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Milk Spray Drying
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1) Expensive to recover heat from air 

2) Distance between exhaust and inlet ducts

3) Particulate fouling

4) High heat transfer resistance and lots of area



Challenges

University of Waikato, NZ 7

1) Expensive to recover heat from air 

2) Distance between exhaust and inlet ducts

3) Particulate fouling

4) High heat transfer resistance and lots of area



How Fast are Steam Prices Rising?
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1) Expensive to recover heat from air 

2) Distance between exhaust and inlet ducts

3) Particulate fouling

4) High heat transfer resistance and lots of area 

Finned Tube Boiler Recuperator Inside a Dairy Plant
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1) Expensive to recover heat from air 

2) Distance between exhaust and inlet ducts

3) Particulates 

4) High heat transfer resistance and lots of area
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What is the General Solution?

• Liquid coupled loop of compact HX

• Inlet exchanger can use finned tube compact HX

• Exhaust exchanger needs to be low fouling – no 
extended surface fins

– Bare tube

– Plain plate HX (not considered in this paper)



THEREFORE, WHAT IS 
THE BEST TUBE SHAPE?



Methodology

• Selected 10 common shapes

(1)

(6) (7) (8)

(4)

(9)

(5)(3)(2)

(10)

Gas flow direction



Methodology
• Constructed CFD models in Fluent 13.0, 6 rows

– Constant free-flow, σ

– Constant HT area / volume, α, (changing length spacing)



Methodology
• Compared models to experimental 

correlations (if available) 

– Round tube
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Basis for Comparison

1. Heat transfer coefficient per unit fan power 
(Kays & London, 1998)

–  ℎ 𝐸 ∝  𝜎2𝑗
𝑓

– Compare tubes with the same σ and α
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Optimal Spacing is Important
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Basis for Comparison

2. Low fouling

– High wall shear stress (related to tube geometry, 
arrangement and gas flow velocity)

– 𝑅𝑓 ∝  1 𝜏𝑤

– Adhesion/stickiness properties are important

– These are assumed constant between shapes



Wall Shear Stress and Deposition
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Formulation of jfoul(  
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What is the Best Shape?
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Round vs Elliptical

• On average, for the same Reynolds number 
– Round tube has 37% higher jf
– Ellipse has 65% reduction in f 

– So the better performing elliptical tube results from a 
very low pressure drop -> but larger volume HX

– Ellipse is expected to have less fouling/deposition due 
to a smaller stagnation zone

• Limitation: the effect of fouling on the pressure 
drop has not been included -> experimental work
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Preliminary Experimental Results
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Same air velocity, temperature and relative humidity 
- Air temp / RH determine particulate surface stickiness
- Similar particle loading and time (equilibrium) 

Round Tube Elliptical Tube



Round: Front vs Back
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Testing in Fastforward
Start



Testing in Fastforward
5 mins



Testing in Fastforward
10 mins



Testing in Fastforward
15 mins



Testing in Fastforward
20 mins



Testing in Fastforward
25 mins



Testing in Fastforward
30 mins



Testing in Fastforward
35 mins



Testing in Fastforward
40 mins



Pressure Drop Increase with Fouling
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Pressure Drop Increase with Fouling
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Summary
• Heat recovery from gas streams is important for high 

energy efficiency and it will be economic, one day

• Numerical results suggest elliptical tube can improve 
HX performance

• Preliminary experimental work adds to the 
understanding of how fouling affects the pressure drop

• Further considerations are needed in judging a best HX 
design, e.g. cost, availability


