
Working Paper Series
ISSN 1170-487X

State- and Event-based refinement

Steve Reeves and David Streader

Working Paper: 09/2006
September 20, 2006

c©Steve Reeves and David Streader
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

State- and Event-based refinement

Steve Reeves and David Streader
University of Waikato,Hamilton, New Zealand

{dstr,stever}@cs.waikato.ac.nz

September 20, 2006

Abstract

In this paper we give simple example abstract data types, with atomic opera-
tions, that are related by data refinement under a definition used widely in the liter-
ature, but these abstract data types are not related by singleton failure refinement.
This contradicts results found in the literature. Further we show that a common
way to change a model of atomic operations to one of value passing operations
actually changes the underlying atomic operational semantics.

Keywords: data refinement, process refinement, singleton failures

1 Introduction

We will consider a natural notion of data refinement and apply it to abstract data types
(ADT) with atomic operations. Similar formalisms appear widely in the literature. We
will show that data refinement (on ADT with atomic operations) is not singleton fail-
ure refinement. But using ADTs with value passing operations (i.e. non-atomic ADTs),
data refinement, as commonly defined in the literature, is equivalent to singleton fail-
ure refinement. Thus the common way to model value passing actually changes the
underlying atomic semantics.

We define data refinement in Section 2 and singleton failure refinement in Sec-
tion 3: both are definitions that appear widely in the literature. Our result Lemma 3 in
Section 4 is somewhat unexpected. It states that for ADTs with atomic operations, data
refinement and singleton failure refinement are not the same.

In Section 5 we give an informal description of who observes what of an ADT. To
do this we find it useful to split interfaces/programs into two types: transactional and
interactive. Whether an informal discussion is insightful is quite naturally a matter of
personal taste, but for us it has been useful in explaining the unexpected result of the
previous section.

In Section 6.1 we discuss value passing operations as dealt with in the literature
and in Section 7 we conclude.

1

2 Data Refinement

Let an ADT D have a set of operations DN , {D.ni | ni ∈ N} where N is a set of
operation names, plus D.init a definition of the initial state and an operation D.final
to terminate the ADT, a finalisation, that defines what can be observed of the ADT.
Initialisation means mapping from a global state to the initial state of the ADT, and
finalisation means mapping from the final state of the ADT back to the global state.
Since we are here dealing with abstract data types, we need consider only one desig-
nated value in the global state to denote a successful use of the ADT.

We will use Z to define the ADTs but the results in no way depend upon this.
The Z schema StateD defines the state space, JStateDKZ , of the ADT D . Operation

schemas of Z have a well-known partial relational semantics JD.nKZ ⊆ JStateDKZ ×
JStateDKZ . We will lift and totalise these partial relations, as in [1], to give the opera-
tions the guarded outside of precondition interpretation.
Let StateD⊥ , JStateDKZ ∪ {⊥D} and domain(JD.nKZ) , {x | ∃ y, (x, y) ∈ JD.nKZ}.

JD.nK , JD.nKZ ∪ {(x,⊥D) | x ∈ StateD⊥ \ domain(JD.nKZ)}

M

StateM
st : {1, 2, 3, 4, 5}

init
StateM

st = 1

a
∆StateM

st = 1 ∧
(st′ = 2 ∨ st′ = 3)

b
∆StateM

st = 3 ∧ st′ = 4

c
∆StateM

st = 4 ∧ st′ = 5

Figure 1: ADT M

So for example using the operation M.a in Fig. 1:
JM.aK = {(〈| st 1 |〉, 〈| st 2 |〉), (〈| st 1 |〉, 〈| st 3 |〉), (〈| st 2 |〉,⊥M), (〈|

st 3 |〉,⊥M), (〈| st 4 |〉,⊥M), (〈| st 5 |〉,⊥A), (⊥M,⊥M)}.
The initialisation of an ADT D is defined as a relation from a singleton • in the

global state to the state given by D.init:
JD.initK , {(•, x) | x ∈ JD.initKZ}

The finalisation of an ADT D is defined as a relation from states of the ADT to the
lifted global state space:

JD.finalK , {(x, •) | x ∈ JStateDKZ} ∪ {(⊥D,⊥)}
A program is a sequence of operations D.i1;D.i2;. . .D.in. The relational semantics

of a program is the relational composition of the initialised and finalised sequence of
relations:

Ji1;i2;. . . in(D)K , JD.initK;JD.i1K;JD.i2K;. . . JD.inK;JD.finalK.

2

From the definitions it can be seen that if a program fails to terminate the “final
state” is⊥. Hence all that is known is that the program has failed: how many operations
were successfully called is not known. For an example program, using the ADT M in
Fig. 1, it is easy to see that:

Ja;b;c(M)K = {(•, •), (•,⊥)} .

Definition 1 Data refinement. Let A , (A.init,AN ,A.final) and C , (C.init,CN ,C.final)
be compatible ADTs, built from the same set of operation names N. Let PN() ∈ N∗ be
a program calling operations .n where n ∈ N.

A vD C , ∀PN .JPN(C)K ⊆ JPN(A)K •

Essentially the same definition of data refinement can be found in [1, 2, 3, 4, 5].

3 Singleton failure Refinement
We define the singleton failure semantics of an ADT by first mapping the Z relational
semantics to a labelled transition system (LTS) semantics and then applying the stan-
dard definitions, from the event-based process literature, to the LTS. The standard pro-
cess definitions are based on the guarded outside of precondition interpretation.

Definition 2 Labelled transition system L , (NodesL, TranL, {sL}) where
sL ∈ NodesL and TranL ⊆ {(n, a,m) | n,m ∈ NodesL ∧ a ∈ N}, N a set of operation
names. •

The nodes of the LTS associated with ADT D are the •

1
2

3 4 5

a
a

b c

Figure 2: lts(M)

states of D, given by bindings of the (private) observations of
the ADT, i.e. the observations in schema StateD, to their val-
ues. The start state sD is the state in D.init and is marked in the
figures with •−→. The transitions take their names from the
names of the operation schemas and the (pre-state,post-state)
pair of a transition is an element of the relational semantics of the operation schema.

Definition 3 Let D be a Z definition of an ADT.
lts(D) , (JStateDKZ , {(x, n, y) | (x, y) ∈ JD.nKZ}, JD.initKZ) •

In Fig. 1 we give a Z definition of ADT M and in Fig. 2 we show lts(M). As our
example M has only the one observation st we can avoid notational clutter and write
〈| st v |〉 simply as v.

We write (a, b,) for the sequence starting with a, followed by b and so on.
Further we write ρ |n for the nth element of sequence ρ, a for sequence concatenation
and () for the empty sequence. Where L is obvious from context, we write: n a−→m for

(n, a,m) ∈ TranL; m
(a)aρ−−−−→n for ∃ k.m a−→k ∧ k

ρ−→n, where for any k, k
()−→k; and

we write m
ρ−→ for ∃ n.m

ρ−→n.
The traces of L are Tr(L) , {ρ | sL

ρ−→}, π(s) , {a | s a−→} and finally we have
singleton refusal sets: Sref (ρ, L) , {{a} | sL

ρ−→s ∧ a ∈ Act− π(s)}

3

For example {c} 6∈ Sref (a; b,M) because if operation a followed by operation b
have both been observed to succeed then the ADT, now in state 4, cannot refuse to
perform a c operation. If only the a operation has been observed to succeed then the
ADT, now in state 2 or 3, can refuse to perform a b operation, hence {b} ∈ Sref (a,M).

Singleton failure refinement: for LTS A and C,
A vsF C , ∀ ρ.Sref (ρ,C) ⊆ Sref (ρ,A).

4 Example
In Fig. 1 we give a Z definition of ADT M and its LTS semantics lts(M) is in Fig. 2.
Similarly in Fig. 3 we give a Z definition of ADT N and its LTS semantics lts(N). We
will show that M can be data refined into N but not singleton failure refined.

N

lts(N)

•

w

x s

y

z t r

a
a
a

b

b c

StateN
st : {w, x, y, z, r, s, t}

init
StateN

st′ = w

a
∆StateN

st = w ∧ (st′ = x ∨
st′ = y ∨ st′ = z)

b
∆StateN

st = x ∧ st′ = s ∨
st = z ∧ st′ = t ∨

c
∆StateN

st = t ∧ st′ = r

Figure 3: ADT N and LTS

It is easy to see that no program can observe the difference between M and N: the
example is so small that a search of all programs is feasible.

Lemma 1 M vD N ∧ N vD M

Proof by construction of the relations P(M) for all P:
Jε(M)K = Ja(M)K = {(•, •)},
Ja; b(M)K = Ja; b; c(M)K = {(•, •), (•,⊥)},
∀ x 6∈ {ε, a, a;b, a;b;c}.Jx(M)K = {(•,⊥)}
By inspection the same results can be seen using N in place of M. •

Lemma 2 M 6vsF N

Proof. From Fig. 2 it is easy to see that {c} 6∈ Sref (a;b,M) and from Fig. 3 it is easy
to see that {c} ∈ Sref (a;b,N) and hence M 6vsF N. •
Lemma 3 M vsF N 6⇔ M vD N

Proof. From Lemma 1 and Lemma 2. •

4

5 General model
In this section we give a standard natural notion of refinement, based on observation,
and investigate both what is doing the observing and what is being observed. We
describe observation as occurring at an interface between the observer and what is
being observed. We use the word machine to mean either an ADT or a process, and in
Definition 4 formalise the natural notion of machine refinement.

We will refer to an interface as transactional if the interaction occurs only at no
more than two distinct points: at initialisation and finalisation of the thing being ob-
served. If termination is successful then a value can be observed at finalisation, but if
termination is unsuccessful then only⊥ is observed. In contrast we refer to an interface
as interactive when interaction and observation can occur at many points throughout
the execution. Hence with interactive interfaces observations can be made prior to
termination and even prior to nontermination.

We will use the following natural notion of refinement that appears in many
places in the literature [1, 2, 3, 4, 5, 6]:

The concrete machine C ∈ B is a refinement of an abstract machine A ∈ B
where no user of A could observe if they were given C in place of A.

An ADT is a machine that is used by programs. We need to define what is observed
by these users. To do this we first must decide if the observing user is the program
that uses the ADT, or a separate machine that interacts with (observes) the program
(which uses the ADT).

If the user is the program then there is only one interface: that be-

ADT
User = Prog

Figure 4:

tween the ADT and the program. We describe the program/ADT inter-
face as interactive and the user (the program) can observe when each in-
dividual operation succeeds even if the program never terminates. This
is not commonly how data refinement of ADT with atomic action is
defined. For many definitions of ADT (machine) refinement [2, 3, 6, 5, 4, 1] observa-
tions are only made initially and, if the program terminates, at the point of termination.
Consequently we do not pursue the user-as-program view.

If the user is not the program but a third machine that observes

ADT
Prog

User

Figure 5:

the program then there are two interfaces: an interactive interface
between the ADT and the program and a separate interface be-
tween the program and the user. What the user can observe de-
pends upon the second interface.

We assume the program/ADT interface to be interactive and
private, i.e.program/ADT interaction cannot be observed by the user. We further as-
sume that the successful termination of the program can be achieved only if the ADT
operations used never fail to terminate. Thus if an ADT operation fails to terminate
then the program must also fail to terminate .

Data refinement with a transactional program/user interface allows observation
only at the start and end of the program and, as previously stated, such definitions
appear in many places in the literature.

With an interactive program/user interface the user can be informed of each suc-
cessful operation of the ADT, even if the program subsequently fails to terminate.

5

Our result Lemma 3 shows that applying the different notions of observation that
each of these interfaces defines results in our previously stated “natural notion of re-
finement” giving distinct refinements.

Definition 4 Let Ξ be a set of contexts in which the machines A and C can be placed.
Let Obs be a function defining what can be observed.

A v(Ξ,Obs) C , ∀ []x ∈ Ξ.Obs([C]x) ⊆ Obs([A]x) •

Definition 5 Parallel composition of LTS: for LTS D and E we have,
D ||N E = (NodesD × NodesE, TD||NE, (sD, sE)) where TD||NE defined by:

n x−→Dl, x 6∈ N
(n,m)

x−→D||NE(l,m)

n x−→El, x 6∈ N
(m, n)

x−→D||NE(m, l)
n a−→Dl,m a−→Ek, a ∈ N

(n,m)
τ−→D||NE(l, k)

To make the interface between our machines and their contexts interactive and pri-
vate we let Ξ ⊆ {(‖N x) | x is an LTS}, where N is the set of operations in the
machine/context interface. When the machine is an ADT we restrict the contexts to
programs thus, where U is the set of events observable by the user: Ξ = {(‖N x) |
x ∈ (N ∪ U)∗}.

Because we are interested in total correctness (live) semantics we allow Obs to re-
turn a complete trace Trc. If the interface between program and user is interactive we
allow the program to have any number of operations in this interface. If the interface
between program and user is transactional we must restrict the operations of the pro-
gram/user interface to be in {•,⊥}. Further, these operations must be the last operation
that any program performs.

Interactive programs are different from processes as in CSP/CCS. Processes are
prepared to perform an operation from a whole set of operations whereas programs are
prepared only to perform one specific operation at a time. For example, a program can
perform some sequences of push and pop operations on a stack. But a process, not a
program, can offer the stack the ability to perform either push or pop and allow the
stack to select which.

Thus we have three separate types of contexts for machines: processes, transac-
tional programs and interactive programs.

6 Enriching the atomic model
We consider an enrichment to our simple atomic model that appears in the literature:
the use of value passing operations.

6.1 Value passing
The formal models we have defined apply only to atomic operations, but it is interesting
to consider operations that may receive and return values, value passing operations.

Clearly the semantics of ADTs with value passing operations will be different to the
semantics of ADTs with atomic operations. We will refer to an ADT with operations
that all input and output the same fixed value ∗ as a fixed value ADT. We claim that it

6

is intuitive to expect that data refinement of fixed value ADTs would be the same as
data refinement of ADT with atomic operations. But this is only true for some models
of value passing [3, 5] but not for others [1]. The data refinement of ADTs with value
passing operations in [1] when applied to fixed value ADT is the same as singleton
failure semantics.

It is also common to model programs that use value passing ADT operations by
winding the inputs into a sequence observed at the initial state and the outputs into a
sequence observed at the final state. For details of how to change the semantics of
operations to perform the winding see [3, 1, 7, 4]. The first reference we can find to
winding is [3, Chapter 16] and on [3, p258] it is made clear that an operation has type
(State× in)⊥ → (State× out)⊥ and there the relational semantics of a program J KWoD

is the sequential composition of these relations.
Thus using ADT M in Fig. 1 and ADT N in Fig. 3 (and interpreting them as fixed

value ADT) we can see:
(•, ∗ ∗ ∗,⊥) ∈ Ja;b;c(M)KWoD ∧ (•, ∗ ∗ ∗,⊥) ∈ Ja;b;c(N)KWoD

In [5, 4] unlifted partial relations are used and nontermination is represented by a
pre-state related to no post-state. So in both [3] and [5, 4] all that can be observed of a
nonterminating program is that it has failed to terminate.

We will refer to the wound semantics of [1, 7] as J KBoD. It has type:
J KBoD : State⊥ × input∗ × State⊥ × output∗

so (as stated in [7]) the output sequence is observed even it the program fails to termi-
nate. Hence this semantics is different to that in [3, 5]. Using ADT M in Fig. 1 and
ADT N in Fig. 3 we can see:

(•, ∗ ∗ ∗,⊥, ∗∗) 6∈ Ja;b;c(M)KBoD ∧ (•, ∗ ∗ ∗,⊥, ∗∗) ∈ Ja;b;c(N)KBoD

By examining our example it is easy to see that ADT refinement with value pass-
ing operations as defined in [1, 7] is different to ADT refinement with value passing
operations as defined in [3, 5, 4].

7 Conclusion
For ADTs with atomic operations data refinement is not singleton failure refinement.

For ADTs with value passing operations, whether data refinement of fixed value
ADTs is singleton failure refinement, or the same as data refinement of ADTs with
atomic operations, depends upon the details of the definition used.

We have classified programs into two types, which leads to two distinct definitions
of data refinement. With transactional programs ADT refinement is what the litera-
ture commonly calls data refinement. With interactive programs ADT refinement is
singleton failures refinement.

References
[1] Bolton, C., Davies, J.: A singleton failures semantics for Communicating Sequen-

tial Processes. Research Report PRG-RR-01-11, Oxford University Computing
Laboratory (2001)

7

[2] de Roever, W.P., Engelhardt, K.: Data Refinement: Model oriented proof methods
and their comparison. Cambridge Tracts in theoretical computer science 47 (1998)

[3] Woodcock, J., Davies, J.: Using Z: Specification, Refinement and Proof. Prentice
Hall (1996)

[4] Derrick, J., Boiten, E.: Relational concurrent refinement. Formal Aspects of
Computing 15 (2003) 182–214

[5] Derrick, J., Boiten, E.: Refinement in Z and Object-Z: Foundations and Advanced
Applications. Formal Approaches to Computing and Information Technology.
Springer (2001)

[6] Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press (1996)

[7] Bolton, C., Davies, J.: A singleton failures semantics for Communicating Sequen-
tial Processes. Formal Aspects of Computing 18 (2006) 181–210

8

