Now showing items 1-5 of 5

  • Acquiring and Exploiting Lexical Knowledge for Twitter Sentiment Analysis

    Bravo-Marquez, Felipe (University of Waikato, 2017)
    The most popular sentiment analysis task in Twitter is the automatic classification of tweets into sentiment categories such as positive, negative, and neutral. State-of-the-art solutions to this problem are based on ...
  • Concept-based Text Clustering

    Huang, Lan (University of Waikato, 2011)
    Thematic organization of text is a natural practice of humans and a crucial task for today's vast repositories. Clustering automates this by assessing the similarity between texts and organizing them accordingly, grouping ...
  • Parameter Tuning Using Gaussian Processes

    Ma, Jinjin (University of Waikato, 2012)
    Most machine learning algorithms require us to set up their parameter values before applying these algorithms to solve problems. Appropriate parameter settings will bring good performance while inappropriate parameter ...
  • Smoothing in Probability Estimation Trees

    Han, Zhimeng (University of Waikato, 2011)
    Classification learning is a type of supervised machine learning technique that uses a classification model (e.g. decision tree) to predict unknown class labels for previously unseen instances. In many applications it can ...
  • Using Output Codes for Two-class Classification Problems

    Zeng, Fanhua (University of Waikato, 2011)
    Error-correcting output codes (ECOCs) have been widely used in many applications for multi-class classification problems. The problem is that ECOCs cannot be ap- plied directly on two-class datasets. The goal of this thesis ...