Research Commons
      • Browse 
        • Communities & Collections
        • Titles
        • Authors
        • By Issue Date
        • Subjects
        • Types
        • Series
      • Help 
        • About
        • Collection Policy
        • OA Mandate Guidelines
        • Guidelines FAQ
        • Contact Us
      • My Account 
        • Sign In
        • Register
      View Item 
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      •   Research Commons
      • University of Waikato Research
      • Science and Engineering
      • Science and Engineering Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Heat transfer enhancement for site level indirect heat recovery systems using nanofluids as the intermediate fluid

      Tarighaleslami, Amir Hossein; Walmsley, Timothy Gordon; Atkins, Martin John; Walmsley, Michael R.W.; Neale, James R.
      Thumbnail
      Files
      2016 tarighaleslami walmsley atkins walmsley neale Applied Thermal Engineering.pdf
      Accepted version, 758.3Kb
      DOI
       10.1016/j.applthermaleng.2016.03.132
      Link
       www.sciencedirect.com
      Find in your library  
      Citation
      Export citation
      Tarighaleslami, A. H., Walmsley, T. G., Atkins, M. J., Walmsley, M. R. W., & Neale, J. R. (2016). Heat transfer enhancement for site level indirect heat recovery systems using nanofluids as the intermediate fluid. Applied Thermal Engineering. http://doi.org/10.1016/j.applthermaleng.2016.03.132
      Permanent Research Commons link: https://hdl.handle.net/10289/10124
      Abstract
      In this paper, implementation of nanofluids as a Heat Transfer Enhancement technique in Process Integration has been studied. A step by step flowchart is introduced and as a case study the effect of replacing water with various nanofluids as the heat transfer media in an industrial Heat Recovery Loop (HRL) has been modelled. Nanofluids are prepared by distributing a nanoparticle through a base fluid such as water, ethylene glycol or oils. Suspended nanoparticles slightly affect the thermal and physical properties of the base fluid. Primarily nanoparticles are added to improve the fluid’s heat transfer characteristics by increasing its Reynolds number and thermal conductivity. HRL system in a large dairy factory in New Zealand has been studied as case study. Results show that by applying various HRL design methods and a nanofluid as an intermediate fluid, an increase in heat recovery is possible without the need for extra heat exchanger area and infrastructure. 1.5 vol.% CuO/water nanofluid has been chosen as an intermediate fluid and by using a constant temperature storage control strategy, heat recovery from liquid–liquid heat exchangers increases between 5% and 9%. The air-side heat transfer coefficient limits the impact of using a nanofluid for the air–liquid exchangers. In other cases, the total available duty from the process stream, such as a condenser, significantly nullifies the heat transfer benefit of using a nano- fluid in a retrofit situation. Alternative to increasing heat recovery, results show that applying a nanofluid in the HRL design phase enables heat exchanger area to decrease significantly for liquid–liquid matches. Results show that the increase in pressure drop and friction factor effects in such a system is negligible
      Date
      2016
      Type
      Journal Article
      Publisher
      Elsevier
      Rights
      This is an author’s accepted version of an article published in the journal: Applied Thermal Engineering. © 2016 Elsevier.
      Collections
      • Science and Engineering Papers [3122]
      Show full item record  

      Usage

      Downloads, last 12 months
      122
       
       
       

      Usage Statistics

      For this itemFor all of Research Commons

      The University of Waikato - Te Whare Wānanga o WaikatoFeedback and RequestsCopyright and Legal Statement