Transformers for multi-label classification of medical text: an empirical comparison

dc.contributor.authorYogarajan, Vithyaen_NZ
dc.contributor.authorMontiel, Jacoben_NZ
dc.contributor.authorSmith, Tony C.en_NZ
dc.contributor.authorPfahringer, Bernharden_NZ
dc.contributor.editorTucker, A.en_NZ
dc.contributor.editorHenriques Abreu, P.en_NZ
dc.contributor.editorCardoso, J.en_NZ
dc.contributor.editorPereira Rodrigues, P.en_NZ
dc.contributor.editorRiaño, D.en_NZ
dc.coverage.spatialVirtual Eventen_NZ
dc.date.accessioned2022-06-21T00:09:50Z
dc.date.available2022-06-21T00:09:50Z
dc.date.issued2021en_NZ
dc.description.abstractRecent advancements in machine learning-based multi-label medical text classification techniques have been used to help enhance healthcare and aid better patient care. This research is motivated by transformers’ success in natural language processing tasks, and the opportunity to further improve performance for medical-domain specific tasks by exploiting models pre-trained on health data. We consider transfer learning involving fine-tuning of pre-trained models for predicting medical codes, formulated as a multi-label problem. We find that domain-specific transformers outperform state-of-the-art results for multi-label problems with the number of labels ranging from 18 to 158, for a fixed sequence length. Additionally, we find that, for longer documents and/or number of labels greater than 300, traditional neural networks still have an edge over transformers. These findings are obtained by performing extensive experiments on the semi-structured eICU data and the free-form MIMIC III data, and applying various transformers including BERT, RoBERTa, and Longformer variations. The electronic health record data used in this research exhibits a high level of label imbalance. Considering individual label accuracy, we find that for eICU data medical-domain specific RoBERTa models achieve improvements for more frequent labels. For infrequent labels, in both datasets, traditional neural networks still perform better.
dc.format.mimetypeapplication/pdf
dc.identifier.citationYogarajan, V., Montiel, J., Smith, T., Pfahringer, B. (2021). Transformers for Multi-label Classification of Medical Text: An Empirical Comparison. In: Tucker, A., Henriques Abreu, P., Cardoso, J., Pereira Rodrigues, P., Riaño, D. (eds) Artificial Intelligence in Medicine. AIME 2021. Lecture Notes in Computer Science(LNAI,volume 12721). Springer, Cham. https://doi.org/10.1007/978-3-030-77211-6_12
dc.identifier.doi10.1007/978-3-030-77211-6_12en_NZ
dc.identifier.isbn9783030772109en_NZ
dc.identifier.issn0302-9743en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/14934
dc.language.isoen
dc.publisherSpringeren_NZ
dc.relation.isPartOfProceedings of 19th International Conference on Artificial Intelligence in Medicine (AIME 2021), LNCS 12721en_NZ
dc.rights© 2021 Springer Nature Switzerland AG.This is the author's accepted version. The final publication is available at Springer via dx.doi.org/10.1007/978-3-030-77211-6_12
dc.sourceAIME 2021en_NZ
dc.subjectcomputer scienceen_NZ
dc.subjectmulti-labelen_NZ
dc.subjectfine-tuningen_NZ
dc.subjectmedical texten_NZ
dc.subjecttransformersen_NZ
dc.subjectneural networksen_NZ
dc.titleTransformers for multi-label classification of medical text: an empirical comparisonen_NZ
dc.typeConference Contribution
dspace.entity.typePublication
pubs.begin-page114
pubs.end-page123
pubs.finish-date2021-06-18en_NZ
pubs.publication-statusPublisheden_NZ
pubs.start-date2021-06-15en_NZ

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AIME_2021_paper33.pdf
Size:
226.98 KB
Format:
Adobe Portable Document Format
Description:
Accepted version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Research Commons Deposit Agreement 2017.pdf
Size:
188.11 KB
Format:
Adobe Portable Document Format
Description: