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Abstract 

 

Two species of bryozoa, Pterocella vesiculosa and Plumatella repens, were 

investigated in an endeavour to isolate and characterise novel secondary 

metabolites.  

Analysis of fractions derived from chromatography of a dichloromethane extract 

of Pterocella vesiculosa, indicated the probable presence of β-carboline and 

pterocellin alkaloids. Continued separation led to further purification of some 

pterocellin alkaloids, however the characteristic ultraviolet chromatogram that is 

produced by pterocellins could not be found in any of the fractions analysed. 

Despite this, further investigations by thin layer chromatography, tandem mass 

spectrometry and high resolution mass spectrometry suggested structural 

similarities between metabolites from polar fractions and known pterocellin 

alkaloids. In the process of isolating these polar, pterocellin-like alkaloids, a new 

thin layer chromatography solvent system was developed, which better 

differentiates the more polar metabolites in extracts compared to previously 

utilised solvent schemes. 

LCMS analysis of chromatographic fractions resulted in the detection of eight 

β-carboline alkaloids, as well as the identification of the previously published 

5-bromo-8-methoxy-1-methyl-β-carboline. Further purification of the alkaloid 

containing fractions by size exclusion chromatography was achieved but 

individual alkaloids were unable to be isolated due to time constraints associated 

with the project. Molecular formulae for the eight alkaloids were obtained by the 

use of high resolution mass spectrometry. Tandem mass spectrometry helped to 

confirm these formulae and also suggested the types of functional groups attached 

to the β-carboline skeleton. 

A biologically active extract of the freshwater species, Plumatella repens was 

investigated chemically as a continuation of a pilot study. A series of fractions 

from the pilot study were separated by size exclusion chromatography, with 

monitoring of activity against the murine P388 lymphocytic leukaemia cell line. 

Results of the assay indicated the presence of a highly active metabolite/s, 
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however isolation of the metabolite/s responsible for the activity was not achieved. 

This was a result of delays in finding facilities to undertake the biological assays 

and varying degrees of P388 activity, which may suggest metabolite instability. 

As part of this project, tissue culture was undertaken at AgResearch, at the 

Ruakura Research Centre, Hamilton. A method for assay of Plumatella repens 

samples was developed for bioassay guided fractionation. 

The sterol composition of Plumatella repens was also investigated. Three sterols 

were identified and an additional two sterols were present, the structures of which 

could not be confirmed. The relative concentration of each of the sterols was also 

determined. 
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Chapter One: Introduction 

 

1.1 Bryozoa 

Bryozoa, also known as Ectoprocta, are a phylum of aquatic, filter feeding 

invertebrates. There are over 5 000 known living species of bryozoa,
1
 making up 

three classes; Gymnolaemata, Phylactolaemata and Stenolaemata. Gymnolaemata 

is the most populous, containing over 3 000 species which are separated into the 

two orders Ctenostomata and Cheilostomata, as represented in Figure 1.
2, 3

 Some 

species of bryozoa inhabit freshwater ponds, rivers and lakes, with some 

preferring brackish water over fresh.
4
 The vast majority however, live in marine 

environments, particularly near the coast and on reefs, above a depth of 100 

metres, although many deep sea species have also been described.
5
 

 

 

Phylum Class Order  

Bryozoa Gymnolaemata Cheilostomata  

  Ctenostomata  

    

 Phylactolaemata Plumatellida  

    

 Stenolaemata Cyclostomatida  

Figure 1: Bryozoa taxa 

 

As filter feeding animals, bryozoa use a lophophore, which is an array of hollow 

tentacles, to abstract food from their aquatic environments. In almost all cases, 

bryozoa form colonies, some of which can be several metres across
6
 and have 

been estimated to contain over two million microscopic individuals, known as 

zooids.
7
 Colony formation is typical for all but one genus, monobryozoon, which 

does not form colonies but instead maintains a solitary growth habit. The zooids 

of bryozoa are primarily feeding zooids (known as autozooids), which are 

responsible for dietary intake and excretion.
8, 9
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Figure 2: Zooid structure (Adapted from Reference 9). 



 

 3 

Most species of bryozoa have the ability to undergo polymorphism. This allows 

individual zooids to undergo physiological changes that help support the colony in 

ways other than that of autozooids. Such changes allow zooids to take on roles 

such as protection, cleaning and anchoring.
2, 10

 Although this is the case for most 

bryozoa, the class Phylactolaemata, made up of species that live exclusively in 

freshwater, have not evolved polymorphism, which results in all their zooids 

being autozooids.
11

 

The reproduction method of bryozoa can be either sexual or asexual, depending 

on the species and maturity of a colony.
12

 Asexual reproduction of bryozoa occurs 

either through budding of an individual zooid into a clone of itself, or by the 

formation of a statoblast.
12, 13

 Statoblasts are produced exclusively by the class 

Phylactolaemata, most abundantly towards autumn. Statoblasts are hardy, disc 

shaped objects that are dormant but in the right circumstances, develop into 

zooids.
13

 On account of the ability of statoblasts to remain dormant for extended 

periods of time, as well as being able to withstand a varying array of 

environmental conditions, it is possible for a colony’s lineage to survive through 

conditions that might destroy the colony itself.
9
 It has been demonstrated in 

laboratory conditions that Plumatella repens statoblasts can still be viable after 

having been frozen at -10°C for 50 hours.
14

 In fact, when the germination rates of 

statoblasts that had been frozen were compared to those of statoblasts stored at 

24°C, it was noted that the effect of freezing was negligible.
14

 It was calculated 

that one square metre of bryozoa inhabited plant zone could release up to 800 000 

statoblasts.
14

 

Sexual reproduction occurs by fertilisation of an egg of one zooid by sperm 

released by another zooid. This can occur either through the release of both eggs 

and sperm (external fertilisation), or by the capture of sperm by the lophophore of 

zooids that are producing eggs (internal reproduction).
9
 With internal reproduction, 

the egg is fertilised either within the zooid’s coelom (Illustrated in Figure 2) or in 

the ovary.
15

 In non-brooding species, the egg is then released via the 

intertentacular organ, a small organ protruding between a pair of tentacles. The 

intertentacular organ is also where eggs are released in other species for external 

reproduction. Although in most cases zooids contain either testes or ovaries, they 

are actually protandric sequential hermaphrodites, meaning that during their 
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lifetime they will first possess male sex organs before in later life developing 

female sex organs and losing the male reproductive organs.
12

 In this process, a 

colony will usually simultaneously possess zooids with either male or female 

reproductive organs. This is the case for many marine species, however for the 

exclusively freshwater dwelling class Phylactolaemata, the zooids are 

simultaneous hermaphrodites, containing both male and female reproductive 

organs at one time.
9
 

The geographical distribution of bryozoa is vast; inhabiting both temperate and 

tropical marine water.
16

 There are also species that have been described in 

Antarctic waters, freshwater and, because of their independence from 

photosynthesis as a source of energy, bryozoa are also found in deep sea 

environments, below 2 000 metres,
9
 far from the reach of direct solar energy.

9, 17
 

Their means of reproduction and tolerance to a range of different environments 

has allowed bryozoa to populate the globe.
9
 

 

1.2 Natural Products 

Metabolites are compounds which are used by all organisms and can be classified 

as either primary or secondary. Primary metabolites are compounds which are 

involved in the growth, development and reproduction of organisms. These 

compounds are typically not species specific and often have evident roles in the 

biology of the organism which produces them, whereas secondary metabolites are 

characterised as molecules of great structural diversity, typically of low molecular 

weight (generally < 3 000 Da).
18

 More importantly, unlike primary metabolites, 

secondary metabolites have no obvious biological role in the organism which 

produces them.
18

 

Natural products, a term which is used interchangeably and is synonymous with 

secondary metabolites, frequently have biologically active (bioactive) properties, 

meaning that the metabolite exerts some physiological effect on another organism 

in either a beneficial or detrimental manner. This has led secondary metabolites 

and their derivatives to become widely used pharmaceuticals for the treatment of a 

variety of conditions, such as pain, mental illness, bacterial infections and cancer. 
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The vast majority of natural products isolated to date have come from terrestrial 

flora and fauna rather than from aquatic environments. This is a result of both the 

ease of access to the terrestrial environment and the historical uses of terrestrial 

species in many traditional medical remedies and spiritual ceremonies.
19

 The 

knowledge that medicinal preparations of some terrestrial species can have 

positive effects in the treatment of certain conditions made them sensible choices 

for early work in natural product isolation. 

One of the most well known groups of natural products from a terrestrial species 

are the penicillins, isolated from Penicillium chrysogenum of the 

Trichocomaceae family of fungi in 1928.
20, 21

 The penicillins are still in common 

use today and have been utilised to treat an array of different types of bacterial 

infections. The core structure of the penicillins is illustrated in Figure 3. 

 

 

Figure 3: Core structure of the penicillins 

 

Although most secondary metabolites isolated to date have been isolated from 

species which inhabit terrestrial environments, the relatively small number 

discovered in aquatic environments is not due to lack of biodiversity. With greater 

than 70 % of the Earth’s surface covered in water, aquatic environments are some 

of the most biological diverse areas to be found. This is reflected by the fact that 

the number of new natural products being discovered from marine species is on 

the increase, with over 1 000 being reported yearly from 2008 to 2010, up 11 % 

on the number published in 2007.
22, 23

 

An example of a widely used pharmaceutical from an aquatic species is 

ecteinascidin 743 (1). The antitumour activity of an extract from the marine 
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tunicate Ecteinascidia turbinata, was first observed in 1969. The structures of the 

active constituents were not determined until more than ten years later. This was 

due to the low abundance of the active compounds, ecteinascidin 743 (1) being 

the most abundant with a 0.0001 % yield.
24

 Many bioactive natural products 

constitute only a small quantity of the total mass of the organism. This can be a 

problem when needing large quantities for pharmaceutical applications, as was the 

case for ecteinascidin 743 (1). The unique structure of ecteinascidin 743 (1), 

containing three tetrahydroisoquinolines and seven chiral centres, was a challenge 

for synthesis and although the first enantioselective total synthesis was reported in 

1996, the multistep synthesis was not practical for large scale production.
24-26

 This 

problem was overcome in 2000 when the semi-synthesis of ecteinascidin 743 (1) 

from cyanosafracin B (2) was reported.
27

 Safracin B (3) could be obtained in 

kilogram amounts from the cultured bacterium Pseudomonas fluorescens, 

resulting in large amounts of a cheap starting material from a reliable renewable 

resource.
27

 

 

(1) 
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(2) R = -CN 

(3) R = -OH 

 

1.3 Natural Products Isolated from Bryozoa 

On account of the limited amount of research that has been undertaken on bryozoa 

in comparison to other phyla of aquatic organisms such as Porifera and Cnidaria, 

the number of natural products that have been characterised from the phylum 

Bryozoa is comparatively low. However, although the actual quantity of natural 

products discovered from this phylum is quite low, a significant number of them 

have proven to be of great interest, either for their bioactivity or the uniqueness of 

their structures, or in some cases both.  

One of the most well studied classes of compounds isolated from bryozoans is the 

bryostatins. In 1968, Pettit et al.
28

 discovered that an extract from the species 

Bugula neritina collected in the eastern Pacific Ocean, had significantly potent 

antineoplastic activity. Fourteen years later, in 1982, Pettit et al. published the 

chemical structure of bryostatin 1 (4), the main active constituent of the 

B. neritina extract.
28

 The structure contained a complex, 20-membered macrolide 

ring, which is characteristic of all of the bryostatins and has been given the name 

bryopyran (illustrated in Figure 4).
28

 Bryostatin 1 (4) displayed an ED50 value of 

0.86 μg mL
-1

 against the National Cancer Institute (NCI) murine P388 

lymphocytic leukaemia cell line.
28
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(4) 

 

 

Figure 4: Bryopyran ring system 

 

The year following the publication of bryostatin 1 (4), structures of bryostatin 2 (5) 

and bryostatin 3 (6) were published, both of which were isolated from B. neritina 

obtained from the eastern Pacific Ocean.
29, 30

 Structures of (5) and (6) were 

determined with the use of various techniques including fast atom bombardment 

mass spectrometry (FABMS), infrared (IR) spectroscopy, and 
1
H and 

13
C nuclear 

magnetic resonance (NMR) spectroscopy.
29, 30

  



 

 9 

 

(5) 

 

 

(6)  

 

Over the next thirteen years, the structures of a further 15 bryostatins (7-21) were 

published, all of which were extracted from samples obtained from the Gulfs of 

California, Mexico and Sagami.
31-36

 Unlike all other known bryostatins, bryostatin 
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8 (11) was not first isolated from B. neritina, but from the species Amathia 

convoluta.
37, 38

 Bryostatins 2-18 (5-21) displayed levels of antineoplastic activity 

comparable to bryostatin 1 (4). 

 

(7) R1 = D; R2 = C (13) R1 = -H; R2 = C 

(8) R1 = A; R2 = C (14) R1 = -H; R2 = A 

(9) R1 = A; R2 = D (15) R1 = B; R2 = D 

(10) R1, R2 = A (16) R1 = -H; R2 = D 

(11) R1, R2 = D (17) R1 = -OH; R2 = C 

(12) R1 = D; R2 = A (18) R1 = E; R2 = A 

 

A=   B =  

C =    D =  

E =  
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(19) 

 

 

(20) 
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(21) 

 

Bryostatin 19 (22) was also isolated from B. neritina, but from a collection 

obtained from the South China Sea,
39

 whilst bryostatin 20 (23) was isolated from 

a collection of B. neritina, obtained from the east coast of the United States of 

America. The presence of another, as yet unidentified bryostatin was also noted.
40

 

 

(22) R = 

 

(23) R = H 
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It has been shown that the bryostatins are able to bind to the enzyme protein 

kinase C (PKC). Activation of this enzyme by phorbol esters promotes the growth 

of tumour cells and although the bryostatins have the same binding site as phorbol 

esters, they produce antineoplastic activity.
41

 Most studies to date have involved 

the interaction between bryostatin 1 (4) and PKC. These studies have shown 

bryostatin 1 (4) to initially promote the activation of PKC for a short period 

followed by its significant deregulation.
41, 42

 The deregulation results in growth 

inhibition, cell differentiation and programmed cell death. Another study has 

shown that bryostatins 5 (8) and 8 (11) have similar antitumour properties to 

bryostatin 1 (4) but may possess different or fewer side effects.
41

 Bryostatin 1 (4) 

has been in over 50 phase I and II NCI clinical trials investigating its potential for 

treatment of various cancers and is currently in a phase I trial to determine the 

maximum dosage for patients with unresectable (unable to be removed by surgery) 

or metastatic solid tumours.
43

 

A possible biological precursor to the bryostatins, neristatin 1 (24) was isolated 

from B. neritina using bioassay guided separation and as for the bryostatins, 

neristatin 1 (24) also possesses significant antineoplastic properties against P388 

cell lines.
44

 

 

(24) 

 

Although all bryostatins have been isolated from bryozoan species, a number of 

studies have indicated that the bryostatins are of bacterial origin, from the 
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symbiotic bacterium Candidatus Endobugula sertula.
45, 46

 Bryostatins are similar 

in structure to complex polyketides that are known to be produced by bacteria. 

Results have been published that showed genetic variation in E. sertula found in 

B. neritina correlates with the variation in the types of bryostatins found in a 

given colony.
47

 It has also been found that North Atlantic B. neritina, which does 

not have the E. sertula symbiont, does not possess bryostatins.
46

 B. neritina with 

the symbiotic bacterium present have been grown in the laboratory and it was 

found that substantially less bryostatins are produced when the bryozoan is treated 

with antibiotics, with 22-60 % less bryostatin activity for treatment of 7-14 days.
45

 

Another study, which investigated the genes of E. sertula, concluded that the 

bacterium had the potential to synthesise the hypothetical compound bryostatin 0 

(25). It was postulated that all other known bryostatins could be synthesised from 

this metabolite.
46

 

 

(25) 

 

Two bromo-substituted indole alkaloids, flustramines A (26) and B (27), were 

isolated from a petroleum ether extract of the bryozoan Flustra foliacea. 

Purification of the compounds was achieved through silica gel chromatography 

and the structures were elucidated through the use of high resolution mass 

spectrometry (MS) and NMR spectroscopy.
48, 49
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   (26)     (27) 

 

Flustramine C (28), flustraminols A (29) and B (30), flustrabromine (31), 

flustramide A (32) and a bromo-substituted tryptamine, 6-bromo-Nb-methyl-Nb-

formyltryptamine (33) were also isolated from F. foliacea obtained in 

Scandinavian waters.
50-53

 A reduction reaction was performed on (28) using 

lithium aluminium hydride to give debromo-8,8a-dihydroflustramine C (34).
50

 

The first naturally occurring bromo-substituted quinoline, 7-bromo-4-(2-

ethoxyethyl)-quinoline (35) was also isolated from F. foliacea.
54

 However, the 

extract from which (35) had been isolated had come into contact with ethanol and 

therefore the 2-ethoxyethyl group on the quinoline could possibly be an artefact of 

the isolation method and may have replaced a more reactive functional group.
54  

                 

  (28)        (29) 
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  (30)      (31)   

 

   

  (32)      (33) 

 

    

  (34)      (35) 

 

Dihydroflustramine C (36) was isolated from a dichloromethane extract of 

F. foliacea, collected from the Minas Basin, Nova Scotia.
55

 The extract displayed 

strong antibacterial activity against Bacillus subtilis. Isolation of the compound 

was achieved by bioassay guided separation, using thick layer chromatography 
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and high-performance liquid chromatography (HPLC) and the structure was 

determined with the use of ultraviolet (UV) spectroscopy, high resolution MS and 

various NMR spectroscopy techniques.
55

 

 

(36) 

 

Flustramide B (37) and flustrarine B (38) were isolated from a petroleum ether 

and an ethyl acetate extract of F. foliacea, respectively.
56

 Both were separated 

using normal phase liquid chromatography (LC) and finally HPLC, to result in 

samples pure enough for NMR spectroscopic analysis.
56

 

    

  (37)       (38)  

 

An aqueous methanol extract of F. foliacea collected from Scandinavian waters, 

was shown to have significant antibacterial activity. Further purification using 

bioassay guided fractionation, yielded four new natural products, 

dihydroflustramine C N-oxide (39), flustramine D (40), flustramine D N-oxide 
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(41), and isoflustramine D (42).
57

 They were isolated based on activity against 

B. subtilis and purification was achieved using reversed phase LC and HPLC. 

   

  (39)       (40) 

   

    (41)      (42) 

 

Debromoflustramine B (43) and flustramine E (44) were isolated from a North 

Sea collection of F. foliacea.
58

 Eleven further flustramines, flustramines, F-P (45-

55) were isolated from a dichloromethane extract of F. foliacea collected from the 

Minas Basin off the New Brunswick and Nova Scotian shores. Two of these 

compounds, flustramine O (54) and P (55) are dimers and it was noted that they 

could possibly be isolation artifacts.
59

 

Isolation of deformylflustrabromine (56) was achieved by liquid-liquid extraction, 

size exclusion chromatography and HPLC of an organic extract of  a F. foliacea 

specimen collected in the southern North Sea.
60
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(43) R1, R2 = A; R3, R4, R5, R6 = -H 

(44) R1, R3, R4, R6 = -H; R2 = A; R5 = -Br 

(45) R1 = -Ac; R2 = B; R3, R4, R6 = -H; R5 = -Br 

(46) R1, R3, R6 = -H; R2 = B; R4, R5 = -Br 

(47) R1, R4, R5 = -H; R2 = C; R3 = -OH; R6 = -Br 

(48) R1, R4, R5 = -H; R2 = A; R3 = -OH; R6 = -Br 

(49) R1, R5 = -H; R2 = C; R3 = -OH; R4, R6 = -Br 

(50) R1, R5 = -H; R2 = A; R3 = -OH; R4, R6 = -Br 

(51) R1, R5 = -H; R2, R4 = A; R3 = -OH; R6 = -Br 

 

A = 

 

 B = 

 

   C = 

 

   

 

                    

  (52)      (53) 
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   (54)      (55) 

 

(56) 

 

Three novel natural products based around an indole structure, 6-bromo-2-(1,1-

dimethyl-2-propenyl)-1H-indole-1-carbaldehyde (57), N-(2-[6-bromo-2-(1,1-

dimethyl-2-propenyl)-1H-indol-3-yl]ethyl)-N-methylmethanesulfonamide (58), 

and (3aR*,8aS*)-6-bromo-3a-[(2E)-3,7-dimethyl-2,6-octadienyl]-1,2,3,3a,8,8a-

hexahydropyrrolo[2,3-b]-indol-7-ol (59) were isolated from an organic extract of 

a F. foliacea sample collected from Steingrund, North Sea, Germany and purified 

by silica gel vacuum LC, solid phase extraction and normal and reversed phase 

HPLC.
61
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  (57)      (58) 

 

 

(59) 

 

A new class of natural products, known as amathamides, were isolated from a 

Tasmanian collection of Amathia wilsoni. Amathamides A-G (60-66) are 

phenylethylamine-like compounds containing an N-methyl-pyrrolidine functional 

group along with varying halogenations from dibromination in amathamides A 

(60) and B (61), to tribromination in amathamides C-G (62-66). It has been 

hypothesised that the amino acids proline and phenylalanine are precursors to the 

amathamides, given the structural similarities.
62-65
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(60) R1, R2 = -H (61) R = -H 

(62) R1 = -Br; R2 = -CH3 (65) R = -Br 

(64) R1 = -Br; R2 = -H   

 

 

(63) 

 

 

(66) 

 

An organic extract of A. wilsoni, collected from Point Peur, southeast Tasmania, 

Australia yielded amathamide H (67), in addition to wilsoniamines A (68) and B 

(69).
66

 The previously reported amathamide C (62) was also obtained and upon 

structural determination, Carroll et al.
66

 concluded that amathamide C (62) 

contains a 2,4,6-tribromo-3-methoxyphenyl substitution pattern rather than the 

2,3,4-tribromo-5-methoxyphenyl substitution that was previously reported. The 



 

 23 

revision of the structures of amathamides D-F (63-65) was also suggested, as they 

too likely contain the 2,4,6-tribromo-3-methoxyphenyl moeity.
66

 

 

(67) 

 

     

  (68)      (69) 

 

A series of six γ-lactam containing metabolites, known as amathaspiramides, were 

isolated from a New Zealand collection of A. wilsoni, collected from the waters 

off Barrett Reef in Wellington, New Zealand. Amathaspiramides A-F (70-75) 

each contain a γ-lactam group as well as a dibrominated, methoxy-substituted 

phenyl group.
67

 They were isolated from an organic extract which was separated 

with the use of multiple LC techniques with final purification by HPLC.
67
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(70) R1 = -CH3; R2 = -H2 

(71) R1 = -CH3; R2 = =O 

(72) R1 = -H; R2 = -H2 

(73) R1 = -H; R2 = =O 

 

     

  (74)      (75) 

 

Convolutamines A-J (76-85) are a series of novel β-phenylethylamines, 

containing methoxy substitutions on the phenyl group.
68-71

 The ten natural 

products have varying degrees of halogenation, from mono- and dibromination in 

convolutamines A-C (76-78) and F-H (81-83) to tribromination in convolutamines 

D-E (79-80) and I-J (84-85). Convolutamines A-H (76-83) were isolated from 

organic extracts of Amathia convoluta (A-G (76-82) were isolated from a 

collection obtained off the coast of Florida, United States of America, while H (83) 

was isolated from a collection from the east coast of Tasmania, Australia).
68-70

 

Convolutamine I (84) and J (85) were isolated from an organic extract of Amathia 

tortusa collected in Bass Strait, Tasmania, Australia.
71
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Isolated from the same extract as convolutamine H (83), was the tribrominated, N-

methoxy substituted indole alkaloid convolutindole A (86).
68

 Convolutamine H 

(83) and convolutindole A (86) displayed significant nematocidal activity, each 

possessing greater potency than that of the commercial nematocide, levamisole. 

The bioactivity of (83) and (86) also appeared to be quite selective, with neither 

displaying any antibacterial or antifungal activity when assayed against B. subtilis 

and Saccharomyces cerevisae.
68

 

Convolutamines I (84) and J (85) also displayed considerable bioactivity. In an 

assay against T. b. brucei, a parasite known to cause the disease Human African 

trypanosomiasis, both (84) and (85) were active, with IC50 values of 1.1 μM and 

13.7 μM respectively.
71

 

 

 (76) R1, R2 = -Br; R3 = -H; R4 = -CH3; R5 = A 

 (77) R1 = -Br; R2, R3 = -H; R4 = -CH3; R5 = A 

 (78) R1, R2 = -Br; R3, R4 = -H; R5 = A 

 (81) R1 = R2 = -Br, R3 = R4 = -H, R5 = -CH3 

 (82) R1 = -Br; R2, R3, R4 = -H; R5 = -CH3 

 
(83) R1 = -OCH3; R2, R3 = -Br; R4 = -H; R5 = -CH3 

  A = 
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  (79)      (80) 

 

  

   (84)      (85) 

 

 

(86) 

 

Volutamides A-E (87-91) were isolated from a collection of A. convoluta obtained 

off the Atlantic coast of North Carolina. All of the structures are derived from 

amino acids, with phenyl substitutions reminiscent of the convolutamines. Each of 

the volutamides have been shown to be effective antifeedants towards fish and sea 
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urchins.
72

 An organic extract of A. convoluta was placed into squid-based food at 

natural concentrations. This extract-infused diet reduced feeding of the pinfish 

Lagodon rhomboides by 93 %. The isolation of the five metabolites was achieved 

by typical chromatographic techniques and their structures were determined using 

a range of methods, including high resolution fast atom bombardment mass 

spectrometry (HRFABMS), low resolution electron impact mass spectrometry 

(LREIMS) and in the case of volutamide D (90), single crystal X-ray diffraction 

(XRD) analysis.
72

 

 

 (87) R = -CH3 

 (88) R = A 

 (89) R = B 

 (91) R = C 

A = 

 

B = 

 

C = 

 
 

 

(90) 
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Six halogenated compounds, convolutamides A-F (92-97) were isolated from a 

collection of A. convoluta obtained off the coast of Florida, United States of 

America. The same species yielded the convolutamines and the volutamides. The 

convolutamides possess a dibrominated phenol as well as a γ-lactam group. The 

metabolites were isolated from an organic extract which was subjected to typical 

separation techniques, with final purification achieved by preparative thin layer 

chromatography (PTLC) and reversed phase HPLC. 
73

 

 

 (92) R = -(CH2)6CH3 

 (93) R = -CH2CH=CH(CH2)5CH3 

 (94) R = -(CH2)8CH3 

 (95) R = -CH2CH=CH(CH2)7CH3 

 (96) R = -(CH2)10CH3 

 (97) R = -CH=CH(CH2)10CH3 

 

Also isolated from a Floridian collection of A. convoluta, were convolutamydines 

A-E (98-102). Their structures resemble that of convolutindole A (86), being 

based on an indole, however they do not possess the 1-methoxy substitution but 

rather contain the more typical secondary amine in this position. The structures of 

each convolutamydine are very similar, only varying in the substitution at one of 

the indole carbons.
70, 74, 75
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 (98) R = -CH2COCH3 

 (99) R = -CH2CH2Cl 

 (100) R = -CH3 

 (101) R = -CHCH2 

 (102) R = -CH2CH2OH 

 

2,5,6-Tribromo-N-methylindole-3-carbaldehyde (103), was isolated from an 

organic extract of Zoobotryon verticillatum collected from Cádiz and Huelva off 

the Spanish coast
76

 and inhibited egg development of the sea urchin 

Paracentrotus lividus, with an IC50 value of 52 μM.
77

 

 

(103) 

 

Another indole containing metabolite, 2,5,6-tribromo-1-methylgramine (104), 

along with its N-oxide derivative (105), were isolated from Z. verticillatum 

collected from the San Diego region, California, United States of America. 

Although these compounds were not new, this was the first example of them 

being isolated as natural products.
78

 

    

  (104)      (105) 
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Four new tryptamine derived compounds, alternatamides A-D (106-109), were 

obtained from an organic extract of Amathia alternata. The samples were 

collected by self contained underwater breathing apparatus (SCUBA) off the coast 

of North Carolina, United States of America. Each of the alternatamides are 

dibrominated, with a bromo-substitution on C5 of the indole and an additional 

bromo-substitution on either C2 (alternatamides A-C (106-108)) or C6 

(alternatamide D (109)) of the indole. Alternatamides A-C were tested against the 

Gram-positive bacteria Staphylococcus aureus, S. epidermidis, S. haemolyticus, 

Bacillus subtilis, Enterococcus faecalis, E. faecium and Streptococcus pyogenes, 

with each showing moderate activity (minimum inhibitory concentration (MIC) 

values ranging from 4 μg mL
-1

 to 32 μg mL
-1

).
79

 

 
 (106) R1 = -CH3; R2, R3 = -Br 

 (107) R1 = -H; R2, R3 = -Br 

 (108) R1, R3 = -H; R2 = -Br 

 (109) R1, R2 = -H; R3 = -Br 

 

Hinckdentine A (110), a tribrominated, indole-containing alkaloid, was isolated 

from Hincksinoflustra denticulata collected from the east coast of Tasmania, 

Australia. The metabolite was obtained from an organic extract and isolated with 

the use of HPLC.
80

 Over twenty years after the publication of (110), the first total 

synthesis of the compound was reported.
81
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(110) 

 

Three novel macrocycles, chartellines A-C (111-113), were isolated from 

Chartella papyracea collect by SCUBA, off Roscoff, France. Chartelline A (111), 

a pentahalogenated alkaloid, is monochlorinated and tetrabrominated and, typical 

of all chartellines, has an unusual structure which consists of an indole, β-lactam, 

and imidazole group. The compound was isolated from a dichloromethane extract 

that was subjected to fractionation by liquid chromatographic techniques before 

final purification by PTLC. The structure of chartelline A (111) was determined 

by high resolution MS, various NMR spectroscopic techniques, and single crystal 

XRD.
82

 

Chartellines B (112) and C (113) were isolated from an ethyl acetate extract 

which had been defatted using petroleum ether. This extract was then fractionated 

by cellulose chromatography followed by recrystallisation from ethyl acetate  and 

purification by HPLC.
83

 The presence of an isolation artefact, dechloro-

3-methoxychartelline A (114), was also noted.
83
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 (111) R1 = -Cl; R2, R3 = -Br 

 (112) R1 = -Cl; R2 = -Br; R3 = -H 

 (113) R1 = -Cl; R2, R3 = -H 

 (114) R1 = -OCH3; R2, R3 = -Br 

 

Further β-lactam containing alkaloids, chartellamides A (115) and B (116), were 

isolated from a collection of C. papyracea obtained off the coast of Roscoff, 

France. The chartellamides are closely related to the chartelline alkaloid family, 

possessing similar indole, imidazole, and β-lactam groups. The metabolites were 

isolated from an ethyl acetate extract which was fractionated using cellulose 

chromatography, silica gel chromatography and HPLC. The structures of (115) 

and (116) were determined by typical spectroscopic techniques.
84

 

 

(115) R = -H 

(116) R = -Br 

 

Nine novel natural products, securamines A-G (117-123) and securines A (124) 

and B (125) were isolated from organic extracts of Securiflustra securifrons, 

collected from the Danish west coast in the North Sea.
85, 86

 The structures of the 

securamines have similarities to the chartellines, in that they each possess an 

indole, imidazole and lactam group, however the securamines possess a γ-lactam 

group rather than the β-lactam group possessed by the chartellines.
85, 86

 The 

securines contain a macrocyclic lactam ring rather than the γ-lactam substituent 
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seen in the securamines. It has been hypothesised that the securines could act as 

precursors to not only the securamines but also to the chartellines. It was also 

hypothesised by Rahbaek et al. that securamine A is a precursor to the other three 

securamines.
85

 

 

 (117) R = -H 

 (118) R = -Br 

 

 

 (119) R1 = -H; R2 = -Br 

 (120) R1, R2 = -H 

 (121) R1, R2 = -Br 

 

    

  (122)      (123) 
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 (124)  R = -H 

 (125) R = -Br 

 

Four novel eusynstyelamides have also been isolated from bryozoa. The 

metabolites eusynstyelamides D-F (126-128), as well as ent-eusynstyelamide B 

(129), an enantiomer of the previously published eusynstyelamide B (130) were 

isolated from the Arctic dwelling species Tegella cf. spitzbergensis.
87

 The 

eusynstyelamides are tryptophan-derived compounds containing two brominated 

indole groups with a γ-lactam group between the two. The previously published 

eusynstyelamides were isolated from the ascidian Eusynstyela latericius.
88

 There 

is some ambiguity in the absolute structure of ent-eusynstyelamide B (129), as its 

published structure is identical to that of eusynstyelamide B (130), however, here 

it is assumed that (129) is simply the enantiomer of (130) published by Tapiolas 

et al.
87, 88

 

 
(126) R1, R2, R3, R4 = -H 

A = 

 

(127) R1, R3, R4 = -H; R2 = A 

(128) R1, R2, R4 = -H; R3 = A 
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(129) 

 

 

(130) 

 

Bioassay guided fractionation of an aqueous extract of Caulibugula intermis 

collected from the Indo-Pacific region near Palau, led to the isolation of six new 

secondary metabolites, caulibugulones A-F (131-136). The extract was subjected 

to liquid-liquid extraction, with final isolation of the metabolites achieved by 

HPLC and structural determination via techniques including HRFABMS and 

NMR spectrometry. The six metabolites were assayed against the NCI murine 

IC-2
WT

 cell line and displayed significant activity, with IC50 values ranging from 

0.03 μg mL
-1

 for caulibugulone E (135) to 1.67 μg mL
-1

 for caulibugulone D 

(134).
89
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(131) R1 = -H; R2 = -CH3 (135) R = H 

(132) R1 = -Br; R2 = -CH3 (136) R = -CH2CH2OH 

(133) R1 = -Cl; R2 = -CH3   

(134) R1 = -H; R2 = -CH2CH2OH   

 

Two new isoquinoline quinones were isolated from an organic extract of 

Membranipora perfragilis, gathered by SCUBA at Rapid Bay in South Australia. 

The structures of the two compounds, perfragilins A (137) and B (138), closely 

resemble those of caulibugulones A-D (131-134) and were separated by typical 

chromatographic techniques, with purification achieved with gel permeation 

chromatography and PTLC.
90

 

    

  (137)      (138) 

 

The euthyroideones were isolated from an organic extract of Euthyroides 

episcopalis, which was collected by SCUBA from Fiordland, South Island, New 

Zealand. The structures of these monobrominated metabolites, euthyroideones 

A-C (139-141), are very similar, only differing in the degree and location of 

saturation.
91
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  (139)   (140)   (141) 

 

Tambjamines A-K (142-152) have been isolated from various marine sources 

including bryozoa. Tambjamines A-D (142-145) were isolated from the 

nudibranchs, Tambje abdere, T. eliora, and Roboastra tigris collected in the Gulf 

of California, United Sates of America.
92

 It was also found that the tambjamines 

were present in extracts of the bryozoan Sessibugula translucens, a prey of the 

nudibranchs, suggesting that the tambjamines were being sequestered as part of 

their dietary intake.
92

 Tambjamines E (146) and F (147) were first isolated from 

species of the phylum Chordata and tambjamines G-J (148-151) were isolated 

from the bryozoa Bugula dentata along with tambjamine E (146).
93, 94

 

Tambjamine K (152) was isolated from the nudibranch Tambja ceutae and was 

also found in B. dentata in much smaller amounts. This suggests that tambjamine 

K (152), like tambjamines A-D (142-145), is also of dietary origin.
95

 All of the 

tambjamines share a methoxy-substituted bipyrrole structure and the majority of 

them are brominated. 

A structurally related tetrapyrrole, blue pigment (153) has also been isolated from 

B. dentata. The pigment had previously been isolated from the bacterium Serratia 

marcescens and was shown to display significant antimicrobial activity.
96
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 (142) R1, R2, R3 = -H 

 (143) R1, R2 = -H; R3 = -Br 

 (144) R1 = -CH2CH(CH3)2; R2, R3 = -H 

 (145) R1 = -CH2CH(CH3)2; R2 = -Br; R3 = -H 

 (146) R1 = -CH2CH3; R2, R3 = -H 

 (147) R1 = -CH2CH2Ph; R2, R3 = -H 

 (148) R1 = -CH2CH3; R2 = -H; R3 = -Br 

 (149) R1 = -CH2CH2CH3; R2 = -H; R3 = -Br 

 (150) R1 = -CH2CH(CH3)2; R2 = -H; R3 = -Br 

 (151) R1 = -CH2CH(CH3)CH2CH3; R2 = -H; R3 = -Br 

 (152) R1 = -CH2CH2CH(CH3)2; R2, R3 = -H 

 

 

(153) 

 

Phidolopin (154), a compound based on a xanthine structure derived from purine, 

was isolated from Phidolopora pacifica collected off the coast of Barkley Sound, 

British Columbia, Canada. Its structure represents a significant addition to the 

xanthine class of compounds as it is from animal origin, whereas the vast majority 

of xanthenes that have been discovered, such as caffeine and theobromine, are 

from the Plantea kingdom. A proportion of the collection was extracted using 

organic solvents and separated further using LC and PTLC to give (154). The 

structure of (154) was determined by single crystal XRD of its p-bromophenacyl 

derivative.
97
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(154) 

 

Like phidolopin (154), other secondary metabolites that are related to natural 

products found in terrestrial species have also been found in marine bryozoa. 

β-Carboline alkaloids, a class of compounds that are found in numerous terrestrial 

species, including plants, fungi and animals,
98-100

 have been isolated from an array 

of bryozoan species, in some cases with functional groups unique to the aquatic 

animals.  

The first β-carboline alkaloids to be obtained from a bryozoan extract were 

isolated from Costaticella hastata collected from Tasmania, Australia.
101

 Of the 

four compounds isolated, three had been previously isolated from terrestrial 

species, while the other was a novel metabolite. The known compounds were 

1-methyl- (155), 1-ethyl- (156) and 1-vinyl-β-carboline (pavettine) (157), the first 

having been isolated from numerous terrestrial species, including plants and 

fungi
102

 and the other two having been isolated from the plant species Hannoa 

klaineana
103

 and Pavetta lanceolata,
100, 103

 respectively. The novel compound 

(S)-1-(1’-hydroxyethyl)-β-carboline (158) was obtained from a sample that was 

successively extracted with various organic solvents. It was isolated by typical 

chromatographic techniques and purified by PTLC.
101
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 (155) R = -CH3 

 (156) R = -CH2CH3 

 (157) R = -CHCH2 

 (158) R = -CH(OH)CH3 

 

Two more novel β-carboline alkaloids, 8-hydroxy-1-vinyl-β-carboline (159) and 

1-ethyl-4-methylsulfone-β-carboline (160) were obtained from an organic extract 

of Cribricellina cribraria from Kaikoura, South Island, New Zealand. Separation 

of the crude extract was achieved by C18 chromatography and in the case of 

1-ethyl-4-methylsulfone-β-carboline (160), reversed phase HPLC. Fractionation 

was guided by both thin layer chromatography (TLC) and bioassay against P388 

cell lines.
104

 The same publication compared the biological activities of these two 

metabolites with those of a large number of previously published β-carboline 

alkaloids. The results of these comparisons suggested that the 1-vinyl substitution 

was of particular significance for activity against the P388 cell line, with 

8-hydroxy-1-vinyl-β-carboline (159) and 1-vinyl-β-carboline (157) having IC50 

values of 100 ng mL
-1

 whereas 1-ethyl-β-carboline (156) and 1-methyl-

β-carboline (155) had IC50 values of 25 000 ng mL
-1

.
104

 Preparation of derivatives, 

some with and some without 1-vinyl substitutions, confirmed the importance of 

this group for increased potency against the P388 cell line.
104

 Synthetic β-

carboline compounds without the vinyl substitution had little or no activity in the 

assay, providing further confirmation.
104

 The same trend was observed when the 

metabolites were assayed for antiviral activity.
104

 The trend did not hold up 

however when the metabolites were assayed for antimicrobial and antifungal 

activity and it was suggested that in this case, solubility of the compounds had a 

greater correlation to MID values than the 1-vinyl substitutions.
104
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 (159) R1 = -CH=CH2, R2 = -H, R3 = -OH 

 (160) R1 = -CH2CH3, R2 = -S(O2)CH3, R3 = -H 

 

8-Hydroxy-1-vinyl-β-carboline (159) has also been isolated from an organic 

extract of a Catenicella cribraria specimen collected at Cape Vlamingh, Rottnest 

Island, Western Australia. Isolation was carried out by bioassay guided 

fractionation against LOX IMVI melanoma and U251 CNS cell lines.
105

 

Another novel β-carboline, 5-bromo-8-methoxy-1-methyl-β-carboline (161), was 

isolated from Pterocella vesiculosa collected from the Alderman Islands off the 

North Island of New Zealand. (161) was tested for bioactivity against the P388 

cell line, the bacterium Bacillus subtilis and the fungi Candida albicans and 

Trichophyton mentagrophytes and proved to be moderately potent, with an IC50 

value of 5 089 ng mL
-1

 and minimum inhibitory doses (MID) of, 2-4 μg mL
-1

, 

4-5 μg mL
-1

 and 4-5 μg mL
-1

, respectively.
106

 

 

(161) 

 

A series of alkaloids, the pterocellins, were isolated from P. vesiculosa. 

Pterocellins A (162) and B (163) were isolated from an organic extract of 

P. vesiculosa collected from the Hen and Chicken Islands off the North Island of 

New Zealand.
107

 Both compounds were assayed for antitumour, antibacterial, 

antifungal and antiviral activity and possessed relatively strong activity against the 

P388 cell line with IC50 values of 477 ng mL
-1

 and 323 ng mL
-1

 for pterocellins A 
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(162) and B (163) respectively. Both compounds also showed strong activity 

against the Gram-positive bacterium Bacillus subtilis and the fungus Tricophyton 

mentagrophytes, in addition to cytotoxicity to the BSC-1 cell line.  The structures 

of the pterocellins are reminiscent of β-carboline alkaloids but rather than being 

based around an indole structure, the pterocellins are based on a 4-pyridone group 

and a pyridine group bound together through a five membered ring. The 

similarities between β-carboline alkaloids and pterocellin alkaloids have led to the 

hypothesis that the pterocellin compounds may be biosynthetically derived from 

β-carboline alkaloids.
107

 

Further pterocellins, pterocellins C-I (164-170), were isolated from the same 

collection from which pterocellins A (162) and B (163) were obtained.
108-110

 

Pterocellins C (164), E (166), F (167), H (169) and I (170)  possessed little or no 

bioactivity against the P388 cell line, unlike pterocellins A (162) and B (163) 

which are potent inhibitors of this cell line.
107-109

 Pterocellin D (165) displayed 

moderate inhibition of the P388 cells with an IC50 value of 4 773 ng mL
-1

.
108

 

Unlike all other pterocellin alkaloids, pterocellins E (166) and F (167), are 

dimers.
108, 109

 

 
 (162) R1 = -CH2CH(CH3)2, R2 = -H, R3 = -OCH3 

 (163) R1 = -CH2Ph, R2 = -H, R3 = -OCH3 

 (164) R1 = -CH2CH(CH3)2, R2 = A, R3 = -OCH3 

 (165) R1 = -CH2CH(CH3)2, R2 = -CH(CH3)2, R3 = -OCH3 

 (168) R1 = -CH2CH(CH3)2, R2 = -H, R3 = -OH 

 

A = 
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 (169) R = -CH2CH(CH3)2 

 (170) R = -CH2Ph 

              

 

  (166)      (167) 

 

Secondary metabolites other than alkaloids have also been isolated from bryozoa. 

Murrayanolide (171) is a tetracyclic C21-C23-ene terpenoid containing a γ-lactone 

group, which was isolated from Dendrobeania murrayana collected off the east 

coast of Canada. The determination of its structure was achieved with the use of 

2D NMR spectroscopic techniques.  Murrayanolide (171) is a significant 

compound in that very few terpenes (with similar structures) have been isolated 

from marine organisms, including bryozoa and it displayed moderate inhibition of 

metalloprotease collagenase IV, with 54 % inhibition at 25 μg mL
-1

.
111
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(171) 

 

An oxygenated sterol, (22Z)-3α,24ξ,25-trihydroxycholesta-5,22-diene (172), was 

isolated from Biflustra grandicella, collected off Huang Island in the Peoples 

Republic of China. Three previously reported sterols, cholesta-5-ene-3β,7α-diol 

(173), cholesta-5-ene-3β,7β-diol (174) and 24-methylcholesta-5,22(E)-dien-

3β,7α-diol (175) were also obtained. Each of the compounds was isolated from an 

organic extract which was subjected to typical chromatographic separation.
112

 

 

 

(172) 
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(173) R1 = α -OH; R2 = -(CH2)3CH(CH3)2 

(174) R1 = β -OH; R2 =  -(CH2)3CH(CH3)2 

(175) R1 = α -OH; R2 = A 

A = 

 

 

Three new 3β,5α,6β-trihydroxysterols, (22E)-cholesta-7,22-dien-3β,5α,6β-triol 

(176), (22E,24R)-24-methylcholesta-7,22-dien-3β,5α,6β-triol (178) and 

(22E,24E)-24-ethylcholesta-7,22-dien-3β,5α,6β-triol (179) were isolated from a 

chloroform extract of the Mediterranean bryozoan Myriapora truncata. The 

specimen was collected off the coast of the Bay of Naples, Italy.
113

 

 

(176) R = A 

A = 

 

(177) R = B 

(178) R = C 

B = 

 

C = 
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Four polyketide-derived compounds, myriaporones 1-4 (179-182) were also 

isolated from M. truncata collected from the Western Mediterranean Sea. The 

separation and structural determination of myriaporones 1 (179) and 2 (180) 

proved to be much more straightforward than that of myriaporones 3 (181) and 4 

(182). This was because (181) and (182) are isomers that interconvert, reaching an 

equilibrium of 3:1 of (181):(182). As these two compounds could not be separated, 

their structures had to be determined by analysis of a mixture. Of the four 

metabolites, the equilibrium mixture of (181) and (182) proved to be the most 

bioactive against L1210 murine leukaemia cells, displaying growth inhibition of 

88 % at 0.2 μg mL
-1

.
114

 

 

  (179)      (180) 

 

 

  (181)      (182)  

 

Three disulfides, pentaporins A-C (183-185), were isolated from an organic 

extract of Pentapora fascialis prepared from a specimen collected in the 

Mediterranean Sea. Isolation of the pentaporins was achieved by bioassay-guided 

fractionation utilising the parasitic worm Trichinella spiralis, however specific 

activities of individual metabolites were not mentioned in the publication.
115

 

Isolation and structural determination of the metabolites was achieved by various 

techniques, including size exclusion chromatography and NMR spectroscopy.
115
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 (183) R1, R2 = -H 

 (184) R1 = -SO3
-
; R2 = -H 

 (185) R1, R2 = -SO3
-
 

 

Two new ceramide 1-sulfate compounds, (186) and (187) were isolated from an 

organic extract of Watersipora cucullata which was collected from Aichi 

Prefecture, Japan. The extract was subjected to various separation techniques with 

purification of the metabolites achieved by reversed phase HPLC. Both (186) and 

(187) possessed significant bioactive properties when assayed against human 

DNA topoisomerase I, with IC50 values of 0.4 μM and 0.2 μM respectively.
116

 

 
(186) R1, R2 = -(CH2)8CH3; R3 = -H 

(187) R1 = -(CH2)10CH3; R2 = -CH=CH(CH2)6CH3; R3 = -CH3 
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Another ceramide, (2S,3R,4E)-2-(14′-methyl-pentadecanoylamino)-4-octadecene-

l,3-diol (188) and a cerebroside, 1-O-(β-D-glucopyranosyl)-(2S,3R,4E)-2-

(heptadecanoylamino)-4-octadecene-l,3-diol (189), were isolated from a 

collection of Bugula neritina, obtained from Daya Bay, Shenzhen, Guangdong 

Province, Peoples Republic of China in the South China Sea.
117

 

 

(188) R1 = -H; R2 = -(CH2)12CH(CH3)2 

(189) R1 = glc; R2 = -(CH2)15CH3 

 

A novel antiangiogenic metabolite, bryoanthrathiophene (190), was isolated from 

an acetone extract of Watersipora subtorquata, collected from Tsutsumi Island, 

Fukuoka Prefecture, Japan and its structure was determined by typical 

techniques.
118

 (109) displayed significant bioactive properties, with and IC50 value 

of 0.005 µmol against bovine aortic endothelial cells.
118

 

 

(190) 

 

The number of natural products that have been isolated and characterised from 

any freshwater species of animal or plant, let alone freshwater bryozoa, is 

relatively small in comparison to marine natural products. The main reason for the 

large distinction is that of all the water on Earth, less than 3 % of it is fresh.
119

 

Most of the water that makes up that 3 % is either in groundwater or locked up in 

ice caps and glaciers. Less than 0.01 % of all water on Earth is found in 
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freshwater rivers and lakes and this has a significant effect on the amount of 

biodiversity that is found in fresh water compared to marine environments.
119

 

This lack of biodiversity is reflected in the number of freshwater bryozoa species 

compared to their marine counterparts. To date, only one order of freshwater 

bryozoa has been described, containing only five extant families, compared to 

three orders with over 100 families containing mostly marine species.
9
 

 

1.4 Bioassays 

Fractionation of biological extracts is often guided by bioassays in an attempt to 

isolate the most potent active metabolite. A wide range of assays (in vitro, in vivo 

or ex vivo) can be used, depending on the intention of the research being 

undertaken. In vitro experiments are biological assays conducted without the use 

of a whole animal, typically utilising cultures of specific cell types, whereas in 

vivo experiments are performed on whole, living organisms and ex vivo 

experiments utilise tissue outside of the organism, typically an organ or a part of 

one. 

One of the main advantages of using in vitro assay techniques in natural product 

isolation is the rapid turnover and reproducibility of results. This helps to speed up 

the isolation of active metabolites and give a good basis to compare compounds. 

Although in vitro experiments are the most common type of assay utilised in 

bioactive natural product isolation, they do have disadvantages when compared to 

in vivo experiments. As in vivo assays utilise the whole, living organism, the 

compounds of interest have the potential to interact with all of the metabolic 

processes which can lead to unpredictable side-effects which would not be evident 

in in vitro experiments. Also with in vivo experiments, there are multiple means of 

administration of the compounds of interest, such as intravenous, intramuscular, 

oral and transdermal, each of which can produce different results depending on 

the compounds being administered.
120

 

Bioassays utilised in the work outlined in this thesis were in vitro, detecting 

antitumour activity using murine P388 lymphocytic leukaemia cells and were 

carried out at both the University of Canterbury by Gill Ellis and at AgResearch, 
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at the Ruakura Research Centre in Hamilton by the author of this thesis, under the 

supervision of Megan Callaghan. The P388 assay is commonly used when trying 

to isolate natural products with antitumour properties, due to its ease of use and 

relatively rapid turnover rate (72 hours). 

The metabolised indicator used for this assay was MTS tetrazolium (3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium) which is metabolised by healthy cells to MTS formazan (Figure 5). 

This process of metabolism of MTS tetrazolium produces a colour change from 

yellow to a dark red/brown. By comparing the colour change in blank and positive 

control wells to that of wells containing active compounds, it is possible to 

determine the concentration at which 50 % of the P388 cell lines are inhibited. 

Four hours after MTS tetrazolium is added to each well of the microtitre plate, the 

plate is scanned by a plate reader at 490 nm and at 360 nm. MTS formazan 

absorbs at 490-500 nm, however any turbidity in the wells will give inaccurate 

readings. To compensate for the turbidity in the wells, a background reading is 

taken at 360 nm and this turbidity reading is then subtracted from the reading at 

490 nm to give a turbidity adjusted measurement of metabolised MTS tetrazolium. 

 

 

Figure 5: The conversion of MTS tetrazolium (yellow) to its formazan product (red) 

 

Samples are tested in eight two-fold serial dilutions and run in duplicate, starting 

at a concentration of 12 500 ng mL
-1

 to the least concentrated dilution of 

98 ng mL
-1

. 
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A typical preparation for bioassay involved diluting the fraction for bioassay to a 

known concentration in methanol and delivering a proportion of this into a clean 

weighed vial. The methanol was then evaporated from this subsample, leaving a 

known mass for bioassay, typically 1 or 0.1 mg depending on the stage of 

chromatographic separation. 
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Chapter Two: Pterocella vesiculosa 

 

2.1 Introduction 

Natural products form the basis of many pharmaceutical drugs in use today, most 

of which have been isolated or derived from organisms inhabiting terrestrial 

environments, rather than from species of marine or freshwater origins. 

Organisms which inhabit aqueous environments are greatly underutilised in the 

area of secondary metabolite research. The research in this thesis attempts to tap 

into this large and largely unexplored, resource. 

Pterocella vesiculosa is a species of bryozoan from the class Gymnolaemata. Like 

most bryozoa, it forms colonies and has a wide habitual range. P. vesiculosa was 

the source of pterocellins, A to I (162-170), as well as the brominated β-carboline 

alkaloid, 5-bromo-8-methoxy-1-methyl-β-carboline (161). The presence of 

additional pterocellin and β-carboline alkaloids has also been noted in extracts of 

this species, including pterocellins J-L (191-193).
109, 110

 The P. vesiculosa 

specimen used in this research was collected from the Alderman Islands, off the 

North Island of New Zealand. 

 

(191) R1 = -CH2CH(CH3)2; R2 = -CH2CH2CH3 

(192) R1 = -CH2Ph; R2 = -CH2CH2CH3 

(193) R1 = -CH2Ph; R2 = -CH2CH2CH2CH3 

 

Research performed by Marisa Till as part of an MSc thesis, resulted in the 

isolation of the new pterocellin alkaloids H (169) and I (170) from a proportion of 

the Alderman Islands specimen.
109

 Following on from this research, further 

investigations on metabolites from the same Alderman Islands specimen were 

carried out for an undergraduate research project by Katie Moore. A sample of the 
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P. vesiculosa specimen was extracted with dichloromethane and then halved 

(Extracts A and B) for ease of handling. Extract A was separated with C18 LC to 

give a series of fractions which were further investigated as described in this 

thesis. 

Isolation of greater amounts of pterocellins H (169) and I (170) as well as 

identification of further pterocellin and β-carboline alkaloids were principle aims 

of this research. The pterocellin alkaloids that have been previously isolated were 

easily distinguishable as distinct, rose pink to deep red spots on TLC plates.  

 

2.2 Pterocellin Alkaloids 

A proportion of the crude dichloromethane extract (Extract B) that was previously 

prepared by Katie Moore, was attained for further investigation. This particular 

extract was salvaged from a failed C18 column and was first cleaned of C18 

particulates by filtering the extract through a Büchner funnel and washing with 

methanol and dichloromethane. The extract was then fractionated by reversed 

phase C18 chromatography. 

Fractions from the C18 column were analysed by TLC and compared to the TLC 

results of Extract A fractions and a pterocellin A (162) reference sample. 

Fractions which appeared to contain pterocellin-like compounds and those that 

had similar TLC results were combined and separated further by size exclusion 

chromatography. TLC analysis of fractions from one of these columns resulted in 

the identification of three late eluting fractions which contained pink metabolites 

with relatively high Rf values (approximately 0.7 with 5:1 ethyl acetate:methanol 

on silica). The late elution of these metabolites during size exclusion 

chromatography (LH-20) would suggest they are compounds of small mass and/or 

contain aromatic substituents. These fractions (AA1-42.8 to 10, Appendix: A1.2) 

were combined and separated further by size exclusion chromatography. TLC of 

the resulting fractions suggested the presence of two pterocellin-like metabolites, 

indicated by pink spots on the TLC plate with Rf values of ~ 0.75 and ~ 0.2. 

Although the purpose of the size exclusion column was to isolate the metabolite 

with the Rf value of ~ 0.75, TLC analysis of the column fractions indicated that 

separation of individual compounds had not been achieved. 
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To gather more information on the metabolite composition of these fractions, they 

were subjected to analysis by LCMS. Over the fourteen fractions assessed, there 

were eleven prominent ions observed (Appendices: A1.6 to A1.8), along with 

multiple minor ions, two of which, by interpretation of their isotope patterns, were 

brominated (Table 1). Included in the eleven prominent ions was the m/z 377.1 

ion, an ion which is indicative of the [M+H]
+
 ion of pterocellin I (170). Of the 

eleven metabolites, the m/z 243 and 411 ions most closely correlated with the 

~ 0.2 and ~ 0.75 Rf spots seen in TLC analysis. Unfortunately all fractions 

assessed were still complex mixtures of metabolites, which was also suggested by 

TLC analysis. 

 

Table 1: Significant ions observed in AA1-58 fractions, including minor 

brominated m/z 277/279 and 362/364 ions 

Observed Ions 

(m/z) 

Time of elution on LCMS 

(minutes) 
  

183 11.8 

229 10.8 

243 13.1 

257 10.4 

261 10.1 

333 12.7 

377 11.2 

379 11.5 

411 13.4 

501 15.4 

535 16.3 

277/279 11.0 

a
 362/364 (384/386) 11.8 

a
 [M+H]

+
 ([M+Na]

+
) 

 

Although pterocellins generally display a distinctive UV spectrum with several 

prominent adsorptions (Figure 6) that can help identify them at the early stages of 

separation, the UV chromatograms of the above fractions showed no significant 

features. 
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Figure 6: UV spectrum of pterocellin B 

 

An attempt was made to obtain molecular formulae of the significant ions with the 

use of high resolution electrospray ionisation mass spectrometry (HRESIMS), 

however the complex mixtures of the fractions gave poor ionisation of the 

metabolites of interest and no reliable molecular formulae were obtained. 

During the separation process, it was noted that a number of fractions contained 

metabolite/s that would not move from the baseline of the TLC plate using the 

standard solvent scheme (5:1, ethyl acetate:methanol on silica), indicating the 

presence of relatively polar compound/s. The colour of the baseline spot was not 

too dissimilar to the characteristic red of pterocellin alkaloids. To obtain better 

differentiation between compounds making up the polar spot, the development of 

a new solvent scheme was needed. After trying various solvent combinations, the 

best results were achieved using a mixture of ethanol and methanol (1:1). This 

resulted in the elevation and resolution of the polar metabolites and was still 

sufficiently non-polar to not dissolve the silica on the TLC plate. The new solvent 

method is a significant development, since previously, the most polar metabolites 

were not observable with TLC and were not considered targets for further 

separation because of the lack of resolution of metabolites. 

After using the new solvent method, it was possible to conclude that the baseline 

spot on the original TLC plate was comprised of at least three compounds, two of 

which displayed pink spots (Rf values of ~ 0.13 and ~ 0.1) on the TLC plate 

similar to known pterocellins, and the third being a shade of orange (Rf value of 

< 0.1). 

A total of six fractions (AA1-38.3 to 4, AA1-40.3 to 4 and AA1-42.3 to 4; 

Appendix: A1.3) were identified containing compounds with similar low Rf 
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values. Subsamples of each were prepared for LCMS analysis with diode array 

detection (DAD) to determine any similarities in their metabolite compositions, as 

well as to detect potential pterocellins by analysis of UV spectra. LCMS analysis 

of the fractions revealed that each displayed similar chromatograms. However, the 

chromatograms also indicated that each of the fractions were still quite complex 

mixtures and analysis of the UV chromatograms did not reveal the presence of 

any significant pterocellin-like metabolites. Based on this information, the six 

fractions were combined into two samples which were then separated further by 

size exclusion chromatography. TLC analysis of the fractions from the size 

exclusion columns (AA1-75.1 to 29 and AA1-78.1 to 28; Appendix: A1.4) 

indicated further purification of the polar compounds, however it also suggested 

that the isolation of individual compounds was unlikely due to the presence of 

multiple spots in each fraction and low fraction masses.  

LCMS analysis with DAD of the same fractions confirmed what was seen on TLC 

plates, that, although the fractions were further purified, isolation of specific 

compounds was not achieved. Examination of the total ion chromatogram (TIC) 

from each of the fractions indicated the presence of ten prominent ions 

(Appendices: A1.9 and A1.10). Five of the ions had retention times similar to 

pterocellins A (162) and B (163) and on interpretation of chromatograms, two of 

the ions were presumed to be (162) and (163), with mass to charge ratios of 285 

and 319, respectively. Other ions observed in the TIC eluted earlier, as would be 

expected of more polar compounds (illustrated in Table 2) and although it was 

expected to find polar compounds with similarities to pterocellin alkaloids, none 

of these metabolites displayed a UV chromatogram characteristic of the 

pterocellins. Small traces of the m/z 377 ion were noted however, the same mass 

to charge ratio typical of the pterocellin I (170) molecular ion. Also found within 

these fractions was the m/z 379 ion, with the same retention time as the m/z 379 

ion found in AA1-58 fractions. 
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Table 2: Metabolites observed from polar fractions (AA1-75 and AA1-78) 

Compound 
Major Ion

 

(m/z) 

Time of elution 

(minutes) 

   

Unknown 317 9.2 

Unknown 345 9.5 

Unknown 275 10.0 

Unknown 476 10.0 

Unknown 379 11.5 

Unknown 557 13.9 

Unknown 675 13.7 

Unknown 501 15.4 

Pterocellin A 285 14.4 

Pterocellin B 319 15.5 

 

Of the seven unknown ions, those of most interest were ions with odd mass to 

charge ratios, indicating an even number of nitrogens, typical of the pterocellins. 

Two of these ions, m/z 345 and 379, were of particular interest as the mass to 

charge ratios were comparable to those displayed by monomer pterocellins and 

were observed in fractions which correlated with polar, pink TLC spots. In 

addition, the mass difference between them was 34 Da, the same as the mass 

difference between pterocellins A (162) and B (163). 

All eight unknown metabolites were then subjected to tandem MS analysis to 

gather further information on their structures. The m/z 345 and 379 ions, each lost 

60 Da to yield ions with m/z of 285 and 319 respectively, the same m/z ratio of the 

[M+H]
+
 ions of pterocellin A (162) and B (163) respectively. This indicated that 

the two compounds are probably related to each other and also likely related to 

pterocellins A (162) and B (163). The m/z 345 ion also produced a minor m/z 271 

ion, a loss of 74 Da. The overall loss of 74 Da was mirrored in the MS
3
 spectrum 

of the m/z 379 ion with the presence of a m/z 305 fragment ion, further confirming 

a relationship between the two metabolites. 

The m/z 557 ion was also of significant interest as it eluted at a similar time to 

other pterocellins and its mass would closely match a possible dimer of a simple 
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pterocellin. Tandem MS analysis of this ion however did not produce 

fragmentation patterns which would be expected of a dimer, such as the cleaving 

of the dimer into two monomers, but resulted in a m/z 513 fragment, a loss of 

44 Da. This ion was further fragmented, with the resulting ions illustrated in 

Table 3. 

 

Table 3: MS
3
 fragments from m/z 513.1 ion of AA1-78 

Major Ion
 

(m/z) 

MS
2
 ion 

(m/z) 

MS
3
 fragments 

(m/z) 

Mass Loss 

(Da) 

    

557.1 513.1 

495.1 18 

471.1 42 

411.1 102 

285.1 228 

 

The initial loss of 44 Da from the m/z 557 ion could possibly be attributed to the 

loss of CO2, indicating the presence of a carboxylic acid group. The loss of 18 Da 

from the 513.1 fragment could be attributed to the loss of H2O, indicating the 

presence of an hydroxyl group. The formation of a m/z 285.1 ion which is typical 

of the [M+H]
+
 ion of pterocellin A (162), could indicate a possible structural 

relationship between the two. Although tandem MS evidence of the m/z 557 ion 

suggests possible substituents, it is not possible to speculate on an absolute 

structure for the metabolite. 

Further investigation of the m/z 345 and 379 metabolites was undertaken by 

HRESIMS in an attempt to obtain molecular formulae. Poor ionisation of 

metabolites of interest led to no molecular formulae with reasonable errors. The 

m/z 379 ion was not present in the mass spectrum and the m/z 345 ion gave a 

molecular formula of C20H29N2O3 with a relatively large error of 8.9 ppm. 

Information from tandem MS experiments indicated that the two metabolites are 

structurally related and the presence of m/z 285 and 319 fragments indicate they 

are also structurally related to the pterocellins. Based on this information and 

interpretation of the molecular formula from the m/z 345 ion, the structures of the 

m/z 345 and 379 ions have been hypothesised (Figure 7). 
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Figure 7: Possible structures of metabolites responsible for m/z 345 and 379 ions 

with tandem MS fragmentations illustrated 

    

The trihydroxy substitutions, if present, could explain the polarity of the two low 

Rf pinks spots present on TLC. These structures are highly speculative and would 

require further evidence to confirm their presence. 

HRESIMS was also attempted on the m/z 557 ion, however, as the fraction 

containing the metabolite was still quite a complex mixture, the results of this 

experiment were inconclusive. 

Two fractions (AA1-38.5 and 6; Appendix: A1.3) which appeared to containing 

pterocellin A (162) and/or B (163) by TLC were chosen in an attempt to obtain a 

UV chromatogram of either metabolite for comparative purposes. LCMS analysis 

of these fractions revealed the presence of the m/z 319 ion in both fractions, 

although only in trace amounts in one (AA1-38.5).  The m/z 319 ion represents the 

[M+H]
+
 ion of pterocellin B (163) and the UV chromatogram confirmed its 

presence. Further analysis of the chromatograms revealed significant quantities of 

a metabolite with a m/z 343 ion and two with m/z 377 ions, eluting with the 

standard solvent gradient at 10.5 minutes, 11.2 minutes and 12.4 minutes 

respectively. The m/z 343 molecular ion is indicative of pterocellin H (169) and 

the m/z 377 molecular ion is indicative of pterocellin I (170). The results of this 

analysis indicate the possible presence of pterocellin H (169), eluting at 10.5 

minutes and pterocellin I (170) eluting at either 11.2 or 12.4 minutes. Analysis of 

minor peaks in the same LCMS chromatograms also revealed the presence of 
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three brominated m/z ions, 535/537, 417/419 and 303/305 (Appendix: A1.12), 

however considering the low intensities of these ions and the general ease of 

ionisation of brominated metabolites, it is likely that the abundance of these 

compounds is very low. 

HRESIMS of AA1-38.5 showed a strong peak at m/z 377 which gave a molecular 

formula of C22H21N2O4 with an error of 1.5 ppm, the same molecular formula as 

pterocellin I (170). The presence of only one peak in the HRESIMS presumably 

indicates that the two m/z 377 metabolites are structural isomers. HRESIMS of the 

m/z 343 peak resulted in a large error of 46.3 ppm for the molecular formula of 

pterocellin H (169). 

Isolation of each of these metabolites would have been of high priority, although 

time constraints resulted in no further purification being achieved. 

 

2.3 β-Carboline Alkaloids 

The β-carboline alkaloid, 5-bromo-8-methoxy-1-methyl-β-carboline (161) has 

previously been isolated from P. vesiculosa (as a novel compound) and at the time, 

evidence of the presence of two more β-carboline alkaloids was also noted.
109

 The 

other two alkaloids present were suspected to be the demethoxy- and debromo- 

analogues of 5-bromo-8-methoxy-1-methyl-β-carboline (161) based on UV and 

LCMS data.
109

 Analysis of other extracts of P. vesiculosa at the University of 

Waikato has led to the partial characterisation of another four β-carboline 

alkaloids, 1-ethyl-7-hydroxy-, 7-hydroxy-1-propyl-, 7-bromo-1-ethyl- and 

7-bromo-1-propyl-β-carboline (194-197).
110

 As a result of this work, isolation of 

greater amounts of these and any other β-carboline alkaloids present was of 

significant interest. 
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 (194) R1 = -CH2CH3; R2 = -OH 

 (195) R1 = -CH2CH2CH3; R2 = -OH 

 (196) R1 = -CH2CH3; R2 = -Br 

 (197) R1 = -CH2CH2CH3; R2 = -Br 

 

A dichloromethane extract of P. vesiculosa was subjected to separation by C18 

reversed phase flash LC. Fractions from this column were analysed by TLC and it 

was noted that a number of fractions contained yellow spots with Rf values of 

approximately 0.5, as well as spots which appeared fluorescent under 254 nm 

light. These characteristics are typical of those produced by some β-carboline 

alkaloids. The fractions containing these compounds were combined to give two 

samples that were further separated with the use of size exclusion LC. Fractions 

from each of the samples were again assessed by TLC.  

Upon analysis of the fractions, it was noted that six fractions contained similar 

spots, reminiscent of β-carboline alkaloids. These fractions (AA1-34.8 to 10 and 

AA1-36.8 to 10; Appendix: A1.5) were analysed by LCMS which confirmed the 

presence of β-carboline alkaloids, since a number of metabolites yielded a typical 

UV chromatogram. The presence of up to eight different β-carboline alkaloids 

across the six fractions, some of which were brominated, was indicated, however 

there was little separation of the compounds between individual fractions. 

Seemingly included among these alkaloids were the previously characterised 

5-bromo-8-methoxy-1-methyl-β-carboline and the two previously reported, 

demethoxy- and debromo- derivatives, based on the presence of m/z 291/293, 

261/263 and 213 ions and observed UV chromatograms. 

The six fractions were then combined based on LCMS results and sample size, to 

give two samples that were separated again using size exclusion chromatography 

(Appendix: A1.5). LCMS analysis of the fractionated samples revealed that the 

compounds of interest were further purified but not individually isolated. Across 

the fractions, a total of eleven possible β-carboline alkaloids (Appendices: A1.13 
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and A1.14) were indicated by ananlysis of UV chromatograms (Figure 8), 

including 5-bromo-8-methoxy-1-methyl-β-carboline (m/z 291/293 molecular ion) 

and the previously reported demethoxy- counterpart, with [M+H]
+
  ion of m/z 

261/263. In addition to these alkaloids, the m/z 213 ion was observed, which 

would correspond to either of the two previously noted metabolites, 8-methoxy-1-

methyl-β-carboline or 1-ethyl-7-hydroxy-β-carboline (194), as well as the m/z 227 

and 275/277 ions which correspond to the previously noted alkaloids 7-hydroxy-

1-propyl-β-carboline (195) and 7-bromo-1-ethyl-β-carboline (196) respectively. 

Also present were the m/z 277/279 and 303/305 ions, seen in previously analysed 

fractions (Appendices: A1.8 and A1.12, respectively), however at much high 

concentrations here. The m/z 277/279 ion could correspond to the demethyl- 

counterpart of 5-bromo-8-methoxy-1-methyl-β-carboline (161). 
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Figure 8: UV chromatograms of possible β-carboline alkaloids from the fractions 

AA1-94 and AA1-114. 

a) m/z 261/263  e) m/z 275/277  i) m/z 277/279 

b) m/z 291/293  f) m/z 303/305  j) m/z 289  

c) m/z 337/339    g) m/z 227  k) m/z 213 

d) m/z 305/307  h) m/z 255      

 

The presence of four minor metabolites (Table 4) was also noted and analysis of 

isotope patterns indicated that each was brominated (Appendix: A1.15). Although 

these minor metabolites would be compounds of interest, the relative abundance 

of each made further investigation during this research project impractical. 
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Table 4: Minor brominated metabolites from late eluting fractions of AA1-94.28 

to 30 

Brominated Ions
 

(m/z) 

Time of elution 

(minutes) 

  

353/355 18.8 

455/457 18.9 

552/554 15.2 

582/584 15.3 

 

Subsamples of two β-carboline alkaloid containing fractions were prepared for 

HRESIMS analysis, with the intention of obtaining molecular formulae for the 

eleven potential alkaloids. The fractions chosen, together contained each of the 

possible β-carboline alkaloids of interest. HRESIMS data from the fractions gave 

molecular formulae for eight of the eleven compounds, each with reputable errors 

ranging from 0.61 ppm to 4.43 ppm. The molecular formulae generated by 

HRESIMS (Table 5), closely match those of hypothesised structures for the eight 

compounds. 

 

Table 5: Possible β-carboline alkaloid molecular formulae with errors 

Mass [M+H]
+
  

(m/z, error in ppm) 

Molecular Formula  

[M+H]
+
 

  

227.1169 ± 4.43 C14H15N2O 

255.1489 ± 1.32 C16H19N2O 

261.0011 ± 4.23 C12H10N2
79

Br 

275.0177 ± 0.61 C13H12N2
79

Br 

289.1333 ± 0.98 C19H17N2O 

303.0487 ± 1.46 C15H16N2
79

Br 

305.0275 ± 2.99 C14H14N2O
79

Br 

337.0320 ± 4.27 C18H14N2
79

Br 

 

To determine possible functional groups present in the β-carboline alkaloids, each 

metabolite was subjected to tandem MS analysis. The results of the tandem MS 
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analyses are summarised below in Table 6, including suspected mass fragments. 

For comparative purposes, tandem MS was also performed on the molecular ion 

of 5-bromo-8-methoxy-1-methyl-β-carboline (161), m/z 291. 

 

Table 6: Summary of tandem MS results from β-carboline alkaloid containing 

fractions 

[M+H]
+
 ion 

(m/z) 

MS/MS fragments 

(m/z) 

Theorised Fragmentations 

[M – X + H]
+
 

   

291 276 [M – CH3 + H]
+
 

227 182 [M – C2H5O + H]
+
 

255 

240 [M – CH3 + H]
+
 

212 [M – C3H7 + H]
+
 

261 182 [M – 
79

Br + H]
+
 

275 

260 [M – CH3 + H]
+
 

196 [M – 
79

Br + H]
+
 

289 

274 [M – CH3 + H]
+
 

211 [M – C6H5 + H]
+
 

303 

260 [M – C3H7 + H]
+
 

182 (minor ion) [M – C3H7Br + H]
+
 

305 290 [M – CH3 + H]
+
 

337 259 [M – C6H5 + H]
+
 

 

From the analysis of TLC, UV, LCMS, tandem MS, and HRESIMS data, the 

presence of eight β-carboline alkaloids has been observed and their molecular 

formulae postulated. Based on this information and knowledge of typical 

substitution patterns in β-carboline alkaloids from this species, the structures of 

the eight metabolites have been hypothesised and are illustrated in Figure 9, along 

with the explanations of fragmentations found in tandem MS experiments above. 
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In the case of the m/z 227 molecular ion, it has been hypothesised that, unlike the 

other oxygen-containing metabolites, it does not contain a methoxy substitution as 

there was no evidence of the characteristic loss of 15 Da. This further confirms 

the likelihood that this metabolite is the previously noted compound 7-hydroxy-

1-propyl-β-carboline (195). With m/z 255 and 303 ions, an isobutyl group has 

been suggested, although an n-butyl substitution is also possible. It should be 

noted that in the structures below, fragmentation has been explained with 

β-cleavage of the side chains from the core β-carboline structure, as seen in ion 

m/z 227, rather than α-cleavage; however fragmentations observed in tandem MS 

spectra could also be explained with α-cleavage with an additional methyl 

substitution elsewhere on the β-carboline core. 

 

  

a) m/z 291/293 metabolite b) m/z 227 metabolite 

 

 

 

 
 

c) m/z 255 metabolite d) m/z 261/263 metabolite 
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e) m/z 275/277 metabolite f) m/z 289 metabolite 

  

g) m/z 303/305 metabolite h) m/z 305/307 metabolite 

 

i) m/z 337/339 metabolite 

 

Figure 9: Hypothesised structures of β-carboline alkaloids with tandem MS 

fragmentations illustrated 

 

Of the nine β-carboline alkaloids above, those illustrated in figures 9a,
106, 109

 9b,
110

 

9d,
109

 9e
110

 and 9g
110

 had been previously reported from this species and those in 

figures 9c, 9f, 9h and 9i would appear to be novel natural products regardless of 

the position of their substituents, determined by an exact chemical structure search 

with the SciFinder database.
121
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2.4 Future Research 

Due to time constraints associated with this project, a number of areas of interest 

remain unexplored and could form the basis of future research. Isolation of greater 

amounts of pterocellin H (169) and I (170), would still be a priority, along with 

isolation and characterisation of the β-carboline alkaloids. Additional information 

on the fragmentation patterns of the β-carboline alkaloids could also be easily 

obtained to further confirm theorised structures. By performing tandem MS on 

both isotopes simultaneously, confirmation could be made on the loss of bromine 

in relevant metabolites. Identification of new pterocellin compounds and the polar 

metabolites is another area of research which needs to be further explored. The 

structures of the m/z 345 and 379 ions also need further investigation to confirm 

their relationship to the pterocellins. Investigation of new pterocellin compounds 

would be greatly assisted with optimisation of the UV detector, in order get UV 

chromatograms with sufficient intensities to identify metabolites of lower 

concentrations. 

Another area of potential future research is the isolation and characterisation of 

the minor monobrominated metabolites, yielding ions with m/z of 353/355, 

362/364, 417/419, 455/457, 535/537, 552/554 and 582/584. Isolation of these 

metabolites however, may be problematic and would likely require an extract 

obtained from greater amounts of starting material, when considering their low 

intensities and the general ease of ionisation of brominated metabolites. 
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Chapter Three: Plumatella repens 

 

3.1 Introduction 

Plumatella repens is a species of bryozoan that belongs to the class 

Phylactolaemata, which consists of species that live exclusively in freshwater 

environments.
9
 There is no known information detailing the secondary 

metabolites of P. repens (or any other freshwater species). On account of this lack 

of information and the very high P388 activity in screening of the crude extract 

(22 443 ng mL
-1

), this species was chosen as an ideal candidate for research. The 

particular specimen used for this research was obtained from the Dunedin City 

Council, where it was growing prolifically in a reservoir at a water treatment and 

storage plant.
122

 

Work on a methanol/dichloromethane extract of this specimen had been 

previously undertaken in a pilot study in the Chemistry Department at the 

University of Waikato by summer research student Ashleigh Richards. Initial 

bioassay of the crude extract indicated considerable activity against the murine 

P388 lymphocytic leukaemia cell line with an IC50 value of 22 443 ng mL
-1

. The 

original extract was separated into two proportions (Extracts A and B) as part of 

the pilot study. Extract A was further divided into two separate extracts (Extract 

A1 and Extract A2) for ease of handling. It was noted that Extract B had become 

contaminated by solvent which had come into contact with a rubber seal, so it was 

kept separate. Each of the extracts was fractionated further by C18 

chromatography and subsamples were prepared from each fraction for bioassay 

(Appendices: A2.3, A2.4 and A3.1) against the P388 cell line. In each case, the 

activity peaked in fractions seven to ten, eluting with methanol, 

methanol/dichloromethane. As bioassay facilities were not available at this stage 

of the pilot study, six Extract A1 fractions were fractionated further by size 

exclusion chromatography in an attempt to ensure the inclusion of bioactive 

fractions. This resulted in six series of fractions (Columns A-F), each of which 

were eventually assayed against the P388 cell line, the results of which indicated a 

range of activity (Appendix: A2.2). Of the six series of fractions, three (Columns 

D-F) showed significant biological activity. The three series that were active, in 
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each case, had activity which peaked at fraction three with IC50 values of 1512, 

1630, and 1916 ng mL
-1

, from Columns D to F respectively. Ashleigh attempted 

to isolate the metabolites responsible for this activity, however due to the 

relatively short time period available, identification of specific metabolites 

responsible for the activity was not determined.  

Isolation of the compounds responsible for the bioactivity of P. repens was the 

primary focus of the investigation, however determination of the sterol 

composition was also undertaken. 

 

3.2  Investigation of Bioactive Metabolites 

To isolate the active metabolites, fraction three from each of Columns E and F 

were combined for size exclusion chromatography. To prevent overloading of the 

LC column, fraction three from Column D was excluded from the combination 

procedure. The odd numbered fractions from size exclusion chromatography were 

assayed against the P388 cell line. These results appeared to indicated the 

presence of at least two active metabolites, as the bioactivity peaked twice, once at 

fraction three (IC50 value of 866.2 ng mL
-1

) and again at fraction eleven (IC50 

value of 133.2 ng mL
-1

), as depicted in Table 7. 

 

Table 7: IC50 values of odd numbered AA1-16 fractions against the P388 cell line 

Fraction 
IC50 values  

(ng mL
-1

) 

  

AA1-16.3 866.2 

AA1-16.5 2537.3 

AA1-16.7 >12500 

AA1-16.9 285.6 

AA1-16.11 133.2 

AA1-16.13 634.0 

AA1-16.15 >12500 

AA1-16.17 >12500 

AA1-16.19 >12500 

AA1-16.20 >12500 
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Fractions from this column (AA1-16.2 to 15) were subjected to analysis by LCMS 

to determine whether a peak in activity would correlate with specific metabolites 

in the TIC. Over the fourteen fractions, nine major ions (Appendices: A2.6 to 

A2.8) were observed (Table 8). Unfortunately no ions appeared to correlate well 

with the observed P388 activity. 

 

Table 8: Ions observed from MS analysis of AA1-16 fractions 

Observed Ions
 

(m/z) 

Time of elution 

(minutes) 
  

368.5 36.3 

482.3 25.3 

496.3 24.3 

512.5 30.5 

526.5 30.7 

550.7 37.1 

578.9 28.3 

803.1 37.6 

 

Ions with m/z of 512.5, 482.3 and 803.2 were chosen for tandem MS analysis, as 

they appeared to most closely correlate with P388 activity. It was concluded from 

the fragmentation patterns of the m/z 512.5 ion that it likely contained a long 

chain hydrocarbon, as it displayed sequential losses of 14 Da, typical of long 

chain organic molecules.
123

 Results of tandem MS analysis of m/z 482.3 and 803.2 

ions, including theorised mass fragments are illustrated in Table 9. 
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Table 9: Tandem MS analysis of m/z 482.3 and 803.2 ions from AA1-16 fractions 

Observed ions 

(m/z) 

MS/MS 

fragments 

(m/z) 

Theorised 

Fragmentations 

[M – X + H]
+
 

   

482.3 

464.3 [M – H2O + H]
+
 

405.3 [M – C6H5 + H]
+
 

184.0  

803.2 413.3  

 

It was concluded from the tandem MS anaylsis that the m/z 482.3 metabolite 

likely contained a hydroxyl group, indicated by the loss of 18 Da and also a 

phenyl group which would explain the loss of 77 Da. The m/z 184.0 and m/z 413.3 

fragments elude explanation without further information on the metabolites. In an 

attempt to explain the m/z 413.3 ion derived from the m/z 803.2 metabolite, MS
3
 

and MS
4
 experiments were undertaken, the results of which are summarised in 

Table 10. 

 

Table 10: MS
n
 fragments from the m/z 803.2 ion 

Observed ion 

(m/z) 

MS/MS fragment 

(m/z) 

MS
3
 fragment 

(m/z) 

MS
4
 fragments 

(m/z) 

    

803.2 413.3 301.1 
189 

171 

 

The MS
n
 analysis of m/z 803.2 indicated the presence of a repeating unit of 

112.2 Da, with the m/z 413.3 and 301.1 fragments each losing this mass. This loss 

could be explained by an unsaturated ester side chain (Figure 10) with proton 

transfer, similar to the loss of the octa-2,4-dienoate side chains in the FAB mass 

spectra of bryostatin 1 (4) and 3 (6).
30

 This however, is highly speculative and the 

observed ions could also be explained by the loss of many other structural 

combinations such as a δ-lactam, a proline-like group (Figure 10) or loss of both 

sequentially. 
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Figure 10: Substituents potentially responsible for the loss of 112.2 Da 

 

Although this information goes some way in determining possible substructures of 

metabolites, none of these above ions correlated well with the observed biological 

activity. Due to the ambiguity in the structural analysis of the molecular ions, it 

was decided that the next step forward would be to assay the even numbered 

fractions. In contrast to the activity of the odd numbered fractions, results of these 

assays indicated only a single peak in activity, at fraction ten, with an IC50 value 

of 1531 ng mL
-1

. The activity also seemed to have decreased significantly 

compared to that of the odd numbered fractions. Analysis of the assay results from 

the even numbered fractions revealed the possibility of a concentration error, as 

they seemed to mismatch the results from the odd numbered fractions by a factor 

of ten (Table 11). The preparation of fresh biological assay samples of the even 

numbered fractions was considered, however the facilities at the University of 

Canterbury to which the samples were sent for biological assay no longer 

processed such samples. Finding another laboratory which could assess the 

fractions was initially unsuccessful, so it was decided that given the earlier 

reproducible chromatographic behaviour of the bioactivity, continuation of the 

P. repens project would involve purification without the use of biological assay. 

Fractionation of more crude samples would proceed, guided by the methods used 

in previous LC columns. 
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Table 11: IC50 values of AA1-16 fractions against the P388 cell line 

Fraction 
IC50 values 

(ng mL
-1

) 

  

AA1-16.2 >12500 

AA1-16.3 866.2 

AA1-16.4 >12500 

AA1-16.5 2537.3 

AA1-16.6 >12500 

AA1-16.7 >12500 

AA1-16.8 >12500 

AA1-16.9 285.6 

AA1-16.10 1531 

AA1-16.11 133.2 

AA1-16.12 2223 

AA1-16.13 634.0 

AA1-16.14 >12500 

AA1-16.15 >12500 

AA1-16.17 >12500 

AA1-16.19 >12500 

AA1-16.20 >12500 

 

A series of C18 fractions from Extract A2 were obtained. Three fractions from the 

reversed phase column were subjected to separation by size exclusion LC. This 

resulted in three series of fractions (Columns G-I; Appendix: A2.4) which, by 

comparison to separation procedures, were equivalents of the earlier run Columns 

D, E and F. As activity peaked in fraction three of each of Columns D, E and F, it 

was decided to combine fractions two, fractions three, and fractions four, from 

columns G to I. This was in an effort to ensure the inclusion of the active 

proportions of each column. A subsample of each of these combined fractions was 

prepared for future bioassay analysis. The three combined samples were then 

subjected to further separation by size exclusion chromatography, resulting in 

three series of fractions (Columns J-L) (Appendix: A2.5). The fractions from 
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these columns were now method equivalents of the even and odd numbered 

fractions that were assayed previously. 

At this stage, it was essential to get bioassay results of the fractions to determine 

the location of the original activity and to see if it was comparable to that of the 

fractions assayed earlier. After considerable effort to find facilities to process the 

P. repens samples, it was arranged with AgResearch, Hamilton for the author of 

this thesis to use their facilities to assay the samples, under the supervision of 

Megan Callaghan. 

The assay protocol that was used for analysis of the samples at the University of 

Canterbury was acquired and used as a reference method for the first samples run 

at the AgResearch facilities. The first samples run were AR1-9.6 and AR1-16.7, 

chosen as they had previously been tested at the University of Canterbury and had 

known IC50 values of 43 034 ng mL
-1

 and 10 064 ng mL
-1

 respectively. It was 

intended to assay these samples as a practice run, as well as to compare the results 

with those previously obtained, to determine the efficiency of the method used at 

AgResearch. Each of the samples was run following the method outlined in 

Chapter One, subsection 1.4.  

The results from the assay indicated that activity was relative to increasing 

concentration, however in each of the samples, the activity was much lower than 

expected. Each sample had percentage inhibitions greater than 50 % at 500 000 ng 

mL
-1

, but each fraction was significantly less active than the IC50 values 

determined in Christchurch for the same samples, with AR1-9.6 having an IC50 

value of 315 500 ng mL
-1

 and AR1-16.7 an IC50 value of 379 315 ng mL
-1

, 

compared to 43 034 ng mL
-1

 and 10 064 ng mL
-1

, respectively. The reason for the 

unexpected results was put down to errors in plate preparation and degradation of 

the triton X-100 standard. The time constraints associated with this project meant 

that reanalysis of the same samples was impractical. Rather than reanalysing the 

previous samples, fractions that were more significant to the continuation of the 

project would be assayed and the triton X-100 standard would be used to 

determine the effectiveness of the assay procedure.  

The next samples to be tested were the combined samples from Columns G-I, as 

well as two other fractions (AA1-62.2 and AA1-62.3, Appendix: A2.5) from 
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Column J. Before preparation of the microtitre plate, it was noted that the growth 

of the P388 cells was much less than what would be expected. The decision was 

made to continue with the assay but with a smaller number of cells per well (2 000, 

rather than the 5 000 cells which was used at the University of Canterbury). This 

assay gave inconsistent results, with some survival rates of the most concentrated 

dilutions being more than the corresponding less concentrated dilutions, including 

those of the triton X-100 standard. This was attributed to the low cell count per 

well of 2 000.
124

  

It was a little over a month before the AgResearch facilities were again available 

and the P388 cell lines were at an acceptable concentration for use. Over a period 

of a month, a bioassay method was developed, as test plates were run using triton 

X-100 and pterocellin A (162) as reference standards. The method developed 

required 10 000 cells per well in order to obtain accurate results. This new method 

was verified by triton X-100 and (162) reference samples. Using the new method, 

the IC50 value over four repetitions of (162) was between 391 and 195 ng mL
-1

, 

which is not too dissimilar to its previously reported IC50 value of 477 ng mL
-1

 

(Table 12). Also noted in this experiment was the presence of an edge effect in the 

least concentrated row, this led to higher than expected percentage inhibition 

results.
124

 The edge effect is a common phenomenon, typically occurs on 96 well 

microtitre plates and can affect the reliability of results from the outermost 

wells.
125

 

 

Table 12: Growth inhibition of the P388 cell line by pterocellin A  

Concentration 

(ng mL
-1

) 

Pterocellin A 

(% inhibition, values >100 rounded to 100.0) 

     

12 500 100.0 100.0 100.0 100.0 

6 250 100.0 100.0 100.0 100.0 

3 125 100.0 100.0 100.0 100.0 

1 563 100.0 100.0 100.0 100.0 

781 93.0 95.8 97.3 96.6 

391 61.7 56.4 69.9 68.0 

195 43.3 40.8 42.1 41.9 

98 45.6* 44.1* 48.1* 47.5* 

* = edge effect affected results 



 

 77 

The first samples to be analysed using the new method were the three combined 

samples from Columns G-I and fractions AA1-16.12 and AA1-16.13 (Appendix: 

A2.3) from Extract A1. The results from this assay indicated that all combined 

samples from Extract A2 were inactive and there was very little activity for 

Extract A1 fractions. Sample AA1-16.12 displayed an IC50 value between 12 500 

and 6 250 ng mL
-1

; this was much less active than the value obtained in 

Christchurch (2 223 ng mL
-1

).  The subsample of AA1-16.13 displayed 22.6 % 

inhibition at 12 500 ng mL
-1

 also much less active than the results from the 

Christchurch assay (634.0 ng mL
-1

). A large edge effect was also seen in this 

assay along the less concentrated row, as well as down the AA1-50.4 sample, 

rendering AA1-50.4 results meaningless. It should also be noted that Extract A2 

fractions were prepared three months prior and had been stored frozen in cell 

media, which likely had an effect on the activity of the samples. 

The results of this assay suggest that the bioactive metabolites of P. repens may 

slowly break down over time which would result in inactivity. However, the 

problem may also lie with the assay method or more likely, with the storage 

method of the samples. Further investigation into the active metabolites would be 

necessary to determine this, unfortunately due to time constraints and 

inconclusive LCMS results, it was not possible to determine the metabolites 

responsible for the bioactivity or their stability. 

 

3.3 Identification of Sterols 

Sterols are a subtype of steroids, containing an hydroxyl substituent on C3 of the 

steroid skeleton (Figure 11). They are a common constituent of plants, fungi and 

animals and help to maintain cell structure and fluidity.
126

 Sterols are either 

synthesised by the organism or can be acquired via dietary intake.
126

 One previous 

study on the sterol composition of marine organisms undertaken at the University 

of Waikato, found a wide range of sterols present, with one unidentified marine 

organism containing thirteen different sterols.
109

 Another earlier investigation into 

sterols of marine bryozoans at the University of Waikato also found a wide range 

of sterols present, with up to 15 sterols in extracts of both Watersipora 

subtorquata and Amathia wilsoni.
127

 This, along with the little known about 
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freshwater metabolites, in particular freshwater bryozoa, prompted the 

investigation into the sterol composition of P. repens. 

 

 

Figure 11: Core structure of steroids 

 

TLC analysis of P. repens fractions (AR1-16.09 to 12; Appendix: A3.1) from a 

size exclusion LC column, against a cholesterol standard and visualisation with 

iodine vapour, led to the identification of three fractions which contained 

cholesterol and or similar compounds. Subsamples of these fractions were 

derivatised with trimethylsilyl (TMS) imidazole and were analysed by gas 

chromatography mass spectrometry (GCMS). The GCMS data indicated that each 

of the fractions contained the same sterols in similar compositions. A total of five 

predominant sterols were observed (Appendices: A3.2 and A3.3). Comparison of 

the fragmentation patterns with those of the NIST/EPA/NIH Mass Spectral 

Library (Appendices: A3.4 to A3.8) revealed the presence of cholesterol, 

β-sitosterol and stigmasterol. Fragmentation patterns also suggested the presence 

of sterols similar to (3β,22E)-ergosta-7,22-dien-3-ol and (3β,24R)-ergosta-5-en-

3-ol. Also present in the chromatogram were four small peaks eluting at similar 

times to the sterols, however their concentrations were too low to determine their 

possible structures via fragmentation pattern analysis. The sterol composition of 

P. repens is summarised in Table 13. 
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Table 13: Sterol composition of fraction AR1-16.10, determined by GCMS  

Sterol 

(as TMS ether) 

Composition  

(%) 

Time of elution 

(minutes) 

   

cholesterol 68.53 17.14 

β-sitosterol 11.46 18.78 

stigmasterol 8.25 18.25 

(3β,22E)-ergosta-7,22-dien-3-ol 6.54 17.46 

(3β,24R)-ergosta-5-en-3-ol 3.73 17.96 

unidentified sterol 0.89 16.83 

unidentified sterol 0.27 17.57 

unidentified sterol 0.20 16.89 

unidentified sterol 0.12 17.86 

 

There were surprisingly few sterols observed from GCMS analysis of P. repens in 

comparison to previous work on sterol identification from marine bryozoa. This 

may be due to differences between freshwater and marine bryozoa or it may be a 

specimen specific effect when considering the unique environment from which 

the P. repens sample was obtained.
122

 

 

3.4 Future Research 

Identification of the metabolites that were responsible for the original bioactivity 

still needs to be determined. This may require the preparation of a fresh extract, as 

the compounds which exhibit the bioactivity may be unstable. Although this may 

be the case, reassay of the active fraction AR1-29.03 (Appendix: A2.2) would 

give a credible indication of the stability of the active metabolites. In addition to 

this, for future bioassay guided isolation, testing of fractions at two different 

facilities, while unavoidable in this case, should be avoided in the interest of 

consistent, reliable bioassay results. 
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Chapter Four: Experimental 

 

4.1 General Experimental Methods 

LCMS data was generated on a Bruker amaZon X
™

 using electrospray ionisation 

in positive ion mode. All LCMS experiments were performed using a standard 

solvent gradient (Table 14) with two solvents (Solvent A, water (H2O); Solvent B, 

acetonitrile (CH3CN) – Honeywell, Burdick & Jackson ACS/HPLC Certified 

Solvent) each with 0.05 % trifluroacetic acid (TFA; Merck, > 99 %) with a 

DIONEX UltiMate 3000 diode array detector. LCMS experiments used a reversed 

phase column (Phenomenex, Luna 5 μ C18(2) 100 A, 150 x 4.60 mm, stored in 

CH3CN:H2O (9:1) when not in use) on a DIONEX UltiMate 3 000 pump and 

autosampler column compartment. Samples were dissolved in HPLC grade 

methanol (MeOH; Ajax Finechem Pty Ltd, Unichrom), filtered (0.2 μm LabServ 

millipore filters) and made up to concentrations of approximately 150 to 

250 mg mL
-1

. H2O was obtained from a Barnstead E-pure
®
 water system. 

 

Table 14: Standard solvent gradient used for LCMS experiments 

Time 

(min) 

Solvent A 

(% of total volume) 

Solvent B 

(% of total volume) 

   

0 95 5 

2 95 5 

27 0 100 

39 0 100 

45 95 5 

50 95 5 

 

All HRESIMS data was obtained on a Bruker Daltonics MicrOTOF
™

 which uses 

electro-spray ionisation and time of flight mass separation. Samples were 

dissolved in HPLC grade MeOH at a concentration of approximately 250 mg mL
-1

 

and analysed using varying cone voltages, to obtain optimum ionisation in 

positive ion mode. 
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GCMS results were obtained from a Hewlett Packard 5973 Mass Selective 

Detector with a Hewlett Packard 6890 series GC System. 

Reversed phase chromatography utilised C18 YMC Gel ODS-A (120 Å) I-230/70 

mesh, slurry packed into glass columns in MeOH and equilibrated back to H2O. 

Samples were loaded as solids and were run with a steep stepped gradient from 

H2O to MeOH to dichloromethane (DCM) and back to H2O (Table 15) under 

applied nitrogen gas (N2 (g)) pressure.  

 

Table 15: Solvent system used for reversed phase chromatography 

Solvent 
Volume 

(mL) 

  

H2O 150 

H2O:MeOH (1:1) 340 

H2O:MeOH (3:7) 150 

H2O:MeOH (1:9) 150 

MeOH 300 

MeOH:DCM (9:1) 150 

MeOH:DCM (1:1) 150 

DCM 150 

MeOH 225 

H2O:MeOH (1:1) 150 

H2O 225 

 

Size exclusion chromatography utilised Sephadex LH-20 packed into glass 

columns and eluted with MeOH. Samples were filtered with cotton wool in glass 

pipettes and loaded in minimum MeOH. 

Column fractions were dried under a stream of N2 (g) on a Lab-Line
®
 Multi-Blok

®
 

heating block set to 36°C degrees or evaporated to dryness with a rotary 

evaporator (BÜCHI Rotavapor
®

 R-110) in a water bath (BÜCHI 461, 40°C) under 

a vacuum (BÜCHI Vacuum Pump V-700) then transferred to glass vials for 

drying under applied N2 (g) on the Lab-Line heating block. 

TLC analyses were performed on Merck (60 F254 plates) TLC aluminium backed 

plates coated with silica gel (0.2 millimetres thick). The standard solvent system 
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employed was ethyl acetate (EtOAc):MeOH (5:1). Samples were dissolved in 

MeOH and applied to plates using drawn glass capillaries. 

Preparation of all biological microtitre plates at AgResearch, Hamilton was 

completed in an Email Westinghouse Pty Ltd Laminar Flow Work Station, made 

sterile by washing with 70 % ethanol (EtOH).  

Microtitre plates were incubated in a Forma Scientific Water-Jacket Incubator 

3250 (37°C, 72 hours) and analysed on a BioTek Synergy 2 plate reader (at 

490 nm and 360 nm). 

Cells used in biological assays were murine P388D1 lymphocytic leukaemia cells, 

strain DBA2, grown in suspension. 

Cell media used in biological assays was a mixture of Dulbecco’s Modified Eagle 

Media (90 %, high D-glucose formula with L-glutamine) and fetal bovine serum 

(10 %, sourced in New Zealand by Sigma Chemical Co.) with penicillin-

streptomycin added (1 mL per 100 mL, penicillin G salt and streptomycin 

sulphate in 0.85 % saline). 

Sterol samples were derivatised with N-trimethylsilyl imidazole (Thermo 

Scientific; product number: TS-88625), sonicated on an Astrason
®
 Ultrasonic 

Cleaner and centrifuged in an Eppendorf Centrifuge 5702. 

Positive control, triton X-100 (t-octylphenoxy polyethoxy ethanol) (Figure 12) 

was obtained from Sigma Chemical Co. 

 

 

Figure 12: Structure of Triton X-100 
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The cholesterol reference sample (95-98 % pure ash-free, precipitated from 

alcohol) was obtained from the Sigma Chemical Co. 

All organic solvents were either HPLC grade or distilled from drum grade prior to 

use. 

 

4.2 Work Described in Chapter Two 

The P. vesiculosa sample used in this project was collected from Sump Bay, 

Alderman Islands in 2001 by SCUBA during a recreational dive. A voucher 

(AI201-03) is kept in the Department of Chemistry at the University of Waikato. 

The specimen was split in two (Specimen A and Specimen B). Specimen A was 

used in the initial research performed by Marisa Till. 

 

4.2.1 Initial Research on Specimen B 

Katie Moore undertook initial investigations on Specimen B. Specimen B 

(833.57 g) was exhaustivly extracted (DCM) resulting in a crude extract (4.71 g) 

which was analysed by LCMS (Appendix: A1.1). The crude extract was separated 

into two (Extract A, 1.30 g; Extract B, 2.64 g) for ease of handling, then Extract A 

was separated using reversed phase chromatography (30 g, C18 packing) resulting 

in a series of fractions (KM1-7.1 to 17; Appendix: A1.2). One fraction (KM1-7.14) 

was further separated by size exclusion chromatography resulting in eleven 

fractions (KM1-14). 

 

4.2.2 Work on P. vesiculosa Outlined in this Thesis 

Extract B (2.64 g) from the initial study was obtained. Following the same 

procedure used to fractionate Extract A, Extract B was separated by reversed 

phase chromatography to yield seventeen fractions (AA1.5.1 to 17; Appendix: 

A1.2). Fractions from each extract were analysed by TLC (EtOAc:MeOH, 5:1). 
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4.2.2.1 Isolation of Pterocellin Alkaloids 

Fractions containing pterocellin-like compounds by TLC analysis were combined 

as appropriate and further separated using size exclusion chromatography (150 g 

packing). 

TLC analysis of the size exclusion fractions (AA1-42.1 to 15; Appendix: A1.2) 

indicated the presence of late eluting, pterocellin-like compounds (pink spot on 

TLC). The fractions of interest (AA1-42.8 to 10) were combined and subjected to 

size exclusion chromatography (30 g packing). The resulting fractions (AA1-58.1 

to 25; Appendix: A1.2) were analysed by LCMS and HRESIMS. 

TLC analysis of size exclusion fractions (AA1-38.1 to 15, AA1-40.1 to 15 and 

AA1-42.1 to 15; Appendix: A1.3) indicated the presence of polar, pterocellin-like 

metabolite/s (pink spot on the baseline of silica gel TLC plate, EtOAc:MeOH, 5:1) 

across six fractions (AA1-38.3 to 4, AA1-40.3 to 4 and AA1-42.3 to 4). Increased 

resolution of the polar metabolite/s was achieved with MeOH:EtOH (1:1), which 

indicated the presence of three polar metabolites (Rf values ~ 0.13, ~ 0.1, < 0.1). 

Each fraction was analysed by LCMS then combined appropriately and 

fractionated with size exclusion chromatography (30 g packing). The resulting 

fractions (AA1-75.1 to 29, AA1-78.1 to 28; Appendix: A1.4) were analysed by 

tandem MS and HRESIMS. 

 

4.2.2.2 Isolation of β-Carboline Alkaloids 

TLC analysis of the size exclusion fractions (AA1.34.1 to 17 and AA1-36.1 to 16; 

Appendix: A1.5) displayed a series of yellow/orange compounds with relatively 

high Rf values (~ 0.85). The fractions containing these yellow/orange metabolites 

(AA1-34.8 to 10 and AA1-38.8 to 10) were analysed by LCMS and were then 

combined appropriately based on mass and LCMS results before further 

fractionation by size exclusion chromatography (30 g packing; Appendix: A1.5). 

LCMS analysis of the resulting fractions (AA1-94.1 to 32 and AA1-114.1 to 37; 

Appendix: A1.5) indicated the presence of β-carboline alkaloids based on analysis 

of UV chromatograms. Metabolites of interest were then analysed by tandem MS 

and HRESIMS. 



 

 85 

4.3 Work Described in Chapter Three 

P. repens (2.89 kg) was collected by hand from a water reservoir at a treatment 

and storage plant in Dunedin, South Island, New Zealand in 2003. The sample 

was stored frozen. A voucher sample (03DC-01) is stored in the Chemistry 

Department of the University of Waikato. 

 

4.3.1 Bioassay Procedure 

Prepared cell media (500 μL) is added to bioassay subsamples (0.1 mg) which are 

reconstituted (0.2 mg mL
-1

). A proportion (200 μL) is then removed and diluted 

into additional cell media (1 400 μL). A subsample (100 μL) of the resulting 

mixture (25 000 ng mL
-1

) is added into wells A3 and A4 (Figure 13). Cell media 

(50 μL) is then added to wells B3-H4. Sample solution (50 μL) is then removed 

from wells A3 and A4 and added to wells B3 and B4 respectively, creating a two-

fold dilution. This process is repeated from B-H, discarding the final additional 

media from H wells, creating a series of eight two-fold dilutions (from 25 000 ng 

mL
-1

 to 195 ng mL
-1

, 50 μL in each well). This process is repeated in wells A5-

H12 for multiple samples on a microtitre plate. Samples were run in duplicate 

rather than triplicate or greater because of the cost of assay consumables. A 

similar process is then used to prepare the positive control (triton X100) wells 

(one series of eight ten-fold dilutions, wells A2-H2). Cell media is added to wells 

A1 (100 μL) and C1-F1 (50 μL) for the negative controls, blank without cells and 

blank with cells respectively. 
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Figure 13: Diagram of a 96 well microtitre plate. Outside wells are prone to edge 

effects 

 

P388 cell concentration is determined by centrifuging (5 min, 1 000 rpm; MS6 

Mistral 1000 centrifuge) cells (9 mL) and decanting half the supernatant. The cells 

are resuspended and a proportion removed (100 μL) into a centrifuge tube (1.5 

mL) followed by addition of crystal violet solution (900 μL) made up of crystal 

violet (0.008 g), citric acid (2 mL, 1 M) and deionised H2O (18 mL). The 

centrifuge tube is agitated (10 sec; Cenco Vortex Mixer), a proportion is placed on 

a haemocytometer and cells are counted. A known amount of cells are diluted 

(10 000 cells per 50 μL) in cell media. Cells (10 000 in 50 μL) are then added to 

all wells containing 50 μL (all but the blank without cells well) and incubated 

(72 hours).  

After incubation, MTS tetrazolium is added (20 μL) to each of the wells on the 

plate. The plate is incubated (4 hours) to allow the MTS tetrazolium to metabolise, 

then analysed on the plate reader (absorbance readings at 490 nm and at 360 nm). 

To determine the percentage of inhibition of a particular concentration, the 

turbidity adjusted measurement (TAM) of the blank with no cells is subtracted 

from the TAM of all wells to give the baseline TAM for each. The baseline TAM 

of the sample is then divided by the baseline TAM of the blank with cells. This 

value is then multiplied by 100 and subtracted from 100 to give the percent 

inhibition of P388 cell lines for a given sample concentration. 
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4.3.2 Pilot Study 

Exhaustive extraction (MeOH:DCM, 3:1; 17
th

 of December 2009) on a proportion 

(500.23 g) of the P. repens sample resulted in two crude extracts (Extract A, 

5.93 g and Extract B, 1.98 g) which were analysed by LCMS (Appendix: A2.1). 

Extract A was divided into two proportions (Extract A1, 2.56 g and Extract A2, 

2.55 g) for ease of handling. Each extract was then separated by reversed phase 

chromatography (30 g packing) resulting in three series of fractions (Extract A1, 

AR1-5.1-15; Extract A2, AR1-9.1-14; Extract B, AR1-16.1-15; Appendices: A2.3, 

A2.4 and A3.1 respectively). Six fractions (AR1-5.4-9) were separated by size 

exclusion chromatography (150 g packing) and resulting fractions (AR1-21.1 to 

11, AR1-29.1 to 13, AR1-32.1 to 13, AR1-36.1 to 10, AR1-40.1 to 13 and AR1-

46.1 to 13; Appendix: A2.2) were assayed against the P388 cell line. 

 

4.3.3 Work on P. repens Outlined in this Thesis 

The following details the work undertaken on the P. repens extracts A1, A2 and B. 

 

4.3.3.1 Isolation of Bioactive Metabolites 

Fractions (AR1-21.1-11 and AR1-46.1-13) from Extract A1 prepared in the pilot 

study were obtained and fractionated by size exclusion chromatography (150 g 

packing). Subsamples (0.1 mg) of the resulting fractions (AA1-16.1 to 23; 

Appendix: A2.3) were prepared and sent to the University of Canterbury for 

bioassay analysis. Fractions (AA1-16.2 to 15) were analysed by LCMS, including 

tandem MS experiments. 

Three fractions (AR1-9.7 to 9) prepared in the pilot study were fractionated by 

size exclusion chromatography (150 g packing) following the same solvent 

system used to separate similar fractions (AR1-5.4 to 9 fractionations). Similar 

eluting fractions (AA1-50.2, 52.2 and 54.2; AA1-50.3, 52.3 and 54.3; AA1-50.4, 

52.4 and 54.4; Appendix: A2.4) were combined and then separated by size 

exclusion chromatography (30 g packing; Appendix: A2.5). Bioassay of a number 

of these fractions was undertaken at AgResearch, Hamilton, following the assay 

procedure outlined in section 4.3.1. 
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4.3.3.2 Sterol Identification 

TLC of relevant fractions (AR1-16.9-12; Appendix: A3.1) against a cholesterol 

reference standard, indicated that fraction AR1-16.10 (169.4 mg) contained 

significant amounts of sterols. TMS imidazole (250 μL; Thermo Scientific, Prod # 

TS-88625) was added to a subsample (8.3 mg). The mixture was sonicated (2 min; 

Astrason
®

 Ultrasonic Cleaner) and left to react on a heating block (60°C, 1 hour). 

Heptane (1 mL) was added and the sample shaken on a vortex mixer (10 sec) 

followed by centrifuging (5 min, 3000 rpm; Eppendorf centrifuge 5702). The top 

heptane layer was removed by Pasteur pipette and placed in a 1.5 mL GC vial, 

while the lower layer was discarded. 

The GC method used a splitless injection (1 μL) with a temperature ramp 

(increasing from 150°C at 10°C per minute for 15 min, to a maximum temperature 

of 300°C) outlined in Table 16. This resulted in elution of sterol derivatives 

between 16.5 and 19.0 minutes (Appendices: A3.2 and A3.3). 

 

Table 16: Temperature gradient used for GCMS experiments 

Time 

(min) 

Temperature 

(°C) 

  

0.0 100 

0.5 100 

1.5 150 

16.5 300 

26.5 300 

 

The fragmentation patterns of the sterols were computer matched to those of the 

NIST/EPA/NIH Mass Spectral Library, Version 2.0 d, build Dec 2 2005 to 

determine the sterol composition (Appendices: A3.4 to A3.8). 
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Appendices 

 

Appendix One: Investigation of Natural Products from 

P. vesiculosa  

A1.1 Base peak chromatogram from LCMS analysis of P. vesiculosa crude 

extract 

A1.2 Separation tree for the isolation of pterocellin-like metabolites from 

Pterocella vesiculosa 

A1.3 Separation tree for the isolation of polar metabolites from Pterocella 

vesiculosa 

A1.4 Separation tree for the isolation of polar metabolites from combined 

samples AA1-38.3 and AA1-38.4 of Pterocella vesiculosa 

A1.5 Separation tree for the isolation of β-carboline alkaloids from 

Pterocella vesiculosa 

A1.6 Base peak chromatogram from LCMS analysis of fraction AA1-58.5 

and mass spectra of significant metabolites 

A1.7 Base peak chromatogram from LCMS analysis of fraction AA1-58.9 

and mass spectra of significant metabolites 

A1.8 Base peak chromatogram from LCMS analysis of fraction AA1-58.20 

and mass spectra of significant metabolites 

A1.9 Base peak chromatogram from LCMS analysis of fraction AA1-78.11 

and mass spectra of significant metabolites 

A1.10 Base peak chromatogram from LCMS analysis of fraction AA1-78.18 

and mass spectra of significant metabolites 

A1.11 Base peak chromatogram from LCMS analysis of fraction AA1-38.5 

and mass spectra of significant metabolites 
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A1.12 Base peak chromatogram from LCMS analysis of fraction AA1-38.6 

and mass spectra of significant metabolites 

A1.13 Base peak chromatogram from LCMS analysis of fraction AA1-94.10 

and mass spectra of significant metabolites 

A1.14 Base peak chromatogram from LCMS analysis of fraction AA1-114.13 

and mass spectra of significant metabolites 

A1.15 Base peak chromatogram from LCMS analysis of fraction AA1-94.29 

and mass spectra of minor brominated metabolites 
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A1.1:  Base peak chromatogram from LCMS analysis of P. vesiculosa crude 

extract 
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 94 

 



 

 95 



 

 96 

 

A1.6: Base peak chromatogram from LCMS analysis of fraction AA1-58.5 

and mass spectra of significant metabolites 
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A1.7: Base peak chromatogram from LCMS analysis of fraction AA1-58.9 

and mass spectra of significant metabolites 
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A1.8: Base peak chromatogram from LCMS analysis of fraction AA1-58.20 

and mass spectra of significant metabolites 
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A1.9: Base peak chromatogram from LCMS analysis of fraction AA1-78.11 

and mass spectra of significant metabolites 
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A1.10: Base peak chromatogram from LCMS analysis of fraction AA1-78.18 

and mass spectra of significant metabolites 
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A1.11: Base peak chromatogram from LCMS analysis of fraction AA1-38.5 

and mass spectra of significant metabolites 
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A1.12: Base peak chromatogram from LCMS analysis of fraction AA1-38.6 

and mass spectra of significant metabolites 
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A1.13: Base peak chromatogram from LCMS analysis of fraction AA1-94.10 

and mass spectra of significant metabolites 
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A1.14: Base peak chromatogram from LCMS analysis of fraction AA1-

114.13 and mass spectra of significant metabolites 
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A1.15: Base peak chromatogram from LCMS analysis of fraction AA1-94.29 

and mass spectra of minor brominated metabolites 
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Appendix Two: Investigation of Natural Products from P. repens 

A2.1 Base peak chromatogram from LCMS analysis of Plumatella repens 

crude extract 

A2.2 Separation tree for Plumatella repens, Extract A1 from the pilot study  

A2.3 Separation tree for the isolation of bioactive metabolites from Extract 

A1 of Plumatella repens 

A2.4 Separation tree for the isolation of bioactive metabolites from Extract 

A2 of Plumatella repens 

A2.5 Separation tree for the isolation of bioactive metabolites from combined 

samples AA1-50.2 to AA1-50.4 of Plumatella repens 

A2.6 Base peak chromatogram from LCMS analysis of fraction AA1-16.2 

and mass spectra of significant metabolites 

A2.7 Base peak chromatogram from LCMS analysis of fraction AA1-16.8 

and mass spectra of significant metabolites 

A2.8 Base peak chromatogram from LCMS analysis of fraction AA1-16.14 

and mass spectra of significant metabolites 
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A2.1: Base peak chromatogram from LCMS analysis of Plumatella repens 

crude extract 
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A2.6: Base peak chromatogram from LCMS analysis of fraction AA1-16.2 

and mass spectra of significant metabolites 
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A2.7: Base peak chromatogram from LCMS analysis of fraction AA1-16.8 

and mass spectra of significant metabolites 
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A2.8: Base peak chromatogram from LCMS analysis of fraction AA1-16.14 

and mass spectra of significant metabolites 
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Appendix Three: Investigation of Sterols from P. repens 

A3.1 Separation tree for the identification of sterol containing fractions of 

Plumatella repens 

A3.2 GCMS spectrum of Plumatella repens Extract B, fraction AR1-16.10 

A3.3 Sterol eluting section of GCMS spectrum from Plumatella repens 

Extract B, fraction AR1-16.10 

A3.4 Fragmentation pattern from TMS ether of sterol eluting at 17.14 min by 

GCMS, compared with the library spectrum of cholesterol 

trimethylsilyl ether 

A3.5 Fragmentation pattern from TMS ether of sterol eluting at 17.46 min by 

GCMS, compared with the library spectrum of (3β,22E)-ergosta-7,22-

dien-3-ol trimethylsilyl ether 

A3.6 Fragmentation pattern from TMS ether of sterol eluting at 17.96 min by 

GCMS, compared with the library spectrum of (3β,24R)-ergosta-5-en-

3-ol trimethylsilyl ether 

A3.7 Fragmentation pattern from TMS ether of sterol eluting at 18.25 min by 

GCMS, compared with the library spectrum of stigmasterol 

trimethylsilyl ether 

A3.8 Fragmentation pattern from TMS ether of sterol eluting at 18.78 min by 

GCMS, compared with the library spectrum of β-sitosterol 

trimethylsilyl ether 
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A3.4: Fragmentation pattern from TMS ether of sterol eluting at 17.14 min 

by GCMS, compared with the library spectrum of cholesterol 

trimethylsilyl ether 
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A3.5: Fragmentation pattern from TMS ether of sterol eluting at 17.46 min 

by GCMS, compared with the library spectrum of (3β,22E)-ergosta-

7,22-dien-3-ol trimethylsilyl ether 
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A3.6: Fragmentation pattern from TMS ether of sterol eluting at 17.96 min by 

GCMS, compared with the library spectrum of (3β,24R)-ergosta-5-en-

3-ol trimethylsilyl ether 
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A3.7: Fragmentation pattern from TMS ether of sterol eluting at 18.25 min 

by GCMS, compared with the library spectrum of stigmasterol 

trimethylsilyl ether 
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A3.8: Fragmentation pattern from TMS ether of sterol eluting at 18.78 min 

by GCMS, compared with the library spectrum of β-sitosterol 

trimethylsilyl ether 
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