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Abstract

This working paper describes a framework émmpositional supervisor
synthesiswhich is applicable to all discrete event systems modetiec
set of deterministic automata. Compositional synthegoits the modular
structure of the input model, and therefore works best fodel®consisting
of a large number of small automata. State-space explosioritigated by
the use of abstraction to simplify individual componentsd @éhe property
of synthesis equivalengriarantees that the final synthesis result is the same
as it would have been for the non-abstracted model. The wonkaper de-
scribes synthesis equivalent abstractions and showsutbeiin an algorithm
to compute supervisors efficiently. The algorithm has begplémented in
the DES software tool Supremica and successfully computekifar super-
visors, even for systems with more thad'* reachable states, in less than
30 seconds.



1 Introduction

The supervisory control theorf28, 37] provides a general framework for the syn-
thesis of reactive control functions. Given a model of the systempltng, to be
controlled, and &pecificatiorof the desired behaviour, it is possible to automati-
cally compute, i.esynthesisgasupervisorthat restricts the plant behaviour while
satisfying the specification.

Commonly, a supervisor is required to bentrollableandnonblockingi.e., it
should not disable uncontrollable events, and the controlled system shiwalgs
be able to complete some desired task [28]. In addition, it is typically required
of a supervisor to achieve some minimum functionality. Most synthesis algorithms
achieve this by producing tHeast restrictivesupervisor, which restricts the system
as little as possible while still being controllable and nonblocking [28]. Alterna-
tives to least restrictiveness have been investigated [17, 34, 35].r&haire addi-
tional analysis to guarantee minimum functionality, particularly when supeasviso
are synthesised automatically.

It is known [28] that for a given plant and specification, a unique |eastic-
tive, controllable, and nonblocking supervisor exists. Straightforwgrdhesis
algorithms explore the completaonolithicstate space of the considered system,
and are therefore limited by the well-knovetate-space explosigmroblem. The
sheer size of the supervisor also makes it humanly incomprehensible, Wihich
ders acceptance of the synthesis approach in industrial settings.

Various approaches fanodular and compositionalsynthesis have been pro-
posed to overcome these problems. Some of these approaches [3&y36h r
structure provided by users and hence are hard to automate. OthemrestHy
ods [1, 5] only consider the synthesis of a least restrictive controllalgersisors,
ignoring nonblocking.Supervisor reductiofi33] and supervisor localisation7]
greatly help to reduce synthesised supervisors in size, yet rely on alithano
supervisor to be constructed first and thus remain limited by its size.

Compositionalmethods [12] usebstractionto remove states and transitions
that are superfluous for the purpose of synthesis. The most commbadiosn
method isnatural projectionwhich, when combined with thebserver property
produces a nonblocking but not necessarily least restrictive sispef@5]. If out-
put control consistencis added as an additional requirement, least restrictiveness
can be ensured [10]. Output control consistency can be replacadvepaker con-
dition calledlocal control consistencfB0].

Conflict-preservingabstractions [17] aneveak observation equivalen§g4]
are adequate abstractions for the synthesis of nonblocking supstvispthese
works it is assumed that, when an event is abstracted, supervisor centpayn-
thesised a later stage cannot use that event. This makes abstracteduaobnts



servableand removes some possibilities of control.

The compositional methods [13, 18] allow for the abstractiorologervable
events througliding. In [13,18, 34], synthesis is considered in a nondeterministic
setting, which leads to some problems when interpreting results and ensashg le
restrictiveness. These problems are overcome to some extsghtesis abstrac-
tion [20, 21, 24, 25]. Several compositional synthesis methods requiratalireata
and their abstraction results to be deterministic, which makes some desirable ab-
stractions impossible. Following ideas from [3, 31, 38hamingis used in [20] to
avoid nondeterminism after abstraction.

This working paper shows how the abstraction methods [13, 20, 21524, 2
can be brought together in a general framework for compositional sgighand
presents an effective algorithm to compute modular supervisors thatasterée
strictive, controllable, and nonblocking.

In addition to halfway synthesis [13], the framework uses observatiaiveq
alence-based abstractions [21, 25], which have higher abstractientijab than
methods based on natural projection [25]. These methods allow for thractizn
of observable events in such a way that abstracted events can stillbbyuseaper-
visor components synthesised at a later stage. Nondeterminism aftectibstia
avoided using renaming [3, 31, 36] as proposed in [20].

The proposed compositional synthesis algorithm is completely automatic. It is
applicable to general discrete event systems, provided that they aeseefed as
a set of deterministic finite-state automata, and uses no knowledge of therstruc
of the system to compute a solution. The algorithm has been implemented in the
DES software tool Supremica [2] and applied to compute modular supes\imor
several large industrial models. It successfully computes modulangspes, even
for systems with more thaih0'* reachable states, within 30 seconds and using no
more than 640 MB of memory.

In the following, section 2 gives a motivating example to informally illustrate
compositional synthesis and abstraction. Sect. 3 briefly introduces thgrbaad
of supervisory control theory, and section 4 explains compositiondahegis and
the idea of synthesis equivalence underlying the compositional algorithren, Th
section 5 presents different ways of computing abstractions that peesgnthesis
equivalence. The algorithm for the proposed compositional synthesieqtuce is
described in section 6, and section 7 applies the algorithm to severalrharich
examples. Some concluding remarks are drawn in section 8. Formal pbofs
technical results can be found in the appendix.
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Figure 1: Manufacturing system overview.
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Figure 2: Automata of manufacturing system.

2 Motivating example

This section demonstrates compositional synthesis using the example of a simple
manufacturing system shown in Figure 1. Two machihgsand M are linked by
two buffers B; and B, that can store one workpiece each. The first machifhe
takes workpieces from outside the system (ewant processes them, and puts
them intoB; (event! f1). M; also takes workpieces fro; (eventss), processes
them, and outputs them from the system (eventMachine)M, takes workpieces
from By (eventssy), processes them, and puts them ii2g (event!f;). Using
switchesWW; and W5, the user can suspend (evesns;) or resume (eventes;)
production ofM; or My, respectively.

Figure 2 shows an automata model of the system. All events are observable,
and uncontrollable events are prefixed by an exclamation niarRigtomatai/,,
M, W1, andWs are plants, whileB; and B, are specifications to avoid buffer
overflow and underflow. To satisfy these specifications, a supemrisst be syn-
thesised for the system.

The compositional synthesis procedure presented in this working paper r
quires that the system only contains plant automata. Therefore, the cataifi
automataB; and B, are transformed into plant8;- and B, using a simple trans-
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Figure 3: Abstraction results for switches in the manufacturing system dgamp

lation [13]. This is done by adding, for every uncontrollable event thabtsen-
abled in a state, a transition to a new blocking stateThe switch modelV, can
also be considered as the result of this transformation, in that it modelsizeeq
ment for the synthesised supervisor to prevent startinyofn suspend mode. On
the other handi/’; models a plant where it is physically impossible to sfditin
suspend mode.

The compositional synthesis procedure is a sequence of small stepaclit e
step, automata are simplified and replaced by abstracted versions suittetbat
pervisor synthesised from the abstracted system yields the same langhage
controlling the system as would the supervisor synthesised from the driyisa
tem. Synchronous composition is computed step by step on the abstracted auto-
mata. In the end, the procedure results in a single abstracted automato,isvhic
simpler than the original system, and standard synthesis is applied to thiséda$tra
automaton.

Initially, the system isGy = {W1, Wa, My, Ma, Bi-, By }. In the first step
of compositional synthesis, individual automata are abstracted if pos&itéats
sus; andres; only appear in automatoi/;, and such events are referred to as
local events Exploiting local events, stateg andq; in Wy can be merged, as
synthesis will always remove either none or both of these states. Autoriiaton
can then be replaced bysynthesis equivalertutomatoni?’; shown in figure 3.
Automatoni¥; is a selfloop-only automaton that always enables all its events, so
it can be disregarded in the synthesis.

Similarly, eventssus; andres; are local to automatofl’;, so the same ab-
straction method can be applied. However, an attempt to compute an abstaaction
before results in the nondeterministic automakt&n shown in figure 3. A correct
supervisor needs to be aware of the state’gfin order to decide whether or not
to enable evends, and it is not straightforward to construct such a supervisor only
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Figure 4: Abstracted automata bf;.

from the abstractiofiV’s.

To solve the nondeterminism problem, evenin W is replaced by two new
eventsss; and soo. This procedure is referred to asnaming Automaton TV,
is replaced by the renamed deterministic automatéhshown in Figure 3, and
automatonD, which is the renamed version &>, is stored as distinguisherin
a setS of collected supervisors. It is the first part of the supervisor to be coetp
in the end.

Having replaced; in W, automatal, and Bi- need to be modified to use
the new events,; andssy. Therefore,Ms and Bf are replaced by, and B}
shown in figure 3. These automata are constructed by replacing-nansitions
in M, and Bi- by transitions labelleds; andsas.

After this, eventssuss andress; only appear in selfloops in the entire system,
and as a result no state change is possible by executing these evestshé&laelf-
loops associated with these events can be removed, which results in tlaetguobstr
automatori¥}/ shown in Figure 3.

Next, eventdo ands; are local events id/;. Statesyy andg, can be merged.
However, sincé f; is not a local eventyy andg; are not equivalent sincg can
be a blocking state iff; is disabled by other components. Figure 4 shows the
abstracted automatal;. Furthermore, everib now only appears in a selfloop in
the entire system and thus, the selfloop associated with this event can beedtemo
from My, resulting in the abstracted automatbff shown in figure 4.

At this point, the system has been simplifiedite= {W', M, M}, B}, By }.
None of these automata can be simplified further, so the next step is to compose
some of them. Figure 5 shows the compositiodfff and Bf, which causesf; to
become alocal event. Clearly, the blocking state 1/} || B} must be avoided, and
since the uncontrollable evehf; only appears in this automaton, this means that
stateqs also must be avoided. Then controllable eveninust be disabled ig;.
Therefore, automaton/] || B} is replaced by the synthesis equivalent abstraction
MBI shown in figure 5. This abstraction method is caletfway synthesigl3].
The abstracted automatafBY is added to the sef of collected supervisors
to enable the final supervisor to make the control decisiorsforFurthermore,
since! f, is a local uncontrollable event, statgsandg, in MBY can be merged,
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Figure 5: M7 || B} and its abstraction result.

Figure 6: M} || Bs- and its abstraction result.
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which results in the synthesis equivalent automatfB; shown in figure 5. Then
event! f; only appears in a selfloop iV B, and nowhere else, so it can be removed,
resulting inMB’ shown in figure 5.

A similar procedure is applied td/; || By. Exploiting the local eventf,
results in the abstracted automataBL’, MB,, and M B¢, shown in figure 6.

After all these abstractions, the uncontrolled plant modél is {W, MBY,
MB}}, and the collected supervisor setSs= {D, MBY, MBE'}. The final step
is to calculate a supervisor fof = WY || MBY || MBY, which has 8 states and is
shown in Figure 7. Synthesis results in the supervigoshown in Figure 7, which
has 4 states. Adding it to the s@tresults in the modular supervisor

S ={D, MBI MBI s}, (1)

which is the least restrictive, controllable and nonblocking supervisut, @o-
duces the exact same controlled behaviour as would a monolithic supearaisor
lated for the original syster@. The largest component of the modular supervisor
is 51 with 4 states, and it has been computed by exploring the state spate of
with 8 states. In contrast, standard monolithic synthesis explores a stateafpac
138 states and produces a single supervisor with 52 states.

The example demonstrates how compositional synthesis works. In thd,seque
section 4 explains the concepts more formally and shows how the renamed su-
pervisor can control the unrenamed plant, and section 5 describes thiel uradl
abstraction methods.

3 Preliminaries

3.1 Events and Languages

The behaviour of discrete event systems can be described using avnenhkan-
guagesEventsepresent incidents that cause transitions from one state to another
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and are taken from a finite alphab®t For the purpose of supervisory control,
this alphabet is partitioned into two disjoint subsets, theXsebf controllable
events and the sét, of uncontrollableevents. Controllable events can be disabled
by a supervisor, while uncontrollable events may not be disabled by avsupe
sor. In addition, the speciaérmination eventv ¢ X is used, with the notation
Yo =2 U{w}.

>* is the set of all finite traces of events fram including theempty traces.
A subsetl, C >* is called alanguage The concatenation of two tracest € ¥*
is written asst. A traces € X* is called aprefixof ¢ € ¥*, written s C ¢, if
t = su for someu € ¥*. ForQ) C 3, thenatural projectionPg: >* — Q* is the
operation that removes from traces Y.* all events not if2.

3.2 Finite-State Automata

Discrete system behaviours are typically modelled by deterministic automata, but
in this paper nondeterministic automata may arise as intermediate results during
abstraction.

Definition 1 A finite-state automaton is a tuplé = (X, @, —, Q°), whereX is
a finite set of events) is a finite set of states;» C @ x X, x @ is thestate
transition relation andQ° C (@ is the set ofinitial states G is deterministic if
1Q°| < 1, andz % y; andz % 3, always impliesy; = yo.

The transition relation is written in infix notation = y, and is extended to
traces inx¥ by lettingz = x forallz € Q, andz % 2z if = 5 yandy % 2 for
somey € Q. Furthermorez - means that = y for somey € @, andz — y
means that > y for somes € ¥ . These notations also apply to state sats’>
for X C @ means that - for somez € X, and to automata; —> means that
Q° >, etc. Thelanguageof automatorG is £(G) = {s € X} | G > }.

The termination event ¢ 3 denotes completion of a task and does not appear
anywhere else but to mark such completions. It is required that statdserthygw
do not have any outgoing transitions, i.ez if> y then there does not existe X,
such thaty Z,. This ensures that the termination event, if it occurs, is always the
final event of any trace. The traditional set of marked stat€g“is= {z € Q |
x =} in this notation. For graphical simplicity, states@t are shown shaded in
the figures of this paper instead of explicitly showingdransitions.

Most systems are modelled by several automata running in parallel. When
thesecomponentsre brought together to interact, lock-step synchronisation in the
style of [15] is used.



Definition 2 Let G; = (¥1,Q,—1,Q5) andGay = (32, Qy, —4, Q3) be two
automata. Theynchronous compositiaf G; andG- is defined as

G ]| G2 = (81U, Q1 X Q2,—, Q7 x Q3) (2

where . . ,
(x1,22) = (Y1,y2) If 0 € 31N Xg, z1 =1 Y1, T2 =2 Y23

(z1,72) > (y1,22) if 0 € X1\ Xo, 21 51 ya;
(21,22) = (21,92) if 0 € 2\ B, 22 52 1.

Synchronous composition is associative, thafis|| (G2 || Gs) = (G1 || G2) ||
Gs =G1 || G2 || Gs.

Another common automaton operation is thetientmodulo an equivalence
relation on the state set.

Definition 3 LetG = (X, Q, —,Q°) be an automaton and let C @ x @) be an
equivalence relation. Thguotient automatonf G modulo~ is

G/N = <27Q/N7_>/N7Qo> ) (3)

where—/~ = {[z] S [y] | = S y}andQ°® = {[z°] | 2° € Q°}. Here,
[x] = {2 € Q| z ~ 2/} denotes thequivalence clasef z € Q, andQ/~ =
{[z] | = € Q } is the set of all equivalence classes modulo

3.3 Supervisory Control Theory

Given aplant automatonG and aspecificationautomatonk’, a supervisoris a
controlling agent that restricts the behaviour of the plant such that théispéon

is always fulfilled.Supervisory control theor28] provides a method to synthesise
a supervisor. Two common requirements for the supervisocanérollability and
nonblocking

Definition 4 Let G and K be two automata using the same alphabetK is
controllablewith respect ta if, for every traces € ¥*, every stater of K, and
every uncontrollable event € X, such thati’ 2 xandG Z, it holds thatr -
in K.

Definition 5 An automatonz = (X, @, —, Q°) is nonblocking if for every state
z € Q and every trace € ¥* such thatz > x there exists € ¥* such that: LY
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For a deterministic plang, it is well-known [28] that there exists a supre-
mal controllable and nonblocking sublanguage¢f;), which represents tHeast
restrictivefeasible supervisor. Algorithmically, it is more convenient to perform
synthesis on the automatar instead of this language, or more precisely on the
lattice of subautomataf G [8]. This approach also works for hondeterministic
automata.

Definition 6 [18] G; = (¥,Q,, —;, Q) is asubautomatorof G2 = (X, Q,,
—, Q5), written G C G, if Q1 € Q2, —1 € —2, andQs C Q5.

Theorem 1 [13] LetG = (X, Q,—,Q°) be a deterministic automaton aidC
Y. Then there exists a supremal controllable and nonblocking subautomaton,

supCN~(G) = sup{ G’ C G | (G is controllable with respect t& and non- (4)
blocking} .

The subscripfl is omitted if T = X, i.e.,supCN(G) = supCNs, (G).

The supremal element is defined based on the subautomaton relation$hip (de
inition 6). The result is equivalent to that of traditional supervisory caritre-
ory [28]. That issupCN(G) represents the behaviour of the least restrictive super-
visor that disables only controllable eventirsuch that nonblocking is ensured.

The supervisor is typically modelled as a m&p ~* — 2>¢ that assigns to
each traces € ¥* acontrol decision®(s) C X, consisting of the controllable
events to be enabled after observing the traf28]. Such a supervisor map can be
implemented using a given automatsn

bg(s) ={oceX.|sceL(S)}. (5)

The implementation is feasible if controllability and nonblocking are ensured, as
is the case whels' = supCN(G). Based on this, supervisors are identified with
automata in the following.

The synthesis resultupCAN(G) can be computed by removing blocking and
uncontrollable states from the plant, until a fixpoint is reached, and riésgrithe
original automatort: to these states.

Definition 7 [18] Therestrictionof G = (3,Q,—,Q°)to X C Q is

Gix =(5,Q,—x,Q°NX), (6)

where— x = {(z,0,y) € = |z,y € X }U{(z,w,y) € = |z € X }.

11



Note that restriction does not directly remove any states, and transitions with
the termination event are retained even if their successor state is not contained
in X. Typically, some states become unreachable after restriction, and theese sta
can be removed, but this is not considered further in this working paper.

Definition 8 [18] Thesynthesis step operat@: 29 — 29 for G = (X, Q, —,
Q°) is defined a®¢ v (X) = OFY(X) N OF"P(X), where

OFY(X) = {z € X |Forallv € T such that: = y it holds thaty € X } ;

O (X) = {z € X |« 55 forsomet € ©*}.
Again it is defined tha®c = O¢;s,, andOP™ = OXY! .

0% captures controllability, an&)gonb captures nonblocking. The synthesis
result forG is obtained by restricting: to the greatest fixpoint .

Theorem2 [18] Let G = (X,Q,—,Q°) be a deterministic automaton, and
let Y C 3. The synthesis step operat®g r has a greatest fixpoilfpOg =
(Q)Gx C @, such thatG‘(;jaT is the greatest subautomaton@fthat is bothY-
controllable inG and nonblocking, i.e.,

supCN~y(G) =G (7

©cr
If the state se@ is finite, the sequenc&’ = @, X! = O v (X?) reaches this

fixpoint in a finite number of steps, i.eé,gx = X" for somen > 0.

The operatosupCN only defines the synthesis result for a plant autométon
In order to apply this synthesis to control problems that also involve speoifics,
the transformation proposed in [13] is used. A specification automaton is-tran
formed into a plant by adding, for every uncontrollable event that is nabked
in a state, a transition to a new blocking stdte This essentially transforms all
potential controllability problems into potential blocking problems.

Definition 9 [13] Let K = (%, @, —, Q°) be a specification. Theomplete plant
automatonk -+ for K is

K+ = (8,Qu{Ll}, - (8)
where L ¢ @ is a new state and

-t = s u{(@@vl)|zeQueS,z i}, )

12



For example, automatB;- and B3 in the manufacturing system in section 2,
shown in figure 2, are obtained by transforming the buffer specificati&ynand
By, respectively. In general, synthesis of the least restrictive noninlgcknd
controllable behaviour allowed by a specificatiinwith respect to a plantr is
achieved by computingipCN(G || K+) [13].

4 Compositional Synthesis

This section describes the compositional synthesis framework. The data str
ture of synthesis tripless introduced, which represents partially solved synthesis
problems in the algorithm including supervisors and renamings. Based gmthis
control architecture is presented to implement the computed modular supsrvisor
after renamings.

4.1 Basicldea

The input to compositional synthesis is an arbitrary set of deterministic automata
representing the plant to be controlled,

g:{G17G27"'7GTL}' (10)

The objective is to calculate a least restrictive supervisor that constiznise-
haviour of G to its least restrictive nonblocking sub-behaviour, by disabling only
controllable events.

Compositional synthesis works by repeated abstraction of system conipone
G; based orlocal events events that appear i@; and in no other automat@;
with j # ¢ arelocal to GG;, and they are crucial to abstraction. In the following, the
set of local events is denoted By and2 = X \ T denotes the set of non-local or
sharedevents.

Using abstraction, some componenisin (10) are replaced by simpler ver-
sionsG,. If this is no longer possible, some components in (10) are selected and
composed, i.e., replaced by their synchronous composition. This typicadly tea
new local events, making further abstraction possible.

When an abstractiofi; is computed, this may lead to the discovery of new
supervisor decisions. For example,Gf contains a controllable transition lead-
ing to a blocking state, it is clear that this transition must be disabled by every
supervisor. Therefore, as a result of abstraction a supervisor @oempS; may
be produced in addition to the abstracted automatfn The algorithm collects
these supervisor components in a8etalled the set ofollected supervisordn

13



addition, abstraction may result in nondeterminism, which is avoided by applying
a renaming.

Thus, compositional synthesis starts with the set of plant automata (10), no
collected supervisors and no renaming. At each step, plant automatastnacted
or composed, adding supervisorsS@and modifying the renaming. Plant automata
can be replaced by supervisors through synthesis, and eventualstthbecomes
empty. At this point, the superviso& together with the renaming, are used to
form a least restrictive supervisor for the original synthesis problem.

4.2 Renaming

Nondeterminism is avoided in the compositional synthesis algorithm, because it is
not straightforward to compute supervisors from nondeterministic alvistnsc If

an abstraction step results in a nondeterministic automatmmaamingis applied

first, introducing new events to disambiguate nondeterministic branching.

The use of renaming to disambiguate abstractions was proposed in [36]. In
the following, a renaming is a map that relates the events of the currentabdtra
systemg to the events in the original plant, so it works in the reverse direction
compared to [36].

Definition 10 Let >; and:, be two sets of events. fenamingp: 3o — X iS
a controllability-preserving map, i.e., a map such th@t) is controllable if and
only if o is controllable.

For example, when evesj is disambiguated intgy; andsss in automatoriVs,
in figure 3 in the introductory example, the renamipds such thatp(s2;) =
p(s22) = sy andp(o) = o for all other events. The definition gf is extended
to cover the termination event by lettingw) = w. Renamings are extended to
languages ovex; and automata with alphabEg in the standard way.

When new events are introduced, the compositional synthesis algorithim con
tinues to operate using the new events and thus produces a supergisdrrean
alphabet different from that of the original plant. To communicate ctyedth
the original plant, the supervisor needs to determine which of the new gsents
or s99) is to be executed when the plants sends one of its original eventsThis
is achieved by adding a so-calldistinguishe3, 36] to the synthesis result.

Definition 11 An automatorG = (X, @, —, Q°) differentiateseventy; from o,

if v, ¢ ¥ andy, € X or there exists a transition = y such thatz 2 y does
not hold. G differentiatesbetweeny; and~,, if G differentiatesy; from v, or G
differentiatesy; from ~.

14
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Figure 8: Control architecturé; is the original plantS are the computed modular
supervisors, andp C S are the distinguishers.

Definition 12 Let p: X5 — X7 be a renaming. An automatdar, with alphabet
Y5 is ap-distinguisheiif, for all tracess, t € L(G5) such thap(s) = p(t), it holds
thats = ¢.

For example, in the introductory example, automaforin figure 3 is ap-
distinguisher that differentiates; from ss5. This is becausé enables at most
one of the events,; andsss in each state, so it can always make a choice between
these two events.

Another operation is necessary in combination with renaming. After applying
a renaming to an automatd®; in a systemg = {Gq,...,G,}, the remaining
automataly; with j # i need to be modified to use the new events.

Definition 13 LetG = (¥1,Q, —, Q°) be an automaton, and It ¥, — ¥, be
arenaming. Thep 1(G) = (2, Q, p~1(—), Q°) wherep=t(—) = { (x,0,v) |
z 29, Y}

Automatonp~!(@) is obtained by replacing transitions labelled with the orig-
inal event by new transitions labelled with each of the new events. For égamp
figure 3 in the introductory example shows, = p~1(M) andB| = p~1(B{),
which replace the original planfg/, andBi- after the renaming. When a renaming
is introduced, the distinguisher is the only automaton that differentiates hetwee
the renamed events, all others are constructeg 1y

The compositional synthesis algorithm proposed in the following repeatedly
applies renamings as new abstractions are obtained. In the end, thisireaudts
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pervisorS using a modified alphabéis and a renaming: s — X that maps the
renamed events back to the events of the original plant. The control atcinéen
figure 8 enables the renamed superviSdp interact with the original unrenamed
plantg.

Assume that, after execution of a tragean eventy occurs in the plant, and
~ has been renamed and replacedbhyand~,. Being unaware of the renaming,
the plant will just communicate the occurrenceyofo the supervisor. When this
happens, first the functiop! replacesy by the set{~y, 2}, sending both possi-
bilities to the distinguishe§p which, following definition 12, enables only one of
them. The selected evemt, either~; or 9, is passed to the supervisor to update
its state and issue a new control decis®iit’y’) C Xs. Here,t' is the renamed
version of the history. The control decision is based on the renamed model and
therefore contains renamed events, so the renamis@pplied to translate it back
to a control decisio®(¢y) C ¥ using the original plant events.

4.3 Synthesis Triples

The compositional synthesis algorithm keeps track of three pieces ofriafan:
e asetlg = {Gy,...,G,} of uncontrolled plant automata;
e asetS = {951,...,5,} of collected supervisor automata;

e a renamingp, to avoid nondeterminism through the introduction of new
events.

This information is combined insynthesis triplewhich is the main data struc-
ture manipulated by the compositional synthesis algorithm.

Definition 14 A synthesis triplds a triple (G; S; p), whereG and S are sets of
deterministic automata angdis a renaming, such that

(i) L(S) € L(9);
(i) S is ap-distinguisher.

(iii) for all events~;,~2 such thatp(y1) = p(72), there exists at most one au-
tomatonG; € G that differentiatesy; from ~,.

Here and in the following, setg@ andS are also used to denote the synchronous
composition of their elements, liKg = G4 || - - - || G,,. For an empty set|( is the
universal automaton that accepts the language
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A synthesis triple represents a partially solved control problem at an intierme
ate step of compositional synthesis. The@ebntains an abstracted plant model,
andS contains the supervisors collected so far, which must constrain theibahav
of the plant (i). The renaming maps the events found in the abstracted plant or
collected supervisors back to events in the original plant. The synchsmampo-
sition of the supervisors is required to have the distinguisher property énsare
that it can be used with the control architecture in figure 8. Furthermote/oif
eventsy; and~, are renamed to the same event, then there can be at most one
automaton in the séf that treats these events differently (iii).

The following notation associates with each synthesis triple a behaviour and a
synthesis result.

Definition 15 Let (G; S; p) be a synthesis triple. Then
(i) L£(G;S;p) =L(p(G || 5));
(i) supCN(G;S;p) = p(supCN(G) || S).

The behaviour of a synthesis triple is the behaviour of its plant and sisperv
automata, after renaming it back to the original plant alphabet (i). Furthetmo
(i) defines a synthesis result for the partially solved control prob(éns; p). It
is obtained by composing the monolithic supervisor for the remaining plants with
the supervisors collected so far, and afterwards renaming.

While manipulating synthesis triples, the compositional synthesis algorithm
maintains the invariant that all generated triples have the same synthesis resu
which is equivalent to the least restrictive solution of the original controblem.
Every abstraction step must ensure that the synthesis result is the samealsl it
have been for the non-abstracted components. This property is cgifedesis
equivalence

Definition 16 Two triples (G1; S1; p1) and (G2; Sa; p2) are said to besynthesis
equivalentwritten (Gi; S1; p1) ~synth (G2; Sa; p2), if

L(supCN(G1; S1;p1)) = L(supCN(Ga; Sa; p2)) - (11)

The compositional synthesis algorithm calculates a modular supervisor for a
modular systeny = Gy. Initially no renaming has been applied and no supervisor
or distinguisher has been collected. Thus, this input is converted to the initial
synthesis tripl€G; G;id), whereid: ¥ — X is the identity map, i.eid(c) = o
for all o € X. Afterwards, the initial triple is abstracted repeatedly such that
synthesis equivalence is preserved,

(G;G:id) = (Go; So; P0) ~synth (G1: 513 P1) eynth -+ Zsynth (Gr; Sk Pk -
(12)
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Some of these steps replace an automatafyiby an abstraction, others reduce
the number of automata if;, by synchronous composition or by replacing an
automaton irgj; with a supervisor iy 1. The algorithm terminates wheh, = 0,

at which pointS;, together withp,, forms the modular supervisor. The following
result confirms that this results in the same supervised behaviour as a mignolith
supervisor for the original system.

Theorem 3 LetG = {G1,...,G,} be a set of automata, and [&t; G; id) ~synth
(0; S5 p). ThenL(p(S)) = L(supCN(D; S; p)) = L(supCN(G)).

Proof. It follows directly from definitions 15 (ii) and 16 that(p(S)) = L(p(D ||
S)) = L(p(supCN(D) || S)) = L(supCN(0;S;p)) = L(supCN(G;G;id)) =
L(id(supCN(G)) || G)) = L(supCN(G)). O

5 Synthesis Triple Abstraction Operations

The idea of compositional synthesis is to continuously rewrite synthesis triples
such that synthesis equivalence is preserved. Therefore, thisrsgities an
overview of different ways to simplify automata that can be used in the frame-
work of this paper. Further details and formal proofs of correctnassbe found

in [22].

5.1 Basic Rewrite Operations

The simplest methods to rewrite synthesis triplessyrechronous compositiand
monolithic synthesislt is always possible to compose two automata in thejset
of uncontrolled plants, or to place their monolithic synthesis result into thé set
of supervisors. These basic methods are included here for the sakenpiete-
ness. They do not contribute to simplification, and are only needed whethao
abstraction is possible.

Theorem 4 LetG, = {G1,...,G,} andGs = {G; || G2, Gs,...,G,}, letpbe a
renaming, and le§ be ap-distinguisher. ThenG:; S; p) ~gynth (G2; S; p).

Proof. By definition 15, it holds that
L(supCN(G1; S; p)) = L(p(supCN(G1) || S))

(
= L(p(supCN(G1 || -+ || Gn) || S))
= L(p(supCN(G2) || S))
= L(supCN(Ga; S;p)) , (13)
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so the claim follows from definition 16. O

Theorem5 Let (G;S;p) be a synthesis triple. The@;S; p) ~gynen (0;S U
{supCN(G)}, p).

Proof. Clearly by definition 15 (ii),£(supCN(G;S;p)) = L(p(supCN(G) ||
S)) = L(p(supCN(D) || supCN(G) || S)) = L(supCN(D; S U {supCN(G)}; p).
O

Another way of rewriting a synthesis triple is by renaming. As explained in
section 4, an automatof; can be rewritten intad; using a renaming such
thatp(H;) = G and H; is ap-distinguisher. Therf/; is added to the sef of
supervisors as a distinguisher, and the renamiigycomposed with the previous
renamings. The proof of the following result can be found in appendix A.

Theorem 6 Let (G1;S;p1) be a synthesis triple with; = {G1,...,G,}, letp
be a renaming, and lgif; be ap-distinguisher such that(H;) = G; andGs =
{Hyi,p""(Ga),...,p~"(Gn)}. Then

(G1;8; p1) ~synth (Go; {H1} U p H(S);p10p) .

In compositional verification, events used in only one automaton can immedi-
ately be removed from the model [12]. This is not always possible in coitiquoes
synthesis. Even if no other automata use an event, the synthesised supeay
still need to use it for control decisions that are not yet apparent.eftrey; events
can only be removed if it is clear that no further supervisor decision riipen
them.

An event\ can be removed from a synthesis triple, if it causes no state change,
which means that it appears only on selfloop transitions in the automata model. In
this case\ can be removed from all automata. This abstraction step is formally
described in theorem 7, and the proof can be found in appendix A.

Definition 17 An automatonG = (3, Q, —, Q°), is selfloop-onlyfor A € ¥ if

N y impliesz = y. AutomatonG is selfloop-only forA C X if G is selfloop-
only for each\ € A.

Definition 18 Therestrictionof G = (X,Q,—,Q°) to Q C Yis G = (1,
Q, 0. Q°) where— g = {(z,0,y) € — | 0 € Q}. The restriction ofg =
{G1,...,Gu}isGo = {Gijas - Gujal-

Theorem 7 Let (G;S; p) be a synthesis triple such th&tis selfloop-only for
ACX. Then(g;s; P) Zsynth (g|Z\A;S;p)'
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5.2 Abstraction Based on Observation Equivalence

This section gives an overview of previous results on observatiornvaguice-
based abstractions for synthesis purpodgisimulationandobservation equiva-
lence[19] provide well-known abstraction methods that work well in composi-
tional verification [12]. Both can be implemented efficiently [11]. They arewn

to preserve all temporal logic properties [6], but unfortunately this do¢kelp for
synthesis [25]. Synthesis equivalence is preserved when an autoimasmiaced

by a bisimilar automaton, while observation equivalence must be strengthened
achieve the same result. This is achievedaythesis observation equivaleri2é]
andweak synthesis observation equivalefzH.

Definition 19 [19] Let G = (X, Q, —, Q°) be an automaton. An equivalence
relation~ C @ x @ is called abisimulationon G, if the following holds for all
z1,z2 € Q such thatz; ~ zo: if 21 = y; for somes € %, then there exists
Yo € Q such thatey > 35 andy; ~ 1.

Theorem 8 [25] Let (G;S; p) be a synthesis triple wit§ = {G1,...,G,}, and
let ~ be a bisimu~lation o7, andG = {G/~,Gs,...,G,}. Then it holds that
(g; S; p) synth (g, S; p)

Bisimulation is the strongest of the branching process equivalencesst@tes
are treated as equivalent if they have exactly the same outgoing transititnes to
same or equivalent states. Theorem 8 confirms that it is possible to meirgédris
states in a plant automaton in a synthesis triple while preserving synthesis-equi
lence.

Bisimulation treats transitions with all events alike. For better abstraction, it
is desirable to differentiate between local and shared events. This is thefide
observation equivalence, which considers two states as equivalesy ifdim reach
equivalent states by the same sequences of shared events.

Definition 20 [19] Let G = (X, Q, —, Q°) be an automaton withl = Q U T.
An equivalence relation- C @ x Q is called anobservation equivalencen G
with respect toY, if the following holds for allz1, 25 € @ such thatr; ~ xo:
if 21 25 y; for somes; € X}, then there exisyz € Q andsy € X}, such that

Pougwy(51) = Pougwy (s2), 72 2 yp, andy; ~ ya.

Example 1 In automatonG in figure 9, stategy andg; can be considered as
observation equivalent with respectTo= {a, 3}. Merging these states results
in G, also shown in figure 9.
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B) T v
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Figure 9: Example automata to demonstrate observation equivalence. tkiftcon
lable events are prefixed withand local events have parentheses around them.

Figure 10: Two observation equivalent automata that are not syntiisiskent.

Unfortunately, observation equivalence in general does not imply egigth
equivalence, so theorem 8 cannot be generalised for observatio/akemnce [25].

Example 2 Consider again the observation equivalent automata in figure 9, with
Y = {a, 8} and%, = {lw}. The triples({G}; {G};id) and ({G}; {G};id) are

not synthesis equivalent. Witf¥, a supervisor can disable the local controllable
eventa to prevent entering statg and thus the occurrence of the undesirable
uncontrollablelv, but this is not possible witty. It holds thato € £(supCN(G))
while £(supCN(G)) = 0.

There are different ways how observation equivalence can béctestfor use
in compositional synthesis. The problem in example 2 does not arise if thie loca
eventsa and 8 are uncontrollable. In fact, a result similar to theorem 8 can be
shown if observation equivalence is restricted to uncontrollable evebis \{2ith
controllable events, abstraction is also possible, but two other issuesméed
taken into account.

Example 3 Consider automatot in figure 10 with¥, = {lu, v} and Y =
{B,7,!u,lv}. Merging of observation equivalent states result&irbut states;;
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Figure 11: Two observation equivalent automata that are not synthripsiskent.

and ¢» should not be merged for synthesis purposes. Although both states can
reach the same states via the controllable ewepbssibly preceded and followed

by the local eventy, the transitiong, — gg must always be disabled to prevent
blocking via the uncontrollable eveht, while the transitiony; — ¢s may be
enabled. When used in a system that requiredse occur for correct behaviour,
such asl’ in figure 10, statey; is retained in synthesis whil@ is removed. The
triples7 = ({G,T};{G,T};id) andT = ({G,T};{G,T};id) are not synthesis
equivalent ax(supCN(7)) = 0 but!v € L(supCN(T)).

Example 4 Consider automatof in figure 11 with¥, = {lv,!lu} andT =
{a, B}. Merging of observation equivalent states result&irbut states; andg,
should not be merged for synthesis purposes.G|rstatesgs and ¢4 should be
avoided to prevent blocking in statg via the uncontrollable evertt. Thus,«
should be disabled ig; and ¢, making g2 a blocking state, while; remains

nonblocking due to the transition LA gs. The triples7 = ({G};{G};id) and
T = ({G};{G};id) are not synthesis equivalentas¢ L£(supCN(T)) butlv €
L(supCN(T)).

The problem in example 3 is caused by considering the @ﬁtﬁﬂ q9 as

equivalent tag; = ¢s to justify statesy; andg, to be merged. However, the path
| | .
¢ 22 g9 passes through the unsafe stage while ¢ - g5 does not pass

through any unsafe states. This situation can be avoided by only allowial loc
events before a controllable event. That is,#or> y; andz; ~ z it is required

that there existg € T* such thatr, te y2 andy; ~ yo. In example 3, the local
events int are all uncontrollable. Controllable events can lead to the problem in
example 4. They can be allowed under the additional condition that theit targe
states are equivalent to the start state of the path.
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Imposing such conditions on observation equivalence resuligrithesis ob-
servation equivalengavhich preserves synthesis results in a way similar to theo-
rem 8 [25].

Definition 21 [25]LetG = (X, Q, —, Q°) be an automaton with = QU Y. An
equivalence relatior C @ x @ is asynthesis observation equivalerareG with
respect tar’, if the following conditions hold for alk1, x5 € @ such thatr; ~ x5:

(i) if z1 = y for o € ¥ U {w}, then there exists a path, = 23 = ---
Paugw
al Pougur(@), ys such thaty; ~ yo andr,...,7, € T, and whenever

Ti € X thenz; ~ xb;

(i) if 2y > g for v € %, then there existy,us € (Y N X,)* such that
to Po(v)uz
———— yz andy; ~ ys.

Condition (i) allows for a state:; with an outgoing controllable event to be
equivalent to another state, if that state allows the same controllable event, pos-
sibly after a sequence of local events. If that sequence includegraltalvle tran-
sition 251 — %, its target state, must be equivalent to the start staigs~ 5.
Condition (ii) is similar to observation equivalence, but restricted to unctalie
events. ProjectiorPy, is used in the definition to ensure that the conditions (i)

and (ii) apply to both local and shared events.

Example 5 Consider automatotyr in figure 12, with all events controllable and
T = {#}. An equivalence relation with; ~ g3 andqy ~ g7 is a synthesis obser-
vation equivalence o&v. Merging the equivalent states results in the deterministic
automatoni’ shown in figure 12. Note thag andg, in G are not synthesis ob-

servation equivalent, because far = ¢ but only ¢, = g7 LA gs, and the local
event( occurs after the shared evenbn the path.

Synthesis observation equivalence does not allow local eaéteisa control-
lable event. This condition can be further relaxed, allowing local evetes ebn-
trollable events, provided that it can be guaranteed that the states visitie by
local transition after a controllable event are all present in the synthesidt r

Definition 22 [21] Let G = (%, Q, —,Q°) be an automaton withk = Q U Y.
An equivalence relatior- C @ x @ is aweak synthesis observation equivalence
on G with respect tdY, if the following conditions hold for alk, z2 € Q.

T1 Tn

() If 21 % y; for o € ¥ U {w}, then there exists a path, = 2§ = --- &

PQ w (U) n m
xy ) ySTH -~T—>y§”:y23uchtha1y1Nygandﬁ,...,Tme

T and,
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Figure 12: Example of synthesis observation equivalence and we#hkesjs ob-
servation equivalence.

a) whenever; € 3. for somei < n thenz, ~ xb;

b) wheneveri % z for someu € (X, N T)* thenz ~ yg for some
0<j<m

c) wheneveri = 2 for someu € ¥ such thatPo(u) € ¥, \ Y, then

there exista/ € X such thatPn(u) = Po(u') andys . 2 for some
2~ 2.

(i) If 21 = y; for v € X, then there existy, uy € (T N 3,)* such that
to Po(v)us
———— yz andy; ~ ya.

Condition (i) weakens the condition for controllable events in that it allows for

a path of local events after a controllable event, if local uncontrollablesitians

outgoing from the path lead to a state equivalent to a state on the path, aed sha

uncontrollable transitions are also possible in the end state of the path. Condi-
tion (i) is the same as for synthesis observation equivalence.

Example 6 Consider again automatdr in figure 12, with all events controllable
andY = {3}. An equivalence relation with; ~ g» ~ g3 andgy ~ g7 is a weak
synthesis observation equivalence@nproducing the abstractiod = G//~. For

. o a B
example, stateg; andg; can be equivalent ag — ¢s andqgi — q7 — gs.
The nondeterminism i can be avoided using a renamipg {a1, as, v, 8} —
{a,~, B}, which leads to the deterministic automatGhin figure 12.
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Both synthesis observation equivalence and weak synthesis obsemaqtiv-
alence can be used for abstraction steps in compositional synthesis. céifter
puting an appropriate equivalence relatioron a renamed automataiiGGy ), the
automatonz; can be replaced by its quotie@t; /~.

Theorem 9 [21] Let (G; S; p) be a synthesis triple witf = {G1,...,G,} and
Gi =(%,,Q;,—,;, Q7). LetY C ¥y suchtha(X,U---UX,)NT = (. Let~ be
a synthesis observation equivalence or a weak synthesis observatimalence
relation onp(G) with respect toY" such that; /~ is deterministic, and lef =

{Gi1/~,G2,...,G,}. Then(G; S; p) ~eynen (G;S;p).

Complexity. Observation equivalence-based abstractions can be computed in
polynomial time. The time complexity to compute a bisimulatio@{$— | log |Q|)

[11]. Synthesis observation equivalence and weak synthesis aliserequiva-
lence are computed by a modified version of the same algorith@(jr-||Q|*)
andO(|—||Q|°) time, respectively [21].

5.3 Halfway Synthesis

Halfway synthesigs an abstraction method that works well in compositional syn-
thesis [13]. Sometimes it is clear that certain states in an automaton must be re-
moved in synthesis, no matter what the behaviour of the rest of the system is.
Clearly, blocking states can never become nonblocking. Moreovel, locan-
trollable transitions to blocking states must be removed, because no otheo-comp
nent nor the supervisor can disable a local uncontrollable transition.

Definition 23 LetG = (¥£,Q,—,Q°) andY C X. Thehalfway synthesis result
for G with respect toY is

hsupCNy (G) = (3, Q U { L}, —hsup, Q°) » (14)
wheresupCNy (G) = (2, Q, —sup, Q°), L ¢ Q, and

—hsup = —sup UL (@0, L) |0 € S\ T, %5, andx S, does not hold .
(15)

Halfway synthesis is calculated like ordinary synthesis, but considenihg o
local events as uncontrollable. Shared uncontrollable transitions to bipstates
do not necessarily cause blocking, as some other plant component meigyet
able them. Therefore, these transitions are retained and redirected to¢ckng
state | instead.
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Figure 13: Example of halfway synthesis.

Example 7 Consider automato& in figure 13 withy:,, = {I\, 1y, v} andY =
{v,!A\}. Stategs is blocking, saz, is also considered as unsafe, because the uncon-
trollable ! \-transition cannot be disabled by the supervisor nor by any other plant
component. Every nonblocking supervisor can and will disable the dtatite

transitionsg; — g3 andq; LA q2. Stategy may still be safe, because some other
plant component may disable the shared evenend!v. The blocking state is
added and thé&u- and!v-transitions are redirected to in the halfway synthesis
resulthsupCN{!A}(G), see Figure 13. This ensures that later synthesis is aware of
the potential problem regardirig or lv.

The following theorem extends a result about halfway synthesis farsigion
equivalence using state labels [13] to the more general framework diiesia
triples. The proof can be found in appendix C.

Theorem 10 Let (G; S; p) be a synthesis triple with = {G1,...,G,}, and let
TCY¥nNX,suchtha(3XsU---UX,)NY = (. Then

(G;S; p) ~synth ({hsupCNy(G1), Ga, ..., Gr}; {hsupCNy(G1)} US;p) .

Complexity. Halfway synthesis can be achieved using a standard synthesis algo-
rithm and runs in time complexit® (|Q||—|), where|Q| and|— | are the numbers
of states and transitions of the input automaton.

6 Compositional Synthesis Algorithm

Given a set of plant automags the compositional synthesis algorithm repeatedly
composes automata and applies abstraction rules. While doing so, it modifies a
synthesis tripléG; S; p), collecting supervisors it¥ and updating the renaming

and continues until only one automaton that cannot be further abstradiftl is
Then a standard synthesis algorithm is used to compute a final supervissr.
principle, which is justified by theorem 3, is shown in Algorithm 1.
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Algorithm 1 Compositional synthesis

1: input G = {G1,Go,...,G,}

228 —G,p—id

3: while |G| > 1do

G « selfloopRemoval(G)

subsys «— selectSubSystem(G)

G «— G\ subsys

A « synchronousComposition(subsys)
T—¥a\Xg

A «— hsupCNrny, (4)

10. S SU{A}

11: A < bisimulation(A)

122 A «— WSOEy(A)

13:  if Ais deterministichen

14: G — GU{A}

15: else

16: (pp, D, D) — makeDistinguisher(A, A)
17 G pp () U{D}, S — pp () U{D}, p—popp
18:  end if

19: end while

20: S — SU{supCN(G)}

© 0N gk
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During each iteration of the main loop, a series of steps is applied to simplify
the setG of plant automata. First, line 4 applies selfloop removal to the entire
plantG according to theorem 7. This quick operation improves the performance of
the following steps.

The next step is to choose a subsyster@ &r simplification. If no automaton
can be simplified individually, a group of automata is selected for composition.
TheselectSubSystem() method in line 5 selects an appropriate subsystem, which
is then removed frony and composed. Different methods to select this subsystem
have been investigated in previous work [12,14]. Here, the stréflegyl. is used,
which facilitates the exploitation of local events. For each evemst subsystem is
formed by considering all automata within the alphabet, se becomes a local
event after composing the subsystem. This gives several candidatestarns, one
for each event, so a second step applies a strategy ddifeslync, which chooses
the subsystem with the smallest number of states in its synchronous composition.

After identification and composition of a subsystem, the'lGeff local events
is formed in line 8, which contains the events used only in the subsystem to be
simplified. Based on the local events, the abstraction rules given in The@e10
are applied in lines 9-12. Rules of lower complexity are applied first, so hglfw
synthesis is followed by bisimulation and weak synthesis observation éepuiea
If halfway synthesis produces a new supervisor, it is added to th& sksupervi-
sors. If weak synthesis observation equivalence results in a determabstracted
automaton, this automaton is added back into th¢ sdtuncontrolled plants.

Weak synthesis observation equivalence may also result in nondeterminism,
if some states in an equivalence class have successor states reatchedsasne
event, but belonging to different equivalence classes. In this casmaming
is introduced. ThemakeDistinguisher() method in line 16 replaces the events
of any transitions causing nondeterminism in the abstracted autordabyrew
events and records the target states of these transitions. Using theéetarget
states, the same modification to corresponding transitions is applied to the origi-
nal automatord. ThemakeDistinguisher() method returns a renaming map,
the deterministic abstracted automatnand an appropriate distinguishBr. In
line 17, the inverse renamir;g;1 is applied to the entire systeghand the collected
supervisorss, the abstracted automatdhand the distinguishel are added to the
resultant automata sets, and the renamirsggupdated to includgp. This is equiv-
alent to the application of theorem 6 followed by theorem 9.

The loop terminates when the gebf uncontrolled plants contains only a sin-
gle automaton, which is passed to standard synthesis in line 20. According to
theorem 5, the result is added to the Setwhich in combination with the final
renamingp gives the least restrictive, controllable and nonblocking supervigor fo
the original systeng.
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7 Experimental Results

The compositional synthesis algorithm has been implemented in the DES software
tool Supremicd2]. The algorithm is completely automatic and does not use any
prior knowledge about the structure of the system. The implementation has suc
cessfully computed modular supervisors for several large discretd systems
models. The test cases include the following complex industrial models aad cas
studies, which are taken from different application areas such as awtathg
systems and automotive body electronics:

agv Automated guided vehicle coordination based on the Petri net model in [27].
To make the example blocking in addition to uncontrollable, there is also a
variant,agvb, with an additional zone added at the input station.

aip Automated manufacturing system of the Atelier Iné¢ablissement de Pro-
ductique [4].

fencaiwon09 Model of a production cell in a metal-processing plant from [9].
fms Large-scale flexible manufacturing system based on [38].

tbed Model of atoy railroad system based on [16]. Two versions presé#ateht
control objectives.

verriegel Models of the central locking system of a BMW car. There are two
variants, a three-door modekrriegel3, and a four-door modeberrie-
geld. These models are derived from th®KSys project [29].

6link Models of a cluster tool for wafer processing previously studied fottss-
sis in [34].

All the test cases considered have at leidBt reachable states in their syn-
chronous product and are either uncontrollable, blocking, or bothorilgn 1 has
been used to compute modular supervisors for each of these models.itioradd
to section 6, the algorithm is controlled by a state limit of 5000 states: if the syn-
chronous composition of a subsystem in line 7 exceeds 5000 states,libgstEm
is discarded and another subsystem is chosen instead. All experimgatbden
run on a standard desktop PC using a single 2.66 GHz microprocessor.

The results of the experiments are shown in Table 1. For each model, the ta-
ble shows the number of automata (Aut), the number of reachable state} (Size
and whether the model is nonblocking (Nonb.) or controllable (Cont.). Niegt,
table shows the size of the largest synchronous composition encoudisiag
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Table 1: Experimental results

Peak Time Mem. Supervisor Events Abstraction

Model Aut Size Nonb. Cont.|States [s] [MB] Num. Largest Ren. SR HS Bis. WSOE

agv 16 2.610° true false| 856 3.11 27.9 6 12339 0 30 208 O 671
agvb 17 2.310" false false] 562 0.81 61.3 7 9380 0 30 187 O 464
aipOalps 35 3.010° false true| 502 0.43 84.3 3 17 2 53 3 8 576
fencaiwon09b 29 89107 false true| 182 0.27 118.4 6 917 4 56 57 3 3p8
fencaiwon09s 29 2.910° false false| 525 0.44 150.2 11 436 5 59 186 2 500
fms2003s 31 1.410" false true| 2596 23.63 332.8 4 59109 36 52 64 24 2412
tbed-noderailb 84 3.110'? false true| 4989 6.22 265.2 17 26 0 12 158 112 1086
tbed-uncont 84 3.610'2 true false| 4479 5.34 4916 10 19737 1 1 190 73 189
verriegel3b 52 1.310° false true| 1367 1.80 218.2 1 4 77 64 1 390 1796
verriegel4db 64 6.210'° false true| 1382 4.86 250.5 1 4 21 71 189 622 950
6linka 53 2.410* false true| 3614 19.52 5153 13 2073 15 48 1754 0 2103
6linki 53 2.710'* false true| 2925 1372 635.4 12 4017 12 49 1205 O 1897
6linkp 48 4.210'* false true| 3614 26.62 538.3 17 2073 25 45 1731 0 2107
6linkre 59 6.210'4 false true| 240 1.01 584.9 19 375 10 51 221 O 279




abstraction (Peak States), the total runtime (Time), the total amount of memory
used (Mem.), the number of modular supervisors computed (Num.) and the num-
ber of states of the largest supervisor automaton (Largest). The tatiierfmore
shows the number of events replaced by renaming (Ren.) and the nunavents
removed by selfloop removal (SR), and finally the number of states remmyed
halfway synthesis (HS), bisimulation (Bis.), and weak synthesis obsemexjigiv-
alence (WSOE).

All examples have been solved successfully with no more than 30 seconds
runtime, and never using more than 640 MB of memory, even for models with more
than10'“ reachable states. It is worth mentioning that other methods for selecting
subsystems give smaller supervisors for #igy andtbed examples. However,
persistently good results can be achieved for all the examples in this test with th
considered strategylustL/MinSync .

Figure 14 shows some data concerning the performance of the abstratgian
For each example, it shows the ratio of the number of states removed byudach
over the total number of states removed, and the ratio of the runtime consumed
by each rule over the total runtime of all abstraction rules. Particularly fgela
models, halfway synthesis and also bisimulation run much faster than weak syn
thesis observation equivalence, as is expected from the higher compitasty
However, weak synthesis observation equivalence also has the tiginesntage
of states removed and typically contributes most of the states removed bgabstr
tion. The data suggests a correlation between the percentage of runtintieeand
percentage of states removed by each rule. By this measure, the thneetdrs
rules have similar performance in practice.

The compositional synthesis algorithm is also applied totthesfer lineex-
ample [37]. The model consists of a parametrised humber of serially ctathec
cells, each consisting of a machine, a test unit, and two buffers. Thetmitpne
cell is the input of the next cell. This model can easily be scaled up to agbitrar
size. Its state space grows exponentially, and the number of reachabdec$ttie
controlled system is approximately? - 14.62" wheren is the number of cells [5].

Yet, the cells are identical and the real complexity of the system is small.

Although the compositional synthesis algorithm has no knowledge of the sym-
metry of the model and treats each subsystem as if it was unique, it sfudigess
computes modular supervisors for transfer lines with up to 1000 seriallyemted
cells. Figure 15 shows a linear relation between the number of connedied o
the total number of supervisor states. The algorithm never construcieavgor
component with more than 79 states. The relation between the number of cells
and the execution time is quadratic. This behaviour is due to the complexity of
evaluating and choosing subsystems from growing lists. This experimemssh
that the compositional synthesis algorithm automatically discovers that the cells
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Figure 15: Experimental results for transfer line example.

are identical and produces identical supervisors accordingly.

8 Conclusions

A general framework for compositional synthesis in supervisory cbhae been
presented, which supports the synthesis of least restrictive, contegliaid non-
blocking supervisors for large models consisting of several automataythalro-
nise in lock-step synchronisation. The framework supports compositieaabn-
ing using different kinds of abstractions that are guaranteed to peediee final
synthesis result, even when applied to individual components. Hiding @amdkn
terminism are avoided, solving problems in previous related work. The ctadpu
supervisor is modular in that it typically consists of several interacting cempo

nents, which means that it is easy to understand and implement. The algorithm

32



has been implemented, and experimental results show that the method fuigcess
computes modular supervisors for a set of large industrial models.

In future work, the authors would like to generalise the framework to censid

unobservable events. Furthermore, finite-state machines augmented wiitthelolo
integer variables show good modelling potential, and it is of interest to adapt th
described compositional synthesis approach to work directly with this typedf
elling formalism.
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A Proofs for Renaming and Selfloop Removal

This appendix contains proofs for theorem 6 and theorem 7 in sectionrAs. A
prerequisite for theorem 6, it is first confirmed that every renaming step

(G1;8; p1) ~synth (G2; {H1} U p 1(S); p1 o p) (16)
produces a proper synthesis triple.

Lemma 11 Let (Gi;S; p1) be a synthesis triple with;, = {G1,...,Gy}, letp
be a renaming, and I, be ap-distinguisher such thai(H,) = G; andG, =
{H1,p7(Ga), ..., p (Gn)}. Then(Go; {H:} U p=1(S); p1 o p) is a synthesis
triple.

Proof. Itis necessary to prove properties (i), (i), and (iii) in definition 14.

(i) As (G1;S; p1) is a synthesis triple, it holds thal(S) € £(G:1). Then it
follows thatL({H:1} U p~1(S)) = L(Hy || p=(S)) € L(H || p~H(G1)) =
L(Hy | p7H(G) |- [ p7H(Gn)) = L(G2)-

(i) It needs to be shown thdf || p=1(S) is a(p1 o p)-distinguisher. Let, ¢ €
L(H, || p~X(S)) such thaoi (p(s)) = p1(p(t)). Thens, i € L(p~1(S)) =
p~ 1 (L(S)), and thug(s), p(t) € p(p~(L(S))) = L(S). Sincep: (p(s)) =
p1(p(t)) andS is a p;-distinguisher, it follows thap(s) = p(t). Further,
since alsos,t € L(H;) and H; is a p-distinguisher, it follows that = t.
Sinces, t were chosen arbitrarily, it follows by definition 12 thé || p~*(S)
is a(p1 o p)-distinguisher.

(iii) Let ~v1,v2 such that(p; o p)(71) = (p1 o p)(72). It needs to be shown
that there exists at most one automatorginthat differentiates between
~1 and~sy. This is clear wheny; = ~9, so assume thay; # ~,. Since
(G1;S; p1) Is a synthesis triple angh (p(71)) = p1(p(72)), there exists at
most one automato@; € G, that differentiates between(y;) and p(v2).
Write H; = p~1(G;) for j = 2,...,n, so thatGe = {Hy,...,H,}. It
is shown that the automatd; with j # ¢ do not differentiate betweemy
and~s.

First consider the casg = 1, so assume thaf; does not differentiate be-
tweenp(v;) and p(vy2). Then the following are equivalent. It holds that

2 2 yin Hy, ifand only if o 27 yin G1 = p(Hy), if and only if

z 2, y in G; asG; does not differentiate betweert;) and p(v2), if
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and only ifz 23 y in H; asm =% ~9 and H; is a p-distinguisher. This is
enough to show thalf; does not differentiate between and-~s.

Second, lej > 1 such thati; does not differentiate betwe@iry; ) andp(~2).

Then the following are equivalent. It holds that™ y in H; = p~YGy), if
and only ifx £n), yinG;,ifandonly ifx £n), yin G; asG; does not dif-
ferentiate betweep(y,) andp(12), ifand only ifz 3 y in p~(Gj) = Hj.
This is enough to show thaf; does not differentiate between andy,. [

The following two lemmas are used in the proof of theorem 6.

Lemmal2 Letp: ¥ — ¥ be a renaming, led’ be an automaton with al-
phabetX, C Y/, and letB be an automaton with alphabEtz C X. Then

p(A) | B = p(A" || p~H(B)).

Proof. Itis enough to show that the automaia!’) || B andp(A’ || p~1(B)) have
the same transition relations.
First let (z4,zp) i’p(A’)HB (ya,yp). Consider three cases. df€ X, 4,y N

Y g thenzy4 ip(A,) ya andzp >p yg. This means that there exist$ € ¥’
such thatp(c’) = o andz 4 i;A/ ya. Sincezp Zp yg, by definition 13 it
holds thatrs %,-1() yp Which implies(z.,25) % 4,15 (ya,y5). f o €
Yoan \ Xpthenzp = yp andx 4 ip(A,) y4. This means that there exists €
Y 4\Xp suchthap(c’) = o andx 4 L’A, ya, which implies(z 4, z5) ﬁA,”pfl(B)

(yA,:vB) = (yA,yB). If o € ¥p \ Zp(A/) thenxz, = YA andzpg i>B YB-
This means that there exists € %,-1(p) \ ¥4 such thatp(c’) = o, and by

definition 13 it holds that: ip_l(B) yp, Which im/plies(xA,xB) 1/>A,||p_1(3)
(za,yB) = (ya,yp). Thus, in all case$z 4, zp) = 4|p-1(p) (Ya,ys). Then
it follows that (x4, x5) &p(A/prl(B)) (ya,yn), which furthermore implies

(24, 28) 2 parp-1(B)) (Y4, YB).
Conversely, le(z 4, xp) gp(A,”pfl(B)) (ya,yp). Then there exists’ € ¥’

such thap(o’) = o and(z 4, zp) iﬁA,”pfl(B) (ya,yp). There are three possibili-
ties. Ifo’ € X4 N¥,-1() thenx 4 ‘L/A/ y4, Which impliesx 4 p—(iLP(A/) ya, and
alsozp il)pfl(B) yB, Which impliesz g MB yp by definition 13. Therefore,
(a:A,xB) &)p(A’)HB (yAayB)- If o’ € EA\ZP—I(B) thenzpg = YB andz 4 i>A/

(o

y4, Which impliesz 4 up(A,) ya. Alsop(o') ¢ ¥p aso’ ¢ ¥,-1p), and thus
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(:UA,QJB) £, p(anB (WA, 2B) = (ya,yp). lf o’ € ¥ p-1(B) \ Zathenzy =ya
andzp 5, ~1() YB, Which implieszp p(—)>B yp. Also p(o’) ¢ X 4 as
o' ¢ ¥4, and thugz 4, zp) ﬂpm,)”B (xa,yB) = (ya,yn). Thus, in all cases

(@a,28) 270 s (WA, ys), which implies(z.a, 25) 2 an 5 (Y, yp). O

Lemma 13 Let G be an automaton with alphabEt and letp: ¥ — ¥’ be a
renaming. Them(supCN(G)) = supCN(p(G)).

Proof. Sincep preserves controllability, it follows from definition 8 th&t; =
O,()- Thus by theorem 2,

pSUDCN(G)) = (G o) = (G, ) = p(G) = SuCN(p(G)) . T

Theorem 6 Let (G1;S; p1) be a synthesis triple with, = {G1,...,G,}, letp
be a renaming, and Id; be ap-distinguisher such thai(H,) = G; andG, =
{Hi,p""(Ga),...,p""(Gn)}. Then

(G1; 83 p1) syntn (Gos {H1} U p~H(S);p1op) .
Proof. By definition 15, it holds that

supCN(G1; S; p1) = p1(supCN(G1) [| S) = pr(supCN(Gy || -+ [ Gn) || S) -
(17)

By lemma 12 and 13, it holds that

supCN(Gy || - -+ || Gn) = supCN(p(Hy) | G2 || -+ - || Gn)
= supCN(p(Hy | p~H(G2) [ -+~ || P71 (Gn)))
= p(supCN(Hy || p~H(Ga) || -~ | p7H(Gn))) - (18)

Combining these equations gives
L(supCN(G1;S; 1))
p1(supCN(Gy || -+ || Gn) || S))

(
(
(pr(plsupCNH, || 71(G) |-+ 7 (Ga)) 11 S))

(pr(p(SupCNCHL [ p7(G) |-+ 07 (G)) [ p7(S)))) by lemma 12
( '(G) |-

(

pr(p(supCN(Hy || oM (Ga) || -+ 1l p~(G)) || Ho | p7(S))))
supCN(Ga; {H1} U pi ' (S); p1op)) . (19)

Thus, the claim follows from definition 16. O

L
L
L
L
L
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This completes the proof for the correctness of renaming. Next, comsider
selfloop removal, the proof for theorem 7 uses two lemmas that show the relatio
ship between selfloop removal and synthesis.

Lemma 15 Let automatorG = (3,Q,—,Q°) with X = QU A be selfloop-only
for A. Then©¢ = O¢,.

Proof. In the following, Iet@m = @Gm' First, it is shown by induction on > 0
thatOg C Xit = 0(Q).

Base casen = 0. CIearJyG)G CQ=0[(Q) =X
Inductive stepLetz € ©45 C Xl?2 by inductive assumption. It must be shown

thatz € X7 = O™ (X[g) N O™ (X

To see thatr @fgnt(Xrg)), letv € ¥, andz 1>|Q y. Since every transition
in G| alsois inG, it holds that ~ y. Sincex € O, it follows by controllability
thaty € ©¢. By inductive assumption € Xl?l' which impliesz € @Tgnt(Xr}z).

Next it is shown that: € eﬁgnb(xlg). Sincex € O¢, there exists a path

T = X g‘@g 21 E@G %}Iéc Lk i>|@G Lh+1 - (20)
Consider the first transition in (20). #; € A thenzy = z; € ég. If o1 ¢ A
thenzy — o 21 wherer; € O¢. In both casesy; € O¢ C X& by inductive
assumption. By induction, it follows that

Pa(o1) Pa(o2) Pa(ok) w
T = X0 —)\Xl’b Tl —>|Xn cee —)‘X\?z Tl H‘X‘% Th41 - (21)

Thus,z € O™ (X[3).

Conversely, it is shown by induction on> 0 thatém C X" =0%(Q).

Base casen = 0. Clearly©q € Q = 0%(Q) = X°.

Inductive stepLetx € ©) € X" by inductive assumption. It must be shown
thatz € X" = ©%"(X") N O™ (X™).

To see thatr € OL™(X™), letv € ¥, andx — y. If this transition is not
in Gq, it follows thatv € A andy = = € X™. If z %q y, sincez € Oq, it
follows by controllability thaty ©|Q. By inductive assumptiop € X", which
impliesz € O™ (X™).

Next it is shown that: € ©%""(X™). Sincez € (3)‘9, there exists a path =

x t—°“>|é o Since every transition ifir| also is inG and by inductive assumption,

\
it follows thatz = z t—“>|Xn. Hencex € ©%mb(X™). O
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Lemma 16 LetG = (2, Q, —, Q°) with ¥ = QU A be a deterministic automaton
that is selfloop-only for\. ThensupCN(G) = supCN(G|q) || G.

Proof. By definition 17,G|q = (2, Q, —q, Q°) where— g = { (z,0,y) € — |
ce€Q}. LetOg = G)Gm. The following proof exploits the fact that and thus
alsosupCN(G) are deterministic, and shows that the automaigsC \(G) con-
tains the transition: % y if and only if the automatosupCA(Gq) || G contains
the transition(z, z) % (y,v).

First letz = y in supCN(G), e,z = yandz % yin G. If o € Q, then

Pq(o) = o andz i’\ﬂ y. Otherwises € A andPy(0) = ¢, andz = y sinceG

is selfloop-only forA. In both casesy Pﬂ—w)m y. Givenz,y € O¢ = élﬂ by

lemma 15, it follows that: ~2“, yin supCA/(G)q). This implies(z, z) % (v, y)

in supCN(Gq) || G.
Conversely, let{z, z) = (y,y) in supCN(G|) || G. This means: % y and
x PQ—(U)>|6|Q y,i.e.,x PQ—@>|6G y by lemma 15. This implies, y € © and thus

z % yin supCN(G). O

Theorem 7 Let (G;S; p) be a synthesis triple such th&tis selfloop-only for
A C 3. Then(G; S; p) ~ynth (Gjs\a; S5 0)-

Proof. By definition 15 it follows that,
L(supCN(G; S; p))

= L(p(supCN(G) || S))

= L(p(supCN(Gsma) 1G | S)) by lemma 16

= ,C(p(supCN(g‘g\A) IIS)) asL(S) C L(G) by definition 14 (i)

= L(supCN(Gis\a; S5 0)) - (22)
The claim follows from definition 16. O

B Proofs for Abstractions based on Observation Equiva-
lence

This appendix contains the proofs for theorem 8 and theorem 9 in section 5

which state that bisimulation, synthesis observation equivalence, andsyetie-

sis observation equivalence preserve synthesis equivalence.ofimaan feature
of these abstractions is that they are obtained by merging equivalent, states
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can be represented as an automaton quotient modulo an equivalence rdiaiso
observation leads to the following state-based definition, which is a suffoien
dition for abstractions preserving synthesis equivalence [26].

Definition 24 LetG = (X, Q, —,Q°) be an automaton. An equivalence relation
~ C @ x @ is astate-wise synthesis equivalenedation onG with respect to
T C %, ifforall z € Q, all deterministic automatd = (X, Q, —,, @) such
thatX7 N Y = (), and for all states € Q the following relations hold,

(i) if (z,27) € Og7, then([z], z7) € Og )
(i) if ([],27) € Og/~yr: then(z, 1) € Ogyr-.

Lemma 18 Let (G;S;p) be a synthesis triple with = {G1,...,G,}, and let
T =Gs| || Gn. Thenitholds thap(G || T) = p(G1) || p(T).

Proof. It is enough to show that(G; || T') and p(G1) || p(T") have the same
transition relations.

First, let(za, z7) — (ya, yr) in p(Gy || T). Then there existsy € p~(v)
such thatzq, z7) B (yg,yr) in Gy || T, which implies™ (yq,yr) in Gy || T.
There are three possibilities. 4f € S, N I thenzg Ba, yg andzr 21 yr,
which implieszc >,y Yo andzr -, yr, i, (xa, 27) > (Yo, yr) in
p(G1 || T). fy € &7\ Z¢, thenzg = yg andzr 27 yr, which implies
T lp(T) yr and thus(zg, z7) NN (za,yr) = Wa,yr) iINn p(G1 || T). If v €
Se, \ Er thenzg ¢, ye andzr = yr, which implieszg = ,q,) ye and thus
(zaq,27) = (ya,xr) = (ya,yr) in p(G1 || T). Thus in all cases(zq, x7) —
(e, yr)in p(G1 (| T).

Conversely, le(zg, 27) = (ya,yr) in p(G1) || p(T). There are three cases.
If v € Sy N Epr) thenzg = ye in p(G1) andzy = yr in p(T). Then
there existyq, y7 € X, N X7 such thap(ya) = p(yr) = v andzg Sa, ye and
o o yr. By definition 14 (iii), at most one aff; or T differentiates betweet;
and~yr. Thus, it holds thatq ¢, ya or xr 21 yr. It follows that (g, ) 22
(Y6, yr) Iin G1 || T, whereyy = g or yo = yr, and thugzg, z7) - (ya,yr) in
p(G1 || T). If v € Epay) \ Bper) thenzr = yr, and there existsg € Y¢, such

thatp(ve) = v andzg S¢, ya. Alsove ¢ S asp(ye) =7 & Sy, and thus
(6, 27) % (o, ar) = (e, yr) IN G1 || T. 1y € Sy \ By thenze = ye,

and there existsy € Xr such thap(yr) = v andxrp Zr yr. Alsoyr ¢ Y, as
p(v7) =7 ¢ Sp(Gy), and thugzg, 27) 2> (ya, 21) = (ye,yr) in G1 || T. Thus,

in all casezq, 27) = (za, yr) = (ya, yr) in p(Gy || T). O
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Proposition 19 Let (G;S; p) be a synthesis triple wity = {G4,...,G,} and
G =(3,,Q;,,—;, Q). LetT C ¥y suchthatXy U---UX,)NT = 0. Let~

be a state-wise synthesis equivalence relatiop(6# ) with respect tdX" such that
G1/~ is deterministic, and le§ = {G1/~,Gs,...,Gy}. Then(G: S: p) ~gntn

(G; S; p)-

Proof. LetT = Gs || - - - || Gy. Firstitis shown that
L(G1 || supCN(G1 || T)) = L(G1 || supCN((G1/~) [| T)) - (23)

Let s € L(Gy || supCN(Gy || T)). This meansG || supCN(Gy | T) =
(ya, yG,yr). Lets = o1 - - - o, Then there exists a path

oz

G T\ O n G ,T
(y() 7y0) Hl‘éGlllT ce. —>|©G1HT (yn 7yn) = (yGayT) (24)

with (y,f,y,f) € éGlHT oro, = wfork = 0,...,n. Sincep preserves control-
lability, it follows from definition 8 thatOg, | = ©,q, 1), and by lemma 18

©u(G1IT) = Op(Gh)|p(T)- ThUS,

G .1\ Plon) . plon) G ,T

W03 90) =16, T 1Oyt o Yn) - (25)
By definition 24 (i), it holds that[yf'], y}) € © () |pr) OF o = w for k =
0,...,n,andthus

Gy Ty Plon) . plon) Gy . T
ol %) =16 60000y " T 0ty Wl ¥n) - (26)

Note thatp(G1)/~ = p(Gi/~) and thusp(G1)/~ || T = p(Gi/~) || T =
p(G1/~ | T) by lemma 18. Given (24), it follows that

Gy T\ 01 On G1 , T\ _
1) By o Boe e (W100) = (welur) . (@D)
Therefore,G1 || supCN(G1/~ || T) = (ya, [yc],yr), which means that ¢
L(G1 || supCN(G1/~ || T)).

Conversely, lets € L£(G; || supCN(G1/~ || T)). SinceG; andG;/~ are
deterministic, there exists a patfy || supCN(G1/~ || T) & (2§, [¢§],2T) B
L (2, [2], 2]) wheres = oy --- 0, and([:ckG], :E;‘g) € éGl/NHT oror =w
for k = 0,...,n. Sincep preserves controllability, it follows from definition 8
and lemma 18 tha®g, /|1 = Op(ci/~T) = Op(cr/~)lIo() = Op(cr)/~lp(T):
which implies ([z{], z1) € O 1)/~ |p(r)- BY definition 24 (i), it follows that

(25, 2]) € ©yGu)|p(r)- This meansz§,2]) € Og,r oroy = wfork =
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0,...,n. ThereforeG||supCN (G ||T) & (2§, 28, 2T) B - 28 (28,28 2T,
and thUSs € L(Gy || supCN(Gy || T)).
Given (23), it follows from definition 15 that

L(supCN(G; S; p)) = L(p(supCN(G) || S))

L(supCN(G1 || T)) N L(S))

L(G1 || supCN(G1 || T)) N L(S))

L(G1 || supCN((G1/~) [| T)) N L(S))

L(G1 || T || supCN((G1/~) [| T)) N L(S))
L(supCN((G1/~) | T)) N L(G1 | T) N L(S))
L(supCN((G1/~) | T)) N L(S))

asL(S) C L(G) = L(Gy || T) by definition 14 (i)

I
T D ™ D T D

~ NN AN

—

= p(L(supCN(G)) N L(S))

= L(p(supCN(G) || S))

= L(supCN(G; S; p)) , (28)
so the claim follows from definition 16. O

To prove the main results of this section, theorems 8 and 9, it is now enough
to show that every bisimulation relation, every synthesis observation aguie
relation, and every weak synthesis observation equivalence relaticiaseawise
synthesis equivalence relation.

The most general of these relations is weak synthesis observatiorakemae.
Therefore, lemma 21 below establishes the crucial result that every syeak
thesis observation equivalence is a state-wise synthesis equivaleeftee Bhat,
lemma 20 establishes an auxiliary result about the paths in a quotient automaton
resulting from weak synthesis observation equivalence.

Lemma 20 LetG = (3,Q,—,Q°) andT = (X,,Qp, —,, Q7) be two auto-
mata withX UX7 = QU Y andY N X+ = 0, and let~ be a weak synthesis obser-
vation equivalence o6’ with respect toX'. Let X C @ x Qr such tha([ l,z7) €
G)G/NHT always implieg(z, z7) € X. Furthermore, letz,,z7) % (x4, 21) such
that([z,],2T) % ([zo), 2T). Then for all stateg; € Q such thate; ~ y;,

. P,
there existt, 2 € T* andys € Q such that(y,, z7) mq (yo,21) and

€T2 ~ Y2.

©6 /T

Proof. Letxy,z2,11 € Q andz?, 2] € Qr ando € X, U Ir such that

(2, 21) % (xg,23), ([21],27) i’|éG/N”T ([zo], 23 ), anday ~ yy. Consider
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three cases.

)If o ¢ T, thene € 270\ = C Qandz; = 22 andz? % 2. Given
1 2

(l21):2T) D6, (oa)sad), it follows that ([y,], o7) = ((m],=7) €

O/~ r and([y), 23) = ([z1],21) = ([z5],21) € O/~ |7, and therefore

(yy, 21, (y1,21) € X by assumption. This implies thég,, z7) Pﬂ—w)qx

(%Jg)-
(i) If 0 € XN Xy, thenz; 5 x5 andz; ~ 31, so by definition 22 (i) there

existty,ta € (Y N X,)* andyy € @ such thaty, hPalo)ta, yo. Letr C
t1 Po(o)ty such thaty, = z. Then[zi] = [y1] — [2], and sinc&&r N Y =
0, it follows that ([z,],2T) = ([z],2T) for somed € {1,2}. Sincer €
Sk and ([z,],27) € Og/yr, it follows that([z],2]) € Og/yr. This
implies (z,xdT) € X by assumption. This argument holds for all prefixes

t1Po(o)t
r C t1 Po(0)ts, and therefordy,, z7) L(ahqx (yy, 21).

(i) If 0 € ZN e 0ro =w, thenz; 5 x5 andz; ~ y1, so by definition 22 (i)
there exists a path

Ty, Tk Pq(o) Thk+1 TI—1
Y1 =20 — " = — gyl —— - —— 2] = Y2 (29)

such thatry ~ yo andry,..., 71 € Y. The first part of this path satis-
fies (i)a) and the second part satisfies (i)b) and (i)c) in definition 22ceSin
T1,...,Ti—1 € TandXy N T = @, it holds that

Pa(o)
(yl,xlT) = (zo,xlT) ENN 4 (ijxlT) Palo),

(2411, 73) —Eh S (2, 2)) = (3, 23) (30)
It follows that

Ty I B (), 2T) 222

([zk+1]>$g) Tk_H) o Tl;l) ([zl]a-rg) . (31)

It is shown in the following that this path also exists in the restriction of
G/N H T to GG/NHT-

For the first part of the path, it is shown by induction othat ([z,],zT) €
Og/~r fori=0,...,kif o € QU{w},andfori =0,...,k—-1ifo € T.

Base casefori = 0, it follows by assumption thd{z], 1) = ([y,], =] ) =
([#4],27) € Ogymyr-
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Inductive step Assume the claim holds for somie> 0, i.e., ([z,],27) €

ég/N”T. It must be shown that[z; ,],27) € é)G/NHT_ There are two
possibilities forr; 1, € Y:

a) 741 € Y. In this case, it follows from definition 22 (i)a) that,; ~
z1, and thug[z, ], #{) = ([z,], 21) € O/~ by assumption.

b) 7ip1 € Bu. AS (2, 41) " (2141, 27), it holds that([z;], «f) =
([zi31),21), a’ld([zi]a zT) € O/ by inductive assumption. Then
([Zz’Jrl]v xrip) S @G/N“T because;,; € X,,.

If o = w, the second part of the path (31) is empty and the claim follows.
Otherwise note that by assumption,

([x9),23) € O |7 - (32)

Itis shown that[z,],23) € O/ r fork < i < 1. LetTL = S,N(Z7\X)
and
YT ={yT € Qr | 2L =1 T for someu € (YT)*} .

Aszl € YT, itis enough to show thdfz], y7) € O, r forally’ € YT

It is shown by inductionpmz > Othatforallk < i < landforally” ¢ YT
it holds that([z], yT) € X" = %@/~ x Qr).

Base casen = 0. Clearly ([z],y7) € Q/~ x Qr = @OG/NHT(Q/N X
Qr) = X°.

Inductive step.Let & < i < I andy” € YT. It must be shown that
([2i,y") € X" = O myr(X™) = OF 7 (X™) N OFI 1(X™).

To see that[z],y7) € @g’}{HT(X”), letv € B, and([zi],¥7) Sg/m|r
([2], 21). Consider three cases.

a) v € XN Y. Inthis case/” = 27 and[z;] > [2], SO there exist!, ~ z;
andz’ ~ z such that! - 2’. By definition 22 (ii), there existiy, ua €
(2. NY)*andz” ~ 2’ such that; 2 2. As z; is on the path (29),
it follows from definition 22 (i)b) that” ~ z; for somek < j < . If
j < L then([z], z7) = (1], 27) = ("], 27) = (1z}], 27) € X" by
inductive assumption. If = I, then note that[x,), 2) % ([z,], 2T)
for someu € (T])* asz" = y" e Y7, and given (32) it follows
that ([ya], 27) = ([z2], 27) € Oy Then([z], 27) = (1], 27) =

([":27) = ([21): 27) = ([wa), 27) € Oy € X"
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v

b) v € ¥ N Q. In this cas€z;| — [z], so there exist, ~ z; andz’ ~ z
such that] % 2. By definition 22 (ii), there existi1, uz € (3, N Y)*
andz” ~ 2’ such that; -2, 2. As z; is on the path (29), it follows
from definition 22 (i)c) that there exist, v, € (3,NY)* andz} ~ 2”
such thaty, % 2%. Sinceys ~ x, by definition 22 (ii) there exist
wi,wy € (X, N Y)* and 2y’ ~ 2 such thatr, 2“2 2. Then
sincey” € YT, there exista: € (TT)* such that([z,], #1) S /7

([za)y") =G/ ([257]:27). Givenzy' ~ 2 ~ 2" ~ 2/ ~ 2, it
follows from (32) that([z], z7) = ([24'], 2T) € Oz € X™

c) v ¢ . Inthis casep € X7\ T and[z] = [2] andy” ¢ 2T,
Then clearlyz" € YT and([z], 2T) = ([zi],27) € X™ by inductive
assumption.

Thus ([2], 27) € X"~can be shown for alb € %, and it follows that
([zi],97) € @gfiHT(X”)-

Next, it is shown thaf[zi],y”) € O, (X™). AS7h41,...,m € T and
Y7 NY = (), it holds by inductive assumption that,

T) Tk+1 Tk

([zks1 9" ) == 150 - =50 ([, y") - (33)

Sincey” € YT, there existsu € (YT)* such thatzl %7 y7, and this
implies ([z,], 1) = ([z],23) S¢/~yr ([21],y7). Sinceu € 3, it fol-
lows by (32) that([z],yT) € éG/NHT. Then there exists € ¥* such that

tw
([Zl],yT) _>|éG/~HT. Thus
This implies([zi], y") € OF 1 (X™).

It has been shown that all statéls,], =) on the path (31) are i®¢/ |z, €x-
cept for the last state when = w. This implies by assumptioty;, z%) € X
for all states on the path (30), except for the last state when w. Therefore,

t1 Po(o)t
(yy, x]) L”WX (Yo, 23 )- U

Lemma 21 Let ~ be a weak synthesis observation equivalencé&on (%, @,
—, Q°) with respect tol' C X. Then~ is a state-wise synthesis equivalencebn
with respect toY'.
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Proof. LetT = (X,,Qp, —4, Q7)) WithErNT =0 andXUXy = QUTY. The
conditions of state-wise synthesis equivalence in definition 24 must beroexfir

(i) Itis shown by induction om > 0 that(z,z7) € @G”T implies ([z], z7) €
Xn= @Tcl;/NHT(Q/N X Qr).
Base case([z], 1) € Q/~ x Qr = 0, 7(Q/~ x Qr) = X°.
Inductive step Assume the claim holds for some> 0, i.e., if (z,27) €
O¢|r then([z], zr) € X". Now let(x, 1) € O . It must be shown that
([2].27) € X = O r(X7) = O 1 (X™) n o (X™).

To see that[z], z7) € OF", (X"), letv € Sy and([z], 21) = ([y], yr).
Consider two cases.

a) v ¢ X. In this case[z| = [y| and(z, z7) Rt (z,yr), and it follows
from (z,27) € Og)r andv € ¥, that (z,yr) € Ogr. Then by
inductive assumptiofiy], yr) = ([z], yr) € X™.

b) v € %, In this case, there exist € [z] andy’ € [y] such that

' % ¢/, By definition 22 (ii), there exist;,t, € (T N ,)* and

P .
y" ~ y' such thatz tPalv)ta, y'. Asty,ty € T, it follows that

(w,27) 2% (47 yr). Since(w, a1) € Ogyr andts Pa(v)ts €
¥y, it follows that (3", yr) € ©¢gr. Then by inductive assumption
(Wl yr) = (W] yr) = ([¥"],yr) € X™

Thus ([y],yr) € f("~ can be shown for alb € X,, and it follows that
([z],27) € G(é)/n:”T(Xn)-

Next, it i_s shown thaf[z], z7) € @g’/‘f”T(f(”). Since(x,zr) € @)GHT,
there exists a path

(z,21) = (fﬂoﬂcg) g\écw ﬁ)\écw (fUlmx%) iﬂé)G”T ($k+1a$£+1) :
Then(z;,z]) € éGHT forl =0,..., k. By inductive assumption, it follows
that ([z;], z]) € X" forl =0,...,k. Thus,

([2), 27) = ([xo], 20) B ygn - P 1n ([2a)s k) =30 ([Ega]s Thga) s
which implies([z], z1) € O 7 (X™).

Thus, it has been shown thetr], z7) € O (X™) N OFD 1 (X") =

XnJrl
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(i) Now it is shown by induction om > 0 that ([z], z7) € ¢/~ implies
(z,27) € X" = Oy (@ X Q7).

Base case(z,z7) € Q X Qr = GOG”T(Q x Qr) = XY.

Inductive step Assume the statement holds for> 0, i.e, if ([z],z7) €
Og/~|r then(z,z7) € X" Let([z],z1) € Og/~|r- It must be shown
that(z, z7) € X" = O¢gp(X") = OFIL(X™) N OFIR(X™).

To see thatz, z7) € OFIL(X"), letv € ¥, and(z, 27) % (y,yr). This
implies ([z], z7) = ([y],yr). Since([z],z7) € ég/NHT andv € X, it

follows that([y], yr) € ég/N”T. Then by inductive assumptidwy, yr) €
X", and thugz, 27) € OF.(X").

Next it is shown tha{z, z7) € @g"llnj‘?(X”). Since([z],z1) € ég/NHT,
there exists a path

T\ O o
([l‘], xT) = ([1‘0],$0 ) —1>|éG/~||T e —k>|(;)G/N”T

([z4), 27) i)\éc/NHT ([Trr)s 1) - (35)

Psron (o .
Consider the first transition in (35). Singe] Py @), 1], there exists

P w o) .y
zy € [zy] anda) € [z,] such thatz Pt @), x. The conditions

of lemma 20 apply to this transition: by inductive assumptlm*[‘, can be
used as the seX in the lemma, and[z(],z]) = ([z¢].z}) € Og/ur

([#1],27) = ([e1],2]) € Ogyyr Or o1 = w, (2p,29) & (a1,27), and

x(y ~ xo. So there exist;, u; € T* andz] € @ such that

t1Poufwy (o1)ur
(20,25 ) ————xn (a1, 21) (36)
andz) ~ 2. Sincez! € [z]] = [z,], the same logic also applies to the
second transition in (35). Therefore, there ekisti; € T* andz, € @ such
taPou(w . .
that (2, zT) M'X'n (24, 21) andzy ~ 24, ~ 2. By induction,
it follows that there existy, u1, . .., tk, ug, tpr1 € Y andz?,... 2} € Q
such that
t1 Pougwy(01)ur t2 Pou(w) (02)us
T {w} T {w}
(2, 27) = (Tg,29) —————x» (21, 21) —— > |x»
tkPauwy (0k)uk T\ k1w
S o () S xS (37)

Therefore,(z, z7) € @gour%(X”).
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Thus, it has been shown thiat, w7) € OFF(X™) N OFIR(X™) = X”“D.

Theorem 8 Let (G; S; p) be a synthesis triple with = {G1,...,G,}, and let
~ be a bisimulation orG; andg = {G1/~,G2,...,G,}. Then it holds that
(g;S;P) synth (g78»p)

Proof. Clearly, if ~ is a bisimulation onz{, then~ also is a weak synthesis
observation equivalence d@r; with respect to2 = ¥. By lemma 21, it follows
that ~ is a state-wise synthesis equivalence@nwith respect to¥. Then the
claim follows from proposition 19. O

Theorem 9 Let (G; S; p) be a synthesis triple witf = {G1,...,G,} andG; =

(3,,Q;,,—,;,Q3%). LetYT C ¥y suchthat(X, U---UX,)NT = (. Let~ be
a synthesis observation equivalence or a weak synthesis observatimalence
relation onp(G1) with respect toY' such that; /~ is deterministic, and lef =

{Gi/~,Ga,...,G,}. Then(G; S; p) ~eymen (G; S p).

Proof. If ~ is a weak synthesis observation equivalenc&gmwith respect toY',
then it follows from lemma 21 that is a state-wise synthesis equivalence(dn
with respect tdY’, so the claim follows from proposition 19.

If ~ is a synthesis observation equivalence@nwith respect toY, then it
is shown in [23] that~ is a weak synthesis observation equivalencesgrwith
respect tdr', and the claim follows as above. O

C Proof for Halfway Synthesis

This appendix contains a proof for theorem 10 in section 5.3. The prdzsed
on two lemmas, which show how halfway synthesis preserves synthesisies
synchronous composition.

Lemma?24 LetG = (£,Q,—,Q°) andT = (¥,,Qp, —4,QF), and letY C
XN Xy suAch thatbr N YT = 0. :I'hen forallx € Q andzr € Qr such that
(:E,{L’T) S GG’HT’ it holds thatr € @GvT'

Proof. Itis shown by induction om > 0 that(x, z7) € éGHT impliesz € X" =

& (Q)-
Base caseClearlyz € Q = 0¢, 1(Q) = X°.
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Inductive stepAssume thatz, z7) € (Q)GHT impliesxz € X™ for somen > 0,
and let(x,zy) € ég||T. It is to be shown that € X" = O (X") =
OFR(X™) N O (X™).

First, to see that € OFY(X"), letv € T andz — y. AsSp NT = 0,
it follows that (z,27) gy (y,27). As (z,27) € Ogyr andv € T C X,

it follows by controllability that(y, zr) € G)G”T, and thery € X™ by inductive
assumption. A® € T was chosen arbitrarily, it follows that € @ggf%(X").

Next it is shown that: € @g‘ﬁb(}("). AS (z,x7) € G)G”T, there exists a trace
t = o1 ---0, such that

(z,27) = ($07$g) g|é)GHT U—n>|é)GHT ($n7x£> iﬁ(:)GHT . (38)
Then by inductive assumptiafy, . .., z, € X", which impliesz t—“i‘Xn and there-
forez € OFR(X™). O

Lemma 25 LetG = (£,Q,—,Q°) andT = (¥, Qp, —4,QF), and letY C
¥ N3, such thatty N T = (). ThensupCN(G || T) = supCN(H || T) where
H = hsupCNy(G).

Proof. By definition 23,H = (3, Qx, —hsup, @Yy) WhereQy = Q U {L}. Itis
enough to showgr = O -

Let(z,z7) € G)G”T. It is shown by induction on > 0 thatéGHT < Xpr =
@nHHT<QH X Qr).

Base caseBy definition 230¢r € QuxQr = 0% (Qux Q1) = Xpy 1.

Inductive step AssumeéGHT C X};”T for somen > 0, and let(x,z7) €
A f n+1 n __ (@con: n
@GHQI;. Itis to be shown thatz, z7) € XHWT = Our(Xfyr) = OFIH (X i)
OF 1T Xg7)-

First, to see thafz, zr) € OI.(X} 1), letv € X, and (z,27) S H|T
(y,yr). It is next shown thatz, zr) iG”T (y,yr). Assume this is not the
case. Then € X, and by construction off = hsupCN~(G) and definition 23
alsoy = L, which again by definition 23 implies that — does not hold in
supCN~y(G), andz = o' in G for somey’ € Q. Then(z,x7) i)GHT v, yr),
and given(z, z7) € O it follows that(y/, yr) € Ogr. Thenz,y' € O v by
lemma 24, and thus — ¢/ in supCN~(G). This contradicts the above statement
thatz = does not hold isupCNy (G). Therefore,(z,z7) —¢r (y,yr), and
since (z,27) € Ogyr, it follows by controllability that(y, yr) € Ogyr. By

inductive assumptiofy, yr) € X Gy Which implies(z, z7) € Q?W’EF(X?IIIT)'
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Next it is shown thatz, z7) € @%b (X7

exists a path

g O

T Ty @ T
(z,27) = (0,20 ) —1>\(L)G”T T T0gr (Ths ) é¢yr (Tpg1> Thop1) -

Then (z;,27) € Ogyr for I = 0,...,k. By inductive assumptiotiz;, z7) €
X};HT forl =0,...,k, and thus

g

T\ O Ty W T
(x,.fT) = (l’o,ﬂfo) *1>|X}-L]HT e —k)‘XZI”T (l’k,.fk,) H‘XZ{”T (xk+1’$]€+1) y

which implies(z, 1) € O (X7 7).

Cionversely, to show thad ;) C (i)G”T, it is shown by induction om > 0

Base caselet (z,z7) € éH”T. Clearlyx # L, as(L,zr) ¢ @;ﬁ‘ll}?(QH X
Qr). Therefore (z,z7) € Q x Qr = @%”T(Q X Qr) = Xg”T.

Inductive step Assume@)HHT - Xg”T for somen > 0, and let(x,z7) €
A n+l _ n __ (con n
@HHZI;. It must be shown thdtr, z7) € Xgi7 = Oc)r (X)) = @GH}(XGHT)D
Ocir (X r)-

First, to see thatz, z7) € @g)ﬁ(XguT)' letv € ¥, such that(z, z7) i>G”T
(y.yr). Then there are three possibilities for If v ¢ ¥ then(z,z1) =7

(z,yr). If v € Q then sincay € %, eitherz 2 y orz 25 L by definition 23.
If v ¢ Qthenzy = yr and byY-controllability of H = hsupCN~y(G) it can be
concluded thatz, z7) i)HHT (y,z7) = (y,yr). Inall cases, there exists € Q

such that(z, z7) g7 (¥, yr). Sincev € I, it follows by controllability of
supCN(H || T) that(y', yr) € © 7 By inductive assumptioty’, yr) € Xz,
which implies(z, z7) € GCGO\T%(XZHT)-

Next, it is shown thatz, z7) € OB (X2,

: ¢t (Xé&yr)- Since(z,zr) € O |7 there
exist a path

T\ O o T\ W T
(z,27) = (20,70 —1>|<:)HHT —k>|@HHT (g, 1) 1O r (Ths1 Thg1) -

Then(z;,2f) € Oy forl =0, ..., k. Thus, by inductive assumptidm,, =7') €
XgHT fori =0,...,k. Therefore,

AN Tk Ty @ T
(z,27) = (70,70 —1>|Xg”T —k>|X3HT (kT3 “IXGyr (Ths1 Tht1)
which implies(z, z7) € @gﬁb(xgw). O
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Theorem 10 Let (G; S; p) be a synthesis triple with = {G1,...,G,}, and let
TCY¥NnY,suchtha(3XoU---UX,)NY = (. Then

(G;S; p) ~eynth ({hsupCNy(Gh), G, ..., Gn}; {hsupCNy(G1)} U S;p) -

Proof. Let H; = hsupCN~y(G1). By definition 15 and lemma 25, it holds that

L(supCN(G; S; p)) = L(p(supCN(Gy | G2 || -+ [| Gn) || S))
= L{p(supCN(Hy || G2 || -+~ | Gn) | S))
= L(p(supCN(Hy || G2 || -+ | Gn) [ H1 [| S))
= L(supCN({H1,Ga,...,Gp}; {H1} US;p)) .

Using H; = hsupCAN~y(G1), the claim follows from definition 16. O
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