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Abstract

There is currently no traceable power sensor for millimetre wave frequencies

above 110 GHz. This thesis investigates a novel approach to remove this lim-

itation by combining the placement of a uniquely designed microchip directly

in waveguide. The design of the chip is novel in that it does not rely on a

supporting structure or an external antenna when placed in the waveguide.

The performance of the design was primarily analysed by computer simula-

tion and verified with the measurement of a scale model. The results show

that it is feasible to measure high frequency power by placing a chip directly

in waveguide. It is predicted that the chip is able to absorb approximately

60% of incident power. Any further efficiency would require modification of

the chip substrate. However, this proposed design should allow the standards

institutes a reference that will enable the calibration of equipment to beyond

110 GHz.
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Chapter 1

Introduction

The lack of a traceable power sensor above 110 GHz, part of the millimetre

wave range of frequencies (30–300 GHz), presents a design challenge to anyone

requiring such a sensor. There is growing interest in the millimetre wave band

from communications, security, military and automotive industries.[13, 9, 8, 19]

The aim of this study is to investigate a design of thermocouple power

sensor, based in the design of W. Jackson, for use in waveguide. The design will

comprise of a microchip on which thermal dissipation and sensing mechanisms

will be deposited. This chip will then be housed directly in a waveguide section

contained within a bulkhead that will also provide connection to an external

meter unit. The meter unit will apply any necessary corrections to the data

as well as display results to the user.

Although, the idea of a finline thermocouple power sensor has been patented

[18], placing all of the components including the antenna on a chip packaged

directly in waveguide without a supporting structure is new.

Research has also been done on the packaging of a chip directly in waveg-

uide [11] but has not been applied to thermal power sensors. The work pre-

sented an idea of offsetting the chip in order to increase its broadband match,

which was tried in this investigation.

A potential problem with the design of a finline thermal power sensor is

its ability to absorb a sufficient amount of power from the waveguide. Having
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such limited space for a receiving element (antenna) on the chip could mean

that the sensor cannot capture enough energy to make measurements. The

ideal shape of a chip for this purpose would be long, giving ample room for

an adequate antenna. Unfortunately, the longer a chip becomes the higher

the probability it has of breaking; a chip approximately twice as long as it

is high is the conventional limit. Minimising chip area while maximising its

electromagnetic performance is necessary as wafer space is expensive.

Samples of the chip, designed for this sensor, are held by my supervisor,

Professor Scott. These chips, which we have termed Fin-cat, were manufac-

tured to utilise spare wafer space with the intention that they may one day

be used for making such a sensor. However, the design has not been tested as

this would be an involved process requiring equipment that is unavailable at

present and a very carefully crafted bulkhead.

In order to determine how well the design of chip will work it will be

simulated in a section of waveguide. Verification of the simulated data will

be done by measuring a scale model of the setup. This data should give an

indication of how well the sensor will work and therefore determine whether

or not it is a feasible approach to the problem of power measurement over

110 GHz. This study also identifies the limiting factors in the design of the

chips we hold and suggests area for future research.



Chapter 2

History and Review

2.1 Power Sensors

The three most popular types of power sensor on the market today are the

thermistor, diode and thermocouple sensors. Their typical measurement char-

acteristics are summarised in table 2.1

Thermistor Diode Thermocouple

Sensitivity -30 dBm (1µW) -70dBm (100pW) -30 dBm (1µW)

Ease of calibration Easy Difficult Slightly involved

Accuracy ≈ 1% Input Dependent less than 1%

Table 2.1: Brief comparison of sensor technologies

During the 1950s and 60s thermistor type sensors were the main choice

for microwave and radio frequency power measurement. However, in more

recent years diode and thermocouple sensors have captured the bulk of this

market.[20] Thermistor type sensors are used by standards institutes as they

are much easier to calibrate than the alternatives.

Diode type sensors are more sensitive than both thermocouple or thermis-

tor sensors, but their accuracy is usually lower. Diode sensors are unable to

guarantee true root mean square (RMS) output as they suffer from nonlineari-

ties when the power level exceeds its square law range. This means that diode
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sensors only work well when the signal being measured has small variations of

amplitude. Thermocouple and thermistor type sensors are generally more ac-

curate than diode sensors as they can be calibrated to a higher precision. They

also give true RMS measurements as they are based on thermal dissipation.

2.1.1 The thermocouple power sensor

Figure 2.1: Photo-micrograph of the structure of Jackson’s thermocouple chip

on a thin silicon web[20]

In 1974, Weldon Jackson of Hewlett Packard published a paper detailing

a revolutionary design of a thermocouple power sensor [10]. This design used

thermocouples that were deposited directly onto a microchip, utilising the

semiconductor substrate as part of the thermocouple. These thermocouples

provided excellent sensitivity because of a high Seebeck coefficient obtained

from their metal-semiconductor junctions. This integrated thermocouple tech-

nology was eventually adopted by all major manufacturers of thermal power



5

sensors [5, 18, 12]. Jackson’s design also managed to increase sensitivity by re-

moving substrate from the underside of the chip. This created a thin web-like

layer upon which hot thermocouple junctions lay.

The chip contains two thermocouples, each connected to two connection

pads (see figure 2.1). These thermocouples are also the resistance through

which incident power is dissipated. This dissipation heats the centre of the

chip, where the resistance is the greatest due to narrowing of the thermocouple

tracks. As the centre of the chip is made from a very thin layer, a much faster

temperature response and higher sensitivity is achieved. The outside of the

chip has not had its substrate etched away and therefore remains much cooler;

this area is used to keep the cold thermocouple junctions cool, maximising

temperature difference between junctions.

2.2 Additional Technology

This section is intended to give a brief overview of existing technologies and

measurement parameters. It has been included to provide the necessary back-

ground for further discussion.

2.2.1 Waveguide

Figure 2.2: Diagram of a rectangular waveguide section showing standard

flanges.

Over 110 GHz coaxial cable is extremely lossy, placing a heavy toll on

its use. Waveguide is an alternative to coaxial cable that is better suited for
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transmission of extremely high frequency electromagnetic waves. A waveguide

is a dielectric or conductive pipe through which waves of energy are guided

rather than conducted. The physical dimensions of a waveguide are inversely

proportional to the frequency of its operation. This means that a waveguide

designed for low frequencies will, by necessity, be large. For example, a waveg-

uide for use at 1 MHz would need to be 150m wide and 75m high. This makes

it generally unsuitable for low frequency applications below 1 GHz.[15] This

application of waveguide technology in the design of a thermal power sensor

will utilise rectangular waveguide, an example of which is shown in figure 2.2.

2.2.1.1 Modes of propagation

TE10

TE20

TE30

(1 / 2) x λ
(half wavelength)

λ
(one wavelength)

(3 / 2) x λ
(1.5 wavelengths)

TEm0(m / 2) x λ
(m x half wavelengths)

Figure 2.3: Diagram showing the geometry of various modes of propagation in

rectangular waveguide.
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The width of a waveguide determines the largest wavelength, and therefore

the lowest frequency, it will propagate. This frequency is called the funda-

mental mode cutoff frequency, fc. Above a certain thresholds, determined by

the waveguide geometry, energy becomes free to propagate in different modes.

In order to understand how modes arise it helps to see how electromagnetic

waves occupy the space within a waveguide. Figure 2.3 shows how the first few

modes fill the guide; the coloured line represents the electric field of an electro-

magnetic wave. These modes are denoted TEmn where m and n represent the

number of half wavelengths that fit either horizontally (m) or vertically (n)

in the guide. Once the frequency of energy in the guide exceeds a higher or-

der mode cutoff frequency then the energy will propagate in that higher order

mode. The waveguide is still free to propagate lower order modes simultane-

ously. The electric fields can therefore become very messy if frequencies are

not managed properly.

When frequencies increase but no mode change occurs, wavelengths become

smaller in the direction of propagation, as would be seen by looking into the

side of the guide. Figure 2.4 and 2.5 show the electric fields of TE10 and TE01

waves as they propagate down a section of waveguide.

Figure 2.4: Simulation showing a TE10 waveform inside a waveguide section.

Different modes propagate at different velocities; therefore permitting more

than one mode would cause signals to disperse. To avoid this, a waveg-

uide should be operated exclusively in its TE10 mode. This means that the

transmission of energy should not reach the cutoff frequencies of either TE20

(fc(TE20)) or TE01 (fc(TE01)), which are the cutoff frequencies of the first higher
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Figure 2.5: Simulation showing a TE01 waveform inside a waveguide section.

order modes above TE10.

2.2.1.2 Cutoff frequencies

The cutoff frequency of each mode is calculated from the dimensions of the

cross-section of a waveguide as follows:

fc = c

√(mπ
a

)2
+
(nπ
b

)2
(2.1)

Where a and b are the width and height of a waveguide cavity, respectively,

and c is the speed of light in a vacuum. Figure 2.6 shows the first six modes for

the WR-6 waveguide standard (110–170 GHz), its dimensions are 1.651mm (a)

by 0.8255 (b).

TE10

TE20

TE01

TE11

TE21

TE30

80     100     120     140     160     180     200     220     240     260     280     300

Frequency (GHz)

Figure 2.6: Diagram showing the range of frequencies covered by the first six

modes of propagation in WR-6 waveguide.
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Using equation 2.1, the cutoff frequencies for the three relevant modes of

operation can be calculated. These higher modes (TE20 and TE01) mark the

top end of the waveguides useful frequency range. The following calculations

are for a waveguide having a 2: 1 width to height ratio, common for rectangular

waveguides.

fc(TE10) = c

√(π
a

)2
=
πc

a

(2.2)

fc(TE20) = c

√(
2π

a

)2

=
2πc

a

(2.3)

fc(TE01) = c

√(π
b

)2
=
πc

b
(b = 0.5a)

=
2πc

a

(2.4)

The preceding equations show that using a 2: 1 height to width ratio gives

the largest possible single mode bandwidth. For instance, if the waveguide

was taller; fc(TE01) would drop in frequency, alternatively if the waveguide was

wider; fc(TE20) would drop in frequency. These equations also show that the

frequency at which the waveguide first begins to multimode is exactly twice

that of the fundamental mode cutoff frequency (fc(TE10)).

Generally, the operational frequency range of a waveguide does not extend

to its cutoff frequencies. The TE10 and TE20 cutoff frequencies for WR-6

waveguide are 90.79 GHz and 181.6 GHz respectively, however the waveguide

is only operated between 110–170 GHz.
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Waveguide Walls

Substrate

Waveguide Cavity

Components or 
tracks

Figure 2.7: Cross-section of waveguide showing a finline structure.

2.2.2 Finline

Finline is the name given to a method of placing components inside a waveg-

uide, usually on a dielectric support. The geometry of finline is shown in figure

2.7. Finline can be used to add components such as filters, antennas and diodes

directly into a waveguide cavity. It provides a convenient way of placing such

components in circuit without the need to resort to coaxial cable or other more

common transmission mediums. The use of finline in waveguides have been

studied [14, 17, 4, 1, 2].

2.3 Scattering parameters

Two-port 
deviceZO ZO

V1
-

V1
+

V2
+

V2
-

Port 2 Transmission linePort 1 Transmission line

Figure 2.8: Ingoing and outgoing voltage waves at the ports of a two-port

device.

This section is intended to provide a brief description of scattering pa-

rameters, which are the underlying measurements for loss factor calculations.

Scattering parameters, or S-parameters, are a good way of representing the

characteristics of RF circuits. They are introduced by figure 2.8 which rep-

resents an arbitrary two-port device. Here, both ports are transmission lines
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with characteristic impedances of Z0. As is always the case on transmission

lines, voltage waves can propagate in either direction. The incoming and out-

going voltage phasors at port 1 are denoted using V +
1 and V −1 respectively.

Similarly, V +
2 and V −2 are the phasors of the incoming and outgoing voltage

waves at port 2. The S-parameters relate the waves according to the following

equations:

V −1 = S11V
+
1 + S12V

+
2 (2.5)

V −2 = S21V
+
1 + S22V

+
2 (2.6)

From the preceding equations each S-parameter is expressed in terms of

the ratio of an outgoing and incoming voltage phasors:

S11 =
V −1
V +
1

when V +
2 = 0 (Port 2 matched) (2.7)

S12 =
V −1
V +
2

when V +
1 = 0 (Port 1 matched) (2.8)

S21 =
V −2
V +
1

when V +
2 = 0 (Port 2 matched) (2.9)

S22 =
V −2
V +
2

when V +
1 = 0 (Port 1 matched) (2.10)

From the preceding equations it can be seen that each S-parameter is the

ratio of an outgoing wave to an incoming wave, under the restriction that

one of the ports is terminated with a non-reflecting (i.e., matched) load. S-

parameters are denoted Sij, with the i and the j representing the observed

port and active port numbers respectively. For example, S11 represents the

ratio of energy reflected from port one to energy incident on port one, called

the input reflection coefficient. S21 is the ratio of energy transmitted to port

two when port one is active, called the forward transmission coefficient.
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Figure 2.9: Agilent E8358A VNA measuring S-parameters of an empty waveg-

uide cavity.

S-parameters are frequency dependant, meaning that they change depend-

ing on the frequency of waves used to take the measurement. Therefore, it is

necessary to make measurements over a range of frequencies to better char-

acterise the device under test. A Vector Network Analyser (VNA) is such an

instrument able to measure S-parameters across a wide range of frequencies.

The University of Waikato possesses an Agilent E8358A vector network anal-

yser that can measure S-parameters up to a frequency of 9 GHz. A photo of

this unit can be seen in figure 2.9.

2.3.1 Loss Factor

By applying a calculation to the measured S-parameters a quantity that is

termed loss factor results. This quantity represents the amount of energy lost

to the device in question, which in this instance is the sensor. It is simply the

difference between input power and power that is both reflected and transmit-

ted at the input and output ports correspondingly [3]. Loss factor is used for

devices that have two or more ports, which the sensor wont. However, analysis
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of the sensor was done using two-port models and simulations to get an idea

of how much energy escapes behind the chip, something that a one port model

or simulation would not be able to show. Loss factor gives the convenience of

interoperating data as if it were a one-port device.

2.3.1.1 Derivation

Derivation of the loss factor is begun by converting each S-parameter, which

represent a ratio of voltages, into a ratio of powers. These are denoted as

SijPOWER
.

Converting these voltages into powers via Ohms law and the power equation

(P = V I) results in:

S11POWER
=

(V −1 )2

Z

Z

(V +
1 )2

=
(V −1 )2

(V +
1 )2

=

∣∣∣∣V −1V +
2

∣∣∣∣2
= |S11|2

(2.11)

Therefore, squaring an S-parameter turns it from a ratio of voltages into a

ratio of powers, applicable to each S-parameter. The next step is to determine

the amount of power that was not reflected nor transmitted. As S-parameters

are normalised reflection and transmission coefficients, this is a straightforward

sum of inputs and outputs:

LossFactor = 1− |S11|2 − |S21|2 (2.12)

Maximising the loss factor across the 110–170 GHz band should improve

sensor performance if this loss is the result of thermal dissipation, which it is

assumed to be.



Chapter 3

Design

In this chapter the design of both the bulkhead and the chip are introduced.

Once an indication of the designs performance was ascertained, other chip

designs were tried that are shown at the end of this chapter.

3.1 Bulkhead

Figure 3.1: Diagram of the proposed clamshell bulkhead design, showing the

chip mounted as a finline component.

The bulkhead will house the chip and provide the waveguide cavity. As the

chip is to be packaged directly in the waveguide, as opposed to being mounted

on a finline support, the design of the bulkhead becomes an increasingly impor-
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tant part of the sensor. As the dimensions of the chip are small, approximately

1.5mm x 3mm, the bulkhead would have to be made extremely precisely in

order to minimise unwanted interference as well as ensuring correct placement

of the chip.

3.1.1 Materials

To prevent excessive power loss and reduce manufacturing costs the bulkhead

could be made primarily from copper with a small amount of silver and gold.

Copper is used as it is relatively cheap and offers good thermal and electrical

conductivity. The copper would then be laminated with silver [21]. The sil-

ver layer would be approximately 0.8µm thick, approximately five skin depths

thick at 170 GHz. This would therefore account for almost all electrical con-

duction in the waveguide walls. Silver is used as it has the highest electrical

conductivity of any known metal. The final layer, gold, would then be flashed

as thinly as possible over the silver to prevent it from oxidising.

3.1.2 Design

Professor Scott envisioned that the bulkhead would be a clamshell design,

allowing an easy way to manufacture the cavity and insert the chip. A concept

of this bulkhead is depicted in figure 3.1. The design features a standard WR-6

waveguide flange, used to attach the sensor to other WR-6 waveguide devices.

The bulkhead will be a one-port device, terminated by the chip followed by

a reflective wall. If the distance between the back wall and the chip is set

correctly performance of the sensor will be increased, as the chip will reclaim a

portion of energy that was lost. An approximate calculation puts this distance

at about 0.85mm.

3.1.3 Assembly

Figure 3.2 depicts the bulkhead assembly process.



16

1

2

3

4 5

6

7

8 9

10

11

12

Figure 3.2: Diagram showing assembly of bulkhead.
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3.2 Chips

Figure 3.3: Micrograph of a Fin-cat chip.

The Fin-cat chips, which Professor Scott designed for this sensor, represent

a good starting point for the design of the ideal chip, one of these is shown

in figure 3.3. The dimensions of the chips are 2.14mm x 1.35mm x 0.1mm,

which is taller than the height of the waveguide (0.8255mm) to allow it to be

supported by grooves in the waveguide cavity. The mating of the chip to these

grooves will also provide a thermal escape route for heat build-up on the chip.

3.2.1 Components

The chips consist of an antenna, thin-film resistor, thermocouples, heat sink

and pads with connecting tracks, as shown in figure 3.4. The heat sink, an-

tenna, connection pads and tracks are all made from a thin layer of gold

deposited on the surface of the chip, 2µm thick.

3.2.1.1 Antenna

The antenna is simply the two fins that protrude inwards linked by a thin-film

resistor. The wide rectangles on the outside of the fins provide a point of

contact between the fins and the inside of the grooves in the waveguide walls.
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Figure 3.4: Block diagram of the Fin-cat chip.
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As the fins are so thin, and frequencies so high, they will have a considerable

resistance. This resistance will increase the amount of loss that occurs, but in

a way that will detract from the performance of the sensor. This is because

the resistance will occur before energy reaches the resistor.

3.2.1.2 Thermocouples

Figure 3.5: Micrograph of the eight thermocouples, in series, on the Fin-cat

chip. The thin-film resistor (top) and heat sink (bottom) can also be seen.

The thermocouples described by Jackson used a diffused silicon substrate

region together with a layer of tantalum nitride. The thermocouples used on

the Fin-cat chips are deposited on a gallium arsenide substrate and do not

double as the resistance through which energy is dissipated. Separating the

resistive element from the thermocouples gives greater flexibility in the design

of both the resistance and the thermocouples. The chip samples have eight

thermocouples in series with one another in order to increase sensitivity.

3.2.1.3 Resistor

A focus of this study is to determine the optimum value of resistance between

the antenna fins. Selecting the correct value of resistance between the fins will

increase the match between the chip and the waveguide. A better match allows

more power to be dissipated through the resistor increasing the amount of heat

produced per unit of power available to the chip. The match is determined by

the difference of impedance between the antenna and the waveguide; the lower

the difference the better the match.
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The impedance of the waveguide (η1) is given by:

η1 =
Z0√

1−
(
fc
f

)2 (3.1)

Where Z0 is the impedance of free space, f is frequency and fc in this case

will be the TE10 mode cutoff frequency, as given by equation 2.2.

Figure 3.6: Graph of impedance vs. frequency of an air-filled waveguide sec-

tion.

Figure 3.6 shows the impedance of a WR-6 waveguide as a function of

frequency. It shows that there is a large variation in impedance across the

waveguides operational frequency range. This makes the selection of an ideal

resistor more complicated as no one value would give a good match at all

points. On top of this resistance, the characteristic impedance of the fin-

antennas plus any resistance arising from the finite conductivities gold used to

make the fins must also be taken into account.

3.2.1.4 Back-etching

The Fin-cat chips have not had substrate etched away to create the thin web-

like layer like in Jackson’s design. However, this methodology of substrate

removal is directly applicable to this design bringing with it increased sensitiv-

ity and reduced response time. Jackson’s chip used silicon where we are using

gallium arsenide (GaAs). As a result, there may need to be some alterations
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made to the design or fabrication equipment in order to accommodate the

change of substrate material.



Chapter 4

Computer Simulation

Simulations were used to see how well a sensor having ideal properties, such

as perfect conductivities and geometries, would perform. If the simulator

predicted that there was no way that power would make it into the resistor,

because of the shape or size of the antenna, the design could be destined to

fail. Fortunately, the simulators showed that the design should not only work

but perform well. The results of all simulations are shown in chapter 6.

4.1 Limitations

Electromagnetic simulators work by taking a model of the problem and break-

ing it up into smaller elements. This is called ‘meshing’ and results in a three

dimensional structure built entirely from tetrahedrons, or similar volumetric

shapes. This meshing becomes an issue for very thin features in a model where

the ratio of dimensions is large. As a feature in the model becomes thinner,

the number of mesh elements required to represent that feature increases ex-

ponentially. This is a serious problem when modelling the fins of the chip as

they are 826 000 times thinner than the width of the waveguide cavity and

500 times longer than their thickness. As a result, simulations had to be done

with a fin thickness of 10µm, instead of the actual thickness of 2µm, and per-

fectly conducting boundaries for both the fins and waveguide walls. This will

change the answer due to the fins being thicker than they really are, but was
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Figure 4.1: Screenshot of the meshed model showing the density of mesh

elements.

a necessary step if simulations were to be conducted at all. By making the

walls and fins perfectly conducting, the area outside the walls and inside the

fins can be completely removed from the model as they will have no effect on

the answer, making the model much leaner.

4.2 The Simulations

The base simulation setup is shown in figure 4.2. This was the basis for many

of the simulations as most only differed by resistance values or chip placement

and no new geometry. The centring of the chip actually describes the position

of the fins relative to the waveguide, while the substrate is slightly to one side.

Any offset is in the direction that moves the substrate closer to the waveguide

wall. Simulations were first done in order to characterise the Fin-cat chips.

This used a resistance of 200Ω and no offset. Once this was completed and

compared to measured data, simulations were conducted with the chip placed

at various offsets, much as described by [11]. The best offset was determined by

the simulator to be 180µm, which had the highest average loss and smoothest
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Direction of propagation

Port 1

Port 2
Waveguide walls Chip

Figure 4.2: Diagram of the simulations setup. The front and rear faces of the

waveguide section are the simulated ports.

response. Using this optimum offset of 180µm, a series of simulations using

resistances over the range 150–500Ω in 50Ω steps were conducted. The loss

factor for each was compared and showed that a resistance of 300Ω gave a

slightly improved average loss and again a smoother response.

4.2.1 Modified Antenna Simulations

Figure 4.3: Diagram showing simulation geometry of the modified Fin-cat chip

with extended antenna fins.

In order to determine how sensitive the performance of the chip is to a

change in fin design, four modified antennas were tried in the simulation.

The four designs of antenna are shown in figures 4.3, 4.4, 4.5 and 4.6. The
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Figure 4.4: Diagram showing simulation geometry of the modified Fin-cat chip

with reduced antenna fins.

Figure 4.5: Diagram showing simulation geometry of the modified Fin-cat chip

with vertical strips instead of fins.

Figure 4.6: Diagram showing simulation geometry of the modified Fin-cat chip

with symmetrically tapered antenna fins.
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results from simulations of these alternative designs are presented in the results

section.

4.3 The Simulators

In order to determine the most appropriate software for the simulation of the

sensor four packages were trailed; these were Agilents EMDS 2006, COMSOL

Multiphysics 3.2a, CST Studio 2009 and SEMCAD X light. The following

sections provide an assessment of each package.

4.3.1 Agilent’s EMDS 2006

The interface of EMDS was extremely basic with no real modelling environ-

ment. Instead, geometric shapes were entered using coordinates, which had to

be determined by the user in order to correctly place shapes relative to each

other. Manipulating entered models was an involved process that required

entering translational matrices. This lack of usability meant that only sim-

ple models could be entered as it also lacked the ability to import geometries

from third party software. Once a model had been entered, it was able to

optimise the mesh and solve relatively quickly. The postprocessor, used to

visualise results, was again quite basic but provided useful graphing options

such as smith-charts and animated 3D slice plots. The complexity of the model

required to simulate the power sensor meant that this package was unsuitable.

4.3.2 COMSOL Multiphysics 3.2a

COMSOL has a larger scope than the other packages; it provides plug-in solvers

to compute thermodynamic, magnetic, acoustics and other physical phenom-

ena. It had a similar method of entering model data as EMDS, coordinate

based, but gave the option of importing CAD data from external applications.

As a result, modelling was done using SolidWorks and imported into COM-

SOL for simulation. COMSOL is a multiplatform application running in Java,
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which as a result means that it tends to run out of memory prematurely in

Microsoft Windows. This constrained the available memory to less than a

third of what was physically available, resulting in reduced model complexity.

The solver was slow and lacked a good mesh optimiser, resulting in inefficient

models and therefore taking longer than necessary to solve. COMSOL tends

to give meaningless error messages whenever something goes wrong causing

massive delays in error correction.

4.3.3 CST Studio 2009

CST Studio was by far the best of the four. The modelling interface was

good, allowing models to be entered directly using the program as well as by

importing CAD data. The package had a selection of solvers available, each

streamlined to provide different sets of results quickly. It also provided excel-

lent mesh element optimisation, further decreasing its solution time. Combin-

ing adaptive mesh optimisation with the fast S-parameter solver meant that

models that took hours to solve in COMSOL could be done in as little as six

minutes producing similar results. Plotting and data export was good, offer-

ing everything COMSOL and EMDS did but with a better interface. CST

could also plot while solving, meaning any obvious mistakes could be picked

up early. Unfortunately, a license for this package was very expensive and the

opportunity to gain one as part of my University Research Grant was missed.

4.3.4 SEMCAD X light

SEMCAD seems quite powerful offering a lot of control over sensors and ports

but no relevant tutorials meant that there was no way of telling if these were

correctly configured. Being a light edition, models were limited to one million

voxels (volumetric pixels, or cubes) which meant that the simulated model

was quite coarse. Limited documentation, peculiar layout and lack of useable

results meant this software was not well suited for this problem.



Chapter 5

Model
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Figure 5.1: Exploded diagram of scale model built for simulation verification.

A scale model was built to verify the results of the computer simulations.

Building a larger model of the chip and waveguide cavity would allow mea-

surements to be taken at lower frequencies using equipment that was readily

available.
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5.1 Design

The model consists of two waveguide ports and a centre section that houses the

model chip. The two ports are adapters that convert the coaxial transmission

medium of the VNA to waveguide. Each of the ports and the centre section

are made in halves which bolt together to form a waveguide cavity through

the centre. Figure 5.1 shows the model disassembled; the groove in the centre

section is used to cradle the model chip. A third centre section half was made

without this groove, which will be used for calibration of the model. The model

was designed using Solidworks 2008 and the cavity was etched into each of the

halves using a CNC milling machine. The model is made from aluminium as

it has a high electrical conductivity and is easy to work with.

The dissipating resistor for the model was done by soldering surface mount

resistors between the fins of the PCB. These resistors are much thicker than the

scaled thin-film resistor from the actual chip. Therefore, this will have some

effect on the measured data. Surface mount resistors are essentially small

ceramic bricks that have a thin layer of resistive material applied to their tops.

By soldering the resistors upside down and thereby removing any offset to the

path of resistance, interference is minimised.

5.1.1 Scale

The VNA is capable of making measurements between 3 kHz and 9 GHz so

the scale of the model will have to be such that it will operate within this

range. The thickness of the gold fins is 2µm while the thickness of copper

on a standard printed circuit (PCB) board is about sixteen times thicker at

35µm. The thickness of the microchip substrate is about 100µm while again

the thickness of fibreglass on a standard PCB is sixteen times thicker at 1.6mm.

It was an obvious choice to make the model sixteen times larger, this would

allow the chip design to be printed on a PCB and be electrically accurate.

Scaling the operating frequency of the waveguide is a simple matter as it
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scales proportionally to the size of the cavity. The reason for this is shown in

the following equation.

fc(TE10) = c

√(
1π

a

)2

+

(
0π

b

)2

= c

√(π
a

)2
=
cπ

a

(5.1)

This shows that the product of the TE10 cut-off frequency (fc(TE10)) and

waveguide width (a) is a constant (the speed of light times π). Therefore, if

we make the scale model sixteen times larger it will operate at a sixteenth of

the frequency, reducing the operational frequency range from 110–170 GHz to

6.88–10.63 GHz.

As The VNA is only able to measure up to 9 GHz, the measurements

are restricted to the lower 56% of the scaled frequency band. However, the

ability to make model chips simply by etching PCBs combined with an easily

manufactured waveguide cavity meant that this was the most suitable choice.

5.1.2 Calibration

Because the model used waveguide, which is not the native transmission medium

of the VNA, calibration was an involved process. Usually, calibration involves

specifying the serial number of the calibration kit being used, which then de-

termines the series of measurements that must be made in order to calibrate

the VNA. As there was no calibration kit for the waveguide model that a cus-

tom calibration process was created. This involved defining the dimensions

of the waveguide, the length of the centre section, the types of connectors.

Once this was done, three types of measurements had to be specified that the

VNA could use to determine the characteristics of everything between it and

the waveguide ports. These three measurements were chosen as thru, line and

reflect; often termed TRL. There was a problem with the definition of the line

measurement that meant that data in certain areas were undeterminable. A
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line measurement in this case is when a section of waveguide that has a reflect-

ing wall on one end is attached to a port. The VNA measures the length of

the line by looking at the phase difference of a wave once it has been reflected

back from the wall. As waves are cyclic by nature there are many possibilities

as to the length of the line. To overcome this, the VNA requests that the line

be a quarter wavelength long at the mid-frequency, preventing multiple length

possibilities. As the centre section was over three wavelengths long at the

mid-frequency there were areas in the calibration that were undeterminable.

The result of this is that there are patches missing from the measured data.

Had a smaller wavelength section been made, the model would have had to

have been completely disassembled after calibration and reassembled with the

centre sections designed to hold the chip. Doing this would drastically dis-

turb the calibration as moving the coaxial cables has a significant effect on the

measurements. However, missing segments of data in the measurements are

preferable to a disturbed calibration.

5.2 Measure

Figure 5.2 shows the model with half of the centre section removed, exposing

the inner waveguide cavity. To the left of the model are the two remaining

halves, one to hold the model chip and one for calibration. Clamps were used

to hold the model steady in order to prevent unnecessary cable movement

while the centre section was disassembled.

Figure 5.2 shows the model connected to the VNA. It is being reassembled

in order to take measurements.
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Figure 5.2: Photo of the disassembled scale model showing the waveguide

cavities and PCB chip.

Figure 5.3: Photo of the scale model attached to VNA.



Chapter 6

Results

The results are presented in the following order: Firstly, data from the com-

puter simulations and measurements were compared. Confidence in the simu-

lation data depends on the agreement of these outcomes. Secondly, the results

of the optimisation of the chip position within the waveguide are shown. This

was based on a suggestion proposed by Adam K. Jastrzebski [11]. Thirdly,

the results of the optimisation of the thin film resistance are presented. The

aim of which was to further increase the match between the chip and waveg-

uide section. Finally, simulations of alternative fin geometries are considered.

These were trialled to determine whether the shape of the fins on the Fin-cat

chip could be improved.

6.1 Model verification

Only the fins, resistor and substrate are present in the simulations and model,

as these are the critical components for power absorption. Measurements were

conducted using 124Ω, 260Ω and 480Ω resistances. An additional model mea-

surement was conducted with no resistance in order to determine the loss

attributed to the finite conductivities of the fins. Bold vertical lines on the

following graphics indicate the operational frequency boundaries for WR-6

waveguide, 110 GHz and 170 GHz.

It is clear from the results that the 260Ω resistor produces the best match of
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Figure 6.1: Loss factor vs. frequency comparison between measured and sim-

ulated data using a 124Ω resistor.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

90GHz 100GHz 110GHz 120GHz 130GHz 140GHz 150GHz 160GHz 170GHz 180GHz 190GHz

L
o

s
s

 f
a

c
to

r

Frequency

Simulated Measured

Figure 6.2: Loss factor vs. frequency comparison between measured and sim-

ulated data using a 260Ω resistor.
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Figure 6.3: Loss factor vs. frequency comparison between measured and sim-

ulated data using a 480Ω resistor.

the three. This is evident from the smoother data produced by the simulations

in figure 6.2 when compared to that in figures 6.1 and 6.3. This reduction in

peaks correlates well with the measured data, which is also at its lowest in

figure 6.2.

6.2 Chip offset optimisation

Offsetting the chip inside the waveguide has a large effect on the match, which

can be seen in figure 6.4. As the fins are moved from the centre to 180µm of

offset, there is a general improvement in both frequency response and average

loss. The simulations predict that 180µm is the optimal offset result. Any

further offsetting of the chip causes a decline in match and therefore reduced

performance. These simulations were conducted with a thin-film resistance of

480Ω. Figure 6.5 shows the top three offsets, intended to give a clearer picture

of the optimum point.
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Figure 6.4: Loss factor vs. frequency across a range of chip offsets (Calculated

with a 480Ω resistor).
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Figure 6.5: Loss factor vs. frequency for the top three offsets (Calculated with

a 480Ω resistor).
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6.3 Resistance value optimisation

Changing the value of the resistance, once the optimum offset (180µm) had

been found, had a slightly positive effect on loss. Figure 6.6 shows the loss

factor as a function of frequency using nine different resistance values. The

top three of these results are shown in figure 6.7. These results predict that a

resistance of approximately 300Ω is ideal.
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Figure 6.6: Loss factor vs. frequency across a range of resistance values (Cal-

culated at a 180µm chip offset).

6.4 Optimisation Results

Figure 6.8 presents the overall results of optimisation predicted using the simu-

lation software. The chip samples have resistances of 200Ω and it was initially

thought they should be placed so their fins were centred in the cavity. How-

ever, by increasing the resistance to 300Ω and moving the chip 180µm to the

left, performance is increased and a smoother response is attained.
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Figure 6.7: Loss factor vs. frequency for the top three resistance values (Cal-

culated at a 180µm chip off-set).
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the waveguide.
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6.5 Alternate Antenna Geometries

Several alternative designs of antenna were trialled once initial simulations of

the chip had been completed. These were done to see what effect the shape of

the fins had on match, and consequently, on loss. The fins are all completely

lossless since the simulator treats them as perfectly conductive. Therefore,

any loss due to their length is not evident. Standard fins refer to the original

design of the Fin-cat fins. The reduced and extended fin geometries are based

on the standard Fin-cat design but have been altered in length accordingly.

The geometries of these simulations can be seen in section 4.2.1.
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Figure 6.9: Loss factor vs. frequency comparison between optimised sensor

configuration and original 200Ω centred chip.

These results suggest that the fin lengths play a small role in the overall

match of the sensor.



Chapter 7

Conclusion

The goal of this investigation was to assess the concept of a uniquely designed

power sensing chip placed directly in waveguide. This power sensing chip,

referred to as Fin-cat, contained fin shaped antennas with which to absorb

power from the waveguide.

As part of this research, I have made and measured a two-port scale model

of the chip and waveguide section. I have also conducted a series of simulations

of the Fin-cat chip and waveguide section. In addition to this, I have simulated

a number of resistances between the fins, a range of chip offsets as well as a

number of alternative fin geometries.

The designs of the chip and bulkhead are completely original. The mea-

surements and simulations conducted over the course of this investigation have

not been done before.

The results of the measurements and simulations, suggest that the concept

of placing a microchip containing an antenna, resistor and thermocouples in-

side a waveguide in order to measure power is indeed feasible. The worst case

return loss was approximately 4.3dB, equating to a loss factor of about 63%.

While this return loss may not seem ideal, it is more than acceptable when

operating above 110 GHz.

Importantly this study has shown that optimising the shape of the fins

and the value of the resistance will not have a significant effect on the match.
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This suggests that the chip substrate itself is responsible for the quality of the

match.

The next step would be to build the bulkhead and test the chips. Further

– more detailed – simulations would require more advanced simulation soft-

ware. This could give an opportunity to further optimise the design, possibly

addressing the issue of bad substrate match.

No substantial advancement in from the development of the Fin-cat chip

will come with ease as this may require modification to the substrate. Hence

building the sensor is the next appropriate step. Since this would be a simple

matter of engineering metalwork, it should not present any significant diffi-

culties. My investigation has shown that there are no further gains to be

made without serious investment in further design work, high end simulation

software, and more advanced chip fabrication technologies.



Appendix A

An alternative Concept

It was observed that the dimensions of millimetre-wave waveguide are com-

parable to what can be achieved in the production of the “web” patch in

thermocouple-based power sensor integrated circuits, such as Jacksons. We

ask the question “would it be possible to make an IC that could be mounted

across the end of a section of waveguide, orthogonal to the direction of energy

propagation, capturing energy using a window of resistive material?

Figure A.1: Fitting the chip across the open end of a section of waveguide as

an “end-cap.

Figure A.1 depicts the basic idea. An IC would be placed over the end of

the guide like an oblong manhole cover, perpendicular to the incident waves.

The epitaxial layers, the traditional “top” of the IC, would face outwards.

The substrate would be etched away behind the energy-dissipating part of the

circuit, in the method common in circuits used in coaxial systems, exposing

the web to the incident waves. An obvious advantage is ease of assembly and

thus manufacture, compared to the alternative of a finline approach, since the

IC could be bonded in routine fashion to the rear of the bulkhead.
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Figure A.2: Idealized diagram of the End-cap sensor IC

Figure A.2 shows the proposed design of the power sensor IC. Note that

the underside of the chip has had its substrate etched away and that there is a

thin film of dielectric over the ‘window’ that has been created. Two sets of four

thermocouples reach into the centre of the film to measure the temperature rise

produced by the heat dissipated in it. Note also that electrical connectivity is

provided across the resistive window to allow delivery of dc (or low frequency)

power to the film. This is intended as a means to permit calibration.
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A.1 Mathematical Analysis

A.1.1 Reflection

η
1

η
2

η
1

Figure A.3: Reflection and transmission at the web boundary and absorption

in the web film itself.

Reflections are caused by a mismatch of impedance between transmission

media. Our situation is depicted in figure A.3. In order to minimise reflection

from the surface of the film, its characteristic impedance (η2) should match

that of the waveguide (η1) as closely as possible. The fraction of energy that

is reflected at a boundary is called the reflection coefficient (Γ), or sometimes

S11 [16]. This presents a challenge as the characteristic impedance of the

waveguide changes depending on its frequency of operation.

Γ ≡ Er

Ei

=
η2 − η1
η2 + η1

(A.1)

Power density is proportional to the square of the electric field (E) and the

reflected power density (Pr) is related to the incident power density (Pi) by

Pr = |Γ|2 Pi (A.2)

Therefore, by conservation of energy the transmitted power is equal to

Pt =
{

1− |Γ|2
}
Pi (A.3)

This represents the amount of power transmitted from the first medium to

the second. Setting the input power (Pi) to unity and substituting equation A.1

into equation A.3 gives the fractional transmittance of power (tfrac) between

media
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tfrac =

{
1−

∣∣∣∣η2 − η1η2 + η1

∣∣∣∣2
}
× 1

=
1

1
− (η2 − η1)2

(η2 + η1)
2

=
4η1η2

(η2 + η1)
2

(A.4)

The characteristic impedance of the air-filled waveguide given by:

η1 =
Z0√

1−
(
fc
f

2
) (A.5)

where Z0 is the impedance of free space, f is frequency and fc is the funda-

mental mode (TE10) cutoff frequency given by equation 2.2.

The characteristic impedance of the dielectric medium is

η2 =

√
jωµ

σ + jωε
(A.6)

where the bulk conductivity (σ) of the available dielectric is given by

σ =
1

Rs · t
(A.7)

The sheet resistance (Rs) of the dielectric may have a value of 250 Ω/�

and a thickness (t) of 50nm, giving the dielectric a bulk conductivity of

80000 (S m−1). The permeability (µ) and permittivity (ε) are products of

their relative values and free space definitions.

µ = µ0µr (A.8)

ε = ε0εr (A.9)

The magnitude of the dielectric’s complex impedance used in this analysis is

given by

|η2| = 4

√
ω2µ2

σ2 + ω2ε2
(A.10)
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A.1.2 Absorption

Dissipative attenuation due to an imperfect, nonmagnetic dielectric in waveg-

uide is given by equation A.11.[16]

αd =
27.3
√
εr tan δ

λ0

√
1−( fcf )

2
(dB/length) (A.11)

where

tan δ =
σ

ωεrε0
(A.12)

The loss tangent (tan δ) quantifies the extent to which a material dissipates

electromagnetic energy. By rearranging and including length (d, in our case

the thin-film resistor thickness) into equation (A.11) a more standard form for

dielectric dissipation results:

α =
27.3
√
εr tan δ

λ0

√
1−( fcf )

2
(dB/length)

= d
27.3
√
εr tan δ

λ0

√
1−( fcf )

2
(dB)

= 10 log e
d

2π
√
εr tan δ

λ0

√
1−( fcf )

2

(dB)

= 10 log e
d
ω
√
εr tan δ

c

√
1−( fcf )

2

(dB)

= 10 log ed β (dB)

(A.13)

where

β =
ω
√
εr tan δ

c

√
1−

(
fc
f

)2 (A.14)

By putting the equation into this form the decibel conversion can easily be

removed, leaving a ratio of incident energy to output energy of the dielectric:

dratio = edβ =

(
Inputpower
Outputpower

)
(A.15)
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The reciprocal is taken and the result is the fractional amount of output power

i.e. power not dissipated inside the dielectric.

Outputfrac =
1

edβ

= e−dβ
(A.16)

To find the fractional amount of power dissipated in the dielectric film, con-

servation of energy gives:

dfrac = 1−Outputfrac

= 1− e−dβ
(A.17)

A.1.3 Combining and scaling

The result of section A.1.1 is equation A.4 which calculates the fractional

amount of power transmitted into the dielectric, the active part of the web

of the IC. The result of section A.1.2 is equation A.17 which calculates the

fraction of power dissipated by the dielectric, used to heat the temperature

sensed region of the IC. Taking the product of these equations (A.4 and A.17)

gives the total fractional dissipation of power (Afrac) by the microchip.

Afrac = tfrac ∗ dfrac (A.18)

To give the total dissipation value in decibels (AdB) it should be of the form

AdB = 10 ∗ log

(
Inputpower
Outputpower

)
(A.19)

whereOutputpower is all the power that did not get absorbed i.e. that which was

reflected or passed through the film. This power is given, again by conservation

of energy, by

(
Inputpower
Outputpower

)
=

(
1

1− Afrac

)
(A.20)

The total power dissipated by the microchip (in dB) is therefore:

AdB = 10 log

(
1

1− Afrac

)
(A.21)
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A.2 Results

Table A.1 compares the characteristic impedances of the two media and also

shows the resulting transmission into the film. The value of η1 is obtained from

equation (A.5), and η2 from equation (A.10). These results were calculated

with a relative permittivity of unity, representing an air filled waveguide. The

table indicates that only a small fraction of power will across the film interface,

meaning that most of the energy is reflected back.

Table A.1: Interface transmission

Frequency η1 η2 Transmitted

(GHz) (Ω) (Ω) (%)

110 667 3.29 1.96

120 576 3.44 2.36

130 526 3.58 2.69

140 495 3.72 2.96

150 473 3.85 3.20

160 458 3.97 3.41

170 445 4.10 3.61

Table A.2 compares percentages of power transmitted into the dielectric

as well as power absorbed by the dielectric. The final column combines the

results, giving the total loss of power in dB. The conclusion is that the in-

vestigated materials would effectively absorb energy that enters the film, but

getting it into the film in the first place presents a challenge. The match is of

such poor quality that very little energy is transmitted into the film, preventing

it from being dissipated.

If the relative permittivity was larger than one the situation does not im-

prove. Figure A.4 shows the value of fractional absorption (dfrac) plotted

against relative permittivity, note the log scale for permittivity. It is obvi-

ous that the absorption of electromagnetic energy is heavily affected by the
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Table A.2: Total absorption

Frequency TransmittedDissipated Absorption

(GHz) (%) (%) (dB)

110 1.96 93.1 0.080

120 2.36 90.0 0.093

130 2.69 87.8 0.104

140 2.96 86.2 0.112

150 3.20 84.9 0.120

160 3.41 84.1 0.126

170 3.61 83.2 0.132

dielectric’s relative permittivity (εr). It is therefore necessary to determine

the permittivity of the dielectric medium, perhaps by way of [7], in order to

evaluate the electromagnetic performance of the design with certainty.

By increasing the characteristic impedance of the dielectric, a higher power

transmission across the interface would result. This can be done by choosing a

material with a lower bulk conductivity, or perhaps by altering the geometry

of the dielectric layer itself.

Realising that a change of impedance may increase power transmission into

the dielectric, the idea was investigated further. Altering the bulk conductivity

of the dielectric has very little effect on the total dissipation of power as any

gain made in dissipation was offset by a degradation of transmittance and

vice-versa. This is shown in figure A.5. In order to increase performance, a

very thick film with bulk conductivity much lower than is normally used in IC

fabrication would be required.

A.3 Conclusion

A fundamental problem arises in selecting the active dielectric layer in order

to obtain effective power absorption. The absorbing layer requires a few skin
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Figure A.4: Plot of the fraction of the power dissipated as a function of the

relative permittivity of the dissipating medium, for the endpoints of the range

of frequencies.

depths to capture energy. If the material were to be able to capture the energy

in the thickness of an epitaxial layer, it would be so conductive that it would

reflect most of the incident energy. In other words, we do not believe it is

possible to obtain a practical material that will absorb frequencies in the 100–

300 GHz range and yet be thin enough for epitaxial processing.

The bulk conductivity of a suitably absorbing layer would cause it to reflect

almost all incident power back towards the source. It has been shown that

altering the bulk conductivity of this layer in an attempt to reduce these

reflections will not improve the overall performance of the sensor. With typical

materials and thicknesses found in thermocouple-based monolithic circuits, the

most optimistic solution gives a total dissipation of about 3% of the incident

power. A dielectric thickness of 100µm with optimal bulk conductivity and

permittivity values puts absorption at about 4.5dB. This thickness is more

like that of the substrate than a deposited and photolithographically processed

epitaxial layer.
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Figure A.5: Fractional absorption and transmittance vs. bulk conductivity

(σ) for a relative permittivity of unity.



Appendix B

Programming the Network

Vector Analyser (Agilent

E8358A)

An adaptation of Prof. Scott’s AgilentIO GPIB code for interfacing with the

E8358A VNA. This is written in C++ and allows the VNA to be controlled

from any computer on the Waikato University network.



53

#include <NEWutility.h>

#include <fstream>

#define LBUFLEN 4096

main(int argc, char* argv[])

{

//Decare variables

char busname[32];

char cmd[BUFLEN];

char cat[BUFLEN];

char fstart[10];

char fstop[10];

double freqdev;

int visanum;

int narg;

int addr;

int npts;

int xferbytes;

int i;

char flag;

//Check input paramters

if(argc < 3)

{

fprintf(stderr,"Usage: \n E8358 [GPIB Device #] [address (1-30)] [Number of points] [StartFreq] [StopFreq]");

exit(1);

}

else fprintf(stdout," You have entered %d argument(s)\n",argc - 1);

/***************************************** ARGUMENTS **************************************************/

narg=0; //sets narg to 0

strcpy(busname,"GPIB"); //copys the chars "GPIB" into the variable busname

visanum = atoi(argv[++narg]); //gets GPIB number from user input e.g. 13 (meaning GPIB13)

if(visanum>255 || visanum<0) err("Bad GPIB number given in VISA#");

sprintf(cmd, "%d", visanum); //puts the visa number as a decimal into cmd string

strcat(busname, cmd);

addr = atoi(argv[++narg]);

npts = atoi(argv[++narg]);

strncpy(fstart,argv[++narg],10);

strncpy(fstop,argv[++narg],10);

//fstart = argv[++narg];

//fstop = argv[++narg];

fprintf(stdout," Program will connect to: GPIB%d\n",visanum);

fprintf(stdout," Program will use address: %i\n\n",addr);

/************************************ CONNECTS TO THE MACHINE ******************************************/

// open the interface

msg("Opening the interface... ");

OpenVISA(&defaultRM);

// open session to device

sprintf(cmd, "%s::%d::INSTR", busname, addr);

nwa = OpenDevice(defaultRM, cmd); //Assign "nwa" to be the VNA.

/********************************* DEVICE OPENED AND READY TO USE **************************************/

setTMO(nwa,10000); //Set timeout to 10s

bclear(nwa);
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// check instrument

msg("Talking to the NWA... \n");

fprintf(stdout," Buffer length is: %d\n",BUFLEN);

systerr(nwa);

wbstr(nwa,"*IDN?\n");

rbstr(nwa, cmd, BUFLEN);

fprintf(stdout," You have connected to: %s\n",cmd);

//Reset the current configuration

//wbstr(nwa,"SYSTem:FPRESET\n");

//Swap out CST file.

fprintf(stdout,"Dumping instrument CST file to ’C:\\Program Files\\Agilent\\Network Analyzer\\Documents\\cstemp.cst’\n");

//Check if temp file already exists

fprintf(stdout,"Checking for old temp file...\n");

wbstr(nwa,"mmemory:catalog?");

flag = 0;

for(i=0; i<1; i++)

{

rbstr(nwa,cmd,BUFLEN);

if(NULL != strstr(cmd,"cstemp.cst"))

{

flag = 1; //Delete old file.

fprintf(stdout"Found old cstemp.cst file. Will delete.");

}

}

if(flag)

{

fprintf(stdout,"Deleting old CST temp file");

wbstr(nwa,"mmemory:delete ’c:\\Program Files\\Agilent\\Network Analyzer\\Documents\\cstemp.cst’\n");

}

msg("Saving current CST file");

wbstr(nwa,"mmemory:store:cstate ’c:\\Program Files\\Agilent\\Network Analyzer\\Documents\\cstemp.cst’\n");

wbstr(nwa,"mmemory:load:cstate ’C:\\Program Files\\Agilent\\Network Analyzer\\Documents\\mj22.cst’\n");

fprintf(stdout,"got here3\n");

systerr(nwa);

/*

if(systerr(nwa))

{

fprintf(stderr,"Catalog of files found:\n");

wbstr(nwa,"mmemory:catalog?\n"); rbstr(nwa,cmd,LBUFLEN);

fprintf(stderr,"%s\n",cmd); //??

err("Could not load .cst file");

}

else

{

msg("Sucessfully loaded ’C:\\Program Files\\Agilent\\Network Analyzer\\Documents\\mj22.cst’\n");

}

*/
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fprintf(stdout,"got here2\n");

//Create S21 Measurment

//wbstr(nwa,"CALCulate1:PARameter:DEFine \"mj22_S21\",S21\n");

//fprintf(stdout," Created S21 Measurment\n");

wbstr(nwa,"calculate1:parameter:catalog? \n");

rbstr(nwa,cat,BUFLEN);

if(NULL==strstr(cat,"mj22_S11"))

{ // Create the S11 measurement

sprintf(cmd,"calculate1:parameter:define \"mj22_S11\",S11 \n");

wbstr(nwa,cmd);

fprintf(stdout,"Created S11 Measurment, mj22_S11\n");

}

if(NULL==strstr(cat,"mj22_S22"))

{ // Create the s22 measurement

sprintf(cmd,"calculate1:parameter:define \"mj22_S22\",S22 \n");

wbstr(nwa,cmd);

fprintf(stdout,"Created S11 Measurment, mj22_S22\n");

}

if(NULL==strstr(cat,"mj22_S12"))

{ // Create the S12 measurement

sprintf(cmd,"calculate1:parameter:define \"mj22_S12\",S12 \n");

wbstr(nwa,cmd);

fprintf(stdout,"Created S11 Measurment, mj22_S12\n");

}

if(NULL==strstr(cat,"mj22_S21"))

{ // Create the s21 measurement

sprintf(cmd,"calculate1:parameter:define \"mj22_S21\",S21 \n");

wbstr(nwa,cmd);

fprintf(stdout,"Created S11 Measurment, mj22_S21\n");

}

fprintf(stdout,"got here");

//Turn on window 1

//wbstr(nwa,"DISPlay:WINDow1:STATe ON\n");

//fprintf(stdout," Turned window on ");

//Put trace into window1 and feed it from the measurment

wbstr(nwa,"DISPlay:WINdow1:TRACe1:FEED ’mj22_S11’\n");

//Setup channel for single sweep trigger

wbstr(nwa,"INITiate:CONTinuous OFF;*OPC?\n");

rbstr(nwa,cmd,BUFLEN);

wbstr(nwa,"SENSe1:SWEep:TRIGger:POINt OFF\n");

//Set channel parameters

sprintf(cmd,"SENSE1:SWEEP:POINTS %i\n",npts);

wbstr(nwa,cmd);

sprintf(cmd,"SENSE1:FREQUENCY:STOP %s\n",fstop);

wbstr(nwa,cmd);

sprintf(cmd,"SENSE1:FREQUENCY:START %s\n",fstart);\

wbstr(nwa,cmd);

sprintf(cmd,"CALCULATE1:FORMAT MLOG\n");

wbstr(nwa,cmd);
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//Trigger channel

wbstr(nwa,"INIT;*OPC?\n");

rbstr(nwa,cmd,BUFLEN);

fprintf(stdout,cmd);

fprintf(stdout,"\n RESULTS:\n");

//Select measurment to read data from

wbstr(nwa,"CALCULATE1:PARAMETER:SELECT ’mj22_S21’\n");

wbstr(nwa,"FORMAT ASCII\n");

wbstr(nwa,"CALCULATE1:DATA? FDATA\n");

ofstream file("Output.txt");

for(int i=0; i<npts; i++)

{

rbstr(nwa,cmd,20);

fprintf(stdout,"%s\n",cmd);

cmd[19] = ’\n’;

file << cmd;

}

//Return device to continuious sweep mode.

wbstr(nwa,"INITiate:CONTinuous ON;*OPC?\n");

rbstr(nwa,cmd,BUFLEN);

viClose(nwa);

viClose(defaultRM);

msg("\r\n Done.");

return(0);

}



Appendix C

Newspaper article

Figure C.1: A cutout from the local newspaper.
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