Numerical performance comparison of different tube cross-sections for heat recovery from particle-laden exhaust gas streams

> <u>T G Walmsley</u>, M R W Walmsley, M Atkins, J Neale & J Hoffeman-Vocke

> > Energy Research Centre School of Engineering University of Waikato 2012

> > > University of Waikato, NZ

#### Outline

- Background
- Challenges facing heat recovery from air
- Methodology
- Numerical Results
- Experimental Work
- Summary





University of Waikato, NZ



- 1) Expensive to recover heat from air
- 2) Distance between exhaust and inlet ducts
- 3) Particulate fouling
- 4) High heat transfer resistance and lots of area

- 1) Expensive to recover heat from air
- 2) Distance between exhaust and inlet ducts
- 3) Particulate fouling
- 4) High heat transfer resistance and lots of area





![](_page_9_Figure_1.jpeg)

![](_page_10_Figure_1.jpeg)

- 1) Expensive to recover heat from air
- 2) Distance between exhaust and inlet ducts
- 3) Particulate fouling
- 4) High heat transfer resistance and lots of area

![](_page_12_Figure_0.jpeg)

- 1) Expensive to recover heat from air
- 2) Distance between exhaust and inlet ducts
- 3) Particulate fouling
- 4) High heat transfer resistance and lots of area

![](_page_13_Picture_5.jpeg)

Heavily fouled finned tube bank

Finned tube bank after cleaning

#### Finned Tube Boiler Recuperator

Inside a Dairy Plant

University of Waikato, NZ

- 1) Expensive to recover heat from air
- 2) Distance between exhaust and inlet ducts
- 3) Particulates
- 4) High heat transfer resistance and lots of area

![](_page_14_Figure_5.jpeg)

#### What is the General Solution?

• Liquid coupled loop of compact HX

• Inlet exchanger can use finned tube compact HX

- Exhaust exchanger needs to be low fouling no extended surface fins
  - Bare tube
  - Plain plate HX (not considered in this paper)

## THEREFORE, WHAT IS THE BEST TUBE SHAPE?

![](_page_16_Picture_1.jpeg)

• Selected 10 common shapes

![](_page_17_Figure_2.jpeg)

- Constructed CFD models in Fluent 13.0, 6 rows
  - Constant free-flow,  $\boldsymbol{\sigma}$
  - Constant HT area / volume, α, (changing length spacing)

![](_page_18_Figure_4.jpeg)

 Compared models to experimental correlations (if available)

![](_page_19_Figure_2.jpeg)

 Compared models to experimental correlations (if available)

![](_page_20_Figure_2.jpeg)

#### **Basis for Comparison**

- Heat transfer coefficient per unit fan power (Kays & London, 1998)
  - $h/_E \propto \sigma^2 j/_f$

– Compare tubes with the same  $\sigma$  and  $\alpha$ 

![](_page_22_Figure_0.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

**Results** 

Efficiency Ranking

- 1. Elliptical
- 2. Flattened round
- 3. Reverse egg

![](_page_24_Figure_4.jpeg)

![](_page_24_Figure_5.jpeg)

Arrangement A - 1.50:1.25

![](_page_24_Figure_7.jpeg)

![](_page_25_Figure_0.jpeg)

#### Results

![](_page_26_Figure_1.jpeg)

![](_page_26_Figure_2.jpeg)

![](_page_26_Figure_3.jpeg)

#### Efficiency Ranking

- 1. Elliptical
- 2. Reverse egg
- 3. Round

#### **Results**

![](_page_27_Figure_5.jpeg)

![](_page_27_Figure_6.jpeg)

![](_page_27_Figure_7.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_30_Picture_0.jpeg)

#### **Basis for Comparison**

- 2. Low fouling
  - High wall shear stress (related to tube geometry, arrangement and gas flow velocity)
  - $R_f \propto 1/\tau_w$
  - Adhesion/stickiness properties are important
  - These are assumed constant between shapes

![](_page_32_Figure_1.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_1.jpeg)

**Formulation of** 
$$j_{foul}(1/\tau_w)$$
  
 $\frac{1}{h_{foul}} = \frac{1}{h_{clean}} + R_f$  where  $h_{clean} = \left(\frac{c_p \rho}{Pr^{2/3}} \frac{u_{\infty}}{\sigma}\right) j$   
 $\frac{1}{h_f} = \frac{1}{\left(\frac{c_p \rho}{Pr^{2/3}} \frac{u_{\infty}}{\sigma}\right) j} + A_w$  Dependent on stickiness, Particle size, etc.  
 $\frac{1}{j_f} = \frac{1}{j} + \left(\frac{c_p \rho}{Pr^{2/3}} \frac{u_{\infty}}{\sigma}\right) A_v$  Since it varies around the tube, an average was taken  
 $= 1 + \frac{c_p \rho}{pr^{2/3}} \frac{u_{\infty}}{\sigma} + \frac{c_p \rho}{r_w} = 1 + \frac{c_p \rho}{r_w} + \frac{c_p \rho}{r_w} = 1 + \frac{c_p \rho}{r_w} + \frac{c$ 

![](_page_37_Figure_0.jpeg)

## **Round vs Elliptical**

- On average, for the same Reynolds number
  - Round tube has 37% higher  $j_f$
  - Ellipse has 65% reduction in f
  - So the better performing elliptical tube results from a very low pressure drop -> but larger volume HX
  - Ellipse is expected to have less fouling/deposition due to a smaller stagnation zone
- Limitation: the effect of fouling on the pressure drop has not been included -> experimental work

# Preliminary Experimental ResultsRound TubeElliptical Tube

![](_page_39_Picture_1.jpeg)

Same air velocity, temperature and relative humidity

- Air temp / RH determine particulate surface stickiness
- Similar particle loading and time (equilibrium)

#### **Round: Front vs Back**

#### Front

#### Back

![](_page_40_Picture_3.jpeg)

![](_page_40_Picture_4.jpeg)

## **Testing in Fastforward** Start

![](_page_41_Picture_1.jpeg)

## **Testing in Fastforward** 5 mins

![](_page_42_Picture_1.jpeg)

## **Testing in Fastforward** 10 mins

![](_page_43_Picture_1.jpeg)

# **Testing in Fastforward** 15 mins

![](_page_44_Picture_1.jpeg)

# **Testing in Fastforward** 20 mins

![](_page_45_Picture_1.jpeg)

# **Testing in Fastforward** 25 mins

![](_page_46_Picture_1.jpeg)

# **Testing in Fastforward** 30 mins

![](_page_47_Picture_1.jpeg)

# **Testing in Fastforward** 35 mins

![](_page_48_Picture_1.jpeg)

# **Testing in Fastforward** 40 mins

![](_page_49_Picture_1.jpeg)

#### **Pressure Drop Increase with Fouling**

![](_page_50_Figure_1.jpeg)

#### **Pressure Drop Increase with Fouling**

![](_page_51_Figure_1.jpeg)

#### **Pressure Drop Increase with Fouling**

![](_page_52_Figure_1.jpeg)

### Summary

- Heat recovery from gas streams is important for high energy efficiency and it will be economic, one day
- Numerical results suggest elliptical tube can improve HX performance
- Preliminary experimental work adds to the understanding of how fouling affects the pressure drop
- Further considerations are needed in judging a best HX design, e.g. cost, availability

![](_page_53_Picture_5.jpeg)