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An overview is given of important properties
of spatial and temporal intermittency, including
evidence of its appearance in fluids, magnetofluids
and plasmas, and its implications for understanding
of heliospheric plasmas. Spatial intermittency
is generally associated with formation of sharp
gradients and coherent structures. The basic physics
of structure generation is ideal, but when dissipation
is present it is usually concentrated in regions of
strong gradients. This essential feature of spatial
intermittency in fluids has been shown recently to
carry over to the realm of kinetic plasma, where
the dissipation function is not known from first
principles. Spatial structures produced in intermittent
plasma influence dissipation, heating, and transport
and acceleration of charged particles. Temporal
intermittency can give rise to very long time
correlations or a delayed approach to steady-state
conditions, and has been associated with inverse
cascade or quasi-inverse cascade systems, with
possible implications for heliospheric prediction.
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1. Introduction: structure and intermittency in fluids and plasmas

In order to understand well the dynamics and state of a fluid or plasma system, it is necessary
to understand the role of fluctuations. Here we mean fluctuations in quantities such as magnetic
field, fluid velocity of various species and density, in plasmas of interest, such as the solar corona,
interplanetary medium, diffuse interstellar medium and various parts of the magnetosphere.
When the interactions among these fluctuations are nonlinear, the phenomenon is properly called
turbulence. The issue addressed in this review is the degree to which nonlinearly interacting
fluctuations may be expected to give rise to structure in space and in time. A statistical
description of structures and intermittency is particularly relevant as fluctuations in a turbulent
medium inevitably display complex behaviour suitable for representation as random variables.
Adopting this heuristic definition of intermittency in space plasma turbulence, rather than more
formal definitions, is advantageous in our approach, as we explain in the following sections.
It may be readily demonstrated that structure formation gives rise to numerous physical effects,
many of which may be analysed using several types of simulations or models, ranging from
magnetohydrodynamics (MHD) to completely kinetic treatments based on the Vlasov equation.
Useful insights are gained by comparison of simulation results and statistics with analogous
diagnostics in the solar wind. The emphasis here is to understand the physical connections
between intermittency and observable consequences such as coronal and solar wind dissipation
and heating, particle transport, and space weather prediction. To assist this understanding, we
provide an introduction to the physics of intermittency in space plasmas, recognizing the need
to extend the usual (non-intermittent) approach based on uniform homogeneous theoretical
treatments, or, when fluctuations are treated, the usual approach based mainly on wavenumber
spectra. A dynamical account of intermittency and its consequences necessarily goes beyond
these standard approaches.

Spatial structure is typically evident (or can be made so) in realizations of turbulence. The
concentrations of vorticity revealed by passive tracers embedded in a rapid flow around an
obstacle are a good example, and there are numerous others. Collections of such visualizations,
worth examining in some detail, are readily found in print and online, e.g. An album of fluid
motion [1] or A gallery of fluid motion [2]. In these images, it is apparent that spatial intermittency
associated with structure is seen in many types of flows when they are strongly nonlinear and
when the Reynolds number (or other appropriate dimensionless measures) is high enough to
permit a wide range of spatial scales to be represented in the dynamics. Examples are not difficult
to find, such as in ocean surface flows, atmospheric flows and in astrophysics. Similarly, temporal
intermittency is found in many models, including even nonlinear models of physical phenomena
that have been reduced to just a few degrees of freedom, e.g. the Duffing oscillator, the Rikitake
dynamo and the Lorentz model.

Historically, the notion of intermittency derives from observation of bursty signals observed in
turbulent flows, indicative of occasional very strong spatially localized fluctuations, or localized
strong gradients. Sometimes one encounters more formal definitions that are tied to specific
models. For example, it is not uncommon to hear it stated that a bursty signal must be multi-
fractal (see below) to be considered as intermittency. However, it is clear that the term has been
used much more broadly. In particular, Novikov ([3], p. 231) gives a useful definition:

Intermittency is the nonuniform distribution of eddy formations in a stream. The modulus
or the square of the vortex field, the energy dissipation velocity or related quantities
quadratic in the gradients of velocity and temperature (of the concentration of passive
admixture) may serve as indicators.

In the following sections, we review several types of intermittency and their associated structures
and effects on observable phenomena. We will avoid mathematical detail or strict formal
definitions, although we will refer to simple mathematical models as elements of the conceptual
framework. In this way, we seek not only to provide an accessible introduction but also to
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emphasize the various ways that intermittency and dynamically generated structure may have
significant impact on observed phenomena in space and astrophysical plasmas. Another goal is
to emphasize the early results that have been obtained in extending the more classical approach
to understanding fluid intermittency into the much less well understood realm of the low-
density plasmas of interest. For these systems, the use of fluid concepts is only an approximation,
sometimes a rather crude one, and we do not even know the exact form of the dissipation
function. Therefore, the study of intermittency in these cases must proceed simultaneously with
a study of some of these very basic physical properties of the dynamics.

Recognizing these goals, the presentation begins with hydrodynamic antecedents but focuses
on MHD and plasma behaviour relevant to space and astrophysical plasmas such as the solar
wind. We will discuss inertial range intermittency, associated in hydrodynamics with loss of
self-similarity at smaller scales, and the Kolmogorov refined similarity hypothesis. In the solar
wind context, effects on trapping and transport are described. Next we turn to dissipation range
intermittency, or, in a plasma, the intermittency that occurs beyond the inertial range. Here the
prospects of non-uniform dissipation and heating are of primary importance. Finally we will
briefly mention the role of very-large-scale structure in some systems, which can generate noise of
very low frequency that influences predictability by producing a variability of turbulence sources,
very much along the lines of the variability envisioned in the seminal works on hydrodynamic
intermittency [4,5].

2. Basic diagnostics of intermittency in fluids and magnetohydrodynamics

As we are interested in fluctuating quantities in turbulence, an important way to describe a
particular random variable g is through its probability distribution function (PDF), defined by

PDEF(q) dgq = probability that the random value lies between g and q + dg, (2.1)

for infinitesimal dg. Intermittency corresponds to ‘extreme events’, especially at small scales.
The moments of the PDF are (7") = [ dgq"PDF(g); central moments are defined as ((7')") with
g =q— (q). When a random variable is structureless and emerges from an additive random
process subject to a central limit theorem, then its distribution is expected to be Gaussian. Recall
that, for a Gaussian, odd central moments are zero, and all even central moments ((7')"), n even,
are fully determined by (()?).

The so-called longitudinal increment of a random velocity field v(x) is a quantity often
discussed in turbulence theory, and is defined as

Svr(x) =7 [o(x + 1) — v(x)], (2.2)

where the vector lag r is of magnitude r and in direction #. Denoting the magnetic field as b(x),
we may define its longitudinal increment, §b;, in a similar way, and the increment of a scalar
by analogy.

When the dynamics leads to the presence of structures at a wide range of scales, higher order
moments of increments §v, are expected to show greater non-Gaussianity at small lags r. For
intermittency—in which strong gradients are highly localized—one expects that higher order
(integer p > 3) moments of smaller scale increments, e.g. {|8v,|V), are much greater than their
Gaussian values. The quantity S®)(r) = (5v}) is called the pth order longitudinal structure function
of the velocity v.

One way to measure this phenomenon is to examine the kurtosis of the increments, defined as

o)
7

(6 vrz)

A simple heuristic interpretation of «(r) is that it is related to the filling fraction F for structures

at that scale, with k ~ 1/F. Thus, if «(r) increases for smaller r, the fraction of volume occupied by
structures at scale  is decreasing with decreasing r.

k(r)= (2.3)
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Figure1. Results from a two-dimensional MHD simulation showing the relationship between the spatial distribution of electric
current density (a) and various contributions to the PDF of current density (b). Inboth panels, the current density is normalized to
itsr.m.s. value. The PDF in (b) is divided into three regions and is compared with a reference unit variance Gaussian distribution.
Region (1), the core of the distribution, corresponds to the shaded regions in (c). The sub-Gaussian region designated (Il) in (b)
corresponds to the shaded areas in (d). (e) The extreme events, i.e. region (I1l) in (b), suggesting that strong current sheets are
located between magnetic islands. Magnetic field lines are superposed in (c)—(e). (Online version in colour.)

The last statement is related to the operating definition of intermittency given by Frisch [6],
who states that “... the random function v(f) is intermittent at small scales if the (kurtosis) ...
grows without bound with the filter frequency $2.” Frisch’s filtered kurtosis (his ‘flatness’) is
defined in the time domain in analogy to « but, instead of a spatial increment, it employs a high
pass filter at frequency £2. An example of an intermittent magnetic field in a moderate Reynolds
number two-dimensional MHD simulation is shown in figure 1.

The most familiar impact of intermittency in turbulence theory is embodied in the evolution of
inertial range theory from Kolmogorov’s original (K41) treatment to his 1962 (K62) treatment [5,7].
In the self-similar K41 case [7], the statistics of the inertial increments are determined universally
in terms of the dimensionless variable §v, /(er)/3, where € = (¢(x)) is the global energy dissipation
rate associated with the cascade. Note that transfer from scale to scale is assumed to be local in
the scale r. Based on these assumptions, one finds immediately expressions for all moments of
the increments:

(auf> =CpelBl3. 2.4)

The classical K41 case, which treats the hydrodynamic dissipation rate as a constant, has been the
motivation for a vast amount of research involving spectra and second-order moments [6,8], as
well as closures and phenomenologies of turbulence and turbulent dissipation that have proven
useful in many contexts (e.g. [9]).

The K62 theory [5] recognizes that the dissipation function (local rate of dissipation: €(x))
is not a uniform constant but rather must be treated as a fluctuating random variable in the
same way as the turbulent velocity. The local dissipation coarse-grained to a scale » may be
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defined as €,(x) = (773/6)~! [ d3ye(x + y), where the integration domain is the sphere of radius
r/2 centred at x. K62 proceeds to adopt the refined similarity hypothesis, or KRSH, by introducing
a dimensionless random variable 8v,/(e,r)1/3 and arguing that the statistical distribution of this
quantity approaches a universal functional form at large values of the Reynolds number. One
may again compute moments of the increments to find

(5u£’> =G, (ef/ 3> /3., 2.5)

The effects of intermittency and coherent structures are apparent: unless €,(x) is uniform, the
exponent p/3 will not commute with the averaging operation. In fact, when the medium is
intermittent, large increments occur in concentrations in space, where gradients are strong.
If these large values occur more frequently than would be expected from Gaussian statistics,
then there are ‘heavy tails” on the increment distributions. Accepting the similarity hypothesis
equation (2.5), it is clear that spatial enhancements of increments are associated with enhancement
of the local average dissipation function €(x).! Thus, in regions where dissipation is very
concentrated over a scale r, there will be concomitant concentration of large values of §v,. For
a given value of average dissipation (e(x)) =¢, this effect causes equation (2.4) to differ greatly
from equation (2.5), given that (ef/ 3) > €P/3 when the intermittency is great. The K62 formulation
further makes use of a suggestion by Oboukhov [4] that the exponent p/3 may be brought
outside the bracket at the expense of adjusting for the concentration of dissipation at the scale r.
This replacement introduces a dependence on the outer (energy-containing) scale L, through
(ef / 3) — eP3(L/r)E®), which indicates an enhancement for £ > 0 associated with the concentration
of the dissipation. When the lag approaches the outer scale, ¢, — ¢ and there is no enhancement.
With this additional hypothesis, the KRSH postulates that

(5vf> - C;Ep/3rp/3—é(p)l (2.6)

where the dimensional factor involving the outer scale is absorbed into the constant C;?.
The quantity &(p) is called the intermittency correction or sometimes intermittency parameter;
the combination ¢(p)=p/3 —&(p) is called the scaling exponent. When p =3, comparison of
equations (2.5) and (2.6) indicates that £(3) = 0. This is also reminiscent of the exact Kolmogorov
third-order law, which, however, involved the signed third-order moment. (We have implicitly
assumed here that the moments are of |§v;|, which appears to be required as ¢, > 0.)

So far, we have concentrated on hydrodynamic theory although our goal is to discuss MHD
and plasma intermittency effects. There is good reason for this. The KRSH for hydrodynamics
is the basis for most intermittency theory [10], is considered to be supported by experiments
and simulations and is reasonably successful even though not proven. A major derivative effort
has been in anomalous scaling theories, including multi-fractal theory [6,11], that are capable of
modelling the observed behaviour of higher order structure functions through equation (2.6) and
specific functional forms of &(p). It is important to understand the status of these theories, which
are mainly phenomenological, before extending the ideas to plasmas and MHD.

Like hydrodynamics, MHD theory based on extensions of K41, including uniform constant
dissipation rates [12,13], has led to numerous advances, including closures, that have greatly
increased understanding of this more complex form of turbulence. However, it is also natural to
expect that taking into account the dynamical generation of coherent structures and their effects
on dissipation will have rich implications for MHD and plasma, as it does in the transition from
K41 to K62 perspectives on hydrodynamics.

The most obvious approach to extending the above ideas to plasmas is to consider the
incompressible MHD model in which the velocity increments v, and magnetic increments §b,
are treated on equal footing. Without delving more deeply into the background theory, one may

I The association of enhanced viscous dissipation with enhanced spatial derivatives of velocity requires no hypothesis, as the
local rate of viscous dissipation for incompressible hydrodynamics is €(x) = (v/2)S;;S;; with S;; = du; + dju;.
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Figure 2. Evidence for intermittency, in the form of multi-fractal scalings of structure functions of increasing order. () £ (p) from
hydrodynamic experiments. (Adapted from Anselmet et al. [14].) (b) £ (p) from an MHD simulation. (Adapted from Biskamp &
Miiller [15].) When the scaling exponent ¢ (p) exhibits anomalous behaviour (i.e. is a nonlinear function of p, the order of
the structure function), the scaling is described as multi-fractal [6]. An alternative and more direct approach to characterize
intermittency is to compare the PDFs of increments at different spatial lags, finding that fatter non-Gaussian tails appear in
the PDFs of the smaller lags. (c) An example from solar wind data, where spatial lag is proportional to time lag. (Adapted from
Sorriso-Valvo et al. [16].)

simply adopt a perspective based on analogy with equation (2.6) and proceed to evaluate higher
order statistics and their scalings with spatial lag. From this emerges a picture quite reminiscent
of hydrodynamics, as illustrated in figure 2.

Despite what might appear to be an encouraging similarity in the scaling of higher order
moments in hydrodynamics and in MHD, there are in fact at least two main impediments to a
direct extension of the KRSH to MHD, and at least one additional major problem in extending it
to kinetic plasma, as follows.

First, for both MHD and plasma, there is ambiguity regarding the choice of fluid-scale
variables as there are now at least two vector fields involved. These are the velocity v and
magnetic field b, or equivalently the two Elsasser fields z* = v + b//4mp and z~ =v — b//4np,
where p is the mass density. (When the magnetic quantities are expressed in Alfvén speed units,
the Elsasser variables take the form z* =v +b.) Is the local dissipation related to év,? To 8b,?
More properly, based on the structure of the third-order law for MHD [17,18], perhaps relations
analogous to equation (2.6) should be written separately for two local dissipation functions ;"
and €, , in terms of the increment combinations (§z1(5z|2)1/3 and (8z~16z7|?)1/3 [19]. There have
also been suggestions that even more information could be embedded in the primitive increment
functions entering the MHD KRSH, for example by allowing for a scaling of alignment angles
between v and b [20]. All such suggestions are permissible from a dimensional standpoint, but
we have not yet seen in the literature either a precise statement of an MHD KRSH (however, see
[21,22]) or a full statistical test of any such hypothesis, as has been carried out repeatedly in the
hydrodynamic case [23,24].

Second, there is increasing evidence that MHD turbulence lacks a universal character [19,25],
so that it is not clear that there is a single, simple answer to the questions posed in the previous
paragraph. Non-universality is related not only to the multiplicity of independent field variables
in MHD but also to the known sensitivity to parameters that are not related to conserved
quantities, such as the Alfvén ratio (ratio of kinetic to magnetic energy) in the initial data or in
the driving. One may also see, based on the hierarchy of von Karman-Howarth-like equations
for correlation functions in MHD [19], that the behaviour of the third-order correlations that
relate directly to dissipation are themselves dependent upon several fourth-order correlations—
and not just a single fourth-order correlation as in isotropic hydrodynamic turbulence. These
controlling fourth-order correlations, as well as parameters such as the Alfvén ratio, describe
the specific turbulence under consideration. Varying these quantities changes the character of
MHD turbulence realizations at a significant level [25,26]. These observations provide interesting
challenges, but are of course not conclusive. At present, the status of universality in MHD is not

ey o S i oo


http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on August 28, 2017

fully established and we may anticipate further work in this area, even as we recognize that MHD
turbulence is more complex than its hydrodynamic counterpart.

Finally, in the case of low collisionality or collisionless plasma, there is the additional difficulty
that the dissipation function €,(x) is not a matter of agreement. Therefore, for the plasma case
there are substantial ambiguities, in some sense, on both sides of equation (2.6).

Despite these formal difficulties in extending the mathematical framework of hydrodynamic
intermittency to the cases of interest here, in the following sections, we will argue that it is possible
to formulate a description of the effects of intermittency in relevant space and astrophysical
systems, often with guidance from numerical simulations.

3. Basic physics underlying intermittency

The tendency of nonlinear couplings in a fluid system to produce concentrated spatial structure
and non-Gaussianity in higher order statistics can be understood at least partly using simple
heuristic ideas, and some simple simulation-based demonstrations.

The amplification of higher order moments by quadratic nonlinearities can be seen as follows.
Consider a simple dynamical model in two variables g and w, both functions of space, with the
structure g ~ qw, and initial conditions such that the distributions of 4 and w begin as Gaussian
random variables. Then it is simple to see that the change in g over a short interval At is
Ag ~ q(0)w(0)At, and that this is non-Gaussian. This follows because the product of two Gaussian
random variables is a random variable having a kurtosis between 6 and 9, the specific value
depending on both the relative variances and the correlation between g and w (e.g. [27]). Thus,
we see that the time advancement of a quadratically nonlinear system will progress away from
Gaussianity and will probably become less space filling. If we insert a ‘wavenumber” k into the
equation, so that g~ kqw, as in the Fourier space version of an advective nonlinearity, we can
similarly conclude that the dynamical variables at smaller scale will become non-Gaussian at a
greater rate.

The idea that advection alone can produce concentrations of gradients and statistics similar
to intermittency has been applied to devise schemes for generation of synthetic intermittency.
The major development in this area has been the minimal Lagrangian mapping method (MLMM)
for generating a velocity field that displays numerous characteristics of intermittent turbulence,
without running a simulation code to solve the Navier—Stokes or Euler equations [28,29]. The
method was recently extended to generation of intermittent magnetic fields [30]. The procedure is
based on an iteration in which the velocity field is low-pass filtered at progressively smaller scales,
and at each stage the filtered velocity is employed to map the full velocity by approximately one
appropriately coarse-grained grid scale. After remapping to the vertices, applying a solenoidal
projection, and rescaling the energy spectrum, the procedure is repeated several times. The result
is a velocity or magnetic field with a specified spectrum, a realistic scale-dependent kurtosis,
and, for the velocity, a negative derivative skewness. Such models may be useful for test particle
studies and other applications where a readily available intermittent field is needed, but one
also gains some insight in understanding how advection amplifies local gradients and produces
intermittency.

These simple heuristic arguments suggest that non-Gaussianity can be produced by ideal,
i.e. non-dissipative, processes alone. The notion that the small-scale coherent structures seen in
observed or computed turbulence are mainly of ideal non-dissipative origin can also be directly
tested in numerical simulation. This issue relates directly to the ideal development of the cascade,
and indirectly to the question of singularity formation in ideal flows. An early examination of
these questions for MHD was given by Frisch et al. [31], who studied the formation of sharp
current sheets in ideal MHD. The same point was illustrated more recently in two-dimensional
MHD simulations [32], by examining higher order statistics such as the filtered kurtosis of the
magnetic field. In particular, starting from a single initial condition, the evolution is compared
when computed separately in ideal MHD and in viscous resistive MHD at moderately large
Reynolds numbers. It is apparent from the results (figure 3) that the current sheets that form
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Figure3. Out-of-plane electric current density from ideal (a—c) and resistive (d—f) MHD runs started with identical initial data.
The current density is shown at three times: t = 0, t & 0.2 nonlinear times and at a later time. The early evolution is evidently
almost exactly the same in the two cases. In particular, strong sheet-like concentrations form in both ideal and non-ideal cases.
(From Wan et al. [32].) (Online version in colour.)

at early times in the ideal case are essentially identical to those formed in the well-resolved
dissipative run.

A quantitative comparison of the statistics of the ideal and non-ideal current in the same
numerical experiments also reveals that at early times—that is, prior to significant amounts
of excitation transferring out to the maximum wavenumber—the kurtosis of the current is
essentially the same in the ideal and non-ideal runs.

The close correspondence of the ideal and non-ideal runs up until a time limited by the spatial
resolution of the numerics fits well into a cascade picture in which the spectral transfer is ideal and
occurs freely and without dissipation throughout an “inertial range’. When arriving at sufficiently
smaller scales, dissipation begins to become important and eventually dominant. This is just the
classic K41 perspective. However, the generation of coherent structures in the inertial range of
scales, without any apparent influence of dissipation, prompts further reflection. Evidently, the
driver of the formation of small-scale coherent structures is found in the ideal nonlinearities.
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Dissipation acts mainly to limit the intensification of these coherent structures in space. There is no
contradiction of the KRSH implied by this, but rather a subtlety in its interpretation. The stresses
that drive structure formation do not involve dissipation, but, when dissipation is computed, its
statistical distribution in space measured in the inertial range is a direct response to the statistical
distribution of the structures. A simple picture emerges, in which, for large driven systems, it is
possible to achieve balance between ideal structure formation and structure deterioration owing
to non-ideal effects. In that case one finds a steady transfer through inertial range scales, balanced
by intermittent dissipation at small scales.

4. Dynamical relaxation, cellularization and intermittency

The multiplicity of variables, conservation laws and other parameters in incompressible MHD
introduces ambiguity in attempts to extend ideas such as the KRSH. The situation is even worse
for a kinetic plasma. Multiplicity of variables and parameters also makes it difficult to envision
universality in MHD. There are in fact expected to be numerous types of possible turbulent
behaviours depending on ratios of ideal invariants, ratios of kinetic to magnetic energies and
so on [19,25,26]. On the bright side, this complexity introduces a richness to intermittent MHD
turbulence that extends beyond hydrodynamic antecedents.

The role of advection in generation of intermittency seems fairly clear based on the several
examples discussed in the prior section. The pile-up of gradients also requires a region of
slowdown or diversion so that the transported quantity may be concentrated. For hydrodynamic
shear layers, this role is evidently provided at least in part by stagnation points or layers, where
vortex amplification into sheets or tubes is likely to occur. For MHD there are more possibilities,
as the magnetic field also provides a direction of transport of various quantities, including energy.
Therefore, stagnation points of the magnetic field, or neutral points (including component neutral
points), occupy a key role in the generation of current sheets, and other coherent structures.

The combined effects of transport and concentration of gradients at special positions leads to
important self-organization properties of many fluid systems including MHD, and, as we shall
discuss below, also kinetic plasma turbulence. One may effectively argue that these processes at
the relatively fast dynamical relaxation times of the system lead to a cellularization consisting of
relatively relaxed regions separated by strong gradients. The emergence of organized structure is
seen in many types of systems, as illustrated in figure 4.

The formation of cellular structure is a clear example of self-organization associated with
turbulence, as shall be evidenced in the ensuing discussion. Turbulent relaxation leading to
formation of large-scale structure is often associated with important ideas such as Taylor
relaxation [38] and selective decay processes [39,40]. Generally, these refer to processes driven by
turbulence in which one global quantity (often energy) is preferentially dissipated while another
global quantity, or quantities, is maintained at a constant (or near constant) value.> One proceeds,
for example, by minimizing the incompressible turbulence energy E = [ d®x(v? + b%) subject
to constancy of the magnetic helicity Hm = [ d3xa - b, where b=V x a. Applying appropriate
boundary conditions and solving the Euler-Lagrange equations corresponding to minimization
of E/Hm, leads to the so-called Taylor state in reversed field pinch experiments or spheromaks [45].

The corresponding problem for homogeneous turbulence with both cross helicity and
magnetic helicity held constant in three dimensions [46] (or, for two dimensions, with mean
square potential substituted for Hp [47]) leads to the variational problem § [ d3x(v? + b + aa -
b+ yv-b) =0, and an Euler-Lagrange equation, which has the solution

cib=cyv=c3V x b=c4V x v. 4.1)

2Ideal quadratic invariants form the basis of absolute equilibrium models of ideal hydrodynamics and MHD [41-44] which
describe how these quantities tend to distribute themselves in the absence of dissipation. While not direct representations
of physical systems, these models imply preferred directions of spectral transfer of the conserved quantities, which in turn
indicate which quantities might be preferentially dissipated or preserved in real dissipative turbulence.
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Figure 4. Examples of cellularization owing to turbulence—consisting of sharp gradients separating relatively relaxed regions.
Shown are turbulence simulation examples from two-dimensional (2D) MHD, three-dimensional (3D) isotropic MHD, reduced
MHD (RMHD), 3D Hall MHD and 2.5-dimensional (2.5D) hybrid kinetic codes, respectively, from Zhou et al. [33], Mininni et al.
[34], Rappazzo et al. [35], Greco et al. [36] and Parashar et al. [37]. (Online version in colour.)

The quantities c1, ¢z, c3 and cy4 are related to the geometry and the Lagrange multipliers « and
y. Note that V x b=j is the electric current density in MHD, while V x v =w is the vorticity.
Equation (4.1) implies that the relaxed state is

Alfvénicwithvocb, AND  force free withb oV x b, AND  Beltrami withv o« V x v.

In the initial formulations [38—40], the examination of the relaxation processes associated with
selective decay focused on the long-time states described by the minimization procedure. In such
cases, the Lagrange multipliers and c; . . . c4 are constants that define a global state.

The intermediate states were also discussed, for example, when Taylor [38] describes the
temporary conservation of magnetic helicity on each closed flux surface, or when Matthaeus
& Montgomery [40] describe the attainment of the final state through successive reconnections
between strongly interacting pairs of magnetic flux tubes. It was, however, in the realm
of hydrodynamics that the quantitative implications of local rapid relaxation processes were
described. The local emergence of Beltrami states was found [48-50] to lead to a statistical
depression of nonlinearity in turbulence not associated with driving by a dominant large-scale
shear flow (in other words, freely relaxing turbulence rather than driven turbulence.) Somewhat
later, it was discovered numerically [51,52] (see also [53]) that Alfvénic correlations in MHD
turbulence occur spontaneously in patches. Simulation subsequently showed [54] that all three
types of correlations—Alfvénic, Beltrami and force free—occur spontaneously, concurrently and
rapidly in MHD turbulence. When the relaxation is local, one may anticipate that the physically
relevant solutions to equation (4.1) are those with piecewise constant values of ¢ . .. c4. Additional
correlations also emerge, such as anti-correlation of mechanical and thermal pressure. Some of
these correlations are shown in figure 5.
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Figure 5. Distributions of the alignment angles between v and b, etc. (see legend), from an unforced three-dimensional
MHD turbulence simulation. As in the text, V x b =j is the electric current density, and V x v = w is the vorticity.
The distributions are computed less than one nonlinear time into the run. At t = 0 the distributions were all flat. The initial
conditions contained very low levels of magnetic helicity and cross helicity. (From Servidio et al. [54].) (Online version in colour.)

What all of these emergent correlations have in common is that they decrease the strength
of nonlinearities in the equations of motion. Rapid emergence of Alfvénic correlation reduces
the strength of the V x (v x b) nonlinearity in the induction equation. Similarly, the emergence
of local patches of force-free correlation reduces the Lorentz force (V x b) x b, and patches of
Beltrami correlation reduce the strength of v x (V x v), and both of these reduce nonlinearity
in the momentum equation. It is interesting to note that the appearance of these characteristic
correlations in local patches can apparently be made formally compatible with equation (4.1),
by allowing the Lagrange multipliers to be piecewise constant, thus enforcing the minimization
principle in patch-like regions. A more complete theory based on this idea has yet to be developed
as far as we are aware.

This kind of rapid depression (sometimes also called suppression or depletion) of nonlinearity
makes good physical sense: in turbulence, fluid elements experience complex forces and
accelerations that are difficult to describe in detail. On average, the responses to these forces
should act to decrease the forces and acceleration. But on short time scales this effect can occur
only locally. Rapid relaxation occurs in cells or patches, with distinct cells relaxing differently.
Each region relaxes as far as it can before stresses are built up along boundaries with other relaxing
cells. The higher stress boundary regions become concentrated, forming small-scale coherent
structures, including vortex sheets and current sheets. These separate relatively relaxed regions,
in which the nonlinear stresses are partially depleted. The partially relaxed regions form larger
scale ‘cells’” which are a different sort of coherent structure, such as ‘sinh-Poisson’ vortices in
two-dimensional hydrodynamics [55,56] or flux tubes in MHD.?

It is not difficult to show that the emergence of these nonlinearity-suppressing correlations
must be associated with non-Gaussian statistics. Intuitively, it is clear as sharp boundaries
form between cells and these are non-spacefilling and highly concentrated. This implies non-
Gaussianity and high kurtosis of gradients and small-scale increments. This conclusion is also
readily verified quantitatively, by evaluation of a fourth-order statistic Hy = ((v - b)?), for two
special cases. For simplicity, suppose v and b have equal and isotropic variances, and zero mean
values, so that the variance of any component is o2. For the first case, we assume both vector fields
are Gaussian, generated by a jointly normal distribution, and let the the components of b and v
be uncorrelated, so that (vyvg) =0 and (bybg) =0 when o # B, and (v.bg) =0 for all « and B.

3The concept of entropy that enters the formalism for long time relaxation in two-dimensional hydrodynamics [55]
is essentially an information entropy, and must be distinguished from the Gibbs entropy in the absolute equilibrium
models [41,43,44]. There have been some attempts to extend the information entropy formulation to local two-dimensional
hydrodynamic relaxation within individual vortices [57]. Formulations of entropy concepts in MHD have been proposed but
are less well studied [39,58].
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Then by direct evaluation Hy = ((v - b)) =30*. As with all jointly normal statistics, the fourth
and all higher orders are determined by the first- and second-order moments, including the cross
correlation, which here is zero. For the second case, assume that at every point v = £b, and that
the distribution of each may or may not be Gaussian. After a short calculation, one finds for this
case that Hy = (3ko + 6)o*, where «q is the kurtosis of any one Cartesian component (all assumed
equal by isotropy). In this case, if the fields are Gaussian (kg = 3), then the assumed pointwise
correlation means that Hy is five times larger than in the fully Gaussian jointly normal case. Thus
the joint distribution cannot be normal. For kg > 3 the disparity is even greater. We conclude that
the presence of strong random Alfvénic correlations distributed in patches cannot be described
by jointly normal (bivariate Gaussian) statistics, as has been argued previously [52].

One may devise analogous arguments to conclude that each of the local correlations required
for depression of nonlinearity requires some level of departure from Gaussianity. That is,
correlations such as ((b - V x b)?) or ((v - V x v)%) must take on values other than those associated
with jointly normal distributions. This has been demonstrated explicitly in three-dimensional
MHD turbulence simulations [54] by computing these correlations (and others) from dynamical
simulation data, and comparing the values from MHD solutions with values obtained by fixing
the spectrum of all quantities and randomizing (‘Gaussianizing’) the fields v and b. This provides
a rather convincing quantitative demonstration of the association of depression of nonlinearity
with the emergence of non-Gaussianity and intermittency. In these cases, the examination of the
real space structure shows patches of relaxed magnetofluid, forming cellularized patterns (e.g.
‘flux tubes’) that are separated by thin high-stress boundaries, often in the form of current sheets
and vortex sheets, as suggested by the examples in figure 4.

The picture that emerges from studies such as those reviewed here is that the turbulent cascade
is far from a structureless, self-similar or random-phased collection of fluctuations as is sometimes
imagined. Numerical realizations of cascades, as well as observations of turbulence, reveal that
nonlinear dynamics leads to local relaxation and the spontaneous creation of regions of reduced
nonlinearity, bounded by higher stress concentrations of gradients. This perspective links cascade,
relaxation, coherent structures, intermittency and dissipation in a physically appealing picture
that is complementary to the more mathematical view of intermittency in terms of anomalous
scaling and fractal descriptions. It also makes clear that there is much more to a turbulence
description than what is accessible simply by discussion of the power spectrum itself [59].

5. Evidence for coherent structures in the solar wind

Given the accessibility of the solar wind as a natural laboratory for turbulence studies, it is natural
to enquire whether the characterization of intermittent turbulence given above is consistent with
interplanetary observations.

The most obvious feature of solar wind observations that relates to the picture of cellular flux
tube structure of MHD and plasma turbulence is the frequent appearance of discontinuities. These
have been studied for decades [60,61], often interpreted as an example of the relevance of simple
ideal MHD solutions to the solar wind [60-62]. If, alternatively, the discontinuities are features
of turbulence, then a methodology is needed that can compare properties, preferably statistical
properties, of discontinuities in a known turbulence environment, such as MHD simulation, with
the observed discontinuities in the solar wind. One such approach is the partial variance of
increments (PVI) method, which was designed precisely for this purpose [36,63]. The PVI time
series is defined in terms of the vector magnetic field increment AB(s, ) = B(s + 7) — B(s), which
is evaluated along a linear trajectory labelled by s (in space or time) with a lag 7.* Then the PVI

time series is
|AB(s, 7)|

V{ABGs, 7))

4The time lag 7 is usually selected to correspond to the inertial range of the fluctuations, or in some cases the smallest time
lag available in the dataset. For a given analysis, 7 is fixed, but results for various values of 7 may also be compared.

PVI(s; 7) = (5.1)
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Figure 6. Spatial signal PVl computed from simulation versus distance s /.. at a spatial lag = 0.006251 (solid thin red line),
where A is the correlation scale. (b) Time series PVI (normalized to correlation time t) computed from ACE data at a time
separation of 4 min. The thick dashed blue lines are the values of the thresholds employed for figure 7. (Online versioniin colour.)

where the average is over a suitably large trailing (i.e. times <s) sample computed along the
time series. Two sample PVI time series are shown in figure 6, one from a sample of about 750
correlation times of solar wind data and the other from a similar size sample taken from a large
two-dimensional MHD turbulence simulation. The simulation is sampled along a linear trajectory
analogous to the way that the solar wind data are interpreted using the Taylor hypothesis (spatial
lag = time lag x flow speed).

The PVI time series measures the ‘spikiness’ of the signal relative to its recent past behaviour
along the line of observation. In this way, it is a measure of intermittency. It is easy to see that its
moments are related to the moments of component increments discussed above that are related to
the formal definitions of multi-fractals, etc. PVI turns out to be a useful and easily implemented
measure, but it is not unique. Other methods, some based on wavelets [64] such as the local
intermittency measure (LIM) [65,66], or distinct techniques such as the phase coherence index the
[67] and others, are also useful in quantifying intermittent signals. Our preference for use of PVI
is based on its simplicity of implementation, and we are confident that results based on PVI can
also be obtained with different methods; for a comparison of PVI and Haar wavelets, see [64].

Upon normalizing the analysis to correlation scales, one may use PVI to compare the
distributions of waiting times (or distances) between observed events, defined by selecting a
threshold on the PVI value (for a fixed lag and interval of averaging). It is rather remarkable,
and, we suggest, significant, that the waiting time distributions in the inertial range of scales
are quite comparable in MHD turbulence simulations and in solar wind data (figure 7). As this
distribution is a consequence of the nonlinear dynamics in the simulations, the agreement with
the solar wind analysis suggests that similar dynamics may cause the statistical distributions of
distances between strong discontinuities as measured by PVI.

The distribution of discontinuities is suggestive of some type of boundaries between flux tubes.
Furthermore, based on general considerations of anisotropy in MHD [68-70], one would expect
the axis of the flux tubes to be roughly aligned with the moderately strong large-scale mean
magnetic field of the solar wind. This possibility has been discussed previously, in the context
of ‘spaghetti models’, using different methods for identification [71], and with an interpretation
as passive structures originating in the corona. The observation of the boundaries by itself does
not answer the question of the origin of the observed structures—whether they are produced
in situ or are remnants of coronal turbulence. These two are not mutually exclusive, given that
the nonlinear age of solar wind turbulence at 1 AU is at most several nonlinear times [72]. It is
quite possible then that some observed features can be traced to the wind’s coronal origins while
others arise in situ. A recent study investigated the sharpness of observed discontinuities along
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Figure 7. Waiting times (distances) computed from a three-dimensional Hall MHD simulation and from ACE solar wind data,
with the coordinate along the time series normalized by the correlation scale. The distributions are very similar and power-law-
like in the inertial range. (Adapted from Greco et al. [63].) (Online version in colour.)

the Helios orbit, by examining the evolution of the magnetic field PVI distribution, in comparison
with similar analysis from MHD simulation [73]. It was found that the solar wind PVI distribution
undergoes a subtle but measurable evolution, and that the nature of the evolution is similar to
that found in an initial value simulation during the first few nonlinear times. This provides some
evidence that part of the evolution of discontinuities or current sheets occurs during solar wind
transport to 1 AU.

There is also evidence to be found for cellularization of interplanetary turbulence in solar
energetic particle (SEP) data. Prominent in this regard is the phenomenon of SEP dropouts or
channelling. Figure 8 shows an example from Mazur et al. [74] in which the measured count
rates from energetic suprathermal particles sporadically and abruptly turn off, only to suddenly
reappear a short time later. One could argue that this is evidence for a flux tube structure, which
can topologically trap magnetic field lines [75] as well as particles [76]. Eventually particles can
escape these temporary traps but evidently the effect can persist from the corona to 1 AU. More
detailed study [77] reveals that flux tubes are likely to have ‘trapping boundaries” contained
within them that are distinct from the current sheet that may define the outer boundary of
the flux tube. A complementary view relates the independence of nearby interplanetary field
lines to time dependence of field-line motions at the source [78]. There of course must be a
relationship between these ideas as photospheric motions probably set up the original flux tube
structure, which maps outwards carried by the solar wind [78]; this connection is distorted by
nonlinear effects after a few nonlinear times, but quite possibly it is not erased completely. In
any case, it seems clear that flux tubes can act as conduits for transport of SEPs, and this may
influence the statistical association of SEP fluxes with PVI events (coherent current structures or
discontinuities). Meanwhile there may be leakage of energetic particles from flux tubes owing
to particle transport effects, as well as transfer of magnetic field lines from one flux tube to a
neighbouring one owing to stochastic component interchange reconnection [79].

A somewhat different but equally compelling view of the cellular structure of turbulence in
the solar wind is provided by taking a closer look at the well-known phenomenon of Alfvénic
fluctuations [80,81] at 1 AU. The question is whether the distribution of Alfvénic alignment
angles in the solar wind is akin to that of active MHD turbulence. As usual, the latter is
studied using numerical simulation. An investigation of this nature has been performed [82],
using an ensemble of relatively undisturbed turbulence intervals at 1 AU. In one of these, the
average normalized cross helicity is o =2(v - b)/(v? + b?) = 0.29. Then preparing a moderately
large Reynolds number incompressible three-dimensional MHD simulation with the same o,
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Figure 8. The dropout phenomenon seen in SEP data by Mazur et al. [74] is explained by a model based on transient trapping
of magnetic field lines within magnetic flux tubes. These act as conduits for transport, delaying diffusion [75]. (Online version
in colour.)
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Figure 9. Distributions of cos 8,, and sin 6, computed from solar wind (SW) data and from an MHD turbulence simulation
initiated with the same dimensionless cross helicity as the solar wind sample. Simulation results are for a time a few nonlinear
times from the initial data. The similarity may be viewed as evidence that the spatial patchiness of correlation seen in the
simulations, necessarily associated with non-Gaussian distributions, also occurs in the solar wind. (From Osman et al. [82].)
(Online version in colour.)

one examines the distribution of cos#6,;, values, where 6,,(x) is the angle between the velocity
and magnetic field fluctuations at each grid point. When the MHD data are of approximately
the same age in nonlinear times as the solar wind at 1 AU, one finds that the two distributions
of cos @, are remarkably similar (figure 9). Both populations are peaked at values much more
aligned than needed for an average cross helicity of 0.29, while about the same proportion of
opposite correlation is found. The latter correspond to subsamples where there is a dominance
of ‘inward propagating’ Elsasser fluctuations. One also finds in the same study that the variety
of alignment types exhibited by the cosine distribution actually does occur in patches (not just
isolated points), and that this is the case in both the solar wind data and the simulation.

An even broader picture of the patchy alignments associated with relaxation and intermittency
is afforded by an analysis of multi-spacecraft Cluster data [83]. The four-spacecraft tetrahedral
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Figure 10. Conditional distributions of proton temperature measured at 1 AU by the ACE spacecraft. The different distributions
are for different increasing ranges of PVl value. The higher PVl ranges have distinctly higher temperatures. (From Osman et al.
[84].) (Online version in colour.)

configuration of Cluster permits an approximation to the curl of a measured vector field, so that
V x vand V x b can be computed and compared with v and b. The distributions of the associated
alignment cosines, computed for several solar wind intervals [83], are consistent with strong
signatures of the force-free correlation, in which the PDF of cos Opj,s with Opj the angle between
b and its curl, is strongly peaked near +1. There is also some evidence of similar peaking in the
alignment cosine associated with the Beltrami correlation.

So far we have mainly been concerned with the structure of the observed flux tubes. There
is also growing evidence that identified flux tube boundaries are sites of heating, as would be
expected from considerations analogous to the KRSH, and also of magnetic reconnection, which
is expected for some fraction of dynamically active current sheets. When proton temperature
distributions are computed conditioned on the value of magnetic field PVI [84] a striking
signature is evident: the distributions computed from higher PVI values have temperature
distributions that have hotter most probable values, while also displaying stronger high-
temperature tails (figure 10). This finding was criticized based on an analysis of nearest neighbour
temperatures [85]. However, a more complete analysis of the proton temperatures near PVI
events indicates that the average temperature falls off gradually as distance from the identified
discontinuities increases [86]. There is a characteristic core of elevated temperature that is about
100000 km wide and a slower fall-off to distances beyond a correlation scale (approx. 106 km).
Elevated temperature is not identical to heating, but it may be viewed tentatively as a proxy if heat
conduction is not too great. One of the main outstanding problems for a plasma is of course that
we do not know the dissipation function (or heat function) from first principles. This is revisited
in the next section.

A topic intimately related to both turbulence and intermittency is that of magnetic
reconnection [87-90]. In the solar wind, searches for magnetic reconnection have been less
successful than in the magnetosphere, in part because the ordered large-scale magnetic field
configuration prescribes the regions where the process is likely to be found. In the solar wind
studies, instead of searching for the reconnection (diffusion) zones directly, more progress has
been achieved based on identification of the Alfvénic exhaust jets that are emitted from an active
reconnection site [91,92]. With availability of higher time resolution datasets, larger numbers

O 0 S g B


http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on August 28, 2017

of candidate reconnection events have been identified [92]. There has been some controversy
as to whether suprathermal particles are associated with some of these events [93,94]. At the
same time, if we accept that a turbulence cascade is active in the interplanetary medium, then it
seems inescapable that magnetic reconnection in some form must be ongoing. Recently, a PVI-
based method was implemented to search for solar wind reconnection sites. The method was
tested in the context of MHD simulation [95], where current sheets and reconnection rates can be
unambiguously identified by full analysis of the MHD fields. It was found that, for strong events
with PVI >6 or 7, it was extremely likely that these would also be located at reconnecting current
sheets. In application to the solar wind, the identification of a PVI event with a reconnection site
cannot be done in the same way as in the simulations. Instead, a successful identification was
defined to be a close coincidence in time of the PVI event with a reconnection event obtained
using the Alfvénic exhaust identification strategy. In analogy to the test case, it was found that the
data identified by large PVI thresholds was up to 10000 times more likely to be a reconnection
event than a randomly selected point. On the other hand, 90% or more of the large PVI events
are not identified exhausts. What is unknown at this time is whether some fraction of these
might also be identified as in or near reconnection sites if more inclusive criteria are employed,
such as identification of features of the reconnection zone itself instead of just exhausts. From a
turbulence perspective, we do expect numerous reconnection sites in the solar wind, but, as seen
in simulations, even in two dimensions [89] their features may be complex and rather different in
many cases from steady-state laminar Sweet-Parker conditions [96].

This section has attempted a quick review of current progress in understanding the effects
of intermittency in the solar wind. It is instructive to conclude by recalling that 35 years ago
a prevailing view of the ‘turbulence’ in the solar wind was that it was a fossil of activity that
took place in the lower corona. In this view the fluctuations are described as non-interacting
Alfvén waves along with an admixture of classical MHD discontinuities that advect with the
wind [80,97]. This perspective stands in contrast to a number of features of interplanetary
observations that are consistent with an active turbulence cascade, including, for example,
reduction of Alfvénicity, lowering of the Alfvén ratio, development of anisotropy, evolution of
the correlation scale [98,99], observed plasma heating [100,101] and the direct measurement of
cascade rates [18,102,103]. The recent revival of the so-called spaghetti model of solar wind flux
tubes [65,104,105] treats flux tubes and their boundaries, which are static discontinuities, as inert
remnants of coronal processes. The interpretation goes so far as to separate the flux tubes and
discontinuities from other fluctuations, the latter regarded as ‘turbulence’. The various studies
alluded to in this section provide a growing body of evidence that the structure that is observed
is a consequence of turbulence, either coronal or interplanetary, or both. It also seems difficult not
to conclude that coherent structures are involved in the evolution of the solar wind turbulence.
Intermittency and structure are therefore an integral part of the cascade, and not a separate inert
component. There is still much to be understood about solar wind turbulence and dynamics even
at MHD scales. We will now turn to an even more difficult topic, the nature of intermittency at
kinetic scales, where the dissipation and heating in plasmas such as the solar wind must occur.

6. Plasma intermittency at kinetic scales

In hydrodynamics, examination of intermittency at scales smaller than the inertial range means
characterizing the structures associated with viscous dissipation. MHD intermittency remains
less well understood than hydrodynamics but maintains the clarity of well-defined resistive and
viscous dissipation functions. An astrophysical plasma such as the solar wind however is only
weakly collisional, and numerous plasma processes may influence what is seen at scales smaller
than the ion kinetic scales. On the other hand dissipation and heating occupy central roles in
understanding the very existence of the solar wind, and therefore these processes are fundamental
in a description of the geospace environment and the heliosphere. There are numerous questions
that need to be addressed regarding the operative mechanisms and the relative roles of various
plasma particle species—electrons, protons, alpha particles, minor species and suprathermal
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particles of each type. Intermittency and structure may enter into this environment, but it is
expected to be more complex than in the fluid models based on the multiplicity of plasma and
electromagnetic variables and the numerous associated length and time scales. Here we briefly
review some progress that plasma simulation has been able to make in revealing the complex
physics of kinetic plasma intermittency and dissipation.

In some sense one may view the collection of excellent work that has been done on
collisionless or weakly collisional magnetic reconnection as a programme of study of kinetic-scale
intermittency and coherent structures (e.g. [106-110]). Most of these studies regard reconnection
and current sheet dynamics as isolated processes, which for the present purposes is a shortcoming
given that coherent structures form and evolve in turbulence as an integral part of the evolution
of the entire system. As an example, consider that in most reconnection studies the dominant
electric field would typically be the reconnection electric field, which is directly associated with
the time rate of change of magnetic flux transferred from one magnetic connectivity to another.
However, in a turbulent environment [111], the electric fields associated with the ambient level
of turbulence are expected to be much larger than the typical reconnection electric field [89]. This
is also apparently true in the solar wind [112]. Therefore, it is not at all certain that coherent
current structures in the turbulent environment behave as they do in laminar reconnection
simulations. Indeed the break-up of current sheets at high magnetic Reynolds number into
multiple reconnection sites, with a proliferation of small flux tubes, seems to indicate that the
laminar dynamics of current sheets is difficult to maintain, even in MHD [87,113-117]. For these
reasons the study of coherent structures and intermittency in less constrained kinetic plasmas has
begun to emerge as an important new direction.

Additional motivation for examining subproton-scale signatures of dissipation and structure
comes from the availability of high-resolution solar wind observations. Magnetic field energy
spectra extending beyond 100 Hz have enabled exploration and discussion of processes occurring
over the full range between proton and electron scales, and beyond [118-121]. Further clues
are given by electric field spectra [122], which must be interpreted with some care [123,124].
There are, however, major questions that cannot be addressed only by spectral analysis, such
as the relative importance of coherent structures in dissipation and other processes at these
scales. Some observational studies [125,126] using very-high-time cadence data have identified
small-scale structures that may be associated with dissipation and kinetic-scale reconnection,
even down to electron scales. To examine in detail whether such structures may be involved in
intermittent dissipation and related kinetic-scale processes, it is necessary to appeal to numerical
experiments.

The 2.5-dimensional kinetic hybrid codes are able to capture various aspects of proton
(particle) dynamics along with a fluid approximation for electrons. Such codes have shown
evolution of proton-scale current sheets in a highly turbulent initial value problem [37] for the
case of an out-of-plane guide field. Similar numerical models have also demonstrated stronger
Vlasov wave activity [127], when the mean magnetic field lies in the plane of activity.

In another interesting reduced dimensionality approximation, a gyrokinetic simulation model
has been able to compute the emergence of current sheets [128,129]. However in this case
the intermittency is evidently fairly weak, as the authors were able to show that most of the
dissipation could be adequately accounted for by a uniform linear Vlasov heating approximation.

A dramatic demonstration of generation of turbulence and associated formation of structure
at kinetic scales was found in the large 2.5-dimensional kinetic particle-in-cell (PIC) model
employed by Karimabadi et al. [130]. This model had fully kinetic protons and electrons and
was computed on an 8192 x 16384 grid having a physical resolution of 50d; x 100d;, measured
in ion inertial scales d;. Initialized with a strong proton shear flow in the plane, and a uniform
magnetic field slightly tilted but mainly ‘in plane’, the system undergoes an interesting evolution
from an initial state with no fluid-scale fluctuations at all. Figure 11 provides a brief overview
of the turbulence that develops in this undriven initial value problem. Complex structure
develops in the electric current density, consisting of interleaved highly dynamic current sheets
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Figure 11. Three images from a large 2.5-dimensional PIC simulation of the development of turbulence starting from a proton
shear flow. (From Karimabadi et al. [130].) The colour indicates the magnitude of the out-of-plane electric current density where
the initial magnetic field is uniform (zero current density). The three phases shown are (a) early phase characterized by small
perturbations and linear instabilities; (b) a transitional phase in which turbulence develops; and (c) a strong turbulence phase.
Itis apparent that small-scale coherent current structures are formed over a range of scales extending fully between proton and
electron scales, and also beyond these. (Online version in colour.)

extending at least from several d; down to scales smaller than the electron inertial scale. (Here the
proton/electron mass ratio is 100.)

Using the same simulation, Wan et al. [131] analysed the work done by the electromagnetic
field on the plasma. Quantitatively this is given by J - E, where the electric current density is J and
the electric field is E. Somewhere buried in this quantity is the work done in producing random
motions, i.e. heat, but one must be careful because some of the work included in J - E computed
in the laboratory frame is surely not dissipation. For example, it includes work done in producing
reversible compressions of the plasma, as well as conversion of magnetic energy into flows, e.g. as
in energy release by reconnection. To avoid some of these ambiguities, it is convenient to compute
corrections to J - E, such as the Zenitani measure [132], which was originally introduced to identify
reconnection activity. Other variations include a simple point-by-point evaluation of J - E in the
frame of the electron fluid motion, or to compute the work only using the parallel electric field
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(parallel to B). Still another variation computes the work using only the current associated with
electrons. Wan et al. [131] examined all of these, and found in each case that the corresponding
work done on the particles is concentrated in sheet-like regions, again spanning a range of scales
from ~ d; to below the electron inertial scales. It was found for example that 70% of the work
done on the particles occurs in regions of strong current that occupy less than 7% of the total
plasma volume. This falls short of conclusive evidence for intermittent dissipation only owing to
the ambiguity of what constitutes effective irreversibility of particle motions.

Massive simulation of magnetic reconnection in three dimensions using the PIC method
[109] also reveals the emergence of broadband turbulence. An extensive formal intermittency
analysis reveals [133] that the fluctuations in these simulations exhibit non-Gaussian increment
distributions, scaling consistent with so-called extended self-similarity and anomalous scaling of
higher order moments of the multi-fractal type. Interestingly, all of these properties are also found
in fluid-scale hydrodynamic turbulence.

A very basic intermittency property, the scale-dependent kurtosis, can be computed from
distinct numerical models to compare and contrast the statistical nature of structure formation
under a variety of assumptions. Wu et al. [134] recently performed such an analysis, using MHD,
Hall MHD and two different 2.5-dimensional PIC codes. The results were also compared with
scale-dependent increment kurtosis from several solar wind magnetic field instruments. There
is a broad level of agreement that, moving towards smaller scales from within the MHD regime
(larger than d;), one observes an increase in kurtosis. Similarly, within the kinetic scales (smaller
than d;) there is also a general trend towards large kurtosis at smaller scales. However, near or
somewhat larger than the proton inertial scale there is a decrease in kurtosis, which may however
be due to various systematic and instrumental effects. A physical cause of this has not been
established but would be quite interesting and important.® Part of the effect is likely also to be due
to system size: non-Gaussianity builds up with decreasing scale within a given nonlinear system
(see §4), so if a system is small (as in many kinetic codes) its smallest scales struggle to develop
the non-Gaussianity associated with nonlinear effects.

Fluctuations in the solar wind kinetic range, and their intermittency properties, have been
analysed by a number of other studies as well [136-138] using a variety of approaches. There
seems to be a general consensus that the statistics of increments at subproton kinetic scales is non-
Gaussian, with some sort of transition in scaling properties seen between the upper MHD inertial
range and the kinetic range between proton and electron scales. It is interesting that monofractal,
or scale-invariant, behaviour has been reported in several analyses based on Cluster data [137,
138], while other analyses argue for strongly increasing scale-dependent kurtosis, and associated
departures from self-similarity [136]. The conclusion in the analysis of Wu et al. [134] appears to
lie somewhere between these, finding a much more rapid increase of kurtosis with decreasing
scale in the MHD inertial range, and a more gentle increase in the kinetic range. Interestingly, the
Leonardis et al. [133] analysis of a single large-scale turbulent reconnection region concludes that
the kinetic-scale fluctuations are multi-fractal, and not scale invariant, while analysis of a shear-
driven kinetic turbulence [130] appears to favour the conclusion that the small kinetic scales are
monofractal. It is encouraging that there is a general consensus that coherent structures are indeed
formed in the kinetic-scale cascade. However it is clear that there are some interesting questions
regarding kurtosis and other measures at those small scales. Some disagreements may be due to
noise (instrumental or numerical) or the presence or absence of waves, or to data interval size
and data selection differences. There also may be physics questions, including variability, that are
not yet understood. These issues may be settled by improved observations, as well as by running
extremely large kinetic codes, perhaps hybrid codes, which we expect will be accomplished in the
next few years.

A quite different approach to simulation of turbulence in a collisionless plasma is to compute
solutions to the Vlasov-Maxwell equations using Eulerian methods (sometimes called simply

5Note that a similar feature (local extremum near d;) is also seen in solar wind observations of the ratio of the quasi-k .
energy to the quasi-k; energy [135]. Podesta [135] suggests this may be due to an enhanced population of waves near kyd; = 1.
It seems likely that such waves would have a different kurtosis from more turbulent fluctuations.
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Figure 12. Hybrid Eulerian Vlasov simulation results, showing the concentration of distinctive kinetic features in regions near to
current sheets. Colour contours of several quantities in the vicinity of a current sheet (black cross in all panels) with the in-plane
magnetic field lines (blue lines): (a) deviation of the proton distribution from an equivalent Maxwellian (in per cent), (b) proton
temperature anisotropy T, /Ty, (c) proton heat flux and (d) kurtosis of the proton velocities. (From Greco et al. [140].) (Online
version in colour.)

Eulerian Vlasov) [95,139]. This method is computationally very expensive but has the distinct
advantage of resolving with good fidelity and resolution various properties of the plasma velocity
distribution functions. On the other hand, owing to cost, such codes will usually be smaller in
units of d; than tractable PIC codes. Therefore, at present the strength of these codes is in resolving
properties of the proton distribution functions, rather than studying scaling or intermittency
measures. Hybrid (kinetic protons, fluid electrons) 2.5-dimensional Eulerian Vlasov computations
have been able to very well describe coherent current structures near reconnection sites and their
statistical association with nearby or co-located regions of kinetic activity such as temperature
anisotropies and heat fluxes [95,140,141] (see figure 12 for an illustration). Moreover, results
from 2.5-dimensional Eulerian Vlasov codes demonstrate that turbulence can generate distinctive
kinetic effects that appear in the g, T /T plane (parallel plasma beta versus proton temperature
anisotropy) [142], and these are similar to observed solar wind features [143-146].

The above results show that in the kinetic regime one finds a great degree of similarity to the
fluid and MHD cases: the formation of sheet-like current (or vorticity) structures, concentration
of dissipation in coherent structures, non-Gaussianity and anomalous scaling of increment
moments. However, it is also clear that new effects enter, such as the distribution of the turbulent
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heating into various species [147,148] and a new type of intermittency [95,130] which is the
concentration of kinetic features such as anisotropies in coherent structures.

7. Temporal intermittency and very-large-scale structure

Temporal burstiness and intermittency can be due to many types of specific situational causes
that would not be subject to a single general theoretical picture. However, in some cases, a
nonlinear turbulent system can generate burstiness and long-time correlations owing to simple
dynamical processes.

A generic mathematical pathway to “1/f” signals in the frequency f domain was described
by Montroll & Shlesinger [149] and others. Such signals have very long tails on their two-time
correlation functions. This can cause difficulty for prediction, often corresponding to epochal
changes in the level of turbulence. This mechanism was invoked to explain the 1/f noise that
is observed in the solar wind near 1 AU and at high latitudes by Ulysses [150-152]. In one
version, local parcels of coronal turbulence have a power-law distribution at scales smaller
than a correlation length A.. But A varies across samples, with a log-normal distribution that
has a large variance. Then one can find a range of observed frequencies (or wavenumbers) in
which a scale-invariant 1/f distribution is observed, as a superposition of the underlying source
regions. While this argument has a certain appeal, and could occur in principle owing to scale-
invariant reconnection processes in the corona [151], it really reformulates the question to that
of explaining the origin of the log-normal distribution of correlation scales. However it is clear
that such a process, if it is the cause of the interplanetary signal, would give rise to an episodic
bursty-level change of correlation scales and turbulence levels in the solar wind. Interestingly,
both correlation scales [153] and energy levels [154] of interplanetary turbulence exhibit log-
normal distributions. Random, bursty changes of turbulence amplitude is precisely the situation
envisioned by Oboukhov ([4], p. 78), who stated:

Successive measurements show that, although each measurement is in satisfactory
agreement with a (—g)-power—law in a certain range of scales, the intensity of turbulence
varies from measurement to measurement, which may be explained by variance of the
energy dissipation rate € (the main parameter of the locally isotopic theory). These slow
fluctuations of energy dissipation are due to change of the large-scale processes in the
observation region, or ‘weather” in a general sense. Similar slow macroscopic changes of
energy dissipation must be observed at very large Reynolds numbers and they are actually
observed in the atmosphere.

This seems to be precisely the type of variability that is expected in the solar wind if observed
activity is traceable, at least in part, to source variability. Therefore, an important question is to
trace variations of coronal activity to their mechanism of generation.

There has recently been some progress in understanding models that can generate 1/f signals,
and the associated burstiness and random level changes, from first principles models. One of
these systems is the three-dimensional MHD model, including a model of the spherical dynamo.
This connection may provide a simple, if not completely detailed, picture of how self-organization
at long wavelengths may lead to variability that ultimately drives temporal intermittency. Time
dependence of the solar source may therefore ultimately contribute to the observed solar wind
variability and low-frequency intermittency.

We direct attention to the result [155] that homogeneous turbulence systems that admit
an inverse cascade also display 1/f noise and enhanced power at frequencies that are very
low compared with the reciprocal of the global nonlinear time scale. This has been found in
simulations of two-dimensional hydrodynamics, two-dimensional MHD, and three-dimensional
MHD with no mean field. These systems have an inverse cascade and show 1/f noise.
Conversely, three-dimensional hydrodynamics and non-helical three-dimensional MHD are

PSL0VLOZ “ELE ¥ 205§ “Supiy Tiyg BioBuiysygndiaaposjesorerss


http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on August 28, 2017

1025""'| T T L | T T L |

10 2 CKO95 3

1071

P (Af)

103

104 3 3

P | " " " Lo " " Lo " " " Lo
10! 1 10 102
At (Ma)

Figure 13. Waiting time distributions for the reversal of the dipole moment in a three-dimensional ideal spherical Galerkin MHD
model, compared with the record of geomagnetic reversals. When helicity (H,, > 0) and rotation (§2 > 0) are present, the
simulation curve exhibits a power-law distribution similar to the geophysical record. When both are absent (H,, = 0, £2 = 0),
the waiting distribution is very different. (Adapted from Dmitruk et al. [160].) (Online version in colour.)

systems that do not show 1/f noise and do not have an inverse cascade. Interestingly, when
three-dimensional MHD evolves in the presence of a very strong mean magnetic field, the
1/f noise reappears. This appears to be because the turbulence becomes very anisotropic and
approaches a two-dimensional MHD state. Similarly, rapidly rotating hydrodynamic turbulence
also two-dimensionalizes, and begins to recover 1/f noise, as found in two-dimensional
hydrodynamics.

How do such systems generate time scales that are very long compared with the global
nonlinear times? We begin by recalling that scale-to-scale energy transfer in MHD, like
hydrodynamics, is dominantly local in the inertial range, consistent with Kolmogorov theory
[156,157]. However it turns out that when there is an inverse cascade, or when the system
approaches the conditions for inverse cascade, a large fraction of total energy can become tied
up in just a few very-large-scale degrees of freedom, which themselves are ‘force free” in the
generalized sense. Under these conditions the usual Kolmogorov assumption of local transfer
is not even approximately correct, and the couplings become very non-local between these
energetic modes and the other numerous but low-amplitude modes of the system. This can
generate very long and widely distributed characteristic time scales, and thus the 1/f noise
at frequencies such that fr,;) <1 where 1, is the global nonlinear time scale. The same style
of argument applies equally well to homogeneous MHD [158], rotating hydrodynamics [159]
and spherical MHD in a dynamo model [160]. It is of some interest that, in the dynamo
model, the 1/f noise appears to be directly connected with stochastic reversals of the dipole
moment (figure 13). The model remains very primitive even if the basic physics might enter
into much more complex solar and heliospheric situations. Further examination of these ideas
might eventually link the solar dynamo, solar variability and the statistics of heliospheric
properties.
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Figure 14. Spectral diagram of plasma turbulence suggesting the cascade and intermittency properties summarized here.
Large-scale, non-local effects induce temporal variations, in some cases generate 1/f noise, and influence variability at smaller
scales, as suggested by Oboukhov [4]. Inertial range cascade is predominantly local in scale but also generates a hierarchy of
structures, which in many cases may be viewed as the formation and interaction of a hierarchy of interacting magnetic flux
tubes. Significant effects on transport of heat and particles are expected owing to inertial range intermittency. At the smaller
scales kinetic processes become important, characteristic coherent small-scale structures (including vortices and current sheets)
are formed, secondary instabilities and waves may be in evidence, and ultimately dissipation occurs. (Online version in colour.)

8. Discussion and conclusion

We have presented a brief, informal and probably incomplete review of recent developments
in analysis of intermittency and coherent structures associated with turbulence in MHD and
plasmas. Rather than emphasizing mathematical formalism, which in any case is not strictly
available for the systems of interest, the attempt has been to discuss effects of coherent structures
as well as empirical evidence that suggests that their origin is an intrinsic feature of the nonlinear
dynamics of turbulence. Using analogy and comparison between numerical simulation and
observation, we have attempted to extend the physical interpretation of intermittency effects to
features of the solar wind plasma. We may conclude that coherent structures in the inertial range
of turbulence have significant potential effects on transport of charged particles, heat, tracers and
so on. In short the inertial range is not populated by random-phase coloured noise, but rather by
an organized hierarchical cellularized structure of magnetic flux tubes. Indeed there is growing
evidence in theory, simulation and observations that rapid relaxation processes sharpen these
structures, leading to a state with larger relaxed regions bounded by sharper higher stress near-
discontinuities, such as current sheets. ‘Dissipation range” intermittency, meaning that which
occurs at scales smaller than the inertial range, is connected to these smaller scale structures.
Furthermore although we do not know the dissipation function in low-density plasma, there is
some evidence accumulating that current sheets and other dissipation range coherent structures
are likely to be locations of greatly enhanced dissipation. This is seen in simulation, and indirectly
in solar wind observations. We may again briefly summarize the overall perspective we have
presented (figure 14).

(a) Low frequencies and very large scales

Structure at very long wavelengths may give rise to temporal intermittency by generation of very
long time scales. Systems that exhibit inverse cascade often show a “1/f” distribution of noise,
which gives rise to random energy-level changes and the associated irregularity in observed
statistics. This type of intermittency may be associated with long time behaviour of the dynamo,
and therefore may ultimately be implicated in issues of predictability in the photosphere, corona
and even the heliosphere. Possible links to issues such as large flares and solar cycle irregularity
are topics for future research. At present, it seems likely that irregular distributions of activity on
the solar surface should be related to the distribution of solar wind sources, and therefore may be
causes of 1/f signals seen in the corona and solar wind.
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(b) Inertial range intermittency

The well-known turbulent cascade in the solar wind is driven by solar sources and is therefore
variable, very much along the lines of the description given by Oboukhov [4]. The variable
cascade is highly nonlinear and engages in relaxation processes and the generation of structure.
Frequently these take the form of current sheets along borders between adjoining, and sometimes
interacting, magnetic flux tubes. The hierarchical structure of flux tubes and current sheets over
the several decade range of solar wind turbulence may well be described by an extension of the
KRSH which has been discussed in phenomenological terms [20,21,161], but has yet not been fully
formulated or tested. On the other hand, it seems evident that the hierarchy of structure found in
coronal and solar wind turbulence has important implications for transport phenomena including
plasma, suprathermal particles, heat flux and so on. The same structure, viewed dynamically
[162], is expected to cause a continual change of magnetic connectivity, which, as far as we are
aware, has not been incorporated into many key models of solar wind behaviour.

(<) Beyond the inertial range: intermittent cascade to the kinetic scales

The existing observational perspective on this ‘dissipation range intermittency’ is very new and
not yet very extensive. Much of what is known about kinetic-scale structure emerges from various
types of plasma simulation, which is also a rapidly developing field. However many of the
recent studies of kinetic dissipation of the turbulent cascade suggest that coherent structures
and associated non-uniform dissipation play a very important and possibly dominant role in the
termination of the cascade and the effectively irreversible conversion of fluid macroscopic energy
into microscopic random motions, i.e. heat. Space missions such as Magnetospheric Multiscale,
Solar Orbiter and Solar Probe will greatly clarify the essential heating mechanisms that occur in
a low-collisionality plasma subject to turbulence.
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