

Constructing Programs or Processes1

Steve Reeves
(Department of Computer Science, University of Waikato, Hamilton, New Zealand

Email: stever@cs.waikato.ac.nz)

David Streader
(Department of Computer Science, University of Waikato, Hamilton, New Zealand

Email: dstr@cs.waikato.ac.nz)

Abstract: We define interacting sequential programs, motivated originally by constructivist
considerations. We use them to investigate notions of implementation and determinism. Process
algebras do not define what can be implemented and what cannot. As we demonstrate it is prob-
lematic to do so on the set of all processes. Guided by constructivist notions we have constructed
interacting sequential programs which we claim can be readily implemented and are a subset of
processes.
Key Words: Process algebra, determinism, cause, refinement, constructive
Category: F.1

1 Introduction

1.1 An overture

Per Martin-Löf [Martin-Löf 1985] takes as a touchstone of constructivity the “proofs
as programs” idea (and the “types as specifications” and “propositions as specifica-
tion” ideas). So, a proof of an implication should be a computable (proof-transforming)
function which constructs a proof of the consequent from a proof of the antecedent.
Similarly, a proof of a conjunction should be a pair consisting of proofs of the left and
right predicates in the conjunction. A proof on an existential predicate should consist
of a pair too: the first element is an example of one of the things whose existence is
claimed and the second element is a proof that this things has the properties claimed for
it. Following this line, predicates can be thought of as specifications.

It turns out that the notion of proof and the notion of program coincide in this sort of
theory. So, the decision as to whether something is true comes down to the question as
to whether there is a proof for it. In other words, a predicate is true if there is, viewing
it as a specification, an implementation of it.

Within Martin-Löf’s theories we can also reason about equivalence (or other logical
relations) between predicates (via the universes). That is, within the theories there is a
sub-theory which allows reasoning about specifications. Also, in the higher universes,
we can write specification-transforming functions.
1 C. S. Calude, H. Ishihara (eds.). Constructivity, Computability, and Logic. A Collection of

Papers in Honour of the 60th Birthday of Douglas Bridges.

So, viewing use of the theories through the “programming glasses” we see a typi-
cal development consisting of reasoning at the specification level (i.e. manipulation of
predicates) followed, once the specification is in an appropriate form, by a drop into the
final program (i.e. the construction of the proof). Thus, the whole development cycle of
a program is exactly mirrored by the development cycle of a proof, and we can observe
the idea of work going on at different levels which become progressively closer to the
program.

In fact, in what follows we shall not be explicitly working directly with the formali-
ties of Martin-Löf’s framework, but we will be using the constructive ideas upon which
that theory is based and some of the technicalities it uses (e.g. evaluation of terms being
“lazy”) in order to motivate certain analogies which guide and inform our direction and
the choices we make.

We have programs as proofs and specifications as propositions. The programs are
executable (they evaluate lazily to some normal form which is what we choose to count
as a value, inhabiting the lowest universe) and the specifications, even in normal form,
do not count as values (we are here thinking of them as objects in some universe above
the lowest one where the “values”, like numbers, reside). So, the programs are exe-
cutable (using rules of equality, to give values) whereas the specifications are not (even
though they can be reduced to their normal form, they do not reduce to values in the
lowest universe). Further, specifications (propositions) may not implementable either
because they contain no programs (have no proofs).

So, we say that programs can be reduced to their normal forms (values) in the lowest
universe, which we call execution, and they are always, of course, implementable.

A specification may or may not be implementable (or, read as a proposition, may
or may not be true, i.e. provable), which is to say it may or may not contain programs.
So, of course, some specifications do not specify things which can be implemented
(just as some propositions are not true), which means that they contain no programs.
Specifications which can be implemented contain programs (which can be executed),
and although a specification can be reduced to its normal form, this will be an object in
a universe above the lowest one (where the values reside) so specifications can never be
executed though they may be implementable.

A process is analogous to a proposition (specification) rather than a proof in that it
may have many traces (implementations) because it is nondeterministic.

Putting two processes in synchronous composition means that under the analogy
we have something like application at the program (proof) level also happening at the
specification (proposition) level.

In the appropriate universe we can think of a term which takes a pair of specifica-
tions and returns another specification, i.e. a function for combining specifications.

It would be strange (and perhaps unacceptable) if this function took two specifi-
cations (propositions) which were implementable (“had programs”, or as propositions
they had proofs) and combined them to form a specification that had no programs, i.e.

went from implementable specifications to give a non-implementable one (or went from
a pair of true propositions and combined them to give a false one).

By analogy, what is the situation with determinism? In what follows, though it may
not always be explicit, we are motivated by, and try to follow, the ideas above, which
guide thinking about specifications and programs and implementability by identifying
them with propositions and proofs and constructivity. In particular we seek to preserve
determinism in the same way as constructivity is preserved within philosophies and
theories like Martin-Löf’s. This goal motivates and informs what follows.

1.2 Interactive processes

For programs that are concurrent or interactive (as opposed to “transactional”, where
inputs are consumed and transformed to outputs) the picture is less well-developed. By
“an interactive process” we mean a program that, in addition to consuming parameters
and returning values, interacts with the world around it via named actions. Formalisms
such as CSP, CCS and ACP lack the clear distinction between a specification and an
implementation.

Here we wish to formalise what interacting sequential programs can be imple-
mented, on modern computers. By “implemented” we do not mean “what specifications
can be refined into”.

Given that sequential computers are finite state deterministic machines, what can be
implemented on such machines must be related to “what we mean by deterministic”.
Unfortunately the determinism in state-based formalisms of transactional programs is
not the same as determinism in event-based formalisms such as CSP, CCS and ACP.
The determinism of such processes will be shown to be may determinism in as much
as a process is deterministic if there is a context that may determine how it behaves. In
contrast to this the determinism of state-based abstract data types (ADT) is must deter-
minism in that an ADT is deterministic if and only if any context, i.e. every program,
must determine how it behaves.

We have also found that what is meant by sequential is not as obvious as we had
initially thought. Clearly a sequential program can only perform one action at a time.
But, can a sequential program offer to perform more than one action at a time and allow
the implemented context in which it is placed decide what it performs?

Could we implement a program that offered to either pop a value from a stack or
to push the value 1 onto the same stack, pop + push(1)? We will define interacting
sequential programs (isp) based on the assumption that programs do not possess, as
primitive, the ability to offer their contexts a choice of methods they might call.

As isp terms turn out to be a subset of the deterministic finite state processes of CSP
(or CCS or ACP) we will compare isp with process algebra-style processes and argue
that the limitation on process algebra has little effect in practice.

2 Semantics of interacting terminating processes

Interacting processes are given an action-based semantics by labelling a state transition
with an action. The observable actions a can only be performed when the process is
executed in a context that includes a parallel process that is ready to execute a the
“other half”’ of the action a. In handshake models of processes the execution of actions
a and a are not under local (their own) control and are blocked from execution whenever
the context they are in is not ready to execute their “other half”.

A special action τ is introduced that models an action that cannot be seen. Impor-
tantly in process algebras CSP, CCS and ACP an action can be blocked if and only if it
is observable [Roscoe 1997, Milner 1989, Baeten and Weijland 1990].

We assume a universe containing a set of passive actionsAct def
= {a|a ∈ Names}

from which we build active actions Act def
= {a|a ∈ Names}. We define Obs def

=

Act ∪ Act and Actτ def
= Obs ∪ {τ}.

S ⊆ Obs and D ⊆ Obs
Actions act = δ|a|a

Sequential pr = Skip|act|prδD|pr + pr|act;pr
Parallel parp = pr|parp ‖S parp

Figure 1: Process terms

The operational semantics of processes are widely defined by labelled transition
systems (LTS).

Definition 1 LTS—labelled transition systems. Let NA be a finite set of nodes and sA

the start node. Labelled transition system A
def
= (NA, sA, TA) where sA ∈ NA, and

TA ⊆ {(n, a,m)|n,m ∈ NA ∧ a ∈ Actτ}. •

We write x a−→y for (x, a, y) ∈ TA where A is obvious from context, n a−→ for
∃m.(n, a,m) ∈ TA,

Let ρ be a sequence of actions ρ1ρ2ρ3 . . . ρx. We write sA
ρ−→y iff (sA, ρ1, n2),

(n2, ρ2, n3), . . . (nx, ρx, y) ∈ TA and TrA
def
= {ρ|sA

ρ−→y}.
The complete traces of A are: Trc(A)

def
= {ρ|(sA

ρ−→n ∧ {a|n a−→} = ∅)}.
We write A vx C for C is a refinement of A using the refinement relation vx. We

interpret the meaning of a specification to be given by the set of implementations that it
can be refined into and hence the meaning of a specification is given by a definition of
refinement.

Refusals are defined: Ref(ρ,C)
def
= {{a|n

a

6−→}|sC
ρ−→n} and failure refinement

[Roscoe 1997]: A vF C
def
= ∀ρ.Ref(ρ,C) ⊆ Ref(ρ,A).

Singleton refusals are defined: SRef(ρ,C)
def
= {{a}|sC

ρ−→n ∧ n
a

6−→} and sin-
gleton failure refinement [Bolton and Davies 2001]: A vsF C

def
= ∀ρ.SRef(ρ,C) ⊆

SRef(ρ,A).
When the terms in [Fig. 1] are used to define processes they have the operational

semantics defined in [Fig. 2].

LTS

Action a;P
a−→P a;P

a−→P

Choice
p1

α−→p2

p1 + p3
α−→p2

p1
α−→p2

p3 + p1
α−→p2

Parallel p
a−→q, p1

a−→q1, a ∈ S
p ‖S p1

τ−→q ‖S q1

p ‖S p1
α−→q

p1 ‖S p α−→q
p

a−→q, a /∈ S
p ‖S p1

a−→q ‖S p1

p
a−→q, a /∈ S

p ‖S p1
a−→q ‖S p1

Figure 2: Operational semantics of processes

Our parallel composition with synchronisation operator ‖S enforces private com-
munication between its operands on all actions in the synchronisation set S. Thus any
action in S that appears in one of the operands must either: synchronise with an action
from the other operand; or be blocked.

[Fig. 2] defines what is called a strong semantics, i.e. a semantics that treats τ ac-
tions just like an observable action. In order to model τ actions as unobservable we will
define, in [Section 2.2], how to abstract them to produce what is called the observational
semantics.

2.1 Deterministic behaviour

Our process terms are defined in [Fig. 1] and a + b is a process that allows its context
to decide if a or b is to be executed. This is deterministic behaviour.

Definition 2 A is deterministic iff n α−→∧ n β−→⇒ α 6= β •

The behaviour of term a + a is nondeterministic, as which a action is executed
cannot be decided by its context.

The view of Hoare is [Hoare 1985, p81]: “There is nothing mysterious about this
kind of nondeterminism: it arises from a deliberate decision to ignore the factors which
influence the selection.”

Hoare makes it quite clear that nondeterministic sequential processes are not in-
tended to be implemented [Hoare 1985, p82] “Nondeterminism has been introduced
here in its purest and simplest form by the binary operator, u. Of course, u is not in-
tended as a useful operator for implementing a process.” [Hoare’s emphasis]

Later we will consider if nondeterministic parallel processes are intended to be spec-
ifications or not, but next we will define how to build an observational semantics.

2.2 Abstraction

Our definition of observational semantics is quite separate from the definition of strong
equality/refinement. This allows us to use the same observational semantics with dis-
tinct strong semantics.

Definition 3 Observational semantics =⇒:
s
τ

=⇒t def
= s

τ−→s1, s1
τ−→s2, . . . sn−1

τ−→t
n

a
=⇒m def

= n
τ

=⇒n′, n′ a−→m′,m′ τ=⇒m ∧ a ∈ Act
Abs(A)

def
= (NA, sA, {n x−→m|n x

=⇒m}). •

Our observational semantics is not
A

s ◦ e

◦ e

a c

τ

b Abs(A)

s ◦ e

◦ e

a c

ba

b

Figure 3: Action abstraction

the same as in CCS [Milner 1989] as
we, like CSP, use failure semantics
and thusAbs() removes all τ actions
(see example to the right). As we only
consider terminating processes here
we do not need to consider τ loops
or infinite sequences of τ actions.

Definition 3, or an equivalent definition, has appeared in [Brinksma et al. 1996,
Valmari and Tienari 1995], and see [Reeves and Streader 2004] for a comparison with
the literature.

From the definition of an observational semantics (⇒) we have defined an abstrac-
tion functionAbs which we now use to define an observational refinementvaX from a
strong refinementvX :

A vaX C
def
= Abs(A) vX Abs(C)

An observational equivalence =aX can be defined in the obvious way, the point being
that vX could be failure refinementvF or a trace refinementvTr.

Clearly given our definition of parallel composition with private communication
[Fig. 1], parallel composition may introduce τ actions and the observational semantics
(Definition 3) we use to model them as unobservable means that nondeterminism can
be introduced (see [Fig. 3]).

2.3 Vending machines and robots.

The process algebras such as CSP have been use to define LTS that define the opera-
tional semantics of both parallel programs and processes such as vending machines and
robots.

Let VM
def
= c; (b1;d1 + b2;d2)

VMpr

s ◦

◦ e

◦ e
c

b1

b2

d1

d2

Robpr

s ◦

◦ e

◦ e
c

b1

b2

d1

d2

Figure 4: VMpr and Robpr

and note it has operational semantics
VMpr in [Fig. 4]. VM is easy to un-
derstand as a machine that accepts a
coin (c) and then reacts to either but-
ton one (b1) or button two (b2) be-
ing pushed and subsequently enables the removal of drink one (d1) or drink two (d2).
Hopefully it is easy to see that VM is a realistic representation of a real machine that
after having a coin inserted offers its context the option of pushing one of two buttons.

A robot can choose what button is pushed by synchronising with one of the but-
ton pushing actions and blocking the other by not synchronising with it. Hence it will
choose to push button b1 and block button b2 in (c;b1) ‖{b1,b2,c,d1,d2}VM.

But how realistic is Rob
def
= c;(b1;d1 + b2;d2) with operational semantics Robpr

in [Fig. 4] as either a robot or as a program? The robot Rob is supposed to offer the
vending machine the option to choose which button it will push. Is this realistic?

Put another way, could you offer a simple vending machine the ability to choose
what buttons you were going to push? If we consider Rob as a program then we cannot
view the button pushing as method calling as with current languages programs can only
try to call one method at a time. They cannot offer to call either method b1 or to call
method b2 and ask the ADT or object with these methods to select which it will call.

If we execute processes R1
def
= c;b1;d1 and R2

def
= b2;d2 in parallel with VM

then which button is pushed depends on which robot (R1 or R2) is fastest and conse-
quently we call this form of nondeterminism race nondeterminism. Race nondetermin-
ism is between concurrent active actions. From this example we conclude that nonde-
terminism can arise quite naturally from the execution of easy to implement processes
run in parallel.

But Robpr can be observed to be distinct from R1 ‖ R2 simply by placing these two

processes in the context V p def
= c;b1;d1 ‖ b2;d2. Clearly [R1 ‖ R2]Vp can fetch two

drinks whereas [Robpr]Vp can only fetch one.
We are left with two questions:

one Is the nondeterminism of Rob ‖{b1,b2,c,d1,d2} VM a result of the parallel execution
of processes that we can implement or, like sequential processes [Section 2.1], is it
to be interpreted as a specification that can be satisfied by observationally distinct
implementations?

two If the nondeterminism of Rob ‖{b1,b2,c,d1,d2} VM arises from the deliberate deci-
sion to ignore certain factors, then what are they?

In order to answer these questions we will define an operational semantics that
interprets the terms of [Fig. 1] as interacting sequential programs. These programs are
based on the familiar idea of active actions representing the calling of a method and
passive actions representing a called method. We claim that these programs would be
easy to implement.

As the operational semantics of our interacting sequential programs is a restriction
of the operational semantics of processes we can use this restricted set of LTS in the
generalised testing semantics of [Reeves and Streader 2003] to build a refinement rela-
tion for our interacting sequential programs. But first we will review generalised testing
semantics.

3 Generalised testing semantics

It is clear that different equivalences and refinements are appropriate when modelling
different kinds of actions and a common way to formalise the situation is by defining a
testing semantics and then to use the testing semantics to define equality and refinement:
for a survey see [van Glabbeek 2001].

To define refinement of a process P we first combine it with some context []

from some set of valid contexts Ξ then observe all possible executions. We are in-
terested in the executions that may occur without any help from additional concur-
rent processes. Thus we are interested in the possible execution of τ actions, the prob-
lem being that handshake formalisms treat τ actions as unobservable. The solution in
[de Nicola and Hennessy 1984] was to introduce a special action ω that could be ob-
served but never blocked and could only appear in a testing process.

A key observation of [Bolton and Davies 2001] is that different kinds of things can
be placed in differing contexts and that this can be used to define different refinement se-
mantics for different kinds of things. This is made explicit in [Reeves and Streader 2003]
where a generalised refinement relation, parameterised on the set of legal contexts, is
defined. But unfortunately, as pointed out in [Reeves and Streader 2003], a testing se-
mantics that uses just one special action ω would not give the singleton refinement of
[Bolton and Davies 2001].

We will assume the existence of a set of actions a! ∈ Obs! in our testing process
LTS! that do not synchronise with any action in the processes to be tested, i.e. Act! ∩
S = ∅ in Definition 4. Using these actions we can easily construct contexts that after
synchronising with the process under test always perform a distinct special observable
action a! /∈ S that announces the fact that the a action has been performed.

Replace n a−→m with n a−→z a!−→m where z is a not a node in A.
Such testing processes have the effect of making visible any action that the testing
process synchronises with. For this reason we when we observe a processC being tested
by ([]x, which we write as Obs([C]x) we will include in the observation any action that
synchronises with ([]x, even though synchronised actions are unobservable.

Here we use a simplified version of the generalised refinement found in [Reeves and Streader 2003]:

Definition 4 Let Ξ ⊆ {(‖S x)|x is an LTS extended as above with ! actions},
then

A vΞ C
def
= ∀[]x∈Ξ .Obs([C]x) ⊆ Obs([A]x) •

Clearly processes can be given a relational semantics Ξ ×Obs.

Definition 5 Rel(A)
def
= {(x, o)|o ∈ Obs([A]x)} •

This general definition of refinement can be made more concrete by fixing the con-
texts in which the things are to be placed. In [Reeves and Streader 2003] it is shown that
the generalised refinement with all LTS is equivalent to failure refinement [Hoare 1985]
and with only programs (traces of events) legal, is equivalent to singleton failure refine-
ment [Bolton and Davies 2001].

3.1 Generalised determinism

We can give a generalised definition of determinism:

Definition 6 may-deterministic and must-deterministic
A pair of branching actions n a−→Am and n b−→Ak that are reachable sA

tr−→An are
may-deterministic in contexts Ξ if and only if

(∃x ∈ Ξ.Obs([A]x) = {tra}) ∧ (∃y ∈ Ξ.Obs([A]y) = {trb})
A process A is may-deterministicmaydetΞ(A) if and only if all its pairs of branch-

ing action are may-deterministic.
A process A is must-deterministic in Ξ, written mustdetΞ(A) if and only if

∀x ∈ Ξ∃t.Obs([A]x) = {t} •

The usual definition of deterministic process Definition 2 corresponds to what we
call may-deterministic. For example process VM in [Fig. 4] is may deterministic be-
cause contexts such as c;b1;d1 and c;b2;d2 are able to control which action is chosen
from the branching actions b1 and b2. But VM in [Fig. 4] is not must deterministic
because in context Rob [Fig. 4] the set of possible executions is not a singleton set.

Applying the generalised testing semantics to program and abstract data type it is
easy to see that a deterministic ADT is must-deterministic. What we will find is that by
restricting process that can be constructed process determinism is must-determinism.

4 Interacting sequential programs

We postulate that the world around us is deterministic and that nondeterminism only
exists in abstract specification (descriptions) of it. As our process model is untimed

the model must be seen as somewhat abstract. For sequential systems the lack of ex-
plict timeing does not introduce nondeterminism and simple finite state deterministic
sequential processes have an clear unambiguos meaning.

When we consider concurrent systems the lack of timing can introduce nondeter-
minism. Clearly two process might race to perform diferent actions. We postulate that
when a concurrent system can nondeterministicly perform one of n actions there must
be n sequential processes each racing to execute one of these actions.

We model a method of an ADT or vending machine’s actions as being passive ac-
tions. We model the actions of a program, the calling of a method, as active actions.
We view an active actions as causing the execution of the passive action it synchronises
with. Thus one action of any synchronising pair of actions is an active action that causes
the other action which must be passive, to occur. The active actions are written with the
name overlined (e.g. a) and the passive actions with no overline (e.g. a).

As the active actions of our programs are the calling of a method, if a program tries
to call a method that cannot be called then the program terminates. That is to say calling
a method is committing: once started the caller cannot back off. In order to formalise
this we change the operational semantics of active actions a: the only change we make
to what is otherwise a standard process semantics (see [Fig. 5]).

LTSsp

Actions a;P
a−→P a;P

τ−→â;P
a−→P

For + , ; and ‖S see [Fig. 2]

Figure 5: Operational semantics of isp

Our model is a generalisation of the programs and ADT of [Bolton and Davies 2001]
in that there they restrict processes to be programs that are only a trace of active actions
and ADT that only have passive actions. Here our programs can have a mixture of active
and passive actions.

Using isp semantics [Fig. 5] we can answe the two

Robisp

s ◦

◦ ◦ e

◦ ◦ e
c

τ

τ

b1

b2

d1

d2

Figure 6: Robisp

questions in [Section 2.3]. The behaviour of both Robisp,
see [Fig. 6] and Robisp ‖{b1,b2,c,d1,d2}VM are nondeter-
ministic and thus Robisp is a specification. The nonde-
terminism arrises not because distinct sequential pro-
cesses are racing to perform active actions but because
of the deliberate decision to ignore Rob’s responsibility to choose what active action it
will perform. What is more Rob can now be refined into a deterministic isp whereas it
could not using the process semantics of [Fig. 2].

We can use sequential terms (see [Fig. 1]) with isp semantics (see [Fig. 5]) to de-

fine a set of contexts and then apply the generalised definition in [Section 3] to define
refinement. Let A and C be terms from [Fig. 1]. Then it is clear that refinement built
from process semantics in [Fig. 5] will be singelton failure refinement.

Lemma 1 The testing refinement using contexts Ξisp, built from sequential terms with
isp semantics, is singleton failure refinement: A vsF C ⇐⇒ A vΞisp C.

Proof Sketch.
Let us write ΞsF for the tests that are programs. It is known that these tests gener-

ate singelton failure refinment [Bolton and Davies 2001]. As ΞsF ⊆ Ξisp then clearly
A vΞisp C⇒ A vΞsF C

To establish that A vΞisp C⇐ A vΞsF C we assume A vΞsF C and for some new
context x we have ρ ∈ Trc([C]x).

As the context x is an isp it must be in a state from which either one active action a

is enabled or a set X of passive actions are enabled.

Case 1 - one active action a is enabled. Hence (ρ, {a}) ∈ sF (C) and as A vΞsF C we
can conclude (ρ, {a}) ∈ sF (A). From which we have ρ ∈ Trc([A]x).

Case 2 - a set X of passive actions are enabled and hence (ρ,X) ∈ F (C). Because C
is an isp this test is redundant as we will now show.

As C is an isp it must be in a state from which either:

Case 2a - one active action b is enabled. ρ ∈ Trc([C]x) is true if and only if
ρb ∈ Trc([C]xb) where context xb is built from context x by adding action b

to all nodes reached by ρ. Hence ∃Y.(ρb, Y) ∈ sF (C). As A vΞsF C we can
conclude (ρb, Y) ∈ sF (A) and ρb ∈ Trc([A]xb). And finally ρ ∈ Trc([A]x).

Case 2b - a set Z of passive actions are enabled. ρ ∈ Trc([C]x) is true if and
only if ρz ∈ Trc([C]xz) where context xz is built from context x by adding
action z, where z ∈ Z, to all nodes reached by ρ. Hence ∃Y.(ρz, Y) ∈ sF (C).
As A vΞsF C we can conclude (ρz, Y) ∈ sF (A) and ρz ∈ Trc([A]xz). And
finally ρ ∈ Trc([A]x).

We conclude ρ ∈ Trc([A]x) as it is true in all cases. Hence we have Trc([C]x) ⊆
Trc([A]x) for all isp contexts x. Thus by definition A vΞsF C •

4.1 Determinism and Relational semantics

By restricting the LTS of sequential processes to LTSsp the process definition of deter-
minism Definition 2 is the same as the must determinism mustdetΞsp of Definition 6.
From which we can see that deterministic isp have a functional relational semantics
Definition 5.

5 Conclusion

In [Section 2] we defined a small set of process terms and an operational semantics, sim-
ilar to that of CCS and CSP process terms. By making a small change to this process
semantics we were able to model interacting sequential programs in [Section 4]. For
interacting sequential programs, synchronising action pairs consist of one active action
calling the other passive action. This model we claim is readily implementable and us-
ing the generalised refinement of [Reeves and Streader 2003] we construct a definition
of refinement that we show to be singleton failure refinement. Singleton failure refine-
ment is known to be the semantics of ADT and programs [Bolton and Davies 2001].

The only place where our parallel composition, unlike that for process algebra, in-
troduces nondeterminism is when there are two active processes racing to perform ac-
tions. Hence in our (untimed) model this naturally causes nondeterminism.

We have so far found the analogy (between constructivity, implementability and
determinism) fruitful as a way of suggesting questions that do not usually get asked in
the process algebra world. It remains to be seen whether we can go further and give a
model for some process algebra in a constructive logic as Martin-Löf did for functional
programs.

References

[Martin-Löf 1985] Martin-Löf, P.: Constructive Mathematics and Computer Science. Math-
ematical Logic and Programming Languages. Eds. C.A.R. Hoare and J.C. Shepherdson.
Prentice Hall International, Englewood Cliffs, N.J. (1985)

[Roscoe 1997] Roscoe, A.: The Theory and Practice of Concurrency. Prentice Hall International
Series in Computer Science (1997)

[Milner 1989] Milner, R.: Communication and Concurrency. Prentice-Hall International (1989)
[Baeten and Weijland 1990] Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge

Tracts in Theoretical Computer Science 18 (1990)
[Bolton and Davies 2001] Bolton, C., Davies, J.: A singleton failures semantics for Communi-

cating Sequential Processes. Research Report PRG-RR-01-11, Oxford University Comput-
ing Laboratory (2001)

[Hoare 1985] Hoare, C.: Communicating Sequential Processes. Prentice Hall International Se-
ries in Computer Science (1985)

[Brinksma et al. 1996] Brinksma, E., Rensink, A., Vogler, W.: Applications of fair testing. In:
FORTE. (1996) 145–160

[Valmari and Tienari 1995] Valmari, A., Tienari, M.: Compositional Failure-based Semantics
Models for Basic LOTOS. Formal Aspects of Computing 7 (1995) 440–468

[Reeves and Streader 2004] Reeves, S., Streader, D.: Atomic Components. Technical
report, University of Waikato (2004) Computer Science Technical Report 01/2004,
http://www.cs.waikato.ac.nz/?̃dstr.

[Reeves and Streader 2003] Reeves, S., Streader, D.: Comparison of data and process refine-
ment. In Woodcock, J., Dong, J., eds.: Proceedings of ICFEM 2003. Number 2885 in LNCS.
Springer-Verlag (2003) 266–285

[van Glabbeek 2001] van Glabbeek, R.L.: The linear time - branching time spectrum I. the se-
mantics of concrete sequential processes. In Bergstra, J., Ponse, A., Smolka, S., eds.: Hand-
book of Process Algebra. Elsevier Science, Amsterdam, The Netherlands (2001) 3–99

[de Nicola and Hennessy 1984] de Nicola, R., Hennessy, M.: Testing equivalences for pro-
cesses. Theoretical Computer Science 34 (84)

[Hennessy 1988] Hennessy, M.: Algebraic Theory of Processes. The MIT Press (1988)

