Browsing by Author "Bifet, Albert"

Now showing items 1-5 of 38

  • Adaptive random forests for evolving data stream classification

    Gomes, Heitor Murilo; Bifet, Albert; Read, Jesse; Barddal, Jean Paul; Enembreck, Fabrício; Pfahringer, Bernhard; Holmes, Geoffrey; Abdessalem, Talel (Springer, 2017)
    Random forests is currently one of the most used machine learning algorithms in the non-streaming (batch) setting. This preference is attributable to its high learning performance and low demands with respect to input ...
  • Adaptive XGBoost for evolving data streams

    Montiel, Jacob; Mitchell, Rory; Frank, Eibe; Pfahringer, Bernhard; Abdessalem, Talel; Bifet, Albert (IEEE, 2020)
    Boosting is an ensemble method that combines base models in a sequential manner to achieve high predictive accuracy. A popular learning algorithm based on this ensemble method is eXtreme Gradient Boosting (XGB). We present ...
  • Analyzing and repairing concept drift adaptation in data stream classification

    Halstead, Ben; Koh, Yun Sing; Riddle, Patricia; Pears, Russel; Pechenizkiy, Mykola; Bifet, Albert; Olivares, Gustavo; Coulson, Guy (2021)
    Data collected over time often exhibit changes in distribution, or concept drift, caused by changes in factors relevant to the classification task, e.g. weather conditions. Incorporating all relevant factors into the model ...
  • Batch-incremental versus instance-incremental learning in dynamic and evolving data

    Read, Jesse; Bifet, Albert; Pfahringer, Bernhard; Holmes, Geoffrey (Springer, 2012)
    Many real world problems involve the challenging context of data streams, where classifiers must be incremental: able to learn from a theoretically- infinite stream of examples using limited time and memory, while being ...
  • Boosting decision stumps for dynamic feature selection on data streams

    Barddal, Jean Paul; Enembreck, Fabrício; Gomes, Heitor Murilo; Bifet, Albert; Pfahringer, Bernhard (2019)
    Feature selection targets the identification of which features of a dataset are relevant to the learning task. It is also widely known and used to improve computation times, reduce computation requirements, and to decrease ...

Showing up to 5 theses - most recently added to Research Commons first.