dc.contributor.author | Delbourgo, Daniel | en_NZ |
dc.contributor.author | Lei, Antonio | en_NZ |
dc.date.accessioned | 2016-04-04T23:39:26Z | |
dc.date.available | 2015 | en_NZ |
dc.date.available | 2016-04-04T23:39:26Z | |
dc.date.issued | 2015 | en_NZ |
dc.identifier.citation | Delbourgo, D., & Lei, A. (2015). Transition formulae for ranks of abelian varieties. Rocky Mountain Journal of Mathematics, 45(6), 1807–1838. http://doi.org/10.1216/RMJ-2015-45-6-1807 | en |
dc.identifier.issn | 0035-7596 | en_NZ |
dc.identifier.uri | https://hdl.handle.net/10289/10021 | |
dc.description.abstract | Let A/k denote an abelian variety defined over a number field k with good ordinary reduction at all primes above p, and let K∞ =∪n≥1 Kn be a p-adic Lie extension of k containing the cyclotomic Zp-extension. We use K-theory to find recurrence relations for the λ-invariant at each σ-component of the Selmer group over K∞, where σ : Gk → GL(V ). This provides upper bounds on the Mordell-Weil rank for A(Kn) as n → ∞ whenever G∞ = Gal(K∞/k) has dimension at most 3. | en_NZ |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.publisher | Rocky Mountain Mathematics Consortium | en_NZ |
dc.rights | This article is published in the Rocky Mountain Journal of Mathematics. Used with permission. | |
dc.title | Transition formulae for ranks of abelian varieties | en_NZ |
dc.type | Journal Article | |
dc.identifier.doi | 10.1216/RMJ-2015-45-6-1807 | en_NZ |
dc.relation.isPartOf | Rocky Mountain Journal of Mathematics | en_NZ |
pubs.begin-page | 1807 | |
pubs.elements-id | 115916 | |
pubs.end-page | 1838 | |
pubs.issue | 6 | en_NZ |
pubs.publication-status | Accepted | en_NZ |
pubs.publisher-url | http://projecteuclid.org/euclid.rmjm/1457960336 | en_NZ |
pubs.volume | 45 | en_NZ |