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Abstract 

 

Macrofauna play a key role in the functioning of soft sediment intertidal ecosystems 

via bioturbation and feeding habits which modify sediment biogeochemistry and 

influence nutrient cycling. Eutrophication is a naturally occurring phenomenon; 

however, enrichment due to anthropogenic inputs has increased in frequency with 

largely unknown consequences to benthic macrofaunal assemblages. A decline in 

infaunal biodiversity is thought to result in the loss of ecosystem function due to 

increased disturbance in the form of enhanced nutrient addition. This is increasingly 

important to estuarine habitats, as benthic macrofauna play an important role in 

controlling sediment porewater nutrient concentrations, nutrient flux to the 

overlying water column and ultimately ecosystem function. Sediment modification 

by macrofauna behaviours (e.g. bioturbation) stimulate nutrient regeneration and 

influence denitrification rate. Thus understanding the responses of macrofauna to 

enhanced nutrient levels is vital for the understanding and subsequent management 

of benthic assemblages to estuarine eutrophication. The aim of this thesis was to 

stress the intertidal sediment of the Kaipara Harbour by the addition of slow-release 

fertiliser in order to identify key macrofaunal diversity responses and the influence 

this has in the overall nutrient processing ability. I also examined whether fertiliser 

addition influenced primary producers, microphytobenthos biomass and the percent 

coverage of seagrass.  

 

To gain a better understanding of porewater nutrient elevation and subsequent 

impacts to macrofaunal diversity, 28 site locations were selected based on high and 

low functional macrofaunal diversity and abundance characteristics previously 

identified within Tapora Bank, Kaipara Harbour (Greenfield 2013). Known 

amounts (1400g m⁻² (high treatment) and 600g m⁻² (medium treatment)) of 70-day 

slow-release fertiliser (42 % N) was added to the intertidal sediment across a 

gradient in macrofaunal diversity. Porewater and sediment properties were 

measured 28 and 47 days after enrichment, with macrofaunal diversity determined 

on day 47. 

 

The fertiliser enriched plots significantly elevated porewater ammonium 

concentrations in both treatments in upper (0-2 cm) and lower (5-7 cm) sediment 
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depths. Lower sampling depths had greater concentrations of porewater ammonium 

than the upper sediments. This elevation resulted a decline in the overall 

macrofaunal abundance in both addition treatments however, only the decline in 

key functional species Macomona liliana was significant. The number of functional 

individuals and number of M. liliana were identified as significant factors 

controlling the variation in porewater ammonium concentration in ambient 

sediments. A switch was observed after fertiliser elevation where mud become the 

sole driver of porewater ammonium concentration in plots of high fertiliser addition. 

Normalisation treatment porewater ammonium concentration by the control plot 

values identified both the number of species and number of functional species as 

important drivers of porewater ammonium processing. No effect of fertiliser 

enrichment to seagrass percent coverage was observed.  

 

These results demonstrate that the elevation of porewater ammonium within 

intertidal sediments may have implications to the diversity and the subsequent 

functioning of intertidal benthic communities. In particularly, our study highlights 

the potential loss of functioning related to the decline of key species such as M. 

liliana; given their role as ecosystem engineers, their loss could reinforce the effects 

of eutrophication stress on the system and lead to further degradation.  
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1 Chapter 1 

Introduction: 

 

1.1 Estuaries  

An estuary is defined as a partially enclosed body of water where freshwater 

interacts with oceanic salt water (Pritchard 1967). This complex mixing of different 

water bodies creates a unique ecosystem with its own distinctive flora and fauna 

(Meire et al. 2005). Estuarine intertidal sandflats are areas of high diversity (Gray 

1997) and are some of the most productive ecosystems in the world (Schelske & 

Odum 1961; Nixon et al. 1986; Wilson 1990; Snelgrove 1999; Beck et al. 2001). 

Estuaries are therefore regions of high intrinsic value and comprise many resources 

which are valued ecologically, economically and culturally (Nixon et al. 1986; Ellis 

et al. 2000; Levin et al. 2001).  

 

Estuarine soft sediments provide goods and services from which humans and 

society benefit (Pearce & Turner 1990; De Groot 1994; Costanza et al. 1997; Daily 

et al. 1997; Pimentel et al. 1997; Barbier et al. 2010; Cardinale et al. 2012), 

including primary production, nutrient cycling and fluxes of energy (Cardinale et 

al. 2012). Other beneficial ecosystem services include food (e.g. fisheries), leisure 

and recreation, raw materials, disturbance prevention, nutrient recycling, water 

filtration, sediment retention and cognitive benefits (education and research) (Ewel 

et al. 1998; De Groot et al. 2002; Beaumont et al. 2007).  

 

The marine soft sediments present a high spatial coverage of the earth (Snelgrove 

1997, 1999; Ellingsen 2002). Coastal regions comprise less than 15 % of the Earth’s 

surface; however, over 60 % of the world’s population reside at the coast (Airoldi 

& Beck 2007). The coastal population continues to increase, thus increasing 

pressure on local ecosystems (Airoldi & Beck 2007). A number of previous studies 

have identified the severity of coastal marine habitat loss as a result of increased 

human population density (Lotze 2004; Lotze et al. 2006; Valiela 2009). Estuaries 

are influenced by a variety of natural and human-induced stressors including 

enhanced sediment deposition resulting in infilling, introduction of finer sediment, 
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nutrient runoff which can lead to eutrophication, pollution (both in solid and liquid 

form), invasive species, and fisheries exploitation (Carpenter et al. 1998; van der 

Wal et al. 2002). Such disturbance threatens the biodiversity and thus productivity 

of intertidal estuarine ecosystems, and its effects are enhanced when more than one 

stressor is present and when frequency is increased (Rapport et al. 1985; Halpern et 

al. 2007; Crain et al. 2008).  

 

1.2 Eutrophication 

Because estuaries are at the junction of land and sea (Pinckney et al. 2001), the 

enrichment of nutrients (eutrophication) is relatively common within estuarine 

environments (Nixon et al. 1986). Eutrophication occurs both as a natural 

phenomenon (upwelling and geological weathering) and as a result of 

anthropogenic influences (agriculture, wastewater treatment and urban runoff) 

(Smith 2003), and the rate of this enrichment is increasing (Nixon 1990; Anderson 

et al. 2002; Bricker et al. 2008). Estuarine eutrophication occurs where sediment or 

fertiliser runoff from land enters an estuary and this oversupply of nutrients causes 

plants and algae grow rapidly, decreasing the supply of oxygen and subsequently 

resulting in hypoxia in the water column following the decomposition of this plant 

material (Smith et al. 1999). Estuarine soft sediments are often anoxic just below 

the sediment surface, but when this anoxia extends above the sediment water 

interface the structure of the community is altered (Kennish & Townsend 2007). 

Eutrophication is alarmingly one of the greatest threats to coastal environments 

(Bricker et al. 2008), although each estuary responds differently to it (Bricker et al. 

1999).  

 

Eutrophication is possibly the best-documented anthropogenic disturbance to 

aquatic environments. Numerous studies have identified the effect of nutrient 

enrichment within marine environments where even though the focus species varies 

the overall effects identified are similar where the increased enrichment of nutrients 

results in a decline in diversity (Pearson & Rosenberg 1978; Worm et al. 1999; 

Szmant 2002; Cardoso et al. 2004).   

 

Sediments provide resilience to excess nitrogen through denitrification: the 

reduction of nitrates to nitrogen gas (N2). Increased nutrient loads can result in 
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changes to function where nutrient loading is continuous for long periods of time 

(Kemp et al. 1990; Hagy et al. 2004). This generally results in a shift from primary 

production in the benthos to the water column due to accelerated growth of 

phytoplankton and macroalgae (Smith et al. 2006), which as a consequence 

decreases the oxygen available within the surface sediments (Herbert 1999). This 

may have negative effects on the biota of those sediments.  

 

Microphytobenthos (MPB) and seagrass comprise the major plant biomass within 

intertidal sandflats. MPB are effected by sediment properties and nutrient loading 

(Light & Beardall 1998; MacIntyre et al. 2004; Jesus et al. 2009) and show 

increased production with enhanced nutrients (Menéndez et al. 2002). Increased 

nutrient levels can effect seagrass beds positively, where the uptake of nutrients 

fuels growth. However, where nutrient levels are elevated for prolonged periods of 

time, a shift in species (Fourqurean et al. 1995) or a decline in seagrass coverage 

may occur (Lewis et al. 1985; Short & Wyllie-Echeverria 1996; Duarte et al. 2004). 

Seagrass decline is an increasing problem globally, with most seagrass lost in the 

past few decades as a consequence of anthropogenic disturbance, mainly due to 

eutrophication (Short & Wyllie-Echeverria 1996; Cardoso et al. 2004; Burkholder 

et al. 2007). Enhanced nutrient loading stimulates rapid growth of phytoplankton in 

turn reducing the light availability and thus photosynthesis, which limits the 

productivity of seagrass (Lee & Dunton 2000). The growth of seagrass is dependent 

on sediment porewater as a nutrient source (Fourqurean et al. 1992), but nutrients 

in excessively high loads are toxic to seagrass (Dennison 2009).  

 

An effect of eutrophication is elevated porewater nutrient concentrations (Lapointe 

& O'Connell 1989; Lapointe & Clark 1992). This occurs where organic matter is 

broken down in the sediments into inorganic nutrients in the porewater, which then 

diffuse into the overlying water column. Porewater nutrient release affects the 

benthos environment locally and on greater spatial scales results in changes to 

nutrient concentrations within the intertidal region (Billerbeck et al. 2006). 

Porewater nutrient concentration reflects the balance between the supply of 

nutrients via bacterial breakdown of organic matter, excretion by organisms, and 

the consumption of these within the sediment. Therefore a reflection of the 

enrichment can be determined by sampling sediment porewater, as porewater 
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nutrient concentrations increase with increased eutrophication (Van der Heide et al. 

2010). 

 

1.3 Estuarine nitrogen cycle 

Estuarine sediments act as a source and a sink for nutrients (Zimmerman & Benner 

1994). The productivity within these sediments is controlled by nitrogen and light 

(Nixon 1981; Boynton et al. 1982). Nutrient cycling is responsible for the 

regeneration of ammonium (NH4
+), although this varies seasonally (Harrison 1980). 

Primary production is limited by the amount of nitrogen within estuarine 

environments, so that with elevated inorganic nitrogen (e.g. nitrate NO3
-, and 

ammonium) the likelihood of eutrophication increases (Ryther & Dunstan 1971; 

Howarth 1988; Howarth & Marino 2006). Ammonium regeneration and 

nitrification from the soft sediments control the nitrogen within the water column. 

Nitrogen enters an estuary in the form of nutrient runoff from land, nitrogen gas 

(N2) or from precipitation. Through nitrogen fixation nitrogen gas is converted into 

ammonium or ammonia (NH3), ammonium through nitrification is converted into 

nitrite (NO2
-) and then to nitrate within oxic sediments. In anoxic sediments nitrate 

reduction occurs where nitrate is converted back to nitrite; denitrification then takes 

place where nitrite is converted to nitrous oxide (N20) and nitrogen gas, where it re-

enters the water column (Herbert 1999). Thus denitrification is responsible for 

removing excess nitrogen from the system. Some of the nitrite, however, will be 

further reduced to ammonium and locked within clay particles or undergo burial as 

organic nitrogen (Figure 1). The excretion from organisms, and the death and 

decomposition of phytoplankton and higher plants, and detritus entering the water 

column results in ammonification where the dissolved organic nitrogen is converted 

back into ammonium (Thamdrup & Dalsgaard 2002). Ammonium in large 

concentrations is toxic to soft sediment organisms and is a common measure for the 

indication of estuarine nutrient levels (Whiteman et al. 1996; Hyne & Everett 1998).  
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Figure 1: Nitrogen cycling within coastal sediments (Herbert 1999). 

 

Nutrient cycling is an important process within estuarine environments as estuaries 

have continuous nutrient inputs derived from land. Nutrient cycling can be 

regulated by changes in macrofaunal density (Austen & Widdicombe 1998; 

Sandwell et al. 2009). The diversity of macrofauna within a sandflat can influence 

the rate of nutrient cycling as well as the amount of organic matter, resulting in 

changes to the functioning of the local ecosystem (Herman et al. 1999; Levin et al. 

2001). The diversity of macrofauna can therefore provide enhanced resilience to an 

ecosystem (Peterson et al. 1998). The health of these systems is often represented 

by nitrogen processes and rates of these processes occurring within a system, which 

includes the remineralisation of organic matter, level of primary production and the 

cycling of nutrients (Klump & Martens 1981; Nixon 1981; Fisher et al. 1982; 

Boynton & Kemp 1985; Lohrer et al. 2004).  

 

1.4 Biodiversity and ecosystem functioning 

Biodiversity loss is a growing concern worldwide (Costanza et al. 1997; Armonies 

& Reise 2000), sparking much research and publication within recent years (Naeem 

2002). Biodiversity is the variety of life present within an ecosystem and that variety 

makes a major contribution to ecosystem functioning and services (DeLong 1996; 

Bolam et al. 2002; Duffy 2008; Lohrer et al. 2011). A decline in biodiversity may 

translate to a loss of function (Walker 1992; Costanza et al. 1997; Dobson et al. 
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2006; Worm et al. 2006), thus biodiversity is increasingly being measured by key 

functional traits (Cardinale et al. 2012).  

 

Functional traits are particular features of a species which relate to its function 

within an ecosystem. Grouping species by key functional traits presents a way of 

identifying which traits and species are thought to present patterns within the 

functioning of an ecosystem (Bremner et al. 2006; Norling et al. 2007). Common 

functional traits identified for soft sediment macrofauna include mobility, organism 

size, position within the sediment, trophic guild and feeding mode, because these 

features influence how much organisms bioturbate sediments and alter 

biogeochemistry and nutrient cycling. These traits have been linked to changes in 

organism distribution with exposure to disturbance or environmental stressors (e.g. 

enhanced nutrient levels) (Poore & Kudenov 1978; Beukema et al. 1999; Covich et 

al. 2004; Thrush et al. 2006a). The removal of important functional traits also 

greatly alters the community composition as well as the flux of nutrients and oxygen 

(Thrush et al. 2006a; Norkko et al. 2013). A number of studies have highlighted the 

importance of these traits, including size, which was identified as an important 

driver of ecosystem functioning (Thrush et al. 2006a; Norkko et al. 2013). Thus, 

such traits may play a crucial role in understanding the effects of eutrophication 

through their control on sediment porewater nutrient concentrations and flux of 

nutrients to the overlying water column. 

 

While there has been considerable research into biodiversity and ecosystem 

functioning, little is known about changes to estuarine functioning following a 

disturbance (Lohrer et al. 2010). Disturbance can be physical, biological or 

chemical, or a combination of these and is recognised as a key driver of biodiversity 

loss. Often these disturbances are more readily identified as those which result in 

destruction of species habitat, increases in disturbance intensity, climate change, 

species overexploitation, eutrophication and invasion of non-native species (Gray 

1997; Levin et al. 2001; Mouillot et al. 2013; Villnäs et al. 2013). These 

disturbances all influence the community’s structure and its function through their 

effects on species’ habitat, food and other resources.  

 

The loss of biodiversity due to disturbance is accelerating, with its consequences 

and implications still being identified (Lotze et al. 2006; Worm et al. 2006). The 
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past two decades have seen advances in the understanding of species relationships, 

diversity and the processes found within ecosystems. However, identification of 

functionally important species and how these influence the overall functioning of 

an ecosystem remains the focus of much research (Loreau et al. 2001).   

 

Both flora and fauna within soft sediment environments play key roles in primary 

and secondary production, providing a suite of services within the ecosystem (Levin 

et al. 2001; Austen et al. 2002). Some of these roles are not continuous, such that 

in the presence of other species some species’ traits become redundant. Functional 

redundancy is a characteristic ecosystem trait, whereby in the absence of a species, 

another may be able to substitute its function by providing the same or similar 

service (Lawton & Brown 1994; Peterson et al. 1998; Rosenfeld 2002).  

 

Macrofauna bioturbate and oxygenate sediments that contribute to benthic-pelagic 

coupling by mineralizing nutrients (Aller 1982; Kristensen & Blackburn 1987; 

Meysman et al. 2006). Bioturbation (biological perturbation) is a key physical 

function of macrofaunal species where oxygen is introduced to depths where in 

most cases it would be otherwise absent (Aller 1994), thus modifying sediment 

redox characteristics (Mortimer et al. 1999). Benthic-pelagic coupling is the 

exchange of both particles and solutes between the benthic sediment to the pelagic 

environment (Nixon et al. 1996; Marcus & Boero 1998). Therefore primary 

production within the pelagic zone is dependent on benthic nutrient regeneration 

processes (Nixon 1981).  

 

Macrobenthic communities typically have limited movement and therefore changes 

in these communities often provide an indication of anthropogenic inputs and 

stressors and environmental change (Wass 1967; Gray 1981) within the benthos 

(Pearson & Rosenberg 1978; Dauer 1993; Wilson & Jeffrey 1994; Weisberg et al. 

1997). Previous research has shown that macrofauna provide an important link to 

nutrient fluxes and their utilisation within the sediments (Biles et al. 2002; Sandwell 

et al. 2009; Braeckman et al. 2010; Needham et al. 2011), where changes in 

biodiversity subsequently alters the functioning of an ecosystem (Pratt et al. 2014). 

However, not all species contribute equally to functioning, and the functionality of 

a system may be dominated by a key species.  
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In New Zealand intertidal sandflats, a key species contributing to function is 

Macomona liliana a large deposit-feeder which acts as an important feedback link 

between nutrient regeneration and grazing activity (Thrush et al. 2006a). Another 

key contributor species is Austrovenus stutchburyi, where a decline in this species’ 

density may have adverse effects on ecosystem function (Sandwell et al. 2009). 

Enhanced nutrient loading results in depletion of oxygen within the sediment, 

where the role of large macrofauna will be lost along with their function (Meyer-

Reil & Köster 2000; Diaz & Rosenberg 2008). Thus, changes in function have been 

used to aid in the determination of biodiversity loss (Norkko et al. 2013). 

 

The research presented in this thesis builds upon recent work (Greenfield 2013) that 

demonstrated functional group diversity within benthic sandflat communities. I 

intend to expand on this to determine whether different levels of functional diversity 

respond differently to nutrient addition in the form of slow-release fertiliser added 

to the intertidal sediments. This response was measured as porewater ammonium 

concentrations at two depth intervals on two sampling dates, providing insight as to 

how functional diversity contributes to ecosystem function, as the link between 

porewater ammonium enrichment and the impacts of this to high and low 

macrofaunal diversity are largely unknown within estuarine sediments.  

 

The experimental design utilised previously identified natural gradients in species 

abundances and functional diversity (Greenfield 2013). By adding two different 

quantities of fertiliser to the sediment at different levels of functional diversity and 

abundance I can identify which of these (i.e. high or low diversity and abundance) 

is the most efficient at removing nutrients within the sediment porewater and 

whether there is any significant difference in porewater nutrient elevation between 

the two fertiliser treatments. A two way interaction is noted between macrofauna 

and porewater ammonium concentration, where macrofaunal diversity will 

influence the processing rate but will also respond to the nutrient elevation. 

Therefore high macrofaunal diversity may increase the processing rate of porewater 

nutrients; however, where porewater ammonium is in high concentrations this may 

cause removal of species and thus a decline in the rate of processing.  

 

The enrichment of estuarine sandflats presents an advantage over laboratory 

experiments as the response of the natural system can be observed (Worm et al. 
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2000) and has been outlined in a number of studies (Worm et al. 2000; Lever & 

Valiela 2005; Posey et al. 2006). In-situ nutrient addition within marine sediments 

has been common using coated slow-release fertilisers (Worm et al. 2000). Studies 

on such additions allow for an understanding of how the flow-on effects alter 

community structure and function.  

 

Functional diversity and abundance was ranked from high to low based on sampling 

from Greenfield (2013). The abundance and diversity sites were spread across the 

sandflat to cover a wide range of environmental conditions as well as to spread the 

experimental locations between areas of high and low functional diversity and 

abundance. Functional species are defined as those that contribute to estuarine 

functioning, and in the case of this research the term refers to the function of 

porewater nutrient processing. A. stutchburyi and M. liliana play a key role in the 

functioning of estuarine ecosystems in New Zealand (Hewitt et al. 1996; Tallis et 

al. 2004; Jones 2011), and the current study observed responses of both species’ 

abundances to fertiliser enrichment in the form of ammonium concentration in the 

porewater. M. liliana is a surface deposit feeder: juveniles are found within the top 

2 cm of sediment (Thrush et al. 2006a)  while adults live within the top 5-15 cm of 

sediment (Hewitt et al. 1996). In contrast, A. stutchburyi is a suspension feeder 

found within the upper 2 cm of sediment (Thrush et al. 2006a), and grows to be 

greater than 30 mm in length (Powell 1979; Hewitt et al. 1996).   

 

1.5 Objectives and hypotheses  

To narrow the scope of this project I wanted to determine whether porewater 

nutrients can be elevated in treatments in both surface sediments and at depth and 

ultimately whether this elevation results adversely upon macrofaunal diversity, 

focusing largely on key functional species A. stutchburyi and M. liliana. I also 

wanted to determine whether the addition of fertiliser would influence primary 

producers, MPB biomass and the percent coverage of seagrass.  

 

This research aims to stress the soft sediments by the addition of slow-release 

fertiliser in order to identify key functional diversity responses as a result of this 

stress. The two key functional responses examined include nutrient cycling and 

diversity between treatments. This research will allow identification of how the 



 

10 

system will cope with increased environmental pressure of nutrient enrichment in 

the form of fertiliser addition and whether this stays stagnant within the porewater 

or if it is readily utilised.   

 

Specifically, the objective was to identify if sediment properties or functional 

diversity contribute to the natural variation in porewater ammonium across Tapora 

Bank sandflat of the Kaipara Harbour, and whether this changes with enhanced 

nutrient levels. This will aid in the understanding of why some regions within the 

same intertidal area have a better capacity to process nutrients than others. I also 

wanted to identify the impact of the enhanced ammonium on functional diversity 

and the influence this has in the overall processing ability of the sandflat, and finally 

to identify any changes in chlorophyll a concentration, an indirect measure of MPB 

and percent coverage of seagrass. Ammonium was used as a measure of nutrient 

enrichment as a direct result of fertiliser addition. It is expected the fertiliser 

addition will successfully enhance the ammonium concentration within the 

treatment plots as well as at surface and at depth. 

 

High and low functional diversity characteristics previously identified within 

Tapora Bank, Kaipara Harbour were used to create four treatment combinations for 

the current research: (1) low functional diversity and high abundance; (2) high 

functional diversity and high abundance; (3) high functional diversity and low 

abundance; and (4) low functional diversity and low abundance. I expect that areas 

of high macrofaunal abundance and high functional abundance will possess greater 

resilience to fertiliser addition, displayed by reduced porewater ammonium 

concentrations as nutrient concentrations will be used within the sediment by 

bacteria and MPB and undergo denitrification. Bioturbation will aid in nutrient 

release from the sediment into the overlying water column as well as stimulate the 

rate of denitrification. Areas of low functional diversity and abundance will display 

the opposite trend, where fertiliser addition will result in the increased likelihood 

of eutrophication, measured by the concentration of ammonium in the sediment 

porewater. 

 

 

 

 



 

11 

A priori predictions  

 

1. Porewater ammonium concentration will be elevated at surface and depth in 

both the medium and high treatments following the addition of slow-release 

fertiliser. This is likely to be more elevated at depth due to decreased 

bioturbation activity, as well as slower microbial processes and diffusion 

occurring at depth. It is also expected that the high treatment will display 

higher ammonium concentrations than the medium treatment, given the 

greater quantity of fertiliser added to the sediment.  

2. Prior to fertiliser enrichment, ambient sediment porewater ammonium 

concentration is likely to be controlled by macrofaunal diversity, due to 

bioturbation and oxygenation of sediments that contribute to benthic-

pelagic coupling by the remineralisation of nutrients. Therefore, after 

fertiliser addition it is expected that macrofauna will be adversely affected 

due to the increased ammonium concentration and a decline in available 

oxygen, such that they will no longer contribute as major drivers of 

porewater ammonium concentration within the sediment.  

3. Porewater ammonium concentrations within the sandflat will vary naturally 

due to the composition of the macrofaunal community present. Thus with 

an increase in functional species it is expected that there will be a lesser 

effect of nutrient enrichment. This may also vary with grain size.  

4. The increased porewater ammonium concentrations are likely to result in a 

decline of macrofaunal species, individuals, functional species and 

functional individuals. Thus key functional species M. liliana and A. 

stutchburyi are predicted to decline. This decline is expected to be greater 

in the high fertiliser treatment than the medium treatment.  

5. The effect of enhanced nutrients on both seagrass and chlorophyll a will 

result in increased MPB and increased percent coverage of seagrass.  
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2 Chapter 2 

Materials and Methods 

 

2.1 Study site 

Kaipara Harbour is New Zealand’s largest estuary covering an area of 974 square 

kilometres and is located on the north-western side of New Zealand’s North Island 

(36ᵒ 39’ S, 174ᵒ 29’ E) (Figure 2). A large scale experiment based at Tapora Bank 

(Figure 2) was established in January 2014 and covered an intertidal area of 300 m 

x 1000 m (300,000 m²), extending from the low to high tide mark. The sample site 

had patchy regions of seagrass (Zostera muelleri) as well as regions of sand and 

shell hash, with habitats ranging from seagrass-dominated to sand-dominated 

(Hewitt & Funnell 2005; Hailes et al. 2010; De Juan & Hewitt 2011).  

 

Figure 2: Study site location (orange) at Tapora Bank, Kaipara Harbour, alongside, a site 

diagram indicates relative site positions and high/low functional diversity and abundance 

measures where red represents sites of high abundance and high diversity, green represents 

high abundance and low diversity, yellow represents low abundance and low diversity and 

blue represents low abundance and high diversity.
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2.2 Experimental treatments 

This work was part of a larger experiment funded by a New Zealand Royal Society 

Marsden grant awarded to Simon Thrush, Carsten Dormann and Casper Kraan, and 

so experimental design was predetermined. I assisted with the experimental set-up 

and both collected and analysed sediment properties, porewater nutrient samples, 

and assisted in sorting macrofaunal samples for identification.  

 

Experimental set-up began on January 29th 2014 (mid-late summer). GPS 

coordinates for each site (see Appendix 1) were predetermined based upon 

functional diversity attributes of macrofauna collected by Greenfield (2013). 

Known quantities of Nutricote 70-day slow-release fertiliser (42 % N (42:0:0), no 

P or trace elements) was added via coring at a depth of 10 cm to 1 m2 plots 

designated as medium (168 N g/m², 400 g/m² fertiliser) and high (588 N g/m², 1400 

g/m² fertiliser). A total of 20 cores were taken at each plot for the addition of 

fertiliser addition: after a sediment core (10 cm depth) was removed, the fertiliser 

was then added before being covered with a plug of sediment (2-3 cm) at the surface 

to prevent removal of the fertiliser into the water column (Figure 3). This coring 

technique is new to fertiliser addition experiments and is an improvement to 

previous methods. Adding fertiliser to these cores represented nutrient enrichment 

throughout the sediment column. Coated slow-release fertiliser pellets were used as 

these provide gradual enrichment over time (Heck et al. 2000; Worm et al. 2000). 

The control plots underwent the same coring technique with gravel (similar size to 

fertiliser granules) added to the sediment in place of the fertiliser.  

 

  

Figure 3: Left, addition of fertiliser via coring to intertidal sediment. Right, a treatment 

plot following fertiliser addition. 
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Dose rates were determined based upon findings within the literature: 23 research 

papers were surveyed, then narrowed to the 12 most relevant to this study. These 

studies gave a range in dose rates (low of 5.7 N g/m2 and a high of 720 N g/m2) 

(Figure 4). An average was calculated based on fertiliser at 42 % N g/m2. This 

average was then calculated against the number of additions we would have per plot 

(40 multiplied by how much fertiliser could fit into a centrifuge tube representing 

our field scoops (10 g (15 mL tube) for medium and 35 g (50 mL tube) for high)). 

That value was then multiplied by the nitrogen content of the slow-release fertiliser 

(42 %) giving a total of 588 N g/m2 for high treatment plots and 168 N g/m2 for 

medium treatment plots.  

 

 

 

Figure 4: Box and whisker plots from the literature surveyed identified nitrogen content 

and fertiliser dose rates (g/m2). Boxes identify the upper and lower quartile while the centre 

line highlights the median of literature surveyed, the whiskers depict the highest and lowest 

amount of nitrogen and fertiliser added in published studies.  

 

A high fertiliser dose was used in addition to the medium to compare the effect of 

further enhanced nutrient addition to the benthos. Dose rates were trialled at 

Tuapiro Point, Tauranga prior to the Kaipara experiment to confirm porewater 

nutrient elevation (see Appendix 2). Twenty-eight sites, each of three 1 m2  plots, 

were established and assigned one of three treatments (control, medium or high 

fertiliser dose rate). Functional diversity and abundance were ranked from high to 

low based on sampling from Greenfield (2013). The 28 sites encompassed four 

conditions, (1) high functional diversity and high abundance, (2) low functional 
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diversity and high abundance, (3) high functional diversity and low abundance and 

(4) low functional diversity and low abundance (Figure 2). These points were 

spread across the sandflat to cover a wide range of environmental conditions and to 

spread the experimental locations between areas of previously recorded high and 

low functional diversity and abundance.  

 

These sites were then left for four weeks until the first sampling on February 26th 

(late summer). Each of the treatment and control plots of the 28 sites were sampled 

for sediment properties (chlorophyll a (chl-a), organic matter content (OC (Table 

1)), grain size distributions (median grain size (MGS) and % fractions) and 

porewater nutrients at randomly selected points within the plots. Four sediment 

syringe cores (3 cm diameter, 2 cm depth) were collected per plot and pooled. All 

sediment cores were kept in cold and dark conditions following collection before 

being frozen to await laboratory analysis. Four syringe cores sectioned at 0-2 and 

5-7 cm were collected and pooled at each of the 28 sites, at the control, medium and 

high level treatment plots, and stored in 50 mL centrifuge tubes in dark and cold 

conditions until reaching the laboratory for immediate removal of porewater. The 

two section depths were selected to identify any nutrient accumulation at depth and 

thus can potentially link to surface (e.g. A. stutchburyi) and deep dwelling (e.g. M. 

liliana) macrofaunal species’ functional traits. The depths sampled also covered 

both oxic and anoxic sediments which may influence nutrient processing differently.   

 

The second and final sampling (March 17th) took place nearly three weeks after the 

first sampling. Sediment properties, porewater and macrofaunal cores were sampled 

to determine the abundance and diversity of species across the sandflat and how 

these varied across the plot treatments. Two macrofaunal cores (13 cm diameter, 15 

cm depth) were collected from the centre of each plot, then sieved over 500 µm 

mesh and preserved within 70 % isopropyl alcohol (IPA). 

 

Prior to sediment sampling disturbance the 1 m² plot surface structure of the 

sediment was captured by digital photographs at each site, from both the first and 

second sampling dates (hereafter as D28 and D47) to quantify surface features (shell 

hash, sand and seagrass coverage) using Corel Point Count with extensions (CPCe) 

(Kohler & Gill 2006).  

 



 

17 

2.3 Laboratory procedure  

Within 24 hours of collection 3 mL of de-ionised water was added to each porewater 

sediment sample (to give enough sample for analysis), vortexed to homogenise and 

left to stand for an hour before vortexing and centrifugation (2000 rpm for 10 

minutes) (Lohrer et al. 2010). After centrifugation, the porewater from the sediment 

surface was extracted via pipette and filtered through glass filter paper (0.45 µm), 

before being frozen to await laboratory analysis. Porewater nutrient samples (n=336) 

were analysed on a Lachat Flow Injection Analyser (FIA) for ammonium (NH4
+) 

using standardised procedures (Zellweger Analytics 2000). Ammonium is a form 

of inorganic nitrogen and is therefore a product derived from consumer and 

decomposer nitrogen, which can lead to eutrophication following diffusion and 

break-down from fertiliser. Thus porewater ammonium provides an indication of 

nutrient enrichment.  

  

Porewater ammonium concentrations following instrument analysis were corrected 

for de-ionised water dilution. Percent porewater was calculated (Equation 1) where 

the volumes were multiplied by the water density. This then allowed for the 

determination of the volume of porewater within the initial sample (Equation 2). 

The percent dilution could then be identified (Equation 3), and finally the correction 

calculation for ammonium concentration within the final samples could be 

undertaken (Equation 4).  

 

(
Ww

(Wv x wd)
) − (

Dw
(Wv x wd)

)

Ww
(V x wd)

 

 

= Percent porewater  

 

                  Eq. 1 

Ww is wet weight of the sample (g), Dw is dry weight (g) of the sample after oven 

drying (60 °C) to a constant weight, Wv wet volume (mL) is the volume of the 

sample prior to drying, wd water density (g/ml) and V volume (mL).  

 

InSV x PPW = Porewater volume of initial sample                                Eq. 2 

 InSV is the initial sample volume of 49 mL and PPW is the percent porewater 

derived from Equation 1.  
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Dv

Ipv + Dv 
 

 

= Percent dilution  

 

                           Eq. 3 

Dv is the dilution volume (3 mL) and Ipv is the initial porewater volume (mL) 

derived from Equation 2. 

 

[NH4
+] 

(100 − pd (/100))
 

 

= Corrected ammonium value                                                                  

 

Eq. 4 

[NH4
+] is the concentration of porewater ammonium (mg/L) and pd is the percent 

dilution derived from Equation 3.  

 

One hundred and sixty-eight sediment samples were defrosted, homogenised and 

subsampled to forego analysis of sediment properties, namely: chl-a, OC and 

sediment grain size distributions. Chl-a analysis was undertaken within four weeks 

of sample collection. Approximately 0.1 g of freeze dried sediment was extracted 

in 90 % buffered acetone in dark and cold (4 °C) conditions for 24 hours. Samples 

were then centrifuged (3000 rpm for 10 minutes), before absorbance was measured 

flurometrically on a Turner 10-AU Flurometer to determine both the chl-a and 

phaeophytin (following the addition of 0.1N HCl for acidification) concentrations 

(Arar & Collins 1997). Sediment used for OC was weighed into pre-weighed foil 

pans and dried at 60 °C until reaching a constant weight, and then combusted at 

550 °C for 4 hours. Sediment OC was calculated by the percent weight loss of the 

dried sediments following furnace combustion (Christie et al. 2000). Grain size of 

the sediment was determined using the Malvern Mastersizer 2000 instrument which 

gives a particle size range of 0.05-2000 µm. Sediments underwent digestion in 10 % 

hydrogen peroxide (for removal of organic matter), until reaction ceased (~ 2 weeks)  

(Singer et al. 1988). 

 

Rose Bengal solution was used to stain macrofaunal samples (n=168) before fauna 

were separated and identified under a stereo microscope. Fauna were identified as 

number of individuals (N) (all individuals per core, regardless of function); number 

of species (S) (number of species per core); species identified as contributors to 

biogeochemical processing and therefore influence changes to porewater nutrients 

were grouped (see Appendix 1) as number of functional species (FS) (number of 

species belonging to the functional group from each core location); number of 

functional individuals (FN) (count of species that were defined to be part of the 
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functional groups); number of A. stutchburyi (adults and juveniles); and number of 

M. liliana (adults and juveniles) per core. Both A. stutchburyi and M. liliana are key 

species within estuarine sandflats due to their sizes and key functional roles (Thrush 

et al. 2006a; Jones et al. 2011; Norkko et al. 2013).  

 

Digital photographs (n=168) collected during the two sampling trips underwent 

CPCe software analysis where 75 randomly assigned data points determined the 

percent coverage of sand, sea grass (Zostera muelleri) and shell hash on the surface 

of each plot.  

 

2.4 Data Analysis 

Locations were selected based on high and low functional diversity characteristics 

previously identified within Tapora Bank, Kaipara Harbour (Greenfield 2013) to 

give a wide range of macrofauna functional diversity and abundance within the 

sandflat. Macrofauna diversity and abundance measures comprised (1) low 

functional diversity and low abundance, (2) high functional diversity and low 

abundance, (3) low functional diversity and high abundance and (4) high functional 

diversity and high abundance. It was not expected that the treatments would be the 

same as Greenfield (2013) observed; however, the experimental design provided a 

way to ensure coverage for a range of macrofaunal diversity. Because the 

categorical data (high and low functional diversity and abundance) used for the 

experimental set up had changed I no longer assigned these abundance and diversity 

measures. A categorical approach could still be undertaken using unbalanced 

designs due to a change in the number of replicates, however because the diversity 

and abundance measures were different across the sandflat regression analysis was 

undertaken for data analysis. 

 

Distance based linear models (DistLM) were conducted using PRIMER 6 (v 6.1.15) 

to identify the predictor variables contributing to the natural variability across the 

sandflat in the control, medium and high treatment plots. Treatment plots were kept 

separate for analysis, in order to investigate relationships between treatments and 

whether relationships changed with the level of fertiliser added to the soft sediment. 

Sampling data from D47 were put though DistLM analysis for all predictor and 

response variables, as macrofauna samples were only collected during D47. Data 

were transformed to improve the distribution (Anderson 2001): fourth root 
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(macrofauna), square root (sediment properties and percent coverage of seagrass, 

shell hash and sand) and log (porewater ammonium) transformations presented a 

lesser effect of any outliers based on distributions observed within draftsman’s plots. 

Step-wise distance-based linear models were then performed using the PRIMER 

PERMANOVA add-on (Anderson et al. 2008).  

 

DistLM models generated p values allowing any significance to be identified in the 

predictor variables and individually. Importance of variables was assessed using 

marginal tests. Sequential tests identified the best fit of variables based on adjusted 

R2 values (the amount of variation explained by each model), and those that 

explained the most variation were included. The step-wise function allowed for 

improvement of the selection criteria at each step, a function of this tested whether 

excluding variables improved the final model. The relative quality of the statistical 

model produced was measured by the Akaike information criterion (AIC) and the 

R2 value. Similarity matrixes of Euclidean distance were created where p values for 

predictor variables were identified (9999 permutations to reduce the effect of non-

normality). Predictor variables run within each DistLM model identified a 

corresponding p value, individual R2 as well as a cumulative R2 value. Pearson’s 

correlation on predictor variables meant multi-collinearity could be identified and 

avoided by removing relationships (r >0.8) prior to DistLM analysis.  

 

STATISTICA (v11) was used to perform three-way analysis of variance (ANOVA) 

to test for significant differences (p <0.05) (Wonnacott & Wonnacott 1972) in 

sampling depths  (0-2 cm and 5-7 cm), sampling day (D28 and D47) and treatment 

(control, medium and high).  

 

Sampling depth would identify whether fertiliser addition at depth or surface (or 

both) were significant, where significance was identified as an elevation in 

porewater ammonium greater than the control. Sampling day identified any 

significant differences in porewater nutrient enrichment between D28 and D47, while 

treatment identified whether the treatments significantly elevated the porewater 

ammonium concentration relative to the ambient sediment. One-way ANOVA was 

performed to test for differences within the macrofauna community abundance 

between treatment and control plots. Post-hoc Tukey honest significant difference 
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(HSD) tests were run following ANOVA analysis to determine which of the groups 

tested differed from the others. All data were left transformed as per DistLM models.  

 

Medium and high treatment porewater ammonium values were normalised by 

dividing by the controls for both D28 and D47 to correct for background variation. 

To identify any nutrient impact on chl-a and seagrass, both were also normalised 

by the control data. T-tests were performed on chl-a and seagrass data to identify 

statistical significance between the means of the medium and high treatment plots 

once normalised by controls. Paired t-tests were also performed to identify any 

significance between the means of the groups sampled.  

 

An average rate of porewater ammonium processing/accumulation was determined 

by correcting by the control plots and dividing these with the nutrient values in both 

the medium and high treatment plots (Equation 5). Normalising by the control aids 

in correcting variation in background porewater concentration due to variations in 

sediment properties and macrofaunal communities. Outliers were removed based 

on extremely high values where it was likely field sampling collected some fertiliser 

pellets, thus elevating the porewater ammonium concentrations prior to analysis. 

Negative numbers demonstrated an accumulation of porewater ammonium while 

positive numbers indicated a removal between sampling dates. Two-way ANOVA 

was used to test for significance between the normalised rate of porewater 

ammonium against treatment and sampling depth.  

 

(
[𝑁𝐻4

+]1

𝐶1
−  

[𝑁𝐻4
+]2

𝐶2
) 

= Average rate of porewater [NH4
+]      

processing/accumulation  

 

Eq. 5 

Where [NH4
+] is the porewater ammonium concentration (mg/L) from D28 (1) and 

D47 (2) from the medium/high plot, and where C is the corresponding control value 

from D28 and D47 performed for both upper and lower sediment depths.  
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Table 1: Abbreviations used throughout this thesis.  

Variables in full Abbreviation  

Chlorophyll a Chl-a 

Pheaopigment Pheao 

Organic content OC 

Median grain size MGS 

Mud content Mud 

Porewater ammonium concentration upper sediment depth PW [NH4
+] u 

Porewater ammonium concentration lower sediment depth PW [NH4
+] l 

Upper sediment depth first sampling U-1 

Upper sediment depth second sampling U-2 

Lower sediment depth first sampling L-1 

Lower sediment depth second sampling L-2 

Number of species per core S 

Number of individuals per core N 

Number of functional species per core FS 

Number of functional individuals per core FN 

Number Austrovenus stutchburyi per core A. stutchburyi  

Number Macomona liliana per core M. liliana  

First sampling  D28 

Second sampling D47 
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3 Chapter 3 

Results 

 

3.1 Site description 

Fine sand (125-250 µm) was the dominant sand grain size within the sampling area 

with a mean of 216.3 µm. Of the 84 plots sampled (control, medium and high) 55 

plots contained seagrass, of these only 12 had seagrass coverage greater than 50 %. 

Sediment properties for the control plots varied between D28 and D47 (Table 2), for 

instance the average amount of chl-a doubled between D28 and D47. Changes were 

also observed in porewater ammonium concentrations, where the average of the 

lower sampling depth of 5-7 cm was more than double the amount of D28; however, 

little change was observed within the upper sediment depth of 0-2 cm. A minimum 

of 18 S were found per core within the control plots with a maximum of 58, while 

N ranged from 38 to 838 per core. The maximum number of A. stutchburyi per core 

was much greater (225) than that of M. liliana (56). 
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Table 2: The range, mean and standard deviation (SD) of control plot environmental values for D28 

and D47, with macrofaunal composition ranges for D47. 

 
26 Feb 

Range 
Mean SD 

17 March 

Range 
Mean SD 

Chl-a (µg/g) 0-11.9 4.6 3.1 3.6-23.2 10.0 4.7 

Pheao (µg/g) 0.8-7 2.9 1.9 1.5-17.9 6.4 5.3 

OC (%) 0.4-2.7 1.0 0.6 0.5-2.5 1.1 0.6 

MGS (µm) 181.5-242.8 216.3 15.8 176.6-240.6 211.6 17.8 

Mud (%) 0-19.6 2.0 4.0 0-14.5 3.9 4.8 

PW [NH4
+] u 0.04-9.6 0.7 1.8 0.003-3.6 0.9 1.0 

PW [NH4
+] l 0.12-3.2 1.2 0.8 0.3-20.3 3.5 4.8 

Seagrass 

coverage (%) 
0-96 26.9 33.1 0-92 32.5 29.2 

Shell hash 

coverage (%) 
0-13 2.8 3.2 0-16 3.1 4.9 

Sand 

coverage (%) 
1-100 70.3 33.1 7-100 64.4 30.8 

S    18-58 39.1 12.3 

N    38-838 262.4 190.8 

FS    11-31 19.9 6.2 

FN    29-752 165 149.1 

A. stutchburyi 

core-1 
   0-225 22.5 42.4 

M. liliana 

core-1 
   1-56 20.0 16.2 
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Significant correlations were identified in a number of the control plot 

environmental variables (Table 3). Pheaopigment (phaeo) was correlated with both 

OC and chl-a. MGS correlations were identified between S and N. While A. 

stutchburyi was correlated significantly with chl-a and pheao. S correlated 

significantly with mud content (mud), MGS and FS. 
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Table 3: Pearson’s correlation coefficients (r) for control environmental variables from D47. Multi-collinearity was identified for values >0.8. 

  OC Chl-a Phaeo MGS Mud S N FN FS A. stutchburyi M. liliana 

OC                       

Chl-a 0.56                     

Phaeo 0.89* 0.74**                   

MGS -0.74 -0.48 -0.77                 

Mud 0.80 0.35 0.76 -0.80               

S 0.72 0.36 0.69 -0.85** 0.82             

N 0.57 0.20 0.52 -0.53* 0.69 0.79**           

FN 0.34 0.05 0.35 -0.45 0.55 0.67** 0.92***         

FS 0.55 0.24 0.58 -0.83 0.72 0.89** 0.63** 0.64**       

A. stutchburyi -0.51 -0.35* -0.65** 0.45 -0.50 -0.28 -0.18 -0.15 -0.30     

M. liliana -0.42 -0.26 -0.35 0.15 -0.32 -0.13 0.01 0.24 0.02 0.36   
 

Environmental variables: OC, organic content (%); Chl-a, chlorophyll a (µg/g); Pheao, pheaopigment (µg/g); MGS, median grain size (µm); Mud content (%) (<63µm); S, total number 

of species in sample (ind. core-1); N, total number of individuals in sample (ind. core-1); FN, total number of functional individuals in sample (ind. core-1); FS, total number of functional 

species in sample (ind. core-1); A. stutchburyi, total number of  Austrovenus stutchburyi individuals  (ind. core-1); M. liliana, total of Macomona liliana individuals (ind. core-1). *p <0.05, 

** p <0.01, ***p <0.00.  
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The best model for the upper sediment depth in the control plots identified FN as 

significant (p <0.05), while phaeo was outlined as a marginally significant variable 

(Table 4). Sequential tests identified both FN and M. liliana as significantly 

correlated with porewater ammonium concentration (Table 5), where FN was 

positively correlated and explained 26 percent of the variation in porewater 

ammonium. DistLM models displayed a reduced set of predictor variables as these 

were removed based on multi-collinearity (r >0.80) to find the best statistical fit 

based on AIC and R2 values. DistLM models run on the control plot lower sediment 

depth (5-7 cm) demonstrated M. liliana as marginally significant (Table 6); 

however, no overall significance was observed in marginal or sequential tests 

(Table 6 and 7). M. liliana was negatively correlated with porewater ammonium 

within the upper sediment but a positive correlation was observed within the lower 

sediment depth.  

 

Table 4: Distance based linear model marginal test step wise analysis between environmental 

predictors and porewater ammonium concentration for control treatment plots within the upper 

sediment depth: results of the stepwise section procedure. SS (trace) = portion of sum of squares 

relative to the analysed predictor variables (sediment properties and macrofaunal variables); pseudo-

F ratio statistic; P = level of statistical significance (p <0.05 in bold indicates significance); Prop = 

the proportion of variation explained by the model. Correlation directions are indicated for 

significant and marginally significant p-values (+ or -) for both marginal and sequential tests.  

 SS(trace) Pseudo-F P Prop. 

Chl-a  1.240 1.135 0.305 0.043 

Sand 0.615 0.550 0.468 0.021  

Shell hash 0.061 0.053 0.819 0.002 

Phaeo  3.449 3.437 0.076       0.129 (+) 

Mud 2.306 2.198 0.152 0.080 

S 2.633 2.541 0.120 0.092 

FN  7.532 8.964 0.006       0.263 (+) 

M. liliana  1.044 0.949 0.335      0.036  (-) 
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Table 5: Distance based linear model sequential test between environmental predictors and 

porewater ammonium concentration for control treatment plots within the upper sediment depth: 

results of the stepwise section procedure. AIC = degree of support for the model; SS (trace) = portion 

of sum of squares relative to the analysed predictor variables (sediment properties and macrofaunal 

variables); pseudo-F ratio statistic; P = level of statistical significance (p <0.05 in bold indicates 

significance); Prop = the proportion of variation explained by the model; Cumul = cumulative 

variation explained; res.df = residual degrees of freedom. 

 AIC SS(trace) Pseudo-F P Prop. Cumul. res.df 

FN -2.778 7.532 8.964 0.007 0.264 0.264 25 

M. liliana  -4.929 2.994 3.989 0.053 0.105 0.369 24 

Shell hash -5.691 1.752 2.477 0.127 0.061 0.430 23 

Mud -7.567 2.174 3.395 0.081 0.076 0.506 22 

 

Table 6: Distance based linear model marginal test step wise analysis between environmental 

predictors and porewater ammonium concentration for control treatment plots within the lower 

sediment depth: results of the stepwise section procedure. SS (trace) = portion of sum of squares 

relative to the analysed predictor variables (sediment properties and macrofaunal variables); pseudo-

F ratio statistic; P = level of statistical significance (p <0.05 in bold indicates significance); Prop = 

the proportion of variation explained by the model. Correlation directions are indicated for 

marginally significant p-values (+ or -) for both marginal and sequential tests. 

 SS(trace) Pseudo-F P Prop. 

Chl-a 40.404 1.784 0.182 0.066 

FN 0.061 0.002 0.954 0.0001 

A. stutchburyi 19.686 0.838 0.373 0.032 

M. liliana 74.109 3.479 0.077      0.122 (+) 

Shell hash 0.971 0.040 0.859 0.002  

OC 11.387 0.478 0.508 0.019 

N 0.271 0.011 0.910 0.0004 

Seagrass 15.849 0.671 0.438 0.026 

 

Table 7: Distance based linear model sequential test between environmental predictors and 

porewater ammonium concentration for control treatment plots within the lower sediment depth: 

results of the stepwise section procedure. AIC = degree of support for the model; SS (trace) = portion 

of sum of squares relative to the analysed predictor variables (sediment properties and macrofaunal 

variables); pseudo-F ratio statistic; P = level of statistical significance (p <0.05 in bold indicates 

significance); Prop = the proportion of variation explained by the model; Cumul = cumulative 

variation explained; res.df = residual degrees of freedom. 

 AIC SS(trace) Pseudo-F P Prop. Cumul. res.df 

M. liliana 84.513 74.109 3.479 0.077 0.122 0.122 25 
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3.2 Nutrient addition treatments 

The addition of Nutricote 70-day slow-release fertiliser to the medium and high 

treatment plots elevated porewater ammonium in the upper (0-2 cm) and lower (5-

7 cm) sediment depths for both D28 and D47 (Figure 5). The medium (24.5 mg/L) 

and high (74.1 mg/L) treatments in the upper sediment depth on D28 identified 

higher ammonium concentrations than those of the ambient sediment in the control 

plots (0.9 mg/L). The lower sediment depth displayed a greater accumulation of 

nutrients in both the medium (30.42 mg/L) and high (96.29 mg/L) treatment plots. 

D47 showed greater enrichment than D28 in all but the medium plot in the upper 

sediment depth. Differences between sediment depth, treatment and sampling date 

were assessed further via three-way ANOVA where all three variables were 

identified as significant (p <0.05) (Table 8). Subsequent post-hoc testing (Tukey’s 

honest significant difference (HSD)) demonstrated significance in porewater 

ammonium concentration, this was greater than the control in both the medium and 

high treatments, as well as at depth (5-7 cm).  

 

 

Figure 5: Average porewater ammonium for control, medium and high treatment plots for 

upper (0-2 cm) and lower (5-7 cm) sediment depths for both D28 and D47 ± SE. 
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Table 8: Three way ANOVA analysis of the effect of treatment (control, medium and high), sediment depth (0-2 and 5-7 cm) and sampling date (D28 and D47) for porewater 

ammonium. Significant p values (<0.05) are indicated in bold. Differences identified were determined using Tukey honest significant difference (HSD) test. Data were log 

transformed to satisfy test assumptions.    

 Sum of 

squares 

Degrees of 

freedom 

Mean 

squares 

F value P value HSD 

Treatment 197.917 2 98.958 334.771 <0.001 C<M<H 

Sediment depth 16.678 1 16.678 56.419 <0.001 U<L 

Sampling date 2.541 1 2.541 8.595 0.003 D28<D47 

Treatment*Sediment depth 0.371 2 0.185 0.627 0.535  

Treatment*Sampling date 0.081 2 0.040 0.137 0.872  

Sediment depth*Sampling date 0.481 1 0.481 1.627 0.203  

Sediment*Sediment 

depth*Sampling date 

0.151 2 0.075 0.255 0.775  

Error  93.410 316 0.296    
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When normalised by the control, the high treatment displayed a greater average of 

porewater ammonium than the medium treatment for both upper and lower 

sediment depths (Figure 6). The high treatment displayed a greater concentration of 

ammonium within the surface sediments (0-2 cm) than at depth (5-7 cm) on both 

D28 and D47. The medium treatment showed little difference between sampling 

depth and sampling date when normalised by controls. Three-way ANOVA of the 

effect of treatment, sediment depth and sampling day determined only treatment as 

significant (Table 9).  

 

 

Figure 6: Average porewater ammonium for medium and high treatments normalised by 

control plots for both upper and lower sediment depths on D28 and D47 ± SE. 
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Table 9: Three way ANOVA analysis of the effect of treatment (medium and high), sediment 

depth (0-2 and 5-7 cm) and sampling date (D28 and D47) for porewater ammonium normalised by 

controls. Significant p values (<0.05) are indicated in bold.  

 Sum of 

Squares 

Degrees of 

freedom 

Mean 

Squares 

F value P value 

Treatment 1340920 1 1340920 27.897 <0.001 

Sampling depth 67189 1 67189 1.398 0.238 

Sampling date  1647 1 1647 0.034 0.853 

Treatment*Sampling 

depth 

48449 1 48449 1.008 0.317 

Treatment*Sampling 

date 

298 1 298 0.006 0.937 

Sampling depth* 

Sampling date 

4061 1 4061 0.084 0.772 

Treatment*Sampling 

depth *Sampling date 

910 1 910 0.019 0.891 

Error 10046092 209 48067   

 

 

3.3 Nutrient processing and influence of macrofauna and 

sediment properties 

A total of 18850 N were identified from the macrofaunal cores taken on D47. The 

number of N in the control (7346) was greater than that of the medium treatment 

(6228) and the high treatment (5276). FN showed the same trend, where the total 

number of FN calculated in the high treatment was less (475) than the medium (533) 

and control (556). The average number of macrofauna per core found within the 

high and medium treatments displayed less N and S on average than those within 

the control (Figure 7). The high treatment had the least abundance of both S and N 

while the medium identified an abundance greater than that of the high but fewer 

than the control. A. stutchburyi and M. liliana also readily displayed this decline 

(Figure 8), however the decline in M. liliana was greater. One-way ANOVA was 

performed on each of the macrofaunal community variables against treatment, of 

these only M. liliana displayed a significant decline (Table 10). A. stutchburyi 

showed no significance (Table 11) (see Appendix 3 for S, N, FN and FS).  
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Figure 7: The average number of N, FN, S and FS per core in control, medium and high 

treatment plots for D47 ± SE. 

 

 

Figure 8: Average number of A. stutchburyi and M. liliana per core in control, medium 

and high treatment plots from D47 ± SE. 
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Table 10: One-way ANOVA testing whether M. liliana abundance differed per core among the 

treatments (control, medium and high). Significant p values (<0.05) are indicated in bold. Post hoc 

testing using Tukey honest significant difference (HSD).  

  
Sum of 

squares 

Degrees of 

freedom 

Mean 

Squares F value P value 

HSD 

Treatment 2.394 2 1.197 8.093 0.0006 M=H<C 

Error 11.683 79 0.148    

 

 

Table 11: One-way ANOVA testing whether A. stutchburyi abundance differed per core among 

treatment (control, medium and high). Significant p values (<0.05) are indicated in bold. 

  
Sum of 

squares 

Degrees of 

freedom 

Mean 

Squares F value P value 

Treatment 0.154 2 0.077 0.106 0.900 

Error 57.557 79 0.729   

 

Pearson’s correlations were performed on the medium and high environmental and 

macrofaunal variables (Table 12 and 13). Correlations were identified between S, 

N and FN (Table 12 and 13). Few correlations were identified in the medium 

treatment for both sediment properties and macrofaunal variables compared to that 

of the control (Table 3) and high treatment. Macrofaunal variables in the medium 

treatment were correlated with each other but were not correlated in general with 

environmental variables. A similar trend was observed within the high treatment 

however, MGS was correlated with all macrofaunal variables except FS.  

 

Neither the upper or lower porewater ammonium concentration was correlated with 

environmental or macrofaunal variables in the medium fertiliser treatment (see 

Appendix 3). Mud was identified as the only significant environmental factor 

contributing to the response of porewater ammonium in the high treatment for upper 

sediment depth (0-2 cm) (Table 14). Like the high treatment lower sampling depth, 

mud was also outlined as the most significant environmental factor in the sequential 

tests identifying 13 percent of variation in porewater ammonium (Table 15). 

Sequential tests for the high treatment plot upper sediment depth also identified chl-

a as marginally significant. Mud was found to be negatively correlated with both 

upper and lower porewater ammonium concentrations. 
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Table 12: Pearson’s correlation coefficients (r) for the medium treatment plot environmental variables from D47. Multi-collinearity was identified for values >0.8. 

  OC Chl-a Phaeo MGS Mud S N FN FS A. stutchburyi M. liliana 

OC                       

Chl-a 0.53                     

Phaeo 0.60 0.69*                   

MGS -0.68 -0.51 -0.70                 

Mud 0.89 0.45 0.63 -0.76               

S 0.74 0.49 0.62 -0.55 0.76             

N 0.70 0.46 0.47 -0.42 0.65 0.89**           

FN 0.59 0.34 0.36 -0.34 0.60 0.81* 0.95***         

FS 0.69 0.30 0.55 -0.53 0.76 0.91*** 0.73* 0.71       

A. stutchburyi -0.13 -0.05 -0.42 0.35 -0.30 -0.03 0.08 0.04 -0.15     

M. liliana -0.14 -0.08 -0.06 0.21 -0.20 0.10 -0.01 0.05 0.12 0.28   
 

Environmental variables: OC, organic content (%); Chl-a, chlorophyll a (µg/g); Pheao, pheaopigment (µg/g); MGS, median grain size (µm); Mud content (%) (<63µm); S, total number 

of species in sample (ind. core-1); N, total number of individuals in sample (ind. core-1); FN, total number of functional individuals in sample (ind. core-1); FS, total number of functional 

species in sample (ind. core-1); A. stutchburyi, total number of  Austrovenus stutchburyi individuals  (ind. core-1); M. liliana, total of Macomona liliana individuals (ind. core-1). *p <0.05, 

** p <0.01, ***p <0.00.  
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Table 13: Pearson’s correlation coefficients (r) for the high treatment plot environmental variables from D47. Multi-collinearity was identified for values >0.8. 

  OC Chl-a Phaeo MGS Mud S N FN FS A. stutchburyi M. liliana 

OC                       

Chl-a 0.30                     

Phaeo 0.91**  0.38                   

MGS -0.76 -0.32 -0.80                 

Mud 0.94* 0.26 0.89 -0.81               

S 0.82 0.13 0.75 -0.79** 0.82             

N 0.84 0.24 0.81 -0.75* 0.81 0.91***           

FN 0.78 0.17 0.77 -0.74* 0.78 0.85** 0.94***         

FS 0.80 0.09 0.76 -0.77 0.83 0.93** 0.85* 0.87**       

A. stutchburyi -0.01 0.13 -0.16 0.28 -0.15 -0.03 0.06 -0.05 -0.12     

M. liliana 0.31 -0.06 0.42* -0.43 0.29 0.48 0.39 0.44 0.51 -0.20   

 

Environmental variables: OC, organic content (%); Chl-a, chlorophyll a (µg/g); Pheao, pheaopigment (µg/g); MGS, median grain size (µm); Mud content (%) (<63µm); S, total number 

of species in sample (ind. core-1); N, total number of individuals in sample (ind. core-1); FN, total number of functional individuals in sample (ind. core-1); FS, total number of functional 

species in sample (ind. core-1); A. stutchburyi, total number of  Austrovenus stutchburyi individuals  (ind. core-1); M. liliana, total of Macomona liliana individuals (ind. core-1). *p <0.05, 

** p <0.01, ***p <0.00.  

 

 



 

37 

Table 14: Distance based linear model marginal test between environmental predictors and 

porewater ammonium concentration for high treatment plots within the upper sediment depth: results 

of the stepwise section procedure. SS (trace) = portion of sum of squares relative to the analysed 

predictor variables (sediment properties and macrofaunal variables); pseudo-F ratio statistic; P = 

level of statistical significance (p <0.05 in bold indicates significance); Prop = the proportion of 

variation explained by the model. Correlation directions are indicated for significant p-values (+ or 

-). 

 SS(trace) Pseudo-F      P     Prop. 

Chl-a 12613 1.282 0.269 0.047   () 

MGS 13161 1.341 0.264 0.049  (-)        

Mud 35955 4.023 0.050 0.134 (-) 

N  22771 2.411 0.136 0.085 (-)        

FN  26085 2.800 0.100 0.097 (-)        

FS  18002 1.870 0.180 0.067 (-)        

A. stutchburyi 16087 1.658 0.210 0.060 (-)        

Seagrass 8052 0.804 0.383 0.030 (-)        

 

Table 15: Distance based linear model sequential test between environmental predictors and 

porewater ammonium concentration for high treatment plots within the upper sediment depth: results 

of the stepwise section procedure. AIC = degree of support for the model; SS (trace) = portion of 

sum of squares relative to the analysed predictor variables (sediment properties and macrofaunal 

variables); pseudo-F ratio statistic; P = level of statistical significance (p <0.05 in bold indicates 

significance); Prop = the proportion of variation explained by the model; Cumul = cumulative 

variation explained; res.df = residual degrees of freedom. 

    AIC SS(trace) Pseudo-F      P   Prop.  Cumul. res.df 

Mud 256.67 35955 4.023 0.052 0.134 0.134 26 

Chl-a  255.13 27623 3.373 0.080 0.103 0.237  

 

High treatments for lower sediment depth (5-7 cm) identified S, FN, FS, OC and 

mud as significant environmental factors contributing to the response in porewater 

ammonium (Table 16). This model identified mud as being the most important 

environmental factor within the lower sediment depth for the high treatment plot 

explaining 23 percent of the variation in porewater ammonium (Table 17).  
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Table 16: Distance based linear model marginal test between environmental predictors and 

porewater ammonium concentration for high treatment plots within the lower sediment depth: results 

of the stepwise section procedure. SS (trace) = portion of sum of squares relative to the analysed 

predictor variables (sediment properties and macrofaunal variables); pseudo-F ratio statistic; P = 

level of statistical significance (p <0.05 in bold indicates significance); Prop = the proportion of 

variation explained by the model. Correlation directions are indicated for significant p-values (+ or 

-). 

 SS(trace) Pseudo-F P  Prop. 

Chl-a 14615 0.456 0.491 0.017  

S 181030 7.059 0.009   0.214  (-) 

FN 125470 4.516 0.039   0.148  (-) 

FS 163000 6.189 0.014   0.192  (-) 

M. liliana  6282 0.194 0.665 0.007 

Seagrass 35459 1.135 0.294 0.042 

OC 114590 4.064 0.050   0.135 (-) 

Mud  202080 8.138 0.004   0.238  (-) 

 

Table 17: Distance based linear model sequential test between environmental predictors and 

porewater ammonium concentration for high treatment plots within the lower sediment depth: results 

of the stepwise section procedure. AIC = degree of support for the model; SS (trace) = portion of 

sum of squares relative to the analysed predictor variables (sediment properties and macrofaunal 

variables); pseudo-F ratio statistic; P = level of statistical significance (p <0.05 in bold indicates 

significance); Prop = the proportion of variation explained by the model; Cumul = cumulative 

variation explained; res.df = residual degrees of freedom. 

 AIC SS(trace) Pseudo-F P Prop. Cumul. res.df 

Mud 285.28 202000 8.138 0.007 0.238 0.238 26 

OC 284.5 61086 2.612 0.112 0.072 0.310 25 

Chl-a 284.43 41746 1.846 0.169 0.049 0.360 24 

 

Correlation graphs were plotted to identify any relationships between treatment and 

controls before normalisation by the controls was undertaken. This allowed for 

identification of background levels as a high background of ammonium within the 

control may have generated a high concentration in the high treatment. The 

relationship between both medium and high treatment and the control in the upper 

sediment depth displayed weak negative correlations (Figure 9). The reverse was 

observed in the medium and high treatments in the lower sediment depth where a 

weak positive correlation was identified (Figure 10).  
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Figure 9: Top: Control and medium treatment porewater ammonium concentration 

correlation within the upper sediment depth (0-2 cm). Bottom: Control and high treatment 

porewater ammonium concentration correlation within the upper sediment depth.  
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Figure 10: Top: Control and medium treatment porewater ammonium concentration 

correlation within the lower sediment depth (5-7 cm). Bottom: Control and high treatment 

porewater ammonium concentration correlation within the lower sediment depth. 

 

After normalisation by the control plots to give a rate of nutrient 

processing/accumulation (Equation 5) much variation in the processing of 

porewater nutrients was observed across the sandflat. The medium treatment had 

accumulated ammonium (negative values) within the porewater in the upper 

sediment (Figure 11). The medium and high treatments displayed a similar rate of 

processing, these were less than the accumulation rates. Two-way ANOVA for 

normalised rate data displayed no significance between treatment (p = 0.314) or 

sampling depth (p = 0.149) (see Appendix 3).  
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Figure 11: Average rate of ammonium processing and accumulation for upper (0-2 cm) 

and lower (5-7 cm) sediment depths derived from D47 control and nutrient data from 

medium and high treatments (see equation 5) ± SE. 

 

Neither the medium or high treatments in the lower sediment were correlated with 

porewater ammonium processing rates (see Appendix 3). However, marginal 

significance was observed in the medium upper treatment for M. liliana and shell 

hash (Table 18), while sequential tests identified M. liliana and A. stutchburyi as 

marginally significant (Table 19). M. liliana was negatively correlated with 

porewater ammonium processing in the medium treatment upper sediment depth, 

while A. stutchburyi was positively correlated. S was correlated with the high 

treatment plot upper sediment depth ammonium processing rates (Table 20). 

Sequential tests further identified S and FS as significant (Table 21), where 16 

percent of the variation in porewater ammonium was explained by S. Both S and 

FS were positively correlated with porewater ammonium processing.  
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Table 18: Normalised distance based linear model marginal test between environmental predictors 

and porewater ammonium processing for medium treatment within the upper sediment depth: results 

of the stepwise section procedure. SS (trace) = portion of sum of squares relative to the analysed 

predictor variables (sediment properties and macrofaunal variables); pseudo-F ratio statistic; P = 

level of statistical significance (p <0.05 in bold indicates significance); Prop = the proportion of 

variation explained by the model. Correlation directions are indicated for marginally significant p-

values (+ or -) for both marginal and sequential tests. 

 SS(trace) Pseudo-F P Prop. 

Chl-a 19.19 0.013 0.912 0.0005 

Phaeo  281.02 0.187 0.683 0.008     

MGS 1709.10 1.182 0.286 0.047    

Mud 1349.30 0.924 0.348 0.037    

FN  214.20 0.142 0.703 0.006     

FS 907.80 0.614 0.450 0.025     

A. stutchburyi 1665.20 1.150 0.290  0.046 (+)        

M. liliana 5024.80 3.843 0.059  0.138  (-) 

Seagrass 2137.90 1.497 0.233 0.059     

Sand 0.36 0.0004 0.988 0.0009  

Shell hash 4930.60 3.760 0.069 0.135 

 

Table 19: Normalised distance based linear model sequential test between environmental predictors 

and porewater ammonium processing for medium treatment within the upper sediment depth: results 

of the stepwise section procedure. AIC = degree of support for the model; SS (trace) = portion of 

sum of squares relative to the analysed predictor variables (sediment properties and macrofaunal 

variables); pseudo-F ratio statistic; P = level of statistical significance (p <0.05 in bold indicates 

significance); Prop = the proportion of variation explained by the model; Cumul = cumulative 

variation explained; res.df = residual degrees of freedom. 

 AIC SS(trace) 

Pseudo-

F P Prop. Cumul. res.df 

M. liliana 188.49 5024.8 3.843 0.060 0.138 0.138 24 

A. stutchburyi 186.93 4015.9 3.375 0.078 0.110 0.248 23 

FS 186.04 2882 2.590 0.121 0.079 0.328 22 
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Table 20: Normalised distance based linear model marginal test between environmental predictors 

and porewater ammonium processing for high treatment within the upper sediment depth: results of 

the stepwise section procedure. SS (trace) = portion of sum of squares relative to the analysed 

predictor variables (sediment properties and macrofaunal variables); pseudo-F ratio statistic; P = 

level of statistical significance (p <0.05 in bold indicates significance); Prop = the proportion of 

variation explained by the model. Correlation directions are indicated for significant p-values (+ or 

-) for both marginal and sequential tests. 

 SS(trace) Pseudo-F P Prop. 

FS 481000 1.590 0.220      0.060 (+) 

Mud 640000 2.161 0.152 0.080       

N 1030000 3.676 0.065 0.128     

FN  545000 1.816 0.184 0.068   

Phaeo 157000 0.499 0.495 0.020 

S 1290000 4.761 0.037      0.160 (+) 

M. liliana 74409 0.234 0.635 0.009      

Sand 642 0.002 0.973 0.0007  

Shell hash 78259 0.246 0.628 0.010  
 

 

Table 21: Normalised distance based linear model sequential test between environmental predictors 

and porewater ammonium processing for high treatment within the upper sediment depth: results of 

the stepwise section procedure. AIC = degree of support for the model; SS (trace) = portion of sum 

of squares relative to the analysed predictor variables (sediment properties and macrofaunal 

variables); pseudo-F ratio statistic; P = level of statistical significance (p <0.05 in bold indicates 

significance); Prop = the proportion of variation explained by the model; Cumul = cumulative 

variation explained; res.df = residual degrees of freedom. 

 AIC SS(trace) Pseudo-F P Prop. Cumul. res.df 

S 339.61 1290000 4.761 0.038 0.160 0.160 25 

FS 336.83 1100000 4.644 0.041 0.136 0.296 24 

M. liliana 336.19 5280000 2.366 0.139 0.066 0.362 23 

 

 

3.4 Impact of porewater nutrient elevation on chlorophyll a and 

seagrass  

Medium and high treatment plots for chl-a and seagrass coverage data from D47 

were normalised by control data (Figure 12). When the medium and high treatments 

were plotted against the average chl-a accumulation, chl-a displayed an increase 

within the medium plot, at an average of 1.28, while the high plot displayed a 

slightly smaller value of 1.24. T-tests performed on the normalised data for average 

chl-a accumulation identified the increase in chl-a within the medium treatment as 

significant (p = 0.01), however no significant increase was identified in the high 
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treatment (see Appendix 3). Paired t-tests for chl-a were not significant (p = 0.834) 

in medium or high treatments.  

 

The average seagrass coverage plotted against treatment displayed little difference 

between the high (0.9) and medium (1.06) treatment. T-tests performed using 

normalised data on the average seagrass coverage identified no significant growth 

or decline in both high and medium treatment plots (see Appendix 3). Paired t-tests 

for seagrass were not significant (p = 0.429) in medium and high treatments. 

 

 

 

Figure 12: Top: Average chl-a accumulation in medium and high treatment normalised by 

control data from D28 and D47 ± SE. Bottom: Average seagrass coverage increase within 

medium and high treatment normalised by control data from D28 and D47 ± SE.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
v
er

ag
e 

C
h
lo

ro
p

y
ll

 a
ac

cu
m

u
la

ti
o

n
 

Treatment plots

Medium

High

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
v
er

ag
e 

se
ag

ra
ss

 c
o

v
er

ag
e

Treatment plots

Medium

High



 

45 

4 Chapter 4 

Discussion 

 

This was the first time a fertiliser addition experiment of this size had been 

undertaken in intertidal sediment to determine effects of enhanced nutrients in areas 

of high and low functional diversity and abundance. The goal of this research was 

to address effects of enhanced fertiliser loading to benthic intertidal sediments and 

provide a link to functional diversity. Factors controlling porewater ammonium 

concentration in ambient and enriched sediment were also sought. Two fertiliser 

addition treatments (medium and high) were selected alongside a control of ambient 

sediment to compare the effects of enhanced ammonium concentration in the 

sediment porewater and whether this varied with depth. Porewater ammonium 

concentration was significantly elevated at surface (0-2 cm) and depth (5-7 cm) in 

both the medium and high treatments. A trend was observed in the decline of 

macrofaunal diversity within fertiliser treatments, however only the decline in M. 

liliana was significant. The number of FN and the number of M. liliana were 

identified as significant factors controlling the variation in porewater ammonium 

concentration in the ambient upper sediment depth. However, a switch was 

observed from macrofaunal to sediment properties where mud showed a significant 

correlation with porewater ammonium concentration in regions of high nutrient 

addition. When normalised by the controls significance was observed within the 

upper sediment depth, both S and FS were positively correlated with porewater 

ammonium processing rate in the high treatment, with marginal significance 

identified for key species M. liliana and A. stutchburyi in the medium treatment.  

 

4.1 Porewater ammonium elevation 

The addition of fertiliser to intertidal sediments is not new to research as others 

have shown nutrient elevations in sediment porewater as a result of fertiliser 

addition (Worm et al. 2000; Morris & Keough 2003b; Armitage et al. 2005; Lever 

& Valiela 2005; O'Brien et al. 2009). Therefore it was expected the addition of 

slow-release fertiliser to the intertidal sediment of the Kaipara Harbour would result 

in increased porewater ammonium concentration in both treatments. Unlike many 
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previous studies the fertiliser selected for the current study contained no P or trace 

elements, therefore the response observed between the current study and previous 

studies may have resulted in a different level of macrofauna and porewater response. 

 

Previous fertiliser addition research has studied additions as shallow as 0.75 cm 

(Udy & Dennison 1997) with deeper additions of up to 12 cm (Erftemeijer et al. 

1994). By adding fertiliser via coring to a depth of 10 cm with a plug (2-3 cm) of 

sediment to prevent removal of fertiliser into the water column, enrichment 

throughout the sediment column could be achieved. As far as I am aware this is the 

first in-situ study to look at two porewater sediment depths (0-2 and 5-7 cm) to 

cover both oxic and anoxic sediments from a single enrichment experiment, as 

porewater samples in previous research have commonly looked at porewater 

elevation at a single depth. As anticipated porewater ammonium concentration 

results indicated a difference in nutrient processing with depth, where the lower 

sampling depth displayed an increased concentration of porewater ammonium than 

the upper sediments. Falcão & Vale (1995) undertook laboratory experiments 

which demonstrated the removal of ammonium from the upper 2 cm of sediment 

via bioturbation, thus with increased bioturbation the nutrient removal from the 

sediment increased. Therefore, the removal of ammonium within the surface 

sediments is linked to the process of bioturbation, a key physical function of 

macrofauna which decreases with depth (Boudreau 1998), similarly a decline in 

oxygen occurs with increased sediment depth (Andersen & Helder 1987). Therefore 

nutrient elevation at depth is likely as the macrofaunal contribution to benthic-

pelagic coupling through bioturbation and oxygenation is decreased.   

 

A switch from macrofaunal to sediment properties was observed in correlations 

against porewater ammonium concentration from ambient to enriched sediments. 

Significant correlations of porewater ammonium concentration in the upper control 

plot sediments were identified as FN and the number of M. liliana, one of the key 

functional species (Thrush et al. 2006a), while the sole significant correlation of 

porewater ammonium in areas of high fertiliser enrichment in both upper and lower 

sediment depths was mud. FN displayed a positive correlation in ambient sediment 

porewater ammonium concentration where porewater ammonium concentration 

increased with increased FN. This may be linked to the increased density of 

individuals where excretion from these organisms is also contributing to the 
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ammonium elevation within the porewater. Excretion from benthic organisms may 

be increasingly elevated during low tide when porewater sampling was undertaken, 

thus concentrating ammonium within the porewater until high tide where the action 

of bioturbation will aid in the release of ammonium into the overlying water column 

(Falcão & Vale 1995). A negative correlation was observed between M. liliana and 

porewater ammonium concentration, thus with increased M. liliana abundance the 

porewater ammonium concentration was shown to decrease. When porewater 

ammonium was elevated in both the medium and high treatments the abundance of 

M. liliana declined, thus in ambient sediment where conditions are seemingly more 

suited, M. liliana may be able to further contribute to ecosystem functioning in the 

form of nutrient cycling. However, it must be noted that one of the major limitations 

of the correlative approach adopted here is that we cannot deduce causative 

mechanisms underlying relationships between macrofauna diversity and changes in 

porewater ammonium concentrations.  

 

After fertiliser enrichment the high treatment plots displayed a negative correlation 

between mud and porewater ammonium concentration, therefore porewater 

ammonium concentration decreased with increased mud content. This was contrary 

to expectations, given that muddy sediments are often resultant from high rates of 

deposition, thus tend to be organically rich, with often much higher concentrations 

reported than their sandy sediment counterparts (e.g. Erftemeijer & Middelburg 

1993). The addition of fertiliser to the sediment and the resulting porewater 

ammonium increase elevated ammonium more than what would be expected from 

organic material surrounding mud particles. The greater porosity of sand particles 

and therefore porewater space may allow greater diffusion from the fertiliser pellets 

resulting in a greater build-up of nutrients. In the absence of bioturbation, the sandy 

sediment porewater ammonium concentration may be somewhat trapped in the 

deeper layers for longer time periods meaning a greater ammonium concentration 

is observed. Thus, the negative effect of mud on porewater ammonium 

concentration could be due to slower release and a build-up of nutrients.  

 

When porewater ammonium data was normalised by the controls (Equation 5) to 

give a rate of porewater ammonium processing, models for the upper sediment 

depth within the medium treatment identified marginal significance in both M. 

liliana and A. stutchburyi. M. liliana was positively correlated with porewater 
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ammonium processing thus an increase in M. liliana abundance correlated with an 

increased rate of porewater ammonium processing. Although M. liliana live at 

depths greater than the 0-2 cm sampled for porewater in the upper sediment (Hewitt 

et al. 1996; Thrush et al. 2006a), results suggest they may in fact be important 

contributors to nutrient cycling of the upper sediment. A. stutchburyi displayed the 

reverse of this, where in increased abundance the rate of porewater ammonium 

processing decreased. Thus, with increased abundance of A. stutchburyi the rate of 

processing may be influenced by other functions such as bioturbation of the 

sediment, where not all species contribute equally to functioning as the 

functionality of a system may be dominated by a key species. A. stutchburyi is an 

important contributor to the processing of nutrients within the soft sediments 

(Sandwell et al. 2009), therefore with a decline in this key species, a decline in 

porewater processing is expected. A. stutchburyi may be able to tolerate enhanced 

levels of ammonium, contrary to this they may have responded adversely to this 

increase in ammonium where A. stutchburyi may have become somewhat dormant 

thus decreasing nutrient processing within the sediments.  

 

Both S and FS were positively correlated with the rate of porewater ammonium 

processing, therefore increased S or FS abundance correlated with lower porewater 

ammonium concentrations. Increased S and FS supports the idea of increased 

ammonium processing with increased diversity, therefore increasing the processing 

stability of the soft sediments where there is a constant feedback from the sediment 

to the overlying water column. Previous research has shown that increased 

abundance has led to increased stability of an ecosystem in other assemblages 

(Tilman 2001); however, instead of increased biomass an increase in nutrient 

cycling associated with species diversity may be observed within the soft sediment 

systems. The increased number of species therefore provides an increased number 

of functions; enhanced bioturbation increases oxygen availability within the 

sediment surface; which has a knock-on effect on nutrient cycling by increasing the 

nutrient remineralisation rates (Aller 1982; Kristensen & Blackburn 1987; Aller 

1994; Meysman et al. 2006). These processes are collectively important for 

controlling porewater nutrient concentrations within the sediment. 
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4.2 Macrofaunal response  

There was an obvious trend in the number of N and S including those of functional 

significance for the processing of porewater nutrients, where a decline was 

observed with increased porewater ammonium in the medium and high treatment. 

This decline was not significant and the testing of this was beyond the scope of this 

study. M. liliana did however decline significantly with increased porewater 

ammonium concentration. This decline may be due to sensitivity to ammonium as 

it is known high levels of ammonium can be toxic to benthic macrofauna (Gray et 

al. 2002), hence it was expected the addition of fertiliser and the subsequent 

increase in porewater ammonium concentration would potentially result in adverse 

effects (O'Brien et al. 2009). A two way interaction is noted between porewater 

ammonium concentration and macrofaunal diversity; with increased diversity 

macrofauna influence the concentration of ammonium in the porewater, while with 

increased porewater ammonium concentration the macrofaunal diversity declines.   

 

Benthic macrofauna along with external physical factors (porewater advection and 

sediment re-suspension) influence the rate of nutrient exchange (Hansen & 

Kristensen 1997; McGlathery et al. 2004). Adult M. liliana live in the top 5- 15 cm 

of sediment (Hewitt et al. 1996; Thrush et al. 2006a), thus the depth M. liliana live 

may play a key role here as with increased depth the role of diffusion is slower, and 

the amount of oxygen may be increasingly limited due to the enhanced nutrient 

levels and the subsequent increase in respiration. Contrasting to M. liliana,  A. 

stutchburyi live at shallower depths of 0- 2 cm (Thrush et al. 2006a) where due to 

bioturbation oxygen levels are increased within the upper sediment and decrease 

nutrients as increase nutrient flux from the benthos, which may have led to the lower 

porewater ammonium concentrations observed in the surface sediments. Therefore 

it is possible A. stutchburyi showed no significant decline in medium and high 

treatments due to the lower porewater ammonium concentration in the surface 

sediments as a result of such processes.  

 

Large deposit feeders such as M. liliana provide an important feedback link to both 

nutrient regeneration and grazing (Thrush et al. 2006b). Thus enhanced ammonium 

enrichment of porewater such as that within the high and medium treatments results 

in depletion of oxygen where the role of large macrofauna is lost, subsequently so 

is their function (Meyer-Reil & Köster 2000; Diaz & Rosenberg 2008). 
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Performance of an ecosystem is modified due to changes in community structure, 

identified by the significant decline of M. liliana and the decline in FN and FS. 

Ecosystem functions are used as measures of biodiversity loss (Norkko et al. 2013) 

therefore the removal of traits belonging to organisms such as M. liliana not only 

alters the community composition but alters the flux of nutrients and oxygen 

(Thrush et al. 2006a; Norkko et al. 2013), resulting in increased porewater 

ammonium concentration at depth.  

 

The theory of functional redundancy links to species loss or decline in regards to 

the functioning of an ecosystem (Rosenfeld 2002). It would appear this was 

somewhat absent in the lower sediment depths where M. liliana was removed with 

enhanced porewater ammonium concentration, as the porewater nutrient 

concentrations exceeded those of the upper sediment. However due to the 

macrofaunal sampling technique the abundance of organisms in the lower sediment 

depth is unknown so comparisons between the upper and lower depths cannot be 

determined. 

 

Contrary to expectations the addition of fertiliser and subsequent elevation in 

porewater nutrients did not result in significant removal of macrofauna within the 

high or medium treatments. Therefore it is likely the ammonium concentration 

within the porewater was enough to stress macrofauna to the point where a trend in 

the decline was observed; however, this decline was not of any significance. The 

trend between the treatments and the macrofaunal community, although not 

statistically significant it may be possible that due to the decline in macrofaunal 

species the community response variables are no longer significant, thus sediment 

properties (i.e. grain size) displayed a significant correlation against porewater 

nutrients in their absence. I suspect a longer enrichment period may have resulted 

in the significant macrofaunal decline hypothesized.   

 

Much research has identified the response of seagrass to nutrient addition within 

coastal regions (e.g. Orth, 1977; Bulthuis & Woelkerling, 1981; Erftemeije et al. 

1994; van Lent et al. 1995; Udy & Dennison, 1997b), however little research has 

identified the influence or the response of sediment macrofauna. O’Brien et al. 

(2010) enriched sediments with different sources of nutrients including fertiliser, 

this resulted in an elevation of porewater nutrients however no obvious changes 
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were observed in the macrofaunal community. Other enrichment experiments 

where similar levels of slow-release fertiliser had been used identified increased 

abundance of some species and a decline in others (Morris & Keough 2003a), 

however the duration of the current study was shorter. 

 

The addition of fertiliser to the intertidal sediments may have decreased the 

available oxygen, particularly within the deeper sediments where available oxygen 

is scare, thus adverse effects of this are likely to impact macrofaunal abundance and 

diversity (Diaz & Rosenberg 1995; Kelaher & Levinton 2003; O’Brien et al. 2010). 

The increase in nutrients and temperature given the season both sampling and 

experimentation occurred it is possible increased oxygen consumption occurred 

within the sediments ultimately resulting in the removal of macrofaunal species 

from within the enrichment plots (Fitch & Crowe 2011). 

 

4.3 Microphytobenthos  

Both the medium and high treatments showed an increase in the average chl-a 

concentration after normalisation by the controls; however, only the increase within 

the medium was statistically significant. Nutrient enrichment, sediment properties 

and macrofaunal interaction affect the production of MPB (Guarini et al. 1998; 

Chapman et al. 2009), measured as chl-a concentration within the sediment. MPB 

is an important source of organic material for macrofauna (Underwood & 

Kromkamp 1999; Middelburg et al. 2000), therefore due to macrofaunal abundance 

decline or absence it is expected the concentration of this would increase.  

 

Previous experiments give supporting evidence for the link of nitrogen enrichment 

and the effect of increased growth of benthic microalgae (Posey et al. 1995). Earlier 

sediment fertiliser addition experiments run over similar time periods of several 

weeks found increases in MPB as a result of enhanced porewater nutrient levels 

(Flothmann & Werner 1992; Morris & Keough 2003a; Posey et al. 2006). Lever 

and Valiela (2005) found with grazer exclusion the amount chlorophyll a increased, 

however this varied with the amount of nitrogen loading and therefore varied 

between the estuaries they sampled. In the current experiment by adding two 

treatment levels, the nitrogen difference between the medium and high treatment 

may have somewhat contributed to the difference observed. Alike to the high 
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treatment of the current study O’Brien et al. (2010 & 2009) observed no detectable 

effect within chl-a, even though the elevation of porewater nutrients was achieved. 

This may be due to rapid turnover where the grazing community consumes and 

subsequently removes this biomass (Hillebrand et al. 2000; Levinton & Kelaher 

2004).  

 

4.4 Seagrass 

The percent coverage of seagrass was used as a measure of growth as a result of 

elevated porewater nutrient concentrations. Both the medium and high treatments 

showed no significant effect of enhanced porewater ammonium, thus no increase 

or decrease in growth was determined as a result of the fertiliser addition. The time 

period (D28 to D47) may not have been long enough for seagrass growth to 

significantly occur. It is also possible the amount of fertiliser added may have 

stunted the growth of the seagrass as elevated ammonium concentrations have been 

found to have an adverse response to seagrass (e.g. Zostera noltii) (Brun et al. 2002), 

yet a decline in growth was not observed. It has been noted that season plays an 

important role in such observations (Brun et al. 2002), for example seagrass 

Posidonia oceanica obtains maximum growth in spring and minimum growth in 

late-summer (Invers et al. 2004), where experimentation of the current study was 

undertaken mid-late summer. Dennison et al. (1987) also identified a lack of 

seagrass response with fertiliser addition, however this was identified to be a result 

of failed enrichment, which is not the case of this experiment. Contrary to the 

current results Kelaher et al. (2013) found nutrient enrichment within the sediment 

increased seagrass biomass, however the duration of the experiment was longer, 

where fertiliser was replaced every two months. The measures of growth however 

are also different to the current study, this study undertook measures based solely 

on the percentage coverage of the plot surface normalised by the control plots, 

which are not common indicators of seagrass growth (Short & Duarte 2001). 

 

4.5 Limitations 

Monitoring nutrient enrichments through time may provide a better understanding 

of benthic responses (Worm et al. 2000). Longer addition periods and increased 

sampling dates would have provided a greater data set and therefore potentially a 

greater understanding of the controls on porewater ammonium concentration.  
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This was a large study with many samples for laboratory analyses, this resulted in 

an increased cost of processing and analysing, hence nitrite, nitrate and phosphorus 

porewater concentrations were not analysed.  

 

4.6 Summary of major findings 

Changes to porewater ammonium concentration were analysed from within a soft 

sediment estuarine environment after the addition of slow-release fertiliser. This 

experiment compared medium and high fertiliser additions as well as porewater 

ammonium elevation at surface (0-2 cm) and depth (5-7 cm) to ambient sediment 

in areas of both high/low functional diversity and high/low abundance.   

 

The major findings of the experiment were: 

 

1. Porewater ammonium concentration was significantly elevated in both 

medium and high fertiliser addition treatments, this was greater on D47 than 

D28. As expected the porewater ammonium concentration was greater in the 

high treatment than the medium treatment.  

2. The addition of fertiliser increased the ammonium concentration 

significantly within surface (0-2 cm) sediments and at depth (5-7 cm). The 

concentration of ammonium was greater at depth than in the surface 

sediments. 

3. Correlations of porewater ammonium concentration within the upper 

sediment depth of the ambient sediment identified FN and key functional 

species M. liliana as significant. No correlations were observed between 

macrofaunal or sediment properties in the lower sediment depth. 

4. With enhanced porewater ammonium concentration a switch was observed 

from macrofauna to sediment properties, where mud displayed a significant 

correlation with porewater ammonium concentration in high treatments of 

both the upper and lower sediment depth. 

5. Only the upper sediment depth when normalised by the control plots 

displayed significant correlations. The medium plot highlighted both key 

functional species M. liliana and A. stutchburyi as marginally significant. 
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While the high treatment identified both S and FS as significant when 

correlated against the rate of porewater ammonium processing.  

6. With enhanced porewater ammonium concentration a decline in S, FS, N, 

FN and A. stutchburyi was observed, however only the decline in M. liliana 

was significant.  

 

4.7 Suggestions for future research 

Through complex biochemical interactions macrofauna influence the processing of 

nutrients within the sediment, an essential link for benthic-pelagic coupling and the 

cycling of nutrients. The functioning of estuaries is complex given such interactions 

which vary on spatial scales. This research looked at a single estuary over the New 

Zealand summer where two sampling dates provided sediment properties and 

macrofauna samples for analysis. A trend was observed in the decline of S, N, FS, 

FN and A. stutchburyi with enhanced porewater ammonium concentration, although 

not significant, further research may be able to identify the impact or severity of 

this decline, particularly if it were to continue in the same trajectory. Identification 

of this would involve longer field experiments to further determine implications of 

enhanced porewater ammonium concentration. It may be beneficial to look at rare 

species as well as those common (e.g. A. stutchburyi and M. liliana) as previous 

research has identified rare species also play key roles in functional biodiversity 

(Ellingsen et al. 2007). If we can grasp a greater understanding of the marine 

intertidal sandflats and how the associated communities are structured and function 

we can begin to mitigate biodiversity loss and minimise disturbance. 

 

Where sediment porewater sampling is undertaken in future I suggest sectioning of 

macrofauna, chl-a, grain size and OC sample cores into upper and lower sediment 

depths as this could aid in the identification of controls on porewater nutrients at 

surface and at depth. A comparison of two different estuaries may also provide 

some insight into whether estuaries have the same or similar controlling factors.  

 

In-situ studies to determine what level of porewater ammonium elevation 

macrofauna abundance and diversity begins to decline may also be beneficial. A 

maximum level tolerated could be identified before the system becomes anoxic and 

linked to sediment properties. This would also identify which species are more 
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tolerant to nutrient elevation, which may be somewhat linked to different ranges in 

sediment properties. Determination of how far macrofaunal species migrate away 

from addition zones may also be of interest.  
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Appendices 

Appendix 1 

Table A.1. 1: GPS coordinates for the 28 sites across the Kaipara Harbour sandflat.  

Site No. Easting  Northing  Latitude WGS84 Longitude WGS84 

 NZTM NZTM   

1 1715904 5971943 36 23 26.42860 S 174 17 32.53337 E 

2 1715908 5971771 36 23 32.00775 S 174 17 32.78630 E 

3 1715908 5971577 36 23 38.30246 S 174 17 32.89052 E 

4 1715904 5971494 36 23 40.99730 S 174 17 32.77458 E 

5 1715921 5971296 36 23 47.41441 S 174 17 33.56325 E 

6 1715921 5971196 36 23 50.65911 S 174 17 33.61699 E 

7 1715922 5971171 36 23 51.46985 S 174 17 33.67056 E 

8 1715923 5971091 36 23 54.06517 S 174 17 33.75369 E 

9 1715922 5971015 36 23 56.53157 S 174 17 33.75440 E 

10 1716025 5970999 36 23 57.00595 S 174 17 37.89705 E 

11 1716004 5971315 36 23 46.76185 S 174 17 36.88424 E 

12 1715991 5971518 36 23 40.18077 S 174 17 36.25334 E 

13 1715985 5971672 36 23 35.18654 S 174 17 35.92974 E 

14 1715978 5971755 36 23 32.49649 S 174 17 35.60420 E 

15 1715977 5971813 36 23 30.61499 S 174 17 35.53289 E 

16 1716072 5971935 36 23 26.61516 S 174 17 39.27986 E 

17 1716072 5971835 36 23 29.85986 S 174 17 39.33365 E 

18 1716075 5971656 36 23 35.66656 S 174 17 39.55035 E 

19 1716079 5971559 36 23 38.81218 S 174 17 39.76307 E 

20 1716111 5971224 36 23 49.66798 S 174 17 41.22766 E 

21 1716120 5971055 36 23 55.14759 S 174 17 41.67986 E 

22 1716225 5971094 36 23 53.83644 S 174 17 45.87313 E 

23 1716216 5971177 36 23 51.14727 S 174 17 45.46719 E 

24 1716205 5971253 36 23 48.68610 S 174 17 44.98476 E 

25 1716172 5971446 36 23 42.43821 S 174 17 43.55636 E 

26 1716167 5971463 36 23 41.88879 S 174 17 43.34654 E 

27 1716143 5971774 36 23 31.80823 S 174 17 42.21589 E 

28 1716127 5971955 36 23 25.94230 S 174 17 41.47635 E 
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Table A.1. 2: Species and functional group contributors to biogeochemical processing. 

Taxonomic ID Functional group 

Aglaophamus macroura Soft-bodied Pred.Scav Below surface. Deep Freely motile No 

habitat structure 
Alpheus sp. Rigid Pred.Scav Below surface Freely motile Large burrow 

former 
Asychis sp. Soft-bodied Below surface Tube structure 
Austrohelice crassa Rigid Pred.Scav Below surface Freely motile Large burrow 

former 
Austrovenus stutchburyi Calcified Suspension feeding Top 2 cm Freely motile 

Boccardia syrtis Soft-bodied Suspension feeding Tube structure 

Callianassa sp. Rigid Pred.Scav Below surface Freely motile Large burrow 

former 
Ceratonereis sp. Soft-bodied Pred.Scav Below surface. Deep Freely motile No 

habitat structure 
Euchone sp. Soft-bodied Suspension feeding Tube structure 

Glycera americana Soft-bodied Pred.Scav Below surface. Deep Freely motile No 

habitat structure 
Glycinde grahami Soft-bodied Pred.Scav Below surface. Deep Freely motile No 

habitat structure 
Glycinde trifida Soft-bodied Pred.Scav Below surface. Deep Freely motile No 

habitat structure 
Hemiplax hirtipes Rigid Pred.Scav Below surface Freely motile Large burrow 

former 
Lepidonotinae Soft-bodied Pred.Scav Below surface. Deep Freely motile No 

habitat structure 
Lumbrineridae Soft-bodied Pred.Scav Below surface. Deep Freely motile No 

habitat structure 
Macomona liliana Calcified Deposit feeding Deep Limited mobility No habitat 

structure Large 
Macroclymenella stewartensis Soft-bodied Below surface Tube structure 

Magelona dakini Soft-bodied Deposit feeding Below surface Limited mobility 
Musculista senhousia Calcified Suspension feeding Top 2 cm Sedentary 

Nemertean sp. Soft-bodied Pred.Scav Below surface. Deep Freely motile No 

habitat structure 
Nicon aestuariensis Soft-bodied Pred.Scav Below surface. Deep Freely motile No 

habitat structure 
Notomastus sp. Soft-bodied Deposit feeding Deep 

Nucula hartvigiana Calcified Deposit feeding Top 2 cm Limited mobility 
Orbinia papillosa Soft-bodied Deposit feeding Below surface Freely motile 

Owenia petersonae Soft-bodied Below surface Tube structure 

Paphies australis Calcified Suspension feeding Top 2 cm Freely motile 

Pectinaria australis Soft-bodied Below surface Tube structure 

Perinereis vallata Soft-bodied Pred.Scav Below surface. Deep Freely motile No 

habitat structure 
Philocheras australis Rigid Pred.Scav Below surface Freely motile Large burrow 

former 
Phoronis sp. Soft-bodied Suspension feeding Tube structure 

Platynereis australis Soft-bodied Pred.Scav Below surface. Deep Freely motile No 

habitat structure 
Pseudopolydora FAT Soft-bodied Below surface Tube structure 

Pseudopolydora THIN Soft-bodied Suspension feeding Tube structure 
Scalibregmatidae Soft-bodied Deposit feeding Deep 

Scolecolepides benhami Soft-bodied Deposit feeding Below surface Freely motile 
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Taxonomic ID Functional group 

Scoloplos cylindrifer Soft-bodied Deposit feeding Below surface Freely motile 

Solemya parkinsoni Calcified Deposit feeding Top 2 cm Limited mobility 

Soletellina siliqua Calcified Suspension feeding Top 2 cm Limited mobility 

Squilla armata Rigid Pred.Scav Below surface Freely motile Large burrow 

former 

Travisia olens Soft-bodied Deposit feeding Top 2 cm Freely motile 

Trochodota dendyi Soft-bodied Deposit feeding Below surface Freely motile 
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Appendix 2 

Nutrient addition field trial Tauranga Harbour, Tuapiro point  

 

The aim of this trial was to determine whether the nutrient concentrations selected 

(based on findings in the literature) would elevate porewater nutrients, and if the 

addition of nutrients would disperse outside of the plot area elevating porewater 

ammonium in the ambient sediment.  

 

Study site 

Tuapiro point is located in the northern region of the Tauranga Harbour (Figure 

A.2.1) on the east coast of New Zealand. This was a sand-dominated site edged by 

mangroves with an absence of seagrass.  

 

 

Figure A.2. 1: Location of Tuapiro point sampling site, East Coast of New Zealand. 

 

Experimental treatments 

Treatment and control plots were established on the 18th of December 2013 at low 

tide on the intertidal sandflat. 50 mL centrifuge tubes with 1.5 mm holes drilled in 

the bottom, sides and lid were filled with 70-day slow-release Nutricote fertiliser 

(42 % Nitrogen (42:0:0), no P or trace elements). Holes were large enough to allow 
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for nutrient dispersal into the sediment yet small enough to contain the pellets 

within the tubes. Tubes were added via sediment cores at a depth ~30 cm to the 

sediment. Five 1 m2 plots were selected randomly at Tuapiro point with GPS 

coordinates recorded (Table A.2. 1). These five treatments were: (1) a procedural 

control (50 mL centrifuge tube containing only gravel); (2) low treatment (5 g 

fertiliser amongst gravel in 50 mL centrifuge tube); (3) medium treatment (10 g 

fertiliser amongst gravel in 50 mL centrifuge tube); (4) high treatment (35 g 

fertiliser, no gravel in 50 mL centrifuge tube); and (5) a control (Table A.2. 2). The 

low and medium treatment addition tubes contained gravel to spread the fertiliser 

throughout the tube and therefore provide a nutrient gradient throughout the 

sediment column. 

 

Table A.2. 1: GPS locations for each trial plot.  

 

Table A.2. 2: Treatment levels for each of the five plots. 

 Tubes Fertiliser/tube 

(g) 

Nitrogen 

(g/m²) 

Fertiliser 

(g/m²) 

High  40 35 588 1400 

Medium 40 10 168 400 

Low 40 5 84 200 

Procedural Control 40 0 0 0 

Control 0 0 0 0 

 

The 50 mL centrifuge tubes containing fertiliser/gravel were added to the treatment 

plots in a gird arrangement (Figure A.2. 2). Each plot surface was broken into 20 

squares, within each of these squares two 50 mL centrifuge tubes were added one 

on top of the other beneath the first 4-5 cm of sediment to give a gradient throughout 

the porewater space, giving a total of 40 tubes per plot. The centrifuge tubes were 

centred within each of the squares (Figure A.2. 3).  

 GPS locations 

High S 37  ̊ 29.418’ E 175  ̊ 57.121’ 

Medium S 37  ̊ 29.422’ E 175  ̊ 57.121’ 

Low S 37  ̊ 29.420’ E 175  ̊ 57.123’ 

Procedural Control S 37  ̊ 29.422’E 175    ̊ 57.125’ 

Control  S 37  ̊ 29.418’ E 175  ̊ 57.124 
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Figure A.2. 2: Plot treatment arrangement. 

 

 

  

Figure A.2. 3: Left, polyvinyl chloride (PVC) pipe is used to remove cores of sediment 

from the centre of each section, following this two centrifuge tubes of gravel/fertiliser are 

added top to tail. Right, plot after the tubes have been added to the sediment and covered 

with 4-5 cm of sediment. 

 

Sampling procedure 

Plots were checked three weeks after fertiliser addition (7th of January 2014) 

visually at low tide and photographed. The first sampling was undertaken a week 

later on January 14th. Syringe cores (2.5 cm diameter) were used to collect sediment 

samples from each of the five treatment plots at 0-2 cm depth for determination of 

sediment properties (Chlorophyll a, organic matter content and grain size). Four 

sediment cores were taken per plot and pooled. All sediment cores were kept in cold 



 

78 

and dark conditions following collection before being frozen to await laboratory 

analysis.  

 

Four syringe cores sectioned at 0 ̶ 2 and 5 ̶ 7 cm were collected and pooled for each 

of the five experimental plots, these were stored in 50 mL centrifuge tubes in dark 

and cold conditions until reaching the laboratory for immediate removal of 

porewater. Two section depths would allow for the identification of porewater 

nutrient enrichment differences at both surface (0-2 cm) and depth (5-7 cm). The 

second and final sampling occurred on the 11th of February, where both sediment 

properties and porewater samples were taken.  

 

Laboratory analysis   

Chlorophyll a, organic matter content and grain size were analysed following the 

methods described in the main body of the thesis.  

 

Porewater nutrient samples were centrifuged (2000 rpm for ten minutes) 

immediately upon arrival to the laboratory (Lohrer et al. 2010). Following 

centrifugation the sediment porewater was removed via pipette, filtered through 

glass fibre filter paper (0.45 µm) where they were then combined with those of the 

same location within each respective plot (indicated by matching colours Figure 

A.2. 4) before being frozen to await nutrient analysis. This gave a total of 8 samples 

per plot, four within the upper sediment depth (0-2 cm) and four within the lower 

sediment depth (5-7 cm). Porewater nutrient samples were analysed on a Lachat 

Flow Injection Analyser for ammonium (NH4
+) using standardised procedures 

(Zellweger Analytics 2000).  
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Figure A.2. 4: Stars represent core locations. The distance between the red and green stars 

is a total 1 m. Stars within the plot are 25 cm apart while the red and blue stars = a distance 

of 50 cm (not to scale). Grey stars = 1, yellow 2, Blue 3 and Red 4.  

 

General results  

Sediment properties and porewater nutrient concentrations from the first and second 

sampling were identified for the five trial plots (Table A.2. 3 and A.2. 4). Fine sand 

was the dominant grain size at each plot for both first and second sampling. In the 

first sampling an overall decline in chlorophyll a was observed from positions 1 to 

4 in high, medium and low treatments, thus the greater concentrations are observed 

within the centre of the plots. The second sampling also demonstrated this decline 

in chlorophyll a concentration towards the plot edges, however this was only 

observed in the medium and high treatment, as the low treatment had increased in 

concentration. Porewater ammonium concentration was in most cases greater in 

positions 1, 2 and 3 than in position 4.  
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Table A.2. 3: Sediment properties and porewater ammonium concentration from the first sampling. 

Position identifies the position within the plot the sample was taken (see Figure A.2. 4). Some 

porewater ammonium values are absent due to lack of porewater volume for analysis. Environmental 

variables: MGS, median grain size; Chl-a, chlorophyll a; Mud, mud content; Pheao, phaeopigment; 

OC, organic matter content; PW [NH4
+], porewater ammonium concentration.  

Treatment Position 

MGS 

(µm) 

Chl-a 

(µg/g) 

Mud  

(%) 

Pheao 

(µg/g) 

OC  

(%) 

PW 

[NH4
+] 

High  1 196 11.42 3.92 2.45 1.53 15.2  

High  2 185.6 10.67 3.67 2.24 1.44  

High  3 191.4 8.11 1.25 3.27 1.88 20.6 

High  4 201.2 5.88 3.28 4 1.48  

Medium 1 202.7 11.41 2.74 3.27 1.5 212 

Medium 2 212.2 9.82 2.22 4.09 1.6  

Medium 3 196.2 8.03 3.24 2.31 1.5 15.6 

Medium 4 192 7.73 2.88 2.25 1.54 0.8 

Low 1 197.1 9.01 2.57 2.26 1.51 20.3 

Low 2 199.7 11.08 4.28 2.75 1.63  

Low 3 181.4 14.16 3.62 2.79 1.42 6.62 

Low 4 199.8 5.52 3.19 1.78 1.42 0.33 

Procedural 

control 
1 

189.2 6.95 3.72 1.89 1.49 0.21 

Procedural 

control 
2 

214.1 8.065 3.17 1.97 1.52  

Procedural 

control 
3 

204.2 6.12 3.08 3.77 1.39 0.15 

Procedural 

control 
4 

206 6.39 2.6 1.63 1.51 0.1 

Control 1 184.5 4.93 2.5 2.88 1.53  

Control 2 202.3 6.41 2.26 1.55 1.5  

Control 3 191.4 6.88 2.95 1.42 1.46  

Control 4 212.1 8.26 2.98 2.55 1.5  
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Table A.2. 4: Sediment properties and porewater ammonium concentration from the second 

sampling. Position identifies the position within the plot the sample was taken (see Figure A.2. 4). 

Environmental variables: MGS, median grain size; Chl-a, chlorophyll a; Mud, mud content; Pheao, 

phaeopigment; OC, organic matter content; PW [NH4
+], porewater ammonium concentration.   

Treatment Position MGS 

(µm) 

Chl-a 

(µg/g) 

Mud 

(%) 

Pheao 

µg/g 

OC 

(%) 

PW 

[NH4
+] 

High 1 194.7 6.83 2.78 1.87 1.51 15.1 

High 2 203.2 6.38 2.80 1.30 1.52 8.55 

High 3 186.7 6.35 3.19 2.02 1.40 11.85 

High 4 202.8 6.59 2.28 1.35 1.44 0.06 

Medium 1 216.0 7.37 2.93 2.91 1.58 0.17 

Medium 2 200.5 8.80 3.35 1.42 1.61 6.08 

Medium 3 221.3 7.80 1.93 1.01 1.54 0.72 

Medium 4 209.8 7.34 3.03 1.41 1.47 0.02 

Low 1 200.0 12.18 3.26 3.94 1.64 3.01 

Low 2 197.5 12.84 2.23 2.47 1.66 0.17 

Low 3 204.9 9.69 2.21 2.16 1.61 0.38 

Low 4 193.3 6.64 2.76 2.03 1.41 0.03 

Procedural 

control 

1 226.3 9.73 2.25 2.78 1.58 0.01 

Procedural 

control 

2 225.6 11.65 2.71 3.30 1.51 0.04 

Procedural 

control 

3 210.3 12.13 2.72 2.33 1.59 0.01 

Procedural 

control 

4 203.4 7.74 2.97 3.36 1.48 0.21 

Control 1 193.0 11.53 2.77 2.41 1.44 0.01 

Control 2 189.2 13.71 2.35 2.70 1.48 1.40 

Control 3 201.2 15.83 2.34 2.05 1.51 0.03 

Control 4 201.9 2.97 1.16 0.12 1.59 0.01 

 

Photographs from the visual check in early January showed some interesting 

surface features. Grazing activity upon the plots of fertiliser addition displayed an 

increase compared to those of the control and procedural control. Grazing was 

especially prominent within the high (Figure A.2. 5) and medium (Figure A .2. 6) 

treatment plots. 



 

82 

 

Figure A.2. 5: Photo illustrating high fertiliser plot surface (left) with a greater amount of grazing 

than the surrounding sediment (right). +F highlights the sediment surface above the fertiliser 

addition, while -F identifies the ambient sediment surface outside of the treatment plot. 

 

 

Figure A.2. 6: Photo illustrating medium fertiliser level plot (right) with more grazing than the 

surrounding sediment (left). +F highlights the sediment surface above the fertiliser addition, while  

-F identifies the ambient sediment surface outside of the treatment plot. 

  

+F -F

 
 

+F 

+F -F 
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Findings from this trial indicated an elevation in porewater ammonium 

concentration within treatment plots (low, medium and high). The addition of slow-

release fertiliser to the treatment plots did not elevate the ambient sediments 

surrounding the plots, thus diffusion of ammonium outside of the plot area was not 

observed in this trial.   
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Appendix 3 

Statistical results not reported in the main text.  

 

Table A.3. 1: Distance based linear model marginal test between environmental predictors and 

porewater ammonium concentration for medium treatment plots within the lower sediment depth: 

results of the stepwise section procedure. SS (trace) = portion of sum of squares relative to the 

analysed predictor variables (sediment properties and macrofaunal variables); pseudo-F ratio 

statistic; P = level of statistical significance; Prop = the proportion of variation explained by the 

model. No significance is observed.  

 SS(trace) Pseudo-F P Prop. 

Chl-a  2622.6 0.695 0.421 0.027 

Phaeo  5675.1 1.554 0.221 0.059 

MGS 911.2 0.237 0.634 0.009 

Mud 3082.2 0.821 0.378 0.032 

FN  832.9 0.217 0.653 0.009 

FS 8314.7 2.345 0.139 0.086 

A. stutchburyi 7423.4 2.073 0.159 0.077 

M. liliana 2925.1 0.778 0.390 0.030 

Sand 834.5 0.217 0.654 0.009 

Shell hash 407.8 0.106 0.755 0.004 

OC 1235.4 0.323 0.587 0.013 

S 5553.3 1.519 0.224 0.057 

N 1019.7 0.266 0.618 0.011 

Seagrass 2981.5 0.793 0.393 0.031 
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Table A.3. 2: Distance based linear model marginal test between environmental predictors and 

porewater ammonium concentration for medium treatment plots within the upper sediment depth: 

results of the stepwise section procedure. SS (trace) = portion of sum of squares relative to the 

analysed predictor variables (sediment properties and macrofaunal variables); pseudo-F ratio 

statistic; P = level of statistical significance; Prop = the proportion of variation explained by the 

model. No significance is observed.  

 SS(trace) Pseudo-F P Prop. 

Chl-a  75.78 0.130 0.738 0.005 

Phaeo  135.55 0.234 0.656 0.009 

MGS 804.46 1.458 0.242 0.055 

Mud 1067.40 1.972 0.181 0.073 

FN  109.20 0.188 0.670 0.008 

FS 907.73 1.657 0.215 0.062 

A. stutchburyi 246.93 0.430 0.522 0.017 

M. liliana 14.96 0.026 0.880 0.001 

Sand 7.51 0.013 0.899 0.0005 

Shell hash 38.89 0.067 0.850 0.003 

OC 819.40 1.486 0.262 0.056 

S  533.04 0.947 0.352 0.037 

N  207.08 0.360 0.559 0.014 

Seagrass 54.16 0.093 0.777 0.004 

 

Table A.3. 3: Normalised distance based linear model marginal test between environmental 

predictors and porewater ammonium concentration for medium treatment plots within the lower 

sediment depth: results of the stepwise section procedure. SS (trace) = portion of sum of squares 

relative to the analysed predictor variables (sediment properties and macrofaunal variables); pseudo-

F ratio statistic; P = level of statistical significance; Prop = the proportion of variation explained by 

the model. No significance is observed.  

 SS(trace) Pseudo-F P Prop. 

Chl-a 108.04 0.024 0.869 0.0009 

MGS 1160.30 0.254 0.639 0.010 

OC 977.48 0.214 0.681 0.009 

Mud 775.14 0.169 0.720 0.007 

A. stutchburyi 183.23 0.040 0.845 0.002 

Seagrass 11540 2.783 0.109 0.100 

FN  1494.90 0.329 0.525 0.013 

FS 904.82 0.198 0.682 0.008 
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Table A.3. 4: Normalised distance based linear model marginal test between environmental 

predictors and porewater ammonium concentration for high treatment plots within the lower 

sediment depth: results of the stepwise section procedure. SS (trace) = portion of sum of squares 

relative to the analysed predictor variables (sediment properties and macrofaunal variables); pseudo-

F ratio statistic; P = level of statistical significance; Prop = the proportion of variation explained by 

the model. No significance is observed. 

 SS(trace) Pseudo-F P Prop. 

Chl-a 54408 0.469 0.489 0.018 

MGS 1967 0.017 0.905 0.0006 

FS  18570 0.158 0.703 0.006 

A. stutchburyi 50777 0.437 0.491 0.017 

M. liliana 2031 0.017 0.904 0.0006 

Sand 994 0.008 0.897 0.0003 

Shell hash 26107 0.223 0.641 0.009 

 

Table A.3. 5: One-way ANOVA testing whether the number of N differed among the treatments 

(control, medium and high). No significance is observed. 

  
Sum of 

squares 

Degrees of 

freedom 

Mean 

Squares F value P value 

Treatment 92.17 2 46.08 1.374 0.259 

Error 2650.68 79 33.55   

 

Table A.3. 6: One-way ANOVA testing whether the number of FS differed among the treatments 

(control, medium and high). No significance is observed. 

 
Sum of 

squares 

Degrees of 

freedom 

Mean 

Squares F value P value 

Treatment 2.359 2 1.179 1.734 0.183 

Error 53.720 79 0.680   

 

Table A.3. 7: One-way ANOVA testing whether the number of S differed among the treatments 

(control, medium and high). No significance is observed.  

  
Sum of 

squares 

Degrees of 

freedom 

Mean 

Squares F value P value 

Treatment 4.210 2 2.105 1.554 0.218 

Error 106.973 79 1.354   

 

Table A.3. 8: One-way ANOVA testing whether the number of FN differed among the treatments 

(control, medium and high). No significance is observed. 

  
Sum of 

squares 

Degrees of 

freedom 

Mean 

Squares F value P value 

Treatment 78.418 2 39.209 1.441 0.243 

Error 2149.806 79 27.213   
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Table A.3. 9: Two-way ANOVA testing the average rate of ammonium accumulation and removal 

against treatment (medium and high) and sampling depth (upper and lower). No significance is 

observed. 

  Sum of 

squares 

Degrees of 

freedom 

Mean 

Squares 

F value P value 

Treatment 110906 1 110905.7 1.025 0.314 

Sampling depth 228899 1 228899.4 2.115 0.149 

Treatment* 

Sampling depth 

131465 1 131465.0 1.215 0.273 

Error 11146490 103 108218.3   

 

Table A.3. 10: Single sample t-test for chlorophyll a. M = mean, SD = standard deviation. SE= 

standard error. Significant p values (<0.05) are identified in bold. 

 Mean SD N SE Reference 

Constant 

t-value df p 

Medium 1.276 0.533 28 0.1008 1.000000 2.7445 27 0.0106 

High 1.239 0.817 28 0.1544 1.000000 1.5518 27 0.1324 

 

Table A.3. 11: Single sample t-test for seagrass. Significant p values (<0.05) are identified in bold. 

M = mean, SD = standard deviation. SE= standard error. No significance is observed. 

 M SD N SE Reference 

Constant 

t-

value 

df p 

Medium 1.1 1.1389 28 0.2152 1.000000 0.271 27 0.788 

High 0.9 1.5264 28 0.2885 1.000000 -0.276 27 0.784 
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Pearson’s correlations for the average rate of porewater processing and accumulation of porewater ammonium.  

Table A.3.12: Pearson’s correlation for the average rate of porewater processing and accumulation (Equation 5) for medium treatment upper sediment depth. Multi-collinearity 

was identified for values >0.8. 

 OC Chl-a Phaeo MGS Mud S N FS FN A. stutchburyi M. liliana 

OC                       

Chl-a 0.52                     

Phaeo 0.59 0.68                   

MGS -0.67 -0.50 -0.70                 

Mud 0.89 0.44 0.62 -0.75               

S 0.73 0.47 0.61 -0.53 0.75             

N 0.69 0.45 0.47 -0.40 0.64 0.88           

FS 0.58 0.33 0.35 -0.33 0.59 0.81 0.95         

FN 0.67 0.28 0.55 -0.51 0.75 0.91 0.72 0.71       

A. stutchburyi -0.13 -0.05 -0.42 0.36 -0.30 -0.03 0.08 0.05 -0.15     

M. liliana -0.13 -0.08 -0.06 0.21 -0.20 0.11 0.00 0.05 0.13 0.28   

 

Environmental variables: OC, organic content (%); Chl-a, chlorophyll a (µg/g); Pheao, pheaopigment (µg/g); MGS, median grain size (µm); Mud content (%) (<63µm); S, total number of species 

in sample (ind. core-1); N, total number of individuals in sample (ind. core-1); FN, total number of functional individuals in sample (ind. core-1); FS, total number of functional species in sample 

(ind. core-1); A. stutchburyi, total number of  Austrovenus stutchburyi individuals  (ind. core-1); M. liliana, total of Macomona liliana individuals (ind. core-1). *p <0.05, ** p <0.01, ***p <0.00.  
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Table A.3. 13: Pearson’s correlation for the average rate of porewater processing and accumulation (Equation 5) for medium treatment lower sediment depth. Multi-collinearity 

was identified for values >0.8. 

 OC Chl-a Phaeo MGS Mud S N FS FN A. stutchburyi M. liliana 

OC                       

Chl-a 0.53                     

Phaeo 0.60 0.69                   

MGS -0.68 -0.51 -0.70                 

Mud 0.89 0.45 0.63 -0.76               

S 0.74 0.49 0.62 -0.55 0.76             

N 0.70 0.46 0.47 -0.42 0.65 0.89           

FS 0.59 0.34 0.36 -0.34 0.60 0.81 0.95         

FN 0.69 0.30 0.55 -0.53 0.76 0.91 0.73 0.71       

A. stutchburyi -0.13 -0.05 -0.42 0.35 -0.30 -0.03 0.08 0.04 -0.15     

M. liliana -0.14 -0.08 -0.06 0.21 -0.20 0.10 -0.01 0.05 0.12 0.28   
 

Environmental variables: OC, organic content (%); Chl-a, chlorophyll a (µg/g); Pheao, pheaopigment (µg/g); MGS, median grain size (µm); Mud content (%) (<63µm); S, total number of species 

in sample (ind. core-1); N, total number of individuals in sample (ind. core-1); FN, total number of functional individuals in sample (ind. core-1); FS, total number of functional species in sample 

(ind. core-1); A. stutchburyi, total number of  Austrovenus stutchburyi individuals  (ind. core-1); M. liliana, total of Macomona liliana individuals (ind. core-1). *p <0.05, ** p <0.01, ***p <0.00.  
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Table 4.3. 14: Pearson’s correlation for the average rate of porewater processing and accumulation (Equation 5) for high treatment upper sediment depth. Multi-collinearity 

was identified for values >0.8. 

 OC Chl-a Phaeo MGS Mud S N FS FN A. stutchburyi M. liliana 

OC                       

Chl-a 0.29                     

Phaeo 0.91 0.37                   

MGS -0.76 -0.31 -0.81                 

Mud 0.94 0.24 0.89 -0.81               

S 0.82 0.11 0.74 -0.79 0.81             

N 0.83 0.23 0.81 -0.74 0.81 0.90           

FS 0.78 0.16 0.77 -0.73 0.78 0.84 0.94         

FN 0.80 0.07 0.74 -0.78 0.82 0.94 0.85 0.87       

A. stutchburyi 0.01 0.14 -0.13 0.27 -0.13 -0.01 0.09 -0.03 -0.10     

M. liliana 0.28 -0.09 0.38 -0.42 0.26 0.46 0.36 0.42 0.48 -0.18   

 

Environmental variables: OC, organic content (%); Chl-a, chlorophyll a (µg/g); Pheao, pheaopigment (µg/g); MGS, median grain size (µm); Mud content (%) (<63µm); S, total number of species 

in sample (ind. core-1); N, total number of individuals in sample (ind. core-1); FN, total number of functional individuals in sample (ind. core-1); FS, total number of functional species in sample 

(ind. core-1); A. stutchburyi, total number of  Austrovenus stutchburyi individuals  (ind. core-1); M. liliana, total of Macomona liliana individuals (ind. core-1). *p <0.05, ** p <0.01, ***p <0.00.  
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Table A.3.15: Pearson’s correlation for the average rate of porewater processing and accumulation (Equation 5) for high treatment lower sediment depth. Multi-collinearity 

was identified for values >0.8. 

  OC Chl-a Phaeo MGS Mud S N FS FN A. stutchburyi M. liliana 

OC                       

Chl-a 0.24                     

Phaeo 0.91 0.35                   

MGS -0.76 -0.30 -0.80                 

Mud 0.94 0.21 0.88 -0.81               

S 0.82 0.09 0.74 -0.79 0.81             

N 0.82 0.19 0.80 -0.74 0.80 0.91           

FS 0.77 0.12 0.76 -0.73 0.77 0.84 0.94         

FN 0.81 0.06 0.76 -0.77 0.83 0.93 0.86 0.87       

A. stutchburyi -0.20 0.02 -0.31 0.41 -0.34 -0.14 -0.10 -0.20 -0.22     

M. liliana 0.31 -0.07 0.42 -0.43 0.29 0.48 0.39 0.44 0.51 -0.25   

 

Environmental variables: OC, organic content (%); Chl-a, chlorophyll a (µg/g); Pheao, pheaopigment (µg/g); MGS, median grain size (µm); Mud content (%) (<63µm); S, total number of species 

in sample (ind. core-1); N, total number of individuals in sample (ind. core-1); FN, total number of functional individuals in sample (ind. core-1); FS, total number of functional species in sample 

(ind. core-1); A. stutchburyi, total number of  Austrovenus stutchburyi individuals  (ind. core-1); M. liliana, total of Macomona liliana individuals (ind. core-1). *p <0.05, ** p <0.01, ***p <0.00.  
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Appendix 4 

Table A.4. 1: Macrofauna composition per plot for D47. 

Site 

# 

Treatment S N FN FS A. stutchburyi M. liliana 

1 Control 58 450 166 22 43 7 

2 Control 38 183 114 19 47 38 

3 Control 51 663 294 18 225 7 

4 Control 37 214 64 14 1 1 

5 Control 57 347 279 31 2 7 

6 Control 43 273 215 27 17 26 

7 Control 25 94 50 15 2 2 

8 Control 37 143 97 21 15 14 

9 Control 52 259 174 31 19 24 

10 Control 55 679 497 27 2 9 

11 Control 47 838 752 24 1 30 

12 Control 36 252 105 15 37 3 

13 Control 38 221 131 20 37 33 

14 Control 28 105 59 14 21 11 

15 Control 27 179 122 15 40 28 

16 Control 20 157 119 11 4 53 

17 Control 33 254 105 12 8 11 

18 Control 33 173 122 18 26 56 

19 Control 28 108 89 15 15 49 

20 Control 49 215 120 23 0 9 

21 Control 55 284 156 26 12 21 

22 Control 48 271 121 25 0 11 

23 Control 53 405 248 27 0 13 

24 Control 50 176 111 28 0 11 

25 Control 34 190 146 19 30 47 

26 Control 24 76 60 15 17 14 

27 Control 22 99 76 11 5 21 

28 Control 18 38 29 13 3 5 
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Site 

# 

Treatment S D FN FS A. stutchburyi M. liliana 

1 High 30 189 76 15 32 2 

2 High 27 119 60 12 29 17 

3 High 47 471 236 21 170 7 

4 High 52 290 68 23 5 2 

5 High 59 353 265 32 2 10 

6 High 42 156 95 24 14 16 

7 High 10 20 19 9 3 1 

8 High 22 38 24 12 7 2 

9 High 41 122 68 20 25 9 

10 High 52 690 602 31 4 7 

11 High 35 148 117 23 1 9 

12 High 57 457 202 24 86 4 

13 High 25 91 48 16 15 12 

14 High 21 114 27 9 15 5 

15 High 15 36 25 9 12 3 

16 High 24 101 67 13 2 20 

17 High 15 93 34 6 4 3 

18 High 23 51 36 13 8 11 

19 High 26 60 26 11 13 2 

20 High 59 485 407 32 1 8 

21 High 44 306 211 23 7 14 

22 High 48 351 236 23 0 9 

23 High 54 277 138 27 1 19 

24 High 38 95 46 16 0 11 

25 High 23 55 30 9 16 3 

26 High 18 45 32 7 18 2 

27 High 15 47 31 7 8 4 

28 High 10 16 14 8 2 3 
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Site # Treatment S N FN FS  A. stutchburyi M. liliana 

1 Medium 47 199 76 25 11 13 

2 Medium 28 154 78 12 39 24 

3 Medium 48 569 369 20 226 4 

4 Medium 46 263 69 21 2 2 

5 Medium 54 381 320 30 2 8 

6 Medium 36 134 103 20 27 23 

7 Medium 22 52 41 16 5 4 

8 Medium 24 72 56 12 8 1 

9 Medium 48 210 153 28 6 22 

10 Medium 53 437 309 25 0 4 

11 Medium 65 1147 1038 30 1 10 

12 Medium 50 475 191 22 68 11 

13 Medium 31 124 77 15 27 22 

14 Medium 31 90 45 11 19 11 

15 Medium 24 73 32 12 11 6 

16 Medium 26 111 87 15 2 16 

17 Medium 26 112 65 11 5 2 

18 Medium 34 125 90 16 34 32 

19 Medium 34 76 50 20 8 17 

20 Medium 54 383 263 29 0 8 

21 Medium 47 366 293 27 6 13 

22 Medium 44 158 97 23 1 7 

23 Medium 34 121 79 21 0 2 

24 Medium 38 94 46 20 0 14 

25 Medium 33 123 103 19 34 14 

26 Medium 24 59 37 13 11 6 

27 Medium 23 77 62 12 6 11 

28 Medium 17 43 24 8 0 8 
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Table A.4. 2: Sediment properties for D28. 

Site 

Number 
Treatment OC Chl-a Phaeo MGS Mud 

       

1 Control 2.435 8.124 6.717 198.693 19.639 

2 Control 0.572 8.015 1.512 221.983 0 

3 Control 2.721 11.894 7.04 211.006 5.231 

4 Control 0.942 5.305 2.582 204.62 0 

5 Control 1.301 4.177 3.111 193.698 4.647 

6 Control 0.964 5.848 3.543 199.305 1.597 

7 Control 0.583 4.87 0.979 239.289 0 

8 Control 0.54 0.006 0.801 234.832 0 

9 Control 0.855 0.006 1.474 220.906 0 

10 Control 1.645 6.132 4.565 205.687 4.316 

11 Control 0.888 4.127 2.8 225.43 1.185 

12 Control 1.669 5.973 5.713 219.541 3.692 

13 Control 0.686 9.312 2.555 221.523 0 

14 Control 0.723 7.958 2.465 227.263 0 

15 Control 0.703 7.188 1.717 214 0 

16 Control 0.817 2.58 1.287 242.834 0 

17 Control 0.594 6.349 1.448 234.52 0 

18 Control 0.672 6.355 1.819 221.187 0 

19 Control 0.605 4.631 1.064 219.088 0 

20 Control 1.205 0.007 5.078 197.616 5.189 

21 Control 1.063 3.923 2.05 195.371 0 

22 Control 1.273 4.629 5.615 205.361 4.815 

23 Control 1.498 0.007 5.071 208.645 4.113 

24 Control 0.941 4.303 2.62 181.503 1.599 

25 Control 0.674 3.606 1.055 214.182 0 

26 Control 0.655 3.204 1.196 226.318 0 

27 Control 0.44 0.005 1.038 232.89 0 

28 Control 0.544 0.006 3.35 239.467 0 

1 High 1.391 11.456 5.284 232.573 1.11 

2 High 0.599 5.55 2.058 219.889 0 

3 High 1.884 10.228 4.667 207.962 6.533 

4 High 0.454 3.894 3.423 203.398 0 

5 High 1.196 5.595 3.569 190.529 7.164 

6 High 0.753 4.669 1.539 213.381 2.753 

7 High 0.543 4.236 0.844 239.047 0 

8 High 0.586 3.069 2.002 240.907 0 

9 High 0.921 3.625 1.365 217.976 0 

10 High 1.297 7.083 3.653 206.786 1.236 

11 High 0.695 4.725 3.921 222.218 0.684 

12 High 1.672 5.118 5.326 217.699 3.581 

13 High 0.693 0.006 2.311 229.598 0 

14 High 0.645 8.712 1.12 224.604 0 

15 High 0.646 7.285 1.271 217.996 0 
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Site 

number 
Treatment OC Chl-a Phaeo MGS Mud 

16 High 0.578 0.006 1.174 234.199 0 

17 High 0.564 6.103 1.876 231.945 0 

18 High 0.639 3.142 1.605 224.801 0 

19 High 0.72 5.694 1.763 219.341 0 

20 High 1.158 0.007 7.123 200.717 4.114 

21 High 1.193 0.006 2.788 190.91 2.346 

22 High 1.053 5.954 3.432 198.026 5.101 

23 High 1.465 0.006 7.514 199.555 4.418 

24 High 0.961 0.007 4.152 205.503 0.627 

25 High 0.49 4.24 1.155 228.732 0 

26 High 0.233 4.42 0.925 224.657 0 

27 High 0.521 7.135 0.79 230.087 0 

28 High 0.589 9.698 2.195 235.755 0 

1 Medium 0.92 8.947 4.778 234.147 1.035 

2 Medium 0.754 6.936 2.135 217.833 0 

3 Medium 1.226 13.464 4.555 217.811 1.254 

4 Medium 1.227 4.955 3.99 207.109 0.679 

5 Medium 0.85 5.278 3.159 183.546 4.473 

6 Medium 1.273 5.891 2.607 215.932 1.483 

7 Medium 0.47 3.303 1.528 230.892 0 

8 Medium 0.601 3.599 0.885 242.621 0 

9 Medium 0.826 0.006 2.463 229.021 0 

10 Medium 1.196 6.341 4.324 220.231 0.848 

11 Medium 1.485 4.19 3.802 208.699 8.299 

12 Medium 1.01 0.006 5.615 231.238 0 

13 Medium 0.851 0.006 2.144 225.218 0 

14 Medium 0.65 9.33 1.379 227.06 0 

15 Medium 0.862 0.006 3.308 212.279 0 

16 Medium 0.527 0.006 0.91 241.488 0 

17 Medium 0.669 5.081 3.497 231.943 0 

18 Medium 0.52 8.169 1.229 222.384 0 

19 Medium 0.544 5.176 1.429 222.514 0 

20 Medium 2.385 11.744 12.279 201.14 8.712 

21 Medium 0.985 4.748 4.561 197.822 2.444 

22 Medium 1.444 6.861 4.334 197.777 4.229 

23 Medium 1.001 6.768 5.776 203.386 4.934 

24 Medium 1.208 6.026 2.767 198.412 3.533 

25 Medium 0.457 4.052 0.666 228.93 0 

26 Medium 0.568 4.015 1.532 231.157 0 

27 Medium 0.5 7.619 1.084 234.66 0 

28 Medium 0.694 0.005 1.543 245.668 0 
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Table A.4. 3: Sediment properties for D47.  

Site 

number 

Treatment OC Chl-a Phaeo MGS Mud 

1 Control 2.136 13.161 9.673 209.860 10.038 

2 Control 0.729 12.743 1.592 215.845 0.000 

3 Control 1.749 14.626 11.247 207.024 7.251 

4 Control 2.044 12.473 9.338 209.377 1.074 

5 Control 1.144 5.959 5.197 187.047 9.856 

6 Control 1.476 7.853 6.384 191.475 4.932 

7 Control 0.452 6.089 1.474 236.602 0.000 

8 Control 0.735 5.500 2.106 223.186 0.000 

9 Control 1.089 7.001 4.868 196.089 13.579 

10 Control 1.596 23.239 16.878 194.843 8.664 

11 Control 0.974 3.572 3.836 217.838 4.132 

12 Control 1.230 7.829 5.811 210.958 4.091 

13 Control 0.712 9.792 4.880 223.463 0.000 

14 Control 0.733 12.147 3.833 224.630 0.000 

15 Control 0.747 11.658 3.237 215.756 0.000 

16 Control 0.567 5.337 2.198 240.565 0.000 

17 Control 0.713 8.570 3.180 227.029 3.482 

18 Control 0.694 10.331 3.761 214.159 0.000 

19 Control 0.602 5.925 2.154 223.077 0.000 

20 Control 1.835 14.496 13.716 176.580 14.496 

21 Control 1.057 7.164 4.368 189.365 2.494 

22 Control 2.502 13.723 17.902 194.052 9.185 

23 Control 1.892 12.846 15.247 194.843 12.195 

24 Control 1.371 20.898 17.467 182.204 4.504 

25 Control 0.660 5.678 2.277 221.794 0.000 

26 Control 0.584 4.171 2.218 227.313 0.000 

27 Control 0.697 9.636 1.988 232.075 0.000 

28 Control 0.647 8.894 2.330 238.724 0.000 

  



 

99 

Site 

number 

Treatment OC Chl-a Phaeo MGS Mud 

1 High 1.644 17.400 9.108 209.677 9.758 

2 High 0.540 8.818 4.433 218.365 0.000 

3 High 1.950 16.295 9.869 203.038 8.606 

4 High 1.302 8.716 7.743 200.722 4.532 

5 High 1.142 5.515 3.984 193.782 4.085 

6 High 1.208 6.751 3.430 219.876 3.347 

7 High 0.487 5.661 1.826 236.889 0.000 

8 High 0.581 5.276 1.677 250.474 0.000 

9 High 1.004 5.865 3.303 212.650 0.838 

10 High 1.526 16.769 12.106 193.408 8.391 

11 High 1.229 9.587 8.322 206.060 7.879 

12 High 1.956 9.925 7.674 220.699 4.306 

13 High 0.760 15.464 4.821 226.523 0.000 

14 High 0.646 13.946 3.164 221.436 0.000 

15 High 0.669 13.080 2.864 219.015 0.000 

16 High 0.581 6.855 2.668 235.373 0.000 

17 High 0.746 9.009 3.044 238.814 0.000 

18 High 0.752 9.375 3.117 220.945 0.000 

19 High 0.601 28.316 1.840 218.088 0.000 

20 High 1.967 12.100 12.530 193.727 8.809 

21 High 1.348 9.271 9.849 189.992 2.185 

22 High 1.515 12.230 9.916 195.101 6.694 

23 High 2.349 15.001 18.753 190.233 12.029 

24 High 1.280 10.115 6.921 191.399 5.441 

25 High 0.584 5.684 1.863 229.859 0.000 

26 High 0.632 8.473 1.062 223.758 0.000 

27 High 0.648 8.769 2.866 232.484 0.000 

28 High 0.724 10.765 2.406 229.931 0.000 

1 Medium 1.693 12.071 8.984 225.950 8.397 

2 Medium 0.679 9.756 3.598 219.897 0.000 

3 Medium 2.432 31.914 4.296 211.127 7.244 
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Site 

number 

Treatment OC Chl-a Phaeo MGS Mud 

4 Medium 1.363 25.844 21.518 196.175 1.919 

5 Medium 1.219 6.217 9.207 189.984 3.841 

6 Medium 1.328 8.811 3.573 209.302 2.728 

7 Medium 0.506 5.598 1.579 229.436 0.000 

8 Medium 0.562 4.633 1.609 239.603 0.000 

9 Medium 1.069 9.929 6.366 233.139 1.241 

10 Medium 1.407 31.175 21.611 201.010 8.161 

11 Medium 1.577 9.329 10.291 210.300 7.888 

12 Medium 2.254 9.217 7.652 220.831 2.145 

13 Medium 0.759 14.931 18.388 214.899 0.000 

14 Medium 0.685 11.036 4.509 225.268 0.000 

15 Medium 0.713 10.098 3.178 213.166 0.000 

16 Medium 0.607 4.847 2.565 241.615 0.000 

17 Medium 0.680 9.660 3.898 223.438 0.000 

18 Medium 0.752 25.878 10.649 231.378 0.000 

19 Medium 0.637 5.020 3.051 225.377 0.000 

20 Medium 1.890 16.366 14.334 200.023 5.215 

21 Medium 2.055 14.214 10.824 193.654 7.040 

22 Medium 1.580 11.309 10.586 181.659 13.169 

23 Medium 2.325 12.789 20.163 194.062 13.911 

24 Medium 1.452 18.075 12.816 199.625 2.855 

25 Medium 0.596 5.816 2.013 230.423 0.000 

26 Medium 0.581 7.130 2.365 225.595 0.000 

27 Medium 0.588 8.185 3.963 231.893 0.000 

28 Medium 0.978 11.248 3.034 231.178 0.000 
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Table A.4. 5: Percent coverage of seagrass, sand and shell hash for D28.  

Site 

number Treatment Seagrass (%) Sand (%) Shell hash (%) 

1 Control 68 21 11 

2 Control 0 92 8 

3 Control 68 25 7 

4 Control 93 7 0 

5 Control 0 96 4 

6 Control 5 91 4 

7 Control 0 99 1 

8 Control 17 83 0 

9 Control 64 33 3 

10 Control 65 35 0 

11 Control 1 96 3 

12 Control 77 18 4 

13 Control 0 97 3 

14 Control 0 100 0 

15 Control 0 96 4 

16 Control 0 96 4 

17 Control 0 99 1 

18 Control 16 81 3 

19 Control 0 96 4 

20 Control 77 23 0 

21 Control 29 71 0 

22 Control 0 100 0 

23 Control 51 48 1 

24 Control 75 25 0 

25 Control 23 72 5 

26 Control 0 99 1 

27 Control 1 96 3 

28 Control 0 93 7 

1 High 61 27 12 

2 High 5 83 12 

3 High 59 28 13 

4 High 77 20 3 

5 High 0 97 3 

6 High 31 68 1 

7 High 0 99 1 

8 High 21 79 0 

9 High 40 53 7 

10 High 32 68 0 

11 High 21 79 0 

12 High 83 16 1 

13 High 0 99 1 
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Site 

number Treatment Seagrass (%) Sand (%) Shell hash (%) 

14 High 0 96 4 

15 High 0 93 7 

16 High 0 91 9 

17 High 0 100 0 

18 High 0 93 7 

19 High 12 88 0 

20 High 89 11 0 

21 High 52 48 0 

22 High 24 76 0 

23 High 56 44 0 

24 High 57 41 1 

25 High 3 96 1 

26 High 0 99 1 

27 High 0 96 4 

28 High 0 93 7 

1 Medium 89 11 0 

2 Medium 0 92 8 

3 Medium 75 16 9 

4 Medium 88 12 0 

5 Medium 0 97 3 

6 Medium 23 75 3 

7 Medium 0 99 1 

8 Medium 0 100 0 

9 Medium 44 53 3 

10 Medium 55 45 0 

11 Medium 41 57 1 

12 Medium 93 5 1 

13 Medium 0 99 1 

14 Medium 0 96 4 

15 Medium 0 96 4 

16 Medium 0 97 3 

17 Medium 3 95 3 

18 Medium 4 95 1 

19 Medium 1 96 3 

20 Medium 96 1 3 

21 Medium 64 33 3 

22 Medium 4 95 1 

23 Medium - - - 

24 Medium 95 5 0 

25 Medium 3 96 1 

26 Medium 0 99 1 

27 Medium 1 99 0 

28 Medium 0 99 1 
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Table A.4. 6: Percent coverage of seagrass, sand and shell hash for D47. 

Site 

number Treatment Seagrass (%) Sand (%) Shell hash (%) 

     

1 Control 56 36 8 

2 Control 23 61 16 

3 Control 75 24 1 

4 Control 17 83 0 

5 Control 12 83 5 

6 Control 0 100 0 

7 Control 48 41 11 

8 Control 41 48 11 

9 Control 77 17 6 

10 Control 84 15 1 

11 Control 72 12 16 

12 Control 92 7 1 

13 Control 0 100 0 

14 Control 0 100 0 

15 Control 0 100 0 

16 Control 19 81 0 

17 Control 32 68 0 

18 Control 47 53 0 

19 Control 0 99 1 

20 Control 0 100 0 

21 Control 0 97 3 

22 Control 19 81 0 

23 Control 21 79 0 

24 Control 0 96 4 

25 Control 47 53 0 

26 Control 32 65 3 

27 Control 48 52 0 

28 Control 48 52 0 

1 High 25 75 0 

2 High 72 28 0 

3 High 4 96 0 

4 High 32 67 1 

5 High 20 80 0 

6 High 40 48 12 

7 High 75 24 1 

8 High 70 27 3 

9 High 0 96 4 

10 High 0 99 1 

11 High 0 100 0 

12 High 0 97 3 

13 High 0 97 3 
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Site 

number Treatment Seagrass (%) Sand (%) Shell hash (%) 

14 High 0 96 4 

15 High 0 96 4 

16 High 0 96 4 

17 High 0 92 8 

18 High 0 95 5 

19 High 0 96 4 

20 High 0 91 9 

21 High 0 96 4 

22 High 0 97 3 

23 High 9 88 3 

24 High 9 85 6 

25 High 0 96 4 

26 High 19 76 5 

27 High 8 89 3 

28 High 15 84 1 

1 Medium 12 83 5 

2 Medium 47 53 0 

3 Medium 53 47 0 

4 Medium 97 3 0 

5 Medium 29 71 0 

6 Medium 23 77 0 

7 Medium 39 61 0 

8 Medium 29 71 0 

9 Medium 45 55 0 

10 Medium 21 79 0 

11 Medium 32 68 0 

12 Medium 36 64 0 

13 Medium 29 71 0 

14 Medium 43 57 0 

15 Medium 49 51 0 

16 Medium 87 13 0 

17 Medium 15 85 0 

18 Medium 20 77 3 

19 Medium 27 70 3 

20 Medium 0 99 1 

21 Medium 0 97 3 

22 Medium 3 93 4 

23 Medium 8 92 0 

24 Medium 1 96 3 

25 Medium 11 89 0 

26 Medium 0 100 0 

27 Medium 0 97 3 

28 Medium 0 95 5 
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Table A.4. 7: Porewater ammonium concentrations for both upper and lower 

sediment depths on D28 and D47. 

Site 

number 

Treatment U-1 

(mg/L) 

L-1 

(mg/L) 

U-2 

(mg/L) 

L-2 

(mg/L) 

1 Control 0.67 2.40 0.59 5.28 

2 Control 9.57 0.69 0.17 4.56 

3 Control 0.75 3.29 0.57  

4 Control 0.63 1.58 1.29 4.15 

5 Control 0.42 2.20 1.67 3.10 

6 Control 0.23 0.95 2.35 5.80 

7 Control 0.27 0.48 0.43 0.91 

8 Control 0.27 1.72 1.28 1.47 

9 Control 0.27 0.84 0.24 0.80 

10 Control 0.22 1.34 3.30 1.14 

11 Control 0.27 1.68 2.65 0.90 

12 Control 0.13 1.94 1.51 1.27 

13 Control 0.10 1.42 0.27 1.47 

14 Control 0.16 1.35 3.58 0.28 

15 Control 0.32 0.89 1.54 2.10 

16 Control 0.71 1.71 0.37 20.32 

17 Control 0.33 1.10 0.32 1.44 

18 Control 0.96 1.49 0.30 8.73 

19 Control 0.17 1.14 0.37 2.57 

20 Control 1.14 0.71 0.29 0.84 

21 Control 0.32 1.37 0.37 16.22 

22 Control 0.98 0.79 1.84 1.33 

23 Control 0.48 0.31 1.92 0.64 

24 Control 0.14 0.19 0.05 0.47 

25 Control 0.15 0.12 0.29 0.42 

26 Control 0.34 0.27 0.02 6.61 

27 Control 0.04 0.16 0.00 0.26 

28 Control 0.17 0.26 0.03 0.50 

1 High 95.99 111.70 173.50 125.89 

2 High 43.29 40.55 67.39 83.92 
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Site 

number 

Treatment U-1 

(mg/L) 

L-1 

(mg/L) 

U-2 

(mg/L) 

L-2 

(mg/L) 

3 High 147.88 267.65 71.33 166.86 

4 High 3.76 4.41 8.23 57.08 

5 High 18.15 84.54 6.68 36.56 

6 High 16.76 4.09 21.25 10.20 

7 High 2.85 9.94 174.24 111.48 

8 High 103.43 204.50 9.22 38.40 

9 High 38.63 6.77 65.35 196.91 

10 High 18.53 108.82 7.90 147.92 

11 High 18.58 59.07 2.00 17.71 

12 High 30.14 177.41 45.26 82.22 

13 High 2.19 38.85 368.80 339.88 

14 High 76.43 25.94 184.70 254.04 

15 High 133.12 119.03 158.27 167.46 

16 High 42.42 41.94 14.56 200.15 

28 High 49.33 77.50 61.59 451.64 

1 Medium 12.06 24.91 5.27 22.12 

2 Medium 12.96 21.96 1.86 1.78 

3 Medium 9.22 38.82 8.65 152.29 

4 Medium 12.78 10.72 4.20 6.02 

5 Medium 9.40 108.68  76.57 

6 Medium 9.54 63.13 2.99 10.80 

7 Medium 13.94 2.89 6.60 53.01 

8 Medium 18.43 47.75 4.30 23.54 

9 Medium 1.40 41.97 15.01 9.40 

10 Medium 2.29 16.45 2.92 9.52 

11 Medium 1.64 13.15 2.44 9.18 

12 Medium 4.14 10.43 9.82 10.27 

13 Medium 2.19 7.48 6.08 9.50 

14 Medium 3.57 17.22 2.70 5.85 

15 Medium 4.39 3.99 21.52 226.58 

16 Medium 11.76 16.68 39.87 80.56 

17 Medium 98.60 101.12 100.35 185.34 
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Site 

number 

Treatment U-1 

(mg/L) 

L-1 

(mg/L) 

U-2 

(mg/L) 

L-2 

(mg/L) 

18 Medium 214.30 128.04 81.18 156.81 

19 Medium 0.41 2.21 3.74 13.39 

20 Medium 1.08 3.20 2.66 15.82 

21 Medium 3.43 8.57 21.01 52.55 

22 Medium 4.35 20.95 12.85 45.00 

23 Medium 4.72 11.33 3.87 28.67 

24 Medium 1.01 12.82 1.15 6.06 

25 Medium 0.41 1.58 5.41 35.90 

26 Medium 52.44 77.83 3.20 21.80 

27 Medium 0.35 17.78 13.64 10.23 

28 Medium 10.44 20.11 4.83 35.24 

 

 


