000). In fact, there has been a lot of research in interactive techniques in order to overcome this 

usability obstacle. Notable examples are magnifying glass techniques and fisheye views. 

Basically, they merge an overall view and a detailed view into one single view which allows 

users to access details of a given area and at the same time maintain the overall context 

(Cockburn, Karlson and Bederson, 2008). These examples are typical applications of the 

interactive technique called “Focus + Context”. Fisheye techniques can have different 

implementations due to a variety of distortion transformations; for example, Polar and Cartesian 

transformations (Cockburn, Karlson and Bederson, 2008).   

Figure 1.4: Left image: Fisheye with Cartesian transformation of a graph of major US cities.
Right image: Fisheye with a Polar transformation of a map of the US.

(Image taken from Cockburn, Karlson and Bederson (2008))



Figure 1.5: A fisheye view on a map. 
The focal region is magnified and display with its surrounding context.

(Image taken from Cockburn, Karlson and Bederson (2008))

Figure 1.6: Magnifying lens technique example.
(Image taken from Cockburn, Karlson and Bederson (2008))

b) Animation

With the rapid increase in power of computer hardware, animation has been used widely in 

interactive techniques. Intuitively, designers just aimed to use it in order to smooth transitions of

data graphics, but according to several researches, it has more effect on the cognition of viewers. 



In detail, according to Heer & Roberton (2007), animation not only connects the transitions 

between different parts of data graphics, but also keeps viewers oriented in order to prevent them 

from fast loosing focus on the current processed information. Particularly, Tversky, Morrison 

and Betrancourt (2002) also pointed out that “animation increases levels of engagement”, 

Gonzales (1996) mentioned that “animation improves decision making”, and Bederson & 

Boltman (1999) showed that “animation facilitate learning”.      

In terms of visual queries and visual thinking (Ware, 2004), animation contains motion 

which is highly effective at attracting attention. As a result of this, it directly speeds up viewers’ 

visual queries. In addition, when animation runs, it is changing related data graphics with certain 

time for viewers to mentally prepare for incoming information and connect previous visual 

thinking with this information.

1.2.3. Graph Visualization

Graph is an important area of visualization information. A typical graph is represented as a node-

link diagram; it contains nodes and edges, whereas nodes represent entities or data with edges 

representing relations or connections. According to Herman, Melancon and Marshall (2000), a 

simple way to determine that using graph visualization is suitable is to consider the following 

question: “is there an inherent relation among the data elements to be visualized?” If the answer 

is “yes”, then graph is the most suitable choice.

a) Design visualization on graph

In fact, for visualization purposes, the components of a graph such as nodes and edges can be 

used to denote different meanings. For example, in terms of nodes, using different colors on 

nodes to indicate different categorized subjects, domains or entities, and using different shapes 

on nodes to indicate different levels of importance (Figure 1.7 below). 



    
Figure 1.7: Graphs with encoded components

Left image: Graph with different color nodes. Right image: Graph with the size and color of nodes are encoded. 
(Image taken from Herman, Melancon and Marshall (2000))

In terms of edges, they can be encoded to show direction or flow between two connected 

nodes, what kind of their relationship, or how strong it is. In detail, in order to display show or 

direction, a common design is to use an arrow edge; in order to display different relationships, 

colors are use and length or thickness can be used to show levels of the relationship (Figure 1.8).   

Figure 1.8: Graph with edges encoded.  
Different encoded messages are used on one single edge.

(Image taken from Herman, Melancon and Marshall (2000))



b) Typical application areas

Graph visualization is very practical and has many areas of application. The most common one 

that we can mention is the file hierarchy on a computer. In other scientific areas such as biology 

and chemistry, graphs are applied to visualize evolutionary trees, phylogenetic trees, molecular 

maps, genetic maps, biochemical pathways and protein functions (Herman, Melancon and 

Marshall, 2000). In software management, UML diagrams, data flow diagrams and entity 

relationship diagrams are also typical applications of graph. In network visualization, graph is 

considered as the most suitable choice. Recent years have showed the rising popularity of online 

social networking services such Facebook, and Twitter; as a result of this, applications for 

research of these online communities have become necessary. By visualizing these networks

with a node-link layout, users are able to not only observe the whole picture of the networks, but 

also explore their connectivity. In addition, the node-link layout allows designers to implement a 

local search to analyze individual entities and different highlight techniques. Noble example can 

be mentioned is Vizster- a visualization tool for online social network developed by Heer and 

Boyd (2007).   

Figure 1.9: A social network visualized by Vizster.
Left image: Normal mode of the graph. Right image: Graph with highlighted groups

(Image taken from Heer and Boyd (2007))



Figure 1.10: A social network visualized by Vizster with different modes
Left: Highlighted results of individual searches. Right: Graph with x-ray mode (links highlighted)

(Image taken from Heer and Boyd (2007))



1.3.Introduction to English Collocations

1.3.1. English Collocations

According to Lewis (1997), collocations in linguistics are defined as “arbitrarily restricted 

lexeme combinations that co-occur in natural text with greater than random frequency” (as cited 

in Nakata, 2006). Previous studies also categorize collocations into two groups which are: lexical 

collocations and grammatical collocations (Benson et al., 1986). Lexical collocation’s structures 

are constructed from nouns, verbs, adjectives and adverbs. According to Benson et al (2006), 

there are six common structures which are: 

Types of lexical forms Examples

Verb + noun Set a record, take care

Adjective + noun Heavy rain, strong tea

Noun + verb Cats jumps, plants grows

Noun + (of) + noun A set of principles, a pack of cigarettes

Adverb + adjective Arguably large, closely acquainted

Verb + adverb Create properly, disagree strongly

Table 1.1: Table of lexical forms and their examples

On the other hand, grammatical collocations are phrases which contain a central word. It 

can be a verb, adjective or noun. In detail, if the central word is a verb or adjective, the flowing 

word will be a particular preposition; if the central word is a noun, then it must be followed by a 

particular form of the verb.

Grammatical collocations Examples

Verb + Preposition Take off, take on

Adjective + Preposition Afraid of, interested in 

Noun + Particular form of verb Problems to solve, strength to lift it

Table 1.2: Table of grammatical forms and their examples.

Moreover, like other researchers, we only concern lexical aspect which is primary topic 

in linguistic research (Lewis, 1997, Liu, 1999 and Li, 2005).



In fact, there have been a lot of studies conducted particularly in Asia such as Japan, 

Taiwan and China in order to measure collocational knowledge of English-second-language 

learners (L2) at high levels such as high school and university levels (Nakata, 2006; Li, 2005 and 

Wu, 1996). Most results showed that participants still made a lot of collocational errors in their 

writing and speaking for lack of proper collocational teaching in English classes. According to 

Wu (1996), students tended to learn English by looking up new words which they came across in 

textbooks, then memorized their meanings. This passive learning allows them comprehended 

text with help of related context; however, it hardly helped them to generate proper structures in 

speaking and writing (Wu, 1996). 

Moreover, negative language transfer, which is judgment of learners on structures of the 

target language (L2) which are similar to their first language’s, also has considerably effect on 

the second language acquisition (Chen, 2004 and Jiang, 2004). For example, Chinese learners 

rather use “take medicine” as “eat medicine” because the noun “medicine” in Chinese normally 

goes with the verb “eat” rather than “take” (Darvishi, 2011). On the other hand, Vietnamese 

students affected by their language, in some writing context falsely use “grow” instead of “build” 

for houses or buildings. In addition, in Japanese, they use “take contact” and “pay sacrifice” 

instead of using “make contact” and “make sacrifice” in English (Nakata, 2006).  Previous 

studies showed that first language (L1) caused more collocational errors in some particular 

lexical structures; in case of Chinese language, “verb + noun” form was considered the lexical 

combination having highest using error rate (Wu, 1996 and Liu, 1999); in case of Japanese 

language, students were also prone to “verb + noun” structure (Nakata, 2006).

1.3.2. Web-derived corpus approach to collocations

Collocations have been received a lot of studies and are considered to be the primary mean for 

second language learners to produce language fluently. Nowadays, with the rising popularity of 

computer and internet, many new online methods of learning languages are developed and 

introduced. According to Peachey (2005),  he defined “a concordance is a piece of software, 

either installed on a computer or accessed through a website, which can be used to search, access 

and analyze language from a corpus” (as cited in Wu, Witten, and Franken 2010). In fact, online 

dictionary has been very conveniently due to its easy accessibility. 



Moreover, in terms of studying collocations, web-derived corpus developed by Wu, 

Witten and Franken (2010) shows a lot of advantages. In detail, they used an off-line database—

n-gram collection generated and supplied by Google. This database is considerably large, 

consists of different sized combinations from one word (1 gram) to 5 words (5-grams). As a 

result of this, it covers all useful lexical and grammatical forms. Particularly, frequency of every 

phrase is also recorded indicating how popular it is. In addition, this database is cleaned up and 

categorized into lexical structures. According to Wu, Witten and Franken (2010), they also used 

lexical patterns from the work of Benson, Benson and Ilson (1986) and lexical forms from 

Oxford Collocation Dictionary such as noun + noun, adverb + verb, verb + to + verb and verb + 

adjective. Moreover, they also selected some other common patterns. In total, the lexical forms 

are listed in Table 1.3. 

Table 1.3: Collocation types and examples.
(Table taken from Wu, Witten and Franken (2010))  



Furthermore, in order to look up collocations, users just locate the search page and enter a 

word. Figure 1.11 below shows that when the user enters the word “cause” and it returns possible

lexical forms for the two categories “used as Verb” and “used as Noun”.

Figure 1.11: An example of Wu’s software interface.
(Image taken from Wu, Witten and Franken (2010))  

Moreover, if the user clicks on one of these clauses such as “cause + Noun”, it will link to 

another site showing results of phrases sorted by descending frequencies. Figure 1.12 bellows 

show top results of this lexical form from n-gram Google database. 



Figure 1.12: The results of searching for lexical form cause + Noun.
(Image taken from Interactive language learning – flax library (2010))

From the list of results above, the user can see typical examples of a phrase by clicking 

on it. Figure 1.13 shows some examples when clicking on “cause problems”. 

Figure 1.13: Example of some sentences using cause + noun.
(Image taken from Interactive language learning – flax library (2010))



1.4.Motivation

Like we mentioned above, the concordancing means in language study become popular. In terms 

of collocational study, web derived corpus developed by Wu, Witten and Franken (2010) not 

only provides massive results, but also utilizes the accessibility of the internet, making it very 

convenient for learners.

However, the current representation still contains several disadvantages. In detail, when 

users input a word, website returns a list of the word’s lexical combinations, but each lexical 

form is explored separately in individual window. Hence, this approach prevents users to explore 

lexical forms as a whole unit, which may cause the users not able to observe “the whole picture” 

and sense a comparison between results from different lexical combinations. 

Secondly, the current representation displays the results in descending order, along with 

their frequencies. This way helps the users to access top examples with a quick glance, but the 

difference in frequency should be encoded in lexical form’s visual representation which will 

increase the importance of the top results and help users to gain more insight. 

Moreover, it is clear for us that there is connection between any pair of information 

display; for example, a connection between a given word and its lexical forms, or a lexical form 

and its results. As a result of those observations, we can design a better visual representation for 

this dictionary by using a graph layout.

In fact, graph visualization has been using in some on-line dictionary software. 

Notable example is a graphical web-based thesaurus from Thinkmap Visual Thesaurus website 

(http://www.visualthesaurus.com/). Results are displayed as a tree-like structure with the input 

word as its root; its nodes are expanded with animations. This approach indeed raises users 

‘attention and awareness, which directly improve user’s cognitive functions. In addition, the 

graph has elastic behavior in which the edges have a spring like behavior, and nodes 

automatically repel each other when being dragged too close to each other. This approach not 

only prevents visual clutter even if text which labels nodes is too long, but also supports flexibly

local explorations such as clicking, or dragging each individual node (Figure 1.14)



.    
Figure 1.14: An example of Visual Thesaurus dictionary

(Image taken from http://www.visualthesaurus.com/)

Another typical example we should mention is Visuwords online graphical online 

dictionary (http://www.visuwords.com/). The dictionary allows users to look up English words to 

find their meanings and associations with other words and concepts. It  utilizes colors and shapes 

not only on nodes to indicate different categories of related words such as nouns, verbs or 

adjectives, but also on edges in order to indicate different relationships between the searched 

words with their associated words. The graph is also built to behave elastically. However, unlike 

Visual Thesaurus above in which clicking on a word will rebuild a new graph centered on it, 

Visuwords dictionary allows users to expand further sub nodes on the current graph.    

Figure 1.15: An example of Visuwords software
(Image taken from http://www.visuwords.com/)



According to Bederson & Boltman (1999), they pointed out that “animation facilitate 

learning” and with all the advantages of the graph layout mentioned above, we can clearly 

recognize that visual graph representation is more suitable than conventional one in language 

study. As a result of that, our attempt to apply graph layout into visualizing collocational search 

is reasonable, and a good outcome is promising.



Chapter 2 –Literature

2. Related work

2.1.Graph drawing

Graph layout is one of the most vital elements of graph visualization applications. There is a 

research area in which they study how to draw a nice graph is called “graph drawing”. 

In fact, the procedures for drawing a graph can be explained simply as follows: given a 

set of nodes with a set of edges, designers will calculate the position of the nodes and connect all 

edges to their correct nodes. Drawing a graph is simple, but drawing a graph in which it respects 

some popular aesthetic criteria such as symmetry or no edge crossings requires an understanding 

of the input graph’s structure in advance (Battista, Eades, Tamassia and Tollis, 1999). In fact, a 

graph which satisfies the condition “no edge crossing” is called planar graphs. Drawing a planar 

graph can be simply achieved by introducing dummy nodes at the edge crossings (Kobourov, 

2004). Planar graphs have a very pleasing visualization, but they hardly are used in real visual 

applications (Johannes, 2005).

In fact, aesthetic qualities improve the way that humans perceive graphs (Hu, 2005). In 

addition, aesthetic criteria are one of the main inspiration which drives research in graph drawing 

(Huang, Eades, Hong and Lin, 2010; Lin & Yen, 2011). In detail, the most important criteria are 

mentioned as follows:

 Minimize number of edge crossings: edge crossings affects keeping track of all 

connections.

 Minimize total drawing area: inefficient use of drawing area affects reading 

graphs.  

 Maximize symmetry: graphs with high symmetry are more readable to humans. In 

terms of symmetry, “preventing zero angular resolution” (preventing two edges 

starting from the same node to overlap each other) is also an important criterion.



However, it is hard to develop an algorithm that satisfies all these aesthetic criteria.

Huang, Eades, Hong and Lin (2010) pointed out that achieving one aesthetic criterion may cost 

another one. An example they showed maximizes degree of symmetry, but also allows large 

number of edge crossings which violates “minimize number of edge crossings” criterion (Figure 

2.1).  

Figure 2.1: The same graph with different layouts
Left image: It has high degree symmetry, but violates “minimize number of edge crossing”

Right image: It achieves “minimize number of edge crossing”, but does not have nice symmetry
(Picture taken from Huang, Eades, Hong, and Lin, 2010).

Until now, there have been quite a number of graph layout algorithms and they are 

classified based on what types of graphs to which they can be applied. For general graphs, 

force-directed algorithms are the most popular because it is easy to implement and designers do 

not need to know the input graph’s structure and deep knowledge of graph theory (Johannes, 

2005).

    

2.2.Force directed graph algorithm

a) Introduction

Force-directed algorithm is also called as spring-embedded model. It considers a graph as 

physical bodies tied with springs. Graphs drawn with these algorithms tend to be “aesthetically 



pleasing, exhibit symmetries and tend to procedure crossing-free layouts for planar graphs” 

(Kobourov, 2004).

b) Eades’ spring model

According to Kobourov (2004), force-directed graph algorithms have been appeared since 

early 1963. The spring model came out in 1984 by Eades (1984), who considered a graph’s 

components as mechanical objects. He described his model that “we replace the vertices by steel 

rings and replace each edge with a spring to form a mechanical system”. Eades (1984) explained 

the way it works that “the vertices are placed in some initial layout and let go so that the spring 

forces on the rings move the system to a minimal energy state”. In detail, after letting the system 

go, there are two forces appeared— an attractive force between any two connected nodes and a 

repulsive force between any pair of nodes in the system. Particularly, Eades (1984) developed 

the attractive force based on Hookes Law formula but he suggested using the logarithmic form 

because his experiments showed that Hookes Law linear springs were too strong when the 

vertices were far apart.

Hookes Law formula: 

*( )aF k d L  (Formula 2.1)

In formula 2.1, d is the current length of the spring (or distance of the two connected 

vertices), k is the stiffness constant and L is default spring length.

Eades logarithmic spring formula:

1 2*log( / )aF c d c (Formula 2.2)

In formula 2.2, d is the current length of the spring (or distance of the two connected 

vertices), c1 and c2 are constant (c1 = 2 and c2 = 1 in practice).

In addition, the repulsive force is calculated as follows:

3 /rF c d (Formula 2.3)

In formula 2.3, d is the distance between two connected nodes and c3 is the constant (in 

practice, c3 = 1).



Therefore, given a graph G= (V, E), the combined force applied on vertex v is:

( ) , ,
( , ) ( , )

F v F Fauv r uv
u v E u v V V

  
  

(Formula 2.4)

In formula 2.4, Fa,uv denotes the spring force and Fr,uv denotes the repulsive force.

After initializing layout for all vertices, their positions will be adjusted by spring forces 

and vertex-vertex repulsive forces with each simulation step. The completed algorithm can be 

summarized in algorithm 1.  

Algorithm 1: Eades’s force directed model



Figure 2.2: Graphs drawn by Eades model
(1), (2) Graphs with high degree of symmetry.

(3), (4) Graphs with tricky edge crossings.
(5), (6) Graphs with tree-like structure

(Image taken from Eades (1984))  

Using this algorithm, the running time of calculating the attractive forces between 

adjacent vertices is O (E) and the running time of calculating the repulsive forces amongst 

vertices is O (V2). Because O (V2) is much greater than O (E) for most general graphs, the 

overall running time is O (V2).

The Eades algorithm is indeed simple but it is effective. The produced graph achieves 

aesthetically pleasing and symmetrical geometry due to using the same edge length and balance 

of the two forces. However, this algorithm is only work well when the number of nodes is 

smaller than 30 (Kobourov, 2004); in fact, it still produces a number of edge crossings, but all 

vertices are distributed evenly.



c) Fruchterman and Reingold spring model (FR model)

Fruchterman and Reingold (1991) proposed an improved variant on Eades’ algorithm. They also 

used spring embedded method; however, their formulas were quite different. Particularly, higher 

degree of the nodes’ distance is used compared to the one in Eades’ model. In Fruchterman and 

Reingold’s model, there are also two forces; the repulsive force, Fr, appears between any two 

vertices, is inversely proportional to the distance between them. The attractive force, Fa, also 

exists between adjacent vertices and is proportional to the square of the distance.

The two formulas of the forces

2 /rF k d  2 /aF d k (Formula 2.4)

In formulas 2.4, d is the distance between two vertices and k is called optimal distance 

between vertices. Its value particularly affects the size of graph.

*
area

k C
numberOfVertices

 (With C is a constant)        (Formula 2.5)

From the formula (2.4), it is easy to see that the both force relate strongly to the distance,

leading to a problem of instability which is the forces exert on one vertex in the current 

simulation step can  be very different in the next step due to changing positions of other vertices. 

The instability can result in not achieving minimal energy state for the whole graph system. 

Therefore, in order to deal with this problem, Reingold introduces two terms “temperature” and 

“cooling” process. Their method simply limits the displacement of a vertex to a maximum value 

and this value decreases over time by using the cooling function at each simulation step; so as 

the layout becomes better, the amount of adjustment becomes finer. The detail of algorithm is 

provided as follows:



Algorithm 2: Fruchterman and Reingold’s force-directed algorithm



Figure 2.3: Examples of using Fruchterman and Reingold’s algorithm.
(1): A graph with tree-like structure. 

(2): a graph with its root branching off into 20 sub nodes.
(3):  a dense graph (strong connected). (4): a sparse graph

In fact, Fruchterman and Reingold’s algorithm has been used widely in research. As a 

result of this, its advantages and disadvantages have been examined thoroughly. In detail, 

compared to Eades’s algorithm the number of edge crossings is smaller; moreover, this model 

indeed produces better vertex distribution (Fruchterman and Reingold, 1991). However, 

experiments show that it still have some layout’s problem. According to Hu (2005), one 

drawback feature of a graph drawn by this algorithm is that vertices in the peripheral tend to be 



closer to each other than those in the center; Hu (2005) also called that was “peripheral 

problem” (Figure 2.4). Moreover, Yuan, Dancheng, Chunyan and Zhiliang (2009) also reported 

this problem in their experiment in which multi graphs drawn on the same layout were affected

(Figure 2.5 below). As a result of this, the small graphs were pushed to the borders and corners.

Figure 2.4: Peripheral problem in a graph with uniform mesh structure.
(Image taken from Yu (2005))

Figure 2.5: Peripheral problem in a multi graphs experiment.
(Image taken from Yuan, Dancheng, Chunyan and Zhiliang (2009))



d) Edge-edge repulsion model

Lin & Yen (2011) also proposed a new idea based on Eades’s algorithm. Like we mentioned that 

aesthetic criteria drive the research in force-directed algorithm. Lin and Yen aimed to maximize 

degree of symmetry in graph drawing. Particularly, they aimed to maximize “angular resolution” 

which is defined as the smallest angle formed by two neighboring edges incident to the common 

vertex in a straight line drawing. In fact, achieving large angular resolution is very important in 

straight line drawings of huge graphs because it helps reducing edge-overlapping and visual 

clutter, improving graph clarification (Lin and Yen, 2011).

Their algorithm contained a lot of changes from Eades’s. Firstly, an important change 

was that they used a final layout of a previous force-directed graph algorithm as an initial layout 

for their algorithm; therefore, their algorithm consisted of two phases. In detail, the first phase 

was to run classic algorithm (FR algorithm) from input vertices with random position; the second 

phase was to use the final layout it produced and then continue to run their algorithm in order to 

achieve a better layout. 

Secondly, they use edge-edge repulsion instead of vertex-vertex repulsion. As a result of 

this, they can prevent “zero angular resolution” which appeared in some layouts created by 

previous algorithms. 

Figure 2.6: The edge-edge repulsion model.

(a) The force model where f1 and f2 are repulsive forces acting on AB and AC . 

(b) The position acted by repulsive forces f1 and f2 should be set at the end points B and C of incident 
edges of vertex. (Image taken from Lin and Yen (2011)) 



Lin and Yen (2011) stated that “the key in their edge-edge repulsion model is to express 

the repulsive force between two neighboring edges solely in terms of the lengths of the two 

edges and the included angle between the two edges”. In detail, the authors considered that the 

magnitudes of the repulsive force between AB and AC are positively correlated with the length 

of  AB and AC , negatively correlated with the angle between AB and AC (angle θ).

The repulsive force is represented simply by the formula below.

| | | | | |ef f f          (Formula 2.5)

In formula 2.5, f is the repulsive force, fe is the magnitude component and  fθ is the angle 

component. In addition, the total repulsive force f is applied on the ending nodes (Figure 2.6)

In detail, when constructing a formula for the magnitude component (fe), they claimed 

that “the relationship between the magnitude of force and the total length of edges is 

non-decreasing and concave. Particularly, the magnitude should approach to zero as edge lengths 

approach to zero, and flatten out as edges lengths approach to infinity”. This trend reflects the 

behavior of an arctangent function on (0, ∞). As a result of this, the magnitude component (fe)

can be simplified as follows:

1 1
3

4 4

| | | |
| | *(tan ( ) tan ( ))e

AB AC
f c

c c
         (Formula 2.6)

In formula 2.6, AB and AC are the lengths of edge AB and AC, respectively; c3 and c4 

are constant to control the height of the approaching horizontal line and the scale of the 

horizontal axis.

In terms of angle component, Lin and Yen (2011) also observed the relationship between 

the angle included by AB and AC and the magnitude of repulsive force. It turned out that the 

curve is positive, non-increasing and convex. They reported that “the magnitude approaches to 

infinity as the included angle approaches to zero. On the other hand, the magnitude slowly 

flattens out as the include angle grows”. As a result of this, a cotangent function on (0, π/2] was 



the suitable choice to reflect the relationship, and hence the amount that the component fθ

contributed to the magnitude of the repulsive force could be displayed as follows:

5| | *(cot( ))
2

f c
 (Formula 2.7)

In formula 2.7, c5 is a constant to control the scale of the vertical axis, and θ is the angle 

included by AB and AC .

Figure 2.7: Relationship between f, the repulsive force and fe ,the magnitude component and  fθ, the angle.

(a): Relationship between f and fe. (b): Relationship between f and fθ, the angle.

(Image taken from Lin and Yen (2011))

However, Lin and Yen also calculated the attractive force between two connected nodes 

by their connected spring like Eades did. The formula used is presented as follows:

1
2

| |
( ) ( *log( ))

| |
uv uv

a uv
uv

d d
d c

c d
f  (Formula 2.8)

In the formula 2.8, c1, c2 are constants and duv is the vector distance between two nodes u

and v. Summary of Lin and Yen’s algorithm can be represented as follows:



Algorithm 3:  EERepulsion algorithm by Lin and Yen (2011)



Examples of using EERepulsion as the post processing in some graphs are represented in 

Figure 2.8 below. In detail, the classical algorithm used here is Fruchterman and Reingold’s (FR 

algorithm). The “arrow sign” indicates that its target (right) takes its source (left) as the input 

layout. For example, EERepulsion either takes the layout of classical algorithm as its initial 

layouts in the first 3 graphs or the original initial layout for its input layout in the last graph.   

Figure 2.8: Examples of using EERepulsion algorithm
(Picture taken from Lin and Yen (2011))



From Figure 2.8, we can easily that EERepulsion algorithm indeed creates optimal layouts 

for some particular graphs. For examples, graph 1 and 4 have high degree of symmetry, resulting 

in producing nice aesthetic pleasing. However, node-overlapping happens in the second graph 

and there is an area where nodes locates too close to each other (graph 3). 

2.3.Methods to improve scalability

As we mentioned, force-directed graph is simple and convenient for general graphs. A lot of 

research have tried to improve aesthetic features for graph drawing; however, their algorithms 

still suffer the most weakness of force-directed model which is scalability. 

In order to solve that problem, there have been some publications which can be categorized 

into two groups; firstly, they try to reduce the quadratic running time O (n2) of calculating 

repulsive force by using optimized data structures which are called recursive space 

decompositions. Notable examples are quadtrees (Barn and Hut, 1986; Quigley and Eades, 2000)

and recursive voronoi diagrams (Quigley and Eades, 2000; Pulo, 2001).

The second group is to design efficient ways to draw large graphs, which normally contain 

multiple steps of drawing. Simply, the large original graph is reduced to smaller versions which 

can recursively be reconstructed back the original. We start applying FR algorithm on the 

smallest version (coarsest version) in which the optimal layout can be easily achieved, and then 

step by step, the graph grows back to the original form. By using multi steps, the larger graph 

can easily make use of the optimal layout of the smaller graph in order to achieve its optimal 

layout. Notable examples are multi-scale algorithm of Hadany & Harel (2001) and multi-level 

algorithms of Walshaw (2003) and Yu (2005, 2011).

2.3.1. Recursive space decompositions (RSDs)

a) Introduction to RSDs

In force-directed algorithm, calculating repulsive force between all pairs of nodes is O (n2), 

which is expensive when the number of nodes is large. In fact, this problem was considered as 

N-body problem in physics (Plafzner & Gibbon, 1996). When we consider repulsive force’s 

formulas in all algorithms mentioned above, the repulsive force reduces in inverse proportion to 



the distance between two nodes. As the result of this, when we calculate repulsive forces applied 

on a node, other nodes which are considered to be far enough from it can be ignored. With this 

approximation, the quadratic running time can be reduced by using optimized data structures 

which are called recursive space decompositions.     

According to Pulo (2001), “recursive space decompositions are spatial data structures which 

are defined recursively and at each level of the recursion divide space into smaller regions. Each 

region is then further subdivided at the next level of the data structure”. It creates a tree structure 

in which the depth of nodes reflect the number of division from the root. The deeper a node is, 

the smaller region it represents. Depends on objects’ size and position, they will be put in proper 

nodes. Moreover, objects which are near one another in space will also be located near one 

another in the RSD tree (Pulo, 2001). 

b) Categorize RSDs

Figure 2.9: A quadtree of 100 points uniformly distributed in the plan (Limit 1 point per region).
(Picture taken from Pulo (2001))



Figure 2.10: The Voronoi diagram of the 100 points in Figure 2.9.
(Picture taken from Pulo (2001))

RSDs can be divided into two broad categories: regular RSDs and irregular RSDs (Pulo, 

2001). Regular RSDs divide space evenly at each level. Common examples are quadtrees. 

Irregular RSDs divide space into different sized and shaped regions at each level. Notable 

examples of this type are k-d trees and Voronoi diagrams (Quigley & Eades, 2000).

c) Introduction to Quadtrees
 Definition
In force-directed graph, the quadtree was first applied in Barn and Hut (1986). It is not only 

simple, but also provides effective performance. Tunkelang (1999) defined a quadtree as 

“a hierarchical partitioning of a rectangle, where each internal node of the tree represents a 

rectangle that has been split into four congruent sub-rectangles (bisected horizontally and 

vertically) and each leaf is an undivided rectangle”. 



 Create a quadtree

In theory, the tree has a limit of the number of particles stored at each node 

(bucket_max = 1). When we insert a particle, we begin at the root of the quadtree. Depends on 

the position of the input particle, it will be pushed into the proper node which represents the 

region where the particle locates. If the number of particles at the targeted node has not reached 

its limit (< bucket_max), we will add the input particle to this node. If the number of particles at 

this node is already at its limit (=bucket_max), we will branch this node into 4 sub-nodes, 

namely NW, NE, SE and SW. The particle is pushed down to one of the 4 sub-nodes. In 

addition, the targeted node also removes all its particles and passes them down to its 4 sub-nodes. 

Figure 2.11: A simple quadtree (left) and its corresponding data structure (right)
(Image taken from Tunkelang (1999))

According to Tunkelang (1999), the time of inserting a particle is proportional to the 

height of the quadtree. Moreover, even if a particle is moved further down to a sub node, the 

total time spent on inserting that object is still proportional to its final distance counted from the 

root (Tunkelang, 1999). Therefore, the total time spent on creating the quadtree is proportional to 

the sum of the heights of its leaves. If the number of particles is N, then the lower bound of the 

depth of quadtree is Ω (logN). Creating a quadtree requires inserting N particles. Therefore, the 

lower bound of creating the tree is Ω (NlogN).



 Query a quadtree

An important advantage of using the quadtree is its optimal querying ability. For a given 

rectangle, the quadtree provides an optimized way for us to check how many cells the quadtree 

intersects. As we mention above that the internal node (internal node) represents a big rectangle 

which is divided into 4 smaller rectangles for the 4 sub nodes NW, NE, SE and SW. As a result 

of this, when we check whether the given rectangle intersect with nodes, if the input rectangle 

does not intersect with the parent node, then we can just ignore all its sub nodes. If they do 

collide, then we just recursively repeat the process with its sub nodes (Figure 2.12). Therefore, 

the lower bound running time of the query is Ω (logN). 

Moreover, when we are at the collided node, we can also check whether its particles 

intersect with the input rectangle. As a result of this, querying a list of particles which intersect 

with a given rectangle is fast. In fact, if we ignore far distant particles (particles locate outside 

the rectangle centered the focused particle) in calculating the repulsive force, the querying ability 

reduces the running time down to Ω (NlogN) (in the case that bucket_max = 1). In practice, 

people tend to set bucket_max = 4 and limit the depth of the quadtree to 10 in order to prevent 

repetition of removing and inserting objects at deep nodes.

       

Figure 2.12: Visualizing a query in a quadtree.



To sum up, in order to visualize general graphs, the force-directed models are suitable 

choices because designers do not need to know much information about graph theory. The force-

directed model describes a graph as a particle system and allows the repulsive forces between 

one particle and others. Furthermore, these particles are constrained by the attractive forces

created from the spring embedded edges that they connect. In detail, by being affected by these 

forces, the particles adjust their positions step by step from random positions to form an optimal 

layout—the state of minimal energy.

The force-directed models tend to produce high degree of symmetry and aesthetic 

pleasing. In fact, they have been researched thoroughly since 1984; as a result of this, its scalable 

ability has been improved by using optimized data structure (Pulo, 2001), and multi-level 

methods (Hadany & Harel, 2001; Walshaw, 2003; Yu, 2005 and 2011). 

Based on their benefits, it is clear that choosing a force-directed model for our 

visualization application is indeed a proper decision. However, choosing a suitable algorithm and 

implementing it are also challenging due to the fact that all force-directed algorithms are 

expected to use in off-line applications in which there is good hardware support and the entire 

graph information are known in advance. As a result of this, we come up with some 

modifications on the force-directed model and these modifications will be represented in the 

following chapter.



Chapter 3 – Implementation

3.1.Our approach to the design

Like we mentioned above, our attempt is to visualize web-derived corpus developed by Wu, 

Witten and Franken (2010) by using graph representations. The current representation of Wu is 

indeed simple and easy to use, but it can be optimized in order to facilitate learning and increase 

level of engagement, and these advantages can be achieved by utilizing graph representation in 

the visualization. However, when considering characteristics of the collocational corpus, the 

searching procedures, the advantages and disadvantages of the force-directed algorithms, 

designing efficient visualization for the online dictionary of collocation words can be 

challenging. In fact, some modifications can be necessary in order to design a good layout. 

3.1.1. Understand the collocational corpus and user interactions

From Wu’s interface, when we input a word such as “cause”, the web guide the user by 

displaying possible searching types of this word: “cause used as noun” or “cause used as verb”. 

In addition, all possibly proper lexical forms listed for the user to choose. 

Figure 3.1: Result of input word “cause”.
(Image taken from Interactive language learning – flax library (2010))



Furthermore, when the user clicks on one of these lexical items, a list of results will pop 
out.

Figure 3.2: Top results of lexical form “cause + Noun” (the number of results > 50)
(Image taken from Interactive language learning – flax library (2010))

From these steps above, it is clear for us that the collocational database contains tree-like 

data in which each single word such as “cause, sun or take” is the root of its own tree. When we 

visualize the data as a graph, “the input word”, its searching types and its lexical forms can be 

considered as backbone nodes and they will be shown at the beginning in order to help users 

navigating. Moreover, they can be animatedly displayed in order to help users to see “the flow” 

and raise their awareness.

Figure 3.3: A simple design of the important nodes



As we mentioned above, knowing the structure of visualized data always works to 

designers’ advantage and in this case, we have more benefits because the forced directed model 

of tree-like graph is proved to be stable.

Furthermore, from Figure 3.2, the popularity of the resulted phrase is indicated by its 

frequency. So visualizing efficient this feature in the graph layout is also important in order to 

help users to improve decision-making.

     

However, the database also has some specific characteristics which may cause problems

if we want to use force-directed models (experiment with Eades’ and FR models). For example, 

from Figure 3.2, it is clear for us to see that the number of searching results can be very large 

(>50) in some lexical combinations such as “word + noun” (cause + noun). So, with graph 

representation, the node labeled “cause + noun” will branch off into more than 50 child nodes in 

order to show the top results (Figure 3.4). Consequently, the constraint force from these spring 

embedded edges is large on the branching node. Whenever users interact with the branching 

node and this force causes the node to react very slowly when the users try to control. Therefore, 

some modifications on the force-directed models are necessary to solve this problem.

Figure 3.4: A graph example of one centered node with 35 nodes (Using FR algorithm)



Furthermore, Figure 3.2 shows that the resulted phrases are too long. Labeling the sub 

nodes with these phrases can cause visual clutters preventing the users from reading properly.

Hence, finding a good way to display the resulted phrases also is challenging.

Figure 3.4b: An attempt of visualizing results of the lexical pattern (make +Adjective)

3.1.2. Understand the current force-directed algorithms

As we mentioned that the force-directed algorithms, especially FR algorithm, are suitable to 

display all general graphs. However, when we apply these models into information visualization 

applications, there are quite a number of drawbacks.

Firstly, the force-directed models such Eades’s and FR models, have no control on some 

output features such as the edge length— the feature may be necessary to encode some attributes 

of displayed information. 

Secondly, all these force-directed models have been designed for off-line visualization in 

which the entire graph information (vertices and edges) should be known in advance; for 

example, FR algorithm requires the number of vertices in advance in order to calculate the scale 



value: *
area

k C
numberOfVertices

 . Even though the structure of our graph is known, the 

information of vertices and edges is still unknown and the expansion of our graph depends on 

user’s interactions. As a result of this, applying the original force-directed models is quite 

challenging.

Thirdly, when visualizing tree-like data such as our data, both Eades’s and FR models 

produce a drawing in which the sub-nodes tend to be pulled away from the center root. So, the 

whole graph will require a lot space to be displayed (Figure 3.5). This space-consuming problem 

will be a major drawback if we plan to display searched results of more two words on the same 

screen. Particularly, the most popular algorithm, FR model, also suffers from the peripheral 

problem (Figure 3.5), which seriously prevents us from displaying properly results of multi 

words in the same layout.  

Figure 3.5: An example of tree-like data (FR algorithm)

(The sub nodes of each branch tend to be pulled close together)



Figure 3.6: An example of tree-like data (Eades’s algorithm)

(The sub nodes of each branch tend to be pulled away from the center)

Figure 3.7: An example of visualizing multi graphs on the same screen with FR algorithm
(Image taken from Yuan, Dancheng, Chunyan and Zhiliang (2009))

Even though the EERepulsion model developed by Lin and Yen (2011) produces high 

degree of symmetry which reduces greatly visual clutters in sub-node areas, it is still not suitable 

for online drawing because of its complicated implementation (require two steps in drawing).  



To sum up, the characteristics of the graph visualization application and the 

disadvantages of the current force-directed algorithms indeed pose some challenges. In order to 

create an effective application, we implement some modifications on the current force-directed 

model by combining Eades‘s and EERepulsion models and redesigning a new spring embedded 

edge model. In fact, these modifications will be represented in detail in the next section. 



3.2.Our design and implementation

3.2.1. Design the force formulas

In order to obtain more controls on the output features of the force-directed model, we re-design 

the formulas of the repulsive and attractive forces. As we observed, Eades’ and FR algorithms do 

not control the length of their edges – the feature which is very useful to encode information. We 

formulate the attractive force as follows:

   

The attractive force formula between two nodes connected by an edge:

 *af k L d                       (Formula 3.1)

In formula 3.1, L is the default length for edges, k is a constant and d is the distance 

between the two connected nodes. It is clear that we re-use the Hook’s law formula for our edges 

because it allows us to control the output length of the graph edges.

Figure 3.8: Hook’s law on tree-like graph

However, when using our attractive force on tree-like data (Figure 3.8), the center node 

(node O) will be received large amount of force if its initial position is not optimal. So, it may 

cause this node to behave unstably. In order to solve this problem, we adjust the attractive force 

formula for different kind of nodes: branching nodes and ending nodes. In detail, the branching 

node (node O) should receive less force; on the other hand, the ending nodes like node A, or B 

should receive more attractive force.



.      The adjustments for the attractive force model for branching nodes such as node O and 

ending nodes such as node A, B or C

, 1| | * | |a O af c f (Formula 3.2 a)

, , , 2| | | | | | * | |a A a B a C af f f c f   (Formula 3.2 b)

In formula 3.2, c1 is a constant (c1= 0.25 in our experiments). In formula 3.3, c2 is also a 

constant (c2 = 4 in our experiments).

As a result of this adjustment, when users move the center node, they also easily affect

other sub nodes A, B and C. When they drag the ending node such as node A, the center node is 

hardly affected; therefore, the entire graph layout cannot be affected if sub nodes are interacted.

Furthermore, symmetry is also a criterion that we consider. If all sub nodes branched off 

from the same center are distributed evenly, they will make the graph more readable and allow 

us label on these nodes. Hence, in order to improve symmetry for our graph, we follow 

EERepulsion model (Lin & Yen, 2011) and add a repulsive force between every pair of edges 

having the same starting vertex. However, we also recognize that the lack of the repulsive force 

between every pair of vertices in EERepulsion model causes node overlapping problem in some 

particular graph layouts. Therefore, in our algorithm we also implement the vertex-vertex 

repulsive force which is similar to the one of Eades’s.

The vertex-vertex repulsive force and the edge-edge repulsive force between two

neighboring edges e1 = (o, u) and e2 = (o, v) 

0 /rf c d (Formula 3.3)

, 3 *cot( )
2u vf c


 (Formula 3.4)

In formula 3.4, θ is the angle between the two edges. In addition, the force fu,v is applied 

onto the two ending nodes u and v.



3.2.2. Design data structure

Because we design an online-dictionary-software, reducing the complexity is indeed crucial. So, 

we use a quadtree as our data structure. However, we also did some modifications on building 

the quadtree in order to make it more suitable to the online visualization.

For off-line graph visualization, all the nodes are expected to be drawn on the drawing 

area at the same time. Hence, it is certain that they use the largest fixed region for the root tree 

node in order to perform inserting on other graph nodes. However, our case is quite different. As 

we explained, our graph only contains some navigating nodes at the beginning. Depends on how 

users interact, it will expand the branches that the users want. As a result of this, it is unwise if 

we reserve a big area for the root node. Moreover, it may complicate the inserting nodes into the 

quadtree in some particular situations in which the positions of nodes are not desirable (Figure 

3.9)

Figure 3.9: Examples of unfavorable nodes’ position
(Image taken from Pulo (2001))

In detail, our approach is to provide the root node with the smallest area (the area that 

can’t be divided). When a new node is inserted, the quadtree will check whether the root’s area 

covers the new node or not. If the new node is outside this area, the quadtree will recursively 

expand the root’s area to cover the new node (from Figure 3.10 to Figure 3.12).



Figure 3.10: The root node with the smallest area (25, 25)

Figure 3.11: The root’s area expands recursively to cover the new node

Figure 3.12: Further expansion of the root’s area.



As a result of this modification, we only expand the calculating area when our graph 

needs and it is an efficient improvement especially for online drawing. In addition, it also 

reduces possible creating deep sub-nodes in the difficult cases (Figure 3.9).

3.2.3. Design a new curly spring embedded model

Like we mentioned above, for a given word, the number of resulted phrases of some particular 

lexical forms tends to be larger than 50. It leads to a case that there are some nodes which 

connect more than 50 sub nodes. This case is not suitable to be applied by the current force-

directed algorithms because the amount of force exerts on these branching nodes is large and 

affects badly on user’s interactions. In order to solve this problem, we design new curly spring 

embedded edge to replace the straight spring embedded edge which is used to connect between 

the branching node and its sub node. The new edge will reduce the amount of force applied on 

the branching node and make user’s interactions more smoothly.     

In detail, we can consider the new curly spring embedded edge as a series of 2 or 3 

straight spring edges which are connected from one to another (Figure 3.10).

Figure 3.13: The curly spring embedded edge with two internal straight spring edges

From Figure 3.13, two nodes A and B are connected by 2 springs which have the knot 

(O) as their joint. In our design, the knot O is an internal node, so we do not include it in 

calculating the repulsive force amongst nodes like normal nodes A, or B. Moreover, because of 

the design, the attractive force exerts on each node is calculated differently.



If we consider the positions of node A, node B and node O are (xA, yA), (xB, yB), and (xO, 

yO). The distances between node A and knot O (dA,O) and between knot O and node B (dB,O) are 

calculated as follows:

2 2
, ( ) ( )A O A O A Od x x y y    (Formula 3.5)

2 2
, ( ) ( )O B B O B Od x x y y    (Formula 3.6)

With L is the default length of the spring and k is the stiffness, the attractive forces 

created by the two straight spring embedded edges can be calculated as follows:

, ,*( )A O A Of k L d  (Formula 3.7)

, ,*( )O B O Bf k L d  (Formula 3.8)

If we consider that node A is a starting node and node B is an ending node, the attractive 

forces are represented in both x and y components in formula 3.9 and 3.10.  
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In formula 3.9, c1 is a constant for starting nodes, c1= 0.25 as the default value. In 

formula 3.10, c2 is a constant for ending nodes, c2= 4. As we mentioned, we use these values in 

order to make node A to affect more on node B. On the other hand, user’s interactions on node B 

will not affect much on node A. 

Moreover, the force applied on knot O is also calculated as the sum of the two attractive 

forces created by the two edges.



            1 , 2 ,
, ,

( ) ( )
* * * *

x

A O B O
O A O O B

A O O B

x x x x
F c f c f

d d

 
  (Formula 3.11)

1 , 2 ,
, ,

( ) ( )
* * * *

y

A O B O
O A O O B

A O O B

y y y y
F c f c f

d d

 
 

(Formula 3.12)

At each simulation step, the attractive force is calculated for each kind of nodes: normal 

nodes and knots. As a result of this, all their positions are updated. Knots are internal nodes of 

curly spring embedded edges, so they are not visible and included in calculating the repulsive 

force amongst normal nodes.

Furthermore, in order to hide the knot and make our curly edge to look like a real curly 

one, we make use of Bézier curve (Wikipedia, 2012). According to Weisstein (2012), a Bézier 

curve is a parametric curve and it is popularly used in computer graphics. In detail, a Bézier 

curve is defined by “a set of control points P0 through Pn, where n is called its order (n=1 for 

linear, 2 for quadratic and 3 for cubic). The first and last control points belong to the curve, but 

the intermediate control points (if any) generally do not lie on the curve.

Formulas of quadratic Bézier curves and cubic Bézier curves (Wikipedia, 2012)

2 2
0 1 2( ) (1 ) 2(1 )B t t P t P t P     (Formula 3.13)

3 2 2 3
0 1 2 3( ) (1 ) 3(1 ) 3(1 )B t t P t tP t t P t P       (Formula 3.14)

In the formula 3.13, a quadratic Bézier curve is the path traced by the function B (t),

given points P0, P1 and P2 with [0,1]t and P2 is the control point. Simply, the curve starts from 

P0 in the direction of P1, and then bends to arrive at P2 in the direction from P1. In other words, 

the tangents in P0 and P2 both pass through P1 (Figure 3.11).



Figure 3.14: Create a quadratic Bézier curve by looping t from 0 to 1 with step =0.01
(Images taken from Wikipedia (2012))

In the formula 3.14, we have a similar formula for a cubic Bézier curve. In this case, P1

and P2 are the control points to decide the degree of the curve, so P0 and P3 are the only points, 

which are belonged the curve. 

Figure 3.15: Create a cubic Bézier curve by looping t from 0 to 1 with step =0.01
(Images taken from Wikipedia (2012))

We are applying a Bézier curve into our design and it is shown in Figure 3.13. 

Figure 3.16: Example of applying Bézier curve into our design



From our initial implementation (Figure 3.13), the curve is bent too early, indicating a 

mediocre approximation. As a result of this, we assign the midpoint of A and O as the starting 

point for the curve and the midpoint of O and B as the ending point. 

Figure 3.17: An improved version of applying Bézier curve.
A completed version is shown in right image.

Figure 3.18: Our design in the case that one node has a lot of branches.
By adjusting the attractive force, the root node easily controls its sub nodes (Top image), 

and its sub-nodes hardly affect their root   



Figure 3.19: Our curly spring embedded edge in the cases
that the root branches off 60 sub-nodes and 100 sub nodes.

From Figure 3.16, it is clear that our design works well with the case that one node has a 

lot of branches (> 60), unlike Eades’s and FR algorithms which have a lot of unexpected 

problems in the case. The key advantage is that because there are joint nodes (knots) between the 

branching node and its ending node. Changing positions of the ending nodes affect mainly on 

these knots. As a result of this, they indirectly reduce the amount of attractive force applied on 

the branching node, which allows it to be interacted smoothly.

In fact, when compared to other people’s methods, they solved this branching problem by 

introducing dummy nodes to group the branches, but this method indeed creates false 

understanding about the structure of the graph and costs lot of space.

Figure 3.20: An example of solving the branching problem
(Image taken from www.visualthesaurus.com/)



Moreover, our curly edge allows designers to control its length to encode information. In 

fact, the curly edge is more elegant than the straight one in some visualization applications

(Figure 3.21).

Figure 3.21: Visualize characters in The Big Bang Theory Show.
A lot of information is encoded in the curly edge, the shorter the length and the larger the thickness are, 

the more frequently the character appears in the show.  So, it’s easy to see who main characters are. 

In fact, our curly edge works well with the traditional straight edge. Particularly, it 

complements the straight edge. In detail, it is very useful in the case in which graph nodes are 

belonged to multi-categories. To the best of our knowledge, people solve this problem by using

multi-colors on these nodes in order to denote different categories (Itoh, Muelder, Ma and Sese, 

2009).   

Figure 3.22: An example of a graph in which nodes are belonged to multi-categories.
(Image is taken from Itoh, Muelder, Ma and Sese (2009)).   



By using our curly edges, designers can make connections between  multi-categoried 

nodes with their minor categories. It is clear to see that our curly edges make such graphs more 

understandable and still maintain the symmetry which is created by the straight edges.  

Figure 3.23: An example of using our curly edge to visualize nodes belonged to multi categories.

Moreover, the curly style is also suitable to use in flow visualizations, which is proved by 

work of Doantam, Xiao, Yeh et al. (2005) on flow maps in which curly edges are used to create 

smooth flows and allow placing nodes in correct geographical locations.

Figure 3.24: An example of curly edges used in a flow map
(Image taken from Doantam, Xiao, Yeh et al. (2005))



In our application, the curly edge can also be used to visualize a flow of the number of 

frequencies from a root to its sub-nodes which display results. As we mentioned, the popular of a 

lexical phrase is indicated by its frequency. For example, the frequency of phrase “cause trouble” 

of the lexical pattern “cause +Noun” is 250000, which is big, so this phrase is used commonly. 

From the collocational database, we can recursively calculates the frequency of each lexical 

pattern and then each category (used as noun or used as verb), finally each word (take, or 

cause...) and store this information back in the database. As a result of this, this information can 

be used to construct a flow from a root to its sub nodes by using the thickness of our curly edges. 

For example, Figure 3.25 show a flow from a root node of the input word “live” to its sub 

nodes which display categories. It is clear that users can recognize quickly which category the 

input word “live” is used more commonly. Logically, they may expect to more lexical forms of 

“Used as Verb” category than the ones of “Used as Adjective” category. This information is 

indeed useful because it helps users to improve decision making in graph explorations and

learning process.    

Figure 3.25: Visual a flow of frequencies from a root node to its sub-nodes



Figure 3.26 below shows further expansion of the navigating nodes. It can be interpreted 

that some particular lexical combinations are being used more others.

Figure 3.26: Further expansion of the navigating nodes with flows visualized

To sum up, our curly spring embedded edge indeed solves the branching problem and

allows designers to utilize its properties such as length and thickness to encode information. By 

using its internal node to receive the attractive force, it reduces dramatically amount of the 

attractive force applied on the branching node, making users’ interactions on these nodes more 

smoothly. Particularly, it complements the current straight spring embedded edge in order to 

visualize more specific information on force-directed graphs such as flow visualization and or 

multi-categorized nodes. 



With the new curly edge, our algorithm to construct the graph layout can be summarized 

as follows: 

Algorithm 4: Our force-directed algorithm



3.2.4. Design and implement interface

a) Design of the graph layout

As we mentioned above, after users input their searched word, we use a graph layout to guide 

users to explore all lexical combinations of the input word. In addition, all navigating nodes are 

animated in chronological order to help users to increase engagement level and keep them 

oriented; intuitively, it makes users to sense that input information has been processed. 

Furthermore, we use our curly edge to show top 30 resulted phrases of each lexical form.

In order to avoid creating visual clutter and keep our graph more readable. We are not labeling

sub-nodes which represent the resulted phrases and scale them down, but we indeed distinguish 

high-frequent phrases by the opacity, length and thickness of the edges that they connect. In 

detail, high-frequent phrases have their edges long; moreover, their edges also have high opacity 

and large thickness. 

Figure 3.27: Our graph interface
(The numbers shown on orange nodes indicate the number of resulted phrases)

Figure 3.27 shows our graph implementation. Its characteristics allow us to see “the 

whole picture” of the input; particularly, they help users to easily compare between lexical 



combinations. Furthermore, our implementation is able to display more than two words’ results

(Figure 3.25).

Figure 3.28: Display two words on the same layout

b) Design interactive techniques

Furthermore, in order to support users to interact with the graph system, we implement panning 

technique to allow the users to change visual area (viewport) quickly. In addition, we also 

implement three kinds of interactions which are: normal interaction, focus interaction and 

fisheye interaction.

In detail, normal interaction will circle and scale the selected phrase up to a good visual 

size which allows users to see properly. Focus interaction is similar to normal one, but it 

highlights nodes and edges that connect to the selected node and reduce opacity of other edges 

and nodes. Fisheye technique; on the other hand, not only scale up the selected node but other 

nodes which belong to the fisheye’s area. In order to make it more like a fisheye lens, the scale 

values of the other related nodes are determined by the formula 3.15



Formula 3.15 to determine scale values of the nodes that belong to the fisheye area.

0 0( ) *(1 / )s d s d r c   (Formula 3.15)

In formla 3.15, s0 is the scale of the selected node (center), d is the distance between the 

calculated node and center node, r is the fisheye’ radius and c0 is the scale for nodes at 

unselected state. In fact, this formula is a simple version of the one that Sarkar and Brown 

(1992) introduced.

Figure 3.29: Normal interaction.
We circle the selected phrase

Figure 3.30: Focus interaction
We highlight selected node and its edge and reduce the opacity of other nodes and edges



Figure 3.31: Fisheye interaction on nodes labeling resulted phrases

c) Design a detail view

The graph layout provides good navigation for the users and allows them to see a whole 

picture. We limit the number of nodes that label resulted phrases to 30 in order to keep graph 

readable. In order to show resulted phrases (> 30th phrase), we also implement a detail view 

for complete showing. If the users double-click on an orange branching node (Figure 3.29), it 

will pop up a detail to show all resulted phrases.  



Figure 3.32: A detail view of lexical pattern “Verb +take”

From Figure 3.32, it is clear that we encode the difference of the frequency in font size of 

the resulted phrases. High-frequent resulted phrases should have large font in order for users to 

recognize easily. In detail, we follow work of Knautz, Soubusta, and Stock (2010) on web 

navigating tags. Even although they haven’t clarified that why tag clouds are popular, their 

experiments indeed show that large tags are more recognizable for users. As a result of that, we 



use the frequency as input variable to produce suitable font size for the resulted phrases (Formula 

3.16). With this method, popular phrases are easily recognized by the users. So, it will speed up 

and improve their learning.

0 max 0(1 ( / , )s s Max f f   (Formula 3.16)

In formula 3.16, s is the font size of input phrase; f is the phrase’s frequency. In addition, 

s0 is the base font size, f max is the maximum frequency and ∆0 is the maximum amount allowed 

to add to s0.

Technically, we understand that our application is running on-line. So, we use paging 

technique to fetch resulted data only when users require (by clicking paging buttons). Therefore, 

we reduce dramatically the data retrieving time. Moreover, we also implement a filtering 

function which allows flexibly data manipulation

3.2.5. Technical evaluation of our implementation

For this application, we mainly use Silverlight technology. This is a web tool from Microsoft to 

create rich client web applications. It is similar to Flash which allows designers to create rich 

animation applications.

In order to visualize completely all aspects of information, we heavily use quite a number 

of advanced graphic objects such as gradient colors, graphic paths, opacity property and Bézier 

curves. Technically, our current implementation focuses on delivering good visual appearance.

But our implementation is running online at client side so memory and retrieving data ability are 

limited. As a result of this, the number of object that we can draw is limited. In order to solve 

that problem, we implement a number of practical techniques to improve our performance.

Firstly, we improve the calculation by using a quadtree that we modified in section 3.2.2. 

Secondly, we use “virtual canvas” technique — a technique allows designers to draw large 

number of object on a canvas. 

  



In detail, if all the nodes cover an area (0, 0, 5000, 5000) and the viewport which the user 

focuses on covers the area (2000, 2000, 2500, 2500); because all nodes are placed in a quadtree, 

we can do a query in the quadtree to list all nodes belong to the area (2000 – offset, 2000-offset, 

2500 + offset, 2500 + offset) with offset = 400. Then, we only draw on the canvas these nodes 

and their associated edges. When the user changes the viewport by panning, we remove these old 

nodes and edges from the canvas and perform a new query with new area. However, if there are 

more than 480 nodes locating in the viewport, our performance will drop dramatically; 

particularly, low response and animation glitches are likely to occur when users interact.

In fact, technical features on our implementation can be summarized as follows:

Working state Number of nodes 
afforded to create

Interactive state

Normal state 
(working nicely)

Up to 300 Three kinds of interactions are working normally. 
They response fast to users’ interactions.

Maximum state 500
-  Normal interaction is still working normally. 
-  Focus interaction responses slowly.
- Fisheye interaction responses slowest and scaling 
function is not performing smoothly. 

Table 3.1: Summary of our graph implementation

In fact, we also did some experiments to improve drawing capacity by reducing visual 

appearance; however, it also at the same time reduces quite a number of means in which we can 

encode information. 

Figure 3.33: A simple implementation



From Figure 3.33, it is easy to see that in new implementation, flow visualization, 

gradient colors and opacity attribute are removed. As a result of this, the quality of visual 

appearance is not high, but it can handle drawing large number of objects. From our experiment, 

the number of nodes it can draw up to 2000.  

To sum up, due to being an online application, we have to make compromise between 

visual appearance and performance. All though, our implementation has a limit of the number of 

object displayed, it indeed allows a lot of information attributes visualized to users in order to 

improve their learning and engagement.

3.2.6.   Usability evaluation of our implementation

In order to evaluate the implementation, we do some usability tests on a group of 6 people. In 

detail, these participants are students and not English native speakers. Two participants are at 

advanced level and the others are at immediate level. We do not include beginners in our study, 

because from our research beginners usually do not pay attention to collocational usage. 

First of all, we inform all participants that how collocational knowledge is important and 

useful to second-language learners, and then introduce them shortly the interface. We let these 

participants interact with the interface, observe their interactions and take note of their opinions. 

The result of the experiment can be summarized as follows:

Number of Participants 
for each type of opinion

Opinions English level of participants

2 Enjoy the interface (feel comfortable) 1: Advanced and 1: immediate
3 Feel all right with the interface 2: Immediate and 1: Advanced
1 Feel unfamiliar, prefer an interface 

like the one in dictionary software 1: Immediate
Table 3.2: Table of participants’ opinions.

From Table 3.2, our graph implementation can be seen as easy for interaction. Moreover, 

we also receive some interesting feedbacks from participants. For example, when they select a 

resulted phrase, they expect to see a tooltip to explain how the phrase means. Moreover, the 



advanced users expect to see some relationships between input words when our application 

displays them on the same layout. They also expect to open more than one detail views at the 

same time. These feedbacks are indeed very useful for future development.

Furthermore, we also let the participant interact with the original application designed by 

Wu for comparison. Our implementation is more favorable by most participants due to our good 

navigation. However, there are some features from original application that participants prefer 

more; for example, they want our detail view to show more results as the original application 

does. 

Overall, even though the number of participants is small, the feedbacks we get from them 

are valuable. We believe that our current implementation meets users’ demands. Moreover, with 

these useful feedbacks, we can develop further our application to satisfy users’ expectations.



Chapter 4 –Conclusion

4.1.Conclusion

In this thesis, we represent our approach to visualize online-collocational dictionary by utilizing 

graph representation. We consider using a force-directed model due to its simplicity and 

flexibility in interaction. However, after being studied and experimented comprehensively, all 

current force-directed algorithms have their own advantages and drawbacks. Particularly, these 

drawbacks make them not suitable to be applied directly to our visualization application. As a 

result of this, we develop our graph component (curly spring embedded edge), implement some 

modifications on some existing algorithms, and then combine them in order to make an 

algorithm that is more suitable to our purposes. Furthermore, some practical techniques are also 

applied in order to produce a good visualization application in which all important aspects of 

information are represented noticeably.     

Benefits of using graph representation has been proved by a lot of researches, and in our 

application, it allows us to display a good navigating system which indeed facilitate graph 

exploration and language learning for users. After being tested by a small group of participants, 

our application can be considered to meet our expectation and satisfy most users’ demands. With 

their valuable feedbacks, we can develop further application in order to make it more convenient 

to all users.

4.2.Future Work

As we mentioned before, current force-directed models are suitable to visualize general graphs, 

but they do not control well the output of graph components such as edges. As a result of this, 

they do not utilize well these components’ attributes in order to visualize fully information. Our 

force-directed model, on the other hand, fits specifically well to unconnected graphs and allows 

designers to use edge’s length to visualize different levels of graph nodes’ relationships. 



Moreover, our curly spring embedded edges not only solve the branching problem, but 

also complement the current straight spring embedded edge to visualize fully some particular 

graphs such as graphs with multi-categorized nodes or graphs with flow visualization. As a result 

of this, our future research will study what kind of graph visualization applications in which our 

curly edge will be utilized all its potential. In fact, we are considering that our curly edge can be 

applied in edge-plucking technique which is proposed by Wong and Carpendale (2005) and 

force-directed edge bundling which is introduced by Holten and van Wijk (2005), if we improve 

the curly edge by allowing internal nodes to able to repel or attract each other.

   Furthermore, our implementation also has a lot opening way that we can develop and 

improve. In fact, all feedbacks from participants are indeed valuable, and they help us to develop 

our application in a proper way in order to makes it more suitable for users’ learning and 

exploration.
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