
Hydrol. Earth Syst. Sci., 16, 1255–1257, 2012
www.hydrol-earth-syst-sci.net/16/1255/2012/
doi:10.5194/hess-16-1255-2012
© Author(s) 2012. CC Attribution 3.0 License.

Hydrology and
Earth System

Sciences

Technical note: A significance test for data-sparse zones in
scatter plots

V. V. Vetrova and W. E. Bardsley

Department of Earth & Ocean Sciences, University of Waikato, Hamilton, New Zealand

Correspondence to:W. E. Bardsley (web@waikato.ac.nz)

Received: 26 December 2011 – Published in Hydrol. Earth Syst. Sci. Discuss.: 26 January 2012
Revised: 27 March 2012 – Accepted: 29 March 2012 – Published: 26 April 2012

Abstract. Data-sparse zones in scatter plots of hydrological
variables can be of interest in various contexts. For exam-
ple, a well-defined data-sparse zone may indicate inhibition
of one variable by another. It is of interest therefore to deter-
mine whether data-sparse regions in scatter plots are of suf-
ficient extent to be beyond random chance. We consider the
specific situation of data-sparse regions defined by a linear
internal boundary within a scatter plot defined over a rectan-
gular region. An Excel VBA macro is provided for carrying
out a randomisation-based significance test of the data-sparse
region, taking into account both the within-region number of
data points and the extent of the region. Example applications
are given with respect to a rainfall time series from Israel and
also to validation scatter plots from a seasonal forecasting
model for lake inflows in New Zealand.

1 Introduction

A visual examination of hydrological scatter plots is a useful
first step toward considering possible relationships between
variables, or for evaluation of the worth of hydrological fore-
casting models via validation plots of observed and predicted
values. It is intuitive that we tend to focus on regions in scat-
ter plots with greatest data density as this suggests highest
degree of association and worth most effort in further refine-
ments – see, for example,Green and Finlay(2008). How-
ever, a sufficiently extensive data-sparse zone in a scatter plot
can be of interest also as this may suggest that for a specific
magnitude range one variable might restrict the other.

For hydrological variables, the transition between data-
sparse and data-dense fields in scatter plots will most likely
be a poorly-defined boundary which can be thought of as
a stochastic frontier, for which a range of estimation tech-

niques are available (Hall and Simar, 2002; Florens and
Simar, 2005; Delaigle and Gijbels, 2006; Kumbhakar et al.,
2007). Our focus here is not on boundary estimation as such,
but rather on providing a significance test against the null hy-
pothesis that a data-sparse zone in a scatter plot has arisen by
random chance. Specifically, the purpose of this short com-
munication is to provide a practical significance test for the
size of the area of an observed data-sparse region with a lin-
ear internal boundary in a scatter plot within the specific rect-
angular region which just encompasses all the data points.
The test requires no assumptions concerning the data. For
convenience, the data-sparse area is taken to mean its pro-
portion of the rectangle area. Given that there arem data
points within the data-sparse area1(m), the null hypothe-
sis is that a data-sparse region at least as large and containing
m data points could have arisen by random chance. Rejection
of the null hypothesis does not imply any specific alternative
with respect to correlation between the variables, but sim-
ply indicates that the data-sparse region is confirmed large
enough so as to be unlikely to have arisen by chance. The ap-
proach adopted here represents a generalisation of an earlier
test described byBardsley et al.(1999) which was restricted
in practical application because it required the data-sparse
region to contain no data points at all (m = 0).

The nature of a data-sparse (as opposed to no-data) region
is illustrated with respect to the scatter plot in Fig. 1. The
pattern of data points suggests a possible linear rising trend
in an upper boundary for October rainfalls at a site in Israel
over the period 1951–1987, but with an unusually wet month
in October 1986 as an outlier. Them = 0 requirement of the
original 1999 test required a somewhat unrealistic location
of a boundary as being above the outlier (Bardsley et al.,
1999, Fig. 3a). A better approach is to deem “data sparse”
in this particular case as permitting a single point within the
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Fig. 1. Scatter plot of October Rainfall values (1951–1987) at
Berurim in southern Israel. Line shows the linear internal bound-
ary of the largest possible data-sparse region form = 1.
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Fig. 2. Validation plot for a model forecasting combined autumn
river inflow volumes into Lakes Tekapo and Pukaki (New Zealand).

data-sparse region (m = 1) which now gives a better linear
boundary location just above the other data points (Fig. 1).

2 The test

Following Bardsley et al.(1999), the significance test of the
present paper is based on a standard randomisation approach.
That is, the x-coordinates of the data points are randomly
reassigned, giving rise to a different pattern of points in the
scatter plot in the rectangular region. For example, if the x-
axis represented yearly values, then this would amount to a
random reordering of years. After a given random reordering
of x-coordinates, a check is made in the algorithm whether
the largest upper-left region (with linear internal boundary)
containingm data points is larger than the upper-left data-
sparse area in the original scatter plot.

This random reordering of the x-coordinates is repeated
many times, and the proportion of timesp that the original
data-sparse area is exceeded is calculated. Thisp value is the
probability of obtaining a data-sparse area at least as large
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Fig. 3.Validation plot for a model forecasting combined spring river
inflow volumes into Lakes Tekapo and Pukaki (New Zealand).

as observed in the original scatter plot, given that the null
hypothesis is true. Therefore, ifp is sufficiently small, say
less than 0.05, then the size of the original data-sparse re-
gion1(m) is deemed statistically significant. The number of
random reorderings needed for the required precision ofp is
determined from the binomial theorem in the usual way (see
Excel spreadsheet in the Supplement).

A general VBA macro which is unrestricted as to the size
of m is described in the Excel spreadsheet supplementary to
this paper. The macro appears efficient in trial runs but in-
evitably will become slower for large numbers of points in
the scatter plots coupled with largem. When the macro is
applied to the indicated data-sparse region above the line in
Fig. 1 (m = 1), the resultingp value is obtained asp(1) =

0.001, which is a higher level of statistical significance then
the value ofp(0) = 0.02 listed in Fig. 3a ofBardsley et al.
(1999) for the case ofm = 0. Of course, there is no general
guarantee that higher levels of significance will be obtained
for the test proposed here, as this is dependent on the data
pattern of the scatter plot.

3 Application to validation scatter plots

Scatter plots most commonly serve as a graphical indication
of some degree of association between two variables. In addi-
tion, scatter plots are often used in hydrology to give a graph-
ical indication of how well some model fits a set of validation
data. The ideal here is to have points scattered close to the 1:1
line andBardsley and Purdie(2007) present an “invalidation
test” as one means of testing departure from this situation.
However, a validation scatter plot may indicate failure in the
sense of poor 1:1 fitting but nonetheless still possess some
degree of predictive ability as evident from the pattern of
points. For example, the location of a data-sparse region in a
validation scatter plot may suggest that low predicted values
tend to be associated with low observed values, but increas-
ingly large predicted values result in high or low magnitudes
being as likely.
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An illustration of this situation is given in Fig. 2, which
shows a validation data set with respect to a seasonal lake
inflow forecasting model seeking to anticipate total autumn
inflow from the standpoint of autumn in the previous year.
The lakes concerned (Tekapo and Pukaki) are adjacent New
Zealand hydro storage lakes and it is convenient to consider
seasonal forecasts of the combined inflow volumes of both
lakes. The forecasting model itself will be described in a sub-
sequent publication but for the purposes of the present paper
the point of interest is that the validation scatter plot can be
interpreted as the forecasts giving a low probability to high
inflows when low lake inflows are forecast. However, at the
same time high inflow forecasts may associate with high or
low actual inflows. This lends itself to a data-sparse signifi-
cance test (m = 0) which in fact indicates high significance
of the sparse zone above the solid line withp(0) = 0.0004.

Although anm = 0 test may appear sufficient here, there
could be concern over robustness of the conclusion because
of the small number of data points involved. Them > 0 test
gives an empirical means of robustness checking because ar-
tificial data points can be inserted into the data-sparse zone
and a check made to see if statistical significance is main-
tained. For example, inserting the single synthetic data point
indicated in Fig. 2 yieldsp(1) = 0.002, which is still highly
significant. The forecasting model in this case should proba-
bly be robust therefore against a future real data point appear-
ing in the sparse zone. Further synthetic data points could be
inserted if required. The autumn forecasting model here is
restrictive in that low forecast flows will tend to be below the
solid line. However, forecast high flows in reality could be
anywhere within the magnitude range. The forecasting value
is with respect to a high probability that a forecast flow will
not be in the data-sparse zone, as opposed to being near or
far from the 1:1 line.

This view of forecasting value is also illustrated in Fig. 3,
showing in this case the validation results of a model for fore-
casting spring inflows into the two lakes, where the model is
forecasting from the previous spring. The predictive model
clearly fails in the sense of any 1:1 matching, but the hope
might be that the indicated solid line approximates an upper
bound to actual inflows when forecasts are in the range 1.20–
1.45× 109 m3. As with the autumn model, the validity of this
upper bound is tested for significance via the macro with re-
spect to the relative size of the upper left (m = 1) data-sparse
empty corner. It happens in fact that the macro-derivedp(1)

value of 0.16 indicates the sparse zone size is no larger than
expected from chance. The predictive model therefore fails
not only in the 1:1 sense, but also in the sense of establishing
the existence of an upper boundary which might permit an
estimated upper bound to some forecast inflows.

4 Discussion and conclusion

There is an element of subjectivity introduced for the test
considered here withm > 0, in that sometimes it will not be
evident which value ofm best defines a data-sparse region.
Some trial and error process will most likely be required in
such instances. With respect to further development, the test
approach considered here should be amenable to generalisa-
tion such as allowing for curved inner boundaries and incor-
porating multiple dimensions. However, the randomisation
algorithms may become complex and slow.

As noted inBardsley et al.(1999), there will be data
situations where linear regression is the most appropriate
analysis technique. In other situations where data-dense and
data-sparse fields are separated by an approximate linear
boundary, the test given here should find practical applica-
tions for both associations between variables and also for
checking validation scatter plots under situations of restricted
forecasting ability.

Supplementary material related to this article is
available online at:http://www.hydrol-earth-syst-sci.net/
16/1255/2012/hess-16-1255-2012-supplement.zip.
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