

Working Paper Series
ISSN 1177-777X

COMPUTER GRAPHICS
TECHNIQUES FOR MODELING

PAGE TURNING

Veronica Liesaputra and Ian H. Witten

Working Paper: 08/2007
October 2007

© 2007 Veronica Liesaputra and Ian H. Witten
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

Computer Graphics Techniques for Modeling Page Turning

Veronica Liesaputra, Ian H. Witten

Department of Computer Science, University of Waikato, Hamilton, New Zealand
e-mail: {vl6, ihw}@cs.waikato.ac.nz

December 13, 2007

Abstract. Turning the page is a mechanical part of the
cognitive act of reading that we do literally unthinkingly.
Interest in realistic book models for digital libraries and
other online documents is growing. Yet actually pro-
ducing a computer graphics implementation for mod-
eling page turning is a challenging undertaking. There
are many possible foundations: two-dimensional models
that use reflection and rotation; geometrical models us-
ing cylinders or cones; mass-spring models that simulate
the mechanical properties of paper at varying degrees
of fidelity; finite-element models that directly compute
the actual forces within a piece of paper. Even the sim-
plest methods are not trivial, and the more sophisticated
ones involve detailed physical and mathematical models.
The variety, intricacy and complexity of possible ways of
simulating this fundamental act of reading is virtually
unknown.

This paper surveys computer graphics models for
page turning. It combines a tutorial introduction that
covers the range of possibilities and complexities with a
mathematical synopsis of each model in sufficient detail
to serve as a basis for implementation. Illustrations are
included that are generated by our implementations of
each model. The techniques presented include geometric
methods (both two- and three-dimensional), mass-spring
models with varying degrees of accuracy and complexity,
and finite-element models. We include a detailed com-
parison of experimentally-determined computation time
and subjective visual fidelity for all methods discussed.
The simpler techniques support convincing real-time im-
plementations on ordinary workstations.

1 Introduction

Digital libraries invariably present their documents in a
manner that is rather bland. Much electronic text is for-

matted for the screen in a way that is crude compared
with typeset book pages. Some e-book designers do pay
attention to look and feel, with crisp text, clearly for-
matted and attractively laid out (Henke, 2001). Many
digital library collections offer page images rather than
electronic text, and although these can be rather beauti-
ful they are presented in a flat, two-dimensional manner.

In recent years there has been increased interest in
modeling the act of turning a page. The British National
Library’s “Turning the pages” (British Library, 2006) is
a pioneering project that aims to provide a reading ex-
perience closely resembling a real book. Readers view a
screen showing a double-page spread of what looks like a
physical rather than an electronic book. By wiping a fin-
ger across the touch-sensitive screen they metaphorically
pick up a page and turn it. Pages look three-dimensional;
the book’s binding moves slightly in sympathy as a page
is turned; page edges to right and left indicate how far
through the book you are.

To accomplish this, photographs have been taken at
several intermediate points during each page turn—so
that what is displayed is a stored photo, not an artifact
computed from a model of the book. There are many
images—for example, one version of the system con-
sumes 300 Mb for only twenty book pages (this includes
zoomed-in versions of each page, and accompanying au-
dio). The system is constructed using Macromedia Di-
rector. The simulation is compelling, and users rapidly
become absorbed in the book itself, turning pages un-
thinkingly. In Coleridge’s words, they “willingly suspend
disbelief” in these “shadows of imagination.” But the
main drawback is that a slow animation of every page-
turn must be painstakingly photographed in advance, for
each book. This is not feasible as a delivery mechanism
for online digital libraries.

Several more practical techniques for modeling the
act of turning a page have been proposed (Card et al.,
2006; Provot, 1995; Choi & Ko, 2002; Gotoda, 2000;

2 Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning

Bathe, 1995). These include a simple two-dimensional
effect that allows the lower left-hand corner to be moved
and shows the paper as though it were creased flat, the
position of the crease being adjusted to follow the mo-
tion; three-dimensional geometric techniques that wrap
the paper around a cylinder or cone, physical simula-
tions based on mass-spring models of the paper; and
finite-element models that divide the paper into small
elements and consider the physical constraints on each
one, including its interactions with its neighbors. The
aim of this paper is to provide a detailed survey and
explanation of all these methods.

Once the page-turning act has been simulated, many
more details must be attended to before arriving at a
compelling model of a realistic book (Chu et al., 2004).
These include modeling the binding of the book, the mo-
tion of its covers, the interaction between the pages and
the covers, and the effects of metadata such as usage
and sectionalization. Although these details are crucial
to the implementation of a full and realistic physical
book metaphor, they are not discussed in this paper.
It turns out that describing different techniques for page
turning is a sufficiently ambitious goal.

There is a basic distinction between geometric and
physical simulations. Ignoring the physical properties of
the paper, the former define appearance by a set of ge-
ometric equations, each of which relates to a particular
user action. For example, one action represents turning
the page from its lower corner, while another simulates
the paper being folded. Of course, there is an infinitude
of possible user actions and it is impossible to know them
all in advance: in practice, one picks a limited set and re-
stricts users accordingly. In this paper we only consider
the case when a user picks the bottom corner of the page
and turns it from the right to left side of the book; the
algorithms are readily adjusted for the more general case
where the user grasps the top left corner or (less usually)
any point down the right-hand edge or even the top or
bottom edge. We also assume that initially the page lies
flat on the XY plane. We describe one two-dimensional
geometric model and two three-dimensional geometric
models.

Physical models are more realistic than geometric
ones but considerably more demanding to compute. We
describe three that use mass-spring models of the in-
teractions between the particles comprising the paper.
The masses and springs form a mesh, and the forces
are summed over the mesh points and then integrated
over time to obtain the velocity and acceleration of these
points. The first model copes only with paper that has
cloth-like flexibility; the second allows the paper to bend
in more natural curves but still suffers from a unnatural
twisting effect; while the third uses a more sophisticated
model to rectify this twisting problem.

A more comprehensive physical modeling technique
is the finite-element method, which calculates the force,
velocity, and acceleration for each small element of the

paper. This is a rather complex operation, though for
paper it is simpler than a full finite-element analysis be-
cause the material forms a thin shell that need not be
split into elements in the Z direction (perpendicular to
the paper surface).

Descriptions of these algorithms are scattered around
the literature, and vary greatly in style and prerequisite
knowledge. The aim of this article is to describe them
all in a unified way, in sufficient detail to allow them to
be understood, compared, debated, implemented, and
tested.

2 Two-dimensional geometric model

Imagine turning over the lower right-hand corner of a
page and creasing it flat to reveal a triangular-shaped
region of the page beneath—a “dog-ear”—with a corre-
sponding triangular region that shows the text on the
obverse side of the page. Imagine creating a sequence
of successively larger dog-ears. This would be difficult
physically (and would make a creased mess of the page),
but is trivial in a computer model—and not messy at
all. As the motion continues the triangle grows and be-
comes a quadrilateral when it eventually subsumes the
top right-hand corner of the page.

Figure 1 shows this peeling effect.Although the un-
derlying model is entirely two-dimensional, visual details
have been added to simulate the effect of a smooth bend
rather than a sharp crease: some shading on the bend
and some shadowing just beneath it. It is easy to per-
form the computation in real time as the page is turned.
The method was proposed by Beaudouin-Lafon (2001)
to handle overlapping windows, and has been used in
another page-turning project (Bhangal, 2004).

Although this simple model does not look terribly
realistic in the static pictures of Figure 1, it is surpris-
ingly effective in practice. The reader defines the path of
the corner of the page as it turns: in effect they gesture
with the mouse or touch-screen and the corner of the
page follows instantly—whether the motion is straight
across to the left, or directly upwards, or even up and to
the right. There is complete freedom to move the corner
of the page (within the physical constraint imposed by
not tearing the paper), and the crease and visual shad-
ing details follow instantly. The simulation is satisfyingly
reactive.

Fig. 1. Page turning using a two-dimensional geometric model

This technique involves partitioning the page into
three sections: the visible portion of the page being turned,

Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning 3

part of the obverse side of the page that the turn has
made visible, and the part of the following page that
has been revealed. These regions are shaded differently
in Figure 2. The region formed by the crease (dark gray)
can either be triangular, as in Figure 2(a), or quadrilat-
eral, as in Figure 2(b). The area revealed (light gray)
has exactly the same shape reflected in the axis formed
by the crease. In these figures the page’s initial posi-
tion is the rectangle ABCD, and the act of turning
has moved the lower right corner C to position P . The
creased region is either the triangle PRS in Figure 2(a)
or the quadrilateral PQRS in Figure 2(b). The location
of points Q (if applicable), R and S are calculated from
the position of point P .

Figures 2(c) and 2(d) show the geometry of the two
situations. The crease is the perpendicular bisector of
the line PC. The triangular configuration of Figure 2(c)
occurs when this bisector intersects the right-hand edge
BC of the original page; the quadrilateral configuration
of Figure 2(d) occurs when it intersects the top edge
AB. This allows points R and S to be calculated. In Fig-
ure 2(d) we also need to calculate Q, which is obtained
by drawing a line from corner B parallel to CP , noting
where it intersects the crease line (point M), and produc-
ing it for an equal distance to locate point Q—effectively
ensuring that the crease line is a perpendicular bisector
of QB as well as of PC.

S

R

P

A B

D C

(a)

S

R

P

A
B

D C

Q

(b)

S

R

P

A B

D C

(c)

S

R

P

A
B

D C

Q T

(d)

Fig. 2. The appearance of the page: (a) when R intersect BC (b)
when R intersect AB. (c) and (d) shows the geometry of the page
at situation (a) and (b), respectively.

The paper imposes a physical constraint on where
the page corner P can be, for the distance PS cannot

exceed the length of CD. This constrains P to lie within
the circle shown in Figure 3; otherwise the page would
be torn from the spine. If the user moves the mouse out-
side the circle (say to position Pm) it should be silently
mapped to a point P on the arc of the circle. This feels
perfectly natural because the system provides instant
feedback by drawing the crease and filling in the contents
of the region. Note that although we have described the
technique using a portrait rather than a landscape lay-
out, and turning from the lower right corner of the page
instead of the upper right corner, it is straightforward
to extend it to cover more general cases, including ones
where the user picks up the page along an edge rather
than at a corner.

��

�

� �

� �

Fig. 3. Mapped position of the mouse

The computational complexity of this technique is
constant, independent of any grid size, and in practice
the system responds instantaneously to user actions. The
method can be implemented entirely in Macromedia Flash.
Three images are maintained: the facing and reverse side
of the page being turned, and the facing side of the page
beneath. To show the creased region, the page’s obverse
image is rotated to position its lower corner at P and up-
per corner at Q (if applicable), and a mask whose shape
corresponds to the creased region is applied. To reveal
the facing image of the page beneath, a mask shaped like
the triangle RCS or quadrilateral RBCS is applied.

A shadow effect can be created using a transparent
bitmap image that includes appropriate shading for the
revealed part: it is rotated to place its centerline along
SR and masked appropriately. Shading can be applied
on both sides of the crease, not just to the page beneath.
In addition, a small shadow can be applied to the top of
the visible edge of the page being turned. These subtle
effects, which can be seen by examining Figure 1 closely,
enhance the perception that the page is being turned in
three dimensions. In addtion, pages can easily be made
slightly transparent so that readers see a hint of the page
underneath.

A visual shortcoming of the peeling effect is that the
creased area PRS is exactly the same as the revealed
area CRS (or, in the quadrilateral case, PQRS is ex-
actly the same as CBRS). In a true three-dimensional
page-turning situation the extension of the paper in the
Z direction will cause the turned area to be smaller than

4 Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning

the revealed area. The three-dimensional bending of the
page can be simulated by adding a Z value to each point
P , Q, R and S, and utilizing a spline function to make
the bend look curvaceous instead of sharply creased.
This makes the turned area smaller than the revealed
area. The z-value of P can be assigned using a simple
heuristic, and suitable values for Q, R and S calculated
from it. In practice this necessitates segmenting the pa-
per into a regular grid of size n × m (n and m differ
in proportion to the paper’s aspect ratio). The use of
a spline function raises the complexity of the technique
from constant to O(n2).

3 Three-dimensional geometric model

In two dimensions the paper is creased and visual effects
incorporated to make the crease look reasonably real-
istic. An alternative simulation of how the paper bends
can be created in three dimensions by shaping the turned
page as a cylinder or cone. There are many possible ways
of doing this. One is to wrap the page around an imagi-
nary cylinder or cone that rests on the XY plane, touch-
ing it along the Y axis (which corresponds to the spine
of the book). The radius of the cylinder, or the angle of
the cone and the position of its apex on the negative Y
axis, are varied to provide different degrees of curling.

As in the previous technique, the user controls the
page turn by moving the point P that corresponds to
its lower left-hand corner. In the cylinder model only
the horizontal position (x-coordinate) of P can be con-
trolled, and the page has exactly the same curvature all
the way along the Y axis. In the conical model both the
x and y value of P can be controlled, and the position
of the cone’s apex is adjusted to fit. In both cases the
height (z-value) of P is calculated according to a simple
heuristic. Of course, if a three-dimensional input device
were available the user could control the height of P .

The first stage of the computation is to determine the
parameters of the cylinder or cone from the position of
P . In the second stage, the page is modeled as a uniform
mesh of m× n points and as it is turned it is necessary
to calculate where each point maps to on the cylinder or
cone.

3.1 Cylindrical model

Imagine wrapping the paper around a cylinder of radius
r. At the beginning, the radius is effectively infinite and
the page lies flat on the XY plane. The cylinder axis
is located along the Y axis. As the turn proceeds, the
cylinder’s radius is gradually reduced until the midpoint
is reached. This causes the page to curl around the cylin-
der, lifting its right-hand edge from the plane. From the
midpoint onward, the radius gradually increases and the
cylinder axis moves down and to the left, uncurling the

S

T

C
b

N

P
x

y

z

Tz

Tx

g
P

x

y

z

S
N

Tz

Tx

b
t

C

T
g

Fig. 4. Mapping a point to a cylinder

page, until the radius becomes infinite when fully turned
and the page lies flat on the left-hand side of the book.

Let us assume that a user has moved the bottom
right corner of the page P to position T . Based on the
position of T , define a cylinder of radius r whose circular
base passes point T and intersects the Y axis at point S,
where the length of the arc ST equals the line SP , as
shown in Figure 4. If T has not passed the midpoint, the
angle between CN and CS is 0. Otherwise, the angle
between CN and CS is 180◦−β. Point C is the centre
of the circle that lies on the cylinder’s axis. The x-value
of each mesh point is mapped to the cylinder, so O(n)
operations are involved.

The result of this wrapping is rather stilted, and the
page appears unnaturally rigid. The turning path par-
allels the X axis, which is not usually appropriate for
single pages but can be useful when an entire multi-page
section of a book is turned at once.

3.2 Conical model

Readers seldom turn a page with a path that is parallel
to the X axis. They generally lift the corner of the page
and move it diagonally upward until it reaches the page
midpoint, then diagonally downward from the midpoint
onwards. Thus, only the grabbed corner should be lifted
ahead of the mesh. To achieve this, Card et al. (2006) use
a conical model instead of a cylindrical one. The page
turning mechanism is similar to the cylindrical model
except that it uses a cone instead of a cylinder. The
shape of the cone is defined by its angle θ and apex
location A = (0, Ay, 0). Different page trajectories can
be obtained by varying these values.

Assume the reader has moved the bottom right cor-
ner of the page P to position T . Define a cone of radius
r whose circular base passes through T and intersects
the Y axis at the point S where the length of the arc
ST equals the line SP , as shown in Figure 5. As in the
cylindrical model, if T has not passed the midpoint, the
angle between CN and CS is 0; otherwise it is 180◦−β.
Point C is the centre of the circle that lies on the cone’s
axis. Given the angle β between point T , the centre of
the cross section, and point S, T can be obtained by
first rotating S around the line X = 0, Z = r through

Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning 5

P
x

y

z

S

N

Tz
Tx

bt
C

T

g

A

q

a
P

x

y

z

N

C

S

Tz

Tx

b
t

T
g

A

q
a

Fig. 5. Wrapping a page around a cone

an angle of β to the new position S′ = (S′x, S′y, S′z), and
then rotating it around the line Y = Sy, Z = 0 through
an angle of θ. The radius r of the circle at each cross
section varies, so the deformed page is defined by map-
ping each mesh point onto the cone. The computational
complexity of the algorithm is O(n2).

4 Physical simulation using particle models

In particle models, the paper is simulated by dividing the
material into a grid of small elements and modeling each
element as though it were a single “particle.” The accu-
racy of the simulation is determined by the size of the
grid: the result is more accurate with more elements, but
needs more computation. We divide the sheet of paper
into m×n small patches on a two-dimensional rectangu-
lar mesh. In reality the patches flex, which is what gives
paper its mechanical properties, but here we ignore this
and treat each patch as though it were atomic.

In this model, the mechanical properties of the pa-
per are simulated by a lattice of springs rather than the
elasticity of the material itself. These springs, which are
mass-less, model the interactions between the particles
that comprise the paper. The force that the springs exert
on each particle is calculated: this is called the “internal”
force. “External” forces include the user’s page-turning
action, constraints imposed by the book’s spine, and the
force of gravity. Both types of force are summed and the
result is used to determine the deformation of the paper
at each given point in time. This kind of physical simula-
tion has three major components: mesh representation;
forces, both internal and external; and time integration.

Three different particle models are considered in this
section. The first is for paper that flexes in a way that
resembles cloth more than paper, the second allows more
natural curved bends to develop, while the third incor-
porates a more sophisticated model of bending based on
dihedral angles between constituent planes. In each case
we discuss the mesh representation, the forces applied

and exerted, and how results are obtained by integrat-
ing the system of equations over time.

We denote by pij the particle at grid point i, j, where
i = 1, 2, ...,m and j = 1, 2, ..., n. These positions depend
on the current time h, but to simplify the notation we
do not show this dependence explicitly. The particle has
a mass of mij . It is acted upon by the external forces
of gravity and, depending on the particular values of i
and j, the user’s page-turning action and the spine con-
straints. The total external force is denoted by F ext(pij):

F ext(pij) = F grav(pij)+F user(pij)+F spine(pij). (1)

Two kinds of internal forces act on the particle: a
damping force and the force exerted by all the springs at-
tached to it. The internal force is designated by F int(pij):

F int(pij) = D(pij) + F spring(pij). (2)

The damping force D(pij) is calculated from the damp-
ing constant and the node’s velocity, while the spring
force F spring(pij) is computed from the displacements
of the node and those nodes to which it is attached, and
each spring’s stiffness constant.

The sum of the external and internal forces on the
particle is

F ij = F ext(pij) + F int(pij). (3)

The value of this at time h is used to determine the
particle’s position at time h + ∆h. We do this operation
on each particle in the grid, so O(n2) operations are
involved.

4.1 Basic mass-spring model

In the simplest type of mass-spring model, developed by
Provot (1995), nodes are connected with three types of
mass-less springs as shown in Figure 6: stretch, shear
and bend springs.

1. Stretch springs connect pij with pi±1,j and pi,j±1.
2. Shear springs connect pij with pi±1,j±1.
3. Bend springs connect pij with pi±2,j , pi,j±2 and pi±2,j±2.

Springs produce a force that depends on their length and
stiffness constant. The stiffness is the same for all springs
of a given type.

These springs are responsible for simulating the pa-
per’s stretch, shear and bend resistance. Stretch springs
define the resistance of the material to elongation or
compression in the horizontal and vertical directions.
Shear springs define the resistance in diagonal directions.
When the paper is bent, particle pij moves closer to its
next-nearest-neighbor particles, and the paper’s bend re-
sistance is calculated from the distance of pij to its eight
next-nearest-neighbors.

6 Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning

�������

�����

	�
�

Fig. 6. Simple mass-spring model

4.1.1 Effect of forces

We denote the stiffness constant of the spring linking
particles pij and pkl by Kij,kl, and the rest length of the
spring, which is its initial length at time h = 0, by l0ij,kl.
The length of the spring at time h is lij,kl = pkl − pij .
According to Hooke’s Law, the total spring force on pij

is given by

F spring(pij) =
∑

(k,l)∈R

−Kij,kl(|lij,kl| − |l0ij,kl|)
lij,kl

|lij,kl|
(4)

where the sum is over R, the set of nodes that are con-
nected with pij .

The damping force for node pij is

D(pij) = −Kdṗij , (5)

where Kd is the damping coefficient of the paper and ṗij

is the velocity of pij .

4.1.2 Limit strain

The elasticity of real materials is non-linear. Once a cer-
tain degree of elongation has been reached, they become
very stiff extremely rapidly when stretched further. If
the applied load is high the material will rupture; how-
ever, we will not attempt to model ruptures. Figure 7(a)
shows the appearance of a piece of paper that has been
stretched unreasonably, a problem that we will proceed
to fix.

We define the amount of elongation as

τ =
|lij,kl| − |l0ij,kl|

|l0ij,kl|
(6)

and limit it to a predetermined constant τc (normally
set to 10%). If the elongation threatens to exceed τc the
nodes are brought closer together to bring it back to
this value. This is done by moving the both particles to-
wards their mid-point if they are both loose, while if one
is fixed—e.g., if it lies on to the book’s spine—the other
is moved closer to it. The result is shown in Figure 7(b),
where each spring has been limited to a predefined max-
imum elongation.

(a) (b)

Fig. 7. The appearance of the page: (a) without limit straining
(b) with limit straining.

4.1.3 Integrating over time

Given each node’s position pij , velocity ṗij and total
force F ij at time h, our goal is to determine the posi-
tion p′ij and velocity ṗ′ij at time h + ∆h. According to
Newton’s law, the acceleration at time h + ∆h is

p̈′
ij =

F ij

mij
. (7)

Using explicit Euler time integration,

ṗ′ij = ṗij + p̈′ij∆h

p′ij = pij + ṗ′ij∆h. (8)

These equations are used to update the nodes’ position
and velocity at every time step.

4.2 Bending

We now describe a more advanced mass-spring model
developed by Choi and Ko (2002) that can be bent into
smooth curves. Paper is strongly resistant to stretch-
ing or shearing, but has little initial resistance to com-
pression. However, when a certain degree of compression
has been reached, it rapidly becomes stiffer under fur-
ther compression. To simulate this a more sophisticated
damping, bending and compression model is needed.

Figure 8(a) shows how unnatural bending can look
with the previous model. The page behaves in a man-
ner more akin to cloth than paper, with insufficient re-
sistance to the bending force—it crumples rather than
bending stiffly and smoothly as paper does. In contrast
Figure 8(b) shows a smoothly contoured bend that was
produced by the model we develop in this section.

While it would be perfectly possible to use the same
explicit time integration that was developed in the last
section for this new model, it would be much slower.
In order to make the system respond quickly to the
user’s interaction, semi-implicit time integration is used
instead. This is more stable than the explicit integration
procedure, so large time steps can be used to reach the
equilibrium state quickly.

Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning 7

(a)

(b)

Fig. 8. The appearance of the page: (a) using the simple mass-
spring model of Section 4.1; (b) using the improved model of Sec-
tion 4.2

Each particle is connected with others in the mesh
in the same manner as before, and again all springs of
the same type have the same stiffness constant. How-
ever, different formulae are used to calculate the spring
forces. Stretch and shear springs only affect the paper’s
resistance to elongation in the vertical, horizontal and
diagonal directions, while bend springs affect its resis-
tance to bending and compression in these directions.

4.2.1 Effect of forces

Let Kij,kl denote the stiffness constant of a spring con-
necting pij to pkl, and l0ij,kl the spring’s initial length
at time h = 0. The length of the spring at time h is
lij,kl = pkl − pij . The total spring force on pij is given
by

F spring(pij) =
∑

(k,l)∈Rs

sij,kl +
∑

(k,l)∈Rb

bij,kl (9)

where the sums are over Rs, the set of nodes connected
to pij by stretch and shear springs, and Rb, the set of
particles connected to pij by bend springs.

The force exerted by the stretch and shear springs is
the same as before (equation (4)) for elongation but zero
for compression:

sij,kl =

{
−Kij,kl(|lij,kl| − |l0ij,kl|)

lij,kl

|lij,kl| : |lij,kl| ≥ |l0ij,kl|
0 : |lij,kl| < |l0ij,kl|

(10)

The force exerted by the bend springs is

bij,kl =

{
0 : |lij,kl| ≥ |l0ij,kl|

−Kij,klfb(
|lij,kl|
|l0

ij,kl
|)

lij,kl

|lij,kl| : |lij,kl| < |l0ij,kl|
(11)

This equation models the non-linear nature of bend re-
sistance. The shape of buckled paper is close to a circular
arc. We approximate the arc’s length by the spring’s rest
length |l0ij,kl| and express the curvature as a function of
the distance between the particles. Choi and Ko (2002)
approximated the curvature function fb as a fourth-order
polynomial,

fb(s) = −a4s
4 + a3s

3 − a2s
2 + a1s− a0

where positive numeric values for the coefficients a4, a3,
a2, a1 and a0 were derived from the physical deformation
constants that characterize the material in question.

In the previous model we used the same damping
constant for stretch, shear and bend (equation (5)). How-
ever, paper resists stretching and shearing much more
than it resists bending, and this requires higher values
for the these two damping constants than for the bend
damping constant. This was not done in the previous
model because bending looked unrealistic anyway. Now
we would like to reduce the bend damping constant—but
this causes unrealistic in-plane oscillations. To inhibit
these requires a more sophisticated damping model than
the one developed in the previous section. If Kdij, kl is
the damping constant of the spring linking particles pij

and pkl, the total damping force on pij is

D(pij) = −
∑

(k,l)∈R

Kd(ṗij − ṗkl) (12)

where R is the list of nodes that are connected to pij by
any type of spring.

4.2.2 Integrating over time

In this model, semi-implicit time integration with a second-
order backward difference formula is used to calculate
the new position of particle pij with mass mij . Let P ij

and ṗij be the position and velocity at time h−∆h, and
p′ij and ṗ′ij the position and velocity at time h. Given
this information, the new position p′′ij and velocity ṗ′′ij
at time h + ∆h can be calculated as follows:

∆p′′ij =
1

∆h

(
3
2
p′′ij − 2p′ij +

1
2
pij

)
∆ṗ′′ij =

1
∆h

(
3
2
ṗ′′ij − 2ṗ′ij +

1
2
ṗij

)
(13)

These quantities must also satisfy the equation(
∆p′′ij
∆ṗ′′ij

)
=

(
ṗ′′ij
F ′′

ij

mij

)
(14)

8 Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning

and

F ′′
ij = F ′

ij +
∑

(k,l)∈R

(
∂F ′′

ij

∂p′′kl

∆p′′ij +
∂F ′′

ij

∂ṗ′′kl

∆ṗ′′ij). (15)

where R is the list of nodes that are connected to pij by
any type of spring.

4.3 Bending without twisting

Previous sections modeled the resistance of the paper to
bending using springs that connect each particle with its
next-nearest-neighbors. This model is simplistic because
these springs are insensitive changes in the dihedral an-
gles between faces. We now take this into account by
changing the way the bending force is calculated.

The effect can be seen in Figure 9, which shows a
page using the model in the previous section and the
model that will be developed in this section. Clearly, the
latter looks more realistic, because the twist in the edge
nearest to the viewer has been eliminated.

(a) (b)

Fig. 9. The appearance of the page: (a) using model of Section
4.2; (b) using improved bending model of Section 4.3

In this model, the paper is discretized into a set of
right-angled triangles, as shown in Figure 10. Initially
the paper is flat, and z = 0 for each particle. In order to
calculate the internal forces on the triangles instead of
on each particle, slightly different formulae are used to
determine the material’s resistance to stretching, shear-
ing and bending.

Fig. 10. Mesh representation

4.3.1 Effect of forces

The improved bending model is better expressed in terms
of energies rather than forces as we did above; we can
calculate the forces as the spatial derivative of energy. As
before, three types of energy—stretch, shear and bend—
are used to characterize the difference between the unde-
formed configuration and the deformed one. The internal
energy working on each particle pij is

Espring =
∑
x∈T

Estretch(x) +
∑
x∈L

Eshear(x) +
∑
x∈B

Ebend(x)

where T is the set of all triangles containing particle pij ,
L is the set of all edges that are connected to particle pij ,
and B is the set of all edges that are connected to particle
pij and shared by two triangles. The stretch component
relates to the triangle’s area, the shear component to
the length of its edges, and the bend component to the
dihedral angle with adjacent triangles; these three com-
ponents are discussed further below. The total internal
force at particle pij is obtained by differentiating the
energy:

F spring(pij) =
∂Espring

∂pij

.

Stretch energy is produced by the triangle’s resis-
tance to stretching or compression, which corresponds
to changes in the triangle’s area. Let A0 be its initial
area (h = 0) and Ah be its area at time h. The stretch
energy for the triangle is

Estretch(x) = −KstretchA0(1− Ah

A0
)2, (16)

where Kstretch is the stretch stiffness constant.
Shear energy is produced by the triangle’s resistance

to shearing, which corresponds to changing the length
of its edges but not its area. The shear energy for the
triangle is the sum of the shear energies for each of its
edges. Consider the edge e. Let l0 be its initial length
(at time h = 0) and lh its length at time h. The shear
energy that works on the edge is

Eshear(x) = −Kshear|l0|(1−
|lh|
|l0|

)2 (17)

where Kshear is the shear stiffness constant.

�
�

�
�

�� �

��
��

���

��
Fig. 11. Components to calculate the mean curvature

Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning 9

Bending energy is produced by altering the mean cur-
vature between two triangles that share the same edge.
The bending energy for the triangle is the sum of the
bending energies for each edge that borders a neighbor-
ing triangle. Figure 11 shows two triangles T1 and T2

that share a common edge e. Their initial (flat) posi-
tion is shown unshaded; the shaded triangles are leaning
upwards, towards the viewer. The angle between the tri-
angles at time h is

θh = tan−1

(
sin θh

cos θh

)
(18)

The sin and cosine can be expressed in terms of nh
1 and

nh
2 , the unit normal vectors to T1 and T2 at time h, and

the length lh of the edge e at time h:

sin θh = (nh
1 × nh

2) · lh

|lh|
cos θh = nh

1 · nh
2

Denote the heights of triangles T1 and T2, measured from
the shared edge e to the opposite vertex, by t1 and t2.
The initial curvature span is the distance between the
two triangles’ centers of gravity in the initial position,
which is r = 1

6 (t1 + t2). The bending energy of edge e is

Ebend = −Kbend
|l0|
r

(θh − θ0)2 (19)

We use the same formulae as before, equation (12) above,
to calculate the damping force exerted on particle pij

through its interaction with particle pkl.

4.3.2 Integrating over time

Newmark implicit time integration is used for this model.
This method gives the new position and velocity of par-
ticle pij at time h + ∆h as

p′ij = pij + ∆hṗij +
∆h2

4
(p̈ij + p̈′ij)

ṗ′ij = ṗij +
∆h

2
(p̈ij + p̈′ij)

The acceleration at time h + ∆h is given by

p̈′
ij =

F ij

mij
(20)

where mij is pij ’s mass.

5 Physical simulation using the finite element
method

The finite element method is a general technique for sim-
ulating any physical material. The material is divided
into a regular grid of small elements in three-dimensional

space whose size determines the accuracy of the simu-
lation. When simulating page turning we can take ad-
vantage of the quasi-two-dimensional nature of paper by
using a two-dimensional rectangular mesh rather than
a full three-dimensional grid, dividing a sheet of pa-
per into m × n small patches. However, in the finite-
element method patches are not modeled as particles as
in they were in the previous section: instead, their di-
mensions and shape are taken into account. The forces
on a patch—including gravity, forces exerted by neigh-
boring patches, and the force the reader applies to turn
the page—produce stress which deforms the patch, and
the finite element method calculates the amount of defor-
mation. Note that although the grid is two-dimensional,
the thickness of the paper is not ignored: each patch does
have thickness, which varies across the patch.

Modeling paper as a thin shell, represented by a two-
dimensional rectangular mesh of patches whose thick-
ness varies, is a special case of the general finite ele-
ment model of a three-dimensional solid, and is slightly
easier to tackle than the general case. The first task is
to establish a geometric mapping between the patches
themselves and the global coordinate system (Section
5.1). Ultimately we need to consider the physical forces
on each patch—the stress—and work out the distortion
they cause—the strain. Strain is defined in terms of the
spatial derivatives of a point’s displacement, and calcu-
lating the stress-strain relationship involves differential
equations. This requires a smooth, differentiable model
of the patch; obtaining this is the second task (Section
5.2). It is necessary to model the patches not just as two-
dimensional surfaces but as having thickness; the third
task (Section 5.3). Then we need to establish a three-
dimensional coordinate system at each reference point
of the patches (Section 5.4), and express the displace-
ment of the reference points in terms of these coordinates
(Section 5.5).

In terms of local coordinates the relationship between
stress (Section 5.6) and strain (Section 5.7) is simple: it
is given by a deformation matrix (Section 5.8) whose
components depend on the Young’s modulus, Poisson’s
ratio, and shear correction factor of the material un-
der consideration, and it is easy to obtain reasonable
estimates of these for paper. The relationship, which in-
volves first derivatives of displacement, must be mapped
back into global coordinates in order for it to be solved.
We need to consider all the forces on each element, and
finally integrate the differential equations that have been
obtained (Section 5.9).

5.1 Local and global coordinates

Figure 13 shows a general element. It is defined by eight
reference points, four representing its corners and four
representing the mid-points of each side. In global (x, y, z)
coordinates these reference points are p1,p2,p3 and p4

10 Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning

�

�

Fig. 12. Dividing a sheet of paper into m× n elements

for the first group and p5,p6,p7 and p8 for the sec-
ond: each pi has coordinates (xi, yi, zi) in ordinary three-
dimensional space. If thickness is modeled, the reference
points are taken to be at the centre of the material and
further parameters t1 . . . t8 give the corresponding thick-
nesses, so that at each reference point the material of the
paper extends from − ti

2 to + ti

2 . The direction of this ex-
tension is normal to the paper at point pi, a direction
that we call ni.

�

�

�

�

�

�

�

�

�

�

�

�

�
	

�

����
��

���
���

�	
��

�	
��

��

�

�

Fig. 13. An element of the shell

�

�

�

� � �

�

�

�

� 	

Fig. 14. Midsurface of the shell in local coordinate

Figure 14 shows the local coordinate system that is
defined for each patch. Any point within the element is
given by coordinates (ξ, η, ζ), where all coordinates lie
between −1 and +1. ξ and η give the extent in direc-
tions corresponding to the width and height of the pa-
per, respectively; while ζ is the direction perpendicular
to the paper, and corresponds to its thickness. Reference
point p1, which lies in the centre of the paper, has local

coordinates π1 = (−1,−1, 0), while point p3 has local
coordinates π3 = (1, 1, 0). The upper surface of the pa-
per at p3 is (1, 1, 1), while the lower surface is (1, 1,−1).
We use the Greek symbol π to denote the local (ξ, η, ζ)
coordinates of the point whose global (x, y, z) coordi-
nates are p, for the element in question. Table 1 shows
the local coordinates of the eight reference points.

i (ξi , ηi , ζi)
1 (−1 , −1 , 0)
2 (1 , −1 , 0)
3 (1 , 1 , 0)
4 (−1 , 1 , 0)

i (ξi , ηi , ζi)
5 (0 , −1 , 0)
6 (1 , 0 , 0)
7 (0 , 1 , 0)
8 (−1 , 0 , 0)

Each patch is fully defined by the position in space
of its eight reference points, and the coherence of the as-
sembly of patches is ensured by making the three points
that define one side of a patch correspond to the three
points that define the adjacent side of the neighboring
patch in the obvious manner, all the way along both the
height and the width of the paper.

5.2 Defining a smooth surface

We next address the problem of how to define from this
grid of reference points a smooth and continuous surface
for each patch. In fact, it is not necessary to fit a smooth
surface in order to present the patch on the computer
screen: for that purpose the discrete grid of reference
points is entirely adequate. Rather, a smooth surface is
needed because the analysis in subsequent subsections
in terms of stress and strain involves spatial derivatives
of the surface.

We restrict attention to a particular patch. Given a
point on the midsurface of this patch whose local coordi-
nates are π = (ξ, η, 0) (ζ = 0 because it is on the midsur-
face), what is its global coordinate vector p = (x, y, z)?
The vector p will be expressed as a weighted sum of
the vectors p1,p2, . . . ,p8 that represent the 8 reference
points of the patch, where the weights w1(ξ, η), w2(ξ, η),
. . . , w8(ξ, η) reflect the position of the point π in local
coordinate space:

p =
8∑

i=1

wi(ξ, η)pi (21)

For example, if π corresponds with one of the reference
points, the weights will be 1 for that reference point and
0 for the other seven points.

If the patch were planar this would be a simple mat-
ter of linear interpolation. However, in general the points
p1,p2, . . . ,p8 do not lie on a plane in 3-space. To account
for this, it is necessary to define eight non-linear inter-
polation functions wi(ξ, η) with the following properties:

1.
8∑

i=1

wi(ξ, η) = 1 for any values ξ, η ∈ [−1, 1]

Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning 11

2. wi(ξi, ηi) = 1 for each reference point, i = 1, 2, . . . , 8
3. wi(ξj , ηj) = 0 if j 6= i.

It turns out that while linear interpolation is inade-
quate to model a non-planar patch, quadratic weighting
functions can be constructed that satisfy these proper-
ties. Figure 15(a) shows a suitable function w1(ξ, η) for
reference point 1 of the patch: as can be seen, it satisfies
properties 2 and 3 with i = 1. We construct this func-
tion by taking the component shown in Figure 15(b) and
subtracting the components in Figure 15(c) and 15(d).
Figure 15(b) is a bilinear surface that satisfies property
2 at reference point 1, and satisfies property 3 at points
2, 3, 4, 6 and 7 but but violates it at points 5 and 8; Fig-
ure 15(c) is a parabolic correction that restores property
3 at point 5; and Figure 15(d) does the same for point
8.

The bilinear function in Figure 15(b) has equation

1
4
(1− ξ)(1− η).

This alters the function’s value for reference point π1 =
(−1,−1, 0) as desired, and evaluates to 0 at any ref-
erence points with either ξ = 1 or η = 1—that is,
points π2,π6,π3,π7,π4. It also has the undesired ef-
fect of evaluating to 0.5 at points π5 and π8, as shown.
The parabolic functions in Figures 15(c) and 15(d) have
equations

1
4
(1− ξ2)(1− η) and

1
4
(1− ξ)(1− η2).

These both evaluate to 0 at points π1,π2,π6,π3,π7 and
π4, and 0.5 at π5 and π8 respectively. Thus the overall
effect of raising to 1 the weighting function’s value at ref-
erence point π1, shown in Figure 15(a), is accomplished
by,

w1(ξ, η) = bilinear − parabolic1 − parabolic2

=
1
4
(1− ξ)(1− η)(−1− ξ − η)

Weighting functions for the other three corners π2,π3,
and π4 are accomplished in like manner.

The weighting function for the mid-point of a side is
simpler, requiring only a single parabolic model as shown
in Figure 16 for π5.

In summary, we have established weighting functions
that have the value of 1 at a reference point and 0 at the
other seven reference points. These functions are

wi(ξ, η) =


1
4 (1 + ξξi)(1 + ηηi)(−1 + ξξi + ηηi) i ∈ [1, 4]
1
2 (1− ξ2)(1 + ηηi) i ∈ {5, 7}
1
2 (1 + ξξi)(1− η2) i ∈ {6, 8}

(22)
Not only do they satisfy properties 2 and 3 above, but
it can be shown algebraically that the eight functions
sum to 1 for any values of ξ, η, thus satisfying property
1 too. Furthermore, the values of all eight interpolation

�

�

��

� �

�

�

�

� 	

�

��

(a)

�

��

�

��
�

�

�

�

�

� 	

��
�����

� ���

���
����

(b)

�

�

�

�

�

�

�

�

�

� 	

���

����

���������

(c)

�

�

�

� � �

�

�

�

� 	

���

����

���������

(d)

Fig. 15. Creating (a) the interpolation function w1 by adding
three functions: (b) bilinear, (c) parabolic1, and (d) parabolic2

�

�

�

�

�

�

�

�

�

� 	

���

�

�

Fig. 16. Interpolation function w5

functions along any edge are defined purely by the three
reference points that constitute that edge; thus (x, y, z)
coordinates of any point along an edge will be the same
as for the neighboring patch, making the entire surface
continuous. However, the first derivative across an edge
is not continuous, which means that creases in the pa-

12 Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning

per such as dogeared pages—or even a crumpled ball of
paper—can be modeled.

5.3 Inside the shell

The discussion so far has focused on points on the mid-
surface of the shell. We will also need to deal with general
points inside the shell, π = (ξ, η, ζ) with ζ 6= 0. For this
we need to establish vectors normal to the shell at each
of the reference points, as shown in Figure 17.

In the beginning, each element of the shell is repre-
sented by the coordinates of the top and bottom surfaces
at each of the eight reference positions, rather than the
reference points themselves. Then, at each reference po-
sition, the actual reference point is calculated by aver-
aging the coordinates of the top and bottom surfaces,
and the direction of the normal vector is determined by
taking the difference between the top and bottom points
and normalizing to a unit vector, as illustrated in Fig-
ure 17. As the configuration of the shell evolves in time
the direction of each of the eight normal vectors is up-
dated as described in the next subsection.

�
�

�
�

�

�

�
�

��

� �

��

��

�

��

��

�
�

��

�
��

��

�		
	�

	�

Fig. 17. Normal vector of the shell’s midsurface

Given the normal vector, an arbitrary point π =
(ξ, η, ζ) inside the shell is transformed to p in (x, y, z)
coordinate as follows:

p =
8∑

i=1

wi(ξ, η)
(

pi + ζ
ti
2

ni

)
(23)

The first component inside the bracket, pi, corresponds
to equation (21) above representing the midsurface of
the shell. The second component, involving ζ, translates
the displacement along the ζ axis back into (x, y, z) co-
ordinates.

5.4 The normal-vector coordinate system

The normal vectors will play a crucial part in our model.
For example, in Section 5.6 we assume that the material

of the paper is completely flexible and offers no resistance
to external forces in the direction perpendicular to it.
Because of this, and to assist in updating the normal
vectors from one configuration of the paper to the next,
we establish a coordinate system at each reference point
based on the direction of the normal at that point.

For this normal-vector coordinate system at refer-
ence point i we use the notation x̂i, ŷi, ẑi. The new z
axis is in the direction of the normal to the surface at
that reference point, ni. The new x axis is in a direc-
tion perpendicular to both this new z axis and the old
y axis, that is, the y axis of the original global x, y, z
coordinates. This direction is ey ×eẑ

i , where ey is a unit
vector along the global y axis and eẑ

i is a unit vector
along the new z axis, which is in the same direction as
ni. (A degenerate case arises when the normal ni coin-
cides with the direction of the global y axis, in which
case we set the new x axis to be in the direction of the
old z axis.) Having established the new z and x axes,
the new y axis is set to be perpendicular to them both,
that is, in the direction eẑ

i × ex̂
i .

We now consider how to update the normal vector
ni from one moment to the next. We assume that the
new normal is the result of rotating ni through an angle
αi around the x̂i axis and an angle βi around the ŷi axis.
Then the new normal vector is

n′i = ex̂
i sinβi + eŷ

i cos βi sin(−αi) + eẑ
i cos βi cos(−αi)

= βie
x̂
i − αie

ŷ
i + eẑ

i (24)

assuming that the rotations are small. n′i will be the ẑ
direction of the normal-vector coordinate system that is
used for the next step.

The angles αi and βi are central to the updating
procedure, and will figure prominently in what follows.

5.5 Displacement

If the position of point p at time h is p, and at time
h+∆h is p′, its displacement from time h to time h+∆h
in the x, y and z directions is

d = p′ − p

by substituting the value of p according to equation (23),

d =
8∑

i=1

wi(ξ, η)
{

(p′i − pi) + ζ
ti
2

(n′i − ni)
}

We write d = (u, v, w). The entire displacement of
node i from time h to h + ∆h is characterized by the
following 5-vector:

qi = (ui, vi, wi, αi, βi)

where ui, vi, and wi are the displacement of pi in the x,
y and z axis directions respectively, and αi and βi are
the rotation angles around the x̂ and ŷ axes.

Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning 13

Given the displacement vectors qi for each of the
nodes of a surface patch, we now calculate the displace-
ment vector d for a general point on the patch at position
(ξ, η, ζ).

d =
8∑

i=1

wi(ξ, η)
{

(p′i − pi) + ζ
ti
2

(n′i − ni)
}

=
8∑

i=1

wi(ξ, η)


 ui

vi

wi

+ ζ
ti
2

(βie
x̂
i − αie

ŷ
i)


=

8∑
i=1

wiqi (25)

where the interpolation matrix for reference point pi is

wi = wi(ξ, η)

1 0 0 −ζ ti

2 lŷi ζ ti

2 lx̂i
0 1 0 −ζ ti

2 mŷ
i ζ ti

2 mx̂
i

0 0 1 −ζ ti

2 nŷ
i ζ ti

2 nx̂
i


and ex̂

i = (lx̂i ,mx̂
i , nx̂

i), eŷ
i = (lŷi ,mŷ

i , nŷ
i).

We have now completed our analysis of the geome-
try of the surface element or patch. To summarize: each
patch is situated in three-dimensional space by the co-
ordinates of its eight reference points pi. A local coor-
dinate system is defined for the patch which allows any
point within it to be defined by coordinates (ξ, η, ζ). The
entire volume of the patch is swept out as these coordi-
nates range from −1 to 1. The third coordinate corre-
sponds to the thickness of the patch, and ζ = 0 defines
the midsurface. Eight of the nine combinations of the
values −1, 0, 1 for each of ξ and ζ define the eight ref-
erence points pi (the ninth, (0, 0), is the centre of the
patch.) Any point π = (ξ, η, ζ) within the patch can be
expressed in terms of its global coordinates p = (x, y, z)
using the transformation of equation (23). This transfor-
mation also involves the normal vector ni to the patch
at each reference point.

The normal vector ni is used to define an coordinate
system at reference point i which will be deployed in
the analysis below. As the patch moves from one con-
figuration to the next under the influence of forces dis-
cussed in subsequent sections, it is necessary to update
the coordinates of each reference point and the orienta-
tion of the normal vector at each one. The key to the
updating procedure is the displacement vector, a five-
dimensional vector qi which includes the displacement
of the reference point in the x, y, and z directions as
well as the angular displacements around the two axes
of the normal-vector coordinate system that are perpen-
dicular to the normal at the reference point. Given any
point within the patch expressed as (ξ, η, ζ) in local co-
ordinates, and the five-dimensional displacement vectors
qi for each reference point, expression (25) shows how to
calculate the corresponding displacement of the point in
global (x, y, z) coordinates. These displacements occur
as the result of the forces that we discuss next.

5.6 Stress

Stress (σ) measures the distribution of the internal forces
in the shell, and determines the material’s resistance to
deformation under the pressure of external forces (b).
The stress at any point within the shell—and here we
are considering a general point p within a surface ele-
ment, not a reference point pi—is defined as the force
per unit area over a small area (∆A) of the body. For-
mally,

σ = lim
∆A→0

∆b

∆A

Stress can be resolved into normal stress and shear
stress. The former measures the force perpendicular to
the surface, while the latter measures the forces that
act parallel to the surface. For example, σx is a stress
perpendicular to the yz plane, while σxy and σxz are
stresses in the yz plane that are parallel to the y and
z axes respectively. A total of six stresses act at every
point within the shell, and we express them as a column
vector σ = [σx, σy, σz, σxy, σxz, σyz]T .

The effect of stress is to deform the body under con-
sideration. The amount of deformation is called strain,
and is expressed as the change in length per unit of
the original length. Each of the six stresses at a point
(more precisely, at a vanishingly small area) cause a
corresponding amount of strain, where strain is a six-
dimensional vector that corresponds to the spatial deriva-
tives of the point’s displacement d = p′ − p discussed
earlier:

ε =


εx

εy

εz

εxy

εxz

εyz

 =



∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z
∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y


d

The relationship between the degree of stress and
the amount of strain it causes is given by Hooke’s law of
elasticity, which states that the amount by which a body
is deformed—the strain—is directly proportional to the
stress that cause the deformation. The stress-strain re-
lation can be expressed by the equation

σ = Dε, (26)

where D is the deformation matrix, discussed below.
First, however, we consider the problem of calculating
the strain itself.

5.7 Calculating the strain

The strain is obtained by taking partial derivatives of
d with respect to the global coordinates x, y and z, as
shown above. Equation (25) expresses the displacement

14 Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning

at any point within a patch in terms of its local (ξ, η, ζ)
coordinates and the eight vectors qi that characterize
the displacement of each reference point of the patch.
To take the derivatives of this equation with respect to
ξ, η and ζ is a simple matter. In order to calculate the
strain, partial derivatives with respect to x, y, and z
must be expressed in terms of partial derivatives with
respect to ξ, η and ζ.

This is done by applying the chain rule in the follow-
ing form:  ∂

∂x
∂
∂y
∂
∂z

 = J−1


∂
∂ξ
∂
∂η
∂
∂ζ

 (27)

where J−1 is the inverse of the Jacobian matrix that
relates local coordinate derivatives to global ones:

J =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

 (28)

J can be determined by taking derivatives of equation (23)
above, which gives an explicit transformation from local
coordinates to global ones. The details can be found in
the Appendix.

The upshot is that the strain ε at any point can be
obtained from its local coordinates ξ, η and ζ and the
displacement vector qi at each of the patch’s eight refer-
ence points. The operation can be summarized in matrix
form as

ε =
8∑

i=1

Bi(ξ, η, ζ)qi (29)

where Bi(ξ, η, ζ), the strain-displacement matrix , can be
obtained explicitly using the above techniques, for each
reference point i.

5.8 The deformation matrix

If a body is compressed it tends to expand sideways;
on the other hand, if it is pulled the material contracts
laterally. These effects are quantified by the deformation
matrix D that characterizes the relationship between
stress and strain expressed by equation (26).

The deformation matrix depends on three constants
that characterize the material under consideration: Young’s
modulus of elasticity E, Poisson’s ratio ν, and the shear
correction factor K. Young’s modulus represents the stiff-
ness of the material. Poisson’s ratio captures the relation
between deformation in the direction of the stress and
deformations in directions perpendicular to it (we as-
sume that the material is isotropic).

The shear correction factor is used to model a shear
strain that is not uniform throughout the material, and
allows the strain to alter linearly across its thickness. In
our simulations, we typically use values of E = 1, 370 N cm−1,

ν = 0.33 and K = 5
6 for paper with mass density of

80 m−3 (Bathe, 1995).
We assume that the shell does not resist any defor-

mation in the ẑ direction, so that the stress normal to its
surface is zero. In the normal-vector coordinate system,
the deformation matrix at point π = (ξ, η, ζ) is

D̂ =



E
1−ν2

Eν
1−ν2 0 0 0 0

Eν
1−ν2

E
1−ν2 0 0 0 0

0 0 0 0 0 0

0 0 0 E
2(1+ν) 0 0

0 0 0 0 EK
2(1+ν) 0

0 0 0 0 0 EK
2(1+ν)


(30)

This matrix must be transformed to give a defor-
mation matrix D in the global coordinate system. The
elements of the transformation matrix Q are obtained
from the direction cosines of the x̂, ŷ, ẑ coordinate axes at
point p measured in the x, y, z coordinate directions. Q
transforms the strain vector in local coordinates [εξ, εη,
εζ , εξη, εξζ , εηζ]T into the strain vector in global coordi-
nates [εx, εy, εz, εxy, εxz, εyz]T . Again, the details are rel-
egated to the Appendix.

5.9 Effect of forces

The deformation of any element is determined by the
external and internal forces that work on it. By using
the principle of conservation of energy, we can translate
the forces into the displacement of the element at time
h + ∆h. This section explains the principles, the details
are given in the Appendix.

When external forces are applied to a body, their
potential energy (δET) is converted into kinetic energy
(δEK), corresponding to internal forces of inertia and
damping, and potential energy (δEP), corresponding to
stress. Conservation of energy is expressed by equating
internal and external energy:

δEK + δEP = δET . (31)

We begin with the external forces to which each ele-
ment of the shell is subjected. There are three different
types. Body forces (F B)—such as the force of gravity—
apply throughout the element. Surface forces (F S) may
be applied at the surface of the shell—for example, the
upper and lower surfaces of the left edge of the paper
are held rigidly in place by forces exerted by the book’s
spine. Nodal forces (RN) are applied at individual refer-
ence points, for example by the user’s thumb and fore-
finger on the corner of the page as it is turned. These
three examples—gravity, the spine, and the user’s ef-
fort in turning the page—are the only external forces in
our simulation, although the model permits more general
body, surface, and nodal forces to be applied.

Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning 15

Potential energy equals force times displacement. Each
force must be integrated appropriately. The body force is
integrated with respect to the element’s volume, yielding
RB . The surface force is integrated with respect to its
surface area, yielding RS . Both these forces, along with
RN , are multiplied by the displacement to compute the
energy.

The potential energy done by external forces is cal-
culated by multiplying each vector by the displacement
vector and summing:

δET = (δq)T (RB + RS + RN)

Now we turn to the internal forces of inertia, damp-
ing, and stress. Inertial force is caused by the element’s
reluctance to accelerate or deaccelerate. In accordance
with Newton’s second law, it is given by ρwq̈′, where
ρ is the element’s mass density. Damping force results
from friction within the deforming material, and is pro-
portional to the element’s velocity: κwq̇′ where κ is the
element’s damping coefficient. Stress measures the mate-
rial’s resistance to deformation due to the external forces
and the element’s initial configuration, and can be writ-
ten as DBq′ + σ0. All three effects must be integrated
over the volume of the element. This gives

δEK + δEP = (δq)T (Mq̈′ + Cq̇′ + Kq′ + S0)

The matrices M ,C and K are the element’s mass, damp-
ing and stiffness matrices, S0 is the integrated initial
stress σ0. If the initial position of the paper is flat,
σ0 can be omitted altogether. For a more general case,
where the paper might already be bent, σ0 is not zero
and is calculated in the same way as σ.

The law of conservation of energy is expressed by
equating δET with the sum of δEK and δEP . Cancelling
(δq)T and moving S0 to the other side yields the second-
order differential equation

Mq̈′ + Cq̇′ + Kq′ = RB + RS + RN − S0 (32)

This is the fundamental equation that must be solved
in order to determine how the position of the element
evolves under the applied forces.

We solve this equation using Newmark implicit time
integration (Bathe, 1995). Given the position q, velocity
q̇ and acceleration q̈ of the element at time h, the new
values q̇′, q̈

′ at time h + ∆h are

q̈′ =
4

∆h2
(q′ − q)− 4

∆h
q̇ − q̈

q̇′ = q̇ +
∫

h

h+∆hq̈ dh (33)

To determine the nodal displacement at time h + ∆h
based only on terms at time h, we substitute the value
of q̇′, q̈′ from equation (33) into equation (32) and then
convert this into an expression for q′ by bringing all other

terms to the right-hand side.

q′
[

4
∆h2

M +
2

∆h
C + K

]
= RB + RS + RN − S0 +

M

(
4

∆h2
q +

4
∆h

q̇ + q̈

)
+

C

(
2

∆h
q + q̇

)
(34)

To summarize the entire algorithm to simulate the
behavior of the element:

1. Initialize q0 = q̇0 = q̈0 = 0
2. Select the time step ∆h
3. Form the matrices M ,C,K,S0.
4. For each time step:

(a) Calculate the load R′
B ,R′

S .
(b) Calculate the displacement q′ at time h+∆h ac-

cording to the equation just mentioned.
(c) Calculate the acceleration q̇′ and velocity q̈′ at

time h + ∆h from equation (33).

6 Discussion of methods

Table 1 shows the essential features of the page turning
techniques that we have surveyed. It contains entries for
the two variants of the peeling technique, basic peeling
and the use of a 3D correction to simulate foreshorten-
ing of the paper due to its extension in the z direction;
two geometric wrapping techniques that involve wrap-
ping the paper around a cylinder and cone respectively;
the basic mass-spring model and two variants that at-
tempt to simulate more natural bending and twisting
respectively; and the finite element method, which mod-
els the paper as a 3D shell whose thickness is represented
by a single element.

6.1 Computation time

The computation time required for each method is largely
dictated by the size of the grid, where applicable. Most
methods use rectangular grids. However, the first method
needs no grid, and the third mass-spring variant uses a
triangular grid in order to resist twisting by constraining
dihedral angles between neighboring triangles. Grid ele-
ments in the finite-element method are three-dimensional,
but are arranged in a two-dimensional array because pa-
per is thin enough for a single layer of elements to ade-
quately model its substance.

We simulated a complete page turn with each method,
involving many intermediate postures between the be-
ginning, where the page lies flat on the right-hand side,
and the end, where it lies flat on the left-hand side. For
the first four methods, which do not involve iteration,
Table 1 shows the average time taken to compute the
configuration of the paper at each posture. For the last

16 Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning

four methods, it shows the average number of iterations
to reach a posture, and the average execution time per
iteration. The execution time taken by these methods to
compute the configuration of the paper at each posture
is the product of these two numbers. The time taken to
completely turn a page can be calculated by multiplying
this product by the number of in-between postures—say
20 in-betweens for a fast 2

3 -second page turn animated
at 30 frames/second.

In each case the lower right-hand corner of the page
was constrained to move along the same arc. Each point
is specified as a position on the grid. The number of
possible positions with different x-values is twice the grid
size. Times are shown for grids of size 10×10 (18 postures
between the paper lying flat on the right side and flat on
the left side) and 100 × 100 (198 in-between postures).
The smaller grid gives a rough idea of what the page
turn looks like, while the larger one produces a very good
visual approximation of the page turn. In practice, one
would not use a square grid but tailor it to the aspect
ratio of the paper, using an 8×11 or 9×11 grid for 8 1

2

′′×
11′′ paper. Our implementations are not optimized and
could no doubt be improved by more careful attention
to computational details. The code was written in Java,
and timings were measured on a 2.8 GHz Pentium 4
processor.

The two-dimensional peeling technique does not use
a grid and is essentially instantaneous; it takes 50 µs to
compute a posture. The second method, which incorpo-
rates a correction for foreshortening in the z direction,
does require a grid, and this increases computation time
from O(1) to O(n2) for an n × n grid. Table 1 gives
values of 16 ms for the 10 × 10 grid and 5.96 s for the
100×100 grid, which are indeed on the order of 100 and
10,000 times the values for the O(1) peeling technique
(to within a factor of 3 and 12 respectively).

The time taken by geometric wrapping is O(n) for
the cylinder and O(n2) for the cone. The difference is
because in the former case each element of the paper
has the same position for all values of z, while in the
latter the position depends on the z-value, as described
in Section 3. The time taken for the cylinder is 1 ms
for the 10 × 10 grid and 312 ms for the 100 × 100 grid;
the increase is rather more than the factor of 10 that
is expected for an O(n) method but does include the
time required to output the coordinates of all the points,
which adds a small O(n2) component. The time taken
for the cone is 16 ms for the 10× 10 grid and 6.44 s for
the 100× 100 grid.

Now we turn to the physical simulation models in the
lower half of the Table. Their stability depends on the
value chosen for the integration time step. If this is too
large the simulation will be unstable—the paper may vi-
brate, or, worse still, the computation may blow up and
produce infinite values. Although the explicit time inte-
gration technique used for the first of these four physical
models is the simplest method, it is less stable than the

implicit methods that are used for the remaining three,
and therefore requires smaller time steps. However, in
order to compare the execution time based on the com-
plexity of the model itself, we have chosen the same time
step value of ∆h = 20 ms, which works well for all phys-
ical models.

For each method, the number of iterations required
for the 100× 100 grid is far smaller than for the 10× 10
one because the previous posture of the page, which is
used as a starting point for iteration, is far closer to
the current posture on the finer grid. Recall that we are
computing 18 in-between postures for the coarse grid
and 198 for the fine grid.

Table 1 gives the average number of iterations. In
physical models the number of iterations required to
reach a specified posture varies. More accurate mod-
els simulate the stiffness properties of the paper better,
which means that there is little change from one iteration
to the next. The largest change from one iteration to the
next occurs when force is first applied to the page, and
therefore only a small number of iterations are needed to
reach the first given posture. When the page approaches
its equilibrium posture near the end of the simulation,
the page deformation reduces, the amount of change in
each iteration decreases, and more iterations are required
to reach a posture. In practice, the number of iterations
ranges from about 200 steps below the average to 300
steps above it for the 10 × 10 grid, and from about 10
steps below to 20 steps above for the 100× 100 grid.

In terms of the grid size, the complexity of the mass-
spring models is O(n2). For all three of them, the time
taken for a complete 20-frame page turn animation is
about 400× 16× 20 ms ≈ 2 min on a 10× 10 grid, and
about 30× 6.5× 20 s ≈ 1 hour on a 100× 100 one.

The finite element method is far more complex still,
and grows with the fourth power of the grid size. A com-
plete 20-frame page turn animation takes 500 × 6.1 ×
20 ms ≈ 17 hours even on the crude 10×10 grid, and we
are clearly unable to perform the computation for the
larger 100× 100 grid because it would take on the order
of 104 times as long.

Note that in a practical implementation many speed-
ups are possible. The integration step size could be care-
fully tuned. Moreover, one could cache the results of a
single page turn (or, perhaps, a selection of different page
turns) and texture-map the actual contents of each page
onto the cached geometric surface. We did in fact do this
in an earlier project (Chu et al., 2003).

6.2 Visual fidelity

Figures 18 and 19 show the visual appearance of the
page produced by each method when the lower right-
hand corner of the page is placed at three different po-
sitions. To achieve this in a geometric simulation, the
program is given the desired (x, y, z) coordinates of the
page corner—in the case of the two-dimensional peeling

Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning 17

method, just the (x, y) coordinates. For physical simu-
lations, it involves applying a sequence of forces to the
lower right-hand corner of the page that are sufficient to
bring it to the appropriate point.

Figure 18 shows representative samples of the visual
effects produced by the geometric techniques of peeling
and wrapping. Figure 18(a) is clearly inferior to 18(b)
because, as explained in Section 2, the creased dog-ear
has exactly the same area as the part of the page be-
neath that has been revealed, which is obviously un-
natural. Nevertheless, when used in a reactive real-time
page-turning simulation users do not, in practice, notice
this deficiency. The geometric wrapping models in Fig-
ures 18(c) and 18(d) do not fare well. The cylindrical
model (Figure 18(c)) looks rather unnatural. The first
and third images of the conical model (Figure 18(d))
suffers from the fact that the cone’s axis is constrained
to lie on the negative y-axis, and the page is therefore
hardly curled at all. No doubt different variants of this
model could produce more realistic effects.

Some more radical differences can be seen in the im-
ages in Figure 19 produced by the physical methods—
three mass-spring models of increasing complexity and
the finite element method. Because the basic mass-spring
method does not model the page’s resistance to bend-
ing forces well, the page crumples in a way that re-
sembles cloth rather than paper, weighed down by the
force of gravity. This can be seen in Figure 19(a). In
Figure 19(b) the page is twisted unnaturally, an effect
which—although it looks plausible—is impossible to achieve
with ordinary paper. The third model tries to correct
this twist and overall the simulation looks reasonably
natural, but a slight twist can still be discerned in the
third image of Figure 19(c). This twisting behaviour does
not appear in the finite element method (Figure 19(d)),
which looks quite natural.

7 Conclusion

The simple act of turning a page is quite a complicated
thing to simulate. This paper has described a variety of
models with radically different geometric and physical
underpinnings. We have included enough detail to allow
readers to understand their basis of operation, and to
implement them if desired. We have implemented each
algorithm and compared them on the basis of execution
speed and visual appearance.

Different degrees of visual accuracy can readily be
observed when the simulation results are placed side by
side as in Figures 18 and 19. However, these effects gen-
erally go unnoticed when the images are viewed indi-
vidually, particularly when they are animated under the
control of a user who is focused on the page content.
For a book using ordinary rectangular flexible pages,
the simplest model—two-dimensional peeling as in Fig-
ure 18(a)—seems adequate for most applications. Al-

though it sacrifices 3D realism, the appearance can be
improved by adding visual details to simulate the ef-
fect of a smooth bend rather than a sharp crease—some
shading on the bend and some shadowing just beneath
it—as illustrated in Figure 1.

The peeling model is inadequate when showing the
visual effect of several pages being turned together; the
cylindrical and conical models are more suitable for this.
If the paper’s rigidity and/or shape must be varied, or if
users are allowed to make creases—for example, folding
corners down into dog-ears—geometric models are inad-
equate and mass-spring models should be used. In a sit-
uation with unlimited computing resources where visual
accuracy is more important than interactivity, the finite
element method will produce the most realistic simula-
tion for any type of paper under any condition. But a
heavy price is paid in computation time.

In order to study how people interact with realis-
tic page-turning models, we are experimenting with a
lightweight implementation of the peeling method. It
provides a quick, easy-to-use, and highly responsive page-
turning mechanism and permits the inclusion of hyper-
links and animated media. Our scheme, which is based
on Micromedia Flash, is usable, within a web browser,
today. The result is appealing and has many advantages
over viewing documents as standard HTML or PDF files,
including very rapid startup. Examples can be seen in
our book gallery at http://www.nzdl.org/books.

18 Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning

T
a
b
le

1
.

S
u
m

m
a
ry

o
f
p
a
g
e

tu
rn

in
g

tech
n
iq

u
es

T
ech

n
iq

u
e

M
eth

o
d

M
esh

T
im

e
in

teg
ra

tio
n

Itera
tio

n
/
p
o
sitio

n
T

im
e/

itera
tio

n
(secs)

C
o
m

p
lex

ity
1
0
×

1
0

1
0
0
×

1
0
0

1
0
×

1
0

1
0
0×

1
0
0

P
e
e
lin

g
tw

o
-d

im
en

sio
n
a
l

p
ro

d
u
ce

d
o
g
-ea

r
eff

ect
b
y

sim
p
le

g
eo

m
etric

refl
ectio

n
-

-
1

1
5
×

1
0
−

5
5
×

1
0
−

5
O

(1
)

w
ith

3
D

co
rrectio

n
a
d
ju

st
d
o
g
-ea

r
w

ith
h
eu

ristic
z
-va

lu
e

a
n
d

sp
lin

e
co

rrectio
n

recta
n
g
le

-
1

1
0
.0

1
6

5
.9

6
O

(n
2)

G
e
o
m

e
tric

w
ra

p
p
in

g
a
ro

u
n
d

cy
lin

d
er

m
a
p

g
rid

to
cy

lin
d
er

w
h
o
se

ra
d
iu

s
a
n
d

a
x
is

va
ry

recta
n
g
le

-
1

1
0
.0

0
1

0
.3

1
O

(n
)

a
ro

u
n
d

co
n
e

m
a
p

g
rid

to
co

n
e

w
h
o
se

a
n
g
le

a
n
d

a
p
ex

va
ry

recta
n
g
le

-
1

1
0
.0

1
6

6
.4

4
O

(n
2)

M
a
ss-sp

rin
g

m
o
d
e
l

b
a
sic

ca
lcu

la
te

sp
rin

g
len

g
th

s
fro

m
H

o
o
k
e’s

law
a
n
d

a
p
p
ly

lim
it

stra
in

in
g

recta
n
g
le

ex
p
licit

E
u
ler

3
4
9

2
7

0
.0

1
6

6
.3

8
O

(n
2)

w
ith

b
en

d
in

g
a
p
p
ly

H
o
o
k
e’s

law
fo

r
elo

n
g
a
tio

n
,
a
n
d

ca
lcu

la
te

cu
rva

tu
re

fo
r

co
m

p
ressio

n
recta

n
g
le

sem
i-im

p
licit

b
a
ck

w
a
rd

d
iff

eren
ce

3
8
6

3
0

0
.0

1
5

6
.3

8
O

(n
2)

b
en

d
in

g
,
n
o

tw
istin

g
ta

k
e

a
cco

u
n
t

o
f
b
en

d
in

g
en

erg
y

b
y

ca
lcu

la
tin

g
d
ih

ed
ra

l
a
n
g
le

b
etw

een
n
eig

h
b
o
rin

g
tria

n
g
les

tria
n
g
le

im
p
licit

N
ew

m
a
rk

4
5
0

3
3

0
.0

1
7

6
.9

4
O

(n
2)

F
in

ite
e
le

m
e
n
t

3
D

sh
ell

m
o
d
el

u
se

stress-stra
in

rela
tio

n
sh

ip
to

d
eriv

e
th

e
d
efo

rm
a
tio

n
fro

m
a
p
p
lied

fo
rces

3
D

p
a
tch

im
p
licit

N
ew

m
a
rk

5
0
0

-
6
.1

0
-

O
(n

4)

Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning 19

(a
)

(b
)

(c
)

(d
)

F
ig

.
1
8
.

G
eo

m
et

ri
c

p
a
g
e

tu
rn

in
g

si
m

u
la

ti
o
n

u
si

n
g
:
(a

)
P
ee

li
n
g

2
D

,
(b

)
P
ee

li
n
g

3
D

,
(c

)
C

y
li
n
d
ri

ca
l,

a
n
d

(d
)

C
o
n
ic

a
l
m

o
d
el

s

(a
)

(b
)

(c
)

(d
)

F
ig

.
1
9
.
P

h
y
si

ca
l
p
a
g
e

tu
rn

in
g

si
m

u
la

ti
o
n

u
si

n
g
:
(a

)
B

a
si

c
m

a
ss

-s
p
ri

n
g
,
(b

)
B

en
d
in

g
,
(c

)
B

en
d
in

g
w

it
h
o
u
t

tw
is

ti
n
g
,
a
n
d

(d
)

F
in

it
e

el
em

en
t

m
et

h
o
d

m
o
d
el

s

20 Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning

Acknowledgments

We acknowledge the entire New Zealand Digital Library
Project team for their unstinting work in providing an
environment that makes this kind of research meaningful—
and fun. This work is funded in part by Google.

References

Bathe, K. (1995). Finite element procedures. Prentice-
Hall.

Beaudouin-Lafon, M. (2001). Novel interaction tech-
niques for overlapping windows. UIST ’01: Pro-
ceedings of the 14th annual ACM symposium on
User interface software and technology, 153–154.

Bhangal, S. (2004). The page turn effect in
flash mx. http://www.oreillynet.com/pub/a/
javascript/2004/09/03/flashhac%ks.html.

Card, S. K., Hong, L., & Chen, J. D. (2006). Turning
pages of 3d electronic books. 2006 IEEE Sympo-
sium on 3D User Interfaces, 159-165.

Choi, K. J., & Ko, H. S. (2002). Stable but responsive
cloth. SIGGRAPH 2002 Conference Proceedings:
ACM Transactions on Graphics, 21 (3), 604–611.

Chu, Y.-C., Bainbridge, D., Jones, M., & Witten, I. H.
(2004). Realistic books: A bizarre homage to an
obsolete medium? JCDL ’04: Proceedings of the
4th ACM/IEEE-CS joint conference on Digital Li-
braries, 78–86.

Chu, Y.-C., Witten, I. H., Lobb, R., & Bainbridge, D.
(2003). How to turn the page. JCDL ’03: Proceed-
ings of the 3rd ACM/IEEE-CS joint conference on
Digital Libraries, 186–188.

Gotoda, H. (2000). Moving finite element for simulation
creasing phenomena of nearly unstretchable sheet
materials. IEEE Computer Graphics and Applica-
tion.

Henke, H. (2001). Electronic books and epublising: a
practical guide for authors. New York: Springer
Verlag.

British Library. (2006). Turning the pages. http://www.
bl.uk/onlinegallery/ttp/ttpbooks.html.

Provot, X. (1995). Deformation constraints in a mass-
spring model to describe rigid cloth behaviour. In
Proceedings of Graphic Interface’95, 147–154.

8 Appendix

This Appendix contains technical details of the finite el-
ement method calculations that were omitted from Sec-
tion 5 of the main text. The critical steps concern calcu-
lating the strain, obtaining the deformation matrix, and
turning the forces into a system of equations that can
be integrated to determine the spatial evolution of every
finite element at successive time steps.

List of symbols

x, y, z Global coordinate system
ξ, η, ζ Local coordinate system
x̂, ŷ, ẑ Normal-vector coordinate system
p Point in global coordinate
pi Reference point i in global coordinate
π Point in local coordinate
πi Reference point i in local coordinate
n Vector normal to the shell
ni Vector normal to the shell at reference point i
d Displacement vector
qi Displacement vector for reference point i
wi(ξ, η) Interpolation function for reference point i
t Element’s thickness
E Young’s modulus
ν Poisson’s ratio
K Shear correction factor

8.1 Calculating the strain

The strain is determined by obtaining the derivatives
of the displacement d with respect to the ξ, η and ζ
axes and multiplying these by the inverse of the Jacobian
matrix.

The Jacobian is defined in equation (28), and can be
calculated by taking derivatives of point p = (x, y, z)
from equation (23) with respect to the ξ, η and ζ axes:

∂p

∂ξ
=

8∑
i=1

∂wi(ξ, η)
∂ξ

(pi + ζ
ti
2

ni)

∂p

∂η
=

8∑
i=1

∂wi(ξ, η)
∂η

(pi + ζ
ti
2

ni)

∂p

∂ζ
=

8∑
i=1

wi(ξ, η)
ti
2

ni

This yields the value of the Jacobian matrix J .
The strain is the derivative of the displacement d

with respect to the global coordinates x, y and z. The
displacement is given in terms of the local ξ, η and ζ
coordinate system by equation (25), and its derivatives
with respect to those coordinates are:

∂d

∂ξ
=

8∑
i=1

∂wi(ξ, η)
∂ξ


 ui

vi

wi

+ ζ
ti
2

(βie
x̂
i − αie

ŷ
i)


∂d

∂η
=

8∑
i=1

∂wi(ξ, η)
∂η


 ui

vi

wi

+ ζ
ti
2

(βie
x̂
i − αie

ŷ
i)


∂d

∂ζ
=

8∑
i=1

wi(ξ, η)
ti
2

(βie
x̂
i − αie

ŷ
i)

The strain at time h is obtained by multiplying the
above derivatives by J−1 according to the chain rule, as

Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning 21

given in equation (27):

ε =



∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z
∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y


d

=
8∑

i=1




ai 0 0
0 bi 0
0 0 ci

bi ai 0
ci 0 ai

0 ci bi


 ui

vi

wi

+


fi 0 0
0 gi 0
0 0 hi

gi fi 0
hi 0 fi

0 hi gi

 (βie
x̂
i − αie

ŷ
i)


=

8∑
i=1

Biqi

The strain-displacement matrix for pi is

Bi =



ai 0 0 −fil
ŷ
i fil

x̂
i

0 bi 0 −gim
ŷ
i gim

x̂
i

0 0 ci −hin
ŷ
i hin

x̂
i

bi ai 0 −gil
ŷ
i − fim

ŷ
i gil

x̂
i + fim

x̂
i

ci 0 ai −fin
ŷ
i − hil

ŷ
i fin

x̂
i + hil

x̂
i

0 ci bi −him
ŷ
i − gin

ŷ
i him

x̂
i + gin

x̂
i


where

ai = J−1
11

∂wi(ξ, η)
∂ξ

+ J−1
12

∂wi(ξ, η)
∂η

bi = J−1
21

∂wi(ξ, η)
∂ξ

+ J−1
22

∂wi(ξ, η)
∂η

ci = J−1
31

∂wi(ξ, η)
∂ξ

+ J−1
32

∂wi(ξ, η)
∂η

fi =
ti
2

(aiζ + J−1
13 wi(ξ, η))

gi =
ti
2

(biζ + J−1
23 wi(ξ, η))

hi =
ti
2

(ciζ + J−1
33 wi(ξ, η))

Here, J−1
ij refers to the component of J−1 at row i,

column j. The derivatives of the interpolation function
wi(ξ, η) with respect to the ξ and η axis are given in the
table below.

i ∂wi(ξ,η)
∂ξ

∂wi(ξ,η)
∂η

1 1
4 (2ξ + η)(1− η) 1

4 (1− ξ)(2η + ξ)
2 1

4 (2ξ − η)(1− η) 1
4 (1 + ξ)(2η − ξ)

3 1
4 (2ξ + η)(1 + η) 1

4 (1 + ξ)(2η + ξ)
4 1

4 (2ξ − η)(1 + η) 1
4 (1− ξ)(2η − ξ)

5 −ξ(1− η) − 1
2 (1− ξ2)

6 1
2 (1− η2) −η(1 + ξ)

7 −ξ(1 + η) − 1
2 (1− ξ2)

8 1
2 (1− η2) −η(1− ξ)

8.2 Calculating the deformation matrix

As explained in Section 5.8, the deformation matrix D̂
quantifies the relationship between stress and strain at
point p in the normal-vector coordinate system. The
transformation matrix Q is used to map D̂ to the global
coordinate system. The elements of Q are obtained from
the direction cosines of the x̂, ŷ, ẑ coordinate axes at
point p measured in the x, y, z coordinate system.

The x̂ axis is in a direction perpendicular to the ξ
axis at p, namely ex̂ = J1

|J1| where the vector Jk is the
kth row of the Jacobian matrix. The ẑ axis is in a di-
rection normal to the shell’s surface at p, and can be
obtained by taking the cross product of two different
vectors tangential to this surface. It can therefore be ex-
pressed as eẑ = J1×J2

|J1×J2| . Once the directions of the x̂ and
ẑ axes are established, the ŷ axis is chosen to be perpen-
dicular to them both; the unit vector along this axis is
eŷ = ex̂ × eẑ.

The components of the matrix T are the direction
cosines of the normal-vector coordinate system at point
p, measured in the x, y, z coordinate system:

T =

ex̂

eŷ

eẑ

 =

 lx̂ mx̂ nx̂

lŷ mŷ nŷ

lẑ mẑ nẑ


The matrices D̂,D, and Q are all of the form

A1111 A1122 A1133 A1112 A1113 A1123

A2211 A2222 A2233 A2212 A2213 A2223

A3311 A3322 A3333 A3312 A3313 A3323

A1211 A1222 A1233 A1212 A1213 A1223

A1311 A1322 A1333 A1312 A1313 A1323

A2311 A2322 A2133 A2312 A2313 A2323


The suffixes have a slightly different interpretation in
each of the three cases. An element in the local deforma-
tion matrix D̂ is D̂rstu, where r, s, t, u ∈ {1, 2, 3}. The
numbers 1, 2 and 3 signify the x̂, ŷ and ẑ axes respec-
tively. The global deformation matrix D has elements
Dijkl, with i, j, k, l ∈ {1, 2, 3}—and here the numbers
1, 2 and 3 signify the x, y and z axes. The relationship
between D̂ and D is given by the fourth-order tensor
transformation

Dijkl =
3∑

r=1

3∑
s=1

3∑
t=1

3∑
u=1

TirTjsD̂rstuTktTlu,

where Tab refers to the component of T at row a and
column b. This transformation can be written in matrix
form:

D = QT D̂Q

Finally, Q is an orthogonal matrix with elements Qmnop,
where m,n ∈ {1, 2, 3} signify the axes of the global coor-
dinate system and o, p ∈ {1, 2, 3} the axes of the normal-
vector coordinate system:

Qmnop =
{

TmoTnp + TmpTno : o 6= p
TmoTnp : o = p

22 Veronica Liesaputra, Ian H. Witten: Computer Graphics Techniques for Modeling Page Turning

8.3 Effect of forces

The element’s internal energy in Section 5.9 is

δEK + δEP =
∫

V

(δd)T (F I + F D) dV +
∫

V

(δε)T σ dV

=
∫

V

(wδq)T (ρwq̈′ + κwq̇′) dV +∫
V

(Bδq)T (DBq′ + σ0) dV

= (δq)T (Mq̈′ + Cq̇′ + Kq′ + S0)

where

M =
∫

V

ρwT w dV (35)

C =
∫

V

κwT w dV (36)

K =
∫

V

BT DB dV (37)

S0 =
∫

V

BT σ0 dV (38)

As noted in Equation (31), conservation of energy im-
plies that this internal energy equates to the element’s
external energy, which is

δET =
∫

V

(δd)T F B dV +
∫

A

(δdA)T F S dA + (δq)T RN

=
∫

V

(wδq)T F B dV +
∫

A

(wAδq)T F S dA + (δq)T RN

= (δq)T (Rb + Rs + RN)

where

RB =
∫

V

wT F B dV (39)

RS =
∫

A

(wA)T F S dA (40)

Here, wA is obtained from the matrix w by substituting
the appropriate ξ and η values.

To solve for the values of M ,C,K,RB ,RS and S0,
three-point Gaussian quadrature integration is used:∫

V

f(V) dV =
∫ 1

−1

∫ 1

−1

∫ 1

−1

f(ξ, η, ζ)|J | dξ dη dζ∫
A

f(A) dA =
∫ 1

−1

∫ 1

−1

f(ξ, η)|J | dξ dη

where |J | is the determinant of the Jacobian matrix. In
terms of the grid size, the computational complexity of
f(V) and f(A) is O(n2). The complexity of the finite
element method after the integration is O(n4).

	WorkingPaperCoverPage.pdf
	journal.pdf

