Adaptive Neural Networks for Online Domain Incremental Continual Learning

dc.contributor.authorGunasekara, Nuwanen_NZ
dc.contributor.authorGomes, Heitoren_NZ
dc.contributor.authorBifet, Alberten_NZ
dc.contributor.authorPfahringer, Bernharden_NZ
dc.contributor.editorPascal, Pen_NZ
dc.contributor.editorIenco, Den_NZ
dc.coverage.spatialMontpellier, Franceen_NZ
dc.date.accessioned2024-01-21T20:50:41Z
dc.date.available2024-01-21T20:50:41Z
dc.date.issued2022en_NZ
dc.description.abstractContinual Learning (CL) poses a significant challenge to Neural Network (NN)s, where the data distribution changes from one task to another. In Online domain incremental continual learning (OD-ICL), this distribution change happens in the input space without affecting the label distribution. In order to adapt to such changes, the model being trained risks forgetting previously learned knowledge (stability). On the other hand, enforcing that the model preserves past knowledge will cause it to fail to learn new concepts (plasticity). We propose Online Domain Incremental Networks (ODIN), a novel method to alleviate catastrophic forgetting by automatically detecting the end of a task using concept drift detection. As a consequence, ODIN does not require the specification of task ids. ODIN maintains a pool of NNs, each trained on a single task and frozen for further updates. A Task Predictor (TP) is trained to select the most suitable NN from the frozen pool for prediction. We compare ODIN against popular regularization and replay methods. It outperforms regularization methods and achieves comparable predictive performance to replay methods.en_NZ
dc.format.mimetypeapplication/pdf
dc.identifier.doi10.1007/978-3-031-18840-4_7en_NZ
dc.identifier.eissn1611-3349en_NZ
dc.identifier.isbn9783031188398en_NZ
dc.identifier.issn0302-9743en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/16372
dc.language.isoen
dc.publisherSpringer Nature
dc.relation.isPartOfPro 25th International Conference on Discovery Science (DS 2022), LNAI 13601en_NZ
dc.rightsThis is an author’s accepted version of a conference paper published in Proceedings of 25th International Conference on Discovery Science (DS 2022), LNAI 13601. © 2022 Springer.
dc.sourceDS 2022en_NZ
dc.subjectcomputer scienceen_NZ
dc.subjectonline domain incremental continual learningen_NZ
dc.titleAdaptive Neural Networks for Online Domain Incremental Continual Learningen_NZ
dc.typeConference Contribution
dspace.entity.typePublication
pubs.begin-page89
pubs.end-page103
pubs.finish-date2022-10-12en_NZ
pubs.publication-statusPublisheden_NZ
pubs.start-date2022-10-10en_NZ

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DS2022_ODIN_camera_ready.pdf
Size:
709.33 KB
Format:
Adobe Portable Document Format
Description:
Accepted version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Research Commons Deposit Agreement 2017.pdf
Size:
188.11 KB
Format:
Adobe Portable Document Format
Description: