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Abstract

Super-capacitors are seeing more frequent use in modern electronic designs. Mea-

suring the impedance of such an energy storage device is a good way to characterise

how it will behave in real world situations. Therefore this study aims to investigate

the present methods of measuring impedance of super-capacitors, with a focus on

characterising their properties.

There also seems to be an increasing need for better and more cost effective

equipment to measure these devices. Many options exist, and some are well suited to

the task however most instruments are either too complicated and difficult to use or

too expensive (in the 10’s of thousands of dollars) or a combination of both.

This work presents a design for such an instrument which can perform these mea-

surements at a fraction of the cost. The functionality and performance are described

and compared to current commercial options. Super-capacitors of varying storage

sizes and brands are measured and characterised, and discussed in comparison to

batteries.
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Chapter 1

Introduction

Energy storage devices are used extensively in everything from watches, cell-phones,

cars and data centers. This has lead to an increasing need for better and more cost

effective equipment to monitor and measure these devices.

Table 1.1: Performance comparison of Super-capacitor and Lithium-ion Battery [1].

Function Supercapacitor Lithium-ion (general)

Charge time 1 to 10 seconds 10 to 60 minutes

Cycle life 1 million or 30,000h 500 and higher

Cell voltage 2.3 to 2.75V 3.6V nominal

Specific energy (Wh/kg) 5 (typical) 120 to 240

Specific power (W/kg) Up to 10,000 1,000 to 3,000

Cost per kWh $10,000 (typical) $250–$1,000 (large system)

Service life (industrial) 10 to 15 years 5 to 10 years

Charge temperature –40 to 65°C (–40 to 149°F) 0 to 45°C (32°to 113°F)

Discharge temperature –40 to 65°C (–40 to 149°F) –20 to 60°C (–4 to 140°F)

Self-discharge (30 days) High (5 to 40%) 5% or less

Cost per kWh $100 to $500 $1,000 and higher

Batteries and their various chemistries make up the bulk of devices generally used

to store large amounts of energy however there have been other newer devices which

have started to make an appearance as well. Advances in capacitor technology over
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recent years has given rise to a new subset of devices aptly named super or ultra

capacitors. As such, the energy density and reliability of super-capacitors are rapidly

approaching that of batteries, and in the foreseeable future might rival or even eclipse

batteries entirely (see Table 1.1).

1.1 Motivation

Measuring the impedance of an energy storage device is a good way to characterise

how it will behave in real world situations. Therefore the aim of this study is to

investigate current methods of measuring impedance of commonly used energy storage

devices like batteries and capacitors, with a focus on characterising their fractional

properties (see Chapter 2). The focus is however, primarily on super-capacitors and

how their fractional nature affects usage.

Existing means of performing impedance measurements include precision pro-

grammable source meters such as the the Kiethley 2460 with external software, or

dedicated instruments such as the Solartron 1260A impedance analyser. Impedance

analysers are specifically designed to make impedance measurements, however, most

of the available analysers are not suitable for “wet” devices such as batteries and

super-capacitors. The Solartron 1260A is the go-to when making these kinds of mea-

surements.

Instruments like these are often expensive (about $52k and $12k for the Solartron

and Keithley respectively) and also require substantial time investment in writing

the external software required for the device to give reliable and repeatable measure-

ments. In the case of the Solartron 1260A, it is both expensive and requires external

software to make it give reasonable results. The Solartron 1260A is discussed and

used extensively in this study, and to make it give valid and repeatable results a

“recipe” of device settings is provided (see Chapter 3).

A need then arises for a cheaper, more cost effective instrument which can provide

a means of obtaining reliable measurements with relative ease as well as providing a
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better user experience. A design and prototype for such an instrument, dubbed in our

group as the “Wildschutron” is discussed in detail and its performance is compared

relative to the Solartron 1260A.

Battery based systems such as Uninterruptible Power Supply systems (UPS), have

cycle periods in the order of days. Therefore it makes sense that one should make

impedance measurements at frequencies below 1mHz, namely the range of 10mHz

down to 10µ Hz. This is a recent observation [2].

Super-capacitor technology is steadily evolving and improving. Their energy stor-

age capacity is increasing rapidly as a result, therefore it proves worth while to make

similar low frequency impedance measurements on super-capacitors and see how they

compare to batteries. The motivation for this is that they might one day replace

batteries in some applications.

The impedance of a variety of commercially available super-capacitors of different

brands in the range of 1F up to 850F were measured. The outcome of these mea-

surements is discussed in this thesis. The frequencies of interest in this study are

primarily sub 10mHz, as it was found that most studies in the literature do not look

any lower than this frequency(again, see Chapter 2).

1.2 Thesis Objectives

1. Review the relevant literature on energy storage devices, especially super-capacitors.

2. Look at the current methods of measuring impedance at frequencies lower than

1mHz.

3. Design a cost effective way of more reliably obtaining these measurements.

4. Measure the impedance of super-capacitors at these low frequencies.

5. Analyse and discuss the measurement results and make comparisons to existing

devices such as batteries.
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1.3 Thesis Outline

• Chapter 1 gives a brief introduction to energy storage devices, namely super-

capacitors and describes the motivation of this study. An outline of thesis

objectives is also given.

• Chapter 2 discusses all the relevant background in detail, namely fractional

calculus and how it relates to the fractional nature of super-capacitors. The EIS

(Electrochemical Impedance Spectroscopy) technique and the Discrete Fourier

Transform (DFT) are also described. A review of relevant literature is given to

build up a narrative. Lastly conclusions are made which support the motivations

of this research.

• Chapter 3 investigates the Solartron 1260A impedance analyser which is the

most common instrument used to measure impedance at a wide range of fre-

quencies, including the 10µHz to 1mHz range and describes all the settings

required to get reliable and repeatable measurements from it.

• Chapter 4 describes the design and performance of the Wildschutron, which is

an instrument which can make the same impedance measurements in the the

10µHz to 1mHz range at a fraction of the cost of the Solartron 1260A.

• Chapter 5 presents measurement results from a variety of super-capacitors. Two

distinct mathematical models (Namely the CPE and Split-CPE models [3]) are

presented. Models are fitted to a subset of the super-capacitors measured and

the results are analysed.

• Chapter 6 discusses the physical significance of the results obtained from the

previous chapter. Avenues for further research are also are discussed as well as

possible future design improvements to the Wildschutron.

4



Chapter 2

Background

2.1 Theory and nomenclature

2.1.1 Electrochemical impedance spectroscopy (EIS)

Electrochemical Impedance Spectroscopy (EIS) is a technique used to measure impedance

of a system over a range of frequencies. This is achieved by applying a small excitation

signal (usually a sinusoid) to the system and measuring voltage and the resulting cur-

rent flowing through it. If we apply a sinusoidal voltage to the system, the resulting

current will also be a sinusoid, but phase shifted.

This current can then be analysed as a sum of sinusoidal functions (Fourier series).

By using an expression similar to Ohm’s Law, one can calculate the impedance in

terms of Magnitude of impedance |Z| and phase shift ϕ [4].

The small excitation signal as a function of time is:

V (t) = V0 cos (ωt) (2.1)

where V (t) is the voltage at time t, V0 is the voltage amplitude and ω is the angular

frequency (in radians/sec) (ω = 2πf).

by using Euler’s formula:

ejϕ = cos (ϕ) + j sin (ϕ) (2.2)

we can obtain a more useful expression in terms of complex exponentials:

V (t) = V0e
jωt (2.3)
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The phase shifted current flowing through the system will then be:

I(t) = I0 cos (ωt− ϕ) (2.4)

where I(t) is the current at time t, I0 is the current amplitude, ω the angular frequency

and ϕ is the phase shift in degrees.

Again by use of Euler’s formula we obtain an expression for current in complex ex-

ponentials:

I(t) = I0e
jωt−ϕ (2.5)

Now by dividing voltage by current, similar to using Ohm’s law:

R =
V

I
(2.6)

we obtain an expression for the impedance of the system:

Z =
V (t)

I(t)
=

V0 cos (ωt)

I0 cos (ωt− ϕ)
= Z0

cos (ωt)

cos (ωt− ϕ)
(2.7)

And in complex exponential form this reduces to:

Z =
V0

I0
e−jϕ = Z0e

−jϕ (2.8)

When analysing results from EIS measurements, it is often quite useful to visualise

the complex impedance on Bode plots (see Figure 2.1). Bode plots in EIS show the

relationship between magnitude and phase as a function of frequency on logarithmic

axes. This is the preferred way of viewing and analysing EIS data, and is used to

convey the results of this research.

2.1.2 Discrete Fourier transform (DFT) and Windowing

The Fourier transform deconstructs a time domain representation of a signal into a

frequency domain representation. The frequency domain shows the amplitudes (or

voltages) present in a signal and at what frequencies. It is another way of looking at

the same signal. Often in measurement systems, a signal waveform is sampled and
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Figure 2.1: Example of a Bode plot (from Shi et al.[5]).
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the samples are stored as discrete values. Due to this data not behaving like smooth

continuous function, the standard Fourier transform does not work. We can instead

use the discrete Fourier transform or DFT. The discrete Fourier transform gives its

result as frequency domain components in discrete values or bins [6].

To window a set of sampled waveform data means to multiply the data by a

suitable envelope, hence the name “Windowing”. This envelope takes the form of a

mathematical function, usually a raised-cosine or other “bell” shaped function. What

this does is essentially squash the ends of the data set, which removes any possible

discontinuity produced by circular replication of the data (the DFT assumes that two

endpoints of the time domain waveform are connected together) [7].

2.1.3 Fractional calculus

The theory on fractional calculus summarised here is found in the work of Scott and

Hasan [3]. Fractional calculus is the branch of mathematics studying integration and

differentiation to non-integer order. Fractional calculus was first defined by Liouville,

Riemann and Grunwald in 1834, 1847 and 1867.

The Riemann-Liouville fractional-order derivative is defined as:

dα

dtα
v(t) =

1

Γ(1− α)

d

dt

∫︂ t

0

(t− τ)−αv(τ)dτ (2.9)

Where Γ is the Gamma function, and 0 < α < 1 is an arbitrary real value known as

the fractional order [8].

Now, by applying the Laplace transform to (2.9) with zero initial conditions, we get

a fractional function which gives us the current-voltage relationship of a fractional

capacitor:

I(s) = CsαV (s) (2.10)

And by by re-arranging this equation, we get a function for the impedance of the

constant phase element (CPE) in the Laplace domain:

Z(s) =
V (s)

I(s)
=

1

CF sα
(2.11)
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Here, CF is the “capacitance” of the fractional capacitor and 0 < α < 1. A CPE

looks like capacitor, but the slope of the magnitude of impedance in a Bode plot

will not be -1, but will instead be -α. At very low frequencies, this capacitor-like

characteristic appears. This allows us to get an estimate of α by finding the slope of

this characteristic impedance magnitude line on the Bode plot. If α is less than 1, we

say the capacitor is “fractional”.

It was shown by Scott and Hasan [9],[3], that Lithium-ion batteries are fractional.

It then begs the question if other “wet” devices like super-capacitors might also be

fractional.

2.2 Literature

Modern Super-capacitors, also known as Electrochemical Double Layer Capacitors

(EDLC), are relatively new devices in the energy storage device market. Freeborn

et al. effectively summarises their widespread usage in the renewable energy, elec-

tric vehicle and medical industries [10]. Because they have become so common in

various modern-day industries, there is a need to effectively and accurately model

their behaviour. This review focuses primarily on literature pertaining to fractional

modelling on Super-capacitors and how this kind of modelling has become a more

suitable replacement for traditional RC (Resistor-Capacitor) models. This review

does not however, cover classical RC models of super-capacitors in any depth, as they

are not in the scope of this research.

Historically these types of capacitors have been modelled by increasingly com-

plex RC networks which requires extraction of many circuit parameters from exper-

imental data, and many different approaches are dotted about the literature, see

[11],[12],[13],[14],[15] and [16]. Shi et al. describes three different circuit models and

how to translate parameters between them so that one may choose the model which

best suits their particular device [5].

More recently, fractional impedance models have been employed to more simply
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and precisely model super-capacitors with fewer parameters[17]. Martin et al. pro-

vides a summarised overview of two distinct methods of mathematical modelling

of these devices. These are models which have equations based on fractional poles

and zeros which can be deduced by graphical methods and fractional “structural

modelling” (lumped element modelling) in which the model consists of an RC ar-

ray containing one or more frequency dependent circuit elements. These fractional

models are the Warburg, Bounded Warburg and Havriliak-Negami with 1, 2 and 4

parameters respectively. Lastly they propose a model based on Havriliak-Negami

with 9 parameters which fits across all frequencies. They verify this experimentally

on two super-capacitors, 5F and 50F, which provides evidence that fractional models

fit better than their classical RC counterparts[18].

In 2010, Bertrand et al. demonstrated that the way in which super-capacitors

are used must also be taken into account when attempting to effectively model their

behaviour. They investigated their usage in Hybrid Electric Vehicles (HEV’s), where

the devices are subjected to high pulsed currents followed by periods of rest (or relax-

ation). They accurately model this dynamic behaviour by proposing a new fractional

model which encompasses modelling based on voltage dependency and models based

on super-capacitor relaxation. They investigate the non-linear behaviour in both the

time and frequency domains, and use linear approximation techniques to effectively

model the dynamic behaviour around a set of operating points. The model is verified

by experiments on a 2600F super-capacitor and on a real HEV current profile. They

make special note that during charging and discharging, the model fits well, but is lim-

ited by their approximation of the charge-recovery behaviour of the super-capacitor

(where the voltage drifts over time) [19].

Mahon et al., investigated four different measurement methods on two different

super-capacitors, one commercial and one made in-house. The techniques investi-

gated were Impedance Spectroscopy, Constant Current Charging, Cyclic Voltamme-

try and Constant Power Cycling. They used each method to extract RC parameters
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for each device. Early on, the Cyclic Voltammetry method was deemed unsuitable

for these measurements due to the commercial super-capacitor having strict voltage

requirements and the Cyclic Voltammetry technique being heavily dependent on volt-

age. They found that the Impedance Spectroscopy and Constant Current Charging

methods provided excellent results for super-capacitors under equilibrium conditions

(low power), but did not yield similar parameters when the devices were subjected to

the Constant Power Cycling techniques (higher power usage). It was found that using

a simple RC model greatly underestimated the apparent equivalent series resistance

(ESR) when the device was used at constant power. Later on during the investi-

gation, it was found that when they substituted a CPE (constant phase element)

for the capacitor in their model, the model fit the experimental data obtained from

Impedance Spectroscopy and Constant Current measurements much more closely. It

should be noted that they only fitted the R-CPE model to impedance data obtained

in the 10 mHz to 1000 Hz range [20].

In one particular study by Wang et al, they looked at very low frequency behaviour

and showed that Super-capacitors exhibit transient behaviour over extended periods

of time (in the order of months) and can be accurately modelled by a fractional

impedance model [2].

Dzielinski et al. uses fractional order models based on time domain step responses.

They derive a time domain step response model of a super-capacitor and verify it

against results obtained via measurements in the frequency domain. They make

special mention that in order to obtain reasonable results from measurements in the

time domain, measurements must be made over short periods of time. This is because

estimating alpha at high frequencies on super-capacitors is almost impossible (voltage

tends to zero) [21], [22].

Freeborn et al. use an indirect measurement technique based on numerically solved

least squares fitting to estimate the impedance parameters from voltage exited step

responses. Low capacity values of 0.33F, 1F and 1.5F and were measured in a time
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range of 0.2 to 30 seconds and high capacity values of 1500F and 3000F were measured

in the time range of 0.2 to 90 seconds. They obtain alpha values of α ≈ 0.53 and

α ≈ 0.98 for the small and large sized capacitors respectively. Using these extracted

model parameters, they achieve a relative error of less than 3% between simulated and

measured responses [10]. The results from this study seems to suggest that α decreases

for smaller sized super-capacitors and α approaches 1, for the larger super-capacitors.

However this study does not show if this trend still holds if the measurement time

period is much longer.

The trends in the literature suggest when modelling super-capacitor behaviour,

fractional impedance models fit better with experimental data over a wider range

of frequencies than integer order RC models. Fractional models also require less

parameters and are less complex. Time-domain methods are quite often used to

extract these parameters indirectly. This approach however only provides an estimate

of these parameters. Extracting parameters directly via methods like impedance

spectroscopy can often provide more accurate results, however models need to be

changed to incorporate a constant phase element (CPE) in place of the capacitor to

effectively model the low frequency behaviour. It has been demonstrated that this

approach provides excellent results, however it was found that none of the literature

investigates ultra-low frequency behaviour of Super-capacitors below 10 mHz and into

the uHz range [20], [17]. This presents an opportunity for an in depth analysis at

these frequency ranges.
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Chapter 3

Solartron 1260A Investigation

3.1 Need for an investigation

In past work carried out at the University of Waikato there have been many attempts

to get reliable and repeatable measurements out of the Solartron 1260A impedance

analyzer on ‘non-standard’ components. ‘Non-standard’ meaning the likes of im-

plantable electrodes, super/ultra-capacitors and batteries. Attempts have been made

by Hasan [9] and MacCallum [23]. Due to the 1260A’s manual being inadequate the

problem is most likely the use of less-than-ideal device settings when measuring these

components, which we will discuss in this chapter.

3.2 Erroneous measurements

The Solartron 1260A has two primary measurement modes, namely Constant Voltage

(CV) mode and Constant Current (CC) mode. A description of these operational

modes is given in Appendix C.

Initially, some super-capacitors were measured in the 1F to 100F range with the

1260A in CV mode, as this was the mode used primarily by Hasan [9] and MacCal-

lum [23]. Each component was measured at a single frequency, but repeated ∼10

times. The idea is that the resulting measurement should produce the same value

every time. In order to more quickly diagnose what was actually happening in CV

mode, one particular setting or DUT condition was adjusted between each batch of
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measurements. These settings or DUT conditions were namely: DC Bias (DUT),

V.AMP, V. BIAS and Frequency.

With this approach and many tests, it was found that as the test frequency got

lower (10mHz and below), we started to get erroneous measurements, see Table 3.1.

By verifying with a DMM at the end of each run, the final DC Bias on the DUT no

longer matched the V. BIAS setting sent to the 1260A. This would indicate that a

DC voltage drift occurred.

Table 3.1: Measurements drifting as the frequency is lowered in CV mode.

100F S.Cap (2.7V) |Z| (Ω) θ (°) 100F S.Cap (2.7V) |Z| (Ω) θ (°)

Settings: 0.011811 -13.263 Settings: 527.8 -177.59

DC BIAS = 1V 0.012342 -15.51 DC BIAS = 1V 275.01 -185.28

V.AMP = 1V 0.012833 -16.603 V.AMP = 1V 247.36 -185.81

V.BIAS = 1V 0.13336 -14.62 V.BIAS = 1V 182.9 -190.81

FREQ = 1Hz 0.013388 -14.332 FREQ = 1mHz 172.12 -198.25

0.013445 -14.549 157.04 197.37

0.013256 -14.44 143.61 -209.88

0.013337 -14.495 144.55 -205.35

0.013437 -14.468 128.87 -206.69

0.013347 -14.206 93.9 -219.69

It was suspected that measurements at the lower frequencies (≤ 10mHz) on larger

energy storage devices such as batteries or super-capacitors would cause the DC

voltage level of the DUT to drift over time. Once sufficient time has passed there

would be a substantial mismatch in the DC voltage level of the DUT and V. BIAS

setting of the 1260A.

The combination of the “voltage waveform drift issue” described by Hasan [9] and

the mismatch between DUT voltage and the V. BIAS setting appears to be what

causes the 1260A to produce erroneous results. The 1260A apparently cannot handle

this waveform drift. We suspect that it most likely has an adverse effect on the Fourier
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transform calculation done by the 1260A. We only assume this might be the case, we

do not know for certain. This also seems to only be the case in CV mode, as CC

mode has no V. BIAS dependency.

This issue becomes a lot more evident when measuring ‘larger’ components such

as batteries or super-capacitors but not in “smaller” or “standard” sized components

like resistors and smaller capacitors. In the case of smaller capacitors, say in the order

of 10’s of microfarads, the 1260A is able to charge them up to the specified V.BIAS

level, and maintain this level over all frequencies of interest to produce correct results.

3.2.1 Erroneous measurements in CV mode

Either of the two conditions below, or a combination of both have been found to

produce erroneous measurements:

• Test frequencies ≤ 10mHz

• DC bias level on the DUT ̸= V.BIAS setting of the 1260A

3.3 Correct measurements

In this section we discuss how to obtain reasonable results with CC mode. The reason

this mode works best on ‘wet’ cells is most likely due to CC mode not having any DC

bias (V. BIAS) dependency like that of the CV mode.

There exists an I. BIAS setting which is used to ‘null’ any DC offset but special

care is needed when setting this as the behavior is similar to that of V. BIAS, but

in CC mode instead. For the measurements that follow, setting I. BIAS equal to 0,

seemed to be fine.

3.3.1 Correct measurements in CC mode

Summarised below are settings to obtain reliable measurements in CC mode: Note:

Maximum current output of the 1260A is 60mA and all settings below are in Amperes
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• For a smaller capacitor (≪1F) set:

I. AMPL ≈ 0.001

I. BIAS = 0.0

• For a mid-sized super-capacitor (between 1F and 100F) set:

I. AMPL ≈ 0.005

I. BIAS = 0.0

• For larger super-capacitors (≫100F) and batteries set:

I. AMPL ≈ 0.05

I. BIAS = 0.0

3.4 Caveats

• Measurements must be made in the 4-terminal measurement (Kelvin contact)

arrangement. Usage of coaxial cable is recommended for higher frequencies.

• It was found that readings become noisy past about 10mHz at an integration

time of 1 Cycle. It is recommended to increase the number of cycles as the

stimulus frequency increases. 6 Cycles is recommended.

• The Solartron does not have any voltage safety limits, so it requires that you

monitor the voltage via scope’ or other means so as to not exceed the maximum

rated voltages of the DUT.

3.5 Measurement verification

Figure 3.1 shows a plot of impedance vs frequency for a HyCap 500F super-capacitor

made on the 1260A, and on the Agilent 66332a running Farrow’s ‘bz’ program [24].

The sweep made on the 1260A uses the CC mode settings discussed in section 3. We

can see that the measurements made on the 1260A now agree very closely with the

results from the ‘bz’ program running on the Agilent 66332a (made independently).
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Figure 3.1: Sweep of |Z| vs Freq of a 500F super capacitor made on the Solartron
1260A and the Agilent 66332a using Farrow’s ‘bz’ program.
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Chapter 4

Wildschutron Design

4.1 Overview

This chapter provides a summary of the design and performance of the Wildschutron

impedance analyzer. A detailed description of the hardware and software is pro-

vided as well as verification of device operation and performance. Comparisons are

made to impedance data obtained from a programmable source meter, (the Agilent

66332a running Farrow’s bz program [24]) and data obtained from the Solartron

1260A impedance analyser.

4.2 Hardware

The hardware is made up of the following blocks (see Figure 4.1):

1. Power supply

2. Processor board

3. Output Current drive

4. Voltage measurement

5. Current measurement

6. Front panel

7. Communication interfaces
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Figure 4.1: Simplified functional block diagram of the analog front end of the Wild-
scutron, showing the processor (2), output current drive (3), voltage measurement
(4) and current measurement sections (5). The associated front panel connections
are shown and how they should be connected to the device under test (6). The power
supply (1) and communication interfaces (7) sections are omitted for clarity.
Block diagram created using “Scheme-it”, the free online schematic and diagramming
tool by Digi-Key Electronics Ltd.
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Figure 4.2: The Wildscutron prototype, the power supply (1), processor board (2),
output current drive (3), voltage measurement (4), current measurement sections (5),
front panel (6) and communication interfaces (7).
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4.2.1 Power supply

The power supply for the device consists of:

• a toroidal mains transformer with a power rating of 160VA, two 12VAC sec-

ondary windings with a total output current of 6.67A.

• bridge rectifier stage with output smoothing capacitors and bleed resistors, to

rectify each secondary output to provide a split rail power supply with +17VDC

and -17VDC respectively. These two rails are used to power the voltage con-

trolled current source (VCCS).

• two separate switching regulators powered from the +17V supply which step

down the voltage to +12V and +5V respectively. These two supply rails power

the Processor board.

4.2.2 Processor board

The processor board features the following:

• 3.3V low noise linear regulator to power the processor.

• The main processor which is the STM32F446, which is an ARM Cortex-M4

based processor clocked at 180MHz. It features plenty of IO and peripheral

interfaces with the added advantage of a hardware FPU (floating point unit).

• Coincell battery backup for the which is required by some processor features.

• Various IO interfaces: TFT Display and SD Card connector, Relay control

outputs, Serial wire debug (SWD) programming connector, UART connectors

and front panel connectors (see Appendix A).

• DAC8552 16-bit Digital to analog converter (DAC).

• ADS1256 24-bit Analog to digital converter (ADC).
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4.2.3 Output current drive

Output current drive capability is achieved via the DAC driving a voltage controlled

current source (VCCS). The DAC chosen is the DAC8552 from Texas Instruments,

which is a 16-bit dual channel ultra-low gitch voltage output DAC.

The VCCS is comprised of a cascaded op-amp input stage for voltage scaling and

amplification. This stage is then followed by a complementary darlington output stage

to drive current into the DUT. The output stage is designed to output a maximum

of 7A and is heat-sinked to the back panel.

Negative feedback is achieved by a sense resistor in series with an INA250 current

sensor. These are connected in the low side of the DUT current path through to

ground, see Figure 4.1. There are two of these VCCS sense resistor/INA250 current

sensor pairs, one for each current range, and either of these are switched in the

feedback path via relays to drive and measure the desired output current. These

current ranges are ±1A and ±5A respectively. (See schematic A.6 in Appendix A for

more information).

4.2.4 Voltage measurement

The voltage is measured between the SENSE+ and SENSE- terminals on the front

panel. These two terminals are each first wired through a voltage attenuator (simple

resistive divider) to scale the voltage to an appropriate level to then be read by the

onboard 24-bit ADC which is configured to read voltage in differential mode. The

ADC used is the ADS1256 by Texas Instruments, which is a very low noise, 24-bit

ADC with a 4th-order, delta-sigma modulator and programmable digital filter. It

features extremely low noise performance (up to to 23 noise-free bits) and ±0010%

nonlinearity with data output rates up to 30kSPS. Data is output via the four wire

SPI interface and read by the processor.
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4.2.5 Current measurement

The current is measured low side (ground referenced) via the INA250 current sense

amplifier which gives an voltage output proportional to load current. This voltage

is read by the ADC, and converted into a current value in software. The INA250

was chosen as it integrates the shunt resistor in the same IC package. Because of

this, low temperature drift and high accuracy is achieved (Gain error is 0.3% max).

INA250 devices are available in four different gains: 200mV/A, 500mV/A, 800mV/A

and 2V/A. Two of these devices with different gains are used, these are 500mV/A

and 2V/A for the 5A and 1A current measurement ranges respectively.

4.2.6 Front panel

The front panel has a color TFT display which is used to display diagnostic informa-

tion to the user. There is a single push button with an integrated RGB LED which is

used for user input and status indication. Next to the TFT display there is a female

micro USB connector for use for the programmable source mode of the device, see

section 4.2.7.

The DUT measurement terminal connections are:

• Force + (or Force Hi)

• Sense + (or Sense Hi)

• Sense - (or Sense Lo)

• Force - (or Force Lo)

And are intended to be used in the“Four-terminal” Kelvin sensing connection ar-

rangement when measuring a DUT, as is standard for most commercial programmable

source meters and impedance analyzers.
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4.2.7 Communication interfaces

The device features two separate UART interfaces, one for debug purposes and one for

use when the device is used in the programmable source mode. The debug UART is

wired into an RS232 converter which has the standard serial DB9 connector mounted

to the back panel. The UART used for programmable source mode is wired into an

FT231 USB to serial converter which has a female micro USB connector mounted on

the front panel next to the TFT display.

4.3 Software

The Wildschutron device has two operational modes, these are the Programmable

Source and Automatic Measurement modes respectively.

In Programmable Source mode, the device behaves as a standard programmable

source meter, much like the Kiethley 2460. Time elapsed, Voltage and Curent are

displayed on the TFT display and external software is required to drive the device

via the front panel USB serial interface.

In Automatic Measurement mode, the device acts as a stand-alone low frequency

impedance analyzer with the advantage of requiring minimal user input. This mode

makes heavy use of a modified version of Scott’s DFT implementation [7](provided

with permission) to make multi-tone measurements. The idea, and implementation

of equal charge movement from Farrow’s ’bz’ program is also used to remove the

problem of steady voltage drift over time [24] (see Chapter 3). A code excerpt of the

DFT and equal charge movement implementation is provided in Appendix B, B.2.

The user need only send a list of measurement sweep settings and press the start

button to begin. Cycle number, Time remaining, Voltage and Current are displayed

on the TFT display while measurements are in progress (see Figure 4.3). Data is

saved to the external SD card and output to the debug UART interface. The SD

card interface supports large SD cards (up to 128GB) and the exFAT filesystem.
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Figure 4.3: Cycle number, Time remaining, Voltage and Current are displayed on the
TFT display while measurements are in progress.
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Data is logged in two formats:

• .tvi file format (Time, Voltage, Current).

• .fmp file format (Frequency, Magnitude, Phase).

Both are simple text file formats, with three columns each delimited by spaces. The

.tvi format logs Time in seconds, Voltage in Volts, and Current in Amperes respec-

tively. This file is created on the SD card and data is logged to it at each sample

period. The .tvi file can get quite large (in the order of GB for low frequency sweeps),

so it is only logged to the SD card and not output to the debug UART interface.

At the end of each sweep, an .fmp file with frequency, magnitude of impedance and

phase data is generated and saved to the SD card. One line of data per tone is logged

to the file. The contents of this file is also output to the debug UART interface.

4.4 Testing and verification of performance

To test basic operation, some low value power resistors were measured at 6 tones

with a current bias (IBIAS) of 100mA (see Figure 4.4). The results are tabulated in

Table 4.1.

We can see that the measured values match to within the rated tolerance of each

resistor (5% resistors). Phase is very close to 0 degrees, as is true for purely resistive

elements. This verifies basic operation of the analog front-end and the software to

some extent.

Results from some more concrete tests are provided in Figure 4.7 and Figure 4.8.

In the first test, impedance measurements from the Wildschutron made on the HyCap

500F super-capacitor (Figure 4.4) are compared to the measurements made on the

Solartron in the last chapter (see Chapter 3). From this comparison plot we can

see that the values for impedance and phase match very closely at the frequencies

measured by the Solartron. The values for impedance as we get closer to 10uHz seem
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Figure 4.4: 4-wire measurement of a simple low value power resistor.
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to begin to deviate ever so slightly, this is most likely an artifact of the DFT algorithm

used, so there remains some room for improvement at the ultra-low frequency end.

Figure 4.5: 4-wire measurement of the HyCap 500F super-capacitor.

In the second test, impedance measurements are made on a standard 18650 lithium-

ion cell (Figure 4.4). Measurements made on the Wildschutron are once again com-

pared to those made on the Solartron. We observe that the measurements do in-fact

match very closely, confirming that the Wildschutron performs just as well on bat-

teries.

4.5 Limitations

• In automatic measurement mode, the device is currently limited to a minimum

integration time of 6 Cycles. This becomes an issue once measurements are

being made in the lower end of the frequency range. Measurement cycle periods
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Figure 4.6: 4-wire measurement of the 18650 Li-ion cell.
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Figure 4.7: Impedance measurements from the Wildschutron made on the HyCap
500F super-capacitor are compared to the measurements made on the Solartron in
the last chapter (see Chapter 3). From this comparison plot we can see that the
values for impedance and phase match very closely at the frequencies measured by
the Solartron. The values for impedance as we get closer to 10uHz seem to begin to
deviate ever so slightly, this is most likely an artifact of the DFT algorithm used, so
there remains some room for improvement at the ultra-low frequency end.
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Table 4.1: Three low value power resistors measured at 6 different tones. We can see
that the measured values match to within the rated tolerance of each resistor (5%
resistors). Phase is very close to 0 degrees, as is true for purely resistive elements.

1000mΩ 100mΩ 25mΩ

mHz |Z| mΩ θ mHz |Z| mΩ θ mHz |Z| mΩ θ

1.00 1001.86 -359.99 1.00 101.65 -0.02 1.00 24.69 -360.00

2.00 999.52 -360.00 2.00 100.83 -360.00 2.00 24.79 -0.01

5.00 998.14 -359.99 5.00 100.29 -0.01 5.00 24.80 -359.93

10.00 997.88 -0.02 10.00 100.11 -0.01 10.00 24.81 -359.94

20.00 997.18 -360.00 20.00 100.03 -359.99 20.00 24.83 -360.00

50.00 997.71 -0.01 50.00 99.94 -359.99 50.00 24.81 -0.01

Figure 4.8: Impedance measurements made on a standard 18650 lithium-ion cell.
Measurements made on the Wildschutron are once again compared to those made
on the Solartron. We observe that the measurements do in-fact match very closely,
confirming that the Wildschutron performs just as well on batteries.
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become extremely long, in the order of weeks. This is by nature of the DFT

implementation used.

This could be remedied by implementing the “Finer Fit” algorithm as described

in [25], which is an approach which performs spectral resolution at known fre-

quencies by iterative, optimising fit of multi-sine. If implemented correctly, this

could reduce the total number of cycles required to about 1.5 cycles.

• At present, the analog front-end cannot measure negative voltages. This im-

poses the requirement of having to set a constant DC offset when driving current

into non-wet cells.

• Theoretical maximum sample rate is 30kSPS (30kHz), by nature of the ADC

chosen. Currently the device does not sample that fast, as other tasks are

interleaved whilst sampling (such as TFT screen and SD Card reading/writing).
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Chapter 5

Super-capacitor Measurement and
Analysis

5.1 Measurement Setup

5.1.1 Device preparation

Firstly, the Super-capacitor to be measured is pre-charged to half of the maximum

rated voltage on the bench power supply. The reason for this pre-biasing stage is to

make sure that the Solartron 1260A does not drive the voltage negative. It is then

left on the power supply for a couple of hours to settle and reach equilibrium. Then

it is taken off the bench power supply and the voltage at the terminals of the Super-

capacitor is verified with a digital multi meter. Once this voltage has been verified

to be more or less close to half the maximum rated voltage, the super-capacitor is

connected to the Solartron 1260A as shown in Figure 5.1. This procedure is repeated

for each different device measured.

5.1.2 Solartron Python Script

A modified version of the script provided by Hasan [9] was used to control the So-

lartron 1260A. The two main modifications to the script are the ability to switch the

device into Current mode, and the ability to adjust the integration time in number

of cycles. The script sets up the device to do a “manual sweep” of frequencies be-

tween 10Hz and the 10’s of µHz range. For frequencies below 1mHz, the script makes
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Figure 5.1: Device under test connected to the Solartron 1260A in the 4-wire arrange-
ment.
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measurements with an integration time of 1 cycle. This is primarily because measure-

ments made at these lower frequencies take a long time - in the order of days for the

lowest frequencies. For frequencies 1mHz and above, the script uses an integration

time of 6 cycles, as these measurements are faster and prone to noise. As data is

receieved from the Solartron 1260A, it is written to the python terminal window and

written out to a .fmp text file, one line per tone. A copy of this script is provided in

Appendix B, 5.1.2.

5.2 Results

A total of 12 different super-capacitors were measured in the 10Hz to 10µHz range.

Various brands were selected to give a good indication if trends are independent of

brand in the results. Datasheets for all capacitors is provided in Appendix D.

The smaller sized super-capacitors were only measured down to 30µHz due to

limitations of the Solartron 1260A. The DC voltage drift at lower frequencies was

found to be more pronounced than on the larger sized super capacitors 20F and

above. Therefore as frequency got lower into the µHz range on these smaller devices,

the voltage at the super-capacitor terminals needed to be monitored as to not go

below zero or exceed the maximum rated voltage of the super-capacitor.

The magnitude of impedance vs frequency and phase vs frequency comparisons for

the devices measured can be seen in Figures 5.2 and 5.3 respectively. In the magnitude

of impedance vs phase plot, the fractional order parameter α is estimated by taking

the slope of the straight portion of the magnitude of impedance from 10mHz down

to the lowest frequency for all super-capacitors measured. This value was chosen as

all points 10mHz and lower in frequency, lie on this straight line portion of the plot.
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Figure 5.2: Magnitude of impedance comparison for all super-capacitors measured.
The fractional order parameter α is estimated by taking the slope of the straight
portion of the magnitude of impedance from 10mHz down to the lowest frequency.
Plot made with Seshadri’s bode plotting Python script.
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Figure 5.3: Phase comparison for all super-capacitors measured. We can see that
the phase generally tends to flatten out at around -88 degrees across larger capacity
devices, however some devices, mostly those with lower capacity, exhibit a phase
reversal past the 100uHz region of the plot.
Plot made with Seshadri’s bode plotting Python script.
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5.3 Modelling

From the literature [9], a fractional capacitor can be modelled by a series resistor Rs

in series with a CPE.

A Python script to generate the SPICE netlist for the R-CPE model was kindly

provided by Seshadri, (see Acknowledgements).

To verify that the R-CPE model [9] fits with experimental data, the model was

fitted to one of the super-capacitors measured, see 5.2. The model was fitted to

impedance data only, using the extracted parameters α and Rs from experimental

data. These model fit is shown in Figure 5.4. Generated SPICE netlist is given in

Appendix B, B.3.

From Figure 5.4, we can see that the model fits very closely near the CPE section of

the plot, but deviates as we approach the corner and into the series resistance section.

This deviation might be fixed by careful adjustment of the Rs model parameter.

This result confirms that super-capacitors can in fact be modelled by the R-CPE

model.

5.4 Analysis

In Figure 5.2 we do in-fact observe the general trend that α decreases as the storage

capacity gets smaller. This confirms the work of Freeborn et al. [10], however the

decrease in α is not as dramatic as their results show. They very well may be over-

estimating the decreased α as a result of their time-domain using such short time

intervals. Regardless, this is only significant for super capacitors of a couple of Farads,

around 2F and smaller.

Figure 5.3 gives a phase comparison for all super-capacitors measured. We can

see that the phase generally tends to flatten out at around -88 degrees across larger

capacity devices, however some devices, mostly those with lower capacity, exhibit a

phase reversal past the 100uHz region of the plot. This is most likely an artefact
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Figure 5.4: Verification that the R-CPE model fits with experimental data from a
super-capacitor, using the extracted model parameters α and Rs. We can see that the
model fits very closely near the CPE section of the plot, but deviates as we approach
the corner and into the series resistance section. This deviation is easily fixed by
careful adjustment of the Rs model parameter.
Plot made with Seshadri’s bode plotting Python script.
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imposed by the Solartron 1260a, as it lacks the equal charge movement feature of the

Wildschutron and Farrow’s ’bz’ program [24]. It is most likely charging the device

past the rated voltage of the super-capacitor at the end of the run.

The effects of the fractional order parameter α is physically significant in batteries

as this plays an important role in state-of-health [9]. This was found not to be the

case for most larger super-capacitors 10F and above, as α is nearly equal to one,

meaning that the super-capacitor behaves more like a pure capacitor and less like a

fractional capacitor. For smaller sized super-capacitors, their apparent fractionality

might prove useful in some niche applications, however it is unlikely to be as significant

as fractionality in batteries.
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Chapter 6

Conclusions

6.1 Conclusions

• This work is the first to measure below a frequency of 1mHz on Super-capacitors.

• The effects of the fractional order parameter α is quite significant in batteries

as this plays an important role in state-of-health. This was found not to be

the case for most larger super-capacitors 10F and above, as α is nearly equal to

one, meaning that the super-capacitor behaves more like a pure capacitance.

• Super-capacitors are not all equal, some have lower α values as seen in the

smaller sized devices measured (below 10F) and seen in the work of Freeborn

et al. [10]. The general trend observed was that α tends to decrease as super-

capacitor storage capacity decreases.

• There seems to be a dire need for better measurement equipment. Existing solu-

tions are either too expensive (Kiethley 2460), or too complicated and unwieldy

to use (Solartron 1260A), or a combination both.

• A design and prototype for a low cost impedance analyzer (The Wildschutron)

is provided and shown to perform as well as the Solartron 1260A in the ultra-low

frequency ranges.
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6.2 Future Work

• There exists so called hybrid lithium-ion super-capacitors. It might prove worth-

while to measure and analyse the fractionality of these sorts of devices and

compare to existing super-capacitors and batteries.

• Investigate hybrid R-CPE models like the Split-CPE [3] and see how they fit to

super-capacitor data.

• Implement Finer-fit [25] to reduce required number of cycles of Wildschutron

down to one and a half (see Chapter 4).

• Address the various limitations discussed in Chapter 4.

• Finalise the Wildschutron design and turn it into a product.
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[12] R. Kötz and M. Carlen, “Principles and applications of electrochemical capac-
itors,” Electrochimica Acta, vol. 45, pp. 2483–2498, May 2000.

[13] L. Zubieta and R. Bonert, “Characterization of double-layer capacitors for
power electronics applications,” IEEE Transactions on Industry Applications,
vol. 36, no. 1, pp. 199–205, 2000.

[14] R. L. Spyker and R. M. Nelms, “Classical equivalent circuit parameters for a
double-layer capacitor,” IEEE Transactions on Aerospace and Electronic Sys-
tems, vol. 36, no. 3, pp. 829–836, 2000.

[15] W. Lajnef, J. Vinassa, O. Briat, S. Azzopardi, and C. Zardini, “Study of ultra-
capacitors dynamic behaviour using impedance frequency analysis on a specific
test bench,” in 2004 IEEE International Symposium on Industrial Electronics,
vol. 2, 2004, 839–844 vol. 2.

[16] G. Sikha, R. White, and B. Popov, “A mathematical model for a lithium-ion
battery/electrochemical capacitor hybrid system,” Journal of The Electrochem-
ical Society - J ELECTROCHEM SOC, vol. 152, Jan. 2005.

[17] J. Quintana, A. Ramos, and I. Nuez, “Identification of the fractional impedance
of ultracapacitors,” IFAC Proceedings Volumes, vol. 39, no. 11, pp. 432 –436,
2006, 2nd IFAC Workshop on Fractional Differentiation and its Applications.

[18] R. Martin, J. J. Quintana, A. Ramos, and I. de la Nuez, “Modeling electrochem-
ical double layer capacitor, from classical to fractional impedance,” in MELE-
CON 2008 - The 14th IEEE Mediterranean Electrotechnical Conference, 2008,
pp. 61–66.

[19] N. Bertrand, J. Sabatier, O. Briat, and J.-M. Vinassa, “Fractional non-linear
modelling of ultracapacitors,” Communications in Nonlinear Science and Nu-
merical Simulation, vol. 15, no. 5, pp. 1327 –1337, 2010.

[20] P. J. Mahon, G. L. Paul, S. M. Keshishian, and A. M. Vassallo, “Measurement
and modelling of the high-power performance of carbon-based supercapacitors,”
Journal of Power Sources, vol. 91, no. 1, pp. 68 –76, 2000.
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Appendix A: Wildschutron
Schematics

A.1 Processor Board Schematic

A.2 Processor Board Analog Frontend

A.3 Comms Interface

A.4 Power Supply

A.5 Current Sense Amplifier

A.6 Voltage Controlled Current Source
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Figure A.1: Schematic: Processor Board
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Figure A.2: Schematic: Processor Board Analog Frontend

48



Figure A.3: Schematic: Comms Interface
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Figure A.4: Schematic: Power Supply
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Figure A.5: Schematic: Current Sense Amplifier
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Figure A.6: Schematic: Voltage Controlled Current Source
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Appendix B: Code excerpts

B.1 Python Scripts

Listing B.1: Solartron 1260a script
import v i s a
import time
from datet ime import datet ime
import array
import math
from pyvisa import VisaIOError

p r i n t ( " --- Solartron 1260 --- " )

# Function for sending messages to solartron with delay included

de f send (msg) :
s o l . wr i t e (msg)
time . s l e e p ( 0 . 0 01 )

# Min required time between consecutive command sends to Solartron

# Get connected GPIB devices

rm = v i s a . ResourceManager ( ’C:/ Windows/System32/visa32.dll’ )
r e s ou r c e s = rm . l i s t r e s o u r c e s ( )

# Get Solatron 1260

s o l = rm . open re source ( ’GPIB1 ::10:: INSTR ’ , r ead te rminat i on=’\r\n’ , w r i t e t e rm ina t i on
=’\r\n’ , send end=False )

# Attempt to connect with Solartron by requesting IDN (i.e, "What are you ?")

t ry : # If connection is succesful , print the IDN

IDN = so l . query ( ’*IDN?’ )
if IDN != ’’ :

p r i n t ( "Solartron connected successfully. " + IDN)
except VisaIOError :

# If connection times out , show user list of available GPIB addresses. Then exit

pr in t ( "Connection to Solartron timed out. Check GBIB address is correct and try

again." )
p r i n t ( "Available GPIB resources are: " )
p r i n t ( r e s ou r c e s )
qu i t ( )

s o l . t imeout = int (1000000000)

# For use with Voltage mode

VAMPL = 3.0
VBIAS = 0.996

# For use with Current mode

IAMPL = 0.05
IBIAS = 0.0

# We are now connected to the Solartron. Setup the manual sweep parameters
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# Using generator and single measurements , NOT the built -in sweep function of the

Solartron

send ( ’TT2 ’ ) # Reset time. sleep (3)

#time.sleep (3)

#send(’TT1 ’) # Initialized.

input ( "Press Enter to start sweep ..." )
send ( ’OS 0’ ) # GPIB seperator ’comma ’

send ( ’OT 0’ ) # GPIB terminator ’cr lf ’

send ( ’OP 2 ,1’ ) # Set GPIB to ’dump all ’

send ( ’CZ 1’ ) # Display Z coordinates ’Z, theta ’

send ( ’UW 1’ ) # Display phase ’unwrapped ’

#send(’CC 1’) # Set circuit type being measured **

send ( ’IP 1 ,1 ’ ) # Set Input V1 : input to ’ differential ’

send ( ’OU 1 ,0 ’ ) # Set Input V1 : outer to ’grounded ’

send ( ’IP 2 ,1 ’ ) # Set Input V2 : input to ’ differential ’

send ( ’OU 2 ,0 ’ ) # Set Input V2 : outer to ’grounded ’

send ( ’GT 1’ ) # Voltage or Current mode (0 or 1) NOTE: make sure this is

correct mode or you will not get a stimulus signal

#send(’VB ’ + str(VBIAS)) # Sweep voltage bias

#send(’VA ’ + str(VAMPL)) # Sweep voltage amplitude

send ( ’IB ’ + s t r ( IBIAS ) ) # Sweep current bias

send ( ’IA ’ + s t r (IAMPL) ) # Sweep current amplitude

send ( ’DC 1 ,0 ’ ) # Set V1 coupling to DC

send ( ’DC 3 ,0 ’ ) # Set I coupling to DC

send ( ’RA 1 ,0 ’ ) # Set voltage range to ’auto ’

send ( ’RA 3 ,0 ’ ) # Set current range to ’auto ’

# Begin sweep. Set frequency for each sample point , run single measurement , and

retrieve result

pr in t ( "Started manual sweep ..." )
p r i n t ( " Freq \t\tZ( Ohms ) \tPhase ( deg )" )

#list = [10.0, 5.0, 2.0, 1.0, 0.5, 0.2, 0.1, 50e-3, 20e-3, 10e-3]

l i s t = [ 5 . 0 , 2 . 0 , 1 . 0 , 0 . 5 , 0 . 2 , 0 . 1 , 50e−3, 20e−3, 10e−3, 5e−3, 2e−3, 1e−3, 500e−6,
200e−6, 100e−6, 50e−6, 20e−6, 10e−6]

#list = [5.0, 2.0, 1.0, 0.5, 0.2, 0.1, 50e-3, 20e-3, 10e-3, 5e-3, 2e-3, 1e-3, 500e-6,

200e-6, 100e-6, 50e-6, 30e-6]

#list = [1000000.0 , 500000.0 , 200000.0 , 100000.0 , 50000.0 , 20000.0 , 10000.0 , 5000.0 ,

2000.0 , 1000.0 , 500.0, 200.0 , 100.0 , 50.0, 20.0, 10.0, 5.0, 2.0, 1.0]

#list = [5.0, 2.0, 1.0]

f = open ( datet ime . now( ) . s t r f t ime ( "%Y_%m_%d-%I_%M_%S_%p" ) + ".fmp" , "w+" )

for x in l i s t :
if x >= 1e−3:

send ( ’IS ’ + s t r (max(5 , 6/x ) ) ) # Set integration time (6 cycles)

else :
send ( ’IS 1’ ) # Set integration time (1 Cycle)

send ( ’FR ’ + s t r ( x ) ) # Set generator frequency

s ta r t measure = s o l . query ( ’SI’ ) # Start measurement and wait for it to

finish (when query returns)

send ( ’SO 1 ,3 ’ ) # Set Display source to ’Z1=V1/I’ to convert last

measurement to Z, theta

r e s u l t = s o l . query ( ’DO ’ ) . s p l i t ( ’,’ ) # Request last measurement again. It

is now in form "freq , Z, theta"

# Extract numbers from received data

actua lFreq = r e s u l t [ 0 ]
Z = r e s u l t [ 1 ]
phase = r e s u l t [ 2 ]
p r i n t ( s t r ( actua lFreq ) + ’\t’ + s t r (Z) + ’\t’ + s t r ( phase ) )
f . wr i t e ( s t r ( actua lFreq ) + ’\t’ + s t r (Z) + ’\t’ + s t r ( phase )+ ’\n’ )

p r i n t ( "Sweep complete." )
f . c l o s e ( )
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B.2 DFT Implementation

Listing B.2: DFT implementation header file
#ifndef DFT_H

#define DFT_H

#ifdef __cplusplus

extern "C" {
#endif

#include <stdint.h>

#include <stdbool.h>

typedef enum

{
kDf t Id l e = 0 ,
kDftWaitPrompt ,
kDftSetup ,
kDftRunning ,
kDftFinished ,

} DftState ;

typedef enum

{
kDftErrMsgNone = 0 ,
kDftErrMsgDischarged ,
kDftErrMsgDeltaV ,
kDftErrMsgSdCard ,

} DftErrorMsg ;

// NOTE: Called in the IRQ handler declared in stm32f4xx_it.c

void DFT TimerHandler ( ) ;

u i n t 64 t DFT GetTimeSeconds ( ) ;

void DFT SetRunFlag ( bool f l a g ) ;

bool DFT GetRunFlag ( ) ;

void DFT SetVoltage ( float vo l tage ) ;

void DFT SetCurrent ( float cur rent ) ;

float DFT GetVoltage ( ) ;

float DFT GetCurrent ( ) ;

void DFT Init ( ) ;

void DFT DumpFmpToTerminal ( ) ;

void DFT Task ( ) ;

#ifdef __cplusplus

}
#endif

#endif /* DFT_H */

Listing B.3: DFT implementation source file
#include "DFT.h"

#include <string.h>

#include <stdio.h>
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#include <stdlib.h>

#include <math.h>

#include "custom_printf.h"

#include "tm_stm32_general.h"

#include "stm32f4xx_hal_tim.h"

#include "stm32f4xx_hal_tim_ex.h"

#include "tm_stm32_delay.h"

#include "Config.h"

#include "Watchdog.h"

#include "DEV_Config.h"

#include "DAC8532.h"

#include "ADS1256.h"

#include "Buttons.h"

#include "Analyzer.h"

#include "Display.h"

#include "SDCard.h"

#if (1)

#define DFT_LOG(__info ,...) custom_printf (" DFT_LOG: " __info ,## __VA_ARGS__)

#else

#define DFT_LOG(__info ,...)

#endif

#define DFT_TIMER TIM4

#define DFT_TIMER_IRQn TIM4_IRQn

#define DFT_TIMER_PRESCALER (14)

/* Set for 10ms Interrupts */

#define DFT_TIMER_FREQ_HZ (100)

static TIM HandleTypeDef dftTimHandle ;

// INA250A4 precision current sensor gain value in V/A (in Volts per Amp)

#define INA250A4_GAIN (2.0)

// these are set at compile time for each application

#define IBIAS (0.1) // Used to add a DC offset. Set to

zero if measuring batteries and supercapacitors

//#define NOMMV (3000.0) // nominal cell voltage

#define VERROR (0.0) // the "flat" voltage value

#define NF (6) // number of tones

#define NCYCLES (6) // number of cycles of lowest frequency

#define PERIOD1 100000L // number of 10ms periods in PERIOD of

lowest frequency

static const double f r e q [NF] = {1e−3, 2e−3, 5e−3, 10e−3, 20e−3, 50e−3}; //6 tones

//#define PERIOD1 1000000L // number of 10ms periods in PERIOD

of lowest frequency

// static const double freq[NF] = {100e-6, 200e-6, 500e-6, 1e-3, 2e-3, 5e-3, 10e-3, 20

e-3, 50e-3, 0.1, 0.2, 0.5, 1.0, 2.0}; //14 tones

//#define PERIOD1 10000000L // number of 10ms periods in PERIOD

of lowest frequency

// static const double freq[NF] = {10e-6, 20e-6, 50e-6, 100e-6, 200e-6, 500e-6, 1e-3,

2e-3, 5e-3, 10e-3, 20e-3, 50e-3, 0.1, 0.2, 0.5, 1.0}; //16 tones

static double freqMin ;
static double freqMax ;
static const double currentMax = 0 . 0 5 ;
static const double chargeMax = 0 . 0 5 ;
static double dQMax = 0 ;
static double freqMaxCurrent [NF] = {0} ;

// globals , access in ISR and main

static u in t 64 t t10ms ; // time since start in multiples of 10ms
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static u in t 64 t t 1 s e c ; // 1 sec ticks

static u in t 64 t tRemaining ;
static bool bUpdateDisplay = f a l s e ;
static u i n t 8 t cy c l e ; // progress in cycle number

static double Vmin = 4 . 2 ; // low Vb limit

static double Vmax = 0 . 0 ; // hi Vb limit

static u i n t 8 t badvoltage = 0 ; // battery went flat?

static bool sync ; // ISR sync flag

static u in t 64 t nseq = −1; // counts samples

static u in t 64 t tstamp , prevtstamp ; // measurement timestamp

static u in t 64 t tmodulo ; // measurement time , modulo LCM period

static double VbV, prevVb ; // supply in volts

static double IbA , prevIb ; // load current amps

static double dtmp , dtmp2 ;
static double win ; // phase/value of raised cosine window

static double Zmag [NF] , Zpha [NF ] ; // the target outputs

static double ReVsum[NF] , ImVsum[NF ] ; // running sums in real & imaginary

static double ReIsum [NF] , ImIsum [NF ] ; // running sums in real & imaginary

static double Vbwin , Ibwin ; // I and V values , windowed

static double prevVbwin , prevIbwin ; // previous I and V values , windowed

static double sumOfSines ; // generator value

static float dataIn [ 4 ] ;
static bool bRun = f a l s e ;
static char bu f f e r [ 2 5 6 ] ;
static char tv iF i l ename [ 2 5 6 ] ;
static char fmpFilename [ 2 5 6 ] ;
static i n t 3 2 t runCounter ;

static DftState d f tS t a t e = kDftWaitPrompt ;
static DftErrorMsg dftErrMsg = kDftErrMsgNone ;

#define DFT_RUNDIAGNOSTICS (0)

static void DFT Integrate ( double∗ Rsum, double∗ Isum , u i n t 8 t i , u i n t 64 t tn ,
u i n t 64 t tnm1 , double yn , double ynm1)

{
double kay , ang , s lope , th i s c o s , t h i s s i n , l s i n , l c o s ;

kay = ( tn − tnm1) / 100 . 0 0 ;
s l ope = (yn − ynm1) / kay ;

kay = MTWOPI ∗ f r e q [ i ] ;
ang = kay ∗ tnm1 / 100 . 0 ; // convert time into seconds

l c o s = cos ( ang ) ;
l s i n = s i n ( ang ) ;
ang = kay ∗ tn / 10 0 . 0 ; // convert tn into seconds from j*10ms

t h i s c o s = cos ( ang ) ;
t h i s s i n = s i n ( ang ) ;

Isum [ i ] += s l ope ∗ ( t h i s s i n − l s i n ) / ( kay ∗ kay ) ;
Isum [ i ] −= (yn ∗ t h i s c o s − ynm1 ∗ l c o s ) / kay ;
Rsum[ i ] += s l ope ∗ ( t h i s c o s − l c o s ) / ( kay ∗ kay ) ;
Rsum[ i ] += (yn ∗ t h i s s i n − ynm1 ∗ l s i n ) / kay ;

}

/* from Scott & Parker 1995

lsin = sin (0.0);

lcos = cos (0.0);

kay = TWOPI * j * fundamental;

for(i=1; i<ndatl; i++) {

ang = (xjbs[i]-xjbs [0])*kay;

width = xjbs[i]-xjbs[i-1];

slope = (yjbs[i]-yjbs[i-1])/width;

thiscos = cos(ang);

thissin = sin(ang);

imag += slope*(thissin -lsin)/(kay*kay);
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imag -= (yjbs[i]*thiscos -yjbs[i-1]* lcos)/kay;

real += slope*(thiscos -lcos)/(kay*kay);

real += (yjbs[i]*thissin -yjbs[i-1]* lsin)/kay;

lsin = thissin;

lcos = thiscos;

}

Bhaskara ’s Sine approximation

sin(x) ~ 16x(pi-x)/(5pi^2-4x(pi -x)) 0<x<pi error <1.5% (2 *, 1 /)

error for 7th-order poly is 3ppm , so error <.0003% (10 *)

sin(x) ~ x-x^3/3!+x^5/5! -x^7/7!

arctan(x) ~ see Rajan etal., Efficient Approximations for the Arctangent

Function

*/

void DFT TimerHandler ( )
{

t10ms += 1 ; // increment time in 10ms intervals

if ( t10ms % DFT TIMER FREQ HZ == 0)
{

t 1 s e c++;
bUpdateDisplay = true ;

}

sync = 1 ; // ISR running

// "Resets" interrupt flag etc

DFT TIMER−>SR = ˜TIM IT UPDATE;
}

static u in t 32 t DFT CalcPeriod ( u i n t 32 t f req , u i n t 32 t p r e s c a l e r )
{

/* TIMCLK = 90 MHz , Freq = TIMCLK / (( Prescaler + 1)*( Period + 1))

NOTE: 16bit limited */

return ((90000000 / f r e q ) /( p r e s c a l e r + 1) ) − 1 ;
}

static bool DFT TimerInit ( )
{

HAL RCC TIM4 CLK ENABLE( ) ;
dftTimHandle . In s tance = DFT TIMER;
u in t 32 t per iod = DFT CalcPeriod (DFT TIMER FREQ HZ, DFT TIMER PRESCALER) ;
dftTimHandle . I n i t . Per iod = per iod ;
dftTimHandle . I n i t . P r e s c a l e r = DFT TIMER PRESCALER;
dftTimHandle . I n i t . C lockDiv i s i on = TIM CLOCKDIVISION DIV1 ;
dftTimHandle . I n i t . CounterMode = TIMCOUNTERMODEUP;

HAL StatusTypeDef s t a tu s = HAL TIM Base Init(&dftTimHandle ) ;
if ( s t a tu s != HAL OK)

return f a l s e ;

HAL NVIC EnableIRQ(DFT TIMER IRQn) ;
HAL NVIC SetPriority (DFT TIMER IRQn, 3 , 3) ;

return t rue ;
}

static bool DFT TimerStart ( )
{

HAL StatusTypeDef s t a tu s = HAL TIM Base Start IT(&dftTimHandle ) ;
if ( s t a tu s != HAL OK)

return f a l s e ;
return t rue ;

}

static bool DFT TimerStop ( )
{
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HAL StatusTypeDef s t a tu s = HAL TIM Base Stop IT(&dftTimHandle ) ;
if ( s t a tu s != HAL OK)

return f a l s e ;
return t rue ;

}

static void DFT AdcScan ( )
{

// Scan all channels

for ( u i n t 8 t i = 0 ; i < 4 ; i++)
{

dataIn [ i ] = ( float ) ( ADS1256 GetChannelValue ( i ) ∗ 5 .0 / 0 x 7 f f f f f ) ;
}

}

u in t 64 t DFT GetTimeSeconds ( )
{

return t 1 s e c ;
}

void DFT SetVoltage ( float vo l tage )
{

DAC8532 OutVoltage ( channel A , vo l tage ) ;
DAC8532 OutVoltage ( channel B , vo l tage ) ;

}

void DFT SetCurrent ( float cur rent )
{

// Gain of VCCS (Voltage controlled current source) is 2.5V

float vo l tage = ( ( cur rent − 0 .0037) ∗ 2 . 5 ) + 2 . 5 ; // VOUT = ((ILOAD - VCCS_TRIM)

* GAIN) + VREF

DFT SetVoltage ( vo l tage ) ;
}

float DFT GetVoltage ( )
{

// return dataIn [3] / (56.0 / (300.0 + 56.0)); // 150 kOhm parallel with input

impedance of ADC is 56kOhm

return dataIn [ 2 ] ;
}

float DFT GetCurrent ( )
{

return ( ( dataIn [ 1 ] − 2 . 5 ) / 2 . 0 ) + 0 . 0 1 ; // ILOAD = ((VOUT - VREF) / GAIN) +

INA250_OFFSET

}

void DFT SetRunFlag ( bool f l a g )
{

bRun = f l a g ;
}

bool DFT GetRunFlag ( )
{

return bRun ;
}

void DFT Init ( )
{

ADS1256 Init ( ) ;
/* NOTE: For single -ended measurements , use AINCOM (Analog input common) as common

input , which

can be connected to AGND or external reference voltage (via JMP_AGND). For

differential measurements , do not

use AINCOM. */

ADS1256 SetMode (1 ) ; // Set to differential scan mode

TM GPIO Init (GPIOA, GPIO PIN 11 , TM GPIO Mode IN , TM GPIO OType OD,
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TM GPIO PuPd NOPULL, TM GPIO Speed High ) ;

DFT TimerInit ( ) ;
DFT TimerStart ( ) ;

}

static void DFT CheckVoltageLimits ( )
{

if (VbV < Vmin)
Vmin = VbV;

if (VbV > Vmax)
Vmax = VbV;

if (VbV < VERROR)
{

DFT LOG( "Bad Voltage (discharged)\r\n" ) ;
badvoltage = 1 ; // flat error

d f tS t a t e = kDftFin ished ; // exit early

}

if (Vmax − Vmin > 0 . 25 )
{

DFT LOG( "Bad Voltage (deltaV)\r\n" ) ;
badvoltage = 2 ; // deltaV error

d f tS t a t e = kDftFin ished ; // exit early

}
}

static void DFT FindMaxCurrents ( )
{

freqMin = fabs ( f r e q [ 0 ] ) ;
freqMax = fabs ( f r e q [ 0 ] ) ;

/* Find highest and lowest frequencies given */

u i n t 8 t n f r e quenc i e s = 1 ;

for ( u i n t 8 t i = 1 ; i < NF; i++)
{

if ( f r e q [ i ] != 0 .0 f )
{

if ( f abs ( f r e q [ i ] ) < freqMin )
{

freqMin = fabs ( f r e q [ i ] ) ;
if ( freqMin < 0 .0 f )

DFT LOG( "freqMin less than zero: %f\r\n" , freqMin ) ;
}
if ( f abs ( f r e q [ i ] ) > freqMax )
{

freqMax = fabs ( f r e q [ i ] ) ;
}
n f r equenc i e s++;

}
else

break ;
}
DFT LOG( "Lowest Frequency: %f\r\n" , freqMin ) ;

/* What q will be moved by the slowest frequency in Ah */

dQMax = currentMax / (M PI ∗ freqMin ∗ 3600) ;
if ( f abs ( chargeMax ) < f abs (dQMax) )
{

dQMax = chargeMax ;
}

DFT LOG( "Given QMax: %g\r\n" , chargeMax ) ;
DFT LOG( "dQ: %g\r\n" , dQMax) ;
DFT LOG( "\r\n" ) ;
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for ( u i n t 8 t i = 0 ; i < n f r equenc i e s ; i++)
{

// divide amplitude of each sine wave to produce equal charge movement for

each

// dQ_f = -2*nfreq*I_f /(2*pi*f)

// dI_f = Q_f *(2*pi*f)/2* nfreq

// dI_f = Q_f*(pi*f)/nfreq

freqMaxCurrent [ i ] = fabs (dQMax ∗ M PI ∗ f r e q [ i ] ∗ 3600 / ( double ) n f r e quenc i e s
) ;

if ( f abs ( freqMaxCurrent [ i ] ) > f abs ( currentMax / n f r e quenc i e s ) )
{

freqMaxCurrent [ i ] = currentMax / n f r e quenc i e s ;
}

DFT LOG( "Maximum current for frequency %e Hz: %e A\r\n" , f r e q [ i ] ,
freqMaxCurrent [ i ] ) ;

}
}

static void DFT ZeroizeArrays ( )
{

for ( u i n t 8 t i = 0 ; i < NF; i++)
{ // for each frequency

Zmag [ i ] = 0 . 0 ; // zero the data

Zpha [ i ] = 0 . 0 ;
}

}

static void DFT CalculateTimeRemaining ( )
{

// Set time remaining in seconds

double t l owe s tpe r i od = (1 . 0 / freqMin ) ∗ ( double )NCYCLES;
tRemaining = ( u in t 64 t ) t l owe s tp e r i od ;

}

static void DFT PrintErrorMessage ( DftErrorMsg errMsg )
{

bu f f e r [ 0 ] = ’\0’ ;

switch ( errMsg )
{

case kDftErrMsgNone :
{

s p r i n t f ( bu f f e r , "Err:None\n" ) ;
}

break ;
case kDftErrMsgDischarged :
{

s p r i n t f ( bu f f e r , "Err:Discharged\n" ) ;
}

break ;
case kDftErrMsgDeltaV :
{

s p r i n t f ( bu f f e r , "Err:Delta V\n" ) ;
}

break ;
case kDftErrMsgSdCard :
{

s p r i n t f ( bu f f e r , "Err:SD Card\n" ) ;
}

break ;
default :

break ;
}

Display Puts (10 , 150 , b u f f e r ) ;
}
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static void DFT UpdateDisplay ( )
{

if ( bUpdateDisplay )
{

if ( d f tS t a t e == kDft Id l e )
{

#if DFT_RUNDIAGNOSTICS

DFT SetCurrent ( 0 . 1 ) ; // Set a constant current for diagnostic purposes

if ( bRun )
{

Analyzer SetRelay (0 ) ;
Analyzer SetRelay (1 ) ;
Delayms (1000) ; // wait for relays to settle

bRun = f a l s e ;
}

#endif

DFT AdcScan ( ) ;

b u f f e r [ 0 ] = ’\0’ ;
s p r i n t f ( bu f f e r , "V:%+9.6 fV\n" , DFT GetVoltage ( ) ) ;
s p r i n t f ( bu f f e r , "%-19s" , b u f f e r ) ; //right padding

Display Puts (10 , 80 , b u f f e r ) ;
b u f f e r [ 0 ] = ’\0’ ;

s p r i n t f ( bu f f e r , "I:%+9.6 fA\n" , DFT GetCurrent ( ) ) ;
s p r i n t f ( bu f f e r , "%-19s" , b u f f e r ) ; //right padding

Display Puts (10 , 115 , b u f f e r ) ;
}
else

{
bu f f e r [ 0 ] = ’\0’ ;

s p r i n t f ( bu f f e r , "Cycle:%d" , ( unsigned int ) c y c l e ) ;
Disp lay Puts (10 , 10 , b u f f e r ) ;
b u f f e r [ 0 ] = ’\0’ ;

s p r i n t f ( bu f f e r , "tRem:%ds" , ( unsigned int ) tRemaining ) ;
s p r i n t f ( bu f f e r , "%-19s" , b u f f e r ) ; //right padding

Display Puts (10 , 45 , b u f f e r ) ;
b u f f e r [ 0 ] = ’\0’ ;

s p r i n t f ( bu f f e r , "V:%+9.6 fV\n" , DFT GetVoltage ( ) ) ;
s p r i n t f ( bu f f e r , "%-19s" , b u f f e r ) ; //right padding

Display Puts (10 , 80 , b u f f e r ) ;
b u f f e r [ 0 ] = ’\0’ ;

s p r i n t f ( bu f f e r , "I:%+9.6 fA\n" , DFT GetCurrent ( ) ) ;
s p r i n t f ( bu f f e r , "%-19s" , b u f f e r ) ; //right padding

Display Puts (10 , 115 , b u f f e r ) ;

if ( badvoltage == 1)
dftErrMsg = kDftErrMsgDischarged ;

else if ( badvoltage == 2)
dftErrMsg = kDftErrMsgDeltaV ;

else if ( SDCard CheckError ( ) )
dftErrMsg = kDftErrMsgSdCard ;

DFT PrintErrorMessage ( dftErrMsg ) ;

// DFT_LOG ("Cycle:%d, tRem:%ds, V:%+9.6fV , I:%+9.6fA ,\r\n", (unsigned int)

cycle , (unsigned int)tRemaining , DFT_GetVoltage (), DFT_GetCurrent ());

tRemaining−−;
if ( tRemaining < 0)

tRemaining = 0 ;
}
bUpdateDisplay = f a l s e ;

}
}

void DFT DumpFmpToTerminal ( )
{
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DFT LOG( ".fmp Dump:\r\n\r\n" ) ;
for ( u i n t 8 t i = 0 ; i < NF; i++)
{

cus tom pr in t f ( "%+1.6e %+1.6e %+1.6e\r\n" , f r e q [ i ] , Zmag [ i ] , Zpha [ i ] ) ;
}
cus tom pr in t f ( "\r\n" ) ;

}

void DFT Task ( )
{

switch ( d f tS t a t e )
{

case kDf t Id l e :
{

Watchdog Kick ( ) ;
Buttons Task ( ) ;
DFT UpdateDisplay ( ) ;

#if !DFT_RUNDIAGNOSTICS

if ( bRun )
d f tS t a t e = kDftSetup ;

#endif

}
break ;

case kDftWaitPrompt :
{

DFT LOG( "Waiting for user ...\r\n" ) ;
Disp lay Puts (10 , 10 , "Waiting for user ..." ) ;
d f t S t a t e = kDft Id l e ;

}
break ;

case kDftSetup :
{

Disp lay ClearSc reen ( ) ;
DFT LOG( "Setting up...\r\n" ) ;
Disp lay Puts (10 , 10 , "Setting up... " ) ;
Delayms (1000) ;

DFT FindMaxCurrents ( ) ;
DFT ZeroizeArrays ( ) ;

DFT LOG( "DFT setup complete .\r\n" ) ;
Disp lay Puts (10 , 10 , "DFT setup complete." ) ;
DFT SetCurrent ( 0 . 0 + IBIAS ) ; // Make sure current is zero

Analyzer SetRelay (0 ) ;
Analyzer SetRelay (1 ) ;
Delayms (1000) ; // wait for relays to settle

DFT CalculateTimeRemaining ( ) ;

d f t S t a t e = kDftRunning ;
}

break ;
case kDftRunning :
{

DFT LOG( "DFT running ...\r\n" ) ;

SDCard Mount ( ) ;
SDCard GetCardInfo ( ) ;

tv iF i l ename [ 0 ] = ’\0’ ;
s p r i n t f ( tv iF i l ename , "log_%d.tvi" , ( unsigned int ) runCounter ) ;
SDCard FileOpen ( tv iF i l ename ) ;
DFT LOG( "Created file: %s\r\n" , tv iF i l ename ) ;

D i sp lay ClearSc reen ( ) ;
t 1 s e c = 0 ;

// DFT_TimerStop ();

// Delayms (100);
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// DFT_AdcScan ();

// DFT_TimerStart ();

t10ms = 0L ;
while (1 )
{

nseq++; // count points measured

sync = 0 ; // clear ISR sync flag

while ( ! sync )
{

;
} // wait until time is multiple of ISR rate

TM GENERAL DisableInterrupts ( ) ;
tstamp = t10ms ;
TM GENERAL EnableInterrupts ( ) ; // atomic grab of timestamp

DFT AdcScan ( ) ; // Scan all channels

prevVb = VbV; // current to previous value

VbV = ( double ) DFT GetVoltage ( ) ;

DFT CheckVoltageLimits ( ) ;

prevIb = IbA ; // store previous

IbA = ( double ) DFT GetCurrent ( ) ;

// log to .tvi file

bu f f e r [ 0 ] = ’\0’ ;
s p r i n t f ( bu f f e r , "%f\t%.8f\t%.8f\n" , ( double ) tstamp / 100 .0 , VbV, IbA

) ;
SDCard FilePuts ( b u f f e r ) ;

// preserve precision by using modulo time in trig calculations

tmodulo = tstamp ;
cy c l e = 1 ; // at least in 1st cycle

while ( tmodulo >= PERIOD1)
{

tmodulo −= PERIOD1; // signal periodic in PERIOD1

cy c l e++; // what cycle we are in

}

// update current drive

dtmp2 = (10 e−3 ∗ MTWOPI) ∗ tmodulo ; // 2.pi.t

sumOfSines = 0 . 0 ;
for ( u i n t 8 t i = 0 ; i < NF; i++)
{ // for each tone

dtmp = dtmp2 ∗ f r e q [ i ] ; // 2*pi*f*t

// sumOfSines += (freqMaxCurrent[i] * sin(dtmp + NF)); // sum of

sin (2.pi.f.t+phase)

sumOfSines += ( freqMaxCurrent [ i ] ∗ s i n (dtmp) ) ; // sum of sin (2.pi

.f.t+phase)

} // adding NF phase randomises

DFT SetCurrent ( ( float ) sumOfSines + IBIAS ) ;

// integrate each Fourier segment

if ( tstamp > (PERIOD1 ∗ NCYCLES) )
{ // gone past the end

// integrate last chunk

tstamp = (PERIOD1) ; // about to clear this var anyway

for ( u i n t 8 t i = 0 ; i < NF; i++)
{

DFT Integrate (ReVsum, ImVsum, i , tstamp , prevtstamp , 0 . 00 ,
prevVbwin ) ;

DFT Integrate (ReIsum , ImIsum , i , tstamp , prevtstamp , 0 . 00 ,
prevIbwin ) ;
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}

for ( u i n t 8 t i = 0 ; i < NF; i++)
{ // output wanted data

dtmp = (ReVsum [ i ] ∗ ReVsum[ i ] ) ;
dtmp += (ImVsum[ i ] ∗ ImVsum[ i ] ) ;
dtmp2 = sq r t (dtmp) ; // sqrt(Re^2+Im^2), Voltage

dtmp = (ReIsum [ i ] ∗ ReIsum [ i ] ) ;
dtmp += ( ImIsum [ i ] ∗ ImIsum [ i ] ) ;
dtmp = sq r t (dtmp) ; // sqrt(Re^2+Im^2), Current

Zmag [ i ] = dtmp2 / dtmp ; // |Z| in "V/A"

dtmp = atan2 (ImVsum[ i ] , ReVsum [ i ] ) ;
dtmp −= atan2 ( ImIsum [ i ] , ReIsum [ i ] ) ; // dtmp is phase

difference in radians

dtmp /= MTWOPI;
dtmp ∗= 360 . 0 ; // arg(Z) in degrees

while (dtmp < 0 . 0 )
dtmp += 360 . 0 ; // range 0->360

Zpha [ i ] = −dtmp ; // arg(Z) in degrees , negative for

convention

}

// DFT_TimerStop ();

SDCard FileClose ( ) ; // Close .tvi file

// log to .fmp file

fmpFilename [ 0 ] = ’\0’ ;
s p r i n t f ( fmpFilename , "log_%d.fmp" , ( unsigned int ) runCounter ) ;
SDCard FileOpen ( fmpFilename ) ;
DFT LOG( "Created file: %s\r\n" , fmpFilename ) ;

DFT DumpFmpToTerminal ( ) ;

for ( u i n t 8 t i = 0 ; i < NF; i++)
{

bu f f e r [ 0 ] = ’\0’ ;
s p r i n t f ( bu f f e r , "%+1.6e\t%+1.6e\t%+1.6e\n" , f r e q [ i ] , Zmag [ i

] , Zpha [ i ] ) ;
SDCard FilePuts ( b u f f e r ) ;

}

SDCard FileClose ( ) ; // Close .fmp file

SDCard Unmount ( ) ;

runCounter++; // Increment run counter for next time through

nseq = 0 ; // clear points

badvoltage = 0 ;
tRemaining = 0 ;
d f tS t a t e = kDftFin ished ;

}

if ( nseq == 0)
{ // start , first point

TM GENERAL DisableInterrupts ( ) ;
t10ms = 0L ;
TM GENERAL EnableInterrupts ( ) ; // clear master time

tstamp = prevtstamp = 0 ; // clear timestamps

prevVbwin = 0 . 0 0 ; // set previous values ...

prevIbwin = 0 . 0 0 ; // zero at edge of Hann window

for ( u i n t 8 t i = 0 ; i < NF; i++)
{ // for each tone

ReVsum[ i ] = 0 . 0 0 ; // clear integration accumulators

ReIsum [ i ] = 0 . 0 0 ;
ImVsum[ i ] = 0 . 0 0 ;
ImIsum [ i ] = 0 . 0 0 ;

}
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}
else

{ // this is where most work is done

// compute Hann window multiplier , across whole duration , PERIOD1

*NCYCLES

win = ( double ) tstamp / (PERIOD1 ∗ NCYCLES) ;
win ∗= MTWOPI; // 0 to 2pi

win = 1.00 − cos (win ) ; // Hann raised cosine

prevVbwin = Vbwin ; // keep previous , already windowed

prevIbwin = Ibwin ;
Vbwin = VbV ∗ win ;
Ibwin = IbA ∗ win ;
// offset around zero reduces large values in float accumulators

// now we have 2 windowed tvi data , prev & new , for I & V, at NF

frequencies

for ( u i n t 8 t i = 0 ; i < NF; i++)
{ // for each tone

DFT Integrate (ReVsum, ImVsum, i , tmodulo , prevtstamp , Vbwin ,
prevVbwin ) ;

DFT Integrate (ReIsum , ImIsum , i , tmodulo , prevtstamp , Ibwin ,
prevIbwin ) ;

} // have now integrated across one slice of the V & I waveforms

prevtstamp = tmodulo ; // keep last x-point for next time

}

// handle low prio tasks

Watchdog Kick ( ) ;
Buttons Task ( ) ;
DFT UpdateDisplay ( ) ;

// Check to see if run is finished

if ( d f tS t a t e == kDftFin ished )
break ;

}
}

break ;
case kDftFin ished :
{

Disp lay ClearSc reen ( ) ;
DFT LOG( "Run complete .\r\n" ) ;
Disp lay Puts (10 , 10 , "Run complete. " ) ;
bRun = f a l s e ;
Analyzer ClearRelay (0 ) ;
Analyzer ClearRelay (1 ) ;
Delayms (1000) ;
D i sp lay ClearSc reen ( ) ;
d f t S t a t e = kDftWaitPrompt ;

}
break ;

default :
break ;

}
}

B.3 CPE SPICE Netlist

Listing B.4: SPICE Netlist for CPE Model
Test CPE
∗ f 0 = 3 .0 Hz
∗ f s t a r t = 3e−05 Hz
∗ f s t op = 10 .0 Hz
∗ kf = 1 .1
∗ alpha = 0.9757
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∗ magZ = 0.04 Ohms
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Vs 1 0 ac 1 dc 0
Rs 1 2 0 .078
X1 2 0 CPE
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
. subckt CPE n1 n2
∗ Tau 0.0530516 s , f r e q 3 Hz
Rcpe0 n1 interna lNode0 3.05533
Ccpe0 n2 interna lNode0 0.0173636
∗ Tau 0.0584921 s , f r e q 2 .72096 Hz
Rcpe1 n1 interna lNode1 3.36087
Ccpe1 n2 interna lNode1 0.0174039
∗ Tau 0.0644905 s , f r e q 2 .46788 Hz
Rcpe2 n1 interna lNode2 3.69695
Ccpe2 n2 interna lNode2 0.0174442
∗ Tau 0.0711041 s , f r e q 2 .23834 Hz
Rcpe3 n1 interna lNode3 4.06665
Ccpe3 n2 interna lNode3 0.0174847
∗ Tau 0.0783958 s , f r e q 2 .03015 Hz
Rcpe4 n1 interna lNode4 4.47331
Ccpe4 n2 interna lNode4 0.0175252
∗ Tau 0.0864354 s , f r e q 1 .84132 Hz
Rcpe5 n1 interna lNode5 4.92065
Ccpe5 n2 interna lNode5 0.0175659
∗ Tau 0.0952994 s , f r e q 1 .67005 Hz
Rcpe6 n1 interna lNode6 5.41271
Ccpe6 n2 interna lNode6 0.0176066
∗ Tau 0.105072 s , f r e q 1 .51472 Hz
Rcpe7 n1 interna lNode7 5.95398
Ccpe7 n2 interna lNode7 0.0176474
∗ Tau 0.115848 s , f r e q 1 .37383 Hz
Rcpe8 n1 interna lNode8 6.54938
Ccpe8 n2 interna lNode8 0.0176883
∗ Tau 0.127728 s , f r e q 1 .24605 Hz
Rcpe9 n1 interna lNode9 7.20432
Ccpe9 n2 interna lNode9 0.0177293
∗ Tau 0.140826 s , f r e q 1 .13015 Hz
Rcpe10 n1 interna lNode10 7.92475
Ccpe10 n2 interna lNode10 0.0177705
∗ Tau 0.155268 s , f r e q 1 .02503 Hz
Rcpe11 n1 interna lNode11 8.71723
Ccpe11 n2 interna lNode11 0.0178117
∗ Tau 0.171191 s , f r e q 0.929692 Hz
Rcpe12 n1 interna lNode12 9.58895
Ccpe12 n2 interna lNode12 0.017853
∗ Tau 0.188747 s , f r e q 0.843219 Hz
Rcpe13 n1 interna lNode13 10.5478
Ccpe13 n2 interna lNode13 0.0178944
∗ Tau 0.208103 s , f r e q 0.764789 Hz
Rcpe14 n1 interna lNode14 11.6026
Ccpe14 n2 interna lNode14 0.0179358
∗ Tau 0.229444 s , f r e q 0.693655 Hz
Rcpe15 n1 interna lNode15 12.7629
Ccpe15 n2 interna lNode15 0.0179774
∗ Tau 0.252974 s , f r e q 0.629136 Hz
Rcpe16 n1 interna lNode16 14.0392
Ccpe16 n2 interna lNode16 0.0180191
∗ Tau 0.278916 s , f r e q 0.570619 Hz
Rcpe17 n1 interna lNode17 15.4431
Ccpe17 n2 interna lNode17 0.0180609
∗ Tau 0.307519 s , f r e q 0.517545 Hz
Rcpe18 n1 interna lNode18 16.9874
Ccpe18 n2 interna lNode18 0.0181028
∗ Tau 0.339056 s , f r e q 0.469407 Hz
Rcpe19 n1 interna lNode19 18.6861
Ccpe19 n2 interna lNode19 0.0181448
∗ Tau 0.373826 s , f r e q 0.425746 Hz
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Rcpe20 n1 interna lNode20 20.5548
Ccpe20 n2 interna lNode20 0.0181868
∗ Tau 0.412162 s , f r e q 0.386147 Hz
Rcpe21 n1 interna lNode21 22.6102
Ccpe21 n2 interna lNode21 0.018229
∗ Tau 0.454429 s , f r e q 0 .35023 Hz
Rcpe22 n1 interna lNode22 24.8713
Ccpe22 n2 interna lNode22 0.0182713
∗ Tau 0.501031 s , f r e q 0.317655 Hz
Rcpe23 n1 interna lNode23 27.3584
Ccpe23 n2 interna lNode23 0.0183136
∗ Tau 0.552413 s , f r e q 0.288109 Hz
Rcpe24 n1 interna lNode24 30.0942
Ccpe24 n2 interna lNode24 0.0183561
∗ Tau 0.609063 s , f r e q 0.261311 Hz
Rcpe25 n1 interna lNode25 33.1036
Ccpe25 n2 interna lNode25 0.0183987
∗ Tau 0.671523 s , f r e q 0.237006 Hz
Rcpe26 n1 interna lNode26 36 .414
Ccpe26 n2 interna lNode26 0.0184413
∗ Tau 0.740388 s , f r e q 0.214962 Hz
Rcpe27 n1 interna lNode27 40.0554
Ccpe27 n2 interna lNode27 0.0184841
∗ Tau 0.816315 s , f r e q 0.194968 Hz
Rcpe28 n1 interna lNode28 44 .061
Ccpe28 n2 interna lNode28 0.0185269
∗ Tau 0.900028 s , f r e q 0.176833 Hz
Rcpe29 n1 interna lNode29 48.4671
Ccpe29 n2 interna lNode29 0.0185699
∗ Tau 0.992327 s , f r e q 0.160386 Hz
Rcpe30 n1 interna lNode30 53.3138
Ccpe30 n2 interna lNode30 0.018613
∗ Tau 1.09409 s , f r e q 0.145468 Hz
Rcpe31 n1 interna lNode31 58.6451
Ccpe31 n2 interna lNode31 0.0186561
∗ Tau 1.20629 s , f r e q 0.131938 Hz
Rcpe32 n1 interna lNode32 64.5096
Ccpe32 n2 interna lNode32 0.0186994
∗ Tau 1 .33 s , f r e q 0.119666 Hz
Rcpe33 n1 interna lNode33 70.9606
Ccpe33 n2 interna lNode33 0.0187427
∗ Tau 1.46639 s , f r e q 0.108535 Hz
Rcpe34 n1 interna lNode34 78.0567
Ccpe34 n2 interna lNode34 0.0187862
∗ Tau 1.61677 s , f r e q 0.0984403 Hz
Rcpe35 n1 interna lNode35 85.8623
Ccpe35 n2 interna lNode35 0.0188298
∗ Tau 1.78257 s , f r e q 0.0892841 Hz
Rcpe36 n1 interna lNode36 94.4486
Ccpe36 n2 interna lNode36 0.0188734
∗ Tau 1.96537 s , f r e q 0.0809796 Hz
Rcpe37 n1 interna lNode37 103.893
Ccpe37 n2 interna lNode37 0.0189172
∗ Tau 2.16692 s , f r e q 0.0734475 Hz
Rcpe38 n1 interna lNode38 114.283
Ccpe38 n2 interna lNode38 0.018961
∗ Tau 2.38914 s , f r e q 0.066616 Hz
Rcpe39 n1 interna lNode39 125.711
Ccpe39 n2 interna lNode39 0.019005
∗ Tau 2.63415 s , f r e q 0.0604199 Hz
Rcpe40 n1 interna lNode40 138.282
Ccpe40 n2 interna lNode40 0.0190491
∗ Tau 2.90428 s , f r e q 0.0548001 Hz
Rcpe41 n1 interna lNode41 152 .11
Ccpe41 n2 interna lNode41 0.0190932
∗ Tau 3.20212 s , f r e q 0.0497031 Hz
Rcpe42 n1 interna lNode42 167.321
Ccpe42 n2 interna lNode42 0.0191375
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∗ Tau 3.53049 s , f r e q 0.0450801 Hz
Rcpe43 n1 interna lNode43 184.054
Ccpe43 n2 interna lNode43 0.0191819
∗ Tau 3.89255 s , f r e q 0.0408871 Hz
Rcpe44 n1 interna lNode44 202.459
Ccpe44 n2 interna lNode44 0.0192264
∗ Tau 4.29173 s , f r e q 0.0370841 Hz
Rcpe45 n1 interna lNode45 222.705
Ccpe45 n2 interna lNode45 0.0192709
∗ Tau 4.73185 s , f r e q 0.0336348 Hz
Rcpe46 n1 interna lNode46 244.975
Ccpe46 n2 interna lNode46 0.0193156
∗ Tau 5.21711 s , f r e q 0.0305064 Hz
Rcpe47 n1 interna lNode47 269.473
Ccpe47 n2 interna lNode47 0.0193604
∗ Tau 5.75212 s , f r e q 0.0276689 Hz
Rcpe48 n1 interna lNode48 296 .42
Ccpe48 n2 interna lNode48 0.0194053
∗ Tau 6.34201 s , f r e q 0.0250954 Hz
Rcpe49 n1 interna lNode49 326.062
Ccpe49 n2 interna lNode49 0.0194503
∗ Tau 6.99238 s , f r e q 0.0227612 Hz
Rcpe50 n1 interna lNode50 358.668
Ccpe50 n2 interna lNode50 0.0194954
∗ Tau 7.70946 s , f r e q 0.0206441 Hz
Rcpe51 n1 interna lNode51 394.535
Ccpe51 n2 interna lNode51 0.0195406
∗ Tau 8.50007 s , f r e q 0.018724 Hz
Rcpe52 n1 interna lNode52 433.989
Ccpe52 n2 interna lNode52 0.0195859
∗ Tau 9.37175 s , f r e q 0.0169824 Hz
Rcpe53 n1 interna lNode53 477.388
Ccpe53 n2 interna lNode53 0.0196313
∗ Tau 10.3328 s , f r e q 0.0154028 Hz
Rcpe54 n1 interna lNode54 525.126
Ccpe54 n2 interna lNode54 0.0196769
∗ Tau 11.3925 s , f r e q 0.0139702 Hz
Rcpe55 n1 interna lNode55 577.639
Ccpe55 n2 interna lNode55 0.0197225
∗ Tau 12.5608 s , f r e q 0.0126708 Hz
Rcpe56 n1 interna lNode56 635.403
Ccpe56 n2 interna lNode56 0.0197682
∗ Tau 13.8489 s , f r e q 0.0114923 Hz
Rcpe57 n1 interna lNode57 698.943
Ccpe57 n2 interna lNode57 0.019814
∗ Tau 15.2691 s , f r e q 0.0104233 Hz
Rcpe58 n1 interna lNode58 768.837
Ccpe58 n2 interna lNode58 0.01986
∗ Tau 16.835 s , f r e q 0.00945384 Hz
Rcpe59 n1 interna lNode59 845.721
Ccpe59 n2 interna lNode59 0.019906
∗ Tau 18.5614 s , f r e q 0.00857452 Hz
Rcpe60 n1 interna lNode60 930.293
Ccpe60 n2 interna lNode60 0.0199522
∗ Tau 20.4649 s , f r e q 0.00777698 Hz
Rcpe61 n1 interna lNode61 1023.32
Ccpe61 n2 interna lNode61 0.0199985
∗ Tau 22.5636 s , f r e q 0.00705363 Hz
Rcpe62 n1 interna lNode62 1125.65
Ccpe62 n2 interna lNode62 0.0200448
∗ Tau 24.8775 s , f r e q 0.00639755 Hz
Rcpe63 n1 interna lNode63 1238.22
Ccpe63 n2 interna lNode63 0.0200913
∗ Tau 27.4287 s , f r e q 0.0058025 Hz
Rcpe64 n1 interna lNode64 1362.04
Ccpe64 n2 interna lNode64 0.0201379
∗ Tau 30.2415 s , f r e q 0.0052628 Hz
Rcpe65 n1 interna lNode65 1498.25
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Ccpe65 n2 interna lNode65 0.0201846
∗ Tau 33.3428 s , f r e q 0.0047733 Hz
Rcpe66 n1 interna lNode66 1648.07
Ccpe66 n2 interna lNode66 0.0202314
∗ Tau 36.7621 s , f r e q 0.00432932 Hz
Rcpe67 n1 interna lNode67 1812.88
Ccpe67 n2 interna lNode67 0.0202783
∗ Tau 40.5321 s , f r e q 0.00392664 Hz
Rcpe68 n1 interna lNode68 1994.17
Ccpe68 n2 interna lNode68 0.0203253
∗ Tau 44.6887 s , f r e q 0.00356142 Hz
Rcpe69 n1 interna lNode69 2193.58
Ccpe69 n2 interna lNode69 0.0203725
∗ Tau 49.2715 s , f r e q 0.00323016 Hz
Rcpe70 n1 interna lNode70 2412.94
Ccpe70 n2 interna lNode70 0.0204197
∗ Tau 54.3243 s , f r e q 0.00292972 Hz
Rcpe71 n1 interna lNode71 2654.24
Ccpe71 n2 interna lNode71 0.020467
∗ Tau 59.8953 s , f r e q 0.00265722 Hz
Rcpe72 n1 interna lNode72 2919.66
Ccpe72 n2 interna lNode72 0.0205145
∗ Tau 66.0376 s , f r e q 0.00241006 Hz
Rcpe73 n1 interna lNode73 3211.62
Ccpe73 n2 interna lNode73 0.0205621
∗ Tau 72.8098 s , f r e q 0.0021859 Hz
Rcpe74 n1 interna lNode74 3532.79
Ccpe74 n2 interna lNode74 0.0206097
∗ Tau 80.2765 s , f r e q 0.00198258 Hz
Rcpe75 n1 interna lNode75 3886.07
Ccpe75 n2 interna lNode75 0.0206575
∗ Tau 88.5089 s , f r e q 0.00179818 Hz
Rcpe76 n1 interna lNode76 4274.67
Ccpe76 n2 interna lNode76 0.0207054
∗ Tau 97.5855 s , f r e q 0.00163093 Hz
Rcpe77 n1 interna lNode77 4702.14
Ccpe77 n2 interna lNode77 0.0207534
∗ Tau 107.593 s , f r e q 0.00147923 Hz
Rcpe78 n1 interna lNode78 5172.35
Ccpe78 n2 interna lNode78 0.0208016
∗ Tau 118.627 s , f r e q 0.00134164 Hz
Rcpe79 n1 interna lNode79 5689.59
Ccpe79 n2 interna lNode79 0.0208498
∗ Tau 130.792 s , f r e q 0.00121686 Hz
Rcpe80 n1 interna lNode80 6258.55
Ccpe80 n2 interna lNode80 0.0208981
∗ Tau 144.205 s , f r e q 0.00110367 Hz
Rcpe81 n1 interna lNode81 6884 .4
Ccpe81 n2 interna lNode81 0.0209466
∗ Tau 158.993 s , f r e q 0.00100102 Hz
Rcpe82 n1 interna lNode82 7572.84
Ccpe82 n2 interna lNode82 0.0209952
∗ Tau 175.298 s , f r e q 0.000907911 Hz
Rcpe83 n1 interna lNode83 8330.13
Ccpe83 n2 interna lNode83 0.0210438
∗ Tau 193.275 s , f r e q 0.000823465 Hz
Rcpe84 n1 interna lNode84 9163.14
Ccpe84 n2 interna lNode84 0.0210926
∗ Tau 213.095 s , f r e q 0.000746872 Hz
Rcpe85 n1 interna lNode85 10079.5
Ccpe85 n2 interna lNode85 0.0211415
∗ Tau 234.948 s , f r e q 0.000677404 Hz
Rcpe86 n1 interna lNode86 11087.4
Ccpe86 n2 interna lNode86 0.0211906
∗ Tau 259.042 s , f r e q 0.000614397 Hz
Rcpe87 n1 interna lNode87 12196.1
Ccpe87 n2 interna lNode87 0.0212397
∗ Tau 285.607 s , f r e q 0.000557251 Hz
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Rcpe88 n1 interna lNode88 13415.8
Ccpe88 n2 interna lNode88 0.021289
∗ Tau 314.896 s , f r e q 0.00050542 Hz
Rcpe89 n1 interna lNode89 14757.3
Ccpe89 n2 interna lNode89 0.0213383
∗ Tau 347.189 s , f r e q 0.00045841 Hz
Rcpe90 n1 interna lNode90 16233.1
Ccpe90 n2 interna lNode90 0.0213878
∗ Tau 382.794 s , f r e q 0.000415772 Hz
Rcpe91 n1 interna lNode91 17856.4
Ccpe91 n2 interna lNode91 0.0214374
∗ Tau 422.05 s , f r e q 0.0003771 Hz
Rcpe92 n1 interna lNode92 19642
Ccpe92 n2 interna lNode92 0.0214871
∗ Tau 465.331 s , f r e q 0.000342025 Hz
Rcpe93 n1 interna lNode93 21606.2
Ccpe93 n2 interna lNode93 0.0215369
∗ Tau 513.051 s , f r e q 0.000310213 Hz
Rcpe94 n1 interna lNode94 23766.8
Ccpe94 n2 interna lNode94 0.0215869
∗ Tau 565.665 s , f r e q 0.000281359 Hz
Rcpe95 n1 interna lNode95 26143.5
Ccpe95 n2 interna lNode95 0.0216369
∗ Tau 623.674 s , f r e q 0.000255189 Hz
Rcpe96 n1 interna lNode96 28757.9
Ccpe96 n2 interna lNode96 0.0216871
∗ Tau 687.632 s , f r e q 0.000231454 Hz
Rcpe97 n1 interna lNode97 31633.6
Ccpe97 n2 interna lNode97 0.0217374
∗ Tau 758.149 s , f r e q 0.000209926 Hz
Rcpe98 n1 interna lNode98 34797
Ccpe98 n2 interna lNode98 0.0217878
∗ Tau 835.898 s , f r e q 0.0001904 Hz
Rcpe99 n1 interna lNode99 38276.7
Ccpe99 n2 interna lNode99 0.0218383
∗ Tau 921.619 s , f r e q 0.000172691 Hz
Rcpe100 n1 interna lNode100 42104.4
Ccpe100 n2 interna lNode100 0.0218889
∗ Tau 1016.13 s , f r e q 0.000156628 Hz
Rcpe101 n1 interna lNode101 46314.8
Ccpe101 n2 interna lNode101 0.0219397
∗ Tau 1120.34 s , f r e q 0.00014206 Hz
Rcpe102 n1 interna lNode102 50946.3
Ccpe102 n2 interna lNode102 0.0219905
∗ Tau 1235.23 s , f r e q 0.000128847 Hz
Rcpe103 n1 interna lNode103 56040.9
Ccpe103 n2 interna lNode103 0.0220415
∗ Tau 1361 .9 s , f r e q 0.000116862 Hz
Rcpe104 n1 interna lNode104 61645
Ccpe104 n2 interna lNode104 0.0220926
∗ Tau 1501.57 s , f r e q 0.000105993 Hz
Rcpe105 n1 interna lNode105 67809.5
Ccpe105 n2 interna lNode105 0.0221439
∗ Tau 1655.55 s , f r e q 9 .61341 e−05 Hz
Rcpe106 n1 interna lNode106 74590.5
Ccpe106 n2 interna lNode106 0.0221952
∗ Tau 1825.33 s , f r e q 8 .71924 e−05 Hz
Rcpe107 n1 interna lNode107 82049.5
Ccpe107 n2 interna lNode107 0.0222467
∗ Tau 2012.52 s , f r e q 7 .90825 e−05 Hz
Rcpe108 n1 interna lNode108 90254.5
Ccpe108 n2 interna lNode108 0.0222983
∗ Tau 2218 .9 s , f r e q 7 .17269 e−05 Hz
Rcpe109 n1 interna lNode109 99279.9
Ccpe109 n2 interna lNode109 0.02235
∗ Tau 2446.45 s , f r e q 6 .50554 e−05 Hz
Rcpe110 n1 interna lNode110 109208
Ccpe110 n2 interna lNode110 0.0224018

71



∗ Tau 2697.34 s , f r e q 5 .90044 e−05 Hz
Rcpe111 n1 interna lNode111 120129
Ccpe111 n2 interna lNode111 0.0224537
∗ Tau 2973.95 s , f r e q 5 .35163 e−05 Hz
Rcpe112 n1 interna lNode112 132142
Ccpe112 n2 interna lNode112 0.0225058
∗ Tau 3278.93 s , f r e q 4 .85386 e−05 Hz
Rcpe113 n1 interna lNode113 145356
Ccpe113 n2 interna lNode113 0.022558
∗ Tau 3615.19 s , f r e q 4 .4024 e−05 Hz
Rcpe114 n1 interna lNode114 159891
Ccpe114 n2 interna lNode114 0.0226103
∗ Tau 3985.93 s , f r e q 3 .99292 e−05 Hz
Rcpe115 n1 interna lNode115 175880
Ccpe115 n2 interna lNode115 0.0226627
∗ Tau 4394.69 s , f r e q 3 .62153 e−05 Hz
Rcpe116 n1 interna lNode116 193468
Ccpe116 n2 interna lNode116 0.0227153
∗ Tau 4845.37 s , f r e q 3 .28468 e−05 Hz
Rcpe117 n1 interna lNode117 212815
Ccpe117 n2 interna lNode117 0.0227679
Rconvergence n1 n2 21281.532275247235
∗ Tau 0.0481172 s , f r e q 3 .30765 Hz
Rcpe118 n1 interna lNode118 2.77758
Ccpe118 n2 interna lNode118 0.0173234
∗ Tau 0.0436417 s , f r e q 3 .64685 Hz
Rcpe119 n1 interna lNode119 2.52507
Ccpe119 n2 interna lNode119 0.0172834
∗ Tau 0.0395825 s , f r e q 4 .02084 Hz
Rcpe120 n1 interna lNode120 2.29552
Ccpe120 n2 interna lNode120 0.0172434
∗ Tau 0.0359009 s , f r e q 4 .43318 Hz
Rcpe121 n1 interna lNode121 2.08683
Ccpe121 n2 interna lNode121 0.0172035
∗ Tau 0.0325616 s , f r e q 4 .88781 Hz
Rcpe122 n1 interna lNode122 1.89712
Ccpe122 n2 interna lNode122 0.0171637
∗ Tau 0.029533 s , f r e q 5 .38905 Hz
Rcpe123 n1 interna lNode123 1.72466
Ccpe123 n2 interna lNode123 0.017124
∗ Tau 0.0267861 s , f r e q 5 .9417 Hz
Rcpe124 n1 interna lNode124 1.56787
Ccpe124 n2 interna lNode124 0.0170844
∗ Tau 0.0242947 s , f r e q 6 .55103 Hz
Rcpe125 n1 interna lNode125 1.42534
Ccpe125 n2 interna lNode125 0.0170449
∗ Tau 0.022035 s , f r e q 7 .22284 Hz
Rcpe126 n1 interna lNode126 1.29576
Ccpe126 n2 interna lNode126 0.0170054
∗ Tau 0.0199854 s , f r e q 7 .96355 Hz
Rcpe127 n1 interna lNode127 1.17796
Ccpe127 n2 interna lNode127 0.0169661
∗ Tau 0.0181265 s , f r e q 8 .78021 Hz
Rcpe128 n1 interna lNode128 1.07088
Ccpe128 n2 interna lNode128 0.0169268
∗ Tau 0.0164406 s , f r e q 9 .68063 Hz
Rcpe129 n1 interna lNode129 0.973524
Ccpe129 n2 interna lNode129 0.0168877
Cconvergence n1 n2 7.283186964670183
. ends
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
. end
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Appendix C: Solartron 1260A
excerpt

C.1 Excerpt from Solartron 1260A manual,

full version available at https://www.ameteksi.com
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5.1 GENERATOR
The generator drives the item under test (IUT).  The drive signal parameters are shown
in Figure 5.1.

Figure 5.1 - Drive signal parameters

5.1.1 [GENERATOR]

Type of drive and constant voltage drive parameters.

TYPE Selects constant voltage or constant current drive:

• [voltage]  Constant voltage drive:

With MONITOR ENABLE set to [monitor off] the amplitude of the generator
output voltage is held at the VAMPL value.

With MONITOR ENABLE set to [monitor V1, target = V AMPL] the generator
output is varied between 0V and V LIMIT in an attempt to hold the analyzer
VOLTAGE 1 input at the V AMPL value.

With MONITOR ENABLE set to [monitor 1, target = I AMPL] the generator
output is varied between 0V and V LIMIT in an attempt to hold the analyzer
CURRENT input at the I AMPL value.

• [current]  Constant current drive:

With MONITOR ENABLE set to [off] the amplitude of the generator output
current is held at I AMPL value.  (Set up the drive current parameters from the
[GENERATOR Cont] page.)

With MONITOR ENABLE set to [monitor V1, target = V AMPL] the generator
output is varied between 0mA and I LIMIT in an attempt to hold the analyzer
VOLTAGE 1 input at the V AMPL value.

With MONITOR ENABLE set to [monitor I, target = I AMPL] the generator
output is varied between 0mA and I LIMIT in an attempt to hold the analyzer
CURRENT input at the I AMPL value.

FREQ Frequency of generator output.  This is selectable in the range 10µHz to
32MHz.  To vary the frequency progressively, use SWEEP.

V. AMPL Constant voltage ac amplitude, in the range 0V to 3V rms (ƒ < 10MHz) and 0V
to 1V (ƒ > MHz).

V. BIAS Constant voltage dc level, in the range -40.95V to =40.95V.  Used for setting
the quiescent operating point of the IUT or for nulling a dc offset.

74



Menu Terns 7835/45/46/47 Technical Manual

5-4 12600012_Gmacd/CB

5.1.2 [GENERATOR Cont]

Type of drive and constant current drive parameters.

TYPE Selects constant voltage or constant current drive.  Duplicate of TYPE in
Section 1.1 above.

FREQ Frequency of generator output.  Duplicate of FREQ in Section 1.1 above.

I AMPL Constant current ac amplitude, in the range 0mA to 60mA rms (ƒ ≤ 10MHz)
and 0mA to 20mA rms (ƒ > 10MHz).

I BIAS Constant voltage dc level, in the range -l00mA to + l00mA.  Used for setting
the quiescent operating point of the IUT or for nulling a dc offset.

5.1.3 [MONITOR]

Constant input signal parameters.

ENABLE Selects a constant signal level at the analyzer VOLTAGE 1 or CURRENT
input. (In monitor mode the displayed amplitude variable represents the
actual generator output.)

• [monitor off]
Monitor facility off: generator output held at V AMPL or I AMPL value, in
accordance with TYPE setting. (See Sections 1.1 and 1.2 above.)

• [monitor V1, target = V. AMPL]
Constant voltage input. Generator output is adjusted automatically to hold
the analyzer VOLTAGE 1 input at V AMPL ±ERROR%. During this process
the generator output is not allowed to exceed the V LIMIT value.

• [monitor I, target = I. AMPL]
Constant current input. Generator output is adjusted automatically to hold the
analyzer CURRENT input at I AMPL ± ERROR%. During this process the
generator output is not allowed to exceed the I LIMIT value.

V LIMIT Maximum amplitude voltage allowed at generator output in [monitor V1,
target = V. AMPL] mode. (Default value = 3V.)

I LIMIT Maximum amplitude current allowed at generator output in [monitor I, target
l. AMPL] mode. (Default value 60mA.)

ERROR% Percentage difference (1% to 50%) allowed between the generator output
and the target value, in monitor mode.

A failure to obtain a target value within the defined error percentage (after
two attempts) results in the error message “84. MONITOR FAILED”.

5.1.4 MONITOR CONFIGURATIONS

To hold an input signal at a constant level the instrument uses one of the feedback
configurations schematized in Fig 5.2.  These configurations are part hardware and part
software and, excluding the IUT, are contained in the instrument.  In each case the
generator output is varied, within defined limits, to maintain the selected input at a
defined level.  An amplitude sweep with monitor enabled sweeps the selected input.
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Figure 5.2 - Simplified schematic of monitor feedback configurations

5.1.5 GENERATOR START AND STOP CONTROL

The generator output is switched on, and stays on, when a measurement, SINGLE or
RECYCLE, is commanded or when NULL [evaluate] or NORMALIZE [evaluate] is
commanded.

BREAK switches the output off.

Other commands that switch the generator output off are:

KILL This remotely generated signal is applied to a connector on the rear
panel.  When asserted, it holds the generator output at zero volts; when
released, it allows the excitation signal to assume its set amplitude.

KILL also halts measurement data processing.  Processing restarts,
after KILL is released, with the next complete measurement.

Note that, with low frequency measurements, you may have to wait a
considerable time for the measurement results to appear.  For example,
when measuring at 1mHz, the present (“killed”) measurement will take
up to 1000 secs to complete.  Then, assuming KILL was released during
this period, you will have to wait another 1000 secs for the results of the
“released” measurement.

SELF TEST Same action on generator output as BREAK.

RESET Sets the AMPL value in the GENERATOR menu to zero.

INITIALIZESame action on generator output as RESET.
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Appendix D: Super-Capacitor
datasheets

D.1 Datasheets for the various super-capacitors

used in this research.
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Design and specifications are each subject to change without notice.  Ask factory for the current technical specifications before purchase and/or use.

Should a safety concern arise regarding this product, please be sure to contact us immediately.

Electric Double Layer Capacitors (Gold Capacitor)

(>8.0 mm dia.)

L+2 max.

Sleeve

14 min. 3 min. 0D+0.5 max.

0d±0.05

P
±

0
.5

Vent

Radial lead Type

Series : HW

● Guaranteed at 70 °C (60°C 1000 h)
● Can be discharge mA or more current
● RoHS compliant

● Solar battery operated circuits (Road guidance fl asher),  Quick charging motor drives (Toy car)
● Back-up Power Supplies (UPS)

Features

Recommended Applications

Specifi cations

(Unit : mm)

Characteristics list

Dimensions in mm(not to scale) 

Note : 1. Do not use refl ow soldering. (IR, Atmosphere heating methods, etc. ) 

Please refer to the page of “Application guidelines”.

✽ : 10 F or less HW series is not recommended for new design. Please consider HZ series.

Capacitance
(F)

0D L 0d P

22 18.0 35.0 0.8 7.5

30 18.0 35.0 0.8 7.5

50 18.0 40.0 0.8 7.5

70 18.0 50.0 0.8 7.5

Category 

temp.

range

(°C)

Maximum 

operating 

voltage

(V.DC)

Capacitance

(F)

Capacitance 

 tolerance

(F)

Internal 

resistance

(Initial specifi ed value)
(Ω) at 1 kHz

Recommended 

discharge 

current

(A)

Parts number

Mass

(Reference value)

(g)

Min.

packaging

q’ty

(pcs)

–25 to +70

2.3

22 17.6 to 30.8 < 0.1 1  or less EECHW0D226 12.0 50

–25 to +60

30 24.0 to 42.0 < 0.1 1  or less EECHW0D306 14.0 50

50 40.0 to 70.0 < 0.1 1  or less EECHW0D506 15.0 50

2.1 70 56.0 to 98.0 < 0.1 1  or less EECHW0D706 19.0 50

Category temp. range –25 °C to +70 °C –25 °C to +60 °C

Maximum operating voltage 2.3 V.DC 2.3 V.DC 2.1 V.DC

Nominal cap. range 22 F 30, 50 F 70 F

Characteristics at 

low Temperature

Capacitance change ±30 % of initial measured value at +20 °C  (at –25 °C)

Internal resistance < 4 times of initial measured value at +20 °C (at –25 °C)

Endurance

After 1000 hours application of 2.3 V.DC at +70 °C (+60 °C), the capacitor shall meet the 

following limits.

Capacitance change ±30 % of initial measured value

Internal resistance < 2 time of initial specifi ed value

Shelf Life
After 1000 hours storage at +70 °C (+60 °C) without load, the capacitor shall meet the

specifi ed limits for Endurance.

Jan. 201603
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Design and specifications are each subject to change without notice.  Ask factory for the current technical specifications before purchase and/or use.

Should a safety concern arise regarding this product, please be sure to contact us immediately.

Electric Double Layer Capacitors (Gold Capacitor)

 Application Guidelines (Gold Capacitor)
1. Circuit design

1.1 Product Life
The life of an electric double layer capacitor is limited. Its capacitance will decrease and its internal 
resistance will increase over time.
The life of a capacitor greatly depends on the ambient temperature, humidity, applied voltage and 
discharging currents. Capacitor life can be extended when these parameters are set well below the ratings.
The guaranteed durability of electric double-layer capacitors is between 1000 hours at 70 °C and 6000 
hours at 85 °C. depending on product series. Generally, it is 1000 hours at 70 °C. The life of the capacitor 
is guaranteed to be 16000 hours at a normal temperature (30 °C) by applying the acceleration double for 
every 10 °C. Please choose the product that is suitable for the reliability that you need.
If your application incorporates this capacitor over a long period of time, then check it periodically and 
replace it when necessary.

1.2 Polarity and voltage
 Capacitors have polarities.

Do not apply a reverse or AC voltage. If a reversed voltage is applied to a capacitor for a long period of  
time, then its life will be reduced and critical failures such as electrolyte leakage might occur.
 Do not apply an over-voltage (a voltage exceeding the rated voltage).
If voltage exceeding the rating is applied to the capacitor for a long time, then its life will be reduced and critical 
failures such as electrolyte leakage or physical damage due to gas generated by electrochemical reaction or 
explosion might occur.

1.3 Circuits though which ripple currents pass
 When using a capacitor in a circuit through which ripple currents pass, please note following matters.

(1) The internal resistance of electric double-layer capacitors is higher than that of electrolytic capacitors. 
Electric double-layer capacitors may generate heat due to ripple currents.

(2) Please do not exceed the maximum operating voltage when the voltage changes from ripple.
(3) Because internal resistance is high, the gold capacitor is not basically suitable for the absorption of ripple 

current.

1.4 Ambient temperature and product life
Capacitor life is affected by usage temperatures. Generally speaking, capacitor life is approximately doubled 

when the temperature is decreased by 10 °C. Therefore, lower the usage temperature as much as possible. 
Using capacitors beyond the guaranteed range might cause rapid deterioration of their characteristics and 
cause them to break down. The temperature referred to here includes the ambient temperature within the 
equipment, the heat produced by heat generating devices (power transistor, resistors, etc.), self-heating due to 
ripple currents, etc. Take all of these factors into consideration when checking the capacitor’s temperature.
Do not place any heat generating devices on the back of the capacitors. Life acceleration can be 
calculated with the following equation :

L2 = L1×2
(    )

L1 : Life at temperature T1 °C (h)
L2 : Life at temperature T2 °C (h)
T1 : Category s upper limit temperature
T2 : Ambient temperature to calculate the life + heat generation due to ripple current (°C)

✽ Humidity also affects the capacitor’s life. When using capacitors outside the following conditions, please contact us.
 A temperature at +55 °C and a relative humidity of 90 % to 95% for 500 hours.

✽ The result that a very long term backup can be expected in calculation might be obtained by use conditions. 
However, please consider checking regularly and exchanging it when using it for the set that long-term reliability is 
basically demanded from the Gold Capacitor.

1.5 Voltage drop
Pay particular attention to the instantaneous working current and the voltage drop due to the capacitor’s 

internal resistance when used in backup mode. The discharging current level is different depending on the 

capacitor’s internal resistance. Use a capacitor with a discharging current below what is specified by the 

corresponding capacitor.

Series

Max. Discharging Current

0.047 F or less 0.1 F to 0.33 F 0.47 F to 1.5 F 3.3 F to 4.7 F 10 F to 100 F

SG/SD/SE/NF/F 200 µA 300 µA 1 mA — —

RF (–40 °C, –25 °C) — 300 µA, 3 mA 1 mA, 20 mA — —

LF (–40 °C) — — 1 mA — —

RG (–40 °C, –25 °C) — 300 µA, 1 mA 1 mA, 20 mA — —

T1-T2

10
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Design and specifications are each subject to change without notice.  Ask factory for the current technical specifications before purchase and/or use.

Should a safety concern arise regarding this product, please be sure to contact us immediately.

Electric Double Layer Capacitors (Gold Capacitor)
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Pre-heating temperature : 110 °C or under(on the surface of circuit)

 : 100 °C or under(on the surface of capacitor)

Pre-heating time : 60 seconds or under

Board thickness : 0.8 mm or more

1.6 Series connection
When connecting capacitors in series, add a bleeder resistor in parallel with each capacitor by taking the 
leakage current into consideration so that the balance of voltages is not disrupted.

✽ Please present use condition about HZ/HW/HL series, and please contact us.

1.7 Electrolyte is used in the products
Electrolyte is used in the capacitors. Electrolyte leakage will damage printed circuit boards and can affect 
their performance, characteristics, and functions.

1.8 External sleeve
The external sleeve is not electrical insulation, and thus capacitors should not be used in an environment 
that requires electrical insulation. The sleeve is covered only for showing ratings.

2. Mounting
2.1 Heat stress at the soldering

When soldering a capacitor to a printed circuit board, excessive heat stress could cause the deterioration of 
the capacitor’s electrical characteristics. For example the integrity of the seal can be compromised causing 
the electrolyte to leak, and short circuits could occur in addition to and failure of the appearance. 
Please observe the following guidelines.
(1) Manual soldering
 Do not touch the capacitor body with a soldering iron. Solder the capacitor using a soldering tip temperature of  

350 °C or less for 4 seconds or less. Solder a the capacitor three times or less at intervals of 15 seconds or more.
(2) Flow soldering

1) Do not dip the body of the products into a 
soldering bath.

2) Keep the product’s surface temperature 
at or below 100 °C for no more than 
60 seconds (the peak 105 °C) when 
soldering. Please refer to  the chart at right 
to set soldering temperature and time. It 
is recommended to check the product 
temperature before you use.

3) The terminals of the NF/F/RF/LF type 
are designed so the bottom of  the 
product floats from the PWB. This is 
to protect against heat stress during 
soldering. Do not touch the bottom of the 
product directly to the PWB.

(3) Other heat stress
1) Keep the product’s surface temperature 

at or below 100 °C for no more than 60 
seconds (the peak 105 °C) when applying 
heat to bake the PWB or fixing resin, etc.The capacitor voltage must be 0.3 V or less.

2) Do not use a product more than once after it has been mounted on the PWB. Excessive heat stress is 
applied when detaching it from the PWB. Please observe “(1) Manual soldering” when you adjusting it.

3) Be sure that excessive heat stress is not applied to the Gold capacitor when other parts in its 
surroundings of the Gold capacitor are detached or adjusted.

(4) Others
1) The lead wires and terminals are plated for solderability. Rasping or filing lead wires or terminals 

might damage the plating layer and degrade the solderability.
2) Do not apply a large mechanical force to the lead wires or terminals. Otherwise, they may break or 

come off or the capacitor characteristics may be damaged.
3) There is a possibility that the sealing performance of the product is deteriorated if a coating material 

that contains an organic solvent is used.

2.2 Circuit Design
Do not set wiring pattern directly under the mounted capacitor, and pass between terminals. If the 

electrolyte leaks, short circuit might occur and tracking or migrations are anticipated. If a capacitor is 

directly touching a PWB, then the bottom of the capacitorand the circuit pattern may short-circuit. On PWBs, 

blowing flux or solder may cause the capacitor’s external sleeve to break or shrink, potentially affecting the 

internal structure. In addition, please refer to application guidelines for the aluminum electrolytic capacitor.

2.3 Residual voltage
Gold Capacitors can hold a large charge and could have residual voltage. Therefore, some electronic 

components with a low withstand voltage, such as semi-conductors, might be damaged.
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Design and specifications are each subject to change without notice.  Ask factory for the current technical specifications before purchase and/or use.

Should a safety concern arise regarding this product, please be sure to contact us immediately.

Electric Double Layer Capacitors (Gold Capacitor)

2.4 Circuit board cleaning
Apply the following conditions for flux cleaning after soldering. (Excepted for NF/F/RF/LF series)

Please examine the SG/SD/RG series when washing is necessary. 

 Temperature : 60 °C or less

 Duraiton : 5 minutes or less

Rinse sufficiently and dry the boards.

[Recommended cleaning solvents include]

Pine Alpha ST-100s, Sunelec B-12, DK be-clear CW-5790, Aqua Cleaner 210SEP, Cold Cleaner P3-375, Cllear-

th-ru 750H, Clean-thru 750L, Clean-thru 710M, Techno Cleaner219, Techno Care FRW-17, Techno Care FRW-1, 

Techno Care FRV1

● Consult with us if you are using a solvent other than any of those listed above or Deionized water.

● The uses of ozone depleting cleaning agents is not recommended in the interest protecting the environment.

3. Precautions for using equipment
Avoid using mounting equipment in environments where :

(1) Capacitors are exposed to water, salt water or oil.

(2) Capacitors are exposed to direct sunlight.

(3) Capacitors are exposed to high temperature and humidity where water can condense on the capacitor surface.

(4) Capacitors are subject to various active gases.

(5) Capacitors are exposed to acidic or alkaline environments.

(6) Capacitors are subject to high-frequency induction.

(7)Capacitors are subject to excessive vibrations or mechanical impact.

A brown excretion might be caused around the sealing, depending on the conditions of use. This excretion is 

insulation and does not. have influence on the electrical characteristics.

4. Maintenance Precautions
Periodically check capacitors used in industrial equipment. When checking and maintaining capacitors, turn off 

the equipment and discharge the capacitors beforehand. Do not apply stress to the capacitor lead terminals.

Periodically check the following items.

1) Significant appearance abnormalities (deformation, electrolyte leakage, etc.)

2) Electrical characteristics (described in the catalog or delivery specifications)

If any abnormalities are found, then replace the capacitors or take appropriate actions.

5. Emergency procedures
If the capacitors generate heat, then smoke may come out of the exterior resin. Under these conditions turn off 

the equipment immediately and stop using it.

Do not place your face or hands close to the capacitor, burns might be caused.

6. Storage
Do not store capacitors in a high-temperature or high-humidity environment. Store capacitors at a room 

temperature of 5 to 35 °C and a relative humidity of 85 % or less. (Recommended storage term: 1year or less.) 

Store capacitors in their packaging as long as possible. Avoid storing capacitors under the following conditions.

(1) Exposed to water, high temperatures or humidity, or when condensation can occurs.

(2) Exposed to oil or in environments filled with gaseous oil contents.

(3) Exposed to salt water or environments filled with saline substances.

(4) In environments filled with harmful gases

    (hydrogen disulfide, sulfurous acid, nitrous acid, chlorine, bromine, bromomethane, etc.)

(5) In environments filled with harmful alkaline gases such as ammonia.

(6) Exposed to acid or alkaline solvents.

(7) Exposed to direct sunlight, ozone, ultraviolet or radial rays.

(8) Exposed to vibration or mechanical impact.

7. Discarding
Dispose of capacitors as industrial waste. They are comprised of various metals and resin.

The precautions for the use of Electric Double Layer Capacitors (Gold Capacitors) follow the 
“Precautionary guidelines for the use of fixed Electric Double Layer Capacitors for electronic equipment”, 
RCR-2370C issued by EIAJ in July 2008. Please refer to the above guidelines for details.
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HOW TO ORDER  
SCC  

Series 
SuperCap 
Cylindrical  

R  

Diameter 
Q = 6.3mm 
R = 8mm 
S = 10mm 
T = 12.5mm 
U = 16mm 
V = 18mm 
W = 22mm 
X = 30mm 
Y = 35mm 
Z = 60mm  

12  

Case Length 
Two digits 

represent case 
length in mm, 

with the  
exception of the 

following: 
1A = 120mm 
1E = 138mm 
1F = 165mm  

B  

Voltage Code 
B = 2.7V  

QUALITY INSPECTION 
Parts are tested for Life Cycle, high temperature 
load life, temperature characteristics, vibration 
resistance, and humidity characteristics. See 
page 2 for more information.  

The new series of cylindrical electrochemical double-layer capacitors offers 
excellent pulse power handling characteristics based on the combination of very 
high capacitance and very low ESR. Used by themselves or in conjunction with 
primary or secondary batteries, they provide extended back up time, longer battery 
life, and provide instantaneous power pulses as needed. Offers great solutions to 
Hold Up, Energy Harvesting, and Pulse Power Applications.  

FEATURES 
• Cap Values from 1F – 3000F 
• High pulse power capability 
• Low ESR 
• Low Leakage Current  

105  

Capacitance Code 
1st two digits  

represent significant 
figures 3rd digit represents 
multiplier (number of zeros 

to follow)  

P  

Tolerance 
P = +100%/-0% 
S = +30%/-10% 

R  

APPLICATIONS 
• Camera Flash Systems 
• Energy Harvesting 
• GSM/GPRS Pulse Applications 
• UPS/Industrial 
• Wireless Alarms 
• Remote Metering 
• Scanners 
• Toys and Games  

Lead Format 
R = Radial 
S = Solder Pin 
C = Cylindrical  

B  

Package 
B = Bulk 
T = Tray*  

TERMINATION 
These SuperCapacitors are compatible with 
hand soldering, as well as reflow and wave 
soldering processes, so long as appropriate 
precautions are followed. See page 4 for 
more information.  

_  

Custom Code 
A1= 4mm Bent Leads* 
C1 = 2mm Bent Leads* 

OPERATING 
TEMPERATURE 
-40°C to +65°C @ 2.7V 
-40°C to +85°C @ 2.3V  

LEAD-FREE COMPATIBLE 
COMPONENT  

For RoHS compliant products,  
please select correct termination style.  

*Inquire about availability  

SCC Series SuperCapacitors 
High Capacitance Cylindrical SuperCapacitors
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RATINGS & PART NUMBER REFERENCE  

QUALIFICATION TEST SUMMARY  
Test Test Method Parameter Limits

Life Cycle Capacitors are cycled between rated voltage and half-rated voltage under constant 
current at +25°C for 500,000 cycles

Capacitance Change 
ESR 

Appearance

≤30% of initial spec value
≤2 times initial spec value

No remarkable defects

High Temperature 
Load Life

Temperature: +65°C
Capacitance Change 

ESR 
Appearance

≤30% of initial spec value
≤2 times initial spec value

No remarkable defects
Voltage: Rated Voltage

Test Duration: 2,000 hours

Storage Temperature 
Characteristics

Storage Duration: 1 year
Capacitance Change 

ESR 
Appearance

≤30% of initial spec value
≤2 times initial spec value

No remarkable defects
No Load

Temperature: +25°C

Vibration Resistance

Amplitude: 1.5mm
Capacitance Change 

ESR 
Appearance

≤30% of initial spec value
≤2 times initial spec value

No remarkable defects
Frequency: 10 ~ 55Hz

Direction: X, Y, Z for 2 hours each

Humidity

Voltage: Rated Voltage

Capacitance Change 
ESR 

Appearance

≤30% of initial spec value
≤2 times initial spec value

No remarkable defects

RH: 90%

Temperature: +60°C

Test Duration: 1,500 hours

SCC Series SuperCapacitors 
High Capacitance Cylindrical SuperCapacitors

AVX Part Number Diameter 
(mm)

Length 
(mm)

Rated 
Capacitance 

(F)

Capacitance 
Tolerance

Rated 
Voltage 

(V)

Rated 
Temperature 

(°C)

DCL Max @ 
72 Hrs (µA)

ESR Max 
@ 1000 Hz 

(mΩ)

ESR Max @ 
DC (mΩ)

Peak 
Current (A)

Power 
Density 
(W/kg)

Max Energy 
(Wh)

Energy 
Density 
(Wh/kg)

Radial Lead

SCCQ12B105PRB 6.3 12 1 +100%/-0% 2.7/2.3* 65/85* 6 200 500 0.90 2692 0.0010 1.56

SCCR12B105PRB 8 12 1 +100%/-0% 2.7/2.3* 65/85* 6 150 500 0.90 1842 0.0010 1.07

SCCR16B205PRB 8 16 2 +100%/-0% 2.7/2.3* 65/85* 10 100 360 1.57 2113 0.0020 1.76

SCCR20B335PRB 8 20 3.3 +100%/-0% 2.7/2.3* 65/85* 12 95 290 2.28 2080 0.0033 2.30

SCCS20B505PRB 10 20 5 +100%/-0% 2.7/2.3* 65/85* 15 70 180 3.55 2314 0.0051 2.41

SCCS25B705PRB 10 25 7 +100%/-0% 2.7/2.3* 65/85* 20 60 150 4.61 2243 0.0071 2.73

SCCS30B106PRB 10 30 10 +100%/-0% 2.7/2.3* 65/85* 30 40 75 7.71 3763 0.0101 3.27

SCCT20B106PRB 12.5 20 10 +100%/-0% 2.7/2.3* 65/85* 30 50 75 7.71 3431 0.0101 2.98

SCCT30B156SRB 12.5 30 15 +30%/-10% 2.7/2.3* 65/85* 50 35 80 9.20 2430 0.0152 3.38

SCCU25B256SRB 16 25 25 +30%/-10% 2.7/2.3* 65/85* 60 27 50 15.00 2397 0.0253 3.47

SCCU30B356SRB 16 30 35 +30%/-10% 2.7/2.3* 65/85* 70 20 40 19.69 2514 0.0354 4.07

SCCT47B406SRB 12.5 47 40 +30%/-10% 2.7/2.3* 65/85* 75 19 29 25.00 4022 0.0405 5.40

SCCV40B506SRB 18 40 50 +30%/-10% 2.7/2.3* 65/85* 75 18 20 33.75 3365 0.0506 3.89

SCCV60B107SRB 18 60 100 +30%/-10% 2.7/2.3* 65/85* 260 15 18 48.21 2430 0.1013 5.06

Solder Pin Lead

SCCW45B107SSB 22 45 100 +30%/-10% 2.7/2.3* 65/85* 260 8 12 61.36 3391 0.1013 4.71

SCCX50B207SSB 30 50 200 +30%/-10% 2.7/2.3* 65/85* 600 6 9 96.43 2461 0.2025 5.13

SCCY62B307SSB 35 62 300 +30%/-10% 2.7/2.3* 65/85* 650 6 9 109.46 1262 0.3038 3.94

SCCY68B407SSB 35 68 400 +30%/-10% 2.7/2.3* 65/85* 1000 4 5 180.00 2046 0.4050 4.74

Cylindrical Lug Lead

SCCZ1EB308SCB 60 138 3000 +30%/-10% 2.7/2.3* 65/85* 5200 0.2 0.29 2165.78 6033 3.0375 6.08

*with appropriate voltage derating operating temperature can be extended to 85°C
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SCC Series SuperCapacitors 
High Capacitance Cylindrical SuperCapacitors
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D
(mm)

P
 (mm)

d
 (mm)

6.3 2.3 0.6
8 3.5 0.6
10 5.5 0.6

12.5 5.5 0.6
16 7.5 0.8
18 8 0.8

Style B (mm)
A1 4
C1 2

Solder Temperature
(ºC)

Suggested Solder
 Time (s)

Maximum Solder
 Time (s)

220 7 9
240 7 9
250 5 7
260 3 5

4mm  

D1  Φ34  

M16X1.0  

(-) Negative Polarity  

L±2mm  

Vent  

4mm  

D2  

M16X1.0  

L ±2mm  

D±1.0mm  

Vent  

1.6±0.05mm  

7±1.0mm  

10±0.5mm  

(-) Negative Polarity  

Radial Lead Type 1F – 100F  
MECHANICAL SPECIFICATIONS  

Solder Pin Type 2 pin 100F, 200F Part  

Cylindrical Type 3000F Part  

SOLDERING RECOMMENDATIONS 
When soldering SuperCapacitors to a PCB, the temperature & 
time that the body of the SuperCapacitor sees during soldering 
can have a negative effect on performance. We advise following 
these guidelines: 
• Do not immerse the SuperCapacitors in solder. Only the leads 

should come in contact with the solder. 
• Ensure that the body of the SuperCapacitor is never in contact 

with the molten solder, the PCB or other components during 
soldering. 

• Excessive temperatures or excessive temperature cycling 
during soldering may cause the safety vent to burst or the 
case to shrink or crack, potentially damaging the PCB or other 
components, and significantly reduce the life of the capacitor. 

HAND SOLDERING 
Keep distance between the SuperCapacitor body and the tip of 
the soldering iron and the tip should never touch the body of the 
capacitor. Contact between SuperCapacitor body and soldering 
iron will cause extensive damage to the SuperCapacitor, 
and change its electrical properties. It is recommended that 
the soldering iron temperature should be less than 350°C, 
and contact time should be limited to less than 4 seconds. 
Too much exposure to terminal heat during soldering can 

Solder Pin Type 4 pin 300F, 400F Part  

Radial Bent Lead Type  

REFLOW SOLDERING 
Infrared or conveyor over reflow techniques can be used on 
these SuperCapacitors. Do not use a traditional reflow oven 
without clear rated reflow temperature for SuperCapacitors.  

cause heat to can cause heat to transfer to the body of the 
SuperCapacitor, potentially damaging the electrical properties of 
the SuperCapacitor. 

WAVE SOLDERING 
Only use wave soldering on Radial type SuperCapacitors. The 
PCB should be preheated only from the bottom and for less than 
60 seconds, with temperature at, or below, 100°C on the top 
side of the board for PCBs equal to or greater than 0.8 mm thick.  

SCC Series SuperCapacitors 
High Capacitance Cylindrical SuperCapacitors
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(V) VR 

V1  

V2  
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V3 ESR Drop  

DC 
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+  

-  
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+  -  
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1  

VR  

0  

Step 1  

I1  

Step 2  

t1  
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V2  

V1  
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V3  
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I2  

t4  t5  
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t6  
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V6  

t7  
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t8  

Step 4  

t9  

V9  

V10  

Step 5  

 I2  

t10  

Step 6  

t11  

V11  

t12  

TEST METHODS 
IEC Capacitance Test Method 
• Capacitance is measured using a Keithley 2400 or 2602 Meter 
• Procedure 

• Charge Capacitor to Rated Voltage at room temperature 
• Disconnect parts from voltage to remove charging effects 
• Discharge cells with a constant current I determined by  

4 * C * VR 
• Noting V1, t1, V2, t2  and performing the calculation for C  

Voltage  

t1 t2 Times (s) 

I – Discharge Current [mA], 4 * C * VR VR – Rated Voltage 
V1 – Initial Test Voltage, 80% of VR 

V2 – Final Test Voltage, 40% of VR 

t1 – Initial Test time 
t2 – Final Test time 
C = I * (t2 – t1) / (V1 – V2) 

DCL Measurement @ 25°C 
• DCL is measured using a Multimeter with high internal impedance 

across a resistor 
• Charge Capacitor to Rated Voltage at room temperature  
  for 72 Hours 
• Disconnect parts from Voltage by opening switch 1  
  (Stabilize for 10 Min) 
• Measure Voltage across a known Valued Resistor (1K Ohm) 
• Calculate DCL = V/R  

Initial ESR Measurement @ 25°C 
• Using an Agilent 4263B LCR Meter and a Kelvin connection 

• Measure at frequency of 1000 Hz 
• Measurement Voltage of 10mV 

DC ESR Measurement 
• Six steps capacity and ESRDC Test Method is used as illustrated in 

the figure right. 
• Tests are carried out by charging and discharging the capacitor 

for two cycles at rated voltage and half rated voltage 
• C = (CDC1+CDC2) / 2 
• ESRDC = (ESRDC1 + ESRDC2) / 2 

Where: CDC1 = I2*(t5-t4)/(V3-V4) 
CDC2 = I2*(t11-t10)/V9-V10) 
ESRDC1 = (V5-V4)/I2 
ESRDC2 = (V11-V10)/I2 
I1 = I2 = 75mA/F  

Maximum Operating Current 
• This is the maximum current when capacitor temperature rise of the 

capacitor during its operation is less than 15°C 

Maximum Peak Current 
• This is the maximum current in less than 1 sec 

Watt Density 
• Watt Density = (0.12*V² / RDC) / mass 

Energy Density 
• Energy density = (½ CV²) / (3600*mass)  

SCC Series SuperCapacitors 
High Capacitance Cylindrical SuperCapacitors
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POLARITY / REVERSE VOLTAGE 
In principal the positive and negative electrodes of the 
SuperCapacitors are symmetrical and in theory they should not 
have a polarity but for product consistency and for optimum 
performance the negative polarity is marked because the capacitors 
do not discharge completely when in use. It is recommended that 

the polarity should be used as marked. If the polarity is reversed 
the circuit will not have a catastrophic failure but the circuit will 
see a much higher leakage current for a short duration of time 
and the life time of the SuperCapacitors will be reduced.  

LIFE TIME AND TEMPERATURE PERFORMANCE  
The life of a SuperCapacitor is impacted by a combination of 
operating voltage and the operating temperature according to the 
following equation: 

time to failure, t ∞ Vn * exp (-Q / k*T) …………..(1) 
where V is the voltage of operation, Q is the activation energy in 
electron volts (eV), k is the Boltzmann’s constant in eV and T is the 
operating temperature in °K (where K is in degrees Kelvin). Typical 
values for the voltage exponent, n, is between 2.5 - 3.5, and Q is 
between 1.0 - 1.2 eV in the normal operating temperature range of 
40° to 65°C.  

The industry standard for SuperCapacitor end of life is when the 
equivalent series resistance, ESR, increases to 200% of the original 
value and the capacitance drops by 30%. Typically a super-
capacitance shows an initial change in the ESR value and then 
levels off. If the capacitors are exposed to excessive temperatures 
the ESR will show a continuous degradation. In the extreme case, if 
the temperatures or voltages are substantially higher, than the rated 
voltage, this will lead to cell leakage or gas leakage and the product 
will show a faster change in the ESR which may increase to many 
times the original value.  

Expected Lifetime at Various Voltages  
SCC Series, 2.7V Rated   

Expected Lifetime at Various Voltages  

SCC Series, 2.3V Rated   

MTTF (years)  

SCC Series SuperCapacitors 
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SAFETY RECOMMENDATIONS 
Warnings 
• To Avoid Short Circuit, after usage or test, SuperCapacitor 

voltage needs to discharge to ≤ 0.1V 
• Do not Apply Overvoltage, Reverse Charge, Burn or Heat 

Higher than 150°C, explosion-proof valve may break open 
• Do not Press, Damage or disassemble the SuperCapacitor, 

housing could heat to high temperature causing Burns 
• If you observe Overheating or Burning Smell from the capacitor 

disconnect Power immediately, and do not touch 

Emergency Applications 
• If Housing is Leaking: 

• Skin Contact: Use soap and water thoroughly to wash the 
area of the skin 

• Eye Contact: Flush with flowing water or saline, and 
immediately seek medical treatment 

• Ingestion: Immediately wash with water and seek medical 
treatment 

Transportation 
Not subjected to US DOT or IATA regulations 
UN3499, <10Wh, Non-Hazardous Goods 
International shipping description –  

“Electronic Products – Capacitor” 

Licenced by CAP-XX  

Regulatory 
• UL 810A 
• RoHS Compliant 
• Reach Compliant / Halogen Free 

Storage 
• Capacitors may be stored within the operating temperature range 

of the capacitor 
• Lower storage temperature is preferred as it extends the shelf life 

of the capacitor 
• Do Not Store the SuperCapacitors in the following Environments 

• High Temperature / High Humidity environments  
>70°C / 40% RH 

• Direct Sunlight 
• In direct contact with water, salt oil or other chemicals 
• In direct contact with corrosive materials, acids, alkalis, or 

toxic gases 
• Dusty environment 
• In environment with shock and vibration conditions  

SCC Series SuperCapacitors 
High Capacitance Cylindrical SuperCapacitors
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Revision: 21-Mar-18 1 Document Number: 28449
For technical questions, contact: energystorage@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Ruggedized Electrical Double Layer Energy Storage Capacitors

Image is not to scale

FEATURES
• Polarized energy storage capacitor with high 

capacity and energy density
• Rated voltage: 2.7 V
• Available in through-hole (radial) version
• Useful life: 2000 h at 85 °C
• Ruggedized for high humidity operation
• Rapid charge and discharge
• Maintenance-free, no service necessary
• Material categorization: for definitions of compliance 

please see www.vishay.com/doc?99912

APPLICATIONS
• Power backup
• Burst power support
• Storage device for energy harvesting
• Micro UPS power source
• Energy recovery

MARKING
The capacitors are marked (where possible) with the 
following information:
• Rated capacitance (in F)
• Rated voltage (in V)
• Date code, in accordance with IEC 60062
• Code indicating factory of origin
• Logo of manufacturer
• Negative terminal identification
• Series number (225)

PACKAGING
Supplied in ESD trays.

Note
(1) Preferred case size

QUICK REFERENCE DATA
DESCRIPTION VALUE

Nominal case sizes
(Ø D x L in mm)

16 x 20, 16 x 25, 16 x 31, 18 x 25,
18 x 20, 18 x 31, 18 x 35, 18 x 40

Rated capacitance range, CR 20 F to 60 F

Rated voltage, UR
(65 °C / 85 °C) 2.7 V / 2.3 V

Category temperature range -40 °C to +85 °C

Biased humidity at
85 °C / 85 % RH 1500 h

Useful life at 85 °C 2000 h

Useful life at 20 °C > 10 years

Shelf life at 20 °C 2 years

Cycle life > 500 000 cycles

SELECTION CHART FOR CR, UR, AND RELEVANT NOMINAL CASE SIZES (Ø D x L in mm)
CR (F) UR (V) = 2.7 V

20 16 x 20

25 16 x 25; 18 x 20

30 18 x 25

35 16 x 31

40 18 x 31 (1)

50 18 x 35

60 18 x 40
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DIMENSIONS in millimeters AND AVAILABLE FORMS 

Fig. 1 - Form CA: Long leads

Table 1

Note
• Unless otherwise specified, all electrical values in Table 2 apply 

at Tamb = 20 °C, P = 86 kPa to 106 kPa and RH = 45 % to 75 %

ORDERING EXAMPLE
Capacitor series 225 EDLC-R

40 F / 2.7 V

Nominal case size: Ø 18 mm x 31 mm; Form CA

Ordering code: MAL222591001E3

Table 2

Notes
(1) UCT = rated voltage at upper category temperature
(2) Rated capacitance CR and ESRDC

DIMENSIONS in millimeters, MASS, AND PACKAGING QUANTITIES
NOMINAL CASE SIZE

Ø D x L CASE CODE Ø d Ø Dmax. Lmax. F MASS
(g)

PACKAGING QUANTITIES
FORM CA IN TRAY

16 x 20 19a 0.8 16.5 22 7.5 ± 0.5  6.0 200
16 x 25 19 0.8 16.5 27 7.5 ± 0.5  8.0 200
18 x 20 1820 0.8 18.5 22 7.5 ± 0.5  7.0 200
18 x 25 1825 0.8 18.5 27 7.5 ± 0.5  10.0 200
16 x 31 20 0.8 16.5 33.5 7.5 ± 0.5  9.0 200
18 x 31 1831 0.8 18.5 33.5 7.5 ± 0.5  12.5 200
18 x 35 22 0.8 18.5 37.5 7.5 ± 0.5  14.5 200
18 x 40 1840 0.8 18.5 42.5 7.5 ± 0.5  16.5 150

Ø D

L

F

Ø d

5
min.

15
min.

ELECTRICAL DATA
SYMBOL DESCRIPTION

CR Rated capacitance, tolerance -20 % / +50 %
IP Max. peak current
IL Max. leakage current after 0.5 h / 72 h at UR

ELECTRICAL DATA AND ORDERING INFORMATION

UR
(V)

UCT (1)

(V)
US
(V)

(< 1 s)

CR (2)

100 Hz
(F)

NOMINAL
CASE SIZE

Ø D x L
(mm)

MAX.
ESRDC (2)

INITIAL
(m)

MAX.
ESRAC

INITIAL,
1 kHz
(m)

IP
MAX.
PEAK

CURRENT
(A)

IL
MAX.

LEAKAGE
CURRENT

AFTER

STORED
ENERGY
E AT UR

(Wh)

SPECIFIC
ENERGY
Ed AT UR
(Wh/kg)

ORDERING
CODE

MAL2225.......
(mA) (μA)

65 °C 85 °C 65 °C 85 °C 0.5 h 72 h 65 °C 85 °C 65 °C 85 °C

2.7 2.3 2.85 20 16 x 20 24 18 25 20 8 75 0.020 0.015 3.4 2.3 91003E3

2.7 2.3 2.85 25 16 x 25 22 16 25 20 8 75 0.025 0.018 3.2 2.3 91006E3

2.7 2.3 2.85 25 18 x 20 20 15 25 20 8 75 0.025 0.018 3.6 2.6 91004E3

2.7 2.3 2.85 30 18 x 25 19 13 30 25 12 140 0.030 0.022 3.0 2.2 91007E3

2.7 2.3 2.85 35 16 x 31 20 14 30 25 15 200 0.035 0.026 3.8 2.9 91002E3

2.7 2.3 2.85 40 18 x 31 18 12 35 30 20 200 0.041 0.029 4.1 3.0 91001E3

2.7 2.3 2.85 50 18 x 35 15 10 35 30 25 250 0.051 0.037 3.5 2.6 91008E3

2.7 2.3 2.85 60 18 x 40 13 9 35 30 30 300 0.061 0.044 3.7 2.7 91009E3
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Table 3

Notes
• General remark: temperatures to be measured at capacitor case
(1) Conditions: electrical measurements at 20 °C, unless otherwise specified
(2) Rated capacitance CR and ESRDC

RUGGEDIZED FOR HIGH HUMIDITY - BIASED HUMIDITY TESTING
PARAMETER PROCEDURE (AT RATED VOLTAGE) REQUIREMENTS

Humidity (relative) 85 %

After loading the capacitor for the specified time at maximum 
category temperature Tmax. = 85 °C and 85 % relative humidity, 
and related permissible maximum operating voltage UR = 2.3 V, 
following parameters are valid within a timeframe of 1000 h:

No visible damage
No leakage of electrolyte
C/C: within ± 30 % of minimum initial specified value
ESR: less than 3 x initial specified value
Leakage: less than initial specified value

Temperature 85 °C

TEST PROCEDURES AND REQUIREMENTS (1)

NAME OF TEST PROCEDURE
(quick reference)

Capacitance CR and ESRDC Measured by DC discharging method as described in “Measuring of Characteristics”. (2)

Maximum peak current

Non-repetitive current for maximum 1 s at specified operating temperature.
Maximum operating voltage (refer to derating table) must not be exceeded.
Usually to be tested with constant current discharge from UR to 0.5 x UR. 
Maximum current should not be used in normal operation and is only provided as reference value.

Leakage current IL
Measured at UR. Capacitor is charged to the rated voltage at 20 °C. Leakage current is the current at specified 
time that is required to keep the capacitor charged at the rated voltage.

Endurance 

After loading the capacitor for specified time at maximum category temperature Tmax. = 85 °C and related 
permissible maximum operating voltage UR = 2.3 V, following parameters are valid within a timeframe of    
1000 h:
Capacitance Within ± 30 % of minimum initial specified value
ESR Less than 3 x initial specified value
Leakage Within specified value

Useful life

After loading the capacitor for specified time at maximum category temperature Tmax. = 85 °C and related 
permissible maximum operating voltage UR = 2.3 V, following parameters are valid within a timeframe of    
2000 h:
Capacitance Within ± 50 % of minimum initial specified value
ESR Less than 4 x initial specified value
Leakage Within specified value

Storage at upper
category temperature

After loading the capacitor of specified time at maximum category temperature Tmax. = 85 °C and without 
charge and under 40 % RH, following parameters are valid within a timeframe of 1000 h:
Capacitance Within ± 30 % of minimum initial specified value
ESR Less than 3 x initial specified value
Leakage Within specified value

Shelf life Stored uncharged at 20 °C.
Parameter within initial specification

Cycle life 

Cycles at 20 °C between rated voltage and half of rated voltage UR with constant current 3 A and 1 s rest 
between charge and discharge: > 500 000 cycles
Capacitance Within ± 30 % of minimum initial specified value
ESR Less than 3 x initial specified value

Stored energy E,
specific energy Ed and Ev

E [Wh]  = ½ x C x (UR)2 x 1/3600
Ed [Wh/kg] = ½ x C x (UR)2 x 1/3600 x 1/mass
Ev [Wh/L] = ½ x C x (UR)2 x 1/3600 x 1/volume

Soldering Hand or wave soldering allowed. For details refer to soldering requirements for radial aluminum electrolytic 
capacitors in supplementary document.

Cleaning For printed circuit board cleaning apply non-aggressive cleaning agents only.
For details refer to cleaning requirements for aluminum electrolytic capacitors in supplementary document.

Environmental conditions

Do not expose capacitors to
• temperatures outside specified range
• high humidity atmospheres; except series 225 which is ruggedized for high humidity 85 °C and 85 % RH
• corrosive atmospheres, e.g. halogenides, sulphurous or nitrous gases, acid or alkaline solutions, etc.
• environments containing oil and grease
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MEASURING OF CHARACTERISTICS

CAPACITANCE (C)
Capacitance shall be measured by constant current 
discharge method.

- Constant current charge with 10 mA/F to UR

- Constant voltage charge at UR for 5 min

- Constant current discharge with 10 mA/F to 0.1 V

Fig. 2 - Voltage Diagram for Capacitance Measurement

Capacitance value CR is given by discharge current ID, time 
t and rated voltage UR, according to the following equation:

EQUIVALENT SERIES RESISTANCE (ESRDC)
- Constant current charge to UR

- Constant voltage charge at UR for 5 min

- Constant current discharge to 0.1 V

























Statements about product lifetime are based on calculations and internal testing. They should only be interpreted as estimations. Also due to external factors, the 
lifetime in the field application may deviate from the calculated lifetime. In general, nothing stated herein shall be construed as a guarantee of durability.

CR Rated capacitance, in F
UR Rated voltage, in V
U1 Starting voltage, 0.8 x UR in V
U2 Ending voltage, 0.4 x UR in V
U3 Voltage drop at internal resistance, in V

t1
Time from start of discharge until voltage U1 is 
reached, in s

t2
Time from start of discharge until voltage U2 is 
reached, in s

ID Absolute value of discharge current, in A

UR

U1

U2

t1 t2

ΔU3

(s)30 min

CR F 
ID A  x t2 s  - t1 s  

U1 V  - U2 V 
---------------------------------------------------------------=

ESRDC Equivalent series resistance, in 
UR Voltage drop at internal resistance, in V

ID Absolute value of discharge current, in A

ESRDC  
U3 V 
ID A 

---------------------=
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Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE 
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. 

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, 
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other 
disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or 
the continuing production of any product.  To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all 
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, 
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular 
purpose, non-infringement and merchantability. 

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of 
typical requirements that are often placed on Vishay products in generic applications.  Such statements are not binding 
statements about the suitability of products for a particular application.  It is the customer’s responsibility to validate that a 
particular product with the properties described in the product specification is suitable for use in a particular application. 
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over 
time.  All operating parameters, including typical parameters, must be validated for each customer application by the customer’s 
technical experts.  Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, 
including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining 
applications or for any other application in which the failure of the Vishay product could result in personal injury or death. 
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. 
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for 
such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document 
or by any conduct of Vishay.  Product names and markings noted herein may be trademarks of their respective owners.

© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED
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XV Supercapacitor
Cylindrical snap-in

Description

Eaton supercapacitors are unique, ultra-high 
capacitance devices utilizing electrochemical 
double layer capacitor (EDLC) construction 
combined with new, high performance materials. 
This combination of advanced technologies 
allows Eaton to offer a wide variety of capacitor 
solutions tailored to specific applications that 
range from a few microamps for several days to 
several amps for milliseconds.

Features and benefits

• Over 10-year operating life at room temperature
• Ultra low ESR for high power density
• Large capacitance for high energy density
• Long cycle life
• UL Recognized

Applications

• Hybrid battery or fuel cell systems
• High pulse current applications
• UPS / hold up power

Pb
HALOGEN

HF
FREE
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Specifications

Capacitance 300 F to 600 F

Working voltage 2.7 V

Surge voltage 2.85 V

Capacitance tolerance -5% to +10%

Operating temperature range -40 °C to +65 °C

Extended operating temperature range -40 °C to +85 °C (with voltage derating to 2.3 V @ +85 °C)

Standard Product1 

Capacitance (F) Part Number

Max. initial 
DC ESR (mΩ) 
(Equivalent Series 
Resistance)

Max continuous 
current2 (A)

Peak  
current3 (A)

Max leakage 
current4 (mA)

Max 
power5 (W)

Stored 
energy6 
(Wh)

Typical 
mass (g)

300 XV3550-2R7307-R 4.5 20 160 0.60 410 0.30 62

400 XV3560-2R7407-R 3.2 26 220 0.85 570 0.41 72

600 XV3585-2R7607-R 2.6 33 320 1.30 790 0.60 108
 
1. Capacitance, ESR and Leakage current are all measured according to IEC 62391-1 at +20 °C
2. 15 °C Temperature Rise
3. Peak Current is for 1 second = 1⁄2 Working Voltage x Capacitance / (1 + DC ESR x Capacitance) 
4. Leakage current measured after 72 hours, +20 °C
5. Max. Power = Working Voltage2 / 4 / DC ESR
6. Stored energy = 1⁄2 Capacitance x Working Voltage2 / 3600

Performance

Parameter
Capacitance Change  
(% of initial value)

ESR  
(% of max. initial value)

Life

@ Max. operating voltage and temp) 1500 hours ≤ 20% ≤ 200%

Charge/discharge cycling1 500,000 ≤ 20% ≤ 200%

Storage Life- uncharged

-40 °C to +65 °C 1500 hours ≤ 20% ≤ 200%

≤ 30 °C 3 years ≤ 5% ≤ 10%

1. Cycling between max operating and 50% of max operating voltage at room temperature
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Dimensions (mm)

Part Number L ±1.0

XV3550-2R7307-R 53

XV3560-2R7407-R 63

XV3585-2R7607-R 87.5
 

Part Numbering System
XV 3560 - 2R7 40 7 -R

Family Code Size reference- mm
Diameter            Length

Voltage (V) 
R = Decimal

Capacitance (μF)

Standard product

Value Multiplier

XV = Family Code 35 60 2R7= 2.7 V Example: 407= 40 x 107μF or 400 F

Packaging Information

• Standard packaging: 20 pieces per box

Part Marking

• Manufacturer
• Capacitance (F)
• Max operating voltage (V) 
• Series code (or part number) 
• Polarity

120.0°

24.2 0 ±1.00 D

22.5 0 ±1.00 E

Negative Terminal

Positive Terminal

Blank Terminal
For Mechanical Support

0.95

1.50

 6.00 ±1.0 0
 L 

C

35.00 ±1.0 0 A

PCB patterns:
4- 2.0 dia ±0.1
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Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written  
approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly  
used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Wave solder profile

Profile Feature Standard SnPb Solder Lead (Pb) Free Solder

Preheat and soak      • Temperature max. (Tsmax) 100 °C 100 °C

• Time max. 60 seconds 60 seconds

D preheat to max Temperature 160 °C max. 160 °C max.

Peak temperature (TP)* 220 °C – 260 °C 250 °C – 260 °C

Time at peak temperature (tp) 10 seconds max  
5 seconds max each wave

10 seconds max  
5 seconds max each wave

Ramp-down rate ~ 2 K/s min  
~3.5 K/s typ  
~5 K/s max

~ 2 K/s min  
~3.5 K/s typ  
~5 K/s max

Time 25 °C to 25 °C 4 minutes 4 minutes

Manual solder

+350 °C, 4-5 seconds. (by soldering iron), generally manual, hand soldering is not recommended.

Cleaning/Washing

Avoid cleaning of circuit boards, however if the circuit board must be cleaned use static or ultrasonic immersion in a standard circuit board 
cleaning fluid for no more than 5 minutes and a maximum temperature of +60 °C. Afterwards thoroughly rinse and dry the circuit boards. In 
general, treat supercapacitors in the same manner you would an aluminum electrolytic capacitor.

Te
m

pe
ra

tu
re

 

Time 

Tsmin

Tsmax 
Tstyp 

Tp 

tp 

First Wave Second Wave 

Preheat area Cool down area 
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- High power density (Low ESR)

- Over 500,000 cycle life (semi-permanent)

- Higher energy density compared with 2.7V caps

- RoHS compliant

D 8 10, 13 16, 18

d 0.6 0.8

P 3.5 5.0 7.5

Drawing

FEATURES

3.0V SERIES - Lead terminal

SPECIFICATION

L ± 1.5 19 Min.

15 Min.Ø
D

 +
 1

.0
M

a
x

.

Safety Vent

Ø d ±0.1

P
 ±

0
.5

(+) Positive polarity

(-) Negative polarity

ITEM CHARACTERISTICS

Product series EDLC

Rated Voltage (VR) 3.0V

Operating Temperature -40 ~ +65℃

Capacitance Tolerance -10 ~ +30%

High Temperature

Load Life

After 1,000 hours at VR loaded under +65℃, capacitors meet the following criteria.

Capacitance Change ≤ 30% of initial value

ESR ≤ 2 times of specified value

85℃ Higher Temperature Max. 2.4V

Cycle Life 

Characteristics

Cycle Over 500,000

△C ≤ 30% of initial value

ESR ≤ 2 times of specified value

Method Cycle of Charge/discharge from VR to 1/2VR

Shelf Life
2 Years 

No Electrical Charge, Temperature below 70℃
(△C : ≤ 10% of initial value / △ESR : ≤ 50% of specified value)
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Part Number
Rated

Voltage 
(V)

Capacitance
(F)

ESR (mΩ) Max.
Current

(A)

Leakage
Current

(㎃, 72hr)

Size (㎜)
Weight

(g)
Volume

(mℓ)AC(1㎑) DC D × L

VEC 3R0 105 QG

3.0

1 145 220 1.0 0.003 08 × 13 1.1 0.7 

VEC 3R0 155 QG 1.5 95 140 1.5 0.005 08 x 20 1.4 1.0 

VEC 3R0 335 QG 3.3 70 105 3.5 0.010 08 x 20 1.5 1.0 

VEC 3R0 505 QD 5 40 70 5.5 0.015 08 x 25 1.8 1.3 

VEC 3R0 505 QG 5 65 100 5.0 0.015 10 x 20 2.1 1.6 

VEC 3R0 705 QG 7 65 110 5.5 0.021 10 x 20 2.2 1.6 

VEC 3R0 106 QA 10 35 60 9.0 0.030 10 x 25 2.6 2.0 

VEC 3R0 106 QG 10 25 40 10.0 0.030 10 x 30 3.2 2.4 

VEC 3R0 156 QG 15 30 45 13.0 0.045 13 x 25 4.5 3.3

VEC 3R0 256 QG 25 20 30 21.0 0.075 16 x 25 7.2 5.0 

VEC 3R0 506 QG 50 12.5 19 38.0 0.150 18 x 40 12.5 10.2 

VEC 3R0 606 QG 60 12.5 19 42.0 0.180 18 x 40 13.5 10.2

* Max. Current  : 1 sec. discharge to 1/2VR

* When do module more than 2 series, please fully discharge over 1 hour first, then assemble right after within 1 hour.

3.0V SERIES - Lead terminal
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L ± 2.0

Ø
D

 +
 1

.5
M

a
x

.

Safety Vent

1
0
 ±

0
.2

(+) Positive polarity

(-) Negative polarity

(PCB-Pattern 2-Ø )6 ± 1.0

SPECIFICATION

FEATURES

Drawing

3.0V SERIES – Snap-in terminal

ITEM CHARACTERISTICS

Product series EDLC

Rated Voltage (VR) 3.0V

Operating Temperature -40 ~ +65℃

Capacitance Tolerance -10 ~ +30%

High Temperature

Load Life

After 1,000 hours at VR loaded under +65℃, capacitors meet the following criteria.

Capacitance Change ≤ 30% of initial value

ESR ≤ 2 times of specified value

85℃ Higher Temperature Max. 2.4V

Cycle Life 

Characteristics

Cycle Over 500,000

△C ≤ 30% of initial value

ESR ≤ 2 times of specified value

Method Cycle of Charge/discharge from VR to 1/2VR

Shelf Life
2 Years 

No Electrical Charge, Temperature below 70℃
(△C : ≤ 10% of initial value / △ESR : ≤ 50% of specified value)

- High power density (Low ESR)

- Over 500,000 cycle life (semi-permanent)

- Higher energy density compared with 2.7V caps

- RoHS compliant
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Part Number
Rated

Voltage 
(V)

Capacitance
(F)

ESR (mΩ) Max.
Current

(A)

Leakage
Current

(㎃, 72hr)

Size (㎜)
Weight

(g)
Volume

(mℓ)AC(1㎑) DC D × L

VEC 3R0 107 QG

3.0

100 6.0 10.0 75.0 0.300 22×45 20.0 17.1

VEC 3R0 367 QG 360 3.0 4.5 200.0 1.080 35×62 70.0 59.6

VEC 3R0 407 QG 400 3.0 4.5 210.0 1.200 35×72 80.0 69.2

VEC 3R0 507 QG 500 3.0 4.5 230.0 1.500 35×82 96.0 78.9

3.0V SERIES – Snap-in terminal

* Max. Current  : 1 sec. discharge to 1/2VR

* When do module more than 2 series, please fully discharge over 1 hour first, then assemble right after within 1 hour.
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Features

Drawing

Specification

* Max. Current  : 1 sec. discharge to 1/2VR

EDLC (Electric Double Layer Capacitor)

- High Power Density (Low ESR)

- Over 500,000 cycle life (semi-permanent)

- Higher energy density compared with 2.7V caps

- RoHS compliant

3.0V 500F (3582)

Part Number

Rated

Voltage 

(V)

Capacitance

(F)

ESR (mΩ) Max.

Current

(A)

Leakage

Current

(㎃, 72hr)

Size(mm)

AC(1㎑) DC D x L

VEC 3R0 507 QG 3.0 500 3.0 4.5 230.0 1.500 35 x 82

Item Characteristics

Product series EDLC

Rated Voltage (VR) 3.0V

Operating Temperature -40 ~ +65℃

Capacitance Tolerance -10 ~ +30%

High Temperature

Load Life

After 1,000 hours at VR loaded under +65℃, capacitors meet the following criteria.

Capacitance Change ≤ 30% of initial value

ESR ≤ 2 times of specified value

85℃ Temperature Max. 2.4V

Cycle Life 

Characteristics

Cycle Over 500,000

△C ≤ 30% of initial value

ESR ≤ 2 times of specified value

Method Cycle of Charge/discharge from VR to 1/2VR

Shelf Life

2 Years 

No Electrical Charge, Temperature below 70℃
(△C : ≤ 10% of initial value / △ESR : ≤ 50% of specified value)

D (Φ) 35 +1.5 Max

L (mm) 82 ±2.0

Z (mm) 6.0 ±1.0

P (mm) 23.0 ±0.2

Version 9.2 2019.02.21.
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FEATURES 
Very Fast Charge/Discharge – High Power Density – Lower ESR –  

RoHS Compliant 

 

 
 

APPLICATIONS 
Battery Backup/Alternative – Pulse Power – Energy Harvesting – LED 

Displays – Mechanical Actuators – Audio Systems 

 

 
 
 

Operating Temperature 
Range 

-40°C to +65°C (-40 to +85°C @ 2.3V) 

Storage Temperature -40°C to +70°C 

Capacitance Tolerance 
@ 20°C 

+30%/-10% (Q tolerance) 

Voltage 
WVDC 2.7 5.5 

 
SVDC 2.85 5.8 

Life Time 
 

1000 hours with rated voltage applied at 65°C  

Capacitance change <30% of initially measured values 

ESR <200% of initially specified values 

Leakage current <100% specified maximum value 

Shelf Life 

1000 hours with no voltage applied at 60°C  

Capacitance change <30% of initially measured values 

ESR <200% of initially specified values 

Life Cycles 
( 25°C) 1 cycle= Charge to WVDC 

for 20s, constant voltage charging 
for 10s, discharge to ½ WVDC for 

20s, rest for 10s 

500,000 cycles  

Capacitance change <30% of initially measured values 

ESR change <200% of initially specified values 

 

 
 

 
D = 8 to 18mm 

  
Lead spacing VS. Case diameter 

D 8 10 12.5 16 18 

S 3.5 5.0 5.0 7.5 7.5 

d 0.6 0.6 0.6 0.8 0.8 

α 1.5 2.0 2.0 2.0 2.0 

  L1=L+α mm  
  D1=D+05mm 
  S1=S+0.5mm 
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Sep-19 

Capacitance 100F to 350F 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
*Lead style L available for 350F  

 
Capacitance 400F to 470F 

 
 
 

 

 
 
 
 

 
 

 
5.5 Volt Parts 

 
 
 
 

 

Capacitance 
(F) 

Dims 
(LxHxT) 

(mm) 
+1.0mm 

Lead spacing 
(S) 

(mm) 
+/-0.5mm 

Lead 
diameter 

(d) 
(mm) 

0.5 17x15x8.5 12 0.6 

1 17x17x8.5 12 0.6 

1.5 17x23x8.5 12 0.6 

2.5 21x23x11 15.5 0.6 

3.5 21x27x11 15.5 0.6 

5 26x27x13 18 0.6 
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DGH High pulse power, extends
battery life

Capacitance
(F) WVDC IC PART NUMBER

MAX
Current
(A)

(1 Sec.)

Maximum
Continuous
Current (A)
(∆T=15°C)

Short
Circuit
Current
(A)

ESR AC 1
kHz
(mΩ)

DC ESR
(mΩ)
20°C

Max stored
energy
(mWh)

LC (mA),
(72 hrs)

Energy
Density
(Wh/kg)

Energy
Volumetric
Density
(Wh/l)

Power
Density
(kW/kg)

Power
Volumetric
Density
(kW/l)

0.5 5.5 DGH504Q5R5 0.982 0.6 6.875 400 800 2.101 0.008 0.955 0.855 2.063 1.847
1.0 2.7 DGH105Q2R7 0.964 0.6 6.75 200 400 1.013 0.008 0.92 1.44 1.988 3.109
1.0 5.5 DGH105Q5R5 1.833 0.7 11 260 500 4.201 0.01 1.681 1.71 2.904 2.955
1.5 5.5 DGH155Q5R5 2.845 1.2 18.333 160 300 6.302 0.012 2.101 1.896 4.033 3.641
2.0 2.7 DGH205Q2R7 1.8 0.7 10.8 130 250 2.025 0.01 1.688 2.879 2.916 4.975
2.5 5.5 DGH255Q5R5 4.167 1.3 21.154 140 260 10.503 0.016 2.02 1.977 2.685 2.628
3.0 2.7 DGH305Q2R7 2.792 1.2 18 80 150 3.038 0.012 2.17 3.023 4.166 5.804
3.3 2.7 DGH335Q2R7 2.98 1.2 18 80 150 3.341 0.014 2.228 3.325 3.888 5.804
3.5 5.5 DGH355Q5R5 6.17 1.7 34.375 110 160 14.705 0.02 2.451 2.358 3.781 3.638
5.0 2.7 DGH505Q2R7 4.091 1.3 20.769 70 130 5.063 0.016 2.531 3.225 3.365 4.286
5.0 5.5 DGH505Q5R5 8.594 2.1 45.833 80 120 21.007 0.03 2.531 2.302 3.645 3.315
6.0 2.7 DGH605Q2R7 4.5 2.3 20.7 70 130 6.08 0.016 2.89 3.86 3.2 4.3
7.0 2.7 DGH705Q2R7 6.058 1.7 33.750 55 80 7.088 0.02 2.835 3.611 4.374 5.572
10.0 2.7 DGH106Q2R7 8.438 2.4 45 40 60 10.125 0.03 3.894 5.159 5.608 7.429
10.0 2.7 DGH106Q2R7B 8.438 2.1 45 40 60 10.125 0.03 2.978 4.299 4.288 6.191
10.0 2.7 DGH106Q2R7C 8.4 3.4 45.0 40 60 10.13 0.03 3.38 5.16 4.86 7.4
15.0 2.7 DGH156Q2R7 11.571 2.4 54 30 50 15.188 0.045 3.375 4.127 3.888 4.755
20.0 2.7 DGH206Q2R7 15 2.6 67.5 30 40 20.25 0.06 3.11 4.02 3.36 4.3
25.0 2.7 DGH256Q2R7 18 3.1 77.143 25 35 25.313 0.08 2.978 5.038 2.941 4.975
30.0 2.7 DGH306Q2R7 21.3 4.0 90 22 30 30.38 0.1 3.79 5.03 3.64 4.8
50.0 2.7 DGH506Q2R7 32.143 5.2 122.727 15 22 50.625 0.14 3.616 4.976 2.84 3.909
70.0 2.7 DGH706Q2R7 39.375 5.8 135 14 20 70.875 0.16 3.938 5.573 2.43 3.439
100.0 2.7 DGH107Q2R7 61.364 8.3 225 8 12 101.25 0.3 4.821 5.922 3.471 4.264
200.0 2.7 DGH207Q2R7 90 10 270 6 10 202.5 0.7 5.192 5.732 2.243 2.476
350.0 2.7 DGH357Q2R7 212.36 18.9 771.429 3 3.5 354.375 1 5.452 6.134 3.845 4.329
350.0 2.7 DGH357Q2R7L 212.36 18.9 771.4 3 3.5 354.4 1 5.452 6.134 3.845 4.329
400.0 2.7 DGH407Q2R7 236.84 18.9 843.750 2.8 3.2 405 1 5.956 7.016 4.02 4.736
470.0 2.7 DGH477Q2R7 239.89 18.9 771.429 3 3.5 475.875 1.3 6.609 8.244 3.471 4.33
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DGH High pulse power, extends
battery life

Capacitance
(F) WVDC IC PART NUMBER Weight

(grams)
Volume
(mL)

Dims
DxL
LxHxT
(mm)

Lead
Spacing

S
(mm)

Lead
Diameter

d
(mm)

0.5 5.5 DGH504Q5R5 2.2 2.457 17x15x8.5 12 0.6
1.0 2.7 DGH105Q2R7 1.1 0.703 8x13 3.5 0.6
1.0 5.5 DGH105Q5R5 2.5 2.457 17x17x8.5 12 0.6
1.5 5.5 DGH155Q5R5 3 3.324 17x23x8.5 12 0.6
2.0 2.7 DGH205Q2R7 1.2 0.703 8x14 3.5 0.6
2.5 5.5 DGH255Q5R5 5.2 5.313 21x23x11 15.5 0.6
3.0 2.7 DGH305Q2R7 1.4 1.005 8x20 3.5 0.6
3.3 2.7 DGH335Q2R7 1.5 1.005 8x20 3.5 0.6
3.5 5.5 DGH355Q5R5 6 6.237 21x27x11 15.5 0.6
5.0 2.7 DGH505Q2R7 2 1.57 10x20 5 0.6
5.0 5.5 DGH505Q5R5 8.3 9.126 26x27x13 18 0.6
6.0 2.7 DGH605Q2R7 2.1 1.57 10x20 5 0.6
7.0 2.7 DGH705Q2R7 2.5 1.963 10x25 5 0.6
10.0 2.7 DGH106Q2R7 2.6 1.963 10x30 5 0.6
10.0 2.7 DGH106Q2R7B 3.4 2.355 12.5x25 5 0.6
10.0 2.7 DGH106Q2R7C 2.3 1.96 10x25 5 0.6
15.0 2.7 DGH156Q2R7 4.5 3.68 12.5x30 5 0.6
20.0 2.7 DGH206Q2R7 7 5.03 16x25 7.5 0.6
25.0 2.7 DGH256Q2R7 8.5 5.024 16x25 7.5 0.8
30.0 2.7 DGH306Q2R7 9.7 6.03 16x30 7.5 0.6
50.0 2.7 DGH506Q2R7 14 10.174 18x40 7.5 0.8
70.0 2.7 DGH706Q2R7 18 12.717 18x50 7.5 0.8
100.0 2.7 DGH107Q2R7 21 17.097 22x45 10 0
200.0 2.7 DGH207Q2R7 39 35.325 30x50 10 0
350.0 2.7 DGH357Q2R7 65 57.727 35x60 10 0
350.0 2.7 DGH357Q2R7L 65 57.727 35x60 18.4 0
400.0 2.7 DGH407Q2R7 68 57.727 35x60 22.5 0
470.0 2.7 DGH477Q2R7 72 57.727 35x60 22.5 0
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Dimensions: [mm]
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Properties Value Unit Tol.

Diameter Ø D 10 mm ±1.5

Length L 20 mm ±1.5

Pitch P 5 mm ±0.5

Pin Diameter Ø F 0.6 mm ±0.02

Pitch p 5 mm ±0.5

Hole Diameter Ø f 0.9 mm ±0.02

Dimensions:

Recommended Hole Pattern: [mm]

O
f

p

Schematic:

Properties Test conditions Value Unit Tol.

Capacitance C 10 mA/ F 7 F +30%/-10%

Rated Voltage UR @ 65 °C 2.7 V (DC) max.

ESR RESR DC 10 ms 45 mΩ max.

ESR RESR AC 5 mV @ 1 kHz 35 mΩ max.

Rated Discharge Current IRated 1.7 A typ.

Max. Discharge Current IMax 7.1 A typ.

Leakage Current ILeak 72 hrs. @ UR 0.02 mA typ.

Power Density P 18.92 kW/ kg typ.

Energy Density E 3.3 Wh/ kg typ.

Electrical Properties:

Storage Conditions
(in original packaging) 15 °C up to 35 °C; 10 % up to 75 % RH

Operating Temperature -40 up to +65 °C

Life Cycle 500000 Cycles

Weight m 2.1 g

Test conditions of Electrical Properties: +20 °C, 35 % RH if not specified differently

Component conform to REACh and RoHS requirements and standards

General Information:

Würth Elektronik eiSos GmbH & Co. KG
EMC & Inductive Solutions
Max-Eyth-Str. 1
74638 Waldenburg
Germany
Tel. +49 (0) 79 42 945 - 0
www.we-online.com
eiSos@we-online.com

CREATED CHECKED GENERAL TOLERANCE PROJECTION
METHOD

KaS ReKa DIN ISO 2768-1m

DESCRIPTION TECHNICAL REFERENCE

WCAP-STSC Supercapacitors
(EDLC‘s)

STP1020705Q2R7DSPB95000

ORDER CODE

850617021002
SIZE REVISION STATUS DATE (YYYY-MM-DD) BUSINESS UNIT PAGE

10.0 x 20.0 001.000 Valid 2018-11-13 eiCap 1/9

This electronic component has been designed and developed for usage in general electronic equipment only. This product is not authorized for use in equipment where a higher safety standard and reliability standard is especially required or where a failure of the product is reasonably expected to cause severe personal injury or death, unless the parties have executed an agreement specifically governing such use. Moreover Würth Elektronik eiSos GmbH
& Co KG products are neither designed nor intended for use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network etc.. Würth Elektronik eiSos GmbH & Co KG must be informed about the intent of such usage before the design-in stage. In addition, sufficient reliability evaluation checks for safety
must be performed on every electronic component which is used in electrical circuits that require high safety and reliability functions or performance.
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1st Line Supercapacitor

2nd Line EDLC Energy Capacity: 0.007 Wh

3rd Line Rated Voltage: 2.7 V (DC) , Capacitance Value: 7 F , max. Temp. 65 °C

4th Line Marking neg. Pol

5th Line WCAP-STSC

6th Line RU and Datecode YWW

Component Marking:

Test Condition Shelf Life Cycle Life Endurance

Life Time  up to 2 years after 500000 cycles 1000 h, @65°C

Voltage None UR applied UR applied

Current None IR IR

Δ C ≤ 10% of initial value ≤ 30 % of initial
measured value

≤ 30 % of initial
measured value

Δ ESR ≤ 50% of specified value ≤ 2 x ESR ≤ 2 x ESR

Comments 25°C ± 10°C / 60% ±15% RH (dry and cool condition);
discharged ≤ 0.2 V

Life Time Performance:

Additional Information:
Properties Description Formular 

Max. Discharge Current  
Imax – [A] 

is the current taking 1 sec. to discharge from 
UR to UR/2 

𝐼𝑚𝑎𝑥 =

𝑈𝑅
2⁄

1 𝑠𝑒𝑐
𝐶 + 𝑅𝑠

⁄
 

Rated Discharge Current  
IRated – [A] 

is the current taking 5 sec. to discharge from 
UR to UR/2 

𝐼𝑅𝑎𝑡𝑒𝑑 =

𝑈𝑅
2⁄

5 𝑠𝑒𝑐
𝐶 + 𝑅𝑠

⁄
 

Leakage Current  
ILeak – [mA] 

is measured at 25°C (after holding 72 h at 
UR) 

 

Power Density  
P – [kW/kg] 

impedance matched with m (kg) as net 
weight for Capacitor 

𝑃𝑚𝑎𝑥 =
𝑈𝑅

2

4 ∗ 𝑅𝑠 ∗ 𝑚
 

Energy Density  
E – [Wh/kg] 

with m(kg) as net weight for Capacitor 𝐸 =  
𝐶 ∗ 𝑈𝑅

2

2 ∗ 3600 ∗ 𝑚
 

ESR  
RESR – [mΩ] 

RESR AC: measured by contact resistance 
meter, conditions: Amplitude: 5 mV 
Frequency 1 kHz 
RESR DC: measured by constant current 
dicharge method (i.a.w. IEC62391) 
ICC: constant discharge current 

𝑅𝐷𝐶 =
∆𝑈

𝐼𝑐𝑐

 

Capacitance  
C – [F] 

ICC [A]: constant discharge current 
U1 [V]: UR x 0.8 
U2 [V]: UR x 0.4 
t1 [sec]: time at U1 
t2 [sec]: time at U2 

𝐶 =
𝑑𝑄

𝑑𝑈
= 𝐼𝑐𝑐 ∗

𝑡2 − 𝑡1

𝑈1 − 𝑈2

 

 

Würth Elektronik eiSos GmbH & Co. KG
EMC & Inductive Solutions
Max-Eyth-Str. 1
74638 Waldenburg
Germany
Tel. +49 (0) 79 42 945 - 0
www.we-online.com
eiSos@we-online.com

CREATED CHECKED GENERAL TOLERANCE PROJECTION
METHOD

KaS ReKa DIN ISO 2768-1m

DESCRIPTION TECHNICAL REFERENCE

WCAP-STSC Supercapacitors
(EDLC‘s)

STP1020705Q2R7DSPB95000

ORDER CODE

850617021002
SIZE REVISION STATUS DATE (YYYY-MM-DD) BUSINESS UNIT PAGE

10.0 x 20.0 001.000 Valid 2018-11-13 eiCap 2/9

This electronic component has been designed and developed for usage in general electronic equipment only. This product is not authorized for use in equipment where a higher safety standard and reliability standard is especially required or where a failure of the product is reasonably expected to cause severe personal injury or death, unless the parties have executed an agreement specifically governing such use. Moreover Würth Elektronik eiSos GmbH
& Co KG products are neither designed nor intended for use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network etc.. Würth Elektronik eiSos GmbH & Co KG must be informed about the intent of such usage before the design-in stage. In addition, sufficient reliability evaluation checks for safety
must be performed on every electronic component which is used in electrical circuits that require high safety and reliability functions or performance.

111



Charge & Discharge Characterictis:
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Packaging Specification - Bag and Carton: [mm]

L BAG

W
BAG

LBAG (mm) WBAG (mm) Packaging
Unit Material

typ. typ. pcs.
250,00 300,00 250 PE

W
IC

L IC

H
IC

Bag

LIC (mm) WIC (mm) HIC (mm) Packaging
Unit Material

typ. typ. typ. pcs.
287,00 202,00 195,00 1500 Paper
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H
C

L CW
C

LC (mm) WC (mm) HC (mm) No. of
inner Carton

Packaging
Unit Material

typ. typ. typ. pcs. pcs.
404,00 305,00 229,00 2 3000 Paper
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The following conditions apply to all goods within the product series of Super
Capacitors of Würth Elektronik eiSos GmbH & Co. KG:

General:

• This electronic component was designed and manufactured for use in general electronic equipment.
• Würth Elektronik must be asked for a written approval (following the certain PPAP level procedure) before incorporating the components

into any equipment in the field such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train
control, ship control), transportation signal, disaster prevention, medical, public information network etc. where higher safety and
reliability are especially required and/or if there is the possibility of direct damage or human injury.

• Electronic components that will be used in safety-critical or high-reliability applications, should be pre-evaluated by the customer.
• Direct mechanical impact to the product shall be prevented   as material of the body, pins or termination could flake or in the worst case

it could break.
• Avoid any water or heavy dust on capacitors surface, which may cause electrical leakage, damage, overheating or corrosion.
• Würth Elektronik products are qualified according to international standards, which are listed in each product reliability report. Würth

Elektronik does not guarantee any customer qualified product characteristic, beyond Würth Elektronik specifications, for its validity and
sustainability over time.

• The customer is responsible for the functionality of their own products. All technical specifications for standard products also apply to
customer specific products.

• The component was designed and manufactured to be used within the datasheet specified values. If the usage and operation conditions
specified in the datasheet are not met, the body, pins or termination may be damaged or dissolved.

• Do not apply any kind of flexural or compressive force onto soldered or unsoldered component.
• The capacitance tolerance as specified within the datasheet is only valid on the date of delivery and according specified measurement

criteria.

Product specific:

Polarity:

The product has a polarity. In operation this polarity needs to be considered and adhered. Reverse voltage can damage or destroy the
product. The polarity is marked with a stripe and the word NEG as well as a negative sign on the lateral surface of the capacitor.

Overvoltage:

Avoid any overvoltage and do not apply a continuous overvoltage. If an overvoltage is applied to the capacitor, the leakage current can
increase drastically. The applied working voltage is not allowed to exceed the rated working voltage of the specific capacitor.

Operating Temperature:

The capacitor shall not be operated above the operating temperature, which is stated within this datasheet of the specific capacitor. The
achievable lifetime of the capacitor is correlating to the applied temperature. In order to achieve the maximum lifetime, the capacitor should
be operated by the lowest possible temperature conditions within the application. During charging and discharging in a short cycles, self-
heating is generated by internal resistance. The operating temperature should not exceed the above stated operating temperature, including
any self-heating.

Charge and Discharge:

Frequent and quick charge / discharge cycles may generate heat inside the capacitor. Do not exceed the above stated discharge current.
Exceeding the maximal current, stated above, can cause a decrease of capacitance, an increase of leakage current or breakdown. For
assistance with your application please consult our technical support.

Storage Conditions:

The storage conditions for a capacitor are recommended to be as given above. Do not expose the capacitor to environments with hazardous
gas, ozone, ultraviolet rays or any kind of radiation. Avoid any contact of the capacitor with direct sunshine, saltwater, spray of water or types
of oil during storage. All products shall be used before the end of the period of 24 months based on the product date code, if not a 100 %
solderability cannot be guaranteed. The capacitance tolerance as specified within the datasheet is only valid on the date of delivery.

Soldering:

The solder profile must comply with the Würth Elektronik technical soldering specification. All other profiles will void the warranty.All other
soldering methods are at the customers’ own risk.Strong forces which may affect the coplanarity of the components’ electrical connection
with the PCB (i.e. pins), can damage the part, resulting in avoid of the warranty.Do not use excessive nor insufficient flux.Provide enough
washing when water-soluble flux is used.During wave soldering only the pins / terminals should have contact with hot solder bath / wave.
Assure that no direct contact of capacitor body with hot solder bath / wave or any other component will happen. Soldering must be done
from the opposite PCB side where capacitor body is placed.

Dangerous Goods and Handling:

Due to the European agreement concerning the international carriage of dangerous good by road (ADR) capacitors with an energy storage
capacity of 0.3 Wh or more are considered as dangerous goods. Refer to special provision 361 for detailed information. Each capacitor
should be protected against unintended short circuit or be fitted with a metal strap connecting the terminals, if transported. Capacitors
installed in equipment shall be either in an uncharged state or protected against short circuit. A fully charged capacitor shall not be short
circuited without a protective resistor of at least 1 kΩ.

Cleaning:

Do not wash the assembled capacitors with the following cleaning agents:
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• Petroleum system solvents: may cause degeneration of the rubber seal material
• Alkali system solvents: may cause corrosion and dissolve of the casing
• Halogenated solvents: may cause corrosion and failure of the capacitor
• Acetone: component marking may be erased
• Aromatic solvents like xylene: may cause deterioration of the rubber seal material
• Verify the following points when washing is are applied to capacitors:
• Please monitor conductivity, ph-value, specific gravity and the water content of cleaning agents. Contamination adversely affects these

characteristics.
• Be sure to not expose the capacitors under solvent rich conditions or keep capacitors inside a closed container. In addition, please dry

the solvents on the PCB and the capacitor sufficiently with an air knife (temperature should be less than the maximum rated category
temperature of the capacitor) for 10 minutes.

• Capacitors can be characteristically and catastrophically damaged by halogen ions, particularly by chlorine ions. The degree of the
damage mainly depends upon the characteristics of the electrolyte and rubber seal material. When halogen ions come into contact with
the inside of the capacitors, the foil may corrode, when a voltage is applied. This corrosion causes an extremely high leakage current,
which results in venting and an open circuit defect.

All other cleaning processes and cleaning agents are not approved by Würth Elektronik eiSos. All cleaning methods need to be tested and
validated by the customer.

Adhesives and Coating Materials:

The usage of any adhesive or coating material, which is containing halogenated solvents, is not allowed.Before applying adhesives or
coating materials, make sure that the following points are fulfilled:

• Take care that the surface and capacitor is dry and clean before applying adhesive or coating, to avoid any contamination with flux
residues or cleaning solvents.

• Assure that no flux residue or spot is left between the rubber seal material of the capacitor and the PCB.
• Do not fully cover the entire rubber seal surface with adhesive, coating or molding materials. Otherwise the covering of the full rubber

seal surface may restrain the natural diffusion of hydrogen gas. Block maximum 80% of the sealed section of a capacitor.
• If the used adhesive, coating or molding material is containing halogen ions in a large amount, the halogen ions can diffuse and creep

into the capacitor and can damage the capacitor. Both above explained circumstances can result in serious failures.
• Follow the specified heating and curing instructions given by supplier of the used adhesive or coating material. Avoid excessive pressure

or heat on the capacitor by applying coating or adhesive.
• Take care that hardening of adhesive, coating material was correctly done, so that no solvents do remain.
• Be aware, that used solvents within adhesive and coating materials can damage the sleeve of the capacitor and can result in changes of

the appearance of the sleeve (color, shine and marking).

Mechanical Stress on lead wire and terminal:

Do not stress the capacitor with the following actions:

• Applying any excessive force to the lead wire or terminal.
• Move or turn the capacitor after soldering to the PCB.
• Bending pins after soldering.
• Carrying the PCB by picking / holding the board via a capacitor.

Operation and Usage of the Capacitor:

In operation and usage take care about the following points.Do not use the capacitor within the following environmental conditions:

• Environment with high mechanical stress / shocks or vibration (please see this specific datasheet for permitted limits).
• Environment with high amount of damp condensation, water or types of oil.
• Direct sunlight, ozone, any kind of radiation or ultraviolet rays.
• Toxic gases (e.g. ammonium, chlorine and compounds, bromine and compounds, hydrogen sulfide, sulfuric acid).

User should never touch the terminals of the capacitor directly.Avoid short circuit between terminals with any kind of conductive material (e.
g. metal, fluid, acid, alkaline solution).

Maintenance:

For industrial applications it is recommended to perform periodic inspections. Power supplies shall be turned off before inspection to
discharge the capacitor. Check the following points in case of an inspection:

• Visual inspection of the capacitor to see, if the vent operated for pressure relief and if any leakage of electrolyte has taken place.
• Measurement of electrical characteristics of the capacitor (according to datasheet, especially leakage current, capacitance and ESR).

In case of deviation or failure according to the specified characteristics, take care to start appropriate actions (e.g. replacement of capacitor).

Emergency Case:

In case of excessive pressure within the capacitor the vent may operate and release this pressure. In case of vent operation gas becomes
visible, when the component is in operation. If so, directly turn off the application and disconnect it from the power source. If the application
will not be turned off, a possible short circuit of capacitor or a short circuit due to bridging of liquefied gas can possibly damage the circuit
and in worst case the application may be dramatically damaged.Do not stay or position body or face above or in direction of the vent,
because in the event of any vent operation, the releasing gas temperature may have over 100 °C.In case of contact with the electrolyte on
skin, wash the skin immediately with soap and water. If the eyes will get in contact with the releasing gas, immediately wash the eyes with
water. Whether the gas was inhaled, directly use gargle.

Disposal:

This capacitor shall be disposed of as industrial waste in accordance with local laws and regulations. Discharge capacitor before disposal.
Never throw this device into fire. To avoid any explosion of capacitor, punch holes into the can or crush the capacitor before industrial waste
incineration.
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These cautions and warnings comply with the state of the scientific and technical knowledge and are believed to be accurate and reliable.
However, no responsibility is assumed for inaccuracies or incompleteness.
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Important Notes

The following conditions apply to all goods within the product range of Würth Elektronik
eiSos GmbH & Co. KG:

1. General Customer Responsibility

Some goods within the product range of Würth Elektronik eiSos GmbH & Co. KG contain statements regarding general suitability for certain
application areas. These statements about suitability are based on our knowledge and experience of typical requirements concerning the
areas, serve as general guidance and cannot be estimated as binding statements about the suitability for a customer application. The
responsibility for the applicability and use in a particular customer design is always solely within the authority of the customer. Due to this
fact it is up to the customer to evaluate, where appropriate to investigate and decide whether the device with the specific product
characteristics described in the product specification is valid and suitable for the respective customer application or not.

2. Customer Responsibility related to Specific, in particular Safety-Relevant Applications

It has to be clearly pointed out that the possibility of a malfunction of electronic components or failure before the end of the usual lifetime
cannot be completely eliminated in the current state of the art, even if the products are operated within the range of the specifications.
In certain customer applications requiring a very high level of safety and especially in customer applications in which the malfunction or
failure of an electronic component could endanger human life or health it must be ensured by most advanced technological aid of suitable
design of the customer application that no injury or damage is caused to third parties in the event of malfunction or failure of an electronic
component. Therefore, customer is cautioned to verify that data sheets are current before placing orders. The current data sheets can be
downloaded at www.we-online.com.

3. Best Care and Attention

Any product-specific notes, cautions and warnings must be strictly observed. Any disregard will result in the loss of warranty.

4. Customer Support for Product Specifications

Some products within the product range may contain substances which are subject to restrictions in certain jurisdictions in order to serve
specific technical requirements. Necessary information is available on request. In this case the field sales engineer or the internal sales
person in charge should be contacted who will be happy to support in this matter.

5. Product R&D

Due to constant product improvement product specifications may change from time to time. As a standard reporting procedure of the
Product Change Notification (PCN) according to the JEDEC-Standard inform about minor and major changes. In case of further queries
regarding the PCN, the field sales engineer or the internal sales person in charge should be contacted. The basic responsibility of the
customer as per Section 1 and 2 remains unaffected.

6. Product Life Cycle

Due to technical progress and economical evaluation we also reserve the right to discontinue production and delivery of products. As a
standard reporting procedure of the Product Termination Notification (PTN) according to the JEDEC-Standard we will inform at an early stage
about inevitable product discontinuance. According to this we cannot guarantee that all products within our product range will always be
available. Therefore it needs to be verified with the field sales engineer or the internal sales person in charge about the current product
availability expectancy before or when the product for application design-in disposal is considered. The approach named above does not
apply in the case of individual agreements deviating from the foregoing for customer-specific products.

7. Property Rights

All the rights for contractual products produced by Würth Elektronik eiSos GmbH & Co. KG on the basis of ideas, development contracts as
well as models or templates that are subject to copyright, patent or commercial protection supplied to the customer will remain with Würth
Elektronik eiSos GmbH & Co. KG. Würth Elektronik eiSos GmbH & Co. KG does not warrant or represent that any license, either expressed or
implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination,
application, or process in which Würth Elektronik eiSos GmbH & Co. KG components or services are used.

8. General Terms and Conditions

Unless otherwise agreed in individual contracts, all orders are subject to the current version of the “General Terms and Conditions of Würth
Elektronik eiSos Group”, last version available at www.we-online.com.
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KEMET Part Number: HVZ0E106NF
(USCHVZ0E106N00)

HVZ, Supercapacitors, Radial, 10 F, 30%, 2.7 VDC, Wire Leads, Lead Spacing = 5mm

Dimensions
D 10mm +/-0.5mm

L 35mm +/-2mm

S 5mm +/-0.5mm

LL Negative 15mm MIN

LL Positive 20mm MIN

F 0.6mm NOM

Packaging Specifications
Lead: Wire Leads

Weight: 4 g

Packaging: Bulk, Box

Packaging Quantity: 2000

General Information
Series: HVZ

Description: Radial Cylindrical Double Layer
Capacitor

RoHS: Yes

AEC-Q200: No

Specifications
Capacitance: 10 F

Capacitance Tolerance: 30%

Voltage DC: 2.7 VDC

Temperature Range: -25/+70°C

Rated Temperature: 70°C

Resistance: 100 mOhms (1kHz)

Ripple Current: 8 mAmps (30min)

© 2006 - 2021 KEMET

Statements of suitability for certain applications are based on our knowledge of typical operating conditions for such applications, but are not intended to constitute - and
we specifically disclaim - any warranty concerning suitability for a specific customer application or use. This Information is intended for use only by customers who have the
requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by us
with reference to the use of our products is given gratis, and we assume no obligation or liability for the advice given or results obtained.

Generated 1/05/2021 - 8a825cce-83eb-4afd-989f-369b65d16d14
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