
 
 
 

http://researchcommons.waikato.ac.nz/ 
 
 

Research Commons at the University of Waikato 
 
Copyright Statement: 

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). 

The thesis may be consulted by you, provided you comply with the provisions of the 

Act and the following conditions of use:  

 Any use you make of these documents or images must be for research or private 

study purposes only, and you may not make them available to any other person.  

 Authors control the copyright of their thesis. You will recognise the author’s right 

to be identified as the author of the thesis, and due acknowledgement will be 

made to the author where appropriate.  

 You will obtain the author’s permission before publishing any material from the 
thesis.  

 

http://researchcommons.waikato.ac.nz/


 

 

The Influence of Group Size on 

Learning and Problem-Solving in New 

Zealand Spotted Wrasse 

(Notolabrus celidotus) 

A thesis 

submitted in partial fulfilment 

of the requirements for the degree 

of 

Master of Science (Research) in Ecology and Biodiversity 

at 

The University of Waikato 

by 

Sean Georgeson 

 

 

2020 



 

i 

Abstract 

Foraging dynamics are a fundamental ecological process influencing a variety of other 

important processes including population dynamics and reproduction. This study 

investigated the influence of group size on the foraging success of 40 New Zealand 

spotted wrasse (Notolabrus celidotus) using a problem-solving apparatus. A pilot study 

using four fish was initially carried out to test equipment and gain an understanding of 

the individual learning capacity of these fish. Following this pilot study, the full study 

was separated into four stages. Stage 1 involved observing individual fish attempting a 

problem-solving foraging task on their own. Stages 2 and 3 increased the group size of 

fish attempting this foraging task to two fish and four fish, respectively. Stage 4 involved 

individual fish attempting the task on their own, however, mirrors were fitted to the 

experimental tank to simulate an increase in group size. Results of this research showed 

that the presence/perceived presence of conspecifics resulted in increased success rates 

and reduced latency to solve the problem over time. These results suggest that group size 

is an important contributor to foraging efficiency in the New Zealand spotted wrasse, as 

larger groups outperformed smaller groups in most cases, and individual fish with 

simulated increases to group size outperformed individual fish without this effect. There 

are three potential explanations for these results. (1) The presence of conspecifics 

provides passive predator vigilance, enabling individual fish to put more time into solving 

the foraging task instead of scanning for predators. (2) As a function of increased 

competition for a limited resource, fish put more effort into solving the foraging task. (3) 

Social learning resulted in fish learning foraging strategies from conspecifics. It is likely 

that the effects of reduced predator vigilance and increased competition in larger group 

sizes influenced foraging success rates of the fish in this study concurrently. Additionally, 

the pair and group treatments displayed a reduced latency for fish to leave the starting 

arena and to orient toward the food reward than the other treatments. It is unlikely that 



 

ii 

these results can be attributed to increased chance due to increased fish density, as fish 

from the pair and group treatments performed similarly in weeks one and three, despite 

the group treatment having twice as many fish per trial. This indicates the potential effect 

of a social learning mechanism, such as local enhancement, in the spotted wrasse in this 

study. Future studies could further assess the influence of social learning through use of 

reliable demonstrator fish in an observer-demonstrator experiment. Further study is 

required to conclusively suggest whether the effect of reduced predator vigilance, 

increased competition, or social learning has a greater influence on increased foraging 

success with increased group size in New Zealand spotted wrasse.  
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Chapter 1 

Literature Review 

Animal cognition underpins many behaviours such as acquisition and retention of 

information, as well as enabling decision-making and problem-solving (Shettleworth, 

2001). Due to the ecological value of problem-solving, studying this behaviour in a wide 

range of animals is beneficial in terms of understanding individual interactions between 

animals and their environments, as well as interactions between and within ecosystems 

on a larger scale. This thesis investigated the influence of group size upon the problem-

solving ability of a native New Zealand estuarine fish, the spotted wrasse (Notolabrus 

celidotus), in relation to a foraging task. Before discussing the implications of problem-

solving behaviour, it is useful to consider the concept of intelligence as it relates to 

animals, including fish. 

1.1 Perception of Animal Intelligence  

Fish, by number, are consumed by humans more than any other animal, are the second 

most occurring animal used in research after mice, and are also very common pet animals 

(Brown, 2015). Despite these important socio-economic connections with humans, and 

research indicating fish are intelligent, fish are still regarded as less-intelligent organisms 

by many, raising a need for further research (Brown, 2015). This is important to 

recognize, as a perception of low intelligence can result in reduced welfare and protection 

implications, with a less acceptable public attitude towards fish (Brown, 2015).  

This mindset is well summarised by Howell et al. (2013), where it was found that the 

human perception of a dog’s intelligence was dependent upon the owner’s relationship 

with the dog, despite there being no real difference in intelligence between the dogs. This 

indicates a bias in general human perception of animal intelligence, as people would 

generally consider an animal as being more intelligent based on familiarity (Howell et al., 
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2013). Thus, non-mammalian animals such as fish are likely perceived as less intelligent 

by the public due to being less familiar. Therefore, more research is needed to change this 

false perception that fish are non-intelligent organisms (Howell et al., 2013; Brown, 

2015).  

1.2 Measures of Intelligence 

Defining animal intelligence is an ongoing issue due to the lack of a consistent definition 

(Roth & Dicke, 2005). Attempts to measure intelligence have been made, including 

examining an animal’s behavioural flexibility/plasticity, their ability to innovate, as well 

as their ability to solve novel problems (Roth & Dicke, 2005; Seed & Call, 2010; Gamez, 

2020).  

1.2.1 Behavioural Plasticity 

According to Roth and Dicke (2005) behavioural flexibility, often referred to as 

behavioural plasticity, is a good measure of intelligence as it enables animals to change 

or alter their behaviours to benefit themselves in novel situations. Behavioural plasticity 

refers to the degree to which an organism can alter its repertoire of behaviours to increase 

its survivability in a range of different environments and selection pressures (Snell-Rood, 

2013). There are two types of behavioural plasticity: exogenous plasticity, which refers 

to how behaviour varies within an individual in response to external variables; and 

endogenous plasticity, which refers to how behaviour varies within an individual due to 

internal physiological or morphological mechanisms, not necessarily related to the 

external environment (Stamps, 2016). Endogenous plasticity is beyond the scope of this 

study, so iterations of “behavioural plasticity” in this thesis will be referring to exogenous 

behavioural plasticity. Within exogenous plasticity there exists contextual plasticity and 

developmental plasticity. Contextual plasticity refers to the extent of variation in an 

individual’s immediate behaviour in response to an external stimulus; examples of this 
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include mate preference processes, and stimulus-response relationships (Stamps, 2016). 

Developmental plasticity refers to the extent to which the behaviour of an individual 

varies due to external factors that occurred in the past, including past learning (Stamps, 

2016). 

Behavioural plasticity can improve an animal’s survivability in novel environments as it 

directly facilitates innovation, thus it is able to be used in general contexts as well as 

problem-solving contexts (Snell-Rood, 2013). This allows organisms with a high degree 

of behavioural plasticity to attempt a variety of potential solutions in a shorter length of 

time, which directly contributes to increased rates of success. In essence, the problem-

solving performance of an animal is mediated by underlying cognitive mechanisms such 

as behavioural plasticity and innovation. These cognitive mechanisms are speculated to 

contribute to reduced extinction rates in a range of species, allowing them to acclimate 

and adapt to novel situations and environments in a rapidly changing world, driven by 

anthropogenic development (Ducatez et al., 2020).   

1.2.2 Innovation 

Innovation refers to the ability of animals to adopt new adaptive behaviours, or use 

previously learned behaviours in a novel situation, to overcome an obstacle (Brosnan & 

Hopper, 2014). An example of this outside the realm of problem-solving can be observed 

in Iberian waterfrog (Pelophylax perezi) tadpoles. When faced with a novel predator, the 

red swamp crayfish (Procambarus clarkii), these tadpoles became less active than usual 

to reduce chances of predation (Nunes et al., 2014). This example falls under the Brosnan 

and Hopper (2014) definition of innovation, as the tadpoles used a previously learned 

behaviour under novel circumstances to avoid an obstacle to survival, in this case 

predation.  
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While innovation and problem-solving are different mechanisms, innovation can directly 

influence an animal’s ability to solve problems, enabling the animal to produce new 

behaviours to achieve a goal through indirect means; thus, innovation can be 

supplementary to problem-solving (Griffin & Guez, 2014). While the utilization of new 

and previously untested behaviours can hold risk-associated fitness costs, such as injury 

and wasted energy through failed foraging attempts, its prevalence within the animal 

kingdom is indicative of fitness benefits which outweigh these costs (Brosnan & Hopper, 

2014). Innovation can be facilitated by other cognitive mechanisms such as behavioural 

plasticity (Snell-Rood, 2013). 

1.3 Problem-Solving 

In animal behaviour, problem-solving can be broadly defined as the ability of an animal 

to reach a goal when direct means of achieving said goal are unavailable (Seed & Call, 

2010). Problem-solving has adaptive applications such as enabling an animal to overcome 

obstacles in order to obtain a desired state or commodity (e.g., food or territory), or to 

overcome obstacles to avoid or escape some adverse state (e.g., avoid predation) (Amram 

& Holekamp, 2012). For example, the outer shell of a food source such as a nut or 

shellfish, presents an obstacle to an animal attempting to access the food. To overcome 

this obstacle, the animal could employ problem-solving to break the shell, enabling access 

to the food source. Thus, in a foraging context, an animal that is more proficient at 

problem-solving is more likely to obtain more energy per unit effort, and thus gain more 

fitness benefits at a lower cost by decreasing handling time (Amram & Holekamp, 2012).  

Some instances of an animal’s problem-solving behaviour involve the use of tools. Tool-

use is the ability of an organism to use an external object as a physical extension of the 

body (usually an extension of the hand/claw or mouth/beak) to reach an immediate goal 

or avoid an adverse state (Brown, 2011). Tools can allow a foraging organism to gain 
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access to previously unobtainable resources such as food. For example, the yellowhead 

wrasse (Halichoeres garnoti) is known to use jagged rocks as anvils to open scallops, 

enabling the yellowhead wrasse to take advantage of the high-energy food source inside 

the shell (Brown, 2011). The versatility of tool-using organisms enables them to access 

resources or avoid predation at reduced metabolic costs. 

1.3.1 Associative Learning 

In some cases, animals solve problems through trial and error, becoming more proficient 

at solving the problem over time through associative learning (Amram & Holekamp, 

2012). Associative learning often involves an animal learning about the relationship 

between a specific action/event/behaviour and a stimulus/reward through reinforcement 

or punishment (Lukowiak et al., 1996). In this type of learning an animal can become 

more consistent at solving a problem due to associating certain behaviours with successful 

outcomes, rather than requiring a complex understanding of the problem itself.  

This type of learning can be observed in spotted hyenas (Crocuta crocuta), whereby trial 

and error resulted in a refinement of foraging behaviours, eventually resulting in a 

completely different behaviour than what was originally attempted, allowing access to a 

food reward at a lower energetic cost (Amram & Holekamp, 2012). In this study, hyenas 

were presented with a large metal cage that contained a visible food reward, the cage 

could be opened by turning a latch on the door. Success likelihood was found to be related 

to the number of different behaviours employed by each hyena, with more explorative 

hyenas employing more behaviours and increasing the chance of opening the latch 

(Amram & Holekamp, 2012). It is therefore inferred that the first instance of success by 

the hyenas occurred by chance and was a product of both exploratory behavioural 

diversity and persistence, as less persistent individuals were less likely to solve the 

foraging task. Successful hyenas were found to solve the task quicker in subsequent trials, 

indicating that learning had occurred as success was not a one-time event, and successful 
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individuals became more proficient at solving the task with practice (Amram & 

Holekamp, 2012). Due to the low overall success rate within the sample population 

(14.5%), it is unlikely that the hyenas were using a complex problem-solving mechanism. 

The problem-solving behaviour of the hyenas was likely facilitated by a combination of 

innovation and associative learning in this study (Amram & Holekamp, 2012; Brosnan & 

Hopper, 2014).  

1.3.2 Insightful Problem-Solving 

Some species utilize more complex problem-solving mechanisms such as insightful 

problem-solving. Insightful problem-solving infers that an organism is able to suddenly 

produce an adaptive response in order to reach a goal, through a deeper understanding of 

the obstacles and potential solutions to a problem (Bird & Emery, 2009). This contrasts 

with trial-and-error based associative learning which operates solely through positive 

reinforcement of beneficial behaviours (Amram & Holekamp, 2012).  

Insightful problem-solving has been observed in great apes such as orangutans (Pongo 

abelii) in their ability to solve complex foraging tasks, through implementing consistently 

successful strategies upon gaining an understanding of the obstacles present in the novel 

task (Mendes et al., 2007). In this study, orangutans were found to be able to manipulate 

the water level of a tube in order to gain access to floating peanuts. These tubes were 

transparent, so the orangutans were able to see the peanut inside, however the peanut was 

kept out of reach, preventing the orangutans from reaching into the tube and grabbing it. 

The tubes were in a fixed position, and not able to be manipulated (Mendes et al., 2007). 

Despite the difficulty of this task, all five orangutans were able to successfully access the 

peanut by filling their mouth with water and spitting it into the top end of the tube, causing 

the peanut to float up to the orangutan. The most informative result of this study was that 

all orangutans solved this novel task on the first trial and continued to solve the task in all 

subsequent trials. This is indicative of insightful problem-solving as success rate was not 
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influenced by trial and error, but rather by the orangutan’s ability to understand the 

obstacles to the reward prior to implementing a solution. The evidence of insightful 

problem-solving is further supported by the fact that orangutans had to fill their mouths 

and return to the tube multiple times. Persisting at this behaviour until they were able to 

access the peanut, even if they were not immediately rewarded, indicates the use of a 

more complex learning mechanism such as insightful problem-solving, instead of 

learning solely via associative learning (Mendes et al., 2007).  

1.3.3 Additional Examples of Problem-Solving 

Due to the ecological significance of problem-solving and the fitness benefits associated 

with it, problem-solving exists in many species to varying degrees (Amram & Holekamp, 

2012).  

1.3.3.1 Non-Human Primates 

Primates are often regarded as exceptional problem-solvers, thus are a good candidate to 

demonstrate some of the more complex applications of problem-solving in the animal 

kingdom (Mendes, Hanus, & Call, 2007). A good example of problem-solving in a natural 

setting can be observed in the tufted capuchin monkey (Cebus apella), which uses tools 

to access energy rich food such as nuts (Ottoni & Mannu, 2001). Nuts have a protective 

outer shell which makes them very difficult to break into directly via biting or scratching. 

Therefore, to reach the energy rich endosperm inside, capuchin monkeys employ 

problem-solving in the form of tool-use, by hitting the nuts against a solid surface. 

Capuchin monkeys developed an innovative solution by using two rocks: one larger rock 

was placed on the ground as an anvil, and another smaller rock was held in a monkey’s 

hand and used as a hammer. The ability to problem-solve and synthesize these tools 

allowed the monkeys to crack open the nuts and access the energy rich food within (Ottoni 

& Mannu, 2001). This emphasizes the ecological value of problem-solving, as these 
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animals were able to obtain high energy food at reduced metabolic cost and reduced 

handling time. 

1.3.3.2 Problem-Solving in Birds 

Birds, ranging from common house sparrows (Passer domesticus) to parrots such as the 

kea (Nestor notabilis) have been documented as having problem-solving capabilities. A 

study on individual problem-solving in kea measured their ability to solve novel problems 

through use of a multi-access box (Auersperg et al., 2011).  There were four pathways to 

access food rewards within this box; string manipulation, window manipulation, ball 

manipulation, and stick manipulation. Upon solving the problem, the bird would gain 

access to a food reward. Once the kea had become proficient at one pathway, that pathway 

would be blocked off and a new pathway would be presented. The ability of kea to change 

how they solve the problem was recorded and compared to the performance of the New 

Caledonian crow (Corvus moneduloides). The New Caledonian crow was chosen for 

comparison against the kea as it is well documented as being an innovative species 

(Mendes et al., 2007; Taylor et al., 2010). Results indicated that kea had a high degree of 

behaviour plasticity and innovation, finding more solutions to the problem than the New 

Caledonian crows (Auersperg et al., 2011). This study is a good example of the variation 

in problem-solving abilities that can be observed across different species. 

A study by Papp et al. (2015) investigated the influence of urbanization on problem-

solving in the house sparrow. The problem-solving ability of sparrows from rural areas 

was compared with that of urban sparrows, by testing their ability to gain access to a food 

reward through a series of four different problem-solving feeder boxes. Birds were 

separated by opaque plastic sheets during the experimental trials in order to avoid the 

potential of social learning through visual contact. Problem-solving performance of the 

birds was similar across three of the four tasks, but in one task, the urban birds were 

significantly more likely to solve it than the rural birds. This indicates that urban birds 
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may have had more behavioural plasticity relating to problem-solving tasks, likely due to 

rapid changes in their living environments caused by human influences (Snell-Rood, 

2013; Papp et al., 2015). Additionally, it was found that the most accurate predictor of 

success rate in this study was the frequency of foraging attempts, indicating that success 

rate was dependent upon motivation and trial-and-error based learning (Papp et al., 2015). 

1.3.3.3 Canids 

Wolves (Canis lupus)  have been found to outperform both domestic dogs and free-

ranging dogs in a foraging-related problem-solving task (Brubaker et al., 2017). In this 

task, the animals were permitted to manipulate a puzzle box in order to gain access to a 

food reward within the box (Brubaker et al., 2017). Four groups of canines were tested in 

this experiment: human socialized wolves, free-ranging dogs, pet dogs in an indoor 

enclosure with a familiar human experimenter, and pet dogs in an outdoor enclosure with 

an unfamiliar human experimenter (Brubaker et al., 2017). Results showed that human 

socialized wolves performed significantly better in all comparisons with domestic dogs, 

regardless of whether the dogs were indoor, outdoor, or free-ranging (Brubaker et al., 

2017). It was found that many dogs simply gave up before the trial had concluded, whilst 

the wolves would generally persevere until they had obtained the food, or the trial had 

ended. With these findings, it was concluded that persistence to solve the problem was 

the key factor influencing performance between the dogs and the wolves (Brubaker et al., 

2017). This example demonstrates the importance of motivational state when attempting 

to solve a foraging task, indicating that not only intelligence and cognitive capacity, but 

also effort, is a significant factor in terms of an animal’s ability to solve problems. 

1.3.3.4 Dolphins 

In a natural setting, bottlenose dolphins (Tursiops sp.) have been found to be able to utilize 

tools to assist them with foraging. A study by Patterson and Mann (2011) described the 
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ability of dolphins to protect their rostrum/beak from rocks and corals during foraging, 

by using sponges as a protective covering. This allows the dolphins to forage on harder 

substrates with reduced risk of injury, thus minimising costs associated with foraging 

(Patterson & Mann, 2011). This example shows that organisms can derive fitness benefits 

from problem-solving behaviour aside from just increasing foraging speed, reducing 

handling time, or avoiding predation. 

1.3.3.5 Octopuses 

In terms of invertebrates, the common octopus (Octopus vulgaris) is renowned as one of 

the most proficient problem-solving organisms. For example, it has been found that the 

common octopus can unscrew a transparent jar and obtain the visible prey (e.g., a crab) 

inside (Fiorito, Planta, & Scotto, 1990). This complex behaviour is possible due to various 

structural and physiological adaptations allowing the octopus to generate enough force to 

grip and twist the jar lid. However, this level of problem-solving ability would not be 

possible without complex cognitive capabilities as well.  

The coconut octopus (Amphioctopus marginatus) presents a good example of how tool-

use can complement anti-predator behaviours. This octopus has been documented using 

actively gathered materials, such as debris and coconut shells, to camouflage itself from 

potential predators (Finn, Tregenza, & Norman, 2009). This is consistent with Brown’s 

definition of tool-use, as the octopus utilized an external object to avoid an adverse state 

(Brown, 2011). 

1.3.3.6 Fish 

Many instances of problem-solving in fish involve tool-use, this complex form of 

behaviour seeming particularly common in wrasse species. For example, the black-spot 

tusk fish (Choerodon schoenleinii) has been observed to solve foraging problems through 

tool-use, by using jagged rocks as anvils to open energy-rich shellfish (Brown, 2011). 
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The fish does this by gripping shellfish with its mouth and striking it against the rock to 

weaken the shell. Without the ability to problem-solve, the fish would be unable to use 

these well-armoured shellfish as a food source. Similar foraging methods are employed 

by other fish; for example, the broomtail wrasse (Cheilinus lunulatus) utilize corals as a 

tool to crush armoured sea urchins, enabling consumption of the flesh within (Brown, 

2011). Similar behaviours have also been observed in captive fish. For example, in a study 

by Pasko (2010) it was found that the sixbar wrasse (Thalassoma hardwicke) were able 

to use a similar behaviour to the black-spot tusk fish, using a jagged rock placed within a 

fish tank to break up large food pellets into smaller, edible pieces. The ability of these 

fish to use problem-solving behaviours on various food sources, and in different 

environments, can likely be attributed to a degree of behavioural plasticity (Pasko, 2010; 

Snell-Rood, 2013). 

The seven-spot archerfish (Toxotes chatareus) employs a different problem-solving 

strategy when foraging. These fish have been observed using water as a foraging solution, 

allowing them to capture out of reach prey such as insects resting on vegetation or flying 

above the water (Dill, 1977). These fish do this by forming a tube between their tongue 

and palate, enabling them to shoot pressurized streams of water at unsuspecting prey, 

causing them to fall into the water and making them accessible to the archerfish (Dill, 

1977). Other species of archerfish, such as the banded archerfish (Toxotes jaculatrix) are 

also known to use this same behaviour to forage effectively (Brown, 2011). 

Fish not only use problem-solving to assist foraging efforts, but also to increase the 

survivability of their offspring in some cases (Brown, 2011). For example, in various 

species of South American cichlid, parents have been found to use leaves and small rocks 

as tablets to move offspring out of dangerous situations, such as predation attempts 

(Brown, 2011). These fish also consider the size and density of the leaves and rocks on 
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which they place their eggs to ensure they are easy enough to move when necessary 

(Brown, 2011).  

These above-described studies show examples of the ability of fish to use tools in order 

to reach a goal through indirect means; however, as previously discussed in animals such 

as primates and birds, there are different expressions of problem-solving behaviour such 

as insightful problem-solving and trial-and-error based learning. While fish have not been 

shown to be able to use the same problem-solving complexity as seen in organisms such 

as primates, they have been observed to learn how to solve simple problem-solving tasks 

outside the realm of tool-use based problem-solving. A good example of this is 

demonstrated by guppies (Poecilia reticulata) in a study by Laland and Reader (1999), 

where it was found that guppies were able to produce novel solutions through trial-and-

error learning, to navigate a maze and reach a food reward. The experiment was 

conducted over three phases. Phase one tested the influence of sex and hunger level on 

success rate, while the second phase of the experiment tested the influence of body size 

on success rate. The third phase examined whether individual fish had a higher likelihood 

of succeeding compared to other fish, regardless of the previously mentioned factors to 

reduce the effect of potential confounds. It was found that smaller fish performed better 

than larger fish, food-deprived fish performed better than well-fed fish, and female fish 

performed better than male fish (Laland & Reader, 1999).  These results were likely due 

to motivational state, indicating that because of hunger, these fish were able to solve the 

problem more consistently as a function of increased motivation for their foraging 

attempts (Laland & Reader, 1999).  

In a study by Millot et al. (2014) Atlantic cod (Gadus morhua) were found to use 

associative learning in order to overcome a problem-solving task. In this study, Atlantic 

cod learned to use an externally attached dorsal tag to gain access to a feeder container, 

through purposefully tangling the tag around the pull-string of the feeder before pulling 
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the feeder open (Millot et al., 2014). Firstly, fish examined the pull-string of the self-

feeder, using their mouths to bite and tug on the pull-string of the feeder, eventually 

freeing the food and reinforcing the behaviour. However, when a dorsal tag became 

entangled on the pull-string accidentally, fish initiated an escape response which resulted 

in the self-feeder being opened more easily (Millot et al., 2014). Over time, the fish began 

to purposefully entangle their external tags on the pull-string to open the feeder, indicating 

associative learning through positive reinforcement (Millot et al., 2014). This experiment 

took hundreds of trials, however, it provided evidence that fish are able to reduce 

foraging-related metabolic costs via associative learning.  

Problem-solving ability and rate of learning can be improved by the presence of 

conspecifics through various types of social learning (Waal et al., 2015). Prior to 

discussing the implications of social learning, it is first important to understand the 

evolution of social groups, and the fitness benefits they provide to a population. 

1.4 The Evolution of Social Groups 

Sociality, or social grouping behaviour, refers to instances where multiple conspecifics 

live or interact with one another, resulting in the formation of complex relationships and 

social networks (Wey et al., 2008). Social groups can be observed in a wide range of 

organisms, including both predator and prey species. This grouping behaviour likely 

evolved due to selection pressures such as predator avoidance and foraging or hunting 

efficiency (Williams, Lutz, & Applegate, 2003).  

1.4.1 Predator Avoidance 

Being a member of a social group can be advantageous for multiple reasons. Firstly, in a 

group there are multiple individuals, increasing the chance that one or more may be able 

to detect the presence of threats such as predators (Roberts, 1996). This grants passive 

predator vigilance and reduces the predation risk of foraging individuals in the group. 
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This is known as the many eyes hypothesis (Roberts, 1996). Another benefit of living in 

a group is that an individual has a lower chance of being predated upon if they are in the 

presence of conspecifics. This is because a predator will have more available targets to 

attack, reducing the likelihood of an individual being targeted, this is known as the 

dilution effect (Roberts, 1996). Being in a group is also beneficial as the presence of 

multiple conspecifics can confuse a predator, causing it to make errors it would not 

necessarily have made if only chasing one target. This again reduces an individual’s 

likelihood of mortality via predation when living in a group (Roberts, 1996). For these 

reasons, living in social group can reduce predator-associated mortality of prey 

individuals.  

1.4.2 Foraging Success 

Another factor that likely contributed to the evolutionary success of social groups is 

reduced foraging costs. The larger the group, the higher the likelihood that an individual 

will find a desired resource such as food by chance, thus allowing other individuals to 

access the resource. To avoid costs to the social group such as competition, and agonistic 

behaviour, optimal group sizes evolved. For example, in northern bobwhites (Colinus 

virginianus) a group size of approximately 11 birds appeared to be optimal, resulting in 

increased feeding efficiency and improved predator detection (Williams et al., 2003). 

Smaller groups had reduced survival rates due to reduced predator detection, while larger 

groups had reduced survival rates related to reduced body mass due to increased 

competition (Williams et al., 2003).  

Predatory animals also utilize social grouping behaviour to effectively hunt prey, 

accessing food at reduced energetic cost. Social groups in predatory organisms can also 

reduce the chance of a failed hunt, saving energy and reducing the chance of injury 

(Amram et al., 2014). 
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1.4.3 The Influence of Group Size on Problem-Solving Ability 

Studies show that group size can have an influence on the problem-solving efficacy of a 

social group of animals (Liker & Bokony, 2009). For example, in an experiment with 

house sparrows, seeds were placed in a well that could only be accessed through opening 

a lid. This novel behaviour had not previously been utilized by the sparrows, thus it had 

to be learned in order to retrieve the food within the well. By manipulating their group 

size, it was found that house sparrows in larger groups experienced greater success rates 

than those in smaller groups (Liker & Bokony, 2009). As explained previously, there is a 

possibility that this was due to larger groups having more passive vigilance, giving 

individuals more time to focus on foraging instead of looking out for predators. This could 

have directly influenced the amount of time an individual sparrow was willing to spend 

foraging, thus increasing the success rate of individuals in larger groups (Liker & Bokony, 

2009). However, a more likely explanation behind these findings is that an increased 

group size contained more behavioural diversity, enabling individuals to learn certain 

behaviours from each other to apply to the problem-solving task. These useful behaviours 

were able to spread more quickly amongst the foraging group by way of observational 

social learning (Bokony et al., 2003; Liker & Bokony, 2009). 

Like house sparrows, shoaling rainbowfish (Melanotaenia duboulayi) have been studied 

to observe whether group size influenced their efficacy for problem-solving (Brown & 

Warburton, 1999). The ability of the fish to escape trawl-nets after being trapped was 

found to increase significantly with group size, with fish in shoals of five escaping much 

faster than pairs. Over a series of five trials the escape frequency also increased in the 

shoal of five fish when compared to pairs (Brown & Warburton, 1999). These results 

indicate that larger groups of shoaling rainbowfish fare better than smaller groups in 

relation to this predator-avoidance scenario. This is likely due to fish following the 

movements of other fish in the shoal in order to escape the net (Brown & Warburton, 
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1999). This form of social learning enables a higher number of individuals to escape the 

net, an adaptive trait which could increase survivability of rainbowfish in the wild under 

similar circumstances.  

1.5 Social Learning 

In animal behaviour, social learning can be defined as the acquisition or modification of 

a behaviour, either partly or entirely, due to observing the behaviour of another organism 

(Biondi et al., 2010). This ability to learn behaviours from conspecifics is advantageous 

in some niches for situations such as predator avoidance or gaining access to a food source 

(Manassa, McCormick, & Chivers, 2013; Waal et al., 2015). 

1.5.1 Local and Stimulus Enhancement 

There are multiple types of social learning. Firstly, stimulus enhancement and local 

enhancement are more cognitively simple forms of social learning, in which an individual 

is able to learn from another individual via associative learning (Mersmann et al., 2011; 

Waal et al., 2015). Argued as the simplest form of social learning by Waal et al. (2015), 

local enhancement can be defined as a form of associative learning in which an individual 

is drawn to a location due to the presence of conspecifics which are interacting with the 

area (Weber & Chittka, 2014). For example, in a study conducted by Buckley (1996), 

North American black vultures (Coragyps atratus) were found to use local enhancement 

to forage more effectively and efficiently. In this study, black vultures more easily located 

animal carcasses due to the presence of conspecifics, increasing scavenging opportunities 

for foraging individuals. This social learning ability allowed black vultures to compete 

with turkey vultures (Cathartes aura) which, when solitary, find food faster than 

individual black vultures do, as a function of their acute scent detection (Buckley, 1996). 

This study highlights the significance of these simple yet powerful social learning abilities 

in a competitive foraging context. 
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Stimulus enhancement can be defined as a form of observational learning in which an 

individual learns the relationship between a stimulus and its result by observing a 

demonstrator individual, regardless of the location in which that stimulus is encountered 

(Weber & Chittka, 2014). An example of stimulus enhancement in a reproductive context 

can be shown in the mate selection behaviours of the guppy (Poecilia reticulata), whereby 

females will find male guppies more attractive if they are observed in the presence of 

another female guppy, as opposed to a solitary male (Zentall, 2010). The stimulus in this 

case is the presence of a competing female, with the result being a heightened attraction 

to the focal male. This is advantageous as mating is encouraged more frequently, 

potentially resulting in more offspring being produced.   

Stimulus enhancement has also been observed in rhesus monkeys, resulting in anti-

predator behaviour against snakes (Cook et al., 1985). After observing conspecifics 

employing avoidance behaviours in response to snakes, naïve monkeys will also develop 

a fear response to the snakes, producing similar predator-avoidance behaviours in the 

presence of snakes even if they have not witnessed a snake attack occur (Cook et al., 

1985). This social transmission of information enables observer rhesus monkeys to reduce 

their own predation risk, as these individuals now react to potential predation attempts 

before an attack has occurred. 

1.5.2 Emulation and Imitation 

Imitation and goal-directed emulation are more complex forms of observational social 

learning, enabling an observer individual to access the desired commodity through 

observing an experienced/innovative demonstrator individual (Waal et al., 2015). 

Imitation refers to when an individual adopts the behaviour of a conspecific, whereas 

emulation is when an individual develops their own variation of a behaviour displayed by 

a conspecific (Waal et al., 2015). These social learning mechanisms have been observed 

in the vervet monkey (Chlorocebus aethiops) (Waal et al., 2015). In this study, vervet 
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monkeys observed competent demonstrator individuals open an artificial fruit to access 

food held within. This artificial fruit was a wooden box, with doors and sliders existing 

as the two main access points to the box. Observers were shown to copy the behaviours 

of demonstrators in some cases, suggesting imitation, and develop their own variations 

of behaviours displayed by the demonstrators in others, suggesting emulation. It is likely 

that goal-directed emulation was occurring alongside imitation in this example, as 

observers produced different solutions to what were employed by demonstrator 

individuals in multiple cases (Waal et al., 2015).  

1.5.3 Other Social Learning Mechanisms 

Vertical social learning is a learning process by which social information is transmitted 

from parent to offspring (Farine, Spencer, & Boogert, 2015). This is similar to oblique 

social learning, in which information is transmitted from an adult to an unrelated juvenile 

conspecific (Farine et al., 2015). Horizontal social learning describes the process of 

learning between unrelated conspecifics of the same age bracket (Garland et al., 2011). 

Vertical social learning has been demonstrated in pigs (Sus scrofa). A study by Oostindjer 

et al. (2011) showed that piglets which had observed their mother eat had a higher 

incidence of eating similar foods, while piglets which could not observe the mother eat 

did not. This type of learning is beneficial as the young are able to learn and identify 

which foods are safe for consumption by observing what foods their mother chooses to 

eat.  

Both oblique and vertical social learning have been observed in the zebra finch 

(Taeniopygia guttata). In an undisturbed environment, zebra finches display vertical 

social transmission of information, learning foraging behaviours from their parents 

(Farine et al., 2015). However, in a study conducted by Farine et al. (2015), juvenile zebra 

finches that had been stressed in early life displayed oblique social learning, exclusively 



 

19 

learning foraging behaviours from unrelated adults (Farine et al., 2015). It is suggested 

that the ecological function of this is altered behaviour is for the zebra finches to avoid 

repeating foraging mistakes that parent individuals had made (Farine et al., 2015). For 

example, in an ecological setting, poor parental foraging efficiency could lead to 

prolonged hunger in the chicks, resulting in a stress response. To avoid learning these 

inefficient foraging behaviours, the chicks focused their attention on unrelated adults 

(Farine et al., 2015).  

Horizontal social learning has been demonstrated by male humpback whales (Megaptera 

novaeangliae) over a large geographical scale. A study by Garland et al. (2011) found 

that all males within a population would conform to the most current vocal sexual display 

to attract females, and that similarities in these vocal sexual displays could be adopted by 

males in entirely different populations within the same ocean basin.  

1.6 Social Learning in Fish 

Social learning is also exhibited in fish to varying degrees and has been studied more 

frequently in recent years due to ecological implications of this behaviour. Cartilaginous 

fish such as stingray and sharks, as well as multiple teleost fish such as rainbowfish and 

cleaner wrasse, have been investigated for their problem-solving and social learning 

abilities. 

A study by Thonhauser et al. (2013) tested the social learning ability of the stingray 

(Potamotrygon falkneri) to solve a novel task in order to access a food reward. In this 

test, a demonstrator individual was given a problem to solve in which a food reward was 

placed within a pipe while an observer individual was permitted to watch. As the food 

was initially out of reach, the stingrays would commonly use their flat surfaced bodies to 

produce a pressure gradient to force the food out of the pipe for consumption (Thonhauser 

et al., 2013). Thirty minutes after the demonstrator had accessed the food, the observer 



 

20 

was given the opportunity to complete the task. The observer solved the problem quicker 

than the control, indicating that stingrays have an ability to learn socially through visual 

observation (Thonhauser et al., 2013). 

In sharks, social learning can be beneficial in learning how to improve prey searching 

abilities, improve navigation and orientation abilities around the home range, increase 

success in finding a mate, and to distinguish between conspecifics and members of other 

species (Guttridge et al., 2009). A study by Guttridge et al. (2013) determined the social 

learning ability of lemon sharks (Negaprion brevirostris) by how quickly observer sharks 

were able to solve a novel foraging task when paired with an experienced demonstrator, 

compared to sharks paired with a non-experienced or “sham” demonstrator (Guttridge et 

al., 2013). The novel foraging task involved the sharks swimming in an open area and 

making contact with a target sensor, which upon contact, would release a food reward for 

the shark. After the naïve lemon sharks were given time to observe a demonstrator 

individual performing the task, they were isolated and given the opportunity to attempt to 

solve the task themselves. It was found that lemon sharks that had observed a 

demonstrator had a much greater success rate compared to sharks that had observed non-

experienced “sham” demonstrators (Guttridge et al., 2013). This study, being one of the 

first to examine the social learning ability of elasmobranch fishes, indicated that juvenile 

lemon sharks display some capacity to learn socially from conspecifics. It is unclear to 

what extent this behaviour is being influenced by local enhancement or stimulus 

enhancement (Guttridge et al., 2013).  

A study by Trapp and Bell (2017) found that three-spined sticklebacks (Gasterosteus 

aculeatus) benefitted somewhat from being able to observe demonstrators complete a 

problem-solving foraging task. The task involved the demonstrator fish entering a 

transparent tube that was open at one end and closed at the other. Food was placed in the 

closed end of the tube, so in order to access the food the fish had to take an indirect route, 
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gaining access from the open end of the tube on the far end of the tank. There was no 

significant difference in the success rate between sticklebacks that were permitted to 

observe a demonstrator, and those that were not permitted to observe a demonstrator, 

indicating that sticklebacks did not learn how to complete the task by observing the 

demonstrators. However, another key result was the latency of naïve sticklebacks to orient 

towards the food reward. On average, the naïve observers orientated to the food reward 

twice as fast as naïve sticklebacks that did not observe a demonstrator. Therefore, while 

this study did not show that stickleback problem-solving performance increased in the 

presence of a demonstrator, it did show that the presence of a demonstrator enabled 

sticklebacks to locate the food faster. This was likely a result of a simple social learning 

mechanisms such as local enhancement, which could have positive foraging implications 

in a natural setting (Trapp & Bell, 2017).  

1.7 The Spotted Wrasse (Notolabrus celidotus) 

The ecology of the current study species, the New Zealand spotted wrasse has been 

studied extensively in the past under a different name (Pseudolabrus celidotus). This 

species is found in high abundance in the coastal waters of north-eastern New Zealand 

and is an important benthic carnivore (Jones, 1984). Spotted wrasse subsist on gammarid 

amphipods and other small crustaceans while in the juvenile stage, moving to larger prey 

items as they grow in size (Jones, 1984). 

The reproductive ecology of the spotted wrasse is mediated by their monandric biology, 

meaning that all individuals begin life as females, whilst a proportion of these juveniles 

(dictated by size) convert to males (Jones, 1980). This sex-change event occurs 

immediately prior to sexual maturity, enabling a male to mate with surrounding females 

upon reaching complete sexual maturity (Jones, 1980). The minimum size a fish must be 

before investment in reproduction is viable is between 10 and 11 cm standard length 
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(measured from the tip of the head to the caudal peduncle) (Jones, 1980). Another study 

by Jones and Thompson (1980) suggested that females can inhibit the maturation of one 

another in order to reduce reproductive competition, with smaller females showing slower 

rates of maturation when found in the presence of larger females.  

A study by Jones (1984) investigated the influence of habitat and intraspecific 

behavioural interactions upon the local distribution of spotted wrasse in northern New 

Zealand. The key findings were that juveniles were found in aggregations/groups whilst 

adults were distributed more randomly, indicating that juveniles are more reliant upon the 

fitness benefits associated with being part of a social group, in this case predator 

avoidance (Jones, 1984). This is also supported by the habitat preference of juveniles, 

being more attracted to sheltered areas with high algal biomass, as opposed to adults 

whose distribution appears to be more limited by food availability rather than shelter from 

potential predators (Jones, 1984). This study notes that intraspecific aggression is 

infrequent at the juvenile level, facilitating the formation of schools due to reducing 

fitness costs associated with agonistic behaviour and aggression (Jones, 1984). 

The schooling behaviour of juvenile spotted wrasse, their low incidence of aggressive 

behaviour, and their abundance in accessible New Zealand coastal environments makes 

them good candidates to study the influence of group size on a problem-solving foraging 

task. This presents an opportunity to gain more insight into the cognitive capabilities of 

fish, adding to our overall knowledge of the subject.  
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1.8 Study Aims  

The aim of this study was to investigate whether group size influences the foraging 

success rate and completion time of spotted wrasse in a laboratory-based, problem-

solving task. A secondary aim of this study was to identify which cognitive mechanisms 

are responsible for any influence of group size upon foraging success. It was hypothesized 

that an increase in group size would increase the performance of spotted wrasse in terms 

of success rate and completion time in a problem-solving task. 
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Chapter 2 

Methods 

The experimental design of this study was based on two similar studies conducted by 

Atton et al. (2014) and Trapp and Bell (2017), in which three-spined sticklebacks had to 

discover how to use a novel feeding apparatus in order to access a food reward using 

social information transmitted by conspecifics.  

2.1 Subject Collection and Storage 

Forty-seven spotted wrasse were caught by minnow traps and angling from Sulphur Point, 

Tauranga Harbour, Bay of Plenty. The fish were transported to the aquatic facility at the 

University of Waikato, Hamilton campus, where they were housed. Four fish were used 

for a pilot study, and 40 were used for the full study. The full study involved four 

treatments (stages): five fish were used for the initial single trials (Stage 1), 10 fish were 

used for the pair trials (Stage 2), 20 fish were used for the trials involving groups of four 

(Stage 3), and five fish were used for the mirror component (Stage 4). Three surplus fish 

were used to test potential methods for individual identification (details below).  

The spotted wrasse were initially all contained within one holding tank (1.01 m x 0.48 m 

x 0.47 m) whilst the permanent housing tanks were being constructed. After two weeks, 

the fish were selected based on size so that the mean size of each group across each 

treatment was as consistent as possible. In the pilot study, as well as in Stages 1 and 4 of 

the full study, individual fish were kept in separate sections of a housing tank, whilst in 

Stages 2 and 3 of the full study the fish were separated into their trial groups (pairs for 

Stage 2 and groups of four for Stage 3) prior to the commencement of experimental trials. 

Keeping the average size of fish consistent across trial groups and treatments was done 

to ensure that the results were reflective of changing the fish group size only, ensuring 

that fish body size did not influence results.  
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Once fish were separated into their treatment groups, they were left to habituate for one 

week in their housing tanks, as well as being able to familiarise themselves with the 

experimental tank. During this week-long habituation period prior to behavioural trials, 

fish were fed frozen diced squid at 10 am each weekday. This consistent feeding time was 

to ensure that the fish were used to feeding at 10 am, which was also the planned start 

time of the behavioural trials.  

Only juvenile female spotted wrasse were caught to reduce the chance of confounding 

factors related to sexual maturity. Most fish were between 5 and 10 cm long (standard 

length), however, out of the 40 fish, two were slightly larger than 10 cm. Due to their 

length, these two fish had the potential to convert from male to female (Jones, 1980). 

Fortunately, these fish remained female throughout the duration of the experiment, thus 

the size of these fish likely did not influence results. The mean length of fish across all 

treatments was 6.9 cm, with a standard deviation of 1.9 cm. A one-way ANOVA showed 

that the mean lengths of fish did not significantly differ between treatments or trial groups 

(p = >0.05). Animal ethics approval for this study was granted by the University of 

Waikato Animal Ethics Committee (protocol 1075).  

2.2 Equipment  

Two types of housing tanks were constructed in order to host different numbers of fish, 

each of these tanks were (1.01 m x 0.48 m x 0.47 m). The first tank was designed to house 

fish for the pilot study, as well as Stage 1, Stage 2, and Stage 4 (Figure 1), while the 

second tank was designed to hold the groups of four needed in Stage 3 (Figure 2). For 

individual identification and ease of capture/transfer, dividers were used to keep the fish 

separate within the housing tanks (Figure 1 and Figure 2). Each segment of the tank was 

numbered by using a whiteboard marker on the external walls of the tank, in order to keep 

track of which fish was which. For example, the segment that contained fish 1 in the solo 
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trials was labelled “1”, the segment that contained fish 2 was labelled “2”, and so on.  The 

dividers reduced the time taken to catch the fish as they had less space to swim away from 

the net, likely reducing stress during the capture process. The dividers were transparent 

in order to allow visual contact between the fish, reducing stress in the holding tanks. 

Additionally, the fish were individually transferred between tank segments each day after 

trials to ensure that each fish got an equal opportunity to have visual contact with 

conspecifics. While the fish were being transferred, the numbers on each segment of the 

tank were swapped accordingly. To ensure that oxygen was able to flow throughout the 

tank, the pump-filtration system was set up so that the outflow was on the opposite side 

of the tank to the inflow, generating a weak current. Holes were drilled into the dividers 

to ensure water could flow from one side of the tank to the other, allowing the even 

distribution of oxygen. Small (8 cm x 7.5 cm) half plant pots and some synthetic plants 

were placed in each segment of the housing tanks to be used as habitat for the fish, and 

for environmental enrichment (Figure 1 and Figure 2). 

 

Figure 1. Housing tanks for fish storage during Stage 1 (one fish per tank segment), Stage 2 (two 

fish per tank segment), and Stage 4 (one fish per tank segment). Fish were separated with 

transparent perforated dividers which allowed water and oxygen flow from one side of the tank 

to the other.  

 



 

27 

 

Figure 2. Housing tanks for fish in Stage 3 (four fish in each half of the tank). Fish were separated 

with a transparent perforated divider which allowed water and oxygen flow from one side of the 

tank to the other. 

 

Each of the tanks were supplied with recirculated and filtered synthetic seawater. The 

water temperature was maintained at 17.5°C +/- 0.5°C and was measured through use of 

a TidbiT data logger. One data logger was set up outside the fish tank, and one was set 

up inside the tank, to observe whether temperature fluctuations of the water were similar 

to that of the room temperature.   

Two experimental tanks containing the problem-solving apparatus were constructed with 

the same dimensions as the holding tanks (1.01 m x 0.48 m x 0.47 m) (Figure 3 and Figure 

4). The two experimental tanks were fitted with transparent, acrylic half-tubes (24 cm x 

10 cm x 5 cm) which were used as the experimental problem-solving apparatus, similar 

to that used in Trapp & Bell (2017). Each tube had one closed end which was closest to 

the starting arena, and an open end which was furthest from the starting arena to make 

the path to the food less direct. The outer surface of the open ends of the acrylic tubes 

were covered with black insulation tape to make the opening of the tube more apparent 

to the fish. Width-wise slits were cut into the acrylic tubes to ensure that food scent was 

able to disperse throughout the tank, providing chemical cues for the fish to locate the 



 

28 

food. In order to solve the foraging task, fish needed to swim to the furthest end of the 

tank and enter the correct acrylic tube to gain access to the food reward.  

 

Figure 3. This diagram shows the experimental set-up for the problem-solving foraging task 

apparatus in Stage 1, 2 and 3. The open ends of the acrylic tubes were covered with black 

insulation tape to make the opening of the tube more apparent to the fish. 

 

 

Figure 4. This diagram shows the experimental set-up for the Stage 4. This is identical to the 

previous experimental tank aside from the addition two mirrors attached to the exterior walls 

facing inwards to simulate the presence of conspecifics. The open ends of the acrylic tubes were 

covered with black insulation tape to make the opening of the tube more apparent to the fish. 
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GoPro Hero3+ video cameras were attached above the tanks and positioned to face 

straight down to allow observations of the fish throughout the whole tank. A grid made 

up of 7 cm x 7.6 cm rectangles was drawn on the polystyrene below the tank, which 

allowed for measurements such as fish body length to be taken from the footage.  

These tanks also had two sections separated by a removable opaque divider: a starting 

arena where the fish would wait before and in between trials, and a foraging area where 

the fish would carry out problem-solving foraging trials. A half plant pot (13 cm x 11 cm) 

was installed in the starting arena of the experimental tanks, similar to how they were 

placed in the housing tanks, with the opening of the plant pot facing the foraging area. 

The exterior surfaces of both experimental tanks were covered with black polythene to 

prevent the fish seeing humans or fish from other tanks during the experiment. This 

covering made the tanks poorly lit, so a small fluorescent light was set up outside the tank 

facing inwards through a small slit cut into the polythene. The addition of the polythene 

occurred after the pilot study and was included to produce more consistent foraging 

conditions for fish in the full study. Five synthetic plants were added to each tank for 

habitat and environmental enrichment. These tanks also contained an air stone, which was 

left free flowing overnight and between trials to ensure that the water was well 

oxygenated prior to behavioural trials. The air stone was removed during the trials as the 

bubbles created surface disturbance and made the video footage difficult to see.  

2.3 Pilot Study 

A pilot study was conducted using four individuals, one of which died during the study. 

This pilot study was designed to develop equipment, ensure that all of the apparatus 

worked effectively, and to test if the fish could solve the problem within the time 

parameters, with the aim of using these fish as experienced demonstrators in an observer-

demonstrator experiment. 
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The fish were given two opportunities to attempt the foraging task per day, both trials 

occurring one after the other, with a 5-minute break in between trials. Trials were 

conducted five days per week from Monday to Friday, so each fish attempted 10 trials 

per week over a four-week period. Prior to the first trial of each day, the opaque divider 

was removed, and each fish was allowed 10 minutes to habituate to the experimental tank. 

During this time period the experimental apparatus was present, however there was no 

food in either of the tubes. Once this 10-minute habituation period was complete, the 

opaque divider was returned, and the fish were transferred back into the starting arena 

using a small hand net. The fish were then left in the starting arena for 5 minutes whilst 

the food was placed into one of the tubes. After this 5-minute waiting period, the opaque 

divider was lifted, and the fish were given 15 minutes to forage and attempt to solve the 

task. A “success” was recorded if the fish managed to peck the food inside one of the 

transparent acrylic tubes within the allotted 15-minute trial period. The trials were left to 

run for the full 15 minutes regardless of whether the fish succeeded or not, as there was 

no human observer present during the trials to avoid inducing a potential stress response 

in the fish. Once the trial was complete the fish were returned to the starting arena via net, 

and the position of the acrylic tubes was swapped without the fish being able to see. The 

fish were left in the starting arena for 5 minutes before the second 15-minute trial 

commenced, with the food now in the opposite tube. Fish were fed a very small amount 

of food every day after trials, regardless of whether they solved the task or not, in order 

to preserve good health. Trials were to be continued until the fish were competent 

demonstrators, with a “competent demonstrator” being defined as the fish being able to 

complete 100% (10/10) of trials within a given week.  

It was originally planned that these four fish were to be used as demonstrators in a social 

learning observer/demonstrator experiment, similar to the one conducted by Trapp & Bell 

(2017). However, the performance of these pilot study fish was too poor to justify using 
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them as demonstrators in the proposed next stage of experimentation (Figure 5 and Table 

2). Therefore, a group-size experiment was favoured over an observer-demonstrator type 

experiment as the primary focus of this thesis.  

2.4 Full Study 

2.4.1 Stage 1: Solo Trials  

The pilot study allowed for refinement of methods and equipment, and so the trials that 

were conducted in the pilot were repeated under optimized conditions in Stage 1 of the 

full study. The equipment used in the full study was the same as the equipment used in 

the pilot study, with minor adjustments including camera position, habitat enrichment, 

and the addition of black polythene strips to the tanks (described above). 

The goal of Stage 1 was to see if the problem-solving success rate of individual fish 

increased over time, and whether their latency to succeed at the foraging task decreased 

over time. Five naïve fish were used in Stage 1. Trials were conducted twice daily on 

weekdays (Monday to Friday) for each fish, over three consecutive weeks, and thus each 

fish attempted 10 trials per week. A trial was considered a success when the fish had 

entered the acrylic half-tube and pecked at the food within. 

2.4.2 Stage 2: Pair Trials 

The purpose of Stage 2 was to test whether the presence of a single conspecific had any 

influence upon these fish in terms of foraging success and latency to succeed. Stage 2 

used 10 naïve spotted wrasse which attempted the foraging task in familiarised pairs. The 

procedure of this experiment was similar to that of Stage 1, however, there were now two 

fish attempting to solve the foraging task concurrently. As in Stage 1, a trial was 

considered a success when at least one of the fish had successfully entered the acrylic 

tube and pecked at the food within.  
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Because fish from Stages 2 and 3 were housed and tested in their trial groups, it was 

proposed that each of these fish be dyed, which would allow individual identification in 

the footage to produce more informative data. At the beginning of the habituation period 

prior to testing, three surplus fish were daubed using a paste of Bismark Brown dye. This 

dye was selected as the best option according to Arnold (1966). One fish was dyed on the 

upper part of its head, one fish was dyed on the upper part of its tail, and one fish was 

dyed just above its left pectoral fin by daubing each of the body parts with the solution. 

The following day, the fish which had been daubed on the tail and pectoral fin no longer 

had visible stains, and the fish which was daubed on the head unfortunately experienced 

toxic effects and was euthanized. Alternative tagging methods were deemed unsuitable 

due to the small size of fish. For these reasons tagging was abandoned, and it was not 

possible to distinguish between different fish in the footage.  

2.4.3 Stage 3: Group Trials 

Stage 3 examined whether the presence of more conspecifics had an influence upon these 

fish in terms of foraging success. Twenty naïve spotted wrasse were used in Stage 3, with 

trial groups consisting of four fish that were familiar with each other. The procedure for 

this experiment was similar to that of Stage 1 and 2, however there were now four fish 

attempting to solve the foraging task simultaneously. A trial was considered a success 

when at least one of the fish had successfully entered the acrylic tube and pecked at the 

food within.  

2.4.4 Stage 4: Solo Mirror Trials 

Stage 4 tested the influence of a perceived increase in group size on the success rate and 

success latency of individual fish. Five naïve fish were used in Stage 4. These fish were 

put through trials individually in an experimental tank that had two large mirrors on the 

long outer walls of the tank facing inwards, thus providing reflected images of the focal 
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fish. A trial was considered a success when the fish had entered the acrylic half-tube and 

pecked at the food within. 

The methodology for Stage 4 was identical to that of Stage 1, with the addition of mirrors 

to the outer walls of the tank. In order to prevent the fish from seeing additional food 

patch projections in the reflection, the synthetic plants were placed against the reflective 

surface near the food patch, making reflections of the food less obvious to the fish 

attempting the foraging task.  

2.4.5 Measurements 

Measured variables were selected based on those used in similar studies such as Atton et 

al. (2014), Trapp and Bell (2017), and Webster et al. (2017), and these measurements 

were the same across all stages. The latency of the first fish in a trial to leave the starting 

arena was recorded (Table 1). This was considered a suitable measure of foraging 

boldness or exploratory behaviour (Webster, Ward, & Hart, 2007). The latency of the first 

fish in a trial to first orient towards the food source was recorded as a measure of how 

quickly a fish could locate the food reward (Table 1). An orientation was recorded when 

a fish pecked the acrylic tube whilst facing the food reward (Table 1). A third measure 

taken was the time for the first fish in a trial to successfully complete the foraging task 

(Table 1). This was recorded to examine whether fish became faster at solving the task 

over time, and if group size or perceived group size influenced this latency to success. 

The success rate was also recorded and compared across each treatment over time. 
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Table 1. An ethogram describing the fish behaviours measured during the problem-solving task. 

Behaviour Description 

Peck The fish makes physical contact with the 

acrylic tube or food either from the inside 

or outside of the tube using the front-most 

portion of its mouth. 

 

Orientation The fish pecks at the acrylic tube while its 

head is pointed within a 30-degree angle 

of the food source. 

 

Leave starting arena More than 50% of the fish’s body has 

crossed over the line separating the 

starting arena from the foraging area. 

 

Success Fish pecks at food within acrylic tube. 

 

2.4.6 Data Analysis 

Each trial was filmed, resulting in 108 15-minute fish foraging videos, totalling 27 hours 

of footage in the pilot study, while the full study resulted in 600 15-minute fish foraging 

videos being produced, totalling 150 hours of footage in the full study. These videos were 

stored on a 2-terabyte hard-drive supplied by the University or Waikato. Video footage 

was analysed through use of the animal behaviour coding software Solomon Coder 

(version: beta 19.08.02). Coded behaviours were: “Leaves starting arena,” “Orientation,” 

and “Success.”  

Intra-observer reliability checking was conducted after the initial video analysis was 

complete. This involved the researcher re-watching 15% of the footage, files were 

selected at random within each treatment for this reanalysis. The purpose of this was to 

ensure that the time values recorded on the second viewing matched the recorded time 

values from the initial viewing within a five-second margin. This ensured the reliability 

of the raw data prior to statistical analysis. 
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Due to the nature of this experiment dealing with success rate of a task within a pre-

determined time slot, the data was right-censored. Relevant literature suggested the use 

of a survival analysis to analyse the type of right-censored data that these experiments 

had generated (Webster et al., 2017). A survival analysis is a statistical method used for 

analysing the amount of time before one or more expected events occur. This type of 

analysis has useful applications when analysing success rate and success latency data in 

animal behaviour trials, making it a suitable tool for the analysis of this time-based data. 

Also, because this data was right-censored, it was not normally distributed, thus 

nonparametric analyses were the most appropriate. 

In order to compare the survival distributions of two treatments, a Mantel-Cox test was 

conducted. This test was used to explain the variation between measurements: time to 

leave the starting arena, the orientation latency, and the success latency. The Mantel-Cox 

test, otherwise known as the logrank test, gives equal weighting to successful trials at all 

time points, in contrast to the Gehan-Breslow-Wilcoxon test which gives more weight to 

successes at earlier time points. Gehan-Breslow-Wilcoxon test statistics were also 

provided for each measure for context. 

To test for statistically significant differences across treatments a Mantel-Haenszel hazard 

ratio was calculated. This statistical test compares the probability of an event occurring, 

in this case a “success” in one group/treatment and compares it with the probability of the 

same event occurring in another group/treatment. A hazard ratio of 1 indicates a similar 

number of events are occurring between groups; therefore, the further this number is from 

1, the more significant a difference is in a specific measure between two treatments. Using 

a hazard ratio was supplementary to the previous tests as they indicate the frequency of 

events occurring. All graphs and statistical analyses were conducted using GraphPad 

Prism 9.0.0 (GraphPad Software LLC, San Diego, USA). 
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Chapter 3 

Results 

3.1 Pilot Study 

Fish from the pilot study showed no significant improvement in success rate or success 

latency over their four-week trial period (p = >0.05) (Figure 5 and Table 2). 

 

Figure 5. A survival analysis showing the success rate (%) and completion time (s) of the single 

fish in the pilot study over a four-week trial period. 

 

Table 2. Statistical comparisons pilot study trials to determine whether task solving improved 

over four successive weeks. “Undefined” means that a median value was not determined i.e., 50% 

of fish did not complete the task. 

Treatment 
Groups 

Median time to 
success (s) 

Mantel-Cox 
test 

Logrank test for 
trend 

 

Gehan-Breslow-
Wilcoxon test 

Singles  

W1: Undefined 
W2: 646 
W3: 714 
W4: 442 

p = 0.768 p = 0.446 p = 0.585 
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3.2 Full Study 

3.2.1 Success Rate and Completion Time 

Results show that, in general, increased group size corresponded to a higher success rates 

and faster completion times, with fish from the pair (Stage 2), group (Stage 3), and mirror 

(Stage 4) treatments outperforming fish from the singles (Stage 1) treatment across all 

three weeks.  

3.2.1.1 Treatment Success Rates by Week 

Single fish performed worse than fish from the other treatments over the study period, 

succeeding in 18% (9/50) of trials in week one, 30% (15/50) of trials in week two, and 

60% (30/50) of trials in the third week (Figure 6). Fish from all other treatments 

succeeded in more than 50% (25/50) of trials in the first week and succeeded in at least 

76% (38/50) and 84% (42/50) of trials in weeks two and three respectively (Figure 6).  

    

   

Figure 6. A survival analysis showing the success rate (%) and completion time (s) of each 

treatment during week one (A.), week two (B.), and week three (C.). 

A. B. 

C. 
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3.2.1.2 Success Frequency and Latency Statistics 

Fish from the singles treatment performed significantly worse than all other treatment 

groups over each week in terms of success latency (p = <0.05) (Tables 3-5). Additionally, 

group treatment fish outperformed fish from the mirror and pair treatments in week two, 

and outperformed fish from the mirror treatment again in the final week (p = <0.05) 

(Tables 3-5).  

When comparing fish from the singles treatment to fish of the mirror, pair, and group 

treatments, a hazard ratio score of 0.2 - 0.3 was produced (Table 3). This indicates that 

fish from the singles treatment had a 70 - 80% lower likelihood of success when compared 

to fish from other treatments in week one, with 95% confidence (Table 3).  

Table 3. Statistical comparisons between the problem-solving abilities of the different treatment 

groups in week one. 95% confidence intervals in parentheses. Bolded values indicate statistical 

significance. “Undefined” means that a median value was not determined, i.e., 50% of fish did 

not complete the task. 

Treatment 
Groups 

Median time 
to success 

(s) 

Mantel-Cox 
test 

Gehan-
Breslow-

Wilcoxon test 

Hazard ratio 
(Mantel-

Haenszel) 

Hazard ratio 
(logrank) 

Singles vs 
Mirrors 

undefined 
538 

p = <0.0001 p = <0.0001 
0.224 

(0.121 - 0.415) 
0.202 

(0.110 -0.372) 

Singles vs 
Pairs 

undefined 
896.5 

p = 0.0006 p = 0.0011 
0.311 

(0.160 - 0.606) 
0.289 

(0.148 - 0.561) 

Singles vs 
Groups 

undefined 
673 

p = <0.0001 p = 0.0004 
0.274 

(0.144 - 0.521) 
0.251 

(0.132 - 0.475) 

Mirrors vs 
Pairs 

538 
896.5 

p = 0.1288 p = 0.1331 
1.489 

(0.891 to 2.487) 
1.484 

(0.889 - 2.476) 

Mirrors vs 
Groups 

538 
673 

p = 0.2476 p = 0.1191 
1.343 

(0.815 - 2.215) 
1.340 

(0.813 - 2.209) 

Pairs vs 
Groups 

896.5 
673 

p = 0.6037 p = 0.8034 
0.869 

(0.512 - 1.476) 
0.869 

(0.512 - 1.475) 
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Comparing the singles treatment to all other treatments in week two generated a hazard 

ratio score of 0.08 - 0.25, indicating that fish from the singles treatment had a 75 - 92% 

lower chance of succeeding in the foraging task compared to fish from the other 

treatments (Table 4). Comparing the group treatment to the mirror and pair treatments 

generated hazard ratio scores of 0.51 – 0.65, indicating that fish in the mirror and pair 

treatments were 35 - 49% less likely to succeed in the foraging task compared to fish from 

the group treatment. These observations were made with 95% confidence (Table 4). 

Table 4. Statistical comparisons between the problem-solving abilities of the different treatment 

groups in week two. 95% confidence intervals in parentheses. Bolded values indicate statistical 

significance. “Undefined” means that a median value was not determined, i.e., 50% of fish did 

not complete the task. 

Treatment 
Groups 

Median time 
to success 

(s) 

Mantel-Cox 
test 

Gehan-
Breslow-

Wilcoxon test 

Hazard ratio 
(Mantel-

Haenszel) 

Hazard ratio 
(logrank) 

Singles vs 
Mirrors 

undefined 
253.5 

p = <0.0001 p = <0.0001 
0.229 

(0.131 - 0.403) 
0.242 

(0.139 - 0.421) 

Singles vs 
Pairs 

undefined 
198 

p = <0.0001 p = <0.0001 
0.161 

(0.093 - 0.279) 
0.184 

(0.108 - 0.314) 

Singles vs 
Groups 

undefined 
163.5 

p = <0.0001 p = <0.0001 
0.084 

(0.048 - 0.148) 
0.130 

(0.077 - 0.221) 

Mirrors vs 
Pairs 

253.5 
198 

p = 0.2580 p = 0.4310 
0.778 

(0.504 - 1.202) 
0.780 

(0.505 - 1.203) 

Mirrors vs 
Groups 

253.5 
163.5 

p = 0.0025 p = 0.0564 
0.511 

(0.331 - 0.790) 
0.535 

(0.350 - 0.818) 

Pairs vs 
Groups 

198 
163.5 

p = 0.0296 p = 0.2666 
0.627 

(0.411 - 0.955) 
0.649 

(0.431 - 0.976) 

 

A hazard ratio score of 0.26 – 0.54 was generated when comparing the singles treatment 

to each of the other treatments in the third week, indicating that fish from the singles 

treatment were 46 - 74% less likely to succeed in the foraging task when compared to fish 

from the other treatments (Table 5). The comparison between the group treatment and the 

mirror treatment resulted in a hazard ratio score of 0.49 – 0.54, indicating that mirror 

treatment fish had a 46 - 51% lower likelihood of succeeding in the foraging task than 

group treatment fish during week three. These observations were, again, made with 95% 

confidence. (Table 5).  
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Table 5. Statistical comparisons between the problem-solving abilities of the different treatment 

groups in week three. 95% confidence intervals in parentheses. Bolded values indicate statistical 

significance.  

Treatment 
Groups 

Median time 
to success 

(s) 

Mantel-Cox 
test 

Gehan-
Breslow-

Wilcoxon test 

Hazard ratio 
(Mantel-

Haenszel) 

Hazard ratio 
(logrank) 

Singles vs 
Mirrors 

498 
272.5 

p = 0.0084 p = 0.0178 
0.531 

(0.332 - 0.850) 
0.540 

(0.339 - 0.861) 

Singles vs 
Pairs 

498 
96.5 

p = <0.0001 p = <0.0001 
0.376 

(0.234 - 0.607) 
0.404 

(0.252 - 0.647) 

Singles vs 
Groups 

498 
136 

p = <0.0001 p = <0.0001 
0.261 

(0.161 - 0.424) 
0.319 

(0.200 - 0.507) 

Mirrors vs 
Pairs 

272.5 
96.5 

p = 0.1076 p = 0.0302 
0.703 

(0.458 - 1.080) 
0.709 

(0.462 - 1.087) 

Mirrors vs 
Groups 

272.5 
136 

p = 0.0016 p = 0.0216 
0.494 

(0.319 - 0.766) 
0.533 

(0.349 - 0.813) 

Pairs vs 
Groups 

96.5 
136 

p = 0.3578 p = 0.5407 
0.823 

(0.543 - 1.247) 
0.830 

(0.553 - 1.247) 

 

 

3.2.1.3 Weekly Success Rates by Treatment 

Over a three-week period, an increase in success rate was observed in each treatment. The 

singles treatment recorded an 18% (9/50) success rate in week one, compared to a 60% 

(30/50) success rate by the end of the third week (Figure 7a). Fish of the mirrors treatment 

recorded a 66% (33/50) success rate in week one, while succeeding in 84% (42/50) of 

trials in week three (Figure 7b). Fish in the pair treatment showed a 54% (27/50) success 

rate in the first week, while achieving an 88% (44/50) success rate by the end of the third 

week (Figure 7c). Finally, fish in the group treatment recorded a 60% (30/50) success rate 

in week one and a 98% (49/50) success rate by the end of the third week (Figure 7d). 
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Figure 7. A survival analysis showing the success rate (%) and completion time (s) of the single 

fish treatment (A.), mirror treatment (B.), pair treatment (C.), and group treatment (D.) over a 

three-week period. 

 

3.2.1.4 Success Latency Improvement Statistics 

Fish from all treatments showed a statistically significant improvement (p = <0.05) when 

comparing success latency in week one to their success latency in week three (Table 6). 

Table 6. Statistical comparisons within each between treatment group to determine whether 

problem-solving ability improved over three successive weeks. 95% confidence intervals in 

parentheses. Bolded values indicate statistical significance. “Undefined” means that a median 

value was not determined, i.e., 50% of fish did not complete the task. 

Treatment 
Groups 

Median time to 
success (s) 

Mantel-Cox 
test 

Logrank test for 
trend 

Gehan-Breslow-
Wilcoxon test 

Singles  
W1: Undefined 
W2: Undefined 
W3: 498 

p = <0.0001 p = <0.0001 p = <0.0001 

Mirrors 
W1: 538 
W2: 253.5 
W3: 272.5 

p = 0.0387 p = 0.0128 p = 0.0269 

Pairs 
W1: 896.5 
W2: 198 
W3: 96.5 

p = <0.0001 p = <0.0001 p = <0.0001 

Groups 
W1: 671 
W2: 163.5 
W3: 136 

p = <0.0001 p = <0.0001 p = <0.0001 

A. B. 

C. D. 
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3.2.2 Time to Exit the Starting Arena 

Increased group size generally resulted in a higher frequency of fish to leave the starting 

arena, also resulting in the fish leaving the starting arena quicker in larger groups.  

3.2.2.1 Treatment Exit Latency by Week 

Fish of the singles treatment left the starting arena in 98% (49/50) of trials in the first 

week, 92% (46/50) of trials in the second week and left the starting arena in 100% (50/50) 

of trials in the final week (Figure 8). Fish in the mirror treatment left the starting arena in 

98% (49/50) of trials in week one and two, leaving the starting arena in 100% (50/50) of 

trials in the third week (Figure 8). Fish from the pair and group treatments left the starting 

arena in 100% (50/50) of trials across all three weeks (Figure 8). 
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Figure 8. A survival analysis showing the time for the first fish in a trial to leave the starting arena 

(s) in each treatment during week one (A.), week two (B.), and week three (C.). 

 

3.2.2.2 Exit Frequency and Latency Statistics 

Fish in the singles treatment were significantly slower to exit the starting arena than fish 

from all other treatments in the first week, also leaving the starting arena slower than fish 

from the pair and group treatments in the second and third weeks (p = <0.05) (Tables 7-

9). Fish from the mirror treatment were significantly slower to leave the starting arena 

than fish from the pair and group treatments in the second and third weeks of trials (p = 

<0.05) (Tables 7-9). 

Hazard ratio scores comparing the singles treatment to all other treatments in week one 

generated values between 0.39 - 0.55, indicating that fish from the singles treatment were 

45 - 61% less likely to leave the starting arena than fish from other treatments, with 95% 

confidence (Table 7). 

  

A. B. 

C. 
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Table 7. Statistical comparisons between treatment groups in week one - time for first fish to exit 

the starting arena (s). 95% confidence intervals in parentheses. Bolded values indicate statistical 

significance. 

Treatment 
Groups 

Median time 
to exit (s) 

Mantel-Cox 
test 

Gehan-
Breslow-

Wilcoxon test 

Hazard ratio 
(Mantel-

Haenszel) 

Hazard ratio 
(logrank) 

Singles vs 
Mirrors 

110.5 
26.0 

p = 0.0020 p = 0.0007 
0.512 

(0.334 - 0.783) 
0.550 

(0.364 -0.832) 

Singles vs 
Pairs 

110.5 
33.0 

p = 0.0003 p = 0.0037 
0.444 

(0.285 - 0.691) 
0.510 

(0.336 - 0.775) 

Singles vs 
Groups 

110.5 
52.5 

p = <0.0001 p = 0.0111 
0.399 

(0.253 - 0.629) 
0.489 

(0.322 - 0.743) 

Mirrors vs 
Pairs 

26.0 
33.0 

p = 0.8496 p = 0.4032 
0.961 

(0.639 to 1.447) 
0.964 

(0.649 - 1.432) 

Mirrors vs 
Groups 

26.0 
52.5 

p = 0.9972 p = 0.0499 
1.001 

(0.660 - 1.519) 
1.001 

(0.675 - 1.484) 

Pairs vs 
Groups 

33.0 
52.5 

p = 0.9515 p = 0.3190 
0.988 

(0.658 - 1.483) 
0.988 

(0.666 - 1.465) 

 

A hazard ratio of 0.39 – 0.49 was generated when comparing the singles treatment to the 

group and pair treatments, indicating that single fish were 51 - 61% less likely to leave 

the starting arena than pair or group treatment fish, with 95% confidence (Table 8). 

Comparing the mirror treatment to the group and pair treatments produced a hazard ratio 

of 0.51 – 0.57, indicating a 43 - 49% lower likelihood of mirror treatment fish to leave 

the starting arena compared to fish from the pair or group treatments, with 95% 

confidence (Table 8). 

Table 8. Statistical comparisons between treatment groups in week two - time for first fish to exit 

the starting arena (s). 95% confidence intervals in parentheses. Bolded values indicate statistical 

significance. 

Treatment 
Groups 

Median time 
to exit (s) 

Mantel-Cox 
test 

Gehan-
Breslow-

Wilcoxon test 

Hazard ratio 
(Mantel-

Haenszel) 

Hazard ratio 
(logrank) 

Singles vs 
Mirrors 

38.0 
28.5 

p = 0.1567 p = 0.6433 
0.741 

(0.489 - 1.122) 
0.754 

(0.503 -1.130) 

Singles vs 
Pairs 

38.0 
9.5 

p = <0.0001 p = 0.0084 
0.395 

(0.249 - 0.625) 
0.485 

(0.318 - 0.738) 

Singles vs 
Groups 

38.0 
19.0 

p = <0.0001 p = 0.0175 
0.398 

(0.251 - 0.630) 
0.489 

(0.321 - 0.744) 

Mirrors vs 
Pairs 

28.5 
9.5 

p = 0.0025 p = 0.0060 
0.514 

(0.334 to 0.791) 
0.565 

(0.376 - 0.851) 

Mirrors vs 
Groups 

28.5 
19.0 

p = 0.0024 p = 0.0130 
0.511 

(0.332 - 0.788) 
0.566 

(0.376 - 0.852) 

Pairs vs 
Groups 

9.5 
19.0 

p = 0.7611 p = 0.5978 
1.065 

(0.710 - 1.596) 
1.061 

(0.717 - 1.570) 
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Comparing the singles and mirror treatment to the pair and group treatments resulted in a 

hazard ratio of 0.51 – 0.63 and 0.44 - 0.6, respectively (Table 9). Singles treatment fish 

therefore had a 37 - 49% lower likelihood to leave the starting arena than pair or group 

treatment fish, while fish from the mirror treatment were 40 - 56% less likely to leave the 

starting arena than fish from the pair or group treatments. These observations were stated 

with 95% confidence (Table 9). 

Table 9. Statistical comparisons between treatment groups in week three - time for first fish to 

exit the starting arena (s). 95% confidence intervals in parentheses. Bolded values indicate 

statistical significance. 

Treatment 
Groups 

Median time 
to exit (s) 

Mantel-Cox 
test 

Gehan-
Breslow-

Wilcoxon test 

Hazard ratio 
(Mantel-

Haenszel) 

Hazard ratio 
(logrank) 

Singles vs 
Mirrors 

12.5 
16.5 

p = 0.5760 p = 0.1659 
0.888 

(0.584 - 1.348) 
0.900 

(0.608 -1.333) 

Singles vs 
Pairs 

12.5 
9.0 

p = 0.0034 p = 0.0763 
0.514 

(0.329 - 0.803) 
0.591 

(0.394 - 0.887) 

Singles vs 
Groups 

12.5 
8.5 

p = 0.0094 p = 0.0954 
0.556 

(0.357 - 0.866) 
0.626 

(0.419 - 0.937) 

Mirrors vs 
Pairs 

16.5 
9.0 

p = 0.0003 p = <0.0001 
0.441 

(0.284 to 0.683) 
0.507 

(0.335 - 0.767) 

Mirrors vs 
Groups 

16.5 
8.5 

p = 0.0052 p = 0.0010 
0.542 

(0.353 - 0.833) 
0.594 

(0.396 - 0.890) 

Pairs vs 
Groups 

9.0 
8.5 

p = 0.7359 p = 0.9200 
1.075 

(0.705 - 1.639) 
1.065 

(0.719 - 1.576) 

 

3.2.2.3 Weekly Exit Latency by Treatment 

In week one, singles treatment fish left the starting arena in 98% (49/50) of trials, while 

in week three fish from the singles treatment left the starting arena in 100% (50/50) of 

trials. Fish from the mirror treatment left the starting arena in 98% (49/50) of trials in 

week one, while doing so in 100% (50/50) of trials during week three. Fish from the pair 

and group treatments left the starting arena in 100% (50/50) of trials over all three weeks. 

(Figure 9). 
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Figure 9. A survival analysis showing the latency of fish to leave the starting arena (s) in the 

single fish treatment (A.), mirror treatment (B.), pair treatment (C.), and group treatment (D.) over 

a three-week period. 

 

Fish from all treatments became quicker to leave the starting arena over the three-week 

period (p = <0.005) (Table 10).  

Table 10. Statistical comparisons within each social group to determine whether time for first fish 

to exit the starting arena declined over three successive weeks. Bolded values indicate statistical 

significance. 

Treatment 
Groups 

Median time to exit 
(s) 

Mantel-Cox 
test 

Logrank test for 
trend 

Gehan-Breslow-
Wilcoxon test 

Singles  
W1: 110.5 
W2: 38.0 
W3: 12.5 

p = 0.0003 p = 0.0002 p = <0.0001 

Mirrors 
W1: 26.0 
W2: 28.5 
W3: 16.5 

p = 0.0459 p = 0.0303 p = 0.2773 

Pairs 
W1: 33.0 
W2: 9.5 
W3: 9.0 

p = <0.0001 p = <0.0001 p = <0.0001 

Groups 
W1: 52.5 
W2: 19.0 
W3: 8.5 

p = <0.0001 p = <0.0001 p = <0.0001 

 

A. B. 

C. D. 
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3.2.3 Time to Orientate to Food Source 

Increased group size correlated with more frequent, and faster orientation to the food 

source over all three weeks. In the final two weeks, fish from the pair and group treatments 

were the fastest to orientate to the food source, doing so more frequently than fish from 

other treatments. 

3.2.3.1 Treatment Orientation Latency by Week 

Fish from the singles treatment orientated to the food source in 78% (39/50) of trials in 

the first and third week, but only in 64% (32/50) of trials in the second week (Figure 10). 

Fish from the mirror treatment orientated to the food source in 92% (46/50) of trials in 

the first and third weeks, and in 90% (45/50) of trials in the second week (Figure 10). 

Fish from the pair and group treatments orientated to the food source in 96% (48/50) of 

trials in the first week, while doing so in 100% (50/50) of trials in the second and third 

week (Figure 10). 
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Figure 10. A survival analysis showing the time for the first fish in a trial to orientate to the food 

reward (s) in each treatment during week one (A.), week two (B.), and week three (C.). 

 

3.2.3.2 Orientation Frequency and Latency Statistics 

Fish from the singles treatment were the slowest to orientate to the food source in all three 

weeks when compared to all other treatments (p = <0.05) (Tables 11-13). Fish from the 

mirror treatment were significantly slower to orientate to the food reward than fish from 

the pair and group treatments in the second and third weeks (p = <0.05) (Tables 11-13). 

A hazard ratio score of 0.48 - 0.6 was generated when comparing singles to each other 

treatment, indicating a 40 - 52% lower likelihood of food orientations occurring in fish of 

the singles treatment compared to fish of other treatments. Observations were made with 

95% confidence (Table 11). 

  

A. B. 

C. 
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Table 11. Statistical comparisons between treatment groups in week one - time for first fish to 

orientate to the food source (s). 95% confidence intervals in parentheses. Bolded values indicate 

statistical significance. 

Treatment 
Groups 

Median time 
to exit (s) 

Mantel-Cox 
test 

Gehan-
Breslow-

Wilcoxon test 

Hazard ratio 
(Mantel-

Haenszel) 

Hazard ratio 
(logrank) 

Singles vs 
Mirrors 

251.5 
130.0 

p = 0.0153 p = 0.0167 
0.583 

(0.377 - 0.902) 
0.596 

(0.387 -0.918) 

Singles vs 
Pairs 

251.5 
113.0 

p = 0.0020 p = 0.0081 
0.498 

(0.320 - 0.775) 
0.524 

(0.340 - 0.809) 

Singles vs 
Groups 

251.5 
111.0 

p = 0.0013 p = 0.0177 
0.481 

(0.308 - 0.751) 
0.517 

(0.336 - 0.796) 

Mirrors vs 
Pairs 

130.0 
113.0 

p = 0.5484 p = 0.9249 
0.882 

(0.586 to 1.329) 
0.884 

(0.588 - 1.328) 

Mirrors vs 
Groups 

130.0 
111.0 

p = 0.5122 p = 0.6813 
0.871 

(0.577 - 1.315) 
0.876 

(0.584 - 1.312) 

Pairs vs 
Groups 

113.0 
111.0 

p = 0.8875 p = 0.6519 
0.971 

(0.647 - 1.457) 
0.972 

(0.650 - 1.453) 

 

Comparing singles to each other treatment produced a hazard ratio of 0.19 – 0.45, 

indicating that fish in the singles treatment were 55 - 81% less likely to orientate to the 

food reward than fish from the other treatments in the second week (Table 12). 

Additionally, a hazard ratio score of 0.34 – 0.44 was generated when comparing the 

mirror treatment to the pair and group treatments, suggesting that fish from the mirror 

treatment were 56 - 66% less likely to orientate to the food source than pair or group 

treatment fish. These observations were again made with 95% confidence (Table 12). 

Table 12. Statistical comparisons between treatment groups in week two - time for first fish to 

orientate to the food source (s). 95% confidence intervals in parentheses. Bolded values indicate 

statistical significance. 

Treatment 
Groups 

Median time 
to exit (s) 

Mantel-Cox 
test 

Gehan-
Breslow-

Wilcoxon test 

Hazard ratio 
(Mantel-

Haenszel) 

Hazard ratio 
(logrank) 

Singles vs 
Mirrors 

552 
120 

  p = 0.0003    p = 0.0004 
0.422 

(0.265 - 0.672) 
0.446 

(0.282 -0.706) 

Singles vs 
Pairs 

552 
34.0 

p = <0.0001 p = <0.0001 
0.144 

(0.086 - 0.242) 
0.240 

(0.147 - 0.390) 

Singles vs 
Groups 

552 
38.5 

p = <0.0001 p = <0.0001 
0.119 

(0.069 - 0.202) 
0.226 

(0.138 - 0.370) 

Mirrors vs 
Pairs 

120 
34.0 

p = <0.0001 p = <0.0001 
0.377 

(0.241 to 0.589) 
0.442 

(0.288 - 0.679) 

Mirrors vs 
Groups 

120 
38.5 

p = <0.0001 p = 0.0003 
0.337 

(0.213 - 0.535) 
0.423 

(0.275 - 0.651) 

Pairs vs 
Groups 

34 
38.5 

p = 0.6259 p = 0.3399 
0.904 

(0.601 - 1.358) 
0.910 

(0.615 - 1.348) 
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Week three comparisons between the singles treatment and all other treatments resulted 

in a hazard ratio of 0.18 – 0.64, indicating that singles treatment fish were 36 - 82% less 

likely to orientate to the food reward than fish of the other treatments, with 95% 

confidence (Table 13). A hazard ratio score of 0.29 – 0.42 was produced when comparing 

the mirror treatment to the pair and group treatments, indicating that fish from the mirror 

treatment had a 58 - 71% lower likelihood to orientate to the food source than fish from 

the pair or group treatments, with 95% confidence (Table 13). 

Table 13. Statistical comparisons between treatment groups in week three - time for first fish to 

orientate to the food source (s). 95% confidence intervals in parentheses. Bolded values indicate 

statistical significance. 

Treatment 
Groups 

Median time 
to exit (s) 

Mantel-Cox 
test 

Gehan-
Breslow-

Wilcoxon test 

Hazard ratio 
(Mantel-

Haenszel) 

Hazard ratio 
(logrank) 

Singles vs 
Mirrors 

131 
67.5 

p = 0.0395 p = 0.0448 
0.635 

(0.412 - 0.978) 
0.643 

(0.419 -0.988) 

Singles vs 
Pairs 

131 
18.0 

p = <0.0001 p = <0.0001 
0.635 

(0.412 - 0.978) 
0.643 

(0.419 - 0.988) 

Singles vs 
Groups 

131 
18.5 

p = <0.0001 p = <0.0001 
0.179 

(0.108 - 0.297) 
0.288 

(0.180 - 0.460) 

Mirrors vs 
Pairs 

67.5 
18.0 

p = <0.0001 p = <0.0001 
0.297 

(0.186 to 0.475) 
0.393 

(0.254 - 0.608) 

Mirrors vs 
Groups 

67.5 
18.5 

p = <0.0001 p = <0.0001 
0.337 

(0.214 - 0.532) 
0.416 

(0.270 - 0.641) 

Pairs vs 
Groups 

18.0 
18.5 

p = 0.7226 p = 0.8876 
1.076 

(0.719 - 1.611) 
1.071 

(0.724 - 1.586) 

 

3.2.3.3 Weekly Orientation Latency by Treatment 

Fish from the singles treatment orientated to the food source in 78% (39/50) of trials in 

week one and week three. The fish of the mirror treatment orientated to food in 92% 

(46/50) of trials in weeks one and three. Pair and group treatment fish orientated to the 

food source in 96% (48/50) of trials in week one, and in 100% (50/50) in week three 

(Figure 11).   
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Figure 11. A survival analysis showing the latency of fish to orientate to the food source (s) in 

the single fish treatment (A.), mirror treatment (B.), pair treatment (C.), and group treatment (D.) 

over a three-week period. 

 

Fish from the pair and group treatments showed a statistically significant decrease in 

orientation latency (p = <0.005) when comparing orientation latencies from week one to 

week three (Table 14). 

Table 14. Statistical comparisons within each social group to determine whether time for first fish 

to orientate to the food source declined over three successive weeks. Bolded values indicate 

statistical significance. 

Treatment 
Groups 

Median time to exit 
(s) 

Mantel-Cox 
test 

Logrank test for 
trend 

Gehan-Breslow-
Wilcoxon test 

Singles  
W1: 251.5 
W2: 552 
W3: 131 

p = 0.0745 p = 0.5008 p = 0.0414 

Mirrors 
W1: 130 
W2: 120 
W3: 67.5 

p = 0.5692 p = 0.4860 p = 0.3988 

Pairs 
W1: 113 
W2: 34 
W3: 18 

p = <0.0001 p = <0.0001 p = <0.0001 

Groups 
W1: 111 
W2: 38.5 
W3: 18.5 

p = <0.0001 p = <0.0001 p = <0.0001 

 

A. B. 

C. D. 
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Chapter 4 

Discussion 

The aim of this study was to investigate the influence of group size on the ability of New 

Zealand spotted wrasse (Notolabrus celidotus) to solve a problem-solving foraging task. 

A secondary aim of this study was to investigate which mechanism played a greater role 

in influencing the likelihood of success, whether that be social learning, increased 

foraging time as a function of group vigilance, or increased foraging effort as a function 

competition for a limited resource. The key findings of this research support the 

hypothesis that group size has an influence upon the success rate and success latency of 

New Zealand spotted wrasse in relation to a foraging task.  

4.1 Key Findings and Interpretation 

The results of this study show that as group size increased, fish left the starting arena 

more rapidly and they orientated themselves to the food source more quickly. Larger 

groups were also more likely to succeed in solving the foraging task by accessing the food 

source, as well as being quicker to access the food source. 

Perhaps the most important finding of this study was that across all three weeks, fish in 

the singles treatment (Stage 1) consistently performed the worst in terms of success rate 

and success latency compared to other treatments. These results are consistent with the 

poor performance of the single fish trialled in the pilot study. Additionally, single fish 

were significantly slower to orientate to the food source than all other treatments over the 

three-week period. These results are indicative of an improvement in foraging success 

and reduction in foraging time with increased presence/perceived presence of 

conspecifics, thus presenting evidence to support the primary hypothesis of this study.  
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These findings present three possible explanations as to why foraging performance 

improves with increased group size in the spotted wrasse. (1) The presence of 

conspecifics provides passive predator vigilance, enabling individual fish to put more 

time into solving the foraging task instead of scanning for predators. (2) As a function of 

increased competition for a limited resource, fish put more effort into solving the foraging 

task. (3) Social learning resulted in fish learning foraging strategies from conspecifics.  

4.1.1 Predator Vigilance  

The benefit of increased predator vigilance in grouping organisms is a well-documented 

phenomenon, with animals benefitting from the presence of conspecifics by way of the 

dilution effect and the many eyes hypothesis (Roberts, 1996). It has been speculated that 

living in groups enables individuals to increase foraging time, as risk-associated foraging 

costs such as predation are reduced (Beauchamp, 2003; Hintz & Lonzarich, 2018). A 

study by Sullivan (1984) found that individual downy woodpeckers (Picoides pubescens) 

foraged more efficiently when in the presence of conspecifics due to the effect of group 

predator vigilance. The predator vigilance behaviour of these birds was well-understood, 

thus was measurable by observing the head-cocking (head movement from left to right or 

vice versa) rates of the woodpeckers. A higher rate of head-cocking was attributed to a 

higher state of vigilance while a lower incidence of head-cocking behaviour was related 

to a reduced state of vigilance (Sullivan, 1984). It was found that solitary birds displayed 

high head-cocking rates and low rates of feeding, while individuals in the presence of 

three or more flock members displayed infrequent head-cocking and increased feeding 

rates (Sullivan, 1984). This example gives credence to the hypothesis that spotted wrasse 

forage more effectively in the presence/perceived presence of conspecifics as a result of 

group predator vigilance, enabling the fish to spend less time scanning for predators and 

more time attempting to solve the foraging task.  
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However, measuring the vigilance behaviours of fish is difficult, as fish generally do not 

display behaviours that can unequivocally be interpreted as predator vigilance behaviour 

(Magurran & Pitcher, 1983). Therefore, in order to quantify the vigilance level of fish 

such as the spotted wrasse, it would first be necessary to identify behaviours that are 

characteristic of predator vigilance, for example, the head-cocking behaviour displayed 

in downy woodpeckers (Sullivan, 1984). This would enable the influence of group size 

upon individual predator vigilance to be tested in spotted wrasse more conclusively, 

potentially enabling further extrapolation into the influence of group size on foraging 

success in these fish. A recent study by Hess, Fischer, and Taborsky (2016) quantified 

the vigilance level of a cichlid fish (Neolamprologus pulcher) by measuring the time it 

took for the fish to detect a predator model. To test the vigilance behaviour of the New 

Zealand spotted wrasse, a future study could take a similar measure of vigilance in 

response to a predator model. Reports of predation on spotted wrasse are sparse in 

literature, so it is unknown what the ideal predator model for this type of experiment 

would be. Perhaps a pelagic predator such as the barracouta (Thyrsites atun), which is 

known to consume fish of a similar size range to juvenile spotted wrasse, could potentially 

be a good candidate for this kind of experiment (O'Driscoll, 1998). Alternatively, a future 

study could focus on gaining a greater understanding of the food-web interactions of the 

spotted wrasse by observing these fish in a natural setting.  

4.1.2 Competition 

The effect of intraspecific competition is an equally plausible explanation for the 

improved foraging rate associated with increased group size found in the current study. 

Competition within conspecifics for a limited food source has been documented as a 

potential reason for increased foraging effort in various studies, whereby individuals may 

allocate more effort to foraging to increase their own energy intake when in the presence 

of conspecifics (Grand & Dill, 1999; Bednekoff & Lima, 2004). This potential 
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explanation is supported by a study on coho salmon (Oncorhynchus kisutch) by Grand 

and Dill (1999) in which an increase in foraging frequency with greater group size was 

attributed to an increase in competition for a scarce food resource. The authors tested the 

relative importance of risk-reduction (group vigilance) and increased competition by 

manipulating predation risk (predator model present vs. predator model absent), as well 

as group size (singles, pairs, groups of four). While fish from all treatments made fewer 

attempts to forage in the presence of the predator, individuals from larger groups still 

foraged more than those from smaller groups, whether they were in the presence of the 

predator model or not. This finding suggests that, while predation risk did play a factor 

in foraging frequency, it did not influence the trend of the relationship between group size 

and foraging or risk-taking behaviour. Therefore, it was suggested that increased foraging 

competition was the primary mechanism responsible for increased individual foraging 

rate in larger groups of coho salmon (Grand & Dill, 1999). This would support the 

hypothesis that spotted wrasse displayed greater foraging success rates and quicker 

completion times in larger groups, due to the presence/perceived presence of conspecifics 

competing for a limited food source.  

4.1.3 Predator Vigilance vs. Competition 

The predator vigilance and competition hypotheses often confound each other as they 

influence the findings of group size and foraging success research in similar ways (Elgar, 

1989; Hintz & Lonzarich, 2018). Moreover, these variables not only have the potential to 

influence foraging success, but each other, making deductions based on these factors less 

conclusive (Hess et al., 2016). A study by Hess et al. (2016) found that the cichlid fish 

(Neolamprologus pulcher) were significantly less vigilant in the presence of a predator 

model due to the implications of competition for territory with conspecifics. This suggests 

that predator vigilance not only decreases due to the dilution effect and many eyes 

hypothesis, but also due to the implications of competition introduced by the presence of 
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conspecifics (Hess et al., 2016). This indicates the potential existence of a trade-off 

between competition with conspecifics and predator vigilance behaviour in relation to 

fitness benefits, making the relationship between these variables a more complex study 

objective.  

Other studies have tested and manipulated these confounding variables to gain a greater 

understanding of the mechanisms responsible for increased foraging success in larger 

groups (Grand & Dill, 1999; Hintz & Lonzarich, 2018). A study by Hintz and Lonzarich 

(2018) examined the foraging success (number of feeding events per minute) of coho 

salmon in relation to group size. Measurements of predation risk (approximated by 

recording naturally occurring habitat features, preferred by predators of coho salmon such 

as herons and brown trout) and competition (measured by agonistic interactions) were 

also recorded. It was found that neither predation risk or competition were a strong 

contributor to foraging success in the coho salmon, contradicting the findings of Grand 

and Dill (1999). Hintz and Lonzarich (2018) suggested that the reason for the lack of a 

strong relationship between each variable was because both factors, predation risk and 

competition, likely contributed to foraging success in wild coho salmon populations 

concurrently. Therefore, it is likely that the increased performance of spotted wrasse in 

the presence/perceived presence of conspecifics can, in part, be attributed to decreased 

individual predator vigilance as well as increased competition for a scarce resource (Hintz 

and Lonzarich, 2018). To ascertain which mechanism(s) is responsible for increased 

foraging success in spotted wrasse within larger groups, further study would need to be 

conducted whereby both predation risk and group size are measured and/or manipulated, 

similarly to what was done in the studies by Grand and Dill (1999) and Hintz and 

Lonzarich (2018). This would present a greater understanding of the mechanisms 

responsible for the influence of group size on foraging success in the New Zealand spotted 
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wrasse, also serving as a valuable point of reference for future studies into the foraging 

ecology of fishes. 

4.1.4 Social Learning 

An alternative explanation to the predator vigilance and competition hypotheses, is that 

pairs and groups outperformed the singles treatment due to an effect of social learning, 

enabling individuals to learn how to solve the foraging task more quickly by observing 

conspecifics. Conspecifics learning how to solve problems through social learning is 

well-documented and has been observed in fish such as stingrays and sharks (Guttridge 

et al., 2013; Thonhauser et al., 2013). However, this explanation for increased 

performance in spotted wrasse is not supported by the results of the mirror treatment, as 

these fish performed significantly better than fish from the singles treatment, despite also 

having no access to information from conspecifics. Furthermore, fish from the mirror 

treatment also performed similarly to those from the pair treatment over all three weeks 

and performed similarly to fish from the group treatment in week one. These results 

indicate that the false perception of being in the presence conspecifics, offers similar 

foraging benefits to the actual presence of conspecifics, for fish in the foraging 

environment of this experiment.  

However, results also show that fish from the pair and group treatments consistently 

displayed a lower latency to leave the starting arena and were quicker to orientate to the 

food source than other treatments. It is unlikely that this is due to a higher density of fish 

being present in the tank at one time, as fish from the pair and group treatments performed 

similarly across all measures, including success rate and completion time, despite the 

group treatment containing twice the density of fish. Therefore, the high performance of 

the pair and group treatments is likely not solely due to an effect of density-mediated 

encounter rate, but rather due to a social learning mechanism such as local enhancement. 

This is supported by a study on three-spined sticklebacks by Trapp and Bell (2017) where 
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it was concluded that reduced food-orientation latencies in the presence of conspecifics 

were likely due to an effect of social learning via local enhancement. It is probable that 

this effect of local enhancement occurs alongside the effects of reduced predator 

vigilance, and increased foraging competition, in larger groups of spotted wrasse (Brown 

& Laland, 2003; Hintz & Lonzarich, 2018). 

4.1.5 Individual Learning 

The results show that over the three weeks, improvement was observed in terms of fish 

latency to leave the starting arena and latency to succeed in the foraging task within each 

treatment. This improvement over time within each treatment indicates that regardless of 

the group size, the fish were able to become more proficient at the task, which is indicative 

of learning.  

Results also show that the singles treatment was still recording relatively low success 

rates in the final week of trials, with fish from this treatment displaying a 60% likelihood 

to solve the foraging task, compared to an 84%, 88%, and 98% success rate in the mirrors, 

pairs, and group treatments, respectively. This result indicates that insightful problem-

solving is likely not being utilized by the spotted wrasse, as organisms which use 

insightful problem-solving often show higher initial success rates and succeed in most 

future attempts at a problem they had previously solved (Mendes et al., 2007; Bird & 

Emery, 2009). Therefore, associative learning through positive reinforcement is likely the 

learning mechanism responsible for the increase in success rate, and decrease in success 

latency, across all treatments over the three-week period. This is similar to the learning 

displayed by hyenas whereby, through reinforcement of certain behaviours, the animals 

began to associate a specific behaviour with a reward, enabling them to solve a problem-

solving foraging task (Amram & Holekamp, 2012). The spotted wrasse likely learned 

how to access the food source through trial and error, initially solving the foraging task 

by chance, but over time, learning to associate swimming into the correct tube with access 
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to the food source. This effect of positive reinforcement likely led to the increase in 

performance of fish from each treatment over time. 

4.2 Limitations and Future Studies 

This study faced multiple limitations which could be mitigated in future studies. One of 

the stand-out limitations of this study was the inability to distinguish one fish from 

another. Due to the habitat and environmental enrichment inserted into the tanks to reduce 

fish stress, fish were able to hide beneath objects, obstructing the view from the camera. 

Sometimes multiple similar sized fish would hide in the same place concurrently, making 

it impossible to tell one from the other in the footage. This made it difficult to speculate 

on factors such as social learning, as it was not possible to observe the likelihood of a 

second fish solving the task after another fish in the group had done so. Not being able to 

distinguish between individuals also made it more difficult to measure foraging effort per 

fish, as variables such as resting time, hiding time, and swimming time are only possible 

to measure if the focal fish is able to be tracked. Attempts to individually mark fish with 

a vital stain, recommended by Arnold (1966), were unsuccessful and other marking 

methods for small fish were deemed too invasive to produce marks that would be easily 

identifiable on video. Successfully marking individual fish could generate more 

informative results, presenting a more in-depth understanding of the behaviours of each 

individual. An animal-tracking software program called Toxtrac was also trialled to 

attempt to distinguish between individual fish in the footage, however, because the fish 

often hid under inserted habitat, it was not possible to track when multiple fish hid in the 

same location simultaneously. A future study could use different items for habitat and 

environmental enrichment, in order to ensure that fish are fully visible, or at least 

distinguishable, in the footage for the duration of the experimental trial. While using less 

habitat coverage would offer an unobstructed view for the camera, it could also increase 

individual stress levels as suggested by Näslund & Johnsson (2014). A future study on 
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juvenile spotted wrasse could spend more time habituating the fish to using less-covered 

pyramid-like structures such as those used in the study conducted by Atton et al. (2014). 

This could potentially increase the likelihood of foraging behaviour whilst also enabling 

each fish to be distinguishable in the footage.  

Another potential limitation was the size range of fish within this study. A study by 

Laland and Reader (1999) suggests that, out of necessity, smaller female guppies were 

more outgoing and competitive foragers than larger conspecifics. Additionally, smaller 

poeciliid fish (Brachyraphis episcopi) have been documented to emerge from cover more 

quickly than larger fish, in order to resume feeding (Brown & Braithwaite, (2004). 

Therefore, it is possible that smaller spotted wrasse, may have invested more effort than 

larger spotted wrasse, as a result of increased motivation to gain the desired food source. 

This potential issue was managed by keeping the average size of fish within trial groups 

and between treatments as consistent as possible, with the average size of fish in each 

trial ranging from 6.2 to 7.2 cm standard length. Because the influence of fish size was 

not tested in this study, a future study may wish to investigate whether the size of a spotted 

wrasse has an influence upon motivation/effort to obtain the food reward in a similar 

foraging task. It is worth noting that the food particle size during trials was the same as 

what was used to feed the fish outside of experiment time (before the study had begun, 

and after trials each day during the study) to ensure that fish of all sizes were interested 

in the food source.  

It would be interesting to successfully create an observer-demonstrator experiment, to see 

if the performance of individuals which had a demonstrator exceeds that of those without 

a demonstrator, which could indicate social learning more conclusively. Perhaps the 

“demonstrator” in a social learning study could instead be a group of four fish, a pair of 

fish, or an individual fish with mirrors, as the results of this study presented high success 

rates in each of these treatments. Thus, testing the foraging success of an individual with 
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no demonstrator and comparing that with a fish which had observed experienced 

conspecifics forage, may give some indication to the social learning abilities of the New 

Zealand spotted wrasse.  

4.3 Conclusions 

Results from this research support the hypothesis that group size has an influence upon 

the success rate and success latency of a problem-solving foraging task in juvenile New 

Zealand spotted wrasse. Due to the gradual improvement observed in the spotted wrasse, 

the learning mechanism responsible for individual learning during this study is likely 

associative learning through positive reinforcement, as opposed to insightful problem-

solving which displays a more rapid rate of improvement.  

The mechanism(s) responsible for the performance disparity between the single fish 

treatment and the other three treatments is likely a combination of: the effect of passive 

group vigilance, leading to increased foraging rate per individual; the effect of increased 

foraging competition, leading to increased foraging effort per individual; and the effect 

of simple social learning mechanism(s) such as local enhancement. Further study is 

required to conclusively suggest whether the effect of reduced predator vigilance, 

increased competition, or social learning, has a greater influence on increased foraging 

success with increased group size in New Zealand spotted wrasse. 

Future studies could measure and/or manipulate variables such as predation risk, level of 

competition, and food availability, to gain a greater understanding of the mechanisms 

driving increased individual foraging success of spotted wrasse, when in the 

presence/perceived presence of conspecifics. Additionally, recreating an observer-

demonstrator experiment, using experience demonstrator fish, could give further insight 

into the social learning behaviours of these fish. 
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