Show simple item record  

dc.contributor.authorDelbourgo, Danielen_NZ
dc.contributor.authorLei, Antonioen_NZ
dc.date.accessioned2016-04-04T23:39:26Z
dc.date.available2015en_NZ
dc.date.available2016-04-04T23:39:26Z
dc.date.issued2015en_NZ
dc.identifier.citationDelbourgo, D., & Lei, A. (2015). Transition formulae for ranks of abelian varieties. Rocky Mountain Journal of Mathematics, 45(6), 1807–1838. http://doi.org/10.1216/RMJ-2015-45-6-1807en
dc.identifier.issn0035-7596en_NZ
dc.identifier.urihttps://hdl.handle.net/10289/10021
dc.description.abstractLet A/k denote an abelian variety defined over a number field k with good ordinary reduction at all primes above p, and let K∞ =∪n≥1 Kn be a p-adic Lie extension of k containing the cyclotomic Zp-extension. We use K-theory to find recurrence relations for the λ-invariant at each σ-component of the Selmer group over K∞, where σ : Gk → GL(V ). This provides upper bounds on the Mordell-Weil rank for A(Kn) as n → ∞ whenever G∞ = Gal(K∞/k) has dimension at most 3.en_NZ
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherRocky Mountain Mathematics Consortiumen_NZ
dc.rightsThis article is published in the Rocky Mountain Journal of Mathematics. Used with permission.
dc.titleTransition formulae for ranks of abelian varietiesen_NZ
dc.typeJournal Article
dc.identifier.doi10.1216/RMJ-2015-45-6-1807en_NZ
dc.relation.isPartOfRocky Mountain Journal of Mathematicsen_NZ
pubs.begin-page1807
pubs.elements-id115916
pubs.end-page1838
pubs.issue6en_NZ
pubs.publication-statusAccepteden_NZ
pubs.publisher-urlhttp://projecteuclid.org/euclid.rmjm/1457960336en_NZ
pubs.volume45en_NZ


Files in this item

This item appears in the following Collection(s)

Show simple item record