
 
 
 

http://researchcommons.waikato.ac.nz/ 
 
 

Research Commons at the University of Waikato 
 
Copyright Statement: 

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). 

The thesis may be consulted by you, provided you comply with the provisions of the 

Act and the following conditions of use:  

 Any use you make of these documents or images must be for research or private 

study purposes only, and you may not make them available to any other person.  

 Authors control the copyright of their thesis. You will recognise the author’s right 

to be identified as the author of the thesis, and due acknowledgement will be 

made to the author where appropriate.  

 You will obtain the author’s permission before publishing any material from the 
thesis.  

 

http://researchcommons.waikato.ac.nz/


 

Synthesis and Characterisation of 

Cycloaurated Gold(III) Complexes with 

Bidentate (O,O), (N,S) and (S,S)  

Chelating Ligands 

 

 

A thesis 

submitted in partial fulfilment 

of the requirements for the degree 

of 

 

Master of Science in Chemistry 

at 

The University of Waikato 

 

 

by 

Tiffany Sharee Smith 

 

 

The University of Waikato 

2012



Abstract  ii 

 

 

Abstract 

 

The reaction of C,N-coordinated gold(III) dihalides; BpAuCl2 

(Bp = 2-benzylpyridyl), AnpAuCl2 (Anp = 2-anilinopyridyl) and TypAuCl2 

(Typ = 2-tolylpyridyl) with catecholate ligands in hot methanol and 

trimethylamine produced metallacycles with structural isomers of the general 

formula (C,N)Au{O,O}. Similarly, BpAuCl2 and AnpAuCl2 were reacted with 

thiourea ligands to form complexes giving high yield and good purity with the 

general formula (C,N)Au{PhNCSNR2}
+
, by means of the addition of BPh4

-
 for 

precipitation. X-ray crystal structures of the compounds 

[AnpAu{PhNCSNMe2}]BPh4 and [AnpAu{PhNCSNCy2}]BPh4 confirmed the 

coordination of the thiourea to the gold centre through the N and S atoms. In both 

cases the geometry around the gold atom is square-planar with complex 

[AnpAu{PhNCSNCy2}]BPh4 showing a slightly more puckered conformation 

than [AnpAu{PhNCSNMe2}]BPh4 due to the sterically bulky cyclohexyl groups 

attached. Some thiourea derivatives were tested against P388 murine leukaemia 

cells with complex [AnpAu{PhNCSNHPh}]BPh4 showing promising anti-tumour 

activity. 

 

When thiourea ligands were replaced by dithiophosphinate and dithiophosphate 

ligands the reaction proceeded at room temperature without the need for the 

presence of a base. Relatively low yields of impure metallacycles with the general 

formula (C,N)Au{S2PR2}
+
 were obtained on the addition of BPh4

-
 or BF4

-
. 

Attempts to improve purity by varying batches of starting materials, anion and 

solvents used were unsuccessful. X-ray crystal data from a single crystal of 

[(C,N)Au{S2PPh2}]BPh4 shows the reduction of gold(III) to gold(I) forming a 

known polymeric gold(I) dithiophosphinate complex. In order to extend this study 

the synthesis of complexes with the general formula R2PS2AuCl2 was attempted, 

but no new compounds were characterised. 

 

Where possible, all new compounds reported in this thesis were characterised by 

ES-MS, IR, NMR, melting point and micro-elemental analysis. 
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Chapter One  

A Brief Review on the Medicinal Uses of 

Gold 

 

1.1 History of Gold 

The earliest application of gold as a therapeutic agent was use by the Chinese, and 

can be related back to as early as 2500BC where ancient Arabic, Indian and 

Chinese physicians used gold preparations for the treatment of a wide variety of 

ailments. In medieval Europe, aurum potabile, used by alchemists, was an elixir 

which had numerous recipes, many of which contained a small amount of gold. 

By the 17
th

 century gold cordial could be found in the new pharmacopoeias which 

were advocated for the treatment of ailments such as melancholy, fainting, fevers, 

and falling sickness
1
.  

 

Later in the 19th century a mixture of gold chloride and sodium chloride, 'muriate 

of gold and soda', Na[AuCl4] was used in the treatment of syphilis. Gold has since 

featured widely throughout history in medicinal agents. In 1890 Robert Koch, a 

German physician, demonstrated that [Au(CN)2]
-
 was bacteriostatic agent against 

tubercle bacillus, an effective treatment for syphilis. By the 1920‟s gold 

compounds were being used for the treatment of tuberculosis but were later shown 

to be ineffective
1
.  

 

The suggestion that tubercle bacillus was a causative agent for rheumatoid arthritis 

(RA) led to the proposal that gold could be implemented as a treatment option. 

This was supported by the observation that during the time these gold compounds 

were used in the treatment of syphilis, patients taking the gold drug had dramatic 

improvements in arthritic conditions. Trials were undertaken to investigate gold 

compounds in the treatment of RA. After 30 years of debate concerning the  
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efficacy of gold as a treatment for RA a clinical study was carried out that 

confirmed the effectiveness of gold compounds against RA
1
. 

 

Today gold(I) thiolates, namely sodium aurothiomalate (Myocrysin
®
) 1, 

Auranofin 2, are used for the treatment of RA. In addition, gold complexes 

continue to be screened for activity as anti-HIV, anti-microbial and anti-malarial 

agents with the bulk of the research being in the pursuit of novel chemotherapeutic 

agents
2
. 

 

 

 

1 

 

2 

 

The following discussion briefly reviews the important history of gold medical 

research and information allowing further understanding of why gold based drugs 

are now an accepted part of modern medicine. It is by no means a full 

comprehensive review, rather giving insight into why this topic of research was 

chosen. Detailed reviews have been published on the topic by Fricker
1
, Tiekink

3
 

and Shaw
4
. 

 

1.1.1 Gold in Rheumatoid Arthritis (RA) 

The first application of gold compounds in medicine, known as chrysotherapy, 

was reported in 1935. Chrysotherapy was primarily used to reduce inflammation 

and to slow disease progression in patients with RA
1
. The most effective 

compounds were gold(I) thiolates which involve AuSR units, R being a suitable 

organic group, with the two most widely used Class I compounds in 

chrysotherapy being sodium aurothiomalate 1 and aurothioglucose 4
1
.  

 

Five main Au(I) complexes are currently used throughout the world to treat RA
5
. 

These are; sodium aurothiomalate (Myocrysin
®
) 1, Auranofin 2 (both mentioned 
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above), sodium aurothiopropanol sulfonate (Allocrysin Limière
®
) 3 

aurothioglucose (Solganol
®
) 4 and sodium aurothiosulfate (Sanocrysin

®
) 5. 

 

 

3 

 

 

4 

 

 

5 

 

Two classes of gold compounds are used in the treatment of RA, grouped 

according to their related chemistry which dictates their mode of administration 

and therefore, the pharmacodynamics of distribution. The first class of compounds 

are generally polymeric, charged and water soluble. By contrast, the second class 

of compounds are monomeric, neutral and lipophilic. The Au(I) thiolates 1, 3, 4 

and 5 are members of Class I, these are water soluble and therefore are able to be 

administered intravenously on a weekly basis. A crystal structure determination is 

available for aurothiosulfate 5. This structure demonstrates that gold has the 

tendency to exist in linear coordination geometries showing a polymeric backbone 

consisting of S-Au-S bonds
6
, with all other Class 1 gold compounds having the 

similar gold to sulfur ratio of 1:1 in order to achieve analogous S-Au-S entities.  

 

This conclusion is supported by the crystal structure determination of 

aurothiomalate 1 which shows a polymeric structure with the backbone existing as 

two spirals. The structures of aurothiopropanol sulfonate 3 and aurothioglucose 4 

have not to date been determined, but were proposed to be polymeric with 

bridging thiolate ligands
7
. Studies involving X-ray techniques such as EXAFS 

(extended X-ray absorption fine structure) by Sadler et al
8
 and Elder et al

9
 

confirmed the first direct evidence of a polymeric configuration 

 

Auranofin 2, a member of Class II, was introduced as a RA drug in 1985
1
. This 

compound contains a triethylphosphine and thiolate bound to the gold atom, 

allowing for lipid solubility. Auranofin can therefore be administrated orally, 
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typically in capsules containing 3-6 mg „gold‟ on a daily basis. The X-ray crystal 

structure of Auranofin, solved by Hill and Sutton
10

, demonstrates that in contrast 

to the polymeric Au(I) thiolates, auranofin is monomeric with the 

triethylphosphine ligand trans to a tetraacetylthioglucose ligand.  

 

Classes I and II drugs rapidly undergo substitution reactions of one sort or another 

on administration and therefore are regarded as prodrugs
5
. Although the exact 

mechanism is unknown it is proposed that the gold-based drugs undergo 

substitution reactions in the body with sulfur-containing proteins such as albumin, 

and the tripeptide glutathione. A more detailed review on the possible mechanism 

of action has been published by Shaw et al
4
.  

 

1.1.2 Gold(I) Compounds and their Anti-Cancer Activity 

Investigation into gold compounds as possible anti-tumour agents was suggested 

when biological activity exhibited by known anti-tumour agents such as 

cyclophosphamide 6, 6-mercaptopurine 7 and methotrexate 8 displayed 

immunosuppressive and anti-inflammatory characteristics. In support of these 

findings were the results of a long-term study of patients undergoing 

chrysotherapy, revealing little or no risk of malignant diseases, suggesting a 

connection between the use of RA drugs and cancer chemotherapy treatments
4
.  

 

 

6 

 

7

 

 

8 
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The first comprehensive study into the anti-tumour potential of gold compounds 

began in the mid-to-late 1980‟s
11

. The key outcome of this study concluded that 

gold was essential for elevated potency. The results also demonstrated that the 

most promising class of compounds, containing gold(I), were the P-Au-S 

analogues much like the structure of Auranofin 2. Auranofin was found to be 

active against the P388 Leukaemia and HeLa cell lines in vitro. Later, Tiekink et 

al
3
 showed that gold(I) bis-thiolates, S-Au-S, were generally inactive as were non-

phosphine and non-thiolate compounds, indicating that the most promising 

activity was that of gold(I) compounds containing a P-Au-S backbone.  

 

Triethylphosphine gold(I) chloride, Et3PAuCl 9, a compound similar to the well 

known Auranofin complex has shown potent cytotoxicity in vitro but less in vivo 

than Auranofin. It is thought the replacement of the thiosugar moiety of Auranofin 

with a chloride reduces selectivity of the metal complex in vivo systems in a way 

which is not seen in vitro
12

.  

 

Widespread interest in the potential activity of these compounds led to the 

evaluation of anti-tumour activity in a range of bridged digold complexes. The 

most active complex was found to be [ClAu(μ-dppe)AuCl] 10 (dppe=1,2-

bis(diphenylphosphino)ethane), which showed greater activity against P388 

leukaemia cells than Auranofin. The dppe ligand was found to be responsible for 

the anti-tumour activity with the dppe oxide, a biologically inactive form of the 

ligand, produced as a by-product of metabolism. It was later shown that the gold 

dppe complex has higher anti-tumour activity then that of the ligand alone, 

therefore suggesting the role of the gold centre may be to prevent oxidation of the 

dppe ligand
13

.  

 

 

 

 

9 

 

10 

 

11 

 

In the 1980‟s Berners-Price et al
14

 investigated a number of active diphosphine-

bridged-digold complexes which, in presence of excess diphosphine ligand, were 
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readily converted into the bis-chelated species. This investigation found that thiol-

containing human plasma and bovine serum was able to induce the conversion of 

the bridged compounds to the bis-chelated ion [Au(dppe)2]
+
11.  

 

Research into the thermodynamics and kinetics of [Au(dppe)2]
+
 11 demonstrated 

an unusually high thermodynamic stability in contrast to that seen in linear 

complexes. This characteristic allows the compound to be more stable to ligand 

exchange reactions, an important feature as this results in the complex being less 

reactive to thiols
15

. These properties were believed to be associated to the presence 

of the five membered chelate rings and the bulky phenyl groups attached to the 

phosphorus atoms, blocking attack of the gold ion. It is suggested that this cation 

11 may be a metabolite of the bridged species, demonstrated by the rapid 

conversion of [STgAu(dppe)AuSTg] (STg = β-D-thioglucose) to complex 11 in a 

biological environment
16

. 

 

[Au(dppe)2]Cl is active in its own right as well as in combination with cisplatin, 

(cis-PtCl2(NH3)2), against P388 leukaemia and various sarcomas in mice. Results 

of the activity of [Au(dppe)2]Cl against cisplatin resistant P388 leukaemia cells 

were found to be as efficacious as the results in cisplatin-sensitive lines. While no 

specific target molecules or mode of action for [Au(dppe)2]
+
 have yet been 

identified, it is believed that the site of action for the compound is mitochondria in 

the cell
14,16

. Although the development of bis(diphospho)gold(I) complexes 

resulted in compounds with promising cytotoxicity and anti-tumour properties, 

they never reached clinical trials due to high cardio-toxicity in rabbits
17

. 

 

 

12: R=  

 13: R=  

 

 

14: R= 
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The next generation of compounds, adapted from this class of complex, was 

bis[1,2-bis(di-n-pyridylphosphino)ethane] gold(I) (n=2-,3- or 4-) 12-14 chloride 

complexes. The aim was to vary the phenyl substituents in [Au(dppe)2]Cl to 

determine the effect of aqueous solubility, where replacement of the phenyl with 

pyridyl groups resulted in a decrease in the lipophilicity of the diphosphine 

ligand
18

. The 2-pyridyl complex 14 observed similar activity to the parent 

[Au(dppe)2]Cl complex against P388 leukaemia and B16 melanoma in mice, 

while the 4-pyridyl derivative 13 was completely inactive in all tumour models 

but toxic to mice
14,18

. 

 

 

15 

 

 

 

 

16 

 

Bis(diphospho)gold(I) analogue 15 a three coordinate complex incorporating both 

a mono and bidentate phosphine ligand demonstrates high in vitro cytotoxicity 

against a range of cancer cell lines, with notable potent activity against the breast 

tumour cell line MDF-7
19

. Alternatively complex 16 contains all monodentate 

phosphine ligands in a tetrahedral coordination. This hydrophilic compound 

shows promising activity against prostrate, colon and gastric carcinomas
20

. 

 

It was concluded that the presence of the phosphine gold(I) moiety increases the 

potency of the biologically active thiols. Thus greater overall cytotoxicity is 

observed for the phosphine gold(I) thiolates in comparison with the free thiols. 

This was further confirmed when Au(I) phosphine complexes of the well known 

anti-cancer drugs 6-mercaptopurine 7 and 6-thioguanine 17 were synthesised, 

resulting in analogues with greater activities then the un-coordinated drugs alone
5
. 

In contrast the Au(I) derivative of the active thiosemicarbazone 18 is less 

cytotoxic than the ligand itself
4
.  
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17 

 

18

 

1.1.3 Gold(III) Complexes and their Anti-Cancer Activity 

In 1965, while investigating the effects of electric fields on Escherichia coli (E. 

coli) bacteria, Barnett Rosenberg discovered that electrolysis using platinum 

electrodes generated a soluble platinum complex which inhibited binary fission in 

this bacterium. It was noticed that although bacterial cell growth was not 

inhibited, cell division was retarded, forming long filaments up to 300 times their 

normal length
21

. After various experiments it was found that the active compound 

was the square planar Pt(II) salt, cis-PtCl2(NH3)2, produced from reaction of the 

electrode and the nutrient medium solution, known as cisplatin 19
22

. This 

discovery led to investigations finding that cisplatin was highly effective against 

sarcomas in rats, prompting further extension of research on other tumour cell 

lines. In 1978 cisplatin was approved for use in testicular and ovarian cancers, 

becoming one of the most widely used anti-cancer drugs in the Western world.   

 

 

19 

 

Despite the fact that cisplatin treatment is effective against several types of solid 

tumours, its efficacy is limited by toxic side effects and tumour resistance in some 

cell lines. The regular occurrence of secondary malignancies prompted research 

aimed at finding new drugs with higher cytotoxicity and fewer undesirable 

outcomes. A very wide range of platinum(II) [and platinum(IV)] complexes have 

been screened via clinical trials for anti-cancer activity, including Carboplatin 

20
23

, Oxaliplatin 21
24

 (both Pt(II)) and Iproplatin 22
23

 (Pt(IV)). Only Carboplatin 

and Oxaliplatin have since entered clinical use.  

 

  

 
Pt

H3N

H3N Cl

Cl
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20 

 

 

21 

 

 

 

    22 

 

Due to the chemical similarities between gold(III) and platinum(II) (both form 

square planar d
8
 complexes), it has been reasoned that gold(III) complexes might 

also exhibit anti-tumour properties. Although a substantial amount of work has 

previously been done on gold(I), historically little has been done on gold(III), 

mainly due to the ease of reduction to either gold(I) or gold(0). However, the few 

examples of gold(III) complexes have shown strong tumour cell growth inhibiting 

effects and increased cytotoxicity therefore gaining increasing interest.  

 

The gold(I) complexes used to treat RA are thought to be pro-drugs that undergo 

substitution through the course of metabolism. Therefore it can be postulated that 

gold(III) complexes may act as carriers to transport known anti-cancer compounds 

to the site of cancer. This coordination of an anti-cancer drug to a metal centre is 

believed act as a slow release mechanism while also protecting the drug against 

metabolic degradation before it reaches the target cells
5
.  

 

Streptonigrin 23, produced by Streptomyces flocculus, is a metal dependent 

quinone-containing antibiotic which has been shown to exhibit anti-tumour 

activity, although highly toxic. Highly stable Au(III) complexes with streptonigrin 

have been created which show activity against P388 leukaemia cells in vitro, 

exhibiting similar effectiveness to streptonigrin itself. While the definite structure 

of this complex is unknown, it is thought to contain a 1:1 ratio of Au(III) to 

streptonigrin. It has been proposed that the reduction of Au(III) to Au(I), within 

the cell, allows the release of the streptonigrin molecule which then exerts a 

cytotoxic effect
25

.  
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23 

 

Although many simple gold(III) complexes such as [AuCl4]
-
 are too strongly 

oxidising to show useful anti-tumour properties, derivatives containing 

cycloaurated aryl-amine or aryl-pyridine ligands 24-28 show much greater 

stability, and are not reduced by sulfur-based ligands such as thiols and related 

ligands. This is significant since sulfur based reductants occur widely in the 

cysteinyl and methionine residues in biological materials
26

. 

 

 

24: X=NH 

 25: X=CH2 

 

26: X=NH 

 27: X=CH2 

 

 

28

 

Three main types of gold(III) complexes have shown activity; (a) coordination 

compounds (with N-polydentate), macrocyclic ligands or dithiocarbamato ligands 

with a S-donor atom, (b) organometallic complexes with an N-C (e.g. DAMP = o-

C6H4CH2NMe2) or CNC-pincer backbone, or (c) gold(III) complexes containing 

“bioligands” (e.g. naturally occurring amino acids)
27

. 

 

Gold complexes are now quite well known for showing biological and catalytic 

activity. Complexes containing cycloaurated ligands, typically a bidentate 

nitrogen-carbon donor, are of high interest due to the stabilisation of the gold(III) 

 

N

O

O

MeO

H2N

N COOH

MeH2N

HO

MeO

OMe
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state against reduction. However, the number of ligands that form with 

cycloaurated gold(III) are relatively few compared with that of platinum group 

metals
28

. 

 

In 1989 Kivekäs et al
29

 characterised and isolated the complexes 29-31. In vivo, 

compounds 29 and 30 show an IC50 comparable to that of cisplatin against HeLa 

cells. However, with complex 31 a ten-fold higher concentration was required to 

produce similar growth inhibition with no obvious reason for this result. The 

proposed structure of these compounds were determined through infrared 

spectroscopy (IR) and were found to contain a square-planar gold atom 

coordinated to the ligand through the azo and amino groups with remaining 

coordination sites occupied by chloride ligands.  

 

 

29: R=H 

30: R=Cl 

31: R=COOH 

 

Carotti
30

 and co-workers established the importance of using biological ligands, 

such as peptides, to increase the chance a compound would exhibit biochemical 

activity. To investigate cytotoxicity and DNA binding properties the previously 

characterised complex GlyHisAuCl2
31

 was synthesised by reacting gold(III) with 

glycine histidine dipeptide (GH). This complex 32 showed IC50 values comparable 

to cisplatin when assayed against cisplatin sensitive (A2780) and resistant 

(A2780/S) cell lines. Studies on analogous complexes of GH with Zn(II), Co(II), 

Pt(II) and Pd(II) were shown to be only weakly cytotoxic. The GH ligand itself 

exhibited no cytotoxic activity. From these observations Carotti
30

 and co-workers 

were able to demonstrate the importance of the Au(III) centre for cytotoxicity.  
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32 

 

1.2 Cyclometallated Gold(III) Systems 

The metallacyclic chemistry of gold(III) is scarcely developed, although interest in 

the synthesis of gold(III) complexes in the recent years has resulted in increased 

research in this area
32

. Owing to the ease of reduction of gold(III) in mildly 

reducing biological media, it was reasoned that softer ligands such as nitrogen and 

carbon donors would achieve stabilisation of the gold centre. Gold(III) compounds 

involving a σ-bonded phenyl, naphthyl or similar group are known to observe 

much higher stability in biological media than those containing N, O donors
33

.  

 

Most work on cycloaurated gold(III) complexes have been carried out on the 

damp complex 33 (damp = 2-(dimethylaminomethyl)phenyl). This is due to its 

good solubility characteristics and promising cytotoxicity and toxicity profile 

compared with cisplatin
34

. These damp type complexes have a carbon-metal bond 

that strongly donates electrons to the metal ion making it much more resistant to 

reduction. Investigation into the activity of damp complexes demonstrated 

cytotoxicity against bladder and ovarian cancer cell lines, with the acetate 35 and 

malonato 37 damp complexes exhibiting activity comparable to cisplatin against 

human HT1376 bladder cancer in animals
35

.  

 

 

 

 

 

 

33: X=Cl 

34: X=SCN 

35: X=acetato 

36: X=oxalato 

37: X=malonato 
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Diacetato complex 35, a derivative of the damp complex, shows more than a 1000 

fold increase in aqueous solubility while retaining comparable broad spectrum 

antibacterial activity and cytotoxicity relative to the parent compound 33. 

Hydrolysis of this complex in aqueous solution is similar to that of cisplatin, with 

the first acetate group replaced much faster than the second. However, in contrast 

to cisplatin which interacts with DNA primarily through the N7 atoms of guanine 

groups
36

, reactions of 35 with guanine were shown to display a preference for N1, 

N3 or NH2, suggesting a different mechanism of action to cisplatin
37

. Further 

studies into the activity of compounds 34-37 showed that 35 along with 37 

displayed anti-tumour activity similar to cisplatin against human xenograph 

models, whereas 36 was found to be inactive. 34 exhibited a lower solubility in 

aqueous solution than 33 so it was not evaluated in vivo
38

. 

 

In vitro studies of the previously known [Au(ppy)Cl2] (ppy = phenylpyridyl) 

complex 38
39

 and novel derivatives 39-42 were also investigated
40

. These 

compounds were all found to be active against the MOLT-4 human leukaemia cell 

line, showing slightly higher cytotoxicity than cisplatin. All five gold(III) 

complexes were  inactive against C2Cl2 mouse tumour cell lines with the 

exception of complex 41, showing that it may be the ligand attached that 

demonstrates the biological activity. O-donor ligand derivatives 39-42 of the 

[Au(ppy)Cl2] complex show higher aqueous solubility while structurally 

resembling cisplatin. 

 

 

38 

 

 

39: R=Me 

40: R=Ph 
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41 

 

42 

 

Previous work at the University of Waikato has been focused on the formation of 

metallacycles containing two ring systems, with Henderson et al
32,41-43

, 

synthesising some of the first examples of gold complexes containing two rings 

43-53. This was achieved by the use of silver(I) oxide, a much stronger reagent 

then the commonly used trimethylamine, with the ability to act as both a halide 

abstracting agent (as it is a source of Ag
+
) and a strong base. 

 

 

 

43 
 

 

44 

 
       
    45: R=Ph 
    46: R=COMe 

 

 

 

47 

 

 

48: R=OMe, R1=CN, R2=CO2Et 

49: R=OMe, R1=COPh, R2=Ph 

50: R=OMe, R1=COMe, R2=Ph 

51: R=H, R1=COMe, R2=Ph 
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52: R=OMe 
 

54

53: R=H 

 

The preferential route to form metallacycles, predominantly used in this research, 

utilises a tertiary amine as a base, such as Me3N or Et3N. These reactions can be 

carried out via refluxing methanol resulting in simple isolation, high yields and 

good purity by the simple addition of water. Henderson et al
44

 reported the 

synthesis of previously known complex 43 by means of a more convenient 

synthetic route using trimethylamine as a base in replacement of the silver(I) 

oxide. With this method new complexes 44-54 were prepared, demonstrating that 

compounds synthesised using a tertiary amine base gave products showing lower 

light sensitivity, less coloured and observed few traces of gold-containing 

impurities or silver salts
44

. 

 

Synthesis of complex 60 was facilitated by an insertion reaction into the Au-C 

bond of complex 55. Insertion of isonitrile into the Au-C bond is followed by a 

proton transfer giving rise to a hydrogen-bonded, planar, six-membered ring. 

Thiosalicylate
41

 61-64 and catecholate systems
42

 65-73 were synthesised using the 

more conventional tertiary amine method. Compound 61 however required 

synthesis using AgNO3 to remove the chloride ligands, followed by treatment with 

NaOH and thiosalicylic acid. 
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 55: X=CH2, R=COPh 

 56: X=NH, R=COPh 

 57: X=CH2, R=CN 

 

 

      58: R=COPh 

      59: R=CN 

 

 

 

60 

 

 

 

61: R=H 

62: R=Me 

 
 

 

63: R=CH2 

64: R=NH 

 

 

 

65: X=NH, R=H 
66: X=CH2, R=H 
67: X=NH, R=Cl 
68: X=CH2, R=Cl 

 

69 

 

 

 

 

70 

 

 

71 
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72 

 

73 

 

Selections of these complexes were tested for anti-tumour activity against P388 

leukaemia cell lines, with most displaying moderate activity. IC50 values were 

shown to range from 0.7 to >120.6(μM), with the tolypyridine complex 62 and 

catecholate derivatives 66, 69, 70 and 71 all showing the highest anti-tumour 

activity. Complexes 61, 63 and 64 demonstrated only moderate to poor activity. 

 

The relative activity observed in these compounds was believed to be associated 

to their solubility characteristics. This is demonstrated by the bioactive damp 

complex 71 being more soluble than its inactive analogues 65 and 66. 

Consequently results for these less soluble complexes represent a minimum 

activity, with the true activity likely to be somewhat higher. Complexes 43 and 60 

were shown to be freely soluble in biological media, consequently demonstrating 

higher activity then that of less soluble complexes. Ortner and Abram further 

reported the reaction of the damp complex 33 with heterocyclic thiols
45

, 

thiosemicarbazones
,45,46

 and diphenylthiocarbazone
47

, demonstrating the 

formation of novel Au(III) thiosemicarbazone complexes through cleavage of the 

Au-N bond and protonation of the resulting amine group. This observation has 

been the suggested reason behind the good solubility characteristics of the damp 

complex, verified again by the more soluble methoxy-damp thiosalicylate derivate 

52 showing more activity in bioassay than the less soluble damp derivative 53. 

Later, Fan et al
48

 synthesised a range of new 2-phenylpyridine Au(III) complexes 

with thiolate ligands 74-78. These complexes were evaluated for cytotoxic activity 

against the human leukaemia cell line MOLT-4 and the mouse tumour cell line 

C2C12, with results shown in Table 1.1. The results of these five compounds 

showed a cytotoxicity profile similar to each other and higher toxicity than 

cisplatin in the same assay.  
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Table 1.1: IC50 values (µM) against MOLT-4 and C2C12 cell line 

 

Complex 74 75 76 77 78 cisplatin 

MOLT-4 2.6 3.3 3.1 4.0 3.8 6.8 

C2Cl2 11 15.5 6.0 9.0 18.0 14.7 

 

 

 

74 

 

75 

 
 

76 

 

 

77 

 

78 

 

 

1.2.1 N,N Systems 

Three of the first Au(III) compounds containing uninegative bidentate N-N 

ligands to be evaluated for anti-cancer activity were compounds 79-81. These 

three Au(III) complexes structurally resemble cisplatin, where the geometry 

around the gold atom is square planar with two cis-coordinated chlorides and 

nitrogens. However, it is unknown if compound 80 exists as a cisoid or transoid 

isomer. Cytotoxicity studies on these compounds in vitro against the human 

tumour cell line MALT-4 and the mouse tumour line C2Cl2 showed that 

compounds 80 and 81 had IC50 values in the low micro-molar range, displaying 

higher toxicity (lower IC50 values) than cisplatin. In contrast 79 displayed no 

activity 
49

. 
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79 

 

80: R=H 

81: R=Me 

 

Due to the growing interest in Au(III) auracycles, Messori et al
50

 synthesised 

compounds 82-86 demonstrating good solubility and stability in physiological 

environments. The antiproliferative properties of these compounds were measured 

in vitro against the human ovarian carcinoma cell line A2780 showing 

cytotoxicity in the order of 86>>85>82,83>>84. Compounds 83-85 showed only 

moderate cytotoxic properties while compound 86 displayed activity 5-15 times 

greater, exceeding that of cisplatin under particular assay conditions
50

. Cytotoxic 

activities of the free ligands were also tested. Results showed that the terpyridine 

and o-phenanthroline moiety alone exhibited important cytotoxic activity while 

the other three ligands ethylenediamine, diethylenetriamine, and cyclam were 

devoid of any activity. These findings, alongside that of low cytotoxicity shown 

by isostructural [Pt(en)2]
2+

 and [Pt-(dien)Cl]
+ 

compounds, supports the hypothesis 

that the activity seen in 82 and 83 can be attributed to the presence of the gold(III) 

centre. However the anti-tumour activity observed for compounds 84 and 85 may 

be attributed to the release of the active ligand when the compound is reduced.  

 

Results obtained for this group of complexes demonstrate that the presence of 

good leaving groups on the gold(III) centre (i.e. hydrolysable chloride groups) 

does not seem to be an essential requirement for biological activity as in the case 

for cisplatin. This is shown by complex 82, with no gold-bound chlorides, having 

similar cytotoxicity as 83 which contains a gold-coordinated chloride. Complex 84 

was poorly cytotoxic, possibly due to over-stabilisation by the cyclam ligand, 

allowing poor reactivity
51

.  
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82 

 

 

83 
 

84 

 

 

 

85 

 

86 

 

To further increase the stability of Au(III), Che and co-workers synthesised the 

square planar complex [Au(TTP)]Cl 87, showing the well known 

tetraphenylporphyrin ligand bound to Au(III)
52-54

. Due to the macrocyclic effect 

this complex is very stable towards reduction in biological environments. In vitro 

screening of 87, against cisplatin and multi-drug resistant cells, showed that this 

compound had high anticancer activity with IC50 values in the submicromolar 

range. The highest activity this complex displayed was against nasopharyngeal 

carcinoma demonstrating activity 100 times higher than that of cisplatin. 

 

 

87 
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1.2.2 Dithiocarbamate Systems 

Investigation into dithiocarbamate complexes as a choice of ligand toward 

cyclometallated gold(III) compounds developed increasing interest due to their 

efficacy as inhibitors of cisplatin-induced nephrotoxicity, without decreasing the 

cisplatin anti-tumour activity. Platinum(II) and palladium(II) complexes 

containing these dithiocarbamate ligands have been recently reported to show 

greater cytotoxic activity than that of cisplatin 19, and in addition show no cross-

resistance with cisplatin and low nephrotoxicity levels in vitro and in vivo
55

. 

 

Success with the damp complexes mentioned in Section 1.2 led to investigations 

into the synthesis of other Au(III) complexes that could also be stabilised by 

electron-donating ligands. Fregona et al
55,56

 synthesised a group of square planar 

Au(III) complexes containing the dithiocarbamate ligand, one of which was 

complex [Au(dmdt)X2] (dmdt = N,N-dimethyldithiocarbamate and X = Cl
-
, Br

-
) 

88. Dithiocarbamate, a negatively charged ligand, donates two sulfur atoms to 

form a four membered chelate ring with a metal ion. The structure of this ligand is 

such that it strongly donates electron density to the metal ion, resulting in 

stabilisation of the gold(III) centre
35

, analogous to the damp ligand.   

 

Gold(III) complexes of this type have been selected very carefully to closely 

reproduce the structural features of cisplatin with almost square planar geometry 

and at least two cis-gold(III) halogen bonds that undergo hydrolysis easily. The 

remaining coordination positions are occupied by dithiocarbamate ligands. These 

compounds were shown to be more cytotoxic than cisplatin as well as displaying 

activity against cisplatin-resistant lines, therefore suggesting a different 

mechanism of action to platinum drugs
55

. 

 

The gold(III) analogues 88-90 of cisplatin have been evaluated for their cytotoxic 

activity in vitro towards a panel of human tumour cell lines including cisplatin 

resistant and sensitive cell lines. Two particular gold(III) derivatives of N,N-

dimethyldithiocarbamate 88 and ethylsarcosinedithiocarbamate 90 were shown to 

be 1-4 fold the toxicity of cisplatin, and were also able to overcome some intrinsic 

and acquired resistance to cisplatin itself. Furthermore, the 
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dimethyldithiocarbamate ligand itself is not shown to be toxic, therefore 

suggesting that it is in fact the gold(III) centre that is responsible for the biological 

activity observed. 

 

 

 
88 

 

89 

 

 
 

90

 

1.2.3 N,O Systems 

Calamai et al
57-59

 synthesised and investigated N,O complexes 91-93, with the 

selection of compounds dictated by their structural similarities to cisplatin. X-ray 

crystal structures of these complexes shows that the gold atom is square planar 

with two or more chloride ions coordinated to the metal in a cis arrangement.  

 

 

91 

 

92 

 

93 

   

In aqueous solution the gold(III) complexes 91-93 undergo rapid hydrolysis of the 

coordinated chloride ligands. The rate of hydrolysis of these compounds depends 

simultaneously on proton and chloride concentrations, exhibiting behaviour much 

like that of cisplatin with rapid loss of the first chloride ion followed by a slower 

loss of the second. The rate of hydrolysis is greatly accelerated under 

physiological conditions
58,59

. 

 

To test the theory that gold(III) undergoes reduction in the presence of protein 

residues with exposed sulfur groups, Calamai
57

 and co-workers reacted complexes 

91 and 92 with albumin and transferrin. Reaction with albumin resulted in rapid 

reduction of gold(III) to gold(I). In contrast when reacted with transferrin a 

modification of the complex occurred without reduction giving gold(I). The 

difference in reactivity between these two proteins can be tentatively attributed to 
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the presence of free cysteine (Cys) residue in the serum albumin. However within 

transferrin all Cys are unavailable due to disulfide bridges therefore reduction 

does not occur. 

 

Anti tumour activities of compounds 91 and 92 were tested against human tumour 

cell lines, both sensitive and resistant to cisplatin. While results displayed only 

moderate cytotoxicity of the gold(III) compounds, comparable to AuC14
-
, they 

were also shown to display low potency. When tested against cisplatin-sensitive 

tumour cell lines, the cytotoxicity of the gold(III) complexes was lower than 

cisplatin, but when tested against cisplatin-resistant tumour cell lines the gold(III) 

complexes demonstrated activity 2-3 times that of cisplatin
57

.  

 

1.3 Cyclometallation Chemistry of Gold(III) 

Metallacycles, Scheme 1.1, play an important role in inorganic and organometallic 

compounds and are usually defined as a „ring containing at least one metal centre‟. 

Traditionally metallacycles refer to compounds containing two metal-carbon 

bonds within a ring system, but now can be referred to as those which contain a 

transition metal (M) with a covalent bond to a carbon atom and a coordinate bond 

to a heteroatom such as traditional Group 15 and 16 donors O, S, Se, N, P, As (Y). 

This diverse class of compounds results in a vast number of possible complexes 

containing metallacycles which can refer to rings of any size with multiple atoms 

of any element
60

.  

 

 

 

Scheme 1.1: Common cyclometallation reaction resulting in a general cyclometallated 

compound. Y is any atom or bond capable of forming a coordinate bond; M 

is a transition metal and X is an appropriate leaving group. 

 

 

In 1963, Kleiman and Dubeck
61

 reported the first cyclometallated transition metal 

compound, synthesised by the reaction of dicyclopentadienylnickel and 
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azobenzene both in the absence and presence of a solvent. Since then, vast 

numbers of cyclometallated compounds have been reported in the literature with 

applications as catalysis
62

 and in organic synthesis
63

, biology
64

 and materials 

science
65

.  

 

The following discussion focuses on the history of gold(III) cyclometallated 

compounds with emphasis on those used in this research. There are two main 

routes to cyclometallated gold(III) compounds, namely transmetallation from a 

corresponding organomercury derivative or direct reaction with a gold(III) source. 

A large number of reviews have been published in the area of general 

cyclometallation
66,67

 and in particular gold compounds
68,69

. 

 

1.3.1 Cyclometallation from Organomercury Reagents 

The formation of organogold compounds is often difficult to achieve by direct 

cycloauration, instead the more conventional method adopted is a transmetallation 

reaction using an appropriate mercury(II) precursor. This process is generally 

required when synthesising monoorganogold(III) derivatives with five-membered 

chelate rings, and is most commonly done with potential chelate ligands such as 

azobenzene or damp.  

 

Transmetallation reactions using normal solvents such as acetone or acetonitrile 

have been shown to be fairly efficient but at times require finely balanced 

equilibria. The addition of Me4NCl, or increasing the polarity of the solvent, is 

also shown to help induce the precipitation of (Me4N)2[Hg2Cl6] and drive the 

reaction towards the cyclometallated gold compound. Though the exact 

mechanism of this transmetallation is unknown, it has been postulated that these 

reactions proceed via a bridged intermediate as shown in Scheme 1.2
68

. 

 

 

Scheme 1.2: General transmetallation scheme for the formation of Au(III) 

cyclometallated compounds
68

. 
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In 1984 Vicente et al
70

 established a new method for preparing the dampAuCl2 

complex 33. Here the reaction of the damp mercury derivative, dampHgCl, with 

[AuCl3(tht)] (tht = tetrahydrothiophene) and Me4NCl in acetone gives a solution 

of the desired product, dampAuCl2. This complex was also shown to be prepared 

by the reaction of [Me4N][AuCl4] with [Hg(2-C6H4CH2NMe2)C1] or [Hg(2-

C6H4CH2NMe2)2] in either a 1:1 or 1:2 mole ratio. Shortly after, Bonnardel et al
71

 

became interested in the route of synthesis of aryl-gold(III) compounds using the 

latter transmetallation method to synthesise a wide range of new gold(III) C,N 

chelates. 

 

Parish et al
72

 later demonstrated that even when metallacyclic complexes of 

gold(III) could be synthesised through direct reaction, transmetallation reactions 

were still observed to be much quicker and resulted yields 2-4 times that of direct 

cycloauration. 

 

1.3.2 Direct Cyclometallation 

Cycloauration is believed to proceed through nitrogen assisted activation of a C-H 

bond using gold(III) sources such as NaAuCl4, HAuCl4 and AuCl3.2H2O. 

However this is difficult to achieve. 

 

In 1931 Kharasch and Isbell
73

 synthesised complexes phenylAuCl2, tolylAuCl2, 

diphenylAuCl2 and methylsalicylateAuCl2. These were the first reported examples 

of arylgold(III) derivatives, formed by direct reaction of gold chloride with 

benzene, toluene and methyl salicylate in petroleum ether. In contrast when 

benzenes with potentially coordinating substituents were reacted with auric 

chloride species such as 94 were produced. It was later found by Constable and 

Leese
39

 that warming 94 in acetonitrile resulted in ortho-metallation to give 38. 

The complex obtained through Scheme 1.3 results in an identical compound to 

that obtained by transmetallation reactions. Due to the successful synthesis of 

these complexes through direct metallation, many five and six membered 

cycloaurated gold(III) complexes have since been reported. 
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94 

 

38

Scheme 1.3: Reaction scheme for the ortho-metallation of Au(III) trichloride adducts, as 

shown by Constable and Leese
39

. 

 

 

1.3.3 Five Membered Ring Systems 

Cyclometallation commonly, but not exclusively, results in the formation of five 

membered rings. Smaller rings are shown to result in strain and are consequently 

less stable
74

, therefore five membered auracycles are most generally formed via 

transmetallation using the appropriate mercury precursor, though examples of 

direct synthesis are also known. Henderson et al
75

 reported the synthesis of the 2-

(p-tolyl)pyridine derivative 97 as shown in Scheme 1.4. This compound shows 

advantages over the classic phenylpyridine metallacycle 38 as the methyl group 

allows for quick identification through NMR analysis and easy distinction 

between the phenyl and pyridyl rings in X-ray crystallographic studies.  

 

 
95 

 

 

96 

 

97

Scheme 1.4: Reaction scheme of the formation of 2-tolylpyridineAuCl3 (73% yield) and 

2-tolylpyridineAuCl2 (38% yield) as shown by Henderson et al
75

.  

 

 

Later Fuchita et al
76

 succeeded in the cycloauration of 1-ethyl-2-phenylimidazole 

(Hphtz), a ligand other than the well known pyridine derivatives. Here, when 

  

   

MeCN 
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Hphtz is reacted with H[AuCl4]·4H2O in ethanol the reaction results in the 

[H(Hphtz)][AuCl4] salt only, whereas when reacted with Na[AuCl4]·2H2O or 

AuCl3·4H2O in aqueous acetonitrile the reaction affords the [AuCl3(Hphtz–N)] 

adduct 98. Upon heating 98 in 1,2-dichloroethane in the presence AgBF4 the 

cycloaurated complex 99 is obtained. 

 

 

98 

 

99 

 

 

1.3.4 Six Membered Ring Systems 

Although entropy is less favourable, the direct synthesis of six-membered 

metallacycles has been shown to proceed more readily than that of five-membered 

systems. Nitrogen-containing ligand precursors such as 2-benzylpyridines HL 

[NC5H4-(CH2Ph)-2, -(CHMePh)-2 and (CMe2Ph)-2] often lead to the formation of 

a coordination products of the type AuCl3(L) as shown further detail by Scheme 

1.5. When C-H bond activation is not spontaneous, refluxing the analogous 

coordination complex AuCl3(L) in a polar solvent can induce cycloauration
77,78

. 

 

When complexes 101-103 were directly reacted with AuCl3.2H2O in refluxing 

water products 107-109 were isolated in high yields. However when the same 

complexes were reacted at room temperature adducts 104 and 105 or salt 110 

were formed. Nevertheless by warming these complexes in aqueous acetonitrile 

the metallacycles 106-109 can be formed, as depicted in Scheme 1.5. 
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100: X=N, R=-,R’=H 

101: X=C, R=R’=H 

   102: X=C, R=H,R’=Me 

103: X=C, R=R’=Me 

 
 

 

104: X=C, R=R’=H 

105: X=C, R=H,R’=Me 

 

106: X=N, R=-,R’=H 

107: X=C, R=R’=H 

108: X=C, R=H,R’=Me 

109: X=C, R=R’=Me 
 

 
110: X=C, R=R’=Me 

 

Scheme 1.5: Reactions of 2-substituted pyridine derivatives. 

 

 

On the other hand complex 106 is formed via the direct reaction of 2-

Anilinopyridine (HAnp) 100 with Na[AuCl4], in replacement of AuCl3.2H2O, in 

refluxing water as shown by Scheme 1.5. Here the reaction proceeds through 

direct activation of an ortho C-H bond of the phenyl moiety leaving a 

deprotonated anionic ligand, which then coordinates to the gold(III) centre 

through the pyridine-N and phenyl ortho-C atoms to form a 6-membered chelate 

ring
79

. A year later Fuchita et al
80

 synthesised the same complex 106 by the 

reaction of 2-anilinopyridine with H[AuCl4]·4H2O or Na[AuCl4]·2H2O stirred in 

ethanol at room temperature, resulting in a slightly higher yield.  

 

When [AuCl3(Hpcp)] (Hpcp = 2-benzoylpyridine) 111 is refluxed in aqueous 

acetonitrile no reaction takes place. However when the same complex 111 is 

   

 

AuCl3.2H2O 

H2O 

H2O   AuCl3.2H2O 

MeCN/H2O 

Δ 

MeCN/H2O   Δ 

AuCl3.2H2O / H2O, Δ 
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reacted with AgO2CCF3 in propionitrile complex 112 is formed, albeit in low 

yields. The analogous synthesis of similar six-membered auracycles 2-phenoxy- 

and 2-(phenylsulfanyl)-pyridine has also been observed to occur via the 

conversion of the trichloride intermediate
76

.   

 

 

111 

 

112 

 

 

1.4 Conclusion 

Synthetic methods above show that a vast range of Au(III) dichloride materials are 

able to be synthesised with relative ease. As these complexes contain labile 

chloride ligands, closely resembling that of cisplatin, they are suitable precursors 

for development and further study. The aim of this thesis has been directed 

towards replacing the chloride ligands with soluble bidentate chelating ligands to 

produce interesting new cycloaurated gold(III) complexes that may demonstrate 

increased solubility and exciting biological activity. 
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Chapter Two  

Synthesis and Characterisation of 

Gold(III) Complexes with O,O Chelating 

Ligands 

 

 

2.1 Introduction 

Gold, one of the most noble of all metals, shows a low affinity for binding to 

oxygen. Despite this fact, a number of Au-O compounds have been synthesised 

with gold in oxidation states ranging from -I to +III
81

. The mismatch of the hard, 

basic oxygen ligand with the soft gold centre results in compounds with relatively 

weak Au-O linkages
82

 which are consequentially rather thermally unstable. This 

characteristic of weak bonds also results in high reactivity, hence suggesting Au-O 

bonds may display interesting reaction chemistry. Gold(I) complexes with the 

general formula L-Au-X, where L is a soft ligand and X is a hard anionic ligand 

derived from an oxo- or a carboxylic acid, play roles as catalytically active 

species
83

, catalytic precursors
84

, „auration‟ reactions and can be used for gold 

deposition processes
85

. 

 

The purpose of this chapter was to investigate Au(III) O-donor complexes using 

ligands such as maltol, alizarin and 3,4-dihydroxybenzaldehyde as candidate O,O 

chelate ligands of auracycles.  

 

Alizarin, 1,2-dihydroxyanthraquinone 113, a dye molecule extracted from 

„madder‟ Rubia tinctorum was used in Moroccan traditional pharmacology for its 

healing effects on weakness. This complex belongs to the dihydroxyanthraquinone 

family comprising of compounds known to exhibit biological and pharmaceutical 



Chapter Two  31 

 

 

properties. Quinizarin, an analogue of alizarin, is a component of several 

anthracycline (derived from Streptomyces bacterium) anti-tumour antibiotics
86

. 

Nowadays, alizarin can be easily synthesised from anthraquinone
87

 an aromatic 

organic compound.  

 

Alizarin can act as a mordant dye for cotton, wool and silk. This occurs through 

fixation of the molecule to the metal ions in the textile fabric. This ability of 

alizarin to complex with metal ions has many applications. These include the 

analysis of soils, plants, natural and waste water, synthesis of ion-exchange resin 

matrix
87-90

, catalytic properties
91

, analysis of human blood serum by spectrometric 

determination of calcium and magnesium, chemical modification of electrodes for 

voltametric determination of metal cations
92

 and the ability to act as a metal 

indicator due to the sharp colour change during alizarin-metal complexation
93

. 

  

In 1567, the aptitude of alizarin as a biological stain was first noted. This was 

discovered when alizarin was added to animal feed resulting in the red staining of 

their teeth and bones. Today this chemical is commonly used in medical studies 

involving calcium as alizarin complexes with free (ionic) calcium resulting in 

precipitation, allowing tissue containing calcium to stain red immediately on 

immersion in alizarin. Therefore alizarin is found to be useful in studies involving 

bone growth, osteoporosis, bone marrow, calcium deposits, cellular signalling, 

gene expression and many more medical investigations that involve calcium 

functions
86

. 

 

 

113 

 

 

114 

 

Maltol 114 is a naturally occurring organic compound found in the bark and pine 

needles of the larch tree. This flavonoid is primarily used as a flavour enhancer in 

food such as coffee, chicory, soybeans, baked cereals, bread crusts and other 

products
94

. Maltol is perceived as a desirable ligand as it is naturally occurring and 
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soluble in hot water, chloroform and other polar solvents. Like related hydroxyl-4-

pyrones maltol binds to hard metal centres such as Fe
3+

, Ga
3+

, Al
3+

, and VO
2+

. In 

2000, Bernstein et al
95

 and Reffit et al
96

 reported the ability of maltol to enhance 

the oral bioavailability of gallium and iron, with Kaneko et al
97

 a few years later, 

demonstrating increased aluminium uptake due to maltol. 

 

Galliummaltolate, (tris(3-hydroxy-2-methyl-4H-pyran-4-onato))gallium(III) 115, 

is a coordination complex consisting of a trivalent gallium cation coordinated to 

three maltolate ligands. The design of this compound was based on a ferric maltol 

complex, a known compound with the ability to provide iron in a biologically 

available form. This gallium maltolate complex has undergone clinical and 

preclinical testing as a potential therapeutic agent for cancer, infectious disease, 

inflammatory disease and appears to have low toxicity when administered orally
98

. 

The attractive features and proven applicability of maltol with similar metal 

centres indicate that this complex could act as a chelate ligand of cycloaurated 

gold(III) compounds. 

 

115 

 

A wide range of platinum(II) [and platinum(IV)] complexes (shown in Figure 2.1) 

with oxygen donor ligands such as oxalate and malonate have been synthesised 

and screened for activity since the serendipitous discovery of cisplatin 19. Most of 

these complexes demonstrated moderate to poor anticancer activity with exception 

of [Pt(en)ox] (c, Figure 2.1) which displays high toxicity, appearing to act on the 

neuromuscular system and resulting in death within a few hours. Complexes 20 

carboplatin
23

 and 21 oxaliplatin
24

, as discussed in Section 1.1.3, show good anti-

tumour activity and have since entered clinical use
99

.  
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a        b      c 

    

d         e    f 

 g  h  i 

 

Figure 2.1: Various amine complexes (a-i) containing oxalate and malonate ligands 

[PtA,X] or [PtAX]. 

 

 

Oxygen donor ligands are widely employed in platinum anticancer agents. It was 

suggested, that because the gold(III) centre is labile in comparison to the 

platinum(II), the use of the less labile oxygen ligands may maintain the activity of 

the gold system. Until Goss et al
26

 created complexes 116-124, little had been 

reported on aryloxo gold(III) compounds, especially in the area of catecholate 

complexes. The compounds 116-124 are therefore the first examples of well 

characterised gold(III) catecholate complexes. They are formed by 

cyclometallated gold(III) complexes reacted with catechol, tetrachlorocatechol 

and cyclic α,β-diketone resulting in stable complexes with Au-O-C-C-O five-

membered rings. 
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116 

 

 

    117: X=NH, R=H 

    118: X=CH2, R=H 

    119: X=NH, R=Cl 

    120: X=CH2, R=Cl 

 

 

121: X=NH, R1=tBu, R2=H 

122: X=CH2, R1=tBu, R2 =H 

123: X=NH, R1=H, R2=tBu 

124: X=CH2, R1=H, R2=tBu

Anti-tumour activity of these compounds was tested against murine P388 

leukaemia cells. High anti-tumour activity was observed by the catecholate 

complexes 116, 118 and the di-tert-butylcatecholate mixture 121-124. The other 

derivatives tested showed only moderate activity. These highly promising results 

imply that a more in-depth study into this general class of complexes and their 

biological activity could identify other complexes with further improved 

biological activities
26

. 

 

2.2 Results and Discussion 

The reactions of complexes AnilinopyridylAuCl2
80

 (AnpAuCl2) 125, 

BenzylpyridylAuCl2
77

 (BpAuCl2) 126 and TolypyridylAuCl2
75

 (TypAuCl2) 127 

with catechol, alizarin and 3,4-dihydroxybenzaldehyde in refluxing methanol, in 

the presence of excess trimethylamine base gave products 117, 118 and 128-132 

in reasonable yield as deep maroon red to orange solids. All new complexes 

synthesised in this chapter comprise of more than one isomer, as also observed in 

catecholate complexes synthesised by Goss et al
26

. Compounds 117
26

 and 118
26

 

are known compounds. All products, with the exception of 132, were 

characterised by ES-MS, NMR, IR, melting point and elemental analysis. 

Compounds 128-130 were sparingly soluble in DMSO, and no other NMR 

solvent, allowing for only proton NMR analysis. To obtain 
13

C spectra solid state 

NMR spectroscopy was required. Complexes 128-131 were all obtained as neutral 

complexes while 132, a cationic species, was isolated as its chloride salt. 
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125: X=NH 

 126: X=CH2 

 

127 

 

 

 

 

128: X=NH 

 129: X=CH2 

 

130 

 

 

131 

 

 

132 

 

 

Compound 128 produced satisfactory micro-elemental results within 1% of 

theoretical values. All complexes were dried under vacuum prior to analysis; 

however 129-131 produced microanalytical data with carbon compositions lower 

than expected. The differences in composition appear to be due to organic 

solvents, with 
1
H NMR spectra showing a signal corresponding to methanol. 

Addition of methanol to theoretical calculations of these complexes results in 

compositions that agree with the experimental data within accepted error limits. 
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NMR analysis of complex 132 showed low purity therefore elemental analysis 

data was not collected. Satisfactory crystals of these complexes were not able to 

be obtained. 

 

Characterisation of [TypAuO2(C6H3)CHO], 131 

Two structural isomers of 131 were considered, corresponding to the aldehyde 

functional group bonded at either the C15 (Isomer A, Scheme 2.3) or C16 (Isomer 

B, Scheme 2.3) position of the catechol ring, respectively. As there is free rotation 

about the C-C bond of the aldehyde group, two conformers for each structural 

isomer were also considered (A1, A2, B1, B2) where the aldehyde group is co-

planar to the catechol ring. Through NMR characterisation and density functional 

theory calculations it was determined that the major isomer of complex 131 was 

Isomer A, and minor Isomer B, as shown in Scheme 2.3. Further characterisation 

description can be found in Section 2.2.2. 

 

2.2.1 Spectroscopic and Mass Spectrometric Characterisation 

2.2.1.1  NMR Spectroscopy 

1
H, 

13
C, DEPT135, COSY and HSQC spectra were acquired in DMSO-d6 solvent 

for compound 131, only 
1
H and COSY spectra were acquired for compounds 128-

130 which were too insoluble in common deuterated solvents (CDCl3, D2O and 

DMSO-d6) over the timescale needed to acquire satisfactory 
13

C spectra. Solid 

state NMR was therefore used to acquire 
13

C NMR spectra, further NMR details 

can be found in Appendix II.  

 

Due to the presence of structural isomers, NMR analysis of compounds 128-131 

afforded complex sets of overlapping signals in the aromatic regions of the 
1
H 

spectra. Some distinct signals were observed (e.g. signals in the 8-9 ppm region 

assignable to the aryl proton adjacent to the pyridyl N atom) but full NMR 

characterisation of all compounds present in the samples and distinction of 

isomers were not made. Integration of the aromatic region was used to ascertain 

that the expected numbers of signals were present and to estimate the relative 

contribution of solvent present. Due to the complexity of the spectra, NMR was 
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primarily used as an indication of sample purity, in which aside from an observed 

methanol solvent peak, showed a good degree of purity.  

 

The 
1
H NMR spectrum of compound 128, which included the anilinopyridyl 

moiety, exhibited a singlet signal at 10.93 ppm corresponding to the N-H proton. 

Compounds 130 and 131, each of which possessed a tolylpyridyl moiety showed 

singlet signals at 2.68 ppm and 2.44 ppm respectively, corresponding to the tolyl 

methyl group signal of this ligand.  

 

Benzylpyridyl gold(III) chloride, used here as a starting material, usually displays 

the characteristic AB doublet of doublets pattern
100

, as depicted in Figure 2.2; A, 

this is due to the two bridging methylene protons being in different chemical 

environments. The signal observed indicates that there is no inversion (at 300K, 

on the NMR timescale) between the two boat conformations and therefore the 

protons remain in either the axial or the equatorial positions, allowing splitting of 

the signal and observation of 
2
J (HaHb) geminal coupling. Fuchita et al

101
 have 

previously discussed this inversion process as depicted in Scheme 2.1. 

 

 

 

Scheme 2.1: Inversion of the six-membered boat ring in the 2-benzylpyridine ligand. 

 

 

However, the benzylpyridyl derivative 129 shows that the doublet of doublet 

signals observed from BpAuCl2
77

, as described above, converge and produce two 

broad singlets which are easily visible in the 
1
H NMR spectrum, Figure 2.2; B. 

Here the two overlapping broad singlets are observed due to the two structural 

isomers of the ligand. In each isomer no resolvable coupling is observed between 

the methylene protons creating a line broadening effect which results in a broad 

 Hb

Ha Au

N

Hb

Hb Au

N
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singlet. This is most likely due to a strong polarising π bond effect from the 

carbonyl groups in the attached ligand. 

 

 

 

Figure 2.2: 
1
H NMR (400 MHz) spectra showing effect of ligand coordination to starting 

material BpAuCl2 126. Spectrum A demonstrates a doublet of doublet 

pattern observed in starting material BpAuCl2 126, spectrum B represents 

analogous signal observed in complex 129. 

 

 

Proton NMR data for complex 126, a starting material for the synthesis of other 

species, was determined in CDCl3 and in DMSO-d6. Comparison of this data 

identified significant solvent effects. In DMSO-d6 the proton NMR spectrum 

showed four doublet and four triplet signals in the aromatic region, representing 

all protons on the two aromatic rings. The characteristic AB doublet of doublets 

pattern from the methylene group, as described above, was also observed. This 

NMR data corresponds to the observations reported by Cinellu et al
77

 for complex 

126. 

 

The aryl region of the 
1
H NMR spectrum of 126 in CDCl3 displayed three 

doublets, three triplets and a multiplet that arose from the overlap of a doublet and 

triplet signal. The proton attached to the carbon adjacent to the nitrogen of the 

benzylpyridyl moiety displayed a doublet, which occurred at 9.17 ppm in the 

DMSO spectrum was shifted further up field to 9.36 pm in CDCl3 while the triplet 

signal at 8.25 ppm in DMSO was further downfield in CDCl3 at 8.05 ppm.  

The characteristic inter ring CH2 signals appeared at essentially the same position 

(ca 4.61, 4.06 ppm (J = 15.2 Hz) A and 4.61, 4.34 (J = 15.1 Hz) B) in both 

A 

B 
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solvents but show a larger splitting in CDCl3. There is no evidence that this has 

been previously discussed in the literature. It is thought that these observations 

may arise from dipole interactions between CDCl3 or (CD3)2SO and BpAuCl2. 

Due to the superior dispersion of signals observed in Figure 2.2, and increased 

solubility of complexes in DMSO–d6 this was the solvent of choice. Accordingly 

DMSO–d6 was used to determine the NMR spectra of all other compounds 

reported in this thesis. 

 

 

Figure 2.3: 
1
H NMR (400 MHz) spectra showing effect of different solvents used when 

analysing starting material BpAuCl2 126. Spectrum A demonstrates the 

pattern observed in DMSO, spectrum B in CDCl3.*represents CHCl3 solvent 

line. 

 

 

Unexpectedly the proton NMR of 128-131 also included a large singlet signal at 

3.4 ppm. This signal can be assigned to the methyl group of MeOH. This suggests 

that even though all compounds were dried under vacuum on a Schlenk line that 

some solvent remained. 

 

 

B 

A 

* 
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NMR analysis of [AnpAu(maltolate)]Cl, 132: 

Proton NMR analysis of complex 132 displayed proton signals that would support 

the desired product 132. Inspection of the 
1
H NMR spectrum showed an absence 

of a signal corresponding with the methyl environment found on the maltol ligand. 

Further investigation of 
1
H-

1
H COSY spectrum demonstrated that the required 

CH3 correlation was not observed suggesting that the proton signals obtained did 

not arise from complex 132. Analysis of this compound on ESI-MS indicated a 

main cationic species at 535 m/z, later assigned as a bis-Anp2Au
+
 complex, as 

shown by Scheme 2.2, in Section 2.2.1.3. It was concluded that the observed 

proton signals, similar to that of what would be expected from the desired 

[AnpAu(maltolate)]Cl complex, were signals correlating to the reaction by-

product bis-Anp2Au
+
. This was further confirmed on integration of proton peaks. 

After many trials to synthesise this complex, all of which were unsuccessful, it 

was decided to no longer pursue this idea.  

 

2.2.1.2  IR Spectroscopy 

The alizarin derivatives 128-130 show stretches in the C=O region 1642–1652 cm
-

1
, while the dihydroxybenzaldehyde derivative 131 showed a C=O stretch at 1660 

cm
-1

. These stretches are at a slightly shifted wavenumber compared to the 

ν(C=O) stretch in the free ligands, alizarin (1633 and 1664 cm
-1

) and
 

dihydroxybenzaldehyde (1647-1655 cm
-1

), presumably due to the electron-

withdrawing gold atom. The IR spectrum of the un-coordinated ligands show two 

clear ν(C=O) signals, with their analogous gold(III) derivatives exhibiting only 

one broadened signal. 

 

Upon co-ordination of alizarin and dihydroxybenzaldehyde to the gold(III) centre, 

O-H stretching bands (3400-3300 cm
-1

 and 3369 cm
-1

 for alizarin and 

dihydroxybenzaldehyde ligands respectively) were partially lost indicating that the 

oxygen atoms were deprotonated and subsequently coordinated to the gold centre. 

C-O stretches observed in complexes 128-131 were predominantly unaffected by 

coordination to the gold centre. 
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2.2.1.3  Electrospray Mass Spectrometry (ES-MS) 

All new compounds synthesised in this chapter were good candidates for ES-MS 

due to the presence of carbonyl groups which have the ability to attract protons or 

positively charged sodium ions. All samples were first dissolved with a few drops 

of dichloromethane and further diluted in methanol.  

 

Alizarin derivatives 128-130 displayed intense peaks at m/z values of 627, 626 and 

626 respectively. Molecular weights of these compounds are approximately 604, 

603 and 603 g mol
-1

 therefore these main signals were able to be assigned as their 

[M+Na]
+
 ions. Complexes 129 and 130 observed no peak correlating to a [M+H]

+
 

in any of the spectra, however complex 128 and dihydroxybenzaldehyde 

derivative 131 displayed both a [M+H]
+
 and [M+Na]

+ 
ion. 

 

[AnpAu(maltolate)]Cl, 132, displayed a peak at m/z 493 corresponding to the 

parent ion [M]
+ 

while also showing a peak at m/z 535, Figure 2.4. This ion is 

attributed to a by-product commonly observed when using compounds AnpAuCl2 

and BpAuCl2, giving a peak at m/z 535 and 533 respectively as discussed by 

Dinger et al
42

. Scheme 2.2 illustrates the formation of the bis-cycloaurated bis-

Anp2Au
+
 species as a reaction by-product.  

 

 

 

Figure 2.4: ES-MS Spectrum of [AnpAu(maltolate)]
+
 132 in MeOH, recorded at capillary 

exit 80 V, showing desired [M]
+ 

signal of 132 at m/z 491 and bis-

cycloaurated by-product 133 at m/z 535. 
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132 

 

133

 

Scheme 2.2: Diagram displaying the route of synthesis to the desired complexes 132, 

and bis-cycloaurated species 133. 

 

 

2.2.2 Further Characterisation of complex 

AnpAuO2(C6H3)CHO, (131) 

2.2.2.1  Spectroscopic Characterisation 

The proton NMR spectrum of compound 131 was consistent with the presence of 

two isomers of this compound in the sample solution. For example, two readily 

identifiable aldehydic protons, observed in a 1:3.1 ratio at 9.71 and 9.67 ppm 

(Figure 2.5) can be attributed to the H-19 resonances of isomer forms of 

compound 131. The existence of isomeric forms of compound 131 can be 

rationalised by the attachment of the dihydroxybenzaldehyde ligand in two ways, 

as demonstrated in Scheme 2.3. 

 

 

 

 

  



Chapter Two  43 

 

 

 

 

Figure 2.5: 
1
H NMR (400 MHz) spectrum of complex 131 aryl and aldehydic protons, 

including major and minor aldehydic proton signals at 9.67 and 9.71 ppm 

respectively. 

 

 

   

 

Scheme 2.3: Shows numbering scheme for each isomer. Isomer A (left), Isomer B 

(right), colour relates to Figures 2.6  and 2.7. 

 

 

The 2D-COSY and HSQC spectra were consistent with the presence of two 

isomers of 131 since major and minor peaks in a ca 3.1:1 ratio were observed for 

the majority of the COSY and HSQC correlation peaks. This observation 

facilitated the derivation of complete sets of signal assignments of this compound 

without providing insight into which isomer was predominant. 

  

* Major 

*    Minor 
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Figure 2.6: 
1
H COSY NMR (400 MHz) spectrum of 131 showing 

1
H-

1
H correlations 

between proton environments in the aromatic region. 

 

 

 

Figure 2.7: 
1
H COSY NMR (400 MHz) spectrum of 131 showing close up 

1
H-

1
H 

correlations of the isomer pattern in the dihydroxybenzaldehyde region. 

Green correlations represent the dominant isomer, while orange 

correlations refer to the minor isomer, as referenced to Scheme 2.3. 
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Upon analysis of the HSQC spectrum, correlations between proton and carbon 

signals from both the major and minor isomers were observed, allowing the full 

assignment of the protonated carbons. All quaternary carbons were identified by 

the comparison of DEPT135 and 
13

C NMR spectra. Tables of full assignments of 

both isomers can be found in the experimental Section 2.4 (see Tables 2.1 and 

2.2). 

 

 

Figure 2.8: 
1
H-

13
C HSQC NMR (400 MHz) spectra of 131 showing 

1
H-

13
C correlations. 

 

 

It was hypothesised that NOESY correlations might serve to distinguish the major 

and minor isomers. Some weak correlations were seen in the NOESY spectrum 

but were insufficient to allow identification of the dominant isomer. To adequately 

identity the two isomers theoretical calculations were carried out to predict NMR 

chemical shifts.   

 

2.2.2.2  Theoretical Characterisation Discussion 

1
H NMR shifts were calculated for complex 131 to distinguish between Isomers A 

and B (Scheme 2.3) using density functional theory (DFT). It was predicted that 

the aldehyde proton signal of isomer A occurs at 9.91 ppm and is slightly upfield 

of the equivalent signal of B at 9.95 ppm. The calculated difference between these 
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two signals is 0.06 ppm showing good agreement with the difference observed 

experimentally of 0.04 ppm. On the basis of the calculated 
1
H NMR spectrum, A 

is assigned as the major product and B as the minor product. 

 

2.2.3 Discussion 

The results of elemental analysis of 128-131 did not give percentages that 

matched the proposed complexes. This discrepancy in results is thought to be due 

to solvent co-crystallising with the sample. On inspection of the proton NMR a 

peak was observed at 3.4 ppm corresponding with the methylene shift of 

methanol. Further investigation found that addition of methanol to the elemental 

percentage calculations resulted in the experimental values showing a much closer 

correlation to expected values. 

 

It was established via NMR analysis that all new complexes synthesised in this 

chapter have structural isomers. Complexes 128-130 displayed a 1:1 isomeric ratio 

while 131 was observed in a 3.1:1. With the exception of complex 131 and its 

individual isomers identified through density functional theory calculations, full 

characterisation of all structural isomers was beyond the scope of this thesis 

project. 

 

Although alizarin is a water soluble dye, once complexed to a metal centre it 

appears to lose its aqueous solubility. Therefore recommendations for future work 

would be directed at using O,O bidentate ligands which include more soluble 

substituents that are not involved in the chelation to the metal centre. This would 

suggest that once complexed, these ligands would retain their solubility 

characteristics and result in new cyclometallated gold(III) complexes showing 

higher aqueous solubility. Investigation into biological activity of the complexes 

synthesised in this chapter is also recommended. 

 

2.3 Conclusion 

Four new gold(III) catecholate complexes (catecholate = RC6Hn(OH)2) have 

successfully been synthesised and characterised. These appear to be the first gold 
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compounds of this type to be reported. Structural characterisation using NMR 

suggests all compounds form structural isomers, however no crystals were 

obtained and therefore complete characterisation of geometry and bonding was 

not able to be made. Biological activities of these complexes are unknown as 

testing facilities were unavailable during the timeline of this project.  

 

2.4 Experimental 

2.4.1 General 

All reactions were carried out with no effort made to exclude either air or light. 

The solvents used were drum grade. AnpAuCl2 125
80

, BpAuCl2 126
77

, TypAuCl2 

127
75

 and known catecholate complexes 117 and 118 were prepared from 

literature methods using 2-benzylpridine, 2-anilinopyridine, 2-tolylpyridine 

(Aldrich), catechol and trimethylamine (BDH), synthesis details can be found in 

Appendix I. Likewise alizarin (H2az) and dihydroxybenzaldehyde derivatives used 

alizarin (BDH) and 3,4-dihydroxybenzaldehyde (Aldrich) respectively without 

purification. I.R. spectra were recorded with a Perkin Elmer Spectrum 100, FT-IR 

Spectrometer. Melting points were measured (Buchi, M-560) and molecular 

weights were determined by ES-MS (Bruker MicroTOF) and were acquired in 

dichloromethane (DCM)/methanol. NMR data of soluble complexes were 

acquired on Bruker AVIII-400 spectrometer using DSMO as a solvent, whereas 

solid state was acquired on AVII-300. Further NMR details can be found in 

Appendix II. Elemental analysis was performed by the Chemistry Department of 

the University of Otago.  

 

Synthesis of HAuCl4.xH2O  

In the fume hood, gold nuggets were very gently stirred (magnetic stir bar) with 

excess aqua regia in a conical flask, covered with a watch glass, and heated to a 

very gentle boil until the gold was dissolved. The solution was boiled down to 10-

15 mL, and fresh concentrated hydrochloric acid (HCl, 50 mL) was then added. 

This was boiled down to 10-15 mL again, with the addition of HCl (50 mL) and 

boiling down repeated another two times. After the final addition of HCl the 

solution was then boiled down gently to approximately 10 mL and cooled. The 
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golden yellow crystalline product was stored in a tightly stoppered glass vial 

sealed with parafilm. 

 

Synthesis of AnpAu(az), 128:  

The procedure was similar to that for complex 117. AnpAuCl2 (24.6 mg; 0.056 

mmol) and alizarin (24.3 mg; 0.101 mmol, excess) were stirred in refluxing 

methanol (30 mL) giving an orange solution. Trimethylamine (2 mL, excess) was 

added and the resulting deep purple/maroon solution was further refluxed for 20 

min. This was left until cool, filtered, and the product washed with cold MeOH (2 

× 10 mL) and dried under vacuum to give 31.2 mg (92%) of purple/maroon solid. 

 

Melting Point:  210-212 ºC (decomposed) 

IR: υ(C-O, br) = 1370 cm
-1

, υ(C=O) = 1642 cm
-1

; υ(N-H) = 

3300 cm
-1 

 

Microanalysis:  Found: C= 48.6%, H =2.5%, N= 4.4%  

C25H15AuN2O4.MeOH requires: C= 49.1%, H= 3.0%,  

N= 4.4% 

ES-MS: Capillary exit 100 V: m/z 627 (100%, [M+Na]
+
), 353 

(100%, unidentified) 

NMR: 
1
H: δ, 6.76 (d, 0.6H, J=7.9 Hz), 6.86 (d, 0.4H, J=7.9 Hz), 

7.04 (m, 1H), 7.14 (m, 2H), 7.35 (m, 2H), 7.46 (d, 0.4H, 

J=8.2 Hz), 7.57 (d, 0.6H, J=8.2 Hz), 7.80 (m, 2H), 7.96 (m, 

1.4H), 8.14 (m, 2H), 8.55 (d, 0.6H, J= 7.5 Hz), 9.03 (d, 

0.6H, J=6.8 Hz), 9.43 (d, 0.4H, J=6.3 Hz), 10.93 (br s, NH)  

 13
C: δ, 182.1, 178.2 (s, C=O) 

 * 
1
H and 

13
C NMR shifts represent both isomers in mixture 

 

Synthesis of BpAu(az), 129:  

The procedure was similar to that for complex 118. BpAuCl2 (19.2 mg; 0.044 

mmol) and alizarin (26.5 mg; 0.110 mmol, excess) were stirred in refluxing 

methanol (30 mL) giving an orange solution. Trimethylamine (2 mL, excess) was 

added and the resulting deep maroon solution was further refluxed for 20 min. 

Distilled water (40 mL) was added, and the mixture was left until cool, filtered, 
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and product was washed with cold MeOH (2 × 10 mL) and dried under vacuum to 

give 21.7 mg (82%) of bright dark red/maroon solid.  

 

Melting Point:  194-195 ºC (decomposed) 

IR:   υ(C-O) = 1016 cm
-1

; υ(C=O) = 1649 cm
-1 

Microanalysis:  Found: C= 49.8%, H= 2.9%, N= 2.1%  

C26H16AuNO4.2MeOH requires: C= 50.4%, H= 3.6%,  

N= 2.1% 

ES-MS: Capillary exit 100 V: m/z 626 (100%, [M+Na]
+
), 353 

(100%, unidentified) 

NMR: 
1
H: δ, 4.57 (br s, 0.5H), 4.58 (br s, 0.5H), 6.85 (d, 0.5H, 

J=8.3 Hz), 6.94 (d, 0.5H, J=8.3 Hz), 7.16 (t, 0.5H, J=15.3 

Hz), 7.31 (m, 2.5H), 7.53 (t, 1H, J=15.7 Hz), 7.64 (d, 0.5H, 

J=8.8 Hz), 7.81 (m, 3H), 7.91 (t, 0.5H, J=14.0 Hz), 8.11 

(m, 3H), 8.37 (m, 1H), 9.16 (d, 0.5H, J=6.1 Hz), 9.28 (d, 

0.5H, J=6.1 Hz)  

 
13

C: δ, 179.4 (br s, C=O), 45.6 (s, CH2) 

 * 
1
H and 

13
C NMR shifts represent both isomers in mixture 

 

Synthesis of TypAu(az), 130:  

The procedure was similar to that for complex 117. TypAuCl2 (25.0mg; 

0.057mmol) and alizarin (23.0 mg; 0.096mmol, excess) were stirred in refluxing 

methanol (30 mL) giving an orange solution. Trimethylamine (2 mL, excess) was 

added and the resulting deep maroon solution was further refluxed for 20 min. 

This was left until cool, filtered, and the product washed with cold MeOH (2 × 10 

mL) and dried under vacuum to give 24.4 mg (86%) of bright red solid.  

 

Melting Point:  217-219 ºC (decomposed) 

IR: υ(C-O) = 1014 cm
-1

, υ(C=O) = 1652 cm
-1

, υ(CH3) =  

1370 cm
-1

 

Microanalysis:  Found: C= 50.8%, H= 2.7%, N= 2.2%  

C26H16AuNO4.MeOH requires: C= 51.0%, H= 3.2%,  

N= 2.2% 
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ES-MS: Capillary exit 100 V: m/z 627 (100%, [M+Na]
+
), 353 

(100%, unidentified) 

NMR: 
1
H: δ, 2.68 (br s, 3H), 5.75 (s, 1H), 6.88 (d, 0.5H, J=8.2 

Hz), 6.98 (d, 0.5H, J=8.2 Hz), 7.32 (m, 1.5H), 7.52 (d, 

0.5H, J=8.2 Hz), 7.64 (d, 0.5H, J=8.2 Hz), 7.70 (m, 1H), 

7.84 (m, 3.5H), 8.16 (m, 2H), 8.39 (m, 2H), 8.85 (d, 0.5H, 

J=5.8 Hz), 9.00 (d, 0.5H, J=5.8 Hz)  

 13
C: δ, 179.9 (br s, 2 C=O), 21.7 (s, CH3) 

 * 
1
H and 

13
C NMR shifts represent both isomers in mixture 

 

Synthesis of TypAuO2(C6H3)CHO, 131:  

The procedure was similar to that for complex 117. TypAuCl2 (20.5 mg; 0.047 

mmol) and dihydroxybenzaldehyde (10.9 mg; 0.045 mmol) were stirred in 

refluxing methanol (30 mL) giving a white cloudy solution. Trimethylamine (2 

mL, excess) was added and the resulting golden solution was further refluxed for 

20 min. This was left to sit for 7 days, after which a red/orange solid formed. This 

was filtered and air dried to give 9.9 mg (35%) of bright orange to red solid. 

 

Melting Point:  198-199 ºC (decomposed) 

IR: υ(C=O) = 1660 cm
-1

, υ(CH3, bend) = 1376 cm
-1

,
 
υ(C-O) = 

1040 cm
-1 

Microanalysis:  Found: C= 44.3%, H= 2.9%, N= 2.7% (no repeat analysis) 

C19H14AuNO3.MeOH requires: C= 45.0%, H= 3.4%,  

N= 2.6% 

ES-MS: Capillary exit 100 V: m/z 502 (100%, [M+H]
+
), 353 (100%, 

unidentified), 524 (100%, [M+Na]
+
) 

NMR:  

 

 

Table 2.1: 
1
H and 

13
C Chemical shifts of 131 Isomer A, recorded at 400 MHz, at 300 K 

in DMSO. Chemical shifts referenced to DMSO. 

 

Atom Type 
13

C 
1
H  

1 CH 148.5 8.83 ~d,d, J = 6.61, 1.6 
2 CH 125.3 7.67 ~t,d, J = 6.61, 1.6 
3 CH 144.2 8.35 m, overlapping with H4 
4 CH 121.9 8.35 m, overlapping with H3 
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Atom Type 
13

C 
1
H  

5 C 166.9   
6 C 159.7   
7 CH 126.3 7.82 d, J = 7.9Hz 
8 CH 129.8 7.29 d, J=Hz 
9 C 144.3   
10 CH 129.5 7.37 br s 
11 C 139.7   
12 CH3 21.9 2.44 s 
13 C 163.7   
14 CH 114.2 7.08 d, J = 8.1 Hz 
15 C 142.5   
16 CH 125.2 7.16 d, J = 8.0Hz 
17 CH 117.1 6.98  
18 C 162.6   
19 CHO 190.5 9.67 s 

 

 

Table 2.2: 
1
H and 

13
C Chemical shifts of 131 Isomer B, recorded at 400 MHz, at 300 K 

in DMSO. Chemical shifts referenced to DMSO. 

 

Atom Type 
          13

C 
1
H  

1 CH 148.5 8.83 ~d,d, J = 6.61, 1.6 
2 CH 125.3 7.67 ~t,d, J = 6.61, 1.6 
3 CH 144.2 8.35 m, overlapping with H4 
4 CH 121.9 8.35 m, overlapping with H3 
5 C 166.9   
6 C 159.7   
7 CH 126.3 7.82 d, J = 7.9 Hz 
8 CH 129.8 7.29 d, J=Hz 
9 C 144.3   
10 CH 129.5 7.37 br s 
11 C 139.7   
12 CH3 21.9 2.44 s 
13 C 163.7   
14 CH 115.7 6.79 d, J = 8.0 Hz 
15 CH 123.1 7.06 d, J = 1.9 Hz 
16 C 129.8   
17 CH 115.0 6.92 d, J = 1.9 Hz 
18 C 162.6   
19 CHO 191.2 9.71 s 

 

 

Synthesis of [AnpAu(maltolate)Cl, 132:  

The procedure was similar to that for complex 117. AnpAuCl2 (50.1 mg; 0.115 

mmol) and maltol (15.6 mg; 0.124 mmol) were stirred in refluxing methanol (30 

mL) giving a white cloudy solution. Trimethylamine (2 mL, excess) was added 

and the resulting yellow solution was further refluxed for 20 min. This was left 

until cool, filtered, the product washed with cold MeOH (2 × 10 mL) and then 
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dried under vacuum to give 23.7 mg (43%) of creamy yellow solid. Attempts at 

purification were unsuccessful even when reflux times from 2-30 min were 

trialled  

 

Alternative Synthesis: 

An alternative method adapted from the method of aurathietane-3,3-dioxide using 

Ag2O
41

 was trialled. AnpAuCl2 (50.0 mg; 0.115 mmol), maltol (14.5 mg; 0.115 

mmol) and Ag2O (39.9 mg, 0.285 mmol) were mixed in dichloromethane (30 mL) 

and refluxed for 2 h. No positive results were obtained using this synthetic 

method. 

 

Complex TypAuO2C6H3CHO, 131: 

All density functional theory calculations were completed using Gaussian 09, 

Revision A.01
102

. Geometry optimisations were completed using the B3LYP 

density functional method with the 6-31G(d) basis set for H, C, N, and O atoms 

and the LANL2DZ basis set and effective core potential for Au.  

 

All geometry optimizations and subsequent NMR calculations were carried out in 

dimethylsulfoxide solvent using the integral equation formalism polarised 

continuum model (IEFPCM). A single point NMR calculation was run with the 

Gauge-Independent Atomic Orbital (GIAO) method using the B3LYP functional 

and 6-311++G(2d,2p) basis set for the H, C, N and O atoms and the LANL2DZ 

basis set and effective core potential for Au. Relative chemical shifts were 

obtained by comparison to TMS calculated with the same theoretical approach. 

The chemical shifts for A1/2 and for B1/2 have each been averaged to account for 

free rotation of the C-C bond over the time scale of the NMR experiments.
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Chapter Three  

Synthesis, Characterisation and Biological 

Activity of Gold(III) Thiourea Compounds 

 

 

3.1 Introduction 

Thioureas are versatile ligands able to coordinate to a metal centre either as 

neutral ligands, monoanions or as dianions. The most attractive feature of thiourea 

chemistry is the ease of synthesis of substituted thioureas R
1
R

2
N-C(S)NHR

3
, as 

they are readily obtained from the amine R
1
R

2
NH and isothiocyanate R

3
NCS. 

This allows the synthesis of a diverse range of derivatives by modification of the 

substituents on nitrogen, hence changing their physical and chemical properties. In 

addition to this the hard nitrogen and soft sulfur provide a multitude of bonding 

possibilities
103,104

. 

 

Thioureas and thiourea complexes have wide variety of use, ranging from 

modification of textile and dyeing treatments
105

, production and modification of 

synthetic resins, production of pharmaceuticals, electroplating, mercury extraction 

in waste water, gold and silver leaching from minerals
106

 as well as demonstrating 

antioxidant activity in biochemistry
107

. 

 

The use of thiourea NH2C(S)NH2 as an extracting agent for precious metals has 

received considerable interest over the years, specifically as an alternative 

lixiviant for gold. Laboratory testing has shown that thioureation of gold shows 

lower environmental impact, easier handling and greater sensitivity with faster 

kinetics than gold dissolution. In the late 1990‟s Ubaldin
106

 and co-workers 

demonstrated, in laboratory testing, that thiourea leaching permitted 84% Au 

recovery after a 6 hour reaction period. 
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In 1979, Filipski et al
108

 investigated the ability of thiourea complexes to reverse 

the cross-links that form between cisplatin and DNA, without causing any 

apparent breakdown of the DNA. The ability of thiourea complexes to recover 

intact DNA from Pt-DNA (platinum bound DNA), by acting as competing 

ligands, shows useful application in studies aimed at the biological effects of Pt 

compounds. During this study Filipski et al found that in isolated DNA thiourea 

complexes were able to reverse Pt(II)-induced DNA cross-links and lethal lesions. 

Thiourea analogues have since been reported to display potent HIV inhibitory
109

, 

anti arthritic and anticancer activity
110

. 

 

The purpose of this chapter was to investigate thiourea complexes as potential 

ligands toward Au(III). The expectations in undertaking these reactions was to 

create more stable Au(III) complexes with higher solubility in biological media, 

with the general aim of creating new complexes showing anticancer activity. 

 

The literature contains a vast number of Pt complexes containing thiourea ligands, 

many of which have shown promising activity. Investigation into the coordination 

chemistry of MeNHC(S)NH(CN) with Pt(II) complexes demonstrated that the 

thiourea ligand was able to bond as a dianion through the S and NMe groups, as a 

monoanion bonding through the S, or acting as a chelating ligand through the S 

and N
103

. These findings increased the interest in the reactions of these thioureas 

with other metal halide complexes. 

 

Henderson et al
111

 reported the synthesis of Pt(II) thiourea complexes bonding 

through either N,S-chelating mode or in an S-bonded monodentate mode. 

Complexes 134-146 contain four membered Pt-N-C-S rings in contrast to 

trisubstituted thioureas containing benzoyl substituents which bond through S and 

O to give six-membered rings. These complexes were synthesised by the reaction 

of cis-[PtCl2(PPh3)2] with its corresponding thiourea in refluxing methanol, in the 

presence of trimethylamine base. The resulting solutions contained cationic 

platinum-thiourea monoanion 134-142, 145, 146 and dianion 143, 144 complexes, 

isolated as BPh4
- 
salts. 
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134 

 

135: R=H 

136: R=Me 

 

 

 

137 

 

 

 

 138: R=Ph 

139: R=Et 

 

 

 

 

 
 

     140: R=H; n=1 

     141: R=
-
; n=0 

 

142 
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143: R=Ph 

144: R=Et 

 

 

145: R1=CN; R2=H 

146: R1=H; R2=CN 

 

Subsequently, due to the success of the Pt(II) thiourea complexes, research into 

reactions of thioureas with other transition metals were investigated. Again 

Henderson et al
103

 demonstrated that the air and moisture stability of these ligands 

allowed for successful synthesis of monoanion and dianion thiourea complexes of 

rhodium(III) and ruthenium(II). In 2004, Yang and co-workers demonstrated the 

ability of the sterically bulky N,N′-disubstituted cyclic thiourea−Pd(0) complex to 

act as highly active catalysts for Heck reactions of aryl iodides and bromides with 

olefins
112

. 

 

 

Gold(I) and thioureas 

As mentioned above, as early as 1976 the potential of acidic thioureas as reagents 

for leaching gold was known. Owing to the recent success with thiourea ligands, 

Henderson et al
104

 synthesised a series of phosphine gold(I) complexes containing 

monoanionic thiourea ligands. Thiourea ligands, with at least one hydrogen can 

exist in a tautomeric thiolate form, acting much like thiolate-type ligands. 

Complexes 147-160 were formed on reaction of the precursor chloro complexes 

Ph3PAuCl, Cy3PAuCl, dppf(AuCl)2 or dppe(AuCl)2 with thiourea ligand in 

methanol, in the presence of trimethylamine base. 
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147: L=PPh3, R1R2=(CH2CH2)2O, R3=Ph 

148: L=PPh3, R1R2=(CH2CH2)2S, R3=Ph 

149: L=PPh3, R1R2=(CH2Ph)2, R3=Ph 

150: L=PPh3, R1R2=Me2, R3=Ph 

151: L=PPh3, R1R2=Me2, R3=p-C6H4NO2 

152: L=PPh3, R1R2=(CH2)4, R3=Ph 

153: L=PPh3, R1R2=(CH2)5, R3=Ph 

154: L=PPh3, R1R2=HMe, R3=CN 

155: L=PCy3, R1R2=Me2, R3=Ph 

156: L=PCy3, R1R2=(CH2CH2)2O, R3=Ph 

 

 

157 

 

 

 

 

 

 

158: Fc=Fe(ƞ
5
-C5H4)2, R1R2=(CH2CH2)2O 

 

159: R1R2=(CH2CH2)2O, R3=Ph 

160: R1R2=HMe, R3=CN 

 

 

Selections of these complexes shown above were screened for activity against 

P388 murine leukaemia cells. Results showed moderate to low cytotoxicity of 

most compounds, with complexes 148, 152 and 153 showing the greatest activity. 

This activity may be linked to the substituents in the R1 and R2 positions, with 

greater activity shown by complexes with small, hydrophobic alkyl groups.  

 

While many gold(I) thiourea complexes are known, few gold(III) thiourea 

compounds have been investigated. This chapter details the synthesis of 

auracycles containing thiourea moieties. All novel compounds were subsequently 
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characterised and a small number of these were bio-assayed for activity against 

murine P388 leukaemia tumour cell lines.  

 

3.2 Results and Discussion 

The complexes BpAuCl2 and AnpAuCl2 were reacted with PhNHCSNHPh, 

PhNHCSNMe2, PhNHCSN(C2H4)2O and PhNHCSNCy2 in hot methanol using 

Me3N to remove Cl
-
 ligands with the addition of BPh4

-
 to give products 161-168 

in reasonable yields as bright to pale yellow solids. All products were 

characterised by ES-MS, NMR, IR and melting point. Elemental analysis was 

carried out for compounds 161, 163, 165 and 167. All complexes were partially 

soluble in common organic solvents such as DCM, acetone and DMSO. 

 

 

161: X=NH 

162: X=CH2 

 

163: X=NH 

164: X=CH2 

 

 

165: X=NH 

166: X=CH2 

 

167: X=NH 

168: X=CH2 

 

 

Compound 167 produced satisfactory micro-elemental results within 1% of 

theoretical values. All complexes were dried under vacuum prior to analysis; 

however 161, 163 and 165 produced microanalytical data with carbon 

compositions higher than expected. The differences in composition do not appear 
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to be due to organic solvents, with 
1
H NMR spectra void of any signal 

corresponding to solvents. NMR analysis of benzylpyridine derivatives showed 

low purity therefore elemental analysis data was not collected. 

 

3.2.1 X-ray Crystal Structures of 

[AnpAuPhNCSNMe2]BPh4
 
(161) and  

[AnpAuPhNCSNCy2]BPh4
 
(167) 

The X-ray crystal structure determinations of 161 and 167 were carried out in 

order to obtain the geometry, orientation and bonding of the thiourea ligand 

around the gold(III) centre. Crystal structures were solved by direct methods and 

routinely developed and refined. H atoms were placed in calculated positions 

except for the N-H which was located and refined. Views of the structures are 

shown in Figures 3.1-3.3 along with the atom numbering scheme. Selected bond 

lengths and angles are presented in Tables 3.1 and 3.2. Tables of complete final 

position and thermal parameters, bond lengths and angles are included in 

Appendix IV.  

 

The crystal structure of 161 demonstrates a square planar gold(III) complex. Here 

bidentate coordination of the thiourea ligand to the gold centre forms through N-

Au-S bonds giving a 4-membered Au-S-C-N ring system. The geometry around 

the gold atom is square-planar with the sum of the angles adding to 360.02º 

(within standard deviations of 360º), showing this complex to be perfectly planar. 

No atom deviates from the gold coordinated least square plane (defined by S1, N2, 

N1, Au and C1) by more than 0.04 Å. The four membered metallocyclic ring is 

slightly puckered, with an angle between planes Au, S1, N3 and C1, S1, N3 of 

4.9º. 

 

The anilinopyridyl moiety of 161 has a puckered conformation with a fold angle 

of 25.8º between planes N3, Au, S1 and N3, C1, S1. All bond distances and its 

conformation is comparable to the X-ray crystal structure of anilinopyridyl 

gold(III) chloride
79

.  
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The thiourea ligand of 161 coordinates so that the two highest trans influence 

ligands are mutually cis, in this case Nthiourea is attached in the cis position to the 

corresponding Nanilinopyridyl, with the sulfur atom having a lower trans influence 

than C21. Angles around N3 of the thiourea ligand add to 354.2º, showing high 

planarity. N4 lies within the plane of C1, S1, N3 with the methyl groups C41 and 

C51 respectively showing a slight twist of 7º in respect to the C1, S1, N3 plane. 

 

 

 

 

Figure 3.1: Perspective view of the X-ray crystal structure of the cation of complex 

[AnpAuPhNCSNMe2]BPh4 161, showing the atom labelling scheme. Thermal 

ellipsoids are shown at the 50 % probability level. The tetraphenylborate 

anion has been omitted for clarity. 
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Table 3.1: Selected bond lengths (Å) (estimated standard deviations in parentheses) for 

[AnpAuPhNCSNMe2]BPh4 161 and [AnpAuPhNCSNCy2]BPh4 167. 
 

           Bond 161 167 
Au – N1 2.068(3) 2.071(2) 
Au – C21 2.020(3) 2.019(3) 
Au – N3 2.137(3) 2.128(2) 
Au – S1 2.277(8) 2.283(7) 
S1 – C1 1.771(3) 1.776(3) 
C1 – N3 1.343(4) 1.324(3) 
N1 – C12 1.339(4) 1.349(4) 
C21 – C22 1.385(5) 1.401(4) 
N1 – C16 1.369(5) 1.368(3) 
C21 – C26 1.397(5) 1.394(4) 

 

 

Table 3.2: Selected bond angles (°) (estimated standard deviations in parentheses) 

between [AnpAuPhNCSNMe2]BPh4 161 and [AnpAuPhNCSNCy2]BPh4 167. 

 

Angle      161              167 
N1 – Au – C21 89.53(10) 90.83(13) 
S1 – Au – N3 69.82(7) 69.86(7) 
C21 – Au – S1 96.26(9) 95.56(10) 
N1 – Au – N3 104.41(9) 103.74(11) 
Au – N3 – C31 127.52(18) 124.10(2) 
Au – N3 – C1 99.67(18) 98.90(2) 
C1 – N3 –C31 127.04(2) 122.50(3) 

 

 

In comparison complex 167, a very similar derivative of 161, shows a difference 

in geometry due to the bulky cyclohexyl groups attached. Complex 167 shows an 

angle between planes Au, C1, N3 and C1, S1, N3 of 11º, showing a higher 

deviation from planarity. N4 lies within the C1, S1, N3 plane however the 

cyclohexyl groups attached twist by 20º so that one cyclohexyl ring is found to be 

above the plane and the other below. These bulky cyclohexyl groups crowd the 

phenyl ring attached to the N4 so pushing it away to give a structure that is quite 

puckered. N4 shows pyramidal characteristics, with angles around the nitrogen 

adding to only 345.5º, less than the 360º expected and approximately observed by 

the planar complex 161. Cyclohexyl groups show puckered chair conformations as 

expected. 
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Figure 3.2 Perspective view of the structure of the cation of complex 

[AnpAuPhNCSNCy2]BPh4 167, showing the atom labelling scheme. Thermal 

ellipsoids are shown at the 50 % probability level. The tetraphenylborate 

anion has been omitted for clarity. 

 

 

The Au-S1 and Au-N3 bond lengths of the chelating thiourea complex 161 

[2.283(7) and 2.128(2) Å] observe a longer Au-S, but shorter Au-N bond distance 

than that of 167 [2.277(8) and 2.137(3) Å]. This suggests that the steric crowding 

observed in complex 167 also results in the lengthening of the Au-N bond.  

 

Upon superimposing both structures it is easily confirmed that complex 167 

shows a more puckered conformation than that of 161, with the phenyl group 

orientated approximately perpendicular to the four membered S-Au-C-N ring 

system in each case. This is shown in Figure 3.3 giving side views of each 

structure. 
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Figure 3.3: Side view of the X-ray crystal structures of the cation of complexes 

[AnpAuPhNCSNMe2]BPh4 161 and [AnpAuPhNCSNCy2]BPh4 167, with 

167 showing non-planarity relative to the Au(III) atom. Thermal ellipsoids 

are shown at the 50 % probability level. The tetraphenylborate anion has 

been omitted for clarity. 

 

 

Inspection of the thiourea moiety core, defined by N3-C-N4-S, shows S-C and N-

C bond lengths of both crystals which suggest electronic delocalisation in the 

thiourea ligand. The S-C bond distances in 161 and 167 [1.776(3) and 1.771(3) Å, 

respectively] demonstrate an intermediate bond length when compared to organic 

compounds 169
113

 and 170
114

, containing single and double C-S bonds of 1.801(3) 

and 1.691(3) Å respectively, with the average bond length in most thioureas 

around 1.681 Å
115

. Examination of thiourea C-N bonds in complexes 161 and 167 

[ca. 1.343(4) and 1.324(3) Å] in comparison to 169 and 170 with the double and 

single C-N bonds 1.267 and 1.355 Å respectively, also shows bond distances 
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between that of a double and single bond in both crystal structures, suggesting 

there is partial double bond character in both the C-S and C-N bonds. 

 

 

169 

 

 

170 

 
All bond distances in these crystal structures are comparable to known and 

characterised complexes of Pt(II) thiourea systems 134-146
104,111

, with slight 

deviations to Au-S bond distances, presumably due to the higher electronegativity 

of gold and the substituents attached to the thiourea chelating ligand. The Au-S 

distances in 161 (2.283(7) Å) and 167 (2.277(8) Å) are towards the short end of 

the range of values displayed by corresponding Pt(II)-S complexes. 

 

In the crystal structure of 167 the final difference map contained a residual peak of 

2.4 e Å
-3

 which was in a position that could have potentially arisen from oxidation 

of the S atom. It was hypothesised this would generate an oxidised form of 167 

incorporating an S=O group, which may have co-crystallised with 167, shown by 

Figure 3.4. To test this hypothesis two oxidation experiments were investigated 

using oxidising agents H2O2 and HAuCl4 in an attempt to generate an S=O 

species, further described in experimental Section 2.5.2, without success. In 

addition no evidence for any species with m/z 697 could be seen in ES-MS of the 

crystals used for the X-ray experiments therefore suggesting that the X-ray result 

was an artifact and therefore omitted from the refinement. 

 

 

 

Figure 3.4: Diagram showing the potential oxidised form of 167 incorporating an S=O 

group. 
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3.2.2 Spectroscopic and Mass Spectrometric Characterisation 

3.2.2.1  NMR Spectroscopy 

1
H, COSY, 

13
C, DEPT135 and HSQC spectra were acquired for all compounds. 

Additional NMR data was recorded for complexes containing the 2-benzylpyridyl 

moiety. Due to the complex overlapping of signals in the aromatic regions of the 

1
H spectra, full NMR assignments of all compounds could not made, however 

integration of the aromatic region was used to ascertain that the expected number 

of signals were present. 

 

Due to the complexity of the spectra NMR data was primarily used as an indicator 

of sample purity, where it was apparent that all gold(III) anilinopyridyl derivatives 

showed good purity. Elemental data determined for compounds 161, 163 and 165 

did not completely match the experimental results suggesting that solvent 

molecules may have been retained in the analyses specimens. However proton 

NMR revealed the absence of solvent molecules and other potential impurity 

signals (eg: phthlates, tap grease, silicones, etc). 

 

Compounds containing the anilinopyridyl moiety all exhibited a singlet peak in 

the region 10.5-10.8 ppm in their 
1
H spectra, postulated to be the NH proton. This 

was confirmed by COSY and HSQC spectra which were devoid of a correlation 

between this proton and other protons or a carbon atom respectively. All 

quaternary carbons were identified by the comparison of DEPT135 and 
13

C NMR 

data. 

 

All new gold(III) thiourea compounds prepared in this chapter are cationic, 

containing a BPh4
-
 anion for precipitation. 

1
H NMR spectra of complexes 161-168 

show two large triplets and one multiplet signal that corresponds to the BPh4
-
 

anion. The two triplet peaks can be associated to the environments 1 (para) and 2 

(meta) in Scheme 3.1. In an isolated phenyl ring the remaining environment 3 

(ortho) it would be expected to show a doublet, however it was observed as a 

multiplet. This observation is due to the presence of an NMR active boron atom 

(
10

B or 
11

B which have nuclear spin of 3/2 and 3 respectively) in the anion. When 

the proton NMR signal of the ortho protons was expanded it was apparent that the 
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multiplet signal was comprised of overlapping doublets of quadruplets (80% 

contribution) and doublets of heptuplets (20% contribution) depending on the 

isotope of boron in the anion. Integration of the 
1
H spectrum showed that the 

mixture of cation to anionic species was not in the expected 1:1 ratio, with the 

exception of complex 167.  

 

 

 

Scheme 3.1: Diagram showing proton environments of BPh4
-
 observed in 

1
H NMR 

spectra (shown below). Circled areas represent all proton environments 

observed in each phenyl group. Due to the tetrahedral pseudo symmetry 

of the anion, only these three environments are seen. 

 

 

 

 

Figure 3.5: 
1
H NMR spectrum showing proton signals from the different environments of 

anion BPh4
-
. Environments1, 2 and 3 refer to Scheme 3.1. 

 

 

Possible reasoning for this observation is the co-crystallisation of Me3NH
+
BPh4

-
 

with coordination complexes 161-166 and 168. This has previously been reported 

by Henderson et al
116

 with the X-ray crystal structure determination of [(Ph3P)2Pt-

 

1 
  

2 

3 
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(SC6H4CO2)
...
HNEt3]

+
[BPh4]

-
, showing that hydrogen-bonding between the NH 

proton and the carbonyl group of the thiosalicylate ligand can occur. NMR data 

showed that all complexes containing the 2-benzylpyridyl moiety had proton 

spectra that were overwhelmed by BPh4
-
 anion signals, as depicted in Figure 3.5. 

Integration of the observed anion signals, relative to a singlet signal in the 
1
H 

spectrum at 2.8 ppm assignable to the methylene protons in Me3NH, gave a 4:9 

ratio of the triplet signal 1 (Figure 3.5) to that of the methyl groups. This 

supported the proposal of the co-crystallisation of Me3N
+
BPh4

-
. However as no 

crystals of the benzylpyridine derivatives were able to be obtained this rationale 

could not be confirmed. 

 

For this reason proton signals of complexes 162, 164 and 166 were carefully 

examined in expanded 
1
H and COSY NMR spectra, however integration of proton 

signals was not considered to be informative due to the complexity and 

overlapping of signals in the proton spectra. Very few carbon signals were also 

observed from the real complexes due to the overwhelming amount of anion 

present in these 2-benzylpyridyl derivatives. 

 

3.2.2.2 NMR Analyses of Complexes Containing the 2-benzylpyridyl 

Moiety 

Due to the complexity of the spectra acquired from the presence of anion BPh4
-
, 

an alternative synthesis using simpler BF4
-
 anion was trialled with complex 168. 

However the resulting NMR spectra showed that this complex still contained 

unknown impurities. Nonetheless careful analyses of TOCSY, NOESY, COSY, 

HSQC and selective 1D-SELROESY data allowed for the characterisation of all 

protons in complex 168. NMR details and observations for this analysis are 

described below, with full NMR assignments found in experimental Section 3.5.2 

and further NMR details in Appendix II. 

 

Due to the sample containing a mixture of several products and/or impurities, the 

NMR approach was to identify a unique starting signal and utilise correlations 

exhibited by such a proton in 
1
H, NOESY, COSY, TOCSY and SELROESY 

spectra to derive a complete set of proton assignments. Correlated protonated 
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carbon signals were subsequently identified at 2D (rather than 1D) resolution (± 

0.5 ppm). NMR assignment strategy and ring numbering scheme are shown in 

Scheme 3.2 below. 

 

A B 

 

                   C

Scheme 3.2: Diagrammatic depictions of the NMR assignment strategy; A) 
3
J COSY 

correlations signals through bonds, B) TOCSY correlations identifying 

complete spin system, C) NOESY signals showing correlations through 

space. 

 

 

The proton H-1, adjacent to the nitrogen in the benzylpyridyl moiety (ring 1; see 

Scheme 3.2) was easily identifiable due to its upfield shift (8.44 ppm). The
 1

H-
1
H 

COSY spectrum subsequently showed other mutually coupled nearest neighbours 

(eg: H-2, H-3 and H-4). Signals arising from a second mutually coupled 4-proton 

spin system (ring 2 protons: see Scheme 3.2) were also was observed in the COSY 

spectrum. Identification of these signals was difficult due to the overlap of some 

of the ring 2 proton signals.  

 

This difficulty was addressed in a TOCSY experiment performed with a 'long 

range' spin lock mixing time of 160 msec. In this spectrum each of the aryl 

protons exhibited correlations to all other protons within the same spin system. 

Provided at least one distinct proton in each ring system was accessible the 

chemical shifts of the remaining 3 protons were able to be uniquely identified. 
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Long range correlations between the CH2 group and some of the 2-benzylpyridyl 

protons were was also observed in the TOCSY spectrum. 

 

1D-SELROESY or NOESY experiments identified which protons exhibited 

through space ROESY or NOESY (NOE) correlations to the CH2 group on the 

middle ring system. By selectively exciting the CH2 signal in a SELROESY 

experiment, it was possible to see which ring 1 and ring 2 aryl protons were 

adjacent to the CH2 group in the respective aromatic rings. In the case of complex 

168 ROESY correlations were observed between the methylene protons and the 

aryl protons at 7.36 and 7.03 ppm. Knowing that the signal at 7.03 ppm arose from 

a ring 1 proton which exhibited TOCSY correlation to the distinctive H-1 proton it 

could then be deduced that the signal at 7.36 ppm was from the H-6 on ring 2. 

Subsequently COSY correlations identified the H-7, H-8 and H-9 resonances.  

 

Identification of the correlated 
13

C signals was made by overlaying 1D-slices 

extracted from the TOCSY spectrum on the HSQC spectrum. This allowed the 

assignment of the protonated aryl carbons and the methylene carbon 

(Experimental Section 3.4, Table 3.3). 

 

The cyclohexyl rings were far removed from any aromatic area of the 
1
H NMR 

spectrum, therefore identification of the proton and carbon signals through 

inspection of 
1
H, COSY, 

13
C and DEPT135 spectra were easily made. 

 

Therefore, it has been shown that through selective experiments and careful 

examination identification of signals correlating to complex 168 could be made, 

showing that this complex is infact within the sample, in an unknown amount. 

 

3.2.2.3  IR Spectroscopy 

The IR spectrum of thiourea ligands PhNHC(S)NHMe2, PhNHC(S)N(C2H4)2O, 

PhNHC(S)NHPh and PhNHC(S)NHCy2 all exhibited strong C=S stretches in the 

region 1112–1173 cm
-1

 and N-H stretches in the region ~3300-3500 cm
-1

. Upon 

coordination of the analogous thiourea to the gold(III) centre these stretches were 

reduced. The IR spectra of the resulting gold(III) thiourea derivatives 161-168 all 
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showed stretches in the C=N region 1542-1651 cm
-1

. These observations indicate 

that the sulfur and nitrogen atoms coordinate to the gold centre, therefore resulting 

in a loss of double bond C=S character and gain in C=N character, while 

deprotonating the nitrogen. 

 

This effect was not as pronounced in the PhNHC(S)NHPh derivatives as the 

regions of interest contained a large number of strong overlapping bands making 

assignment difficult. 

 

3.2.2.4  Electrospray Mass Spectrometry (ES-MS) 

All new compounds synthesised in this chapter were good candidates for ES-MS 

due to their cationic nature, allowing ease of analysis. All complexes were 

dissolved using a few drops of DCM and further diluted in MeOH prior to 

analysis. ES-MS of compounds 161-168 all showed intense [M]
+ 

ions.
.
The 

analogous bis-Anp2Au
+
 and bis-Bp2Au

+
 cation with m/z values of 535 and 533 

respectively were also observed to a lesser extent. 

 

3.2.2.5  Biological Activity 

Biological testing facilities were unavailable during the timeline of this project, 

therefore the anti-tumour activity of compounds 161, 163, 165-167 were run by 

fellow peer Aaron Andersen, at AgResearch, Hamilton. Details of the assay 

procedures can be found in experimental Section 3.4.3 and results are reported in 

Figure 3.6. 

 

The CellTiter 96 Aqueous One Cell Proliferation Assay (Promega) is a 

colorimetric method for determining the number of viable cells in proliferation to 

assess the cytotoxicity of a compound (e.g. the less viable cells remaining after 

administration of the complex, the greater the toxicity). The reagent used in this 

method contains a tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(-4-sulfophenyl)-2H-tetrazolium, inner salt, MTS] also 

known as Owen‟s reagent. MTS is reduced by cells to give a coloured formazan 

product that is soluble in tissue culture media (Scheme 3.3) 

 



Chapter Three  71 

 

 

                  

  MTS                          Formazan 

 

Scheme 3.3: Structure of MTS tetrazolium and the reduction product formazan. 

 

 

This assay was used to determine the concentration of the test sample required to 

reduce the P388 murine leukaemia cell line growth by 50%, the IC50 value. The 

quantity of the formazan product is measured at 490 nm with a spectrophotometer. 

To compensate for turbidity a measurement is also taken at 360 nm, and 

subtracted from the measurement at 490 nm. The percentage inhibition of P388 

cell growth by a sample can be determined by comparing the absorbance of a test 

well to that of the control, Triton X-100. A plot of absorbance against the 

logarithm of the sample concentration allows the IC50 value to be obtained (ng 

mL
-1

) from the antilog of the 50% value.  

 

With the exception of [AnpAuPhNCSNHPh]BPh4, 165, all compounds displayed 

low anti-tumour activity towards the P388 murine leukaemia cell line. Complex 

165 demonstrated a 51.1% growth inhibition at concentration 3125 ng mL
-1

with 

IC50 value of 3.46 µM. This IC50 value is comparable to those of some 

catecholate
26

 and thiolate
42

 Au(III) metallacycles against the same cell line. 
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Figure 3.6: Growth inhibition of samples [AnpAuPhNCSNMe2]BPh4 161, 

[AnpAuPhNCSN(C2H4)2]BPh4 163, [AnpAuPhNCSNHPh]BPh4 165, 

[BpAuPhNCSNHPh]BPh4 166 and [AnpAuPhNCSNCy2]BPh4 167 

against P388 Murine leukaemia cells in vitro. Control = Triton. 

 

 

3.2.3 Discussion 

After repeated attempts to purify, recrystallise and synthesise complexes 162, 164, 

166 and 168 using a variety of independently synthesised batches of BpAuCl2 

compounds to overcome any impurities in individual samples, it was concluded 

that a pure sample of these complexes using the methods in this thesis could not 

be obtained. ES-MS analysis confirmed the formation of the desired products; 

with further evidence of synthesis provided for complex 168 through a range of 

NMR experiments. This demonstrated that although the sample was not pure, the 

desired complex was confirmed to be synthesised within the sample.  

 

Due to the impurity of some of the complexes in this chapter future research could 

be directed at synthesising new cyclometallated gold(III) complexes using 

alternative C,N-coordinated gold(III) dihalides as precursors. The successful 

synthesis of the complexes containing the anilinopyridyl moiety, in addition to 

biological activity observed by complex [AnpAuPhNCSNHPh]BPh4 165, suggests 
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that the thiourea ligands used in this chapter have potential applicability as 

chelating ligands towards other auracycles. Precipitation of these cationic 

complexes using alternative anions is also recommended to avoid the formation of 

reaction by-products involving BPh4
-
 and to obtain better quality NMR data. 

Further changes to reaction conditions and solvents may also help to improve 

purity and yields. Additional investigation into the biological activity of these 

complexes is also suggested.  

 

3.3 Conclusion 

Four new gold(III) thiourea complexes (thiourea = NRCSNR2) have successfully 

been synthesised and characterised, with a further four new complexes obtained in 

low purities and yields. To the best of our knowledge, these are the first gold 

compounds of this type to be reported. The X-ray crystal structures of 

[AnpAuPhNCSNHMe2]BPh4, 161, and [AnpAuPhNCSNHCy2]BPh4167, have 

been solved and indicate that the thiourea ligands are co-ordinated to the gold 

centre through S-Au-N bonds. In both cases, the geometry around the gold(III) 

centre is square planar, with the anilinopyridyl moiety showing slight puckering. 

The packing diagram showed no unusual intermolecular contacts for either crystal 

structure. 

 

Five of the new compounds 161, 163, 165-167 were bio-assayed against P388 

leukaemia cells in order to assess their anti-tumour activity. Complex 165 was 

found to show good activity, while the other complexes were either inactive or too 

insoluble in biological media.  

 

3.4 Experimental 

3.4.1 General 

The reactions were carried out with no efforts at excluding either air or light. The 

solvents used were drum grade. AnpAuCl2 126
80

 and BpAuCl2 125
77

 were 

prepared from literature procedures. All thiourea ligands had previously been 

synthesised in this laboratory following literature procedures
111

 by the reaction of 
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PhNCS with the appropriate secondary amine in diethyl ether, giving white 

crystalline products. PhNHC(S)NHPh was from Aldrich. Compounds were stored 

in the freezer to slow down decomposition. ES-MS were acquired in methanol 

solvent with addition of a small amount of DCM. All NMR spectra were acquired 

in DMSO. Further information on instruments used for characterisation of 

complexes is provided in Chapter one, Section 2.4. Additional NMR 

specifications can be found in Appendix II. 

 

Synthesis of [AnpAuPhNCSNHMe2]BPh4, 161: 

The complex AnpAuCl2 (21.4 mg; 0.049 mmol) and PhNHCSNHMe2 (12.7 mg, 

0.056 mmol) were stirred in methanol (25 mL) giving a yellow solution. This was 

gently warmed to 50 ˚C and aq. trimethylamine (2 mL, excess) added. After 

stirring the warmed mixture for 5 min, solid NaBPh4 (0.180 g, 53 mmol) was 

added, along with water (20 mL), resulting in the immediate formation of a yellow 

precipitate. This was stirred for a further 5 min and the solid isolated by filtration, 

washed with water (2 x 20 mL) and petroleum spirits (10 mL), then dried under 

vacuum to give 32.6 mg (69%) of yellow solid. 

 

Melting Point:  112-113 ºC (decomposed on further heating) 

IR: υ(C-S) = 706 cm
-1

, υ(C=N) = 1604 cm
-
1, υ(N-H) =  

3319 cm
-1

 

Microanalysis:  Found: C= 64.2%, H= 5.2%, N= 6.1%  

   C48H40AuBN4S requires: C= 61.1%, H= 4.7, N= 6.5% 

ES-MS:   Capillary exit 120 V: m/z: 545 (100%, [M]
+
) 

NMR:  
1
H: δ, 2.74 (s, 3H), 2.88 (br s, 3H), 6.39 (t, 1H, J=13.6 Hz), 

6.79 (t, 4H, J=14.3 Hz), 6.93 (t, 10H, J=14.9 Hz), 7.03 (t, 

1H, J=14.6 Hz), 7.19 (m, 12H), 7.22 (d, 1H, J=5.0 Hz) 7.28 

(t, 1H J=14.9 Hz), 7.35 (d, 1H, J=8.0 Hz), 7.39 (t, 1H, 

J=14.8 Hz) 7.48 (d, 1H, J=6.3 Hz), 7.81 (t, 1H, J=15.7 Hz), 

10.78 (s, NH) 

 13
C: δ, 170.2, 164.7-163.1, 147.4, 140.1, 113.2 (aryl C), 

39.42 (s, CH3) 
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Synthesis of [BpAuPhNCSNHMe2]BPh4, 162: 

The complex BpAuCl2 (20.5 mg; 0.047 mmol) and PhNHCSNMe2 (10.5 mg; 

0.058 mmol) were stirred in methanol (25 mL), giving a white cloudy solution. 

This was gently warmed to 50 ˚C and aq. trimethylamine (2 mL, excess) added 

giving a yellow solution. After stirring the warmed mixture for 5 min, solid 

NaBPh4 (0.180 g, 53 mmol) was added, along with water (20 mL), resulting in the 

immediate formation of a pale yellow precipitate. This was stirred for a further 5 

min and the solid isolated by filtration, washed with water (2 x 20 mL) and 

petroleum spirits (10 mL), then dried under vacuum to give 40.1 mg (94%) of pale 

yellow solid. 

 

IR:    υ(C-S) = 710 cm
-1

, υ(C=N) = 1600 cm
-1

 

ES-MS:  Capillary exit 120 V: m/z: 544 (100%, [M]
+
) 

NMR: 
1
H: δ, 2.79 (s), 4.06-4.24 (d of d), 6.79 (t, anion*, J=14.6 

Hz), 6.93 (t, anion*, J=14.9 Hz), 7.03 (t), 7.17 (m, anion*) 

7.38 (m), 7.56 (d), 8.04 (m) 

*refer to NMR Spectroscopy Section 3.2.2.1, anion signals here overlap 

with the remaining signals from this complex. 

 

Synthesis of [AnpAuPhNCSN(C2H4)2O]BPh4, 163: 

The complex AnpAuCl2 (20.5 mg, 0.047 mmol) and PhNHCSN(C2H4)2O (33.8 

mg; 0.152 mmol, excess) were stirred in methanol (25 mL), giving a yellow 

solution. This was gently warmed to 50 ˚C and aq. trimethylamine (2 mL, excess) 

added giving a bright yellow solution. After stirring the warmed mixture for 5 

min, solid NaBPh4 (0.180 g, 53 mmol) was added, along with water (20 mL), 

resulting in the immediate formation of a yellow precipitate. This was stirred for a 

further 5 min and the solid isolated by filtration, washed with water (2 x 20 mL) 

and petroleum spirits (10 mL), then dried under vacuum to give 40.1 mg (94%) of 

light yellow solid. 

 

Melting Point:  112-113 ºC (decomposed on further heating) 

IR:  υ(C-S) = 707 cm
-1

, υ(C=N) 1581 cm
-1

, υ(br, N-H) =  

3436 cm
-1

 

Microanalysis:  Found: C= 64.9%, H= 5.6%, N= 5.5% 



Chapter Three  76 

 

 

   C46H42AuBN4OS requires: C= 60.9%, H= 4.7%, N= 6.2% 

ES-MS:  Capillary exit 120 V: m/z: 587 (100%, [M]
+
) 

NMR: 
1
H: δ, 3.34 (br s, 4H), 3.57 (br s, 4H), 6.39 (t, 1H, J=13.4 

Hz),  6.79 (t, 4H, J=14.3 Hz),  6.93 (t, 16H, J=14.7 Hz), 

7.04 (t, 1H, J=14.7 Hz), 7.19 (m, 12H), 7.31 (t, 1H, J=1473 

Hz), 7.34 (m, 2H),  7.42 (m, 3H),  7.83 (t, 1H, J=15.7 Hz), 

10.79 (s, NH)s 

 13
C: δ, 169.1, 164.1-163.1, 147.4, 141.1, 113.1 (aryl C), 

65.6 (s, CH2), 47.8 (s, CH2) 

 

Synthesis of [BpAuPhNCSN(C2H4)2O]BPh4, 164: 

The complex BpAuCl2 (20.0 mg, 0.046 mmol) and PhNHCSN(C2H2)2O (12.6 mg; 

0.057 mmol, excess) were stirred in methanol (25 mL), giving a clear solution. 

This was gently warmed to 50 ˚C and aq. trimethylamine (2 mL, excess) added 

giving a pale yellow solution. After stirring the warmed mixture for 5 min, solid 

NaBPh4 (0.180 g, 53 mmol) was added, along with water (20 mL), resulting in the 

immediate formation of a pale yellow precipitate. This was stirred for a further 5 

min and the solid isolated by filtration, washed with water (2 x 20 mL) and 

petroleum spirits (10 mL), then dried under vacuum to give 36.4 mg (87%) of dull 

pale yellow solid. 

 

IR:   υ(C-S) = 710 cm
-1

, υ(C=N) = 1581 cm
-1

 

ES-MS:  Capillary exit 120 V: m/z: 586 (100%, [M]
+
) 

NMR: 
1
H: δ, 2.71 (s), 4.06-4.24 (d of d), 6.79 (t, anion*, J=14.4 

Hz), 6.93 (t, anion*, J=14.8 Hz), 7.03 (t), 7.18 (m, anion*) 

7.37 (m), 7.56 (d), 8.03 (m) 

*refer to NMR Spectroscopy Section 3.2.2.1, anion signals here overlap 

with the remaining signals from this complex. 

 

Synthesis of [AnpAuPhNCSNHPh]BPh4, 165: 

The complex AnpAuCl2 (20.5 mg; 0.047 mmol) and PhNHCSNHPh (11.7 mg, 

0.051 mmol, excess) were stirred in methanol (25 mL), giving a yellow solution. 

This was gently warmed to 50 ˚C and aq. trimethylamine (2 mL, excess) added 

giving no colour change. After stirring the warmed mixture for 5 min, solid 
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NaBPh4 (0.180 g, 53 mmol) was added, along with water (20 mL), resulting in the 

immediate formation of a yellow precipitate. This was stirred for a further 5 min 

and the solid isolated by filtration, washed with water (2 x 20 mL) and petroleum 

spirits (10 mL), then dried under vacuum to give 32.6 mg (69%) of bright yellow 

solid. 

 

Melting Point:  111-112 ºC (decomposed) 

IR:   υ(C-S) = 710 cm
-1

, υ(C=N) = 1542 cm
-1

, υ(N-H)= 3347cm
-1

 

Microanalysis:  Found: C= 67.4%, H= 5.8%, N= 6.2%  

   C48H40AuBN4S requires: C= 63.1%, H= 4.4%, N= 6.1% 

ES-MS:  Capillary exit 120 V: m/z: 593 (100%, [M]
+
) 

NMR: 
1
H: δ, 6.50 (t, 1H, J=13.5 Hz), 6.79 (t, 8H, J=14.3 Hz), 6.91 

(t, 21H, J=14.7 Hz), 6.99 (m, 2H), 7.08 (d, 1H, J=7.8 Hz) 

7.16-7.25 (m, 26H), 7.41 (d, 1H, J=9.1 Hz), 7.65 (d, 1H, 

J=6.5 Hz), 7.86 (t, 1H, J=15.6 Hz) 10.57 (s, NH) 

 13
C: δ, 169.1, 164.6-163.1, 147.5, 141.1, 113.2 (aryl C) 

 

Synthesis of [BpAuPhNCSNHPh]BPh4, 166: 

The complex BpAuCl2 (20.1 mg; 0.046 mmol) and PhNHCSNHPh (10.6 mg; 

0.046 mmol, excess) were stirred in methanol (25 mL), giving a clear solution. 

This was gently warmed to 50 ˚C and aq. trimethylamine (2 mL, excess) added 

giving a bright yellow solution. After stirring the warmed mixture for 5 min, solid 

NaBPh4 (0.180 g, 53 mmol) was added, along with water (20 mL), resulting in the 

immediate formation of a pale yellow precipitate. The was stirred for a further 5 

min and the solid isolated by filtration, washed with water (2 x 20 mL) and 

petroleum spirits (10 mL), then dried under vacuum to give 9.2 mg (22%) of pale 

yellow solid. 

 

IR:   υ(C-S) = 710 cm
-1

, υ(C=N) = 1651 cm
-1

 

ES-MS: Capillary exit 120 V: m/z: 592 (100%, [M]
+
) m/z: 353 

(92%, [BpAuBp]
+
) 

NMR: 
1
H: δ, 6.79 (t, anion*, J=14.5 Hz), 6.92 (t, anion*, J=14.8 

Hz), 7.17 (m, anion*) 7.33 (t, 1H, J=15.1 Hz), 7.48 (d, 1H, 
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J=8.6 Hz), 7.58 (t, 1H, J=13.9 Hz), 7.70 (d, 1H, J=8.0 Hz), 

7.99 (t, 1H, J=14.7 Hz), 8.96 (d, 1H, J=4.9 Hz)  

*refer to NMR Spectroscopy Section 3.2.2.1, anion signals here overlap 

with the remaining signals from this complex. 

 

Synthesis of [AnpAuPhNCSNCy2]BPh4, 167: 

The complex AnpAuCl2 (21.0 mg; 0.048 mmol) and PhNHCSNCy2 (17.6 mg; 

0.056 mmol, excess) were stirred in methanol (25 mL), giving a yellow solution. 

This was gently warmed to 50 ˚C and aq. trimethylamine (2 mL, excess) added 

giving a pale yellow solution. After stirring the warmed mixture for 5 min, solid 

NaBPh4 (0.180 g, 53 mmol) was added, along with water (20 mL), resulting in the 

immediate formation of a yellow precipitate. This was stirred for a further 5 min 

and the solid isolated by filtration, washed with water (2 x 20 mL) and petroleum 

spirits (10 mL), then dried under vacuum to give 39.9 mg (83%) of bright yellow 

solid. 

 

Melting Point:  141-143 ºC (decomposed) 

IR: υ(C-S) = 703 cm
-1

, υ(C=N) = 1629 cm
-1

, υ(N-H) =  

3347 cm
-1

 

Microanalysis:  Found: C= 64.6%, H= 5.8%, N= 5.6% 

C54H56AuBN4S requires: C= 64.8%, H= 5.6%, N= 5.6% 

ES-MS: Capillary exit 40 V: m/z: 681 (100%, [M]
+
), m/z: 353 (12%, 

bis-[Anp2Au]
+
) 

NMR: 
1
H: δ, 0.98 (m, 6H), 1.46-1.66 (t of d, 10H), 1.94 (br s, 4H), 

6.40 (t, 1H, J=13.6 Hz), 6.78 (t, 4H, J=14.2 Hz), 6.92 (t, 

8H, J=14.8 Hz), 7.02 (t, 1H, J=14.8 Hz), 7.18 (m, H), 7.23 

(d, 1H, J=7.8 Hz), 7.36-7.26 (m, H), 7.40 (t, 1H, J=15.5 

Hz), 7.56 (d, 1H, J=6.7 Hz), 7.78 (t, 1H, J=15.5 Hz), 10.71 

(s, NH) 

 13
C: δ, 171.7, 164.6-163.1, 147.6, 143.2, 113.8 (aryl C), 

31.2, 26.0, 24.8, 25.2 (CH2) 
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Synthesis of [BpAuPhNCSNCy2]BPh4, 168: 

The complex BpAuCl2 (20.6 mg; 0.047 mmol) and PhNHCSNCy2 (23.6 mg; 

0.074 mmol, excess) were stirred in methanol (25 mL), giving a clear solution. 

This was gently warmed to 50 ˚C and aq. trimethylamine (2 mL, excess) added 

giving a yellow solution. After stirring the warmed mixture for 5 min, solid 

NaBPh4 (0.180 g, 53 mmol) was added, along with water (20 mL), resulting in the 

immediate formation of a pale yellow precipitate. This was stirred for a further 5 

min and the solid isolated by filtration, washed with water (2 x 20 mL) and 

petroleum spirits (10 mL), then dried under vacuum to give 27.7 mg (58%) of dull 

pale yellow solid. 

 

IR:   υ(C-S) = 710 cm
-1

, υ(C=N) = 2343 cm
-1

 

ES-MS: Capillary exit 160 V: m/z: 353 (100%, bis-[Bp2Au]
+
), m/z: 

680 (70%, [M]
+
) 

 

Alternative Synthesis: The same procedure and methods were used as above, with 

BF4
-
 used in place of the BPh4

-
 anion. BpAuCl2 (12.1 mg; 0.028 mmol) and 

PhNHCSNCy2 (30.3 mg; 0.095 mmol, excess) were stirred in heated MeOH (20 

mL) in the presence of aq. trimethylamine (2 mL, excess). Addition of NaBF4 

(18.0 mg, 207 mmol) resulted in 16.3 mg (59%) of light yellow solid. 

 

NMR:  

.  

Table 3.3:
 1

H and 
13

C Chemical shifts of 168, recorded at 400 MHz, 300 K in DMSO 

Chemical shifts referenced to DMSO. 

 

Atom Type 
13

C 
1
H 

1 CH 149.5 8.44 
2 CH 121.8 7.16 
3 CH 137.0 7.63 
4 CH 123.4 7.03 
5 CH2 42.1 4.18 
6 CH 120.0 7.36 
7 CH 128.5 7.17 
8 CH 121.7 6.89* 
9 CH 122.2 6.89* 

*Signals were overlapped 
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3.4.2 X-ray Crystal Structure of [AnpAuPhNCSNMe2]BPh4 

(161) and [AnpAuPhNCSNCy2]BPh4
 
(167) 

Crystals were obtained of 167 by vapour diffusion of ether into dichloromethane, 

conversely crystals of 161 were obtained by liquid/liquid diffusion of 

dichloromethane and petroleum spirits.  

 

Data Collection: 

Intensity data and unit cell dimensions were obtained on a Bruker SMART CCD 

diffractometer at the University of Auckland. 

 

Solution and Refinement: 

The crystal structures of 161 and 167 were solved by direct methods and routinely 

developed and refined. X-ray structures confirmed that the thiourea ligand was co-

ordinated to the Au(III) centre via the nitrogen and sulfur atoms. H atoms were 

placed in calculated positions except for the N-H one which was located and 

refined. The final difference map of complex 167 contained a residual peak of 2.4 

e Å
-3

 which was in a position that potentially could have arisen from oxidation of 

the S atom, bridging to an Au atom in a symmetry related molecule, therefore this 

was tested as follows.  

 

Oxidation of [AnpAu(PhNCSNCy2)]BPh4 

1. [AnpAuPhNHCSNCy2]BPh4 167 (5.0 mg; 0.005 mmol) was dissolved in 

methanol (10 mL) following addition of one mole equivalent of H2O2 30% 

(2 mg), and stirred at room temperature. Sample analyses were run using 

ES-MS immediately on mixing, one h and 24 h after initial addition. After 

24 h fresh H2O2 30% (2 mg, excess) was added and sample analyses run 

again on ES-MS. 

 

2. Experimental procedure follows similar principle to procedure 1, using 

starting material HAuCl4 as the oxidising agent. 

[AnpAuPhNHCSNCy2]BPh4 167 (3.1 mg; 0.004 mmol) was dissolved in 

methanol (10 mL) following addition of HAuCl4.3H2O (25 mg), and were 



Chapter Three  81 

 

 

stirred at room temperature. Sample analyses were run using ES-MS 

immediately on mixing, one h and 24 h after initial addition. 

 

In all consecutive samples taken over a 24 h experimental period while using 

H2O2 no obvious peak around the expected m/z 697 was observed. After 24 h fresh 

H2O2 (2 mg, excess) was added to hasten oxidation, as previously added H2O2 

may have decomposed before sufficient time was allowed for its role an oxidant. 

After analysis on ES-MS there was still no obvious sign of the peak m/z 697. 

 

To be certain oxidation was not occurring H2O2 was exchanged for starting 

material HAuCl4. This was carried out because if excess starting material was 

available it could induce oxidation. ES-MS of all consecutive samples taken over a 

24 h period exhibited a very small peak at the desired m/z 697, but due to the 

small size of this peak it was therefore concluded that there was insufficient 

evidence to prove oxidation was occurring. After 24 h the compound had been 

completely decomposed and no evidence of the parent ion was present. 

 

3.4.3 Bioassay experimental procedure  

Compounds 161, 163, 165, 166 and 167 were previously made up to a 0.1 mol/L 

concentration in methanol, an aliquot of this was dried under nitrogen, leaving 

0.1mg of sample. A description of the Media used can be found in Appendix III. 

 

To each sample (0.1 mg) cell media (500 µL) was added to give an initial dilution 

(1 mg/mL). This was mixed by pipetting up and down. From each solution sample 

was removed (200 µL) and mixed with cell media (1400 µL) resulting in solutions 

(25000 ng/mL) for microtitre plate addition. A subsample from each solution (100 

µL) was removed and added to appropriate wells (A1-A10) on a 96 well 

microtitre plate. Cell media (50 µL) was added to wells B1-H10. Sample was 

removed (50 µL) from A1 and added to B1, giving a 2-fold dilution. Six 2-fold 

dilutions were repeated from B1-H1. This was subsequently repeated for samples 

A2-A10. To each well P388 leukaemia cells (10,000 cells in 50 µL of cell media) 

were added. 
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Each plate was run with Triton positive control (10-fold dilutions from 0.1%, 

A11-H11), blank without cells (100 µL cell media, A12) and blank with cells 

(10,000 cells in 100 µL cell media, C12-F12). Microtitre plate was incubated (35º, 

72 h). Indicator (MTS, 20 µL) was then added to each well and further incubated 

(35º, 4 h). Plates were scanned using a plate reader (490 and 360 nm). 

 

 

 

Figure 3.7: 96 well Microtitre plate diagram. 
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Chapter Four  

Synthesis and Characterisation of 

Gold(III) Dithiophosphinate and 

Dithiophosphate Compounds 

 

 

4.1 Introduction 

Thiophosphorus ligands are an important class of sulfur donor ligands, with 

members of this group including dithiophosphates (R2O2PS2), dithiophosphinates 

(R2PS2) and dithiophosphonates (R(OR)PS2). Dithiophosphinate complexes on 

their own have been found to possess important biological properties and also 

inhibit hydrocarbon oxidation
117

. 

 

Dithiophosphinates are well known and extensively studied compounds, 

presumably due to their ease of synthesis and tendency to complex to virtually all 

metals. Soft donor dithiophosphinate ligands R2PS2
-
 are capable of forming 

complexes with main group and transition metal ions, particularly metal ions with 

soft Lewis acid character
118

. The anion 
i
Bu2PS2

-
 (di-isobutyldithiophosphinate) is 

readily available as its sodium salt and is used industrially for the flotation of 

sulfide ores in the mineral processing industry
119

. This ligand has come under 

increased interest due to its ability to impart lipophilic character when attached to 

metal complexes. Dithiophosphinate complexes also have increased air and 

moisture stability, allowing for isolation and characterisation of those which 

contain heavy metals
120

. 
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Gold(I) and dithiophosphinates 

The chemistry of gold-sulfur compounds facilitates a variety of applications, 

ranging from surface science
121

 to medicine
122,123

. Gold(I) dithiophosphinate 

compounds have recently been utilised as sensitisers in photographic films
124

 and 

it has also been suggested that the luminescent properties of gold have possible 

use as photosensors
125

. The organophosphor-1,1-dithiolato class of compounds 

which includes dithiophosphinates, have demonstrated extensive usefulness as 

anti-oxidant additives in the oil and petroleum industry
126

, in insecticide 

derivatives
126,127

 and in metal ore extraction agents. While dithiophosphinic acids 

R2P(S)SH have been known for a long time, gold(I) complexes of these ligands 

have not been extensively studied.  

 

The first reported examples of gold(I) dithiophosphinate complexes was in 1968 

discovered by Kuchen et al
128

 and obtained by the reduction of gold(III), requiring 

the separation of several by-products. However, little research into metal 

dithiophosphinate complexes was carried out between this discovery and the 

1990‟s. In 1995, Saisios and Tiekink reported the first diaryldithiophosphinate of 

gold with the structure of [AuS2PPh2]2 178
129

. This complex was established as a 

decomposition product with a non-reproducible synthesis and was later found to 

have the wrong space group structure determination, I4. 

 

Following this work, a study on gold(I) dithiophosphinate complexes was reported 

by Schmidbaur
130

 and co-workers. Their main focus was to use dithiophosphinate 

anions [R2PS2]
-
 as potential bidentate ligands in the hopes of forming clustering 

centres for gold(I) cations, illustrated by compounds Me2P(S)SAuPR3 171 and 

[Ph2P{SAu(PR3)}2]
+
 178

131
. The symmetrical complex 178 was shown by X-ray 

crystal diffraction to have Au---Au interactions. 

 

 

 

171: R=Me 

172: R=Ph 

173: R=o-Tol 

 

174: R=Me 

175: R=Ph 

176: R=o-Tol 

 
 

177: R=Me 

178: R=Ph 

179: R=OEt 

180: R=o-Tol 
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Compound 179 is readily prepared from its sodium salt of the ligand 

Na[S2P(OEt)2] whereas the analogue 178 can be obtained by direct synthesis of 

[Ph2PS2]2 with the appropriate precursor. While many gold(I) dithiophosphinate 

complexes are known, few gold(III) dithiophosphinate compounds have been 

investigated. This chapter details the synthesis of auracycles containing 

dithiophosphinate moieties.  

 

 

Dithiophosphinates as potential ligands 

In 2004, Ronconi et al
55

 reported the synthesis of gold(I) and gold(III) 

dithiocarbamate derivatives, designed to mimic the main features of cisplatin. 

These complexes therefore exhibit square planar geometry and include at least two 

cis-gold(III)-halogen bonds for ease of hydrolysis, with the remaining 

coordination sites occupied by an anionic bidentate or neutral monodentate 

dithiocarbamate ligand. 

 

Complexes 181-189 were obtained by the direct reaction in water of the desired 

dithiocarbamate ligand (as its sodium salt) with KAuX4 in a 1:1 or 2:1 molar ratio 

to give stoichiometric adducts. 

 

 

 

181: X=Cl 

182: X=Br 

 

183: X=Cl 

 184: X=Br

 

 

 

185: X=Cl 

186: X=Br 

 
 

187: X=Cl 

188: X=Br 
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189 

 

All gold dithiocarbamate complexes synthesised were subsequently tested for their 

in vitro activity towards a panel of human tumour cell lines. Gold(III) derivatives 

of N,N-dimethyldithiocarbamate and ethylsarcosinedithiocarbamate in particular, 

demonstrated a 1 to 4 fold higher activity than cisplatin as well as significantly 

overcoming both intrinsic and acquired resistance to cisplatin itself. All other 

complexes also showed good activity. 

 

Due to the success of these complexes it was proposed to extend this theory to the 

direct reaction of HAuCl4 with dithiophosphinate ligands, as an alternative to 

dithiocarbamate ligands, while also investigating reactivity towards (C,N)AuCl2 

cycloaurated complexes. This chapter therefore details the synthesis of novel 

auracycles containing dithiophosphinate moieties, all new compounds were 

subsequently characterised as entirely as achievable. 

 

 

4.2 Results and Discussion 

The complexes AnpAuCl2 125, BpAuCl2 126 and TypAuCl2 127 were reacted with 

Ph2P(S)SH, NH3S2P(OEt)2 and NaS2P
i
Bu2 in methanol and stirred at room 

temperature. Addition of anion BPh4
-
 or BF4

-
 resulted in products 190-197 as 

yellow to pale yellow solids. Suitable products were characterised by ES-MS, 

NMR, and IR with elemental analysis carried out on complexes 190-193. All 

compounds were soluble in the common solvents (acetone, dichloromethane and 

DMSO). Crystals were obtained by both vapour diffusion of ether into 

dichloromethane and liquid/liquid diffusion of dichloromethane and petroleum 

spirits. 
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190: X=NH 

 191: X=CH2 

 

 

192: X=NH 

  193: X=CH2 

 

 

194: R=Ph 

 195: R=OEt 

 

 

 

196: X=NH 

197: X=CH2 

 

Complexes 190 and 191 produced microanalytical data with carbon compositions 

lower than expected, whereas complexes 192 and 193 produced lower carbon 

compositions. The differences in composition do not appear to be due to organic 

solvents, with 
1
H NMR spectra void of any signal corresponding to solvents. 

NMR analysis of complexes 194-197 showed low purity therefore elemental 

analysis data was not collected. 

 

 

4.2.1 Spectroscopic and Mass Spectrometric Characterisation 

4.2.1.1  Electrospray Mass Spectrometry 

All new compounds synthesised in this chapter were good candidates for ES-MS 

due to their cationic nature. Complexes were dissolved using a few drops of DCM 

and further diluted in MeOH. ES-MS of compounds 190-197 all showed primary 

[M]
+
 ion peaks.  
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Figure 4.1: ES-MS Spectrum of [BpAuS2P(OEt)2]BPh4 191 in dichloromethane (DCM) 

and MeOH, recorded at capillary exit 160 V, showing [M]
+ 

ion of desired 

product. Insert A shows generated isotope pattern while insert B shows the 

experimental isotope pattern of 191. 

 

4.2.1.2  NMR Spectroscopy 

1
H, COSY, 

13
C, DEPT 135, HSQC, NOESY, TOSCY, selective ROESY and 

31
P 

spectra were acquired for compounds 192 and 193 while only 
1
H, COSY and 

13
C 

were acquired for complexes 190-191, 194-197. Due to the presence of other 

reaction products and/or starting material NMR spectra determined for the latter 

group of compounds were complex with overlapping and unknown signals which 

could not be uniquely assigned. Therefore detailed NMR characterisation of 

complexes 190, 191, 194-197 was not attempted. 

 

All new gold(III) dithiophosphinate compounds made in this chapter are cationic, 

therefore require an anion of precipitation. Upon using anion BPh4
-
, as described 

in more detail in Chapter three (Section 3.2.2.1), three signals are observed with 

the boron atom creating splitting in the neighbouring proton signals of the anion. 

Due to the complexity of these signals, and overlap with other aromatic areas 

complete assignment could not be made. To overcome this problem the alternative 

synthesis using BF4
-
 as the anion was trialled with all complexes. However NMR 

spectra of the resulting products still contained unknown impurities and/or 

reaction by-products. Therefore following the NMR strategy used in Chapter 

Three (Section 3.2.2.2) careful analyses of TOCSY, NOESY, COSY, HSQC and 

1D-SELROESY data allowed for the characterisation of all protons and 

protonated carbons in complex 192, the purest of all six compounds. For mixed 

A 
  

B 
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samples individual proton signals were not fully resolved, therefore only some 

coupling constants were able to be assigned. 

 

4.2.1.3  IR Spectroscopy 

The dithiophosphinate and dithiophosphate derivatives 190-197 show asymmetric 

P-S stretches in the region 647–654 cm
-1

, and symmetric P-S stretches in the 

region 519–564 cm
-1

. Complexes containing the S2P(OEt)2 moiety also observed 

strong stretching frequencies in the ~1400 cm
-1 

region correlating to the CH2 and 

CH3 groups. Ramirez et al
132

 reported IR stretches from Sn(S2PPh2) at 620 cm
-1 

υasym(P-S2) and 550 cm
-1 

υsym(P-S2), 
 
comparable to that reported here. 

 

The IR spectrum of NH3S2P(OEt)2 shows strong absorptions in the P-S region of 

676 and 576 cm
-1

. Coordination to the gold(III) complex results in a decrease in 

the stretching frequency of the P-S region to 648 and 531 cm
-1 

for the 

anilinopyridyl derivative 190 and 654 and 564 cm
-1 

for the benzylpyridyl 

derivative 191. Both NH3S2P(OEt)2 analogues show much weaker signals than 

observed in the free ligand indicating that the sulfur atoms are coordinated to the 

gold centre.  

 

On the other hand, IR spectra of Ph2P(S)SH shows four absorptions at 542, 639, 

689 and 708 cm
-1 

in the P-S stretching region. This is thought to be due to the 

presence of decomposition product Ph2P(S)-S-S-(S)PPh2 in the sample of 

Ph2P(S)SH used. Therefore the true P-S stretches of diphenyldithiophosphinic 

acid were not able to be indubitably distinguished from the Ph2P(S)-S-S-(S)PPh2 

impurity. Artem‟ev et al
133

 reported similar stretches when synthesising analogous 

dithiophosphinates through the reaction of secondary phosphines with elemental 

sulfur and hydrazine. The characteristic S-H absorption at ~2400 cm
-1

 in the acid 

was not observed in compounds 192-194, indicating this bond was lost. 
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4.2.2 X-Ray Crystal Structure of a Single Crystal Obtained 

from [(Anp)Au(S2PPh2)]BPh4 (192) and 

[(Bp)Au(S2PPh2)]BPh4 (193) 

The X-ray crystal structure determinations of 192 and 193 were carried out in 

order to obtain the geometry, orientation and bonding of the dithiophosphinate 

ligand around the gold(III) centre. Views of the structure obtained are shown in 

Figure 4.2. Structures were solved by direct methods and routinely developed and 

refined. X-ray crystal data collected from a single crystal was not that of the 

desired complexes, 192 and 193, instead showing the structure of a known Au(I) 

polymeric complex with alternating attached dithiophosphinate ligands.  

 

This complex 178 was first reported by Siasios and Tiekink
134

 and structurally 

investigated in 2001 by Van Zyl et al
131

, where supplementary crystal data 

information can be found. Van Zyl et al demonstrated this complex to be in the 

space group I4/m with the presence of short Au-Au interactions (2.9610(3) Å) as 

confirmed by X-ray crystallography. Literature shows the synthesis of this 

complex 178
131

 occurs via the direct reaction of Ph2P(S)-S-S-(S)PPh2 and 

[Au(THT)Cl] (THT = tetrahydrothiophene). 

 

Here, X-ray crystal structure analyses were run at a slightly lower temperature 

than in the literature, therefore show slightly smaller dimensions in this 

characterisation. Crystals were yellow in colour and long needle like in shape.  

Further discussion on the believed synthesis and results of this complex can be 

found in the following Section 4.2.2.1. 
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Figure 4.2: X-ray crystal structure observed from a single crystal obtained from 

complexes [(Anp)Au(S2PPh2)]BPh4 192 and [(Anp)Au(S2PPh2)]BPh4 193. 

Diagram displays a Au(I) polymeric structure with Au(I)-Au(I) interactions. 

 

 

4.2.2.1 Discussion of Complexes [(Anp)Au(S2PPh2)]BPh4
 

(192) 

and [(Bp)Au(S2PPh2)]BPh4
 
(193) 

ES-MS of complexes 192 and 193 displayed the expected [M]
+
 parent ions at m/z 

615 and m/z 614 respectively, as shown in Figure 4.3. It is clear by this 

observation that these complexes have been synthesised, showing strong positive 

results when analysed by ES-MS due to their cationic nature. Complex 178 is not 

observed in the ES-MS spectrum, this is due to the complex being a neutral 

polymeric species with no easily ionised sites i.e. sulfur atoms are not easily 

protonated. 
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Figure 4.3: ES-MS Spectra showing desired [M]
+ 

signals of A) [AnpAuS2PPh2]BPh4 192 

and B) [BpAuS2PPh2]BPh4 193 in DCM and MeOH, recorded at cone voltage 

160 V. 

 

 

To further characterise these complexes a series of NMR data were acquired 

following the NMR strategy used in Chapter Three (Section 3.2.2.2). Careful 

analyses of TOCSY, NOESY, COSY, HSQC and 1D-SELROESY data allowed 

for the characterisation of all protons and protonated carbons in complex 193. On 

the other hand, NMR of complex 192 shows a mixture of at least three 

compounds. The 
1
H NMR spectrum of 192 included three doublet like signals in 

the region 7.9-8.1 ppm attributable to the H-1 protons of the anilinopyridyl 

moieties, shown in Figure 4.4. Each of these protons exhibited signals to four 

neighbouring protons which occurred in the vicinity of 7.7 (H3), 6.9 (H2) and 6.8 

(H4) ppm (ring 1, Scheme 4.1), together with evidence of three four-spin proton 

signals (ring 2, Scheme 4.1) observed in the region 7.0-7.6 ppm (see Figure 4.4). 

The complexity of spectra was such that individual assignments of the 8 protons in 

each of the three anilinopyridyl moieties could not be unequivocally established. It 

was also noted that over time the 
1
H spectrum of the mixture became more 

A 
  

B 
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complex, indicating decomposition of compounds in the mixture may be 

occurring. 

 

 

 

Scheme 4.1: Atom numbering scheme for NMR assignment of complex 192. 

 

 

 

 

Figure 4.4: 
1
H COSY NMR (400 MHz) spectrum of mixture from 192 showing 

1
H-

1
H 

correlations between proton environments in the aromatic region. The 3 x H-

1 signal correlation patterns were observed at 7.8-8.1 ppm (blue, red and 

green correlation lines), arising from the 4 protons in ring 1. 3 x correlations 

patterns (yellow, orange and black correlation lines) were also tentatively 

identified as arising from the 4 protons in ring 2. 

 

 

 



Chapter Four  94 

 

 

In order to clarify results the purity of starting materials Ph2P(S)SH and 

NH3S2PO2Et2 were checked using 
31

P NMR. 
31

P NMR of NH3S2PO2Et2 showed a 

single resonance at 114.0 ppm in DMSO, while Ph2P(S)SH gave an array of 

signals, believed to be due to the DMSO oxidising the sulfur (SH group). 

Therefore, these samples were re-run in CDCl3, as indicated in literature
132

. 

Surprisingly the 
31

P NMR spectra of NH3S2PO2Et2 in CDCl3 was found to exhibit 

multiple resonances, believed to be due to reaction with the solvent, therefore was 

concluded to be pure by analysis in DMSO. On the other hand 
31

P NMR spectra 

of Ph2P(S)SH in CDCl3 observed two signals at 69.52 and 55.85 ppm assignable 

to Ph2P(S)SH and Ph2P(S)-S-S-(S)PPh2 respectively. Similar signals were 

observed by Ramirez et al
132

 when using diphenyldithiophosphinic acid in studies 

with inorganic tin complexes. Ramirez et al
132

 found that decomposition of the 

Ph2P(S)SH ligand occurred over time resulting in the subsequential formation of 

Ph2P(S)-S-S-(S)PPh2.  

 

31
P NMR spectra of complexes 192 and 193 were run in CDCl3 showing the 

presence of a singlet at 70.2 and 67.0 ppm respectively, which can be attributed to 

the species Ph2P(S)-S-S-(S)PPh2. 
31

P signals arising from the desired complexes 

AnpAuS2PPh2 192 and BpAuS2PPh2 193 were observed at 67.0 and 64.1 ppm 

respectively, showing comparable 
31

P shifts to four member Al-S-P-S ring 

systems observed by Davies et al
135

. Here signals are slightly shifted to a lower 

field presumably due to the presence of the gold(III) centre. 

 

During experimental procedures described in Section 4.5, the reaction of 

Ph2P(S)SH with BpAuCl2 or AnpAuCl2 in MeOH also results in the synthesis of 

known complex 178. It is believed that during the reaction oxidation of 

Ph2P(S)SH forms Ph2P-(S)-S-S-(S)-PPh2, the starting material used by Van Zyl et 

al
131

 in the synthesis of complex 178. This observation of decomposition was also 

seen by Ramirez et al
136

, here it was concluded that the resulting complex 

Cl2Sn(Ph2PS2)2 was formed by the oxidative addition between SnCl2 and Ph2P(S)-

S-S-(S)PPh2, as reported for analogous complex Cl2Sn(Et2PS2)2.  

 

Due to these previously known observations it is thought that complex 178 is 

formed through the oxidation of the dithiodiphenylphosphinic acid, resulting in 
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the reduction of gold(III), in starting materials AnpAuCl2 and BpAuCl22 , to 

gold(I). Gold(I) shows a high affinity for S2PPh2
-
 therefore resulting in complex 

[Au(Ph2PS2)2] as shown by Scheme 4.2, while also aiding in oxidation of excess 

dithiodiphenylphosphinic acid. 

 

 

 

 

 

 
 

 
 

Scheme 4.2: Postulated route of synthesis of desired gold(III) compounds 192 and 193 

(left), and reduced gold(I) species 178 (right) . 

 

 

It can also be proposed that the oxidation of NH4S2P(OEt)2 may occur during 

reaction with gold(III) complexes giving an analogous species (OEt)2P(S)-S-S-

(S)P(OEt)2, consequently contributing to the complexity of the 
1
H NMR 

spectrum. This hypothesis was further supported by the presence of two signals 

present in the 
31

P NMR spectrum of [TypAuS2P(OEt)2]BF4. 

 

 

 

 

[AnpAuCl2] / [BpAuCl2] 
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Over time additional resonances were observed in both 
31

P and 
1
H NMR spectra 

other than the assigned Ph2P(S)SH, NH4S2P(OEt)2 and Ph2P(S)-S-S-(S)PPh2, 

(OEt)2P(S)-S-S-(S)P(OEt)2 signals respectively, demonstrating that further 

decomposition had occurred. 

 

4.3.3 Discussion 

Preliminary studies of complexes 190-197 show ES-MS evidence that these 

compounds were synthesised using the experimental procedures described in 

Section 4.5. Synthesis using NaBPh4 as an anion for precipitation gave 

inconclusive NMR and elemental results. The alternative synthesis using NaBF4 

was trialled, again yielding complexes with impurities as shown by NMR 

analysis. After repeated attempts to purify, recrystallise and synthesise these 

complexes using a variety of independently synthesised batches of starting 

materials, it was concluded that pure samples of these complexes using methods in 

this thesis could not be obtained. 

 

On further investigation of the purity of Ph2P(S)SH using 
31

P NMR analysis it was 

established that the decomposition product Ph2P(S)-S-S-(S)PPh2 was observed. 

Upon addition of this by-product to elemental analysis calculations a much closer 

theoretical to experimental correlation was established. This further suggests that 

this by-product is an impurity within the sample. 

 

It can be suggested that the reduction of gold(III) to gold(I) is due to the 

diphenyldithiophosphinic acid acting as a reducing agent as well as the co-

ordinating ligand, therefore alternative dithiophosphinate ligands could be used in 

future synthetic attempts. Investigation into the variation of the substituents 

attached to the dithiophoshine group may result in new cyclometallated gold(III) 

complexes with increased solubility. Future research could be directed at 

alternative synthetic routes using purer starting materials. 
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4.4 Conclusion 

Five new gold(III) dithiophosphinate and three gold(III) dithiophosphate 

complexes (dithiophosphinate = R2PS2, dithiophosphate = R2O2PS2) have been 

synthesised, albeit with low purity and yield. Structural characterisation using 

NMR gave complex spectra due to the presence of impurities and/or reaction by-

products resulting in full characterisation of only one of the complexes. Crystals 

of complexes 192 and 193 were obtained but displayed a known polymeric Au(I) 

structure, acquired through the reduction of gold(III) to gold(I), therefore no 

characterisation of geometry and bonding was obtained. Biological activities of 

these complexes are unknown as testing facilities were unavailable during the 

timeline of this project.  

 

4.5 Experimental 

4.5.1  General 

The reactions were carried out with no efforts at excluding either air or light. The 

solvents used were drum grade. AnpAuCl2 125
80

, BpAuCl2 126
77

 and TypAuCl2 

127
75

 were prepared from literature procedures. Dithiophosphinate ligands, 

ammonium-O,O-diethyldithiophosphate, diphenyldithiophosphinic acid (Alfa 

Aesar) and Na
+
Bu2PS2

-
 (Cytec Industries) were used without purification. 

Compounds were stored in the freezer to slow down decomposition. ES-MS were 

acquired in methanol solvent with addition of small amount of dichloromethane. 

All 
1
H and 

13
C NMR spectra were acquired in DMSO, while 

31
P NMR spectra 

were run in CDCl3. Further information on tools used in characterisation of 

complexes is provided in Chapter One (Section 2.4) and further NMR details can 

be found in Appendix II. 

 

Synthesis of [AnpAuS2P(OEt)2]BPh4, 190:  

AnpAuCl2 (11.3 mg; 0.026 mmol) and ammoniumO,O-diethyldithiophosphate 

(10.1 mg; 0.50 mmol, excess) were stirred in methanol (20 mL) at room 

temperature giving a yellow solution. After 5 min of stirring NaBPh4 (180 mg, 53 

mmol) and distilled water (60 mL) was added and the resulting pale yellow cloudy 

solution was stirred for a further 5 min. NaCl (180 mg; 310 mmol) was added and 
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stirred for another 5 min. The product was filtered, washed with water (5 × 10 

mL) and dried under vacuum to give 3.2 mg (14%) of pale yellow solid. 

 

IR:   υasym(P-S2) = 648 cm
-1

, υsym(P-S2) = 531 cm
-1

 

Microanalysis:  Found: C= 45.1%, H= 3.7%, N= 4.1% 

[AnpAuS2P(OEt)2]BPh4 requires: C= 53.8%, H= 4.5%,  

N= 3.2% 

ES-MS:  m/z: 551 (100%, [M]
+
), m/z 171 (39%, [C11H11N2]

+
) 

 

Alternative Synthesis: The same procedure and methods were used, with BF4
-
 

used in place of the BPh4
- 

anion. AnpAuCl2 (55.7 mg; 0.012 mmol) and 

ammonium-O,O-diethyldithiophosphate (206 mg; 0.101 mmol, excess) were 

stirred in MeOH (20 mL) at room temperature. Addition of NaBF4
 
(180 mg, 0.207 

mmol), NaCl (180 mg; 310 mmol) and water (60 mL) resulted in 19.4 mg (24%) 

of pale yellow solid. 

 

Synthesis of [BpAuS2P(OEt)2]BPh4, 191 : 

BpAuCl2 (19.6 mg; 0.045 mmol) and ammoniumO,O-diethyldithiophosphate 

(15.0 mg; 0.74 mmol, excess) were stirred in methanol (20 mL) at room 

temperature giving a slightly yellow solution. After 5 min of stirring NaBPh4 (180 

mg, 53 mmol) and distilled water (60 mL) was added and the resulting pale yellow 

solution was stirred for a further 5 min. NaCl (180 mg; 310 mmol) was added and 

stirred for another 5 min. The product was filtered, washed with water (5 × 10 

mL) and dried under vacuum to give 28.4 mg (73%) of light yellow solid. 

 

IR:   υasym(P-S2) = 654 cm
-1

, υsym(P-S2) = 564 cm
-1

 

Microanalysis:  Found: C= 49.8%, H= 4.2%, N= 1.8% 

[BpAuS2P(OEt)2]BPh4 requires: C= 55.2%, H= 4.6%,  

N= 1.6% 

ES-MS:  m/z: 550 (100%, [M]
+
), m/z 369 (14%, unidentified) 

 

Alternative Synthesis: The same procedure and methods were used, with BF4
-
 

used in place of the BPh4
- 
anion. BpAuCl2 (7.5 mg; 0.017 mmol) and ammonium-

O,O-diethyldithiophosphate (12.0 mg; 0.027 mmol, excess) were stirred in MeOH 
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(20 mL) at room temperature. Addition of NaBF4 (18.0 mg, 207 mmol), NaCl 

(18.0 mg; 310 mmol).and water (60 mL) resulted in 7.0 mg (64%) of light yellow 

solid. 

 

Synthesis of [AnpAuS2PPh2]BPh4, 192:  

AnpAuCl2 (11.0 mg; 0.025 mmol) and diphenyldithiophosphinic acid (16.3 mg; 

0.64 mmol, excess) were stirred in methanol (20 mL) at room temperature giving 

a yellow to orange solution. After 5 min of stirring NaBPh4 (18.0 mg, 53 mmol) 

and distilled water (60 mL) was added and the resulting cloudy yellow solution 

was stirred for a further 5 min. NaCl (18.0 mg; 310 mmol) was added and stirred 

for another 5 min. The product was filtered, washed with water (5 × 10 mL) and 

dried under vacuum to give 18.4 mg (73%) of pale yellow solid. 

 

IR:   υasym(P-S2) = 648 cm
-1

, υsym(P-S2) = 564 cm
-1

 

Microanalysis:  Found: C= 58.9%, H= 4.5%, N= 2.4%  

[AnpAuS2PPh2]BPh4.[(S2PPh2)2] requires: C= 59.5%,  

H= 4.2%, N= 2.0% 

ES-MS:  m/z: 615 (100%, [M]
+
), m/z 169 (26%, [C11H9N2]

+
) 

 

Alternative Synthesis: The same procedure and methods were used, with BF4
-
 

used in place of the BPh4
- 

anion. AnpAuCl2 (25.3 mg; 0.058 mmol) and 

diphenyldithiophosphinic acid (30.2 mg; 0.121 mmol, excess) were stirred in 

MeOH (20 mL) at room temperature. Addition of NaBF4 (18.0 mg, 207 mmol), 

NaCl (18.0 mg; 310 mmol) and water (60 mL) resulted in 39.6 mg (97%) of pale 

yellow solid. 

 

Synthesis of [BpAuS2PPh2]BPh4, 193: 

BpAuCl2 (21.6 mg; 0.086 mmol) and diphenyldithiophosphinic acid (15.0 mg; 

0.74 mmol, excess) were stirred in methanol (20 mL) at room temperature giving 

a slightly yellow solution. After 5 min of stirring NaBPh4 (180 mg, 53 mmol) and 

distilled water (60 mL) was added and the resulting white suspension was stirred 

for a further 5 min. NaCl (180 mg; 310 mmol) was added and stirred for another 5 

min. The product was filtered, washed with water (5 × 10 mL) and dried under 

vacuum to give 30.9 mg (67%) of white to light yellow solid. 
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Microanalysis:   Found: C= 59.0%, H= 4.1%, N= 1.5% 

[BpAuS2PPh2]BPh4.[(S2PPh2)2] requires: C= 59.8%,  

H= 4.2%, N= 1.9% 

 

Alternative Synthesis: The same procedure and methods were used, with BF4
-
 

used in place of the BPh4
- 

anion. BpAuCl2 (10.4 mg; 0.024 mmol) and 

diphenyldithiophosphinic acid (14.5 mg; 0.057 mmol, excess) were stirred in 

MeOH (20 mL) at room temperature. Addition of NaBF4 (180 mg, 207 mmol), 

NaCl (18.0 mg; 310 mmol) and water (60 mL) resulted in 11.0 mg (65%) of light 

yellow solid. 

 

IR:   υasym(P-S2) = 647 cm
-1

, υsym(P-S2) = 564 cm
-1

 

ES-MS: Capillary exit 80 V: m/z: 614 (100%, [M]
+
), m/z 168 (31%, 

unidentified), m/z 168 (10%, [C12H10N]
+
) 

NMR: 

 

Table 4.1:
 1

H and 
13

C Chemical shifts of [BpAuS2PPh2]BF4 193, recorded at 400 MHz, 

300 K in DMSO. Chemical shifts referenced to DMSO. 

 

Atom Type 
1
H 

13
C 

 

1 CH 8.50 148.5 d, J = 7.6 Hz 
2 CH 7.27 128.1  
3 CH 7.38 128.3  
4 CH 7.03 132.3 d, J = 7.7 Hz 
5 C - -  
6 CH2 4.23 41.5  
7 C - -  
8 CH 7.14 123.9 d, J = 7.7 Hz 
9 CH 7.28 128.1 t, J = 7.4 Hz 

10 CH 7.49 128.7  
11 CH 7.76 138.1  
12 C - -  
13 C - -  

14, 16, 14’, 16’ CH 7.38 128.3  
15, 16, 17 CH 8.00 130.7  

15’, 16’, 17’ CH 7.92 130.8  
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Figure 4.5:: Atom numbering scheme for NMR assignment of complex 193. 

 

 

Synthesis of [TypAuS2PPh2]BF4, 194: 

TypAuCl2 (10.5 mg; 0.024 mmol) and diphenyldithiophosphinic acid (21.3 mg; 

0.085 mmol, excess) were stirred in methanol (20 mL) at room temperature giving 

a yellow solution. After 5 min of stirring NaBF4 (180 mg, 53 mmol) and distilled 

water (60 mL) was added and the resulting cloudy yellow solution was stirred for 

a further 5 min. NaCl (180 mg; 310 mmol) was added and stirred for another 5 

min. The product was filtered, washed with water (5 × 10 mL) and dried under 

vacuum to give 3.6 mg (21%) of light yellow solid. 

 

IR:   υasym(P-S2) = 647 cm
-1

, υsym(P-S2) = 541 cm
-1

 

ES-MS: Capillary exit 80 V: m/z 614 (100%, [M]
+
), m/z 533 (28%, 

[TypAuTyp]
+
), 353 (26%, unidentified) 

 

Synthesis of [Typ(Au)S2P(OEt)2]BF4, 195: 

TypAuCl2 (8.5 mg; 0.019 mmol) and ammoniumO,O-diethyldithiophosphate (34.3 

mg; 0.169 mmol, excess) were stirred in methanol (20 mL) at room temperature 

giving a yellow solution. After 5 min of stirring NaBF4 (180 mg, 53 mmol) and 

distilled water (60 mL) was added and the resulting cloudy yellow solution was 

stirred for a further 5 min. NaCl (180 mg; 310 mmol) was added and stirred for 

another 5 min. The product was filtered, washed with water (5 × 10 mL) and dried 

under vacuum to give 3.4 mg (27%) of yellow solid. 

 

ES-MS: Capillary exit 200 V: m/z: 550 (100%, [M]
+
), 353 (13%, 

unidentified) 
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Synthesis of [AnpAuS2PBu2]BPh4, 196: 

AnpAuCl2 (24.2 mg; 0.056 mmol) and NaS2P
i
Bu2 50% aqueous (300 mg; 0.110 

mmol, excess) were stirred in methanol (20 mL) at room temperature giving a 

yellow solution. After 5 min of stirring NaBF4 (180 mg, 53.0 mmol) and distilled 

water (30 mL) was added and the resulting slightly cloudy yellow solution was 

stirred for a further 5 min. NaCl (180 mg; 310 mmol) was added and stirred for 

another 5 min. The product was filtered, washed with water (5 × 10 mL) and dried 

under vacuum to give 7.4 mg (14%) of yellow solid. 

 

IR:   υasym(P-S2) = 593 cm
-1

, υsym(P-S2) = 519 cm
-1

 

ES-MS:   Capillary exit 80 V: m/z: 575 ([M]
+
) 

 

Synthesis of [BpAuS2PBu2]BPh4, 197: 

BpAuCl2 (21.8 mg; 0.050 mmol) and NaS2P
i
Bu2 (50% aq., 300 mg; 0.110 mmol, 

excess) were stirred in methanol (20 mL) at room temperature giving a yellow 

solution. After 5 min of stirring NaBF4 (180 mg, 53 mmol) and distilled water (30 

mL) was added and the resulting slightly cloudy yellow solution was stirred for a 

further 5 min. NaCl (180 mg; 310 mmol) was added and stirred for another 5 min. 

The product was filtered, washed with water (5 × 10 mL) and dried under vacuum 

to give 3.4 mg (7%) of creamy white solid. 

 

ES-MS:  Capillary exit 80 V: m/z: 574 ([M]
+
) 

 

Attempted synthesis of hypothesised AuCl2.S2PR2 complex: 

This method was modified from the of synthesis of complex 181 established by 

Ronconi et al
55

. A solution of NaS2P
i
Bu2 50% aqueous, in water (2 mL) was 

added drop wise under continuous stirring to an aqueous solution (2 mL) of 

HAuCl2.3H2O (100 mg; 0.30 mmol). As drops of 50% aqueous NaS2P
i
Bu2 were 

added, a red/brown precipitate was observed. After addition of all NaS2PBu2 the 

precipitate turned a darker red/brown. The solid was isolated by filtration and 

washed with water (20 mL) leaving a black precipitate. The resulting product was 

insoluble in DCM and gave unsuccessful ES-MS results; hence these systems 

were not further investigated. 
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Appendix I 

 

Literature synthesis of AnpAuCl2
80

 

An ethanol solution of 2-anilinopyridine (128 mg, 0.752 mmol) was added to a 

solution of H[AuCl4].4H2O (104 mg, 0.251 mmol) in the same solvent (50 mL) 

and the resulting solution is stirred at room temperature. After 15 h the resulting 

yellow precipitate is filtered off and washed with diethyl ether to give complex 

AnpAuCl2. 

 

Literature synthesis of BpAuCl2
77

 

An aqueous solution (20 mL) of HAuCl4.3H2O (1 mmol) was added to pure 

NC5H4(CH2Ph)-2 (169 mg, 1 mmol): the resulting yellow suspension was refluxed 

until the precipitate became white (ca. 8 h). The solid product was filtered off and 

air dried to give 350 mg (80%) of BpAuCl2. 

 

Literature synthesis of TypAuCl2
75

 

A solution of 2-(p-tolyl)pyridine (192 mg, 1.13 mmol) in MeCN (3 mL) was 

added to an aqueous solution (30 mL) of HAuCl4.2H2O (340 mg, 1.0 mmol) and 

the solution allowed to stand overnight. The yellow crystals were filtered, washed 

with water and dried in vacuo to give 343 mg (73%) of TypAuCl3. The resulting 

product TypAuCl3 (345 mg, 0.73 mmol) in aqueous MeCN (1:1, 40 mL) was 

heated to reflux for 6 h, during which time a pale yellow solid formed. The solid 

was filtered from the hot mixture, and air-dried to give 115 mg (38%) of 

TypAuCl2 as a pale yellow fluffy solid. 

 

Literature synthesis of AnpAu(catecholate)
26

 

Aqueous trimethylamine (2 mL, excess) was added to a mixture of AnpAuCl2 

(200 mg) and catechol (100 mg) in hot methanol (30 mL) and mixture refluxed for 

20 min giving an orange solution which deposited orange-brown microcrystals. 

After cooling to room temperature, product is filtered off washed with cold 

methanol (15 mL) and dried under vacuum for 2 h. 
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Literature synthesis of BpAu(catecholate)
26

 

Aqueous trimethylamine (2 mL, excess) was added to a mixture of BpAuCl2 (200 

mg) and catechol (100 mg) in hot methanol (30 mL) and mixture refluxed for 20 

min giving a brown solution. Water (40 mL) was added and after cooling to room 

temperature, the resulting orange-brown microcrystals were filtered off washed 

water (5 mL), diethyl ether (10 mL) and dried under vacuum for 2 h. The product 

was then recrystallised by vapour diffusion of diethyl ether into dichloromethane 

solution of the complex. 
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Appendix II 

 

Bruker AVIII-400 
 

1
H 

Typically spectra were acquired in DMSO-d6 using 5 mm BBI or BBFO probes 

installed in a Bruker AVIII-400 spectrometer. 
1
H NMR spectra (400.13 MHz) 

were typically acquired across a 18 ppm window with 32K data points using a 90º 

pulse and a repetition rate (AQ+D1) of 5.5 sec. Unless otherwise stated the probe 

temperature was 300K. 

 

13
C 

13
C and DEPT135 NMR spectra (100.62 MHz) were typically acquired across a 

240 ppm window with 32K data points using a 45º pulse and a repetition rate 

(AQ+D1) of 2.2 sec. Unless otherwise stated the probe temperature was 300K 

 

1D-selective and 2D Spectra 

COSY, TOCSY, ROESY, NOESY, HMBC and HSQC spectra were acquired 

using standard Bruker supplied pulse programme with spectral windows adjusted 

to cover the range of signals observed in the samples analysed. Spinlock 

correlation (mixing) times (D9) for TOSCY and 1D-SELOESY spectra were 

varied from 20 and 160 msec depending on whether short or long correlations 

were desired. DEPT135 and HSQC spectra were optimised for a 
1
J value 

(CNST2) of 145 Hz 

 

1D-SELTOCSY spectra were acquired using a low power 180º refocusing shaped 

pulse (80,000 µsec, power level SP2dB = 75 dB) centred on the signal of interest. 

1D-SELNOESY spectra were run with a NOESY evolution time (D6) of 0.5 sec, 

while 1D-SELROESY spectra were acquired with a spinlock time of 0.2 sec. 
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Bruker AVII-300 
 

13
C 

13
C (75.47 MHz) solid state spectra were acquired using an AVRII-300 

Spectrometer fixed with a 4 mm MAS BB/
1
H probe. Typically spectra were run 

across a 270 ppm window using 1K data points and repetition rate (AQ+D1) of 

2.02 sec. The 
13

C 90º pulse time was 6000 msec at 0.5 dB. Probe temperature was 

300K. All spectra were proton decoupled. 
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Appendix III 

 

Media for Bioassays 

Mixture of Dulbecco‟s Modified Eagle Media (90%, high D-glucose formula with 

L-glutamine) and fetal bovine serum (10%, sourced in New Zealand by Sigma 

Chemicals Co.) with penicillin-streptomycin (1 mL per 100 mL, penicillin G salt 

and Streptomycin Sulphate in 0.85% saline). 
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Crystal and Refinement data for 161 and 167 

Empirical formula C54H56AuBN4S C44H40AuBN4S 

Formula weight 1000.86 864.64 

Temperature 98(2) K 95(2) K 

Wavelength 0.71073 Å 0.71073 Å 

Crystal system 
Monoclinic   

Space group: P 21/n 

Monoclinic  

Space group:   C 2/c 

Unit cell dimensions 

a = 10.9780(3) Å     

b = 15.6043(4) Å      

c = 26.1326(6) Å     

β = 90.147(2)˚ 

a = 32.4207(5) Å     

b = 13.7033(2) Å      

c = 19.9928(3) Å    

β = 124.780(1)˚  

Volume 4476.6(2) Å3 7295.39(19) Å3 

Z, Calculated density  4,  1.485 g/cm3 8,  1.574 g/cm3 

Absorption coefficient 3.375 mm-1 4.128 mm-1 

F(000) 2032 3456 

Crystal size 0.12 x 0.10 x 0.05 mm 0.22 x 0.22 x 0.08 mm 

Reflections collected / 

unique     

87559 / 10758 [R(int) = 

0.0844] 

45995 / 9035 [R(int) = 

0.0983] 

Completeness to theta 27.50     100.0 % 28.35     99.0 % 

Absorption correction 
Semi-empirical from 

equivalents 

Semi-empirical from 

equivalents 

Max. and min. 

transmission 
0.8494 and 0.6875 0.7336 and 0.4636 

Refinement method 
Full-matrix least-squares 

on F2 

Full-matrix least-

squares on F2 

Data / restraints / 

parameters     
10758 / 0 / 553 9035 / 0 / 465 

Goodness-of-fit on F^2 1.018 0.957 

Final R indices *I>2σ(I)+ 
R1 = 0.0314, wR2 = 

0.0585 

R1 = 0.0268, wR2 = 

0.0505 

R indices (all data)  
R1 = 0.0532, wR2 = 

0.0648 

R1 = 0.0537, wR2 = 

0.0545 

Largest diff. peak and hole 2.388 and -0.629 Å3 0.986 and -0.835 Å3 

 


